
© Z. Hanzalek 2005

Single processor scheduling
Cmax

• 1|prec|Cmax – simple
– if tasks are assigned in whatever order in accordance with

precedence relation, then Cmax=Σpj

• 1||Cmax – simple
• 1|rj|Cmax – simple

– tasks are scheduled in order of nondecreasing release times
• 1|dj

~|Cmax – simple
– tasks are scheduled in order of nondecreasing deadlines

(EDF – earliest deadline first)
– EDF provides optimal solution iff there exists a schedule

that meets all the deadlines

© Z. Hanzalek 2005

root

(T)/r +p
1 11

(T)/r +p
2 2 2 n(T)/r +p

n n

(T ,T)/max(r ,r +p)+p
1 2 2 1 1 2

(T ,T)/max(r ,r +p)+p
1 3 3 1 1 3

. . .

. . .

1

n

n(n-1)

n !

.
 .

 .

• 1| rj,dj
~|Cmax – NP hard problem

• transfromation from the 3-PARTITION problem
• polynomial algorithm can be found if pj=1
• general problem can be solved by applying

Branch&Bound algorithm by Bratley

all feasible schedules

© Z. Hanzalek 2005
t = r min 0

root

1 n-k . . .

iT

min c < r i

(i) exceeding deadlines
– if completion time
associated with at least one
of the nodes under node v in
level k-1 then all nodes
under v can be eliminated

(ii) problem decomposition –
if the completion time Ci of
all scheduled tasks is less
than or equal to smallest
release time of all
unscheduled tasks

T

d 1

1

T 2

2d

T 1 T 1 4T

d 4

T T 1 3

d 3

due to this vertex it is needed to
eliminate both “brother” vertices

situation at level k

it remains to
schedule (n-k) tasks

© Z. Hanzalek 2005

Optimality test of Bratley’s
algorithm

block is a group of tasks such that the first
task starts at its release time and all the
following tasks to the end of the schedule
are processed without idle time

block satisfies release time property if
release time of all tasks in the block are
greater or equal to the release time of the
fist task in the block

© Z. Hanzalek 2005

Lemma: A schedule is optimal iff it contains a
block that satisfies the release time property

Proof:
• if part (each schedule with block satisfying

RTP is optimal) - follows from the
definition of RTP

• only if part (each optimal schedule has
block satisfying RTP) – by contradiction –
suppose schedules that do not have block
with RTP, none of them is optimal

© Z. Hanzalek 2005

(T ,T)/6

(T)/2

2 1

(T)/2 (T)/3

(T ,T)/4

32

2 4

n

root

(T)/6 1

(i)

(T ,T)/4
2 3

(T ,T ,T)/6 (T ,T ,T)/6
2 4 1 2 4 3

(T ,T ,T)/5
(T ,T ,T)/6

24 1

324

(T ,T)/3
24

(T ,T ,T ,T)/7 4 2 3 1

(i) (i)

(i) (i) (i)

it is not needed to continue in branching since
the optimality test holds for this solution

Example: r =[4,1,1,0], p =[2,1,2,2], d~ =[7,5,6,4]

© Z. Hanzalek 2005

ΣwjCj

• 1|| ΣCj – Shortest Processing Time (SPT) rule
- tasks are scheduled in order of nondecreasing pj

• 1|| ΣwjCj – Weighted SPT rule
– tasks are scheduled in order of nondecreasing pj/wj

• 1|rj| ΣCj , 1|rj| ΣwjCj – NP hard
• 1|pmtn, rj| ΣCj – solvable by modified SPT
• 1|pmtn, rj| ΣwjCj – NP hard
• 1|dj

~| ΣCj ,- solvable by modified SPT
• 1|dj

~| ΣwjCj – NP hard
• 1|prec| ΣwjCj – NP hard

© Z. Hanzalek 2005

T
α1 α 2

T . . .
α|U |

T

T - U = { . }

∈U

?

• 1|rj| ΣCj – NP hard
two heuristic algorithms based on two criteria for

adding a task to an existing partial schedule
U – set of already scheduled tasks

Earliest Completion Time (ECT) rule
1) select task Tj with min{Cj| Tj∈T-U }
2) assign Tj to U
3) calculate sj= max{rj, Cα| U |} and Cj= sj+pj

Earliest Starting Time (EST) rule
1) select task Tj with min{sj| Tj∈T-U }
2,3) ….

© Z. Hanzalek 2005

• 1|dj
~| ΣwjCj – NP hard

heuristic algorithm: Smith’s Bacward rule
begin

p:= Σpj
while T ≠ ∅

T p:= {Tj|Tj∈T, dj
~≥p} //set of tasks with

less urgent deadlines
select Tj∈T p with maximal pj/wj //WSTP in T p
schedule Tj at n-th position //backward rule
n := n - 1;
T := T - {Tj};
p := p – pj ;

endwhile
end

© Z. Hanzalek 2005

Smith’s Bacward rule - cont
algorithm complexity O(n log n)
this heuristic is exact if:
(i) unit processing time 1| pj=1,dj

~| ΣwjCj
(ii) unit weights 1|dj

~| ΣCj
(iii) agreeable weights, i.e. problems where pi≤pj

implies wi ≥wj for i,j =1,…,n

• 1|prec| ΣwjCj – NP hard – formulation of 0/1
programming

© Z. Hanzalek 2005

Lmax

• 1|| Lmax – Earliest Due Date (EDD) first - Jackson
– tasks are scheduled in order of nondecreasing due dates
– optimality can be proven by a simple interchange:

• Let SA be a schedule produced by algorithm A
• If A is different than EDD, then there exist two tasks

Ta and Tb with da≤db, such that Tb immediately
precedes Ta in SA

• Interchanging the position of Ta and Tb cannot
increase Lmax .

• By finite number of transpositions SA is changed to
SEDD.

© Z. Hanzalek 2005

1. if L’a ≥L’b then L’max = C’a- da < Ca- da

2. if L’a ≤L’b then L’max = C’b- db < Ca- da

in both cases: L’max < Lmax

S

C C’ C’ = C d d
t

b a a a bb

T
a b

T

b
T T

a
A

EDD
S

Lmax = Ca- da

L’max = max {L’a,L’b}

…. 2 cases

© Z. Hanzalek 2005

• 1|rj| Lmax – NP hard
• 1|rj, pj=1| Lmax – can be solved by modified EDD
• 1|pmtn, rj| Lmax – modification of EDD by Horn
• 1|pmtn, rj , dj=dj

~| Lmax – the same Horn’s algorithm
using EDF

• 1|pmtn, prec, rj,, dj=dj
~| Lmax – transformation to

independent task set and then EDF

Lmax

© Z. Hanzalek 2005

• 1|rj, pj=1| Lmax – can be solved by modified EDD
begin

t:=0;
while T ≠ ∅

t:=max{t,min Tj ∈T{rj}} //shift time if no
task is executable

Tr:= {Tj|Tj∈T, rj≤t} //set of execut. tasks
select Tj∈T r with minimal dj //EDD in T r
schedule Tj at at instant t
T := T - {Tj};
t:= t + 1;

endwhile
end

© Z. Hanzalek 2005

• 1|pmtn, rj| Lmax – modification of EDD by Horn
Theorem: given a set of n independent tasks with

arbitrary release times, any algorithm that at any instant
executes the task with earliest absolute due date among
all the ready tasks is optimal with respect to
minimizing Lmax

When we assume dj
~=dj then the same applies for EDF

(Earliest Deadline First) since it optimizes both:
– schedulability – if there exists a feasible schedule (Lmax≤0)

for given instance, then EDF is able to find it
– Lmax - EDF minimizes Lmax

© Z. Hanzalek 2005

EDF optimality
– Let SA be a schedule produced by algorithm A and SEDF by EDF.
– Without loss of generality SA can be divided into unit time slices.
– Let i(t) is id of task executing slice t
– Let j(t) is id of ready task with earliest deadline at time t
– If SA ≠ SEDF then there is slice t such that i(t) ≠ j(t)
– Interchanging position of i(t) and j(t) cannot increase maximum

lateness.
– If schedule SA starts at time t=0 and D is the latest deadline then

SEDF is obtained from SA by at most D transpositions.
Figure Buttazzo page 58

© Z. Hanzalek 2005

EDF preserves schedulability
– …..pravdepodobne lze nahradit uvahou,ze schedulability odpovida splneni

podminky Lmax≤0, (neboli kdyz nase optimalizace nalezne reseni s Lmax>0,
tak je zrejme ze to neni “schedulable” jelikoz neexistuje zadny rozvrh s
mensim Lmax …obracene je to trivialni – pokud nalezneme rozvrh s Lmax≤0
pak je to rozvrhnutelne)

– Let τ(t) is the time (τ(t) > t) at which next slice of task j(t)
begins its execution in current schedule

– At any instant each slice of SA can be:
either brought forward – schedulability is obviously preserved
or postponed - if slice of Ti is postponed at τ(t) and SA is

schedulable then it must be (τ(t)+1)≤d~(t) being d~(t) the
earliest deadline. Since d~(t) ≤di

~ for any unexecuted Ti then we
have (τ(t)+1)≤di

~ , which guarantees schedulability of the slice
postponed at τ(t).

© Z. Hanzalek 2005

• 1|pmtn, prec, rj,,dj
~| Lmax – Chetto,Silly,Bouchentouf

Basic idea is to transform a set T of dependent tasks
into T * of independent tasks by modification of
timing parameters:

– modification of the release times
1) For any task without predecessors set rj

* = rj

2) Select a task Tj such that its release time has not been
modified but the release times of all immediate predecessors
Th have been modified. If no such task exists, exit.

3) set rj
* = max{rj ,max{rh

* + ph | Th is immediate predec. of Tj }
and skip to step 2.

© Z. Hanzalek 2005

– modification of deadlines
1) For any task without successors set dj

~* = dj
~

2) Select a task Tj such that its deadline has not been modified but the
deadlines of all immediate successors Tk have been modified. If no such
task exists, exit.

3) set dj
~* = min{dj

~ ,min{dk
~* - pk | Tj is immediate suc. of Tk } and skip to

step 2.

– EDF is executed on T *
Proof of optimality
– since rj

* ≥ rj and dj
~* ≤ dj

~ the schedulability of T * implies also
schedulability of T

– precedence constraints are not violated since due to EDF and
modification of timing parameters the scheduled tasks are
ordered in the same way as given by the precedence relations

© Z. Hanzalek 2005

• r1
* = r1

• r2
* = r1 + p1

• d1
~* = d2

~ - p2

• d2
~* = d2

~

T T 1 2

p
1

1 T

d 1

*

d 1

2 T

r = r 1 1
*

r 2 2 r *

p
2

d = d 2 2

*

