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Abstract: A computation of an instantaneous firing speed in an invariant behavior
state of a Constant speed Continuous Petri Net is presented in this article. The
instantaneous firing speeds, constrained by a system of inequalities, are represented
by polytopes in order to clarify a nondeterminism issued by an actual conflict. The
instantaneous firing speeds are determined by a subset of the polytope vertices or,
when the actual conflicts are resolved by global priorities, they are found by one
formulation of a linear programming problem per each priority level. An example of
water production shows consequencies of the fact that an infinitely small quantity
of the marking in a conservative component enables to run the water production

system at its maximum speed.
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1. INTRODUCTION

This article is based on a Constant speed Con-
tinuous Petri Net (CCPN) model presented by R.
David and H. Alla (H. Alla, 1998). These authors
obtained a continuous model by a fluidification
of a discrete Petri Net. This approach can be
particularly useful when a Continuous Petri Net
is used to approximate a discrete Petri Net, since
the evolution graph can represent the net behav-
ior in a very dense form. For a given CCPN, a
set of enabled transitions is identified for each
Invariant Behavior state (IB-state) when an evo-
lution graph is constructed. The Instantaneous
Firing speed (IF-speed) of each enabled transition
is constrained by the transition’s maximal speed.
Both, the IF-speed and the marking derivative,
are constant in a given IB-state. Consequently, a
marking of CCPN is a continuous function of time,
but the IF-speed is not a continuous function of
time. This article is motivated by the fact that
the iterative algorithm finding IF-speed given in
(H. Alla, 1998) may not be used when there is

an actual conflict (informally we say that there is
the actual conflict between two transitions when
possible increase in IF-speed of one transition
must be compensated by the decrease in IF-speed
of the other transition).

B. Gaujal and A. Giua (Gaujal and Giua, 2002)
considered conflicts in Cohen’s model where a
release delay is associated to each place. Conse-
quently, neither the marking nor a firing rate is
a continuous function of time in this model. The
authors use a stationary routing (Alpan and Gau-
jal, 2000) to solve a conflict via transformation to
a conflict free net.

In the model presented by L. Recalde, J. Julvez
and M. Silva (Recalde et al., 2002), where the
speed parameters are associated to the transi-
tions, the decrease rate of the marking depends of
its size. Therefore evolution of this model is given
by a set of differential equations with the min
operator (when the net is join-free then it is given
by an ordinary set of differential equations with-
out min operator). Consequently, the marking



and a flow through the transition are continuous
functions of time in this model. The authors study
so called Equal Conflict nets, where the ratio of
the flows through two conflicting transitions is
equal to the ratio of the speed parameters of these
transitions.

First-Order Hybrid Petri Nets (Balduzzi et al.,
2000) and (Balduzzi et al., 2001) use linear
programming to simulate behavior of the hy-
brid systems. The First-Order Hybrid Petri Nets
(FOHPN) model is very close to CCPN model,
but it differs from the one presented by R. David
and H. Alla in two aspects. First, in FOHPN
model a weakly enabled transition does not re-
quire an upstream strongly enabled transition.
Consequently, transitions forming a conservative
component with zero marking are enabled in
FOHPN. Second, a minimum firing speed is de-
fined for FOHPN model.

Autonomous Continuous Petri Nets (Recalde et
al., 1999) and other models like DAE (Differential
Algebraic Equations) Petri Nets (Champagnat et
al., 2001), Batches Petri Nets (Demongodin, 2001)
have been studied intensively since this research
area presents an important bridge to hybrid sys-
tems (a bibliography on hybrid Petri Nets can be
found at http://bode.diee.unica.it/ "hpn). CCPNs
constitute a part of Hybrid Petri Nets (R. David,
2001). Further, Extended Hybrid Petri nets, de-
fined in (R. David, 2000), enable to model delays

on continuous flows.

The rest of this article is organized as follows: Sec-
tion 2 shows a motivation example and it surveys
basic terms of CCPNs. Section 3 presents a free
speed model where the speed maximization is not
assumed. It shows how the space of IF-speeds in
the free speed model can be determined by a poly-
tope. Section 4 presents a maximum speed area to
which the IF-speed has to belong, when the maxi-
mum speed model is assumed. Examples of actual
conflicts show that this area is not always convex
(e.g. when it consists of several polytope faces).
Section 5 presents a resolution of actual conflicts
by priorities, it defines a priority-determined speed
and it proposes two algorithmic solutions, one
based on polytopes and the otherone based on
linear programming.

2. PRELIMINARIES

In order to illustrate the consequences of the fluid-
ification on a CCPN model (e.g., even an infinitely
small quantity of the marking in a conservative
component enables to run a system at its maxi-
mum speed) we show a motivation example.

Example 1: Let us assume a water production
system depicted in Fig. 1. Water is produced by
two water houses - the first pumping clean water
from a drilled well (transition 77) and the second

cleaning river water (transition Th). Water from
both water houses, accumulated in a common
water storage tank (place Pj), is used by an oil
refinery (transition T3) producing diesel oil and
a chemical factory (transition Ty) producing dis-
infections. Diesel oil (a storage tank represented
by place Pi) is used by the pumping water house
(T1) and the disinfections are used by the clean-
ing water house (a storage tank represented by
place P,). All storage tanks are empty except the
one containing 0.2 units of diesel oil (P;). Each
company produces one unit of the output product
from one unit of the input product (it is not
realistic and given formalism alows to have real
positive numbers associated to arcs, but it keeps
the example transparent), therefore the weights
of all arcs are equal to 1. Each of the compa-
nies has its own upper bound on the production
speed. It is given as a quantity of liquid per unit
of time (corresponding to a maximal firing speed
indicated inside of each transition).

None of the companies has a lower bound on
the production speed. In addition there are four
specific assumptions:

e (a) None of the companies has a threshold for
the quantity of the input product. Therefore,
each company is able to produce 1/k units
of the output liquid from 1/k units of input
liquid in 1/(k x IF-speed) units of time,
even if k tends to infinity. In contrast to
the discrete Petri Nets, there is no threshold
for the quantity of the marking enabling
a transition, i.e. transition 73 is strongly
enabled even if M; < Prey ;.

e (b) There is no transport delay in the sys-
tem, therefore we do not model any delay of
continuous flows.

e (c) All the companies produce as much as
possible.

e (d) The chemical factory (transition Tj)
takes priority over the oil rafinery (transition
T3).

(a) and (b) are assumed in existing CCPN mod-
els without mentioning them explicitly, but they
have very important consequences as we will see
later in this text. Assumption (c) can also be
misunderstood and therefore we give its formal
description in Section 4. Assumption (d), related
to the conflict resolution described in Section 5, is
formalized using global priority. Assumptions (c)
and (d) together can be understood as a complex
optimization criterion.

All places and transitions of the CCPN model
in Fig. 1 are continuous in accordance to the
definitions of the CCPN given below.
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Fig. 1. CCPN with actual conflict

Definition 1. A Constant speed Continuous Petri
Net is a sextuple R = [P, T,V, Pre, Post, M(0)],
where:

e The definitions of P, T, Pre, Post are similar
to those of discrete PNs. Examples in this
article have only natural valued weights of
arcs, however general case, where real positive
numbers are associated with arcs, can also be
considered.

e M(0) is the initial marking of the continuous
PN. It is a vector of positive or zero real
numbers. M (t) denotes the marking at time
t.

e V:T — R* is a vector of maximal firing
speeds; V; denotes the mazimal firing speed
of transition Tj.

Further v;(t) denotes the IF-speed of transition T
at time ¢. The value of v;(¢) is bounded by interval
(0,V5).

Definition 2. Transition Tj is strongly enabled at
time ¢t if all places P; of °T}; are marked.

Definition 3. Place P; is supplied at time ¢t if there
is at least ome transition T; in °P; , which is
enabled (strongly or weakly).

Definition 4. Transition T} is weakly enabled at
time ¢ if there is place P; of °T; , which is not
marked and is supplied, and remaining places of
°T}; are either marked or supplied.

The recursive definitions of the supplied place and
the weakly enabled transition do not allow di-
rect determination of supplied places and weakly
enabled transitions. A calculation of the set of
enabled transitions for a given marking is given
by Algorithm 1 in (H. Alla, 1998). This algorithm,
based on an iterative upgrade of vectors A (one bit
assigned to each place) and F (one bit assigned to
each transition), converges in polynomial time.

Definition 5. Place P; is supplying if there is at
least one tramsition 7j in PP, which is enabled

(strongly or weakly).

Definition 6. The balance of P; is:

Bi(t) = Z POSti,j 'Uj(t)

T;e°P;

— Z Pre; i, - vg(t) (1)
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The balance of P; at time ¢ corresponds to the
derivative of its marking, i.e., m}(t) = B;(t). If the
balance of P; is positive the marking m; increases
and if the balance is negative the marking m;
decreases.

An algorithm, calculating the IF-speeds of en-
abled transitions in (H. Alla, 1998), is based on
the iterative approach (i.e. v}”“(t)7 the value of
IF-speed at iteration step r + 1, is dependent on
v} (t), the value from the previous step), while
using the min operator. On the contrary, the
approach presented in this article is based on the
analytical determination of subspace of IF-speeds,

while avoiding the min operator.

3. FREE SPEED CCPN

CCPNs are assumed to function at a maximum
speed (H. Alla, 1998), therefore v;(t) of strongly
enabled transition T; is equal to V; and v;(t)
of weakly enabled transition is the maximum
possible one (see assumption (c) in Example 1).
This classical model will be called a mazimum
speed CCPN in this article.

On the other hand, the systems not functioning at
their maximum speed are also a very interesting
subject of research (e.g., when studying a marking
reachability in Example 1 while omitting assump-
tions (¢) and (d), i.e. assuming that companies are
not motivated to produce as much as possible and
their priority of access to shared resource is not
determined). This model can be used when one de-
scribes systems with undetermined but bounded
firing speed (in a hypothetic case, when V; = oo
for all T; € T, the free speed CCPN is identical
to the autonomous CPN).

Therefore, a subspace of IF-speeds for a free speed
CCPN is constrained by:

Speed limits of enabled transitions.

v;j(t) <V; Vj such that T; is enabled (2)

Non-negative speeds of enabled transitions.

vj(t) >0 Vj such that Tj is enabled  (3)

Non-negative balances of unmarked supplying
places (if there is place P; which is unmarked
supplying, then there exists at least one weakly
enabled transition in P?):

B;(t) >0 Vi such that P; is supplying (4)
and m;(t) =0



All variables dependent on time, v(t), B(t), M (t),
will be denoted simply v, B, M in the rest of this
article, since they are calculated at the begin-
ing/end of each IB-state (v(t), B(t) are constant
inside the IB-state, and m;(t+dt) = m;(t)+ B;(t)-
dt).

Each B; can be written as a linear combination of
IF-speeds of enabled transitions, due to equation
(1). As a consequence the system of inequalities
(2), (3), (5) can be written as a linear function of
IF-speeds.

Let ¢ be a number of unmarked supplying places,
d denotes a number of enabled transitions and k
denotes an index of an enabled transition ranging
from 1 to d. The subspace ® of R? is a convex
polyhedron (Fukuda, n.d.; Ziegler, 1998) since ® is
the set of solutions to the above mentioned finite
system of inequalities (exactly there are 2d + ¢
inequalities). ® is a polytope, as it is the convex
polyhedron and it is bounded (due to (2) and (3)).
One given point in ® corresponds to one given IF-
speed vector v. If T} is enabled then v; is equal to
the k-th coordinate of this point, otherwise v; is
equal to zero.

A subset F of polyhedron @ is called a face of
® if inequality a’x < b holds for all z € &
and F = ® N {z;aTz = b}. The faces of dimen-
sion 0,1,d-1 are called vertices, edges and facets,
respectively. No vertex can be represented as a
convex combinations of two other points in ®.

For each IB-state of the evolution graph we are
able to derive the system of inequalities (2), (3),
(5). The free speed model of Petri Net in Fig. 2 is
given by the system of inequalities:

v1 <3 facet Ty in Fig. 3,

ve <2 facet Ty in Fig. 3,

v3 <2 facet Ts in Fig. 3,

v1 >0 redundant ineq. — wvertex Ty in Fig. 3,
ve >0  facet Tys not visible in Fig. 3,

vs >0 facet Tys not visible in Fig. 3,

vy >ve +vs facet Py in Fig. 3. (5)
This is in fact a (halfspace) H-representation of
polytope ® which can also be given by a set of
vertices, so called V-representation. A transfor-
mation of H-representation to V-representation
is known as wverter enumeration (Fukuda, n.d.;
Ziegler, 1998).

The corresponding polytope in Fig. 3 shows, that
any possible IF-speed v, can grow up to its upper
bound V;. On the other hand, vz can reach its
upper limit V5 (facet T5) only in the area where
vy — vy > V3 holds. In the remaining area (v; —
vy < V3) any possible IF-speed v3 can grow only
up to vy — vy (facet Pp). In other words, the

growth of vs is not limited only by the preceding
transitions but also by vs, which does not precede
T5. This is caused by conflict place P, in Fig. 2.
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Fig. 2. CCPN with conflict

Fig. 3. Polytope ® representing possible IF-speeds
of the free speed CCPN in Fig. 2

The free speed model is not deterministic; there-
fore it cannot be used to construct the evolution
graph, where deterministic marking between two
IB-states is needed. But it can be used as an
intermediate step to determine the IF-speed as
shown in Section 4.

4. MAXIMUM FIRING SPEED

When omitting only assumption (d) in Example
1 one obtains the classical CCPN model (in this
article called mazimum speed CCPN), i.e. the
system functioning at maximum speed. Therefore,
v; = Vj for each strongly enabled transition Tj.
Consequently new polytope © of R¥ (w =number
of weakly enabled transitions) can be obtained by
a reduction of polytope ® of R? (d = w+number
of strongly enabled transitions). This reduction
is done by changing each inequality (2), which
is related to a strongly enabled transition, to
the equation. © is also convex and bounded as
required by the definition of polytope.

Polytope © of CCPN in Fig. 2 is shown in Fig.
4. In fact © is face of ® and it is obtained as
an intersection of polytope ® (see Fig. 3)with the




plane v; = 3, corresponding to strongly enabled
transition 7.

Fig. 4. Polytope © used to determine the max-
imum speeds of weakly enabled transitions
in Fig. 2 (T consists of edge ([va = 1,v3 =
2][’02 = 2,’03 = 1]))

Both polytopes ® and © can be used, when
studying a maximum speed CCPN. In order to
demonstrate various cases in 3-dimensional space,
only polytope © will be used in the following
figures, since dim(©) < dim/(®). In order to make
the definitions simpler, polytope ® is usually used
in the text.

Definition 7. TF-speed v = [v1,...,0%...,04]
(v € ® in the sense of the polytope given by the
system of inequalities (2), (3), (5)) is a mazimum
speed if there does not exist any u € ® such that
up > v, forallk=1...d.

Definition 8. Subset I' of polytope ® is a maxi-
mum speed area if each v € T' is the maximum
speed.

Due to definition 7 it is obvious that maximum
speed area I' is a subset of the set of all faces
of polytope @ (the set is called face poset), since
no interior point of any polytope can reach the
maximum value of any convex objective function.
In order to determine the maximum speed area it
is sufficient to check all faces of polytope ®.

Lemma 1. Let F;; be a g-dimesional face of ®. Fj,
belongs to the maximum speed area (i.e. all points
v € Fj, belong to the maximum speed area) if
and only if all vertices Fy C Fj belong to the
maximum speed area.

Proof: All points v € Fj, belong to the maximum
speed area if and only if all faces F,_; C F}; belong
to the maximum speed area. Proof is completed by
recursive application of this idea downto vertices
of .0

Due to Lemma 1, the maximum speed area I' is
fully determined by the set of vertices belonging
to it. First a set of vertices (i.e. V-representation)
is obtained by the verter enumeration from the
the system of inequalities (2), (3), (5) (i.e. H-

representation). Then a given vertex v is com-
pared to all other vertices u following definition
7. Due to definition 7 it is obvious that at least
one vertex of ® belongs to I' and that I' C © C ®.
This procedure is applied to all examples in this
article. A vertex belonging to the maximum speed
area is indicated by a small dot, labeled by the IF-
speed. For example the polytope in Fig. 3 has two
vertices of this kind v = [v; = 3,02 = 1,v3 = 2]
and v = [v; = 3,v3 = 2,u3 = 1], therefore
I is the edge (v,v’). The speed maximization
does not specify the deterministic behavior of the
maximum speed CCPN given in Fig. 2. If the
value of V; was raised up to 4, then the facet
Ty would be moved to the left in Fig. 3 and
the maximum speed area would consist of only
one vertex [vy = 4,v9 = 2,u3 = 2| and the
behavior of the maximum speed CCPN would be
deterministic. This is due to the fact, that the
existence of a structural conflict is a necessary
but not sufficient condition for the existence of
an actual conflict.

Definition 9. Let K = [P;,{T},T;}] be a struc-
tural conflict. There is an actual conflict between
transitions 1; and T} if there are at least two
maximum speeds v and v’ such that v; < v} and
v > vy,

Lemma 2. Maximum speed area I' is exactly one
vertex of ® if and only if there is no actual conflict.

Proof: see Annex.

If there is no structural conflict then there is no
nondeterminism in the maximum speed CCPN.
Then the unique vertex belonging to I' can be
found in polynomial time by one call of linear
programming (Cook, 1998) aiming at maximiza-
tion of objective function J = s”x, with arbitrary
nonzero positive finite entries of s, i.e. s; € (0, 00)
forall j=1...w.

Lemma 3. There exists a face F; € I' such that
q > 1 if and only if there exists an actual conflict.

Proof: Due to Lemma 2 we know that there is an
actual conflict if and only if there are at least two
vertices in I'. Due to the convexity of ® and due
to definition 7 at least two of these vertices belong
to one face, since Lemma 1 holds.O

Example 2: (continuation of Example 1) Maxi-
mum speed area I' of CCPN in Fig. 1 is shown in
Fig. 5. T is one face of dimension 1, edge ([vy =
2,1}3 = 3,1}4 = 3], [Ug = 2,?]3 = 3.5,’04 = 25})
There is an actual conflict between T3 and Ty, i.e.
either the chemical factory (T3) or the oil refinery
(Ty) cannot run at its maximal speed.



Fig. 5. Polytope © used to determine maximum
speeds of weakly enabled transitions in Fig.
1 (T consists of edge ([2, 3, 3][2, 3.5,2.5]))

Lemma 4. There exists a maximum speed area I'
which is not convex.

Proof: Fig. 6 illustrates three structural conflicts
(be aware of weights of arcs). I' in Fig. 7 is not
convex, since it is given by three faces of dimension
2, i.e. facets P, P>, and P3, whose are entirely
belonging to I'.O

P4
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Fig. 6. CCPN with three actual conflicts

5. RESOLUTION OF ACTUAL CONFLICTS
BY PRIORITIES

The deterministic behavior of a maximum speed
CCPN is not given if actual conflict is present.
Therefore we propose a global priority assignment.

Definition 10. Let R = [P,T,V, Pre, Post, M(0)]
be a maximum speed CCPN. A mazimum speed
CCPN with global priorities is a seven tuple R’ =
[P,T,V,Q, Pre, Post, M (0)] where:
e The definitions of P,T,V, Pre, Post, M(0)
are the same as those in CCPN (definition
1).
e Q:T — {0,NT} is a vector of global prior-
ities; @; denotes global priority of transition

Fig. 7. Polytope © used to determine the maxi-
mum speeds of weakly enabled transitions in
Fig. 6 (T consists of facets Py, Py, and P3)

T} in the sense that T} has a higher priority
than 77 if and only if Q; > @;.

Definition 10 allows two transitions 7} and 7; to
have the same priority ); = @, so that one can
use the term priority level, to which transitions
with equal priorities are associated. The label on
the left side of the transition designates its priority
(see Fig. 6). Priority is 0, i.e. lowest, if there is no
number on the left side of the transition.

The deterministic behavior of a maximum speed
CCPN with global priorities R’ is given by the
choice of one maximum speed in the maximum
speed area I'.

Definition 11. Max. speed v = [v1,...,0;,...,04],
v € I, is a priority-determined speed if for any
u € I' and for any T} such that v; < u; there
exists some T}, such that Q; > @Q; and vy > uy.

Definition 12. Subset Q of I' is a priority-determined
area of ¢ if each v € 2 is the priority-determined
speed.

The priority-determined area {2 can be found by:
Vertex enumeration. To enumerate vertices of
O (using for example lrslib by David Awvis), then
to select vertices determining maximum speed area
T' using definition 8, then to choose the priority-
determined speed using definition 11. There does
not exist any polynomial bound for this algorithm
since the number of vertices of © is bounded by 2%
(w is the number of weakly enabled transitions).

There are several priority-determined speeds when
actual conflicts are not resolved (and we can find
Q, which is not convex). On the contrary, if the
system is deterministic ( i.e. all actual conflicts
are resolved by priorities), the priority-determined
area () is just one priority-determined speed (one

=8, v,=6
=8, 325.7



vertex of ©). In such case the second algorithmic
solution can be used:

Linear programming. To find the mazimum
speed by calling linear programming for each prior-
ity level. Iterations are executed in the order given
by the transitions priorities. First, one partial
solution S is found (for all transitions Tj, ..., Ty
with the highest priority) by linear programming
aiming at mazximization of objective function J =
v; 4+ ... + vi subject to ©. Then new equation
v; = S; s added to the system of inequalities
(corresponding new polytope ©' is intersection of
© with equation v; = S;). Then algorithm repeats
for lower priority level. Further all priority levels
are proceeded in the similar way and the final so-
lution S determines the mazximum speed satisfying
priority order.

It is difficult to construct a graph of reachable
markings in CCPN, since the marking is a con-
tinuous function of time. Therefore instantaneous
firing speed vector v, which remains constant in
each IB-state, is used to characterize function-
ing of CCPN. An evolution graph is a graph,
where nodes are associated with IB-states. The
changeover from one IB-state to the following
one occurs when the marking of a place becomes
zero and consequently strongly and weakly en-
abled transitions have to be detected and new
instantaneous firing speed vector v has to be cal-
culated. This is classical procedure described in
(H. Alla, 1998).

Example 3: (continuation of Example 2) Fig.
8 shows evolution graph of CCPN in Fig. 1 with
priority assignment @ = [0,0,0,1]. v4 = 3 and
ve = 2 during the first IB-state, consequently a
marking is accumulated in P, and P; becomes
empty. In the second IB-state, T is strongly
enabled and CCPN reached its stable marking.
It is interesting that v; > 0 and vs > 0 even
though M7 = M3 = 0. This is due to assumptions
(a),(b) in Example 1, since in the modeling stage
we assumed that the thresholds and the delays
are negligible in our system. Therefore, negligible
but not zero (75 supplies P3) marking is sufficient
to enable T3 and consequently T;. Moreover T}
and T3 run at the speed 3.5 . Either CCPN model
in Fig. 1 is realistic and then Fig. 8 is correct,
or it is not realistic and CCPN model has to be
extended by threshold and delay (e.g. by making
conflict resolution for Extended Hybrid Petri nets,
defined in (R. David, 2000)).

6. CONCLUSIONS

This article addresses the problem of the compu-
tation of IF-speed for given IB-state of CCPN.
The approach shown in this article assumes the
speed maximization being prior to priority reso-
lution, since Q C I'.

M(O)=<0.2,0,0,0>T t=0

v=<4,2,3,3>

M(0.2)=<0,0.2,0,0>—7— t=0.2
Y

v=<3.5,2,3.5,2>

Fig. 8. Evolution graph of CCPN in Fig. 1

Two algorithmic solutions have been implemented
in Matlab and constitute a part of Petri Net Mat-
lab toolbox (available from author upon request).
The vertex enumeration solution is based on the
analytical determination of the subspace of IF-
speeds. If there is no actual conflict the IF-speed
is determined directly, since the maximum speed
area I' is just one vertex (see Lemma 2). The
vertex enumeration solution is very illustrative
(namely if there are less than 3 weakly enabled
transitions), but there is no polynomial bound on
the algorithm execution time. While using linear
programming solution the IF-speed can be found
by one formulation of the linear programming
problem if there is no actual conflict in given
CCPN. Otherwise all actual conflicts have to be
resolved by global priorities, and the IF-speed is
found by one formulation of the linear program-
ming problem per each priority level.
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7. ANNEX - PROOF OF LEMMA 2

Proof of ”if” part: Let vertex V belongs to I’
and let V C Fy_q, where Fy_1 is a facet of ®.
(a)The facet Fy_1 does not correspond to noneg-
ative speed constraint(3).

(b)The facet Fy_1 can correspond to speed limit
constraint (2), i.e. the facet is subset of v; = Vj.
Then V is the only point of F;_1 belonging to T,
since all other points of F;;_; have equal coordi-
nate v; and smaller or equal other coordinates.
(¢)The facet Fy_1 can correspond to nonnegative
balance constraint(5) of place P; which does not
constitute a structural conflict, i.e. the facet is a
subset of v; — vy = 0. Again V is the only point
of Fy_1 belonging to I', since all other points of
F;_1 have smaller or equal coordinates.

(d)No facet corresponds to nonnegative balance
constraint (5) of place P; which constitutes a
structural conflict, since inequality corresponding
to nonnegative balance of P; is redundant due to
the absence of actual conflict, i.e. there do not

exist transitions 7} and T} and two maximum
speeds v and v’ such that v; < v} and vy > vj.
(e) Following (a),(b),(c) and (d) V is the only
point belonging to I'" in any of F;_; such that
V C Fy_,. Since @ is convex there no other point
of ® which is in I".0

Proof of "only if” part (i.e. if there is actual con-
flict, then T has at least two vertices): assuming
existence of actual conflict, there exist two tran-
sitions T and T} and two maximum speeds (not
necessarily vertices) v and v such that v; < v}
and vi, > v},

= I consists of at least two points v and v’

= either both v and v’ belong to one face F, € T’
such that ¢ > 1 or each of them belongs to a
distinct face Fy; € I' such that k > 1. Therefore I
has at least two vertices.O



