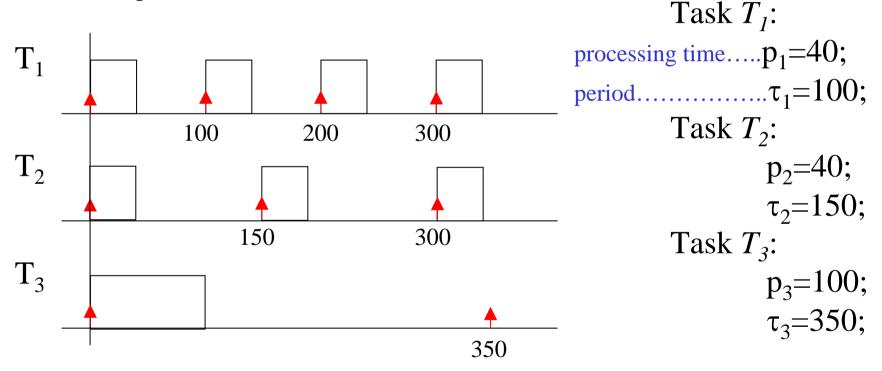
On-line scheduling of periodic tasks in RT OS

Even if RT OS is used, it is needed to set up the **task priority**. The scheduling problem is solved on two levels:

- fixed priority assignment ... by RMS
- dynamic scheduling ... by priority based preemptive RT OS

Typical application

- $RT \Rightarrow$ deadline \uparrow ... it is assumed to be equal to the release time of the next period
- periodic tasks (aperiodic tasks are scheduled using so called servers)
- Example 1:



[©] Z. Hanzálek 2005

Rate Monotonic Scheduling (RMS)

Basic assumptions:

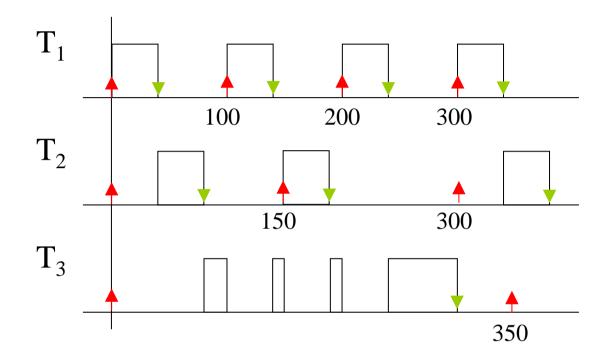
- tasks are executed by priority based **preemptive kernel**
- deadline is at the end of each period

<u>RMS:</u> Assign fixed priorities to the tasks according to their request rate (inverse to their period ~ deadline). **Highest priority** is assigned **to** the task with **highest frequency.**

<u>Schedulability:</u> *n* **periodic** and **independent** tasks are completed before their deadlines

<u>Optimality:</u> RMS is optimal among all **fixed** priority algorithms. There is no fixed priority algorithms able to schedule an application that is not schedulable by RMS

Solution to Example 1 using RMS



- deadline of previous period ~ release time of the next period)
- completion time

Processor utilization factor

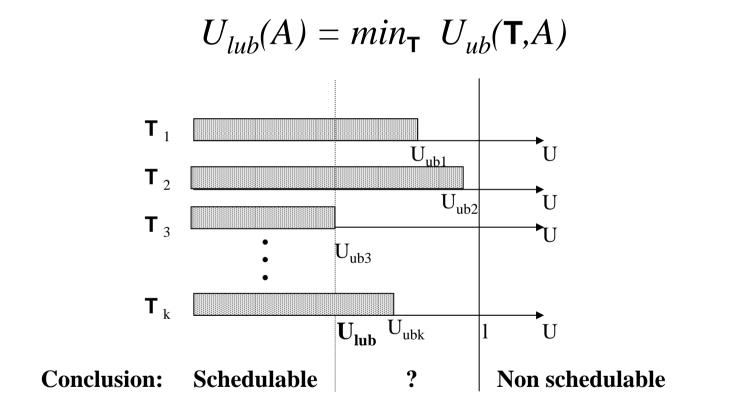
Processor utilization factor U is fraction of processor time spent by execution of n tasks.

$$U = \sum_{i=1}^{n} \frac{p_i}{\tau_i}$$

Upper bound of utilization factor $U_{ub}(T,A)$:

- is the maximum value of U below which is the task set
- **T** schedulable by algorithm *A*.

Least upper bound $U_{lub}(A)$ of utilization factor, is the minimum of utilization factor over all task sets that fully utilize processor:



"Utilization bound theorem" for RMS

Sufficient condition:

Any set **T** of *n* independent periodic tasks is schedulable by RMS if:

 $U(n) \leq n(2^{1/n}-1)$

n	1	2	3	4	5	6	7	8	9	10
U _{lub}	1,00	0,828	0,780	0,757	0,743	0,735	0,729	0,724	0,721	0,718

$$U_{lub}(RMS) = \lim_{n\to\infty} n(2^{1/n}-1) = \ln 2 = 0.69$$

Utilization bound theorem – <u>is pesimistic</u>

In case of example 1:

Task T_1 : p_1 =40; τ_1 =100; \Rightarrow	0.4
Task T_2 : p ₂ =40; τ_2 =150; \Rightarrow	0.267
Task T_3 : p ₃ =100; τ_3 =350; \Rightarrow	0.286

U = 0.4 + 0.267 + 0.28 = 0.953exceeds Utilization bound theorem since $0.953 \neq 3(2^{1/3}-1) = 0.780$

 T_3 has lower priority than T_1 and T_2 (since there are no inter-task communications, T_3 cannot influence execution of T_1 and T_2), we can try "Utilization bound theorem for 2 tasks:

 T_1 and T_2 do not exceed since: $0.667 \le 2(2^{1/2}-1)=0.828$

To test schedulability of T_3 we will use "Completion time theorem"

Completion time theorem

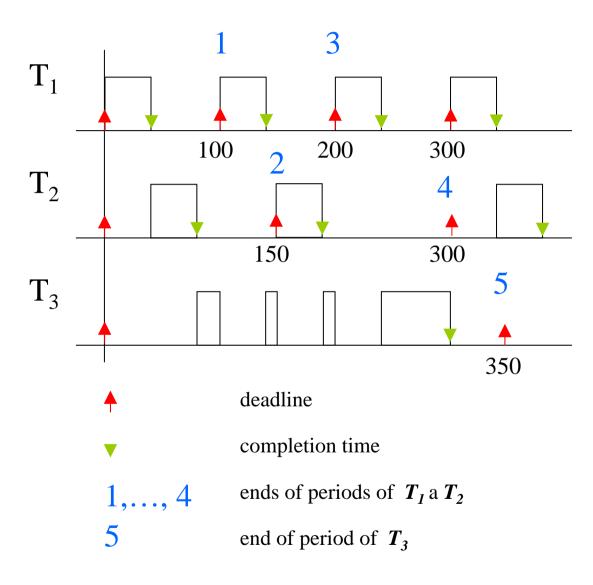
•necessary and sufficient condition for the set of independent periodic tasks using RMS

•worst case situation – **all tasks start at the same time** (worst phasing). \Rightarrow It is sufficient to examine one period of given task T_x .

•set of examined dates consists of the end of T_x period and each end of higher task periods.

•at each examined date we check whether **all tasks have been competed as often as they have been released**

In the case of example 1:



- It is not needed to derive a Gantt chart for tis analysis.
- Task T_3 is schedulable iff **at least one** of the following conditions hold:

1	$p_1+p_2+p_3 \leq \tau_1$	40+40+100>100	NO
2	$2p_1+p_2+p_3 \leq \tau_2$	80+40+100>150	NO
3	$2p_1 + 2p_2 + p_3 \leq 2\tau_1$	80+80+100>200	NO
4	$3p_1 + 2p_2 + p_3 \le 2\tau_2$	120+80+100=300	YES
5	$4p_1 + 3p_2 + p_3 \le \tau_3$	160+120+100>350	NO

 \Rightarrow task T_3 is schedulable since at the worst phasing it is completed in time 300

RMA Extension by inter-tasks communication

- When tasks share resource with mutual access (critical section), the task, which is inside critical section can cause blocking of the higher priority task waiting to enter critical section.
- When the blocking of tasks is bounded, we can compute the *longest duration of task blocking* B_i and take it into account in generalized utilization bound theorem and in generalized completion time theorem.

...very **pessimistic** result

RMA Extension by aperiodic tasks - Fixed priority servers

Fixed priority servers

<u>Assumption:</u> neither periodic nor aperiodic tasks can be released infinitely often to consume infinite amount of the processor time

Solutions:

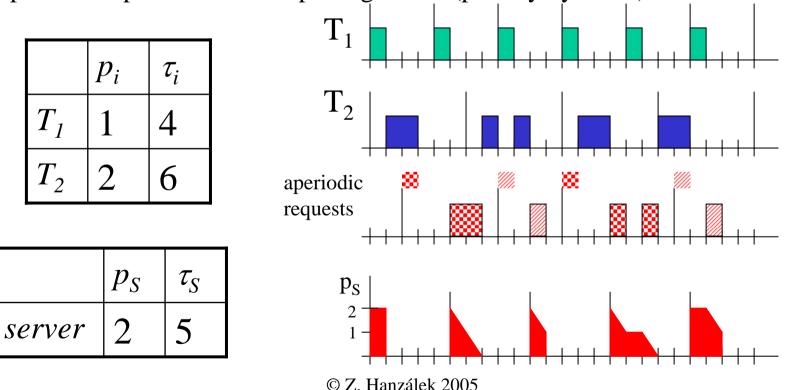
- they can run on the <u>background</u> (lowest priority)
- <u>using servers</u> the server (periodic task) is ready to use its capacity p_S within period τ_S

Polling server

• at the moment of its activation, the server serves already released aperiodic tasks using its capacity p_s .

• if there is no aperiodic task at this moment, then the server **capacity is erased** (as in the restaurant, when a waiter finds out that there is nobody requiring its service)

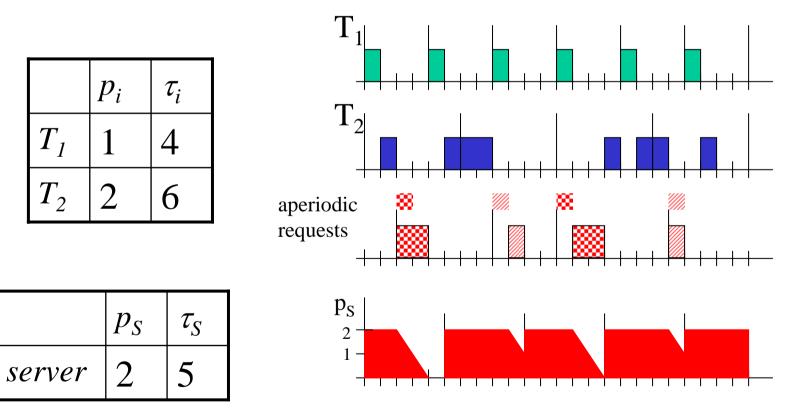
Example 2: two periodic tasks + polling server (priority by RMS)



Defferable server

- the server serves aperiodic tasks using its capacity p_s
- unused capacity is kept until the end of the period (patient waiter)

Ex. 3: two periodic tasks + defferable server (priority by RMS)



RMS - conclusion

- Rate monotonic scheduling is good to specify the task priorities for preemptive kernels
- Good behavior in overload (unexpected prolongation of p_i) – lowest priority task deadline is exceeded first
- Extension by inter-task communication is too pessimistic

EDF in on-line scheduling

- EDF can be used as on-line scheduling rule (can be seen as dynamic priority assignment)
- **optimality**: since EDF does not make any specific assumption on the periodicity of the tasks, the optimality proven for aperiodic tasks also **holds for periodic tasks**

Theorem: A set of periodic independent tasks is schedulable with EDF if and only if:

$$U = \sum_{i=1}^{n} \frac{p_i}{\tau_i} \le 1$$