Single processor scheduling C_{max}

- $1|\text{prec}|C_{\text{max}} \text{simple}$
 - if tasks are assigned in whatever order in accordance with precedence relation, then $C_{max} = \Sigma p_j$
- $1 \| \mathbf{C}_{\max} \text{simple} \|$
- $1|r_j|C_{max} simple$
 - tasks are scheduled in order of nondecreasing release times
- $1|d_j \sim |C_{max} simple$
 - tasks are scheduled in order of nondecreasing deadlines
 (EDF earliest deadline first)
 - EDF provides optimal solution iff there exists a schedule that meets all the deadlines

- $1 | r_j, d_j^{-} | C_{max} NP$ hard problem
 - transfromation from the 3-PARTITION problem
 - polynomial algorithm can be found if $p_i=1$
 - general problem can be solved by applying Branch&Bound algorithm by Bratley

© Z. Hanzalek 2005

(i) exceeding deadlines

if completion time
associated with at least one
of the nodes under node v
level k-1 then all nodes
under v can be eliminated

(ii) problem decomposition – if the completion time C_i of s all scheduled tasks is less than or equal to smallest release time of all so unscheduled tasks $\odot Z$. Hanzalek 2005

Optimality test of Bratley's algorithm

block is a group of tasks such that the <u>first</u> <u>task starts at its release time</u> and all the following tasks to the <u>end of the schedule</u> are processed without idle time

block satisfies **release time property** if release time of all tasks in the block are <u>greater or equal</u> to the release time of the fist task in the block Lemma: A schedule is optimal iff it contains a block that satisfies the release time property Proof:

- if part (each schedule with block satisfying RTP is optimal) follows from the definition of RTP
- only if part (each optimal schedule has block satisfying RTP) – by contradiction – suppose schedules that do not have block with RTP, none of them is optimal

$\boldsymbol{\Sigma}\boldsymbol{w}_{j}\boldsymbol{C}_{j}$

- 1|| ΣC_j Shortest Processing Time (SPT) rule
 tasks are scheduled in order of nondecreasing p_i
- 1|| Σw_jC_j Weighted SPT rule

 tasks are scheduled in order of nondecreasing p_i/w_i
- $1|\mathbf{r}_j| \Sigma \mathbf{C}_j$, $1|\mathbf{r}_j| \Sigma \mathbf{w}_j \mathbf{C}_j \mathbf{NP}$ hard
- 1|pmtn, $r_j | \Sigma C_j$ solvable by modified SPT
- 1|pmtn, $r_j | \Sigma w_j C_j NP$ hard
- $1|d_i| \Sigma C_i$, solvable by modified SPT
- $1|d_j \sim |\Sigma w_j C_j NP$ hard
- $1|\text{prec}| \Sigma w_j C_j \text{NP hard}$

• $1|\mathbf{r}_j| \Sigma \mathbf{C}_j - \mathbf{NP}$ hard

two <u>heuristic algorithms</u> based on two criteria for adding a task to an existing partial schedule

 $U - set of <u>already scheduled</u> tasks <math>T - U = \{ . \}$

• $1|d_i| \Sigma w_i C_i - NP$ hard heuristic algorithm: Smith's Bacward rule begin $p := \Sigma p_i$ while $T \neq \emptyset$ $\mathsf{T}_{p} := \{\mathsf{T}_{i} | \mathsf{T}_{i} \in \mathsf{T}, \mathsf{d}_{i} \geq p\}$ //set of tasks with less urgent deadlines //WSTP in T _p select $T_i \in T_p$ with maximal p_i/w_i //backward rule schedule T_i at n-th position n := n - 1; $T := T - \{T_i\};$ $p := p - p_i;$ endwhile © Z. Hanzalek 2005 end

Smith's Bacward rule - cont

algorithm complexity O(n log n) this heuristic is exact if:

- (i) unit processing time 1 $|p_j=1,d_j| \Sigma w_j C_j$
- (ii) unit weights $1|d_j \sim |\Sigma C_j|$
- (iii) agreeable weights, i.e. problems where $p_i \le p_j$ implies $w_i \ge w_j$ for i, j = 1, ..., n

• $1|\text{prec}| \Sigma w_j C_j - \text{NP hard} - \text{formulation of } 0/1$ programming

L_{max}

- $1 \parallel L_{max}$ Earliest Due Date (EDD) first Jackson
 - tasks are scheduled in order of nondecreasing due dates
 - optimality can be proven by a simple <u>interchange</u>:
 - Let S_A be a schedule produced by algorithm A
 - If A is different than EDD, then there exist two tasks T_a and T_b with $d_a \le d_b$, such that T_b immediately precedes T_a in S_A
 - Interchanging the position of T_a and T_b cannot increase L_{max} .
 - By finite number of transpositions S_A is changed to S_{EDD} .

L_{max}

- $1|r_j| L_{max} NP$ hard
- $1|r_j, p_j=1|L_{max}$ can be solved by modified EDD
- 1|pmtn, $r_j | L_{max}$ modification of EDD by Horn
- 1|pmtn, r_j , $d_j=d_j \sim |L_{max}$ the same Horn's algorithm using EDF
- 1|pmtn, prec, $r_{j,}$, $d_j=d_j^{-}|L_{max}$ transformation to independent task set and then EDF

• $1|r_i, p_i=1|L_{max}$ – can be solved by **modified EDD** begin t:=0; while $T \neq \emptyset$ t:=max{t,min $T_i \in \mathbf{T}$ { r_j }} //shift time if no task is executable $T_r := \{T_i | T_i \in \mathbf{T}, r_i \leq t\}$ //set of execut. tasks select $T_i \in T_r$ with minimal d_i //EDD in T , schedule T_i at at instant t $T := T - \{T_i\};$ t := t + 1;endwhile end

- 1|pmtn, $r_j | L_{max}$ modification of EDD by Horn
- Theorem: given a set of *n* independent tasks with arbitrary release times, any algorithm that <u>at any instant</u> executes the task with <u>earliest absolute due date</u> among all the ready tasks is optimal with respect to minimizing L_{max}
- When we assume $d_j = d_j$ then the same applies for EDF (Earliest Deadline First) since it optimizes both:
 - schedulability if there exists a feasible schedule $(L_{max} \le 0)$ for given instance, then EDF is able to find it
 - L_{max} EDF minimizes L_{max}

EDF optimality

- Let S_A be a schedule produced by algorithm A and S_{EDF} by EDF.
- Without loss of generality S_A can be divided into <u>unit time slices</u>.
- Let i(t) is id of task executing slice t
- Let j(t) is id of ready task with earliest deadline at time t
- If $S_A \neq S_{EDF}$ then there is slice *t* such that $i(t) \neq j(t)$
- Interchanging position of i(t) and j(t) cannot increase maximum lateness.
- If schedule S_A starts at time t=0 and D is the latest deadline then S_{EDF} is obtained from S_A by at most D transpositions.

Figure Buttazzo page 58

EDF preserves schedulability

- − …..pravdepodobne lze nahradit uvahou,ze schedulability odpovida splneni podminky L_{max}≤0, (neboli kdyz nase optimalizace nalezne reseni s L_{max}>0, tak je zrejme ze to neni "schedulable" jelikoz neexistuje zadny rozvrh s mensim L_{max} …obracene je to trivialni – pokud nalezneme rozvrh s L_{max}≤0 pak je to rozvrhnutelne)
- Let $\tau(t)$ is the time $(\tau(t) > t)$ at which next slice of task j(t) begins its execution in current schedule
- At any instant each slice of S_A can be:

either <u>brought forward</u> – schedulability is obviously preserved

or <u>postponed</u> - if slice of T_i is postponed at $\tau(t)$ and S_A is schedulable then it must be $(\tau(t)+1) \le d^{\sim}(t)$ being $d^{\sim}(t)$ the earliest deadline. Since $d^{\sim}(t) \le d_i^{\sim}$ for any unexecuted T_i then we have $(\tau(t)+1) \le d_i^{\sim}$, which guarantees schedulability of the slice postponed at $\tau(t)$.

- 1|pmtn, prec, r_j,d_j~| L_{max} Chetto,Silly,Bouchentouf
 Basic idea is to transform a set T of dependent tasks into <u>T * of independent tasks</u> by modification of timing parameters:
 - modification of the <u>release times</u>
 - 1) For any task without predecessors set $r_j^* = r_j$
 - 2) Select a task T_j such that its release time has not been modified but the release times of all immediate predecessors T_h have been modified. If no such task exists, exit.
 - 3) set $r_j^* = \max\{r_j, \max\{r_h^* + p_h \mid T_h \text{ is immediate predec. of } T_j\}$ and skip to step 2.

- modification of <u>deadlines</u>
 - 1) For any task without successors set $d_j^{*} = d_j^{*}$
 - 2) Select a task T_j such that its deadline has not been modified but the deadlines of all immediate successors T_k have been modified. If no such task exists, exit.
 - 3) set $d_j^{*} = \min\{d_j^{*}, \min\{d_k^{*} p_k \mid T_j \text{ is immediate suc. of } T_k\}$ and skip to step 2.
- EDF is executed on T *
- Proof of optimality
- since $r_j^* \ge r_j$ and $d_j^{-*} \le d_j^-$ the schedulability of T * implies also schedulability of T
- precedence constraints are not violated since due to EDF and modification of timing parameters the scheduled <u>tasks are</u> <u>ordered</u> in the same way as given by the precedence relations

