Single processor scheduling

$\mathrm{C}_{\text {max }}$

- 1|prec $\mid \mathrm{C}_{\text {max }}$ - simple
- if tasks are assigned in whatever order in accordance with precedence relation, then $\mathrm{C}_{\text {max }}=\Sigma \mathrm{p}_{\mathrm{j}}$
- $1\left|\mid \mathrm{C}_{\text {max }}\right.$ - simple
- $1\left|r_{j}\right| C_{\text {max }}$ - simple
- tasks are scheduled in order of nondecreasing release times
- $1\left|\mathrm{~d}_{\mathrm{j}}^{\sim}\right| \mathrm{C}_{\text {max }}$ - simple
- tasks are scheduled in order of nondecreasing deadlines (EDF - earliest deadline first)
- EDF provides optimal solution iff there exists a schedule that meets all the deadlines
© Z. Hanzalek 2005
- $1 \mid r_{\mathrm{j}}, \mathrm{d}_{\mathrm{j}}^{\sim}{ }^{\sim} \mathrm{C}_{\text {max }}$ - NP hard problem
- transfromation from the 3-PARTITION problem
- polynomial algorithm can be found if $\mathrm{p}_{\mathrm{j}}=1$
- general problem can be solved by applying Branch\&Bound algorithm by Bratley

© Z. Hanzalek 2005
(i) exceeding deadlines
- if completion time associated with at least on of the nodes under node v level k - 1 then all nodes under v can be eliminated

due to this vertex it is needed to
eliminate both "brother" vertices
(ii) problem decomposition if the completion time C_{i} of all scheduled tasks is less than or equal to smallest
release time of all unscheduled tasks

it remains to
schedule ($\mathrm{n}-\mathrm{k}$) tasks

Optimality test of Bratley's algorithm

block is a group of tasks such that the first task starts at its release time and all the following tasks to the end of the schedule are processed without idle time
block satisfies release time property if release time of all tasks in the block are greater or equal to the release time of the fist task in the block

Lemma: A schedule is optimal iff it contains a block that satisfies the release time property
Proof:

- if part (each schedule with block satisfying RTP is optimal) - follows from the definition of RTP
- only if part (each optimal schedule has block satisfying RTP) - by contradiction suppose schedules that do not have block with RTP, none of them is optimal

© Z. Hanzalek 2005

$\Sigma \mathrm{w}_{\mathrm{j}} \mathrm{C}_{\mathrm{j}}$

- $1 \| \Sigma \mathrm{C}_{\mathrm{j}}$ - Shortest Processing Time (SPT) rule
- tasks are scheduled in order of nondecreasing P_{j}
- $1 \| \Sigma \mathrm{w}_{\mathrm{j}} \mathrm{C}_{\mathrm{j}}$ - Weighted SPT rule
- tasks are scheduled in order of nondecreasing $\mathrm{p}_{\mathrm{j}} / \mathrm{w}_{\mathrm{j}}$
- $1\left|r_{\mathrm{j}}\right| \Sigma \mathrm{C}_{\mathrm{j}}, 1\left|\mathrm{r}_{\mathrm{j}}\right| \Sigma \mathrm{w}_{\mathrm{j}} \mathrm{C}_{\mathrm{j}}-\mathrm{NP}$ hard
- $1\left|\mathrm{pmtn}, \mathrm{r}_{\mathrm{j}}\right| \Sigma \mathrm{C}_{\mathrm{j}}-$ solvable by modified SPT
- 1|pmtn, $\mathrm{r}_{\mathrm{j}} \mid \sum \mathrm{w}_{\mathrm{j}} \mathrm{C}_{\mathrm{j}}-$ NP hard
- $1\left|\mathrm{~d}_{\mathrm{j}}^{\sim}\right| \Sigma \mathrm{C}_{\mathrm{j}},-$ solvable by modified SPT
- $1\left|\mathrm{~d}_{\mathrm{j}}^{\sim}\right| \sum \mathrm{w}_{\mathrm{j}} \mathrm{C}_{\mathrm{j}}-$ NP hard
- $1 \mid$ prec $\mid \Sigma \mathrm{w}_{\mathrm{j}} \mathrm{C}_{\mathrm{j}}-\mathrm{NP}$ hard
- $1\left|r_{\mathrm{j}}\right| \Sigma \mathrm{C}_{\mathrm{j}}-\mathrm{NP}$ hard
two heuristic algorithms based on two criteria for adding a task to an existing partial schedule
\mathbf{U} - set of already scheduled tasks
$\mathbf{T} \mathbf{U}=\{$.

Earliest Completion Time (ECT) rule

1) select task T_{j} with $\min \left\{C_{j} \mid T_{j} \in \mathbf{T}-\mathbf{U}\right\}$
2) assign T_{j} to U
3) calculate $\mathrm{s}_{\mathrm{j}}=\max \left\{\mathrm{r}_{\mathrm{j}}, \mathrm{C}_{\alpha|\mathbf{u}|}\right\}$ and $\mathrm{C}_{\mathrm{j}}=\mathrm{s}_{\mathrm{j}}+\mathrm{p}_{\mathrm{j}}$

Earliest Starting Time (EST) rule

1) select task T_{j} with $\min \left\{\mathrm{s}_{\mathrm{j}} \mid \mathrm{T}_{\mathrm{j}} \in \mathbf{T}-\mathbf{U}\right\}$

2,3)

- $1\left|\mathrm{~d}_{\mathrm{j}} \sim\right| \sum \mathrm{w}_{\mathrm{j}} \mathrm{C}_{\mathrm{j}}-$ NP hard
heuristic algorithm: Smith's Bacward rule
begin

$$
\mathrm{p}:=\Sigma \mathrm{p}_{\mathrm{j}}
$$

while $\mathrm{T} \neq \varnothing$

$$
\mathrm{T}_{\mathrm{p}}:=\left\{\mathrm{T}_{\mathrm{j}} \mid \mathrm{T}_{\mathrm{j}} \in \mathbf{T}, \mathrm{~d}_{\mathrm{j}}^{\sim} \geq \mathrm{p}\right\} \quad \text { //set of tasks with }
$$

less urgent deadlines
select $T_{j} \in T_{p}$ with maximal $p_{j} / w_{j} \quad / / W S T P$ in T_{p}
schedule T_{j} at n-th position //backward rule

$$
\begin{aligned}
\mathrm{n}:=\mathrm{n}-1 ; \\
\mathrm{T}:=\mathrm{T}-\left\{\mathrm{T}_{\mathrm{j}}\right\} ; \\
\mathrm{p}:=\mathrm{p}-\mathrm{p}_{\mathrm{j}} ;
\end{aligned}
$$

endwhile
end

Smith's Bacward rule - cont

algorithm complexity $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
this heuristic is exact if:
(i) unit processing time $1\left|\mathrm{p}_{\mathrm{j}}=1, \mathrm{~d}_{\mathrm{j}}{ }^{\wedge}\right| \sum \mathrm{w}_{\mathrm{j}} \mathrm{C}_{\mathrm{j}}$
(ii) unit weights $1\left|\mathrm{~d}_{\mathrm{j}}^{\sim}\right| \Sigma \mathrm{C}_{\mathrm{j}}$
(iii) agreeable weights, i.e. problems where $p_{i} \leq p_{j}$ implies $w_{i} \geq w_{j}$ for $i, j=1, \ldots, n$

- $1 \mid$ prec $\mid \sum \mathrm{w}_{\mathrm{j}} \mathrm{C}_{\mathrm{j}}-$ NP hard - formulation of 0/1 programming

$\mathrm{L}_{\text {max }}$

- $1\left|\mid \mathrm{L}_{\text {max }}\right.$ - Earliest Due Date (EDD) first - Jackson
- tasks are scheduled in order of nondecreasing due dates
- optimality can be proven by a simple interchange:
- Let $\boldsymbol{S}_{\boldsymbol{A}}$ be a schedule produced by algorithm \boldsymbol{A}
- If \boldsymbol{A} is different than EDD, then there exist two tasks T_{a} and T_{b} with $\mathrm{d}_{\mathrm{a}} \leq \mathrm{d}_{\mathrm{b}}$, such that T_{b} immediately precedes T_{a} in $\boldsymbol{S}_{\boldsymbol{A}}$
- Interchanging the position of T_{a} and T_{b} cannot increase $L_{\text {max }}$.
- By finite number of transpositions $\boldsymbol{S}_{\boldsymbol{A}}$ is changed to $S_{\text {EDD }}$.
S_{A}

$$
L_{\max }=C_{a}-d_{a}
$$

$$
L^{\prime}{ }_{\text {max }}=\max \left\{L_{a}^{\prime}{ }_{\mathrm{a},}^{\prime}{ }_{\mathrm{b}}\right\}
$$

1. if $L^{\prime}{ }_{a} \geq L^{\prime}{ }_{b}$ then $L^{\prime}{ }_{\text {max }}=C^{\prime}{ }_{a}-d_{a}<C_{a}-d_{a}$
2. if $L^{\prime}{ }_{a} \leq L^{\prime}{ }_{b}$ then $L^{\prime}{ }_{\text {max }}=C^{\prime}{ }_{b}-d_{b}<C_{a}-d_{a}$
© Z. Hanzalek 2005

$\mathrm{L}_{\text {max }}$

- $1\left|r_{j}\right| L_{\text {max }}-N P$ hard
- $1\left|\mathrm{r}_{\mathrm{j}}, \mathrm{p}_{\mathrm{j}}=1\right| \mathrm{L}_{\text {max }}$ - can be solved by modified EDD
- $1\left|p m t n, r_{j}\right| L_{\text {max }}$ - modification of EDD by Horn
- 1|pmtn, $\mathrm{r}_{\mathrm{j}}, \mathrm{d}_{\mathrm{j}}=\mathrm{d}_{\mathrm{j}}^{\sim} \mid \mathrm{L}_{\text {max }}$ - the same Horn's algorithm using EDF
- 1|pmtn, prec, $\mathrm{r}_{\mathrm{j}}, \mathrm{d}_{\mathrm{j}}=\mathrm{d}_{\mathrm{j}}^{\sim} \mid \mathrm{L}_{\text {max }}$ - transformation to independent task set and then EDF
- $1\left|r_{j}, p_{j}=1\right| L_{\text {max }}$ - can be solved by modified EDD begin
t:=0;

$$
\text { while } T \neq \varnothing
$$

$$
\mathrm{t}:=\max \left\{\mathrm{t}, \min _{\mathrm{Tj} \in \mathbf{T}}\left\{\mathrm{r}_{\mathrm{j}}\right\}\right\}
$$

//shift time if no task is executable
$\mathrm{T}_{\mathrm{r}}:=\left\{\mathrm{T}_{\mathrm{j}} \mid \mathrm{T}_{\mathrm{j}} \in \mathrm{T}, \mathrm{r}_{\mathrm{j}} \leq \mathrm{t}\right\} \quad$ //set of execut. tasks select $T_{j} \in T_{r}$ with minimal $d_{j} / / E D D$ in T_{r} schedule T_{j} at at instant t
$\mathrm{T}:=\mathbf{T}-\left\{\mathrm{T}_{\mathrm{j}}\right\}$;
t := $\mathrm{t}+1$;
endwhile
end

- $1\left|p m t n, r_{j}\right| L_{\text {max }}$ - modification of EDD by Horn

Theorem: given a set of n independent tasks with arbitrary release times, any algorithm that at any instant executes the task with earliest absolute due date among all the ready tasks is optimal with respect to minimizing $L_{\text {max }}$
When we assume $\mathrm{d}_{\mathrm{j}}^{\sim}=\mathrm{d}_{\mathrm{j}}$ then the same applies for EDF (Earliest Deadline First) since it optimizes both:

- schedulability - if there exists a feasible schedule ($\mathrm{L}_{\text {max }} \leq 0$) for given instance, then EDF is able to find it
$-\mathbf{L}_{\text {max }}$ - EDF minimizes $L_{\text {max }}$

EDF optimality

- Let $\boldsymbol{S}_{\boldsymbol{A}}$ be a schedule produced by algorithm \boldsymbol{A} and $\boldsymbol{S}_{\boldsymbol{E D F}}$ by EDF.
- Without loss of generality $\boldsymbol{S}_{\boldsymbol{A}}$ can be divided into unit time slices.
- Let $\mathbf{i}(\boldsymbol{t})$ is id of task executing slice \boldsymbol{t}
- Let $\boldsymbol{j}(\boldsymbol{t})$ is id of ready task with earliest deadline at time \boldsymbol{t}
- If $\boldsymbol{S}_{\boldsymbol{A}} \neq \boldsymbol{S}_{\text {EDF }}$ then there is slice \boldsymbol{t} such that $\mathbf{i}(\boldsymbol{t}) \neq \boldsymbol{j}(\boldsymbol{t})$
- Interchanging position of $\boldsymbol{i}(\boldsymbol{t})$ and $\boldsymbol{j}(\boldsymbol{t})$ cannot increase maximum lateness.
- If schedule $\boldsymbol{S}_{\boldsymbol{A}}$ starts at time $\mathrm{t}=0$ and D is the latest deadline then $\boldsymbol{S}_{\boldsymbol{E D F}}$ is obtained from $\boldsymbol{S}_{\boldsymbol{A}}$ by at most D transpositions.
Figure Buttazzo page 58

EDF preserves schedulability

-pravdepodobne lze nahradit uvahou,ze schedulability odpovida splneni podminky $\mathrm{L}_{\max } \leq 0$, (neboli kdyz nase optimalizace nalezne reseni s $\mathrm{L}_{\max }>0$, tak je zrejme ze to neni "schedulable" jelikoz neexistuje zadny rozvrh s mensim $\mathrm{L}_{\text {max }}$...obracene je to trivialni - pokud nalezneme rozvrh s $\mathrm{L}_{\max } \leq 0$ pak je to rozvrhnutelne)
- Let $\tau(\boldsymbol{t})$ is the time $(\tau(\boldsymbol{t})>\boldsymbol{t})$ at which next slice of task $\boldsymbol{j}(\boldsymbol{t})$ begins its execution in current schedule
- At any instant each slice of $\boldsymbol{S}_{\boldsymbol{A}}$ can be:
either brought forward - schedulability is obviously preserved
or postponed - if slice of T_{i} is postponed at $\tau(\boldsymbol{t})$ and $\boldsymbol{S}_{\mathrm{A}}$ is schedulable then it must be $(\tau(t)+1) \leq \boldsymbol{d}^{\sim}(\boldsymbol{t})$ being $\boldsymbol{d}^{\sim}(\boldsymbol{t})$ the earliest deadline. Since $\boldsymbol{d}^{\sim}(\boldsymbol{t}) \leq \boldsymbol{d}_{\boldsymbol{i}}^{\sim}$ for any unexecuted T_{i} then we have $(\tau(t)+1) \leq \boldsymbol{d}_{\boldsymbol{i}}^{\sim}$, which guarantees schedulability of the slice postponed at $\tau(t)$.
- 1|pmtn, prec, $\mathrm{r}_{\mathrm{j}}, \mathrm{d}_{\mathrm{j}}^{\sim} \mid \mathrm{L}_{\text {max }}$ - Chetto,Silly,Bouchentouf

Basic idea is to transform a set T of dependent tasks into T * of independent tasks by modification of timing parameters:

- modification of the release times

1) For any task without predecessors set $r_{j}^{*}=r_{j}$
2) Select a task T_{j} such that its release time has not been modified but the release times of all immediate predecessors T_{h} have been modified. If no such task exists, exit.
3) set $r_{j}{ }^{*}=\max \left\{r_{j}, \max \left\{r_{h}{ }^{*}+p_{h} \mid T_{h}\right.\right.$ is immediate predec. of $\left.T_{j}\right\}$ and skip to step 2.

- modification of deadlines

1) For any task without successors set $\mathrm{d}_{\mathrm{j}}^{\sim *}=\mathrm{d}_{\mathrm{j}}^{\sim}$
2) Select a task T_{j} such that its deadline has not been modified but the deadlines of all immediate successors T_{k} have been modified. If no such task exists, exit.
3) set $\mathrm{d}_{\mathrm{j}}{ }^{*}=\min \left\{\mathrm{d}_{\mathrm{j}}^{\sim}, \min \left\{\mathrm{d}_{\mathrm{k}}{ }^{\sim *}-\mathrm{P}_{\mathrm{k}} \mid \mathrm{T}_{\mathrm{j}}\right.\right.$ is immediate suc. of $\left.\mathrm{T}_{\mathrm{k}}\right\}$ and skip to step 2.

- EDF is executed on T *

Proof of optimality
$-\quad$ since $r_{j}^{*} \geq r_{j}$ and $d_{j}^{\sim *} \leq d_{j}^{\sim}$ the schedulability of T * implies also schedulability of T

- precedence constraints are not violated since due to EDF and modification of timing parameters the scheduled tasks are ordered in the same way as given by the precedence relations

© Z. Hanzalek 2005

