
© Z. Hanzálek 2005

On-line scheduling of periodic tasks
in RT OS

Even if RT OS is used, it is needed to set up the task priority.

The scheduling problem is solved on two levels:

• fixed priority assignment … by RMS

• dynamic scheduling … by priority based preemptive RT OS

© Z. Hanzálek 2005

Typical application
• RT ⇒ deadline … it is assumed to be equal to the release time

of the next period
• periodic tasks (aperiodic tasks are scheduled using so called servers)
• Example 1:

350

T1

T2

T3

100 200 300

150 300

Task T1:
processing time…..p1=40;
period……………..τ1=100;

Task T2:
p2=40;
τ2=150;

Task T3:
p3=100;
τ3=350;

© Z. Hanzálek 2005

Rate Monotonic Scheduling (RMS)

Basic assumptions:

• tasks are executed by priority based preemptive kernel

• deadline is at the end of each period

RMS: Assign fixed priorities to the tasks according to their request
rate (inverse to their period ~ deadline). Highest priority is
assigned to the task with highest frequency.

Schedulability: n periodic and independent tasks are completed
before their deadlines

Optimality: RMS is optimal among all fixed priority algorithms.
There is no fixed priority algorithms able to schedule an application
that is not schedulable by RMS

© Z. Hanzálek 2005

T1

T2

T3

100 200 300

150 300

350

deadline of previous period ~ release time of the next period)

completion time

Solution to Example 1 using RMS

© Z. Hanzálek 2005

∑
=

=
n

i i

ipU
1 τ

Processor utilization factor
Processor utilization factor U is fraction of processor
time spent by execution of n tasks.

Upper bound of utilization factor Uub(T,A):
• is the maximum value of U below which is the task set
T schedulable by algorithm A.

© Z. Hanzálek 2005

Ulub(A) = minT Uub(T,A)

Least upper bound Ulub(A) of utilization factor, is the
minimum of utilization factor over all task sets that
fully utilize processor:

U

Conclusion: Schedulable ?

Uub1

Uub2

Uub3

UubkUlub l

T 1

T 2

T 3

T k

•
•
•

U
U

U

Non schedulable

© Z. Hanzálek 2005

„Utilization bound theorem“ for RMS

Sufficient condition:

Any set T of n independent periodic tasks is
schedulable by RMS if:

U(n) ≤ n(21/n-1)

Ulub(RMS)= limn->∞ n(21/n-1) = ln 2 = 0.69

0,7180,7210,7240,7290,7350,7430,7570,7800,8281,00Ulub

10987654321n

© Z. Hanzálek 2005

Utilization bound theorem – is pesimistic

In case of example 1:

Task T1: p1=40; τ1=100; ⇒ 0.4
Task T2: p2=40; τ2=150; ⇒ 0.267
Task T3: p3=100; τ3=350; ⇒ 0.286

U = 0.4 + 0.267 + 0.28 = 0.953
exceeds Utilization bound theorem since

0.953 ≤ 3(21/3-1) = 0.780

T3 has lower priority than T1 and T2 (since there are no inter-task
communications, T3 cannot influence execution of T1 and T2), we can try
“Utilization bound theorem for 2 tasks:

T1 and T2 do not exceed since: 0.667 ≤ 2(21/2-1)=0.828

To test schedulability of T3 we will use „Completion time theorem“

© Z. Hanzálek 2005

Completion time theorem

•necessary and sufficient condition for the set of
independent periodic tasks using RMS

•worst case situation – all tasks start at the same time
(worst phasing). ⇒ It is sufficient to examine one period
of given task Tx .

•set of examined dates consists of the end of Tx period
and each end of higher task periods.

•at each examined date we check whether all tasks have
been compeeted as often as they have been released

© Z. Hanzálek 2005

T1

T2

T3

100 200 300

150 300

350

1 3

2
4

5

deadline

completion time

ends of periods of T1 a T2

end of period of T3

1,…, 4
5

In the case of example 1:

© Z. Hanzálek 2005

• It is not needed to derive a Gantt chart for tis analysis.
• Task T3 is schedulable iff at least one of the following
conditions hold:

1 p1 + p2 + p3 ≤ τ1 40+40+100>100 NO
2 2p1 + p2 + p3 ≤ τ2 80+40+100>150 NO
3 2p1 + 2p2 + p3 ≤ 2τ1 80+80+100>200 NO
4 3p1 + 2p2 + p3 ≤ 2τ2 120+80+100=300 YES
5 4p1 + 3p2 + p3 ≤ τ3 160+120+100>350 NO

⇒ task T3 is schedulable since at the worst phasing it is
completed in time 300

© Z. Hanzálek 2005

RMA Extension by inter-tasks
communication

When tasks share resource with mutual access (critical
section), the task, which is inside critical section can cause
blocking of the higher priority task waiting to enter critical
section.

When the blocking of tasks is bounded, we can compute the
longest duration of task blocking Bi and take it into
account in generalized utilization bound theorem and in
generalized completion time theorem.

…very pessimistic result

© Z. Hanzálek 2005

Fixed priority servers

Assumption: neither periodic nor aperiodic tasks can be
released infinitely often to consume infinite amount of the
processor time

Solutions:
• they can run on the background (lowest priority)
• using servers – the server (periodic task) is ready to use its
capacity pS within period τS

RMA Extension by aperiodic tasks
- Fixed priority servers

© Z. Hanzálek 2005

Polling server
• at the moment of its activation, the server serves already released aperiodic
tasks using its capacity pS .
• if there is no aperiodic task at this moment, then the server capacity is
erased (as in the restaurant, when a waiter finds out that there is nobody
requiring its service)

T1

T2

aperiodic
requests

pS
2
1

62T2

41T1

τipi

52server

τSpS

Example 2: two periodic tasks + polling server (priority by RMS)

© Z. Hanzálek 2005

Defferable server
• the server serves aperiodic tasks using its capacity pS
• unused capacity is kept until the end of the period (patient waiter)

62T2

41T1

τipi

52server

τSpS

Ex. 3: two periodic tasks + defferable server (priority by RMS)
T1

T2

aperiodic
requests

pS
2
1

© Z. Hanzálek 2005

RMS - conclusion

• Rate monotonic scheduling is good to specify the task
priorities for preemptive kernels

• Good behavior in overload (unexpected prolongation of pi)
– lowest priority task deadline is exceeded first

• Extension by inter-task communication is too pessimistic

© Z. Hanzálek 2005

EDF in on-line scheduling

• EDF can be used as on-line scheduling rule (can be
seen as dynamic priority assignment)

• optimality: since EDF does not make any specific
assumption on the periodicity of the tasks, the
optimality proven for aperiodic tasks also holds
for periodic tasks

Theorem: A set of periodic independent tasks is
schedulable with EDF if and only if:

1
1

≤=∑
=

n

i i

ipU
τ

