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Single processor scheduling
Cmax

• 1|prec|Cmax – simple
– if tasks are assigned in whatever order in accordance with 

precedence relation, then Cmax=Σpj

• 1||Cmax – simple
• 1|rj|Cmax – simple

– tasks are scheduled in order of nondecreasing release times
• 1|dj

~|Cmax – simple
– tasks are scheduled in order of nondecreasing deadlines 

(EDF – earliest deadline first)
– EDF provides optimal solution iff there exists a schedule 

that meets all the deadlines
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• 1| rj,dj
~|Cmax – NP hard problem

• transfromation from the 3-PARTITION problem
• polynomial algorithm can be found if pj=1
• general problem can be solved by applying 

Branch&Bound algorithm by Bratley

all feasible schedules
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– if completion time 
associated with at least one 
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(ii) problem decomposition –
if the completion time Ci of 
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it remains to 
schedule (n-k) tasks
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Optimality test of Bratley’s
algorithm

block is a group of tasks such that the first 
task starts at its release time and all the 
following tasks to the end of the schedule  
are processed without idle time

block satisfies release time property if 
release time of all tasks in the block are 
greater or equal to the release time of the 
fist task in the block
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Lemma: A schedule is optimal iff it contains a 
block that satisfies the release time property

Proof: 
• if part (each schedule with block satisfying 

RTP is optimal) - follows from the 
definition of RTP 

• only if part (each optimal schedule has 
block satisfying RTP) – by contradiction –
suppose schedules that do not have block 
with RTP, none of them is optimal 
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it is not needed to continue in branching since 
the optimality test holds for this solution

Example: r =[4,1,1,0], p =[2,1,2,2], d~ =[7,5,6,4]
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ΣwjCj

• 1|| ΣCj – Shortest Processing Time (SPT) rule 
- tasks are scheduled in order of nondecreasing pj

• 1|| ΣwjCj – Weighted SPT rule  
– tasks are scheduled in order of nondecreasing pj/wj

• 1|rj| ΣCj , 1|rj| ΣwjCj – NP hard
• 1|pmtn, rj| ΣCj – solvable by modified SPT 
• 1|pmtn, rj| ΣwjCj – NP hard
• 1|dj

~| ΣCj ,- solvable by modified SPT
• 1|dj

~| ΣwjCj – NP hard
• 1|prec| ΣwjCj – NP hard
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• 1|rj| ΣCj – NP hard
two heuristic algorithms based on two criteria for 

adding a task to an existing partial schedule
U – set of already scheduled tasks

Earliest Completion Time (ECT) rule
1) select task Tj with min{Cj| Tj∈T-U } 
2) assign Tj to U
3) calculate sj= max{rj, Cα| U |} and Cj= sj+pj

Earliest Starting Time (EST) rule
1) select task Tj with min{sj| Tj∈T-U } 
2,3) ….
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• 1|dj
~| ΣwjCj – NP hard

heuristic algorithm: Smith’s Bacward rule
begin

p:= Σpj
while T  ≠ ∅

T p:= {Tj|Tj∈T, dj
~≥p} //set of tasks with 

less urgent deadlines
select Tj∈T p with maximal pj/wj //WSTP in T p
schedule Tj at n-th position //backward rule
n := n - 1; 
T := T - {Tj};
p := p – pj ;

endwhile
end
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Smith’s Bacward rule - cont
algorithm complexity O(n log n)
this heuristic is exact if:
(i) unit processing time 1| pj=1,dj

~| ΣwjCj
(ii) unit weights 1|dj

~| ΣCj
(iii) agreeable weights, i.e. problems where pi≤pj

implies wi ≥wj for i,j =1,…,n

• 1|prec| ΣwjCj – NP hard – formulation of 0/1 
programming
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Lmax

• 1|| Lmax – Earliest Due Date (EDD) first - Jackson
– tasks are scheduled in order of nondecreasing due dates
– optimality can be proven by a simple interchange: 

• Let SA be a schedule produced by algorithm A
• If A is different than EDD, then there exist two tasks 

Ta and Tb with da≤db, such that Tb immediately 
precedes Ta in SA

• Interchanging the position of Ta and Tb cannot 
increase Lmax . 

• By finite number of transpositions SA is changed to 
SEDD.
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1. if L’a ≥L’b then L’max = C’a- da < Ca- da

2. if L’a ≤L’b then L’max = C’b- db < Ca- da

in both cases: L’max < Lmax
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L’max = max {L’a,L’b} 

…. 2 cases 
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• 1|rj| Lmax – NP hard
• 1|rj, pj=1| Lmax – can be solved by modified EDD
• 1|pmtn, rj| Lmax – modification of EDD by Horn
• 1|pmtn, rj , dj=dj

~| Lmax – the same Horn’s algorithm 
using EDF

• 1|pmtn, prec, rj,, dj=dj
~| Lmax – transformation to 

independent task set and then EDF

Lmax
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• 1|rj, pj=1| Lmax – can be solved by modified EDD
begin

t:=0;
while T  ≠ ∅

t:=max{t,min Tj ∈T{rj}} //shift time if no 
task is executable

Tr:= {Tj|Tj∈T, rj≤t} //set of execut. tasks 
select Tj∈T r with minimal dj //EDD in T r
schedule Tj at at instant t
T := T - {Tj};
t:= t + 1;

endwhile
end
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• 1|pmtn, rj| Lmax – modification of EDD by Horn
Theorem: given a set of n independent tasks with 

arbitrary release times, any algorithm that at any instant
executes the task with earliest absolute due date among 
all the ready tasks is optimal with respect to 
minimizing Lmax

When we assume dj
~=dj then the same applies for EDF 

(Earliest Deadline First) since it optimizes both:
– schedulability – if there exists a feasible schedule (Lmax≤0) 

for given instance, then EDF is able to find it
– Lmax - EDF minimizes Lmax
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EDF optimality
– Let SA be a schedule produced by algorithm A and  SEDF by EDF. 
– Without loss of  generality SA can be divided into unit time slices.
– Let i(t) is id of task executing slice t
– Let j(t) is id of ready task with earliest deadline at time t
– If SA ≠ SEDF then there is slice t such that i(t) ≠ j(t)
– Interchanging position of i(t) and j(t) cannot increase maximum 

lateness. 
– If schedule SA starts at time t=0 and D is the latest deadline then 

SEDF is obtained from  SA by at most D transpositions.
Figure Buttazzo page 58
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EDF preserves schedulability
– …..pravdepodobne lze nahradit uvahou,ze schedulability odpovida splneni

podminky Lmax≤0, (neboli kdyz nase optimalizace nalezne reseni s Lmax>0, 
tak je zrejme ze to neni “schedulable” jelikoz neexistuje zadny rozvrh s 
mensim Lmax …obracene je to trivialni – pokud nalezneme rozvrh s Lmax≤0 
pak je to rozvrhnutelne)

– Let τ(t) is the time (τ(t) > t) at which next slice of task j(t)
begins its execution in current schedule

– At any instant each slice of SA can be:
either brought forward – schedulability is obviously preserved
or postponed - if slice of Ti is postponed at τ(t) and SA is 

schedulable then it must be (τ(t)+1)≤d~(t) being d~(t) the 
earliest deadline. Since d~(t) ≤di

~ for any unexecuted Ti then we 
have (τ(t)+1)≤di

~ , which guarantees schedulability of the slice 
postponed at τ(t).
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• 1|pmtn, prec, rj,,dj
~| Lmax – Chetto,Silly,Bouchentouf

Basic idea is to transform a set T  of dependent tasks 
into T * of independent tasks by modification of 
timing parameters:

– modification of the release times
1) For any task without predecessors set rj

* = rj

2) Select a task Tj such that its release time has not been 
modified but the release times of all immediate predecessors 
Th have been modified. If no such task exists, exit.

3) set rj
* = max{rj ,max{rh

* + ph | Th is immediate predec. of Tj } 
and skip to step 2.
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– modification of deadlines 
1) For any task without successors set dj

~* = dj
~

2) Select a task Tj such that its deadline has not been modified but the 
deadlines of all immediate successors Tk have been modified. If no such 
task exists, exit.

3) set dj
~* = min{dj

~ ,min{dk
~* - pk | Tj is immediate suc. of Tk } and skip to 

step 2.

– EDF is executed on T *
Proof of optimality
– since rj

* ≥ rj and dj
~* ≤ dj

~  the schedulability of T * implies also 
schedulability of T 

– precedence constraints are not violated since due to EDF and 
modification of timing parameters the scheduled tasks are 
ordered in the same way as given by the precedence relations
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