Scheduling

- set **T** of *n* tasks **T** ={ $T_1, T_2, ..., T_n$ }
- set \mathbf{P} of *m* processors $\mathbf{P} = \{P_1, P_2, \dots, P_m\}$
- set of additional resources
- Scheduling = **assignment of task to processors** in order to complete the tasks under imposed constraints
- on line / off line
- deterministic parameters combinatorial optimization algorithms
- schedules are represented by **Gantt charts**

Basic constraints

- each task is to be processed by at most **one processor** at a time
- each processor is capable of processing at most **one task** at a time
- task T_j is processed in time interval $[r_j, \infty)$
- all tasks are **completed**
- if tasks T_i , T_j are in the relation $T_i < T_j$, the processing of T_j is not started before completion of T_i
- in the case of **non preemptive** scheduling no task is preempted, otherwise the number of preemptions if **finite**
- additional resource constraints, if any, are satisfied

Task parameters

© Z. Hanzalek 2005

Task parameters

- release (arrival, disponability) time r_j
- start time s_j , completion time C_j
- due date d_i
- deadline d_j^{\sim} is hard real time limit by which T_j must be completed
- waiting time w_i
- processing time p_j
- flow time $F_j = C_j r_j$
- lateness $L_j = C_j d_j$
- tardiness $D_j = max\{C_j d_j, 0\}$

Standard notation $\alpha/\beta/\gamma$ by Graham

- $\alpha_1 = \dots 1$ processor
 - parallel identical processors Ρ
 - parallel uniform proc. $p_{ii} = p_i/b_i$ Q

(b_i is proc. speed)

- parallel unrelated proc. p_{ii} is arbitrary R
- dedicated "open-shop" 0
- dedicated "flow-shop" F
- J dedicated "job-shop"
- ... variable number of processors $\alpha_2 =$ k
 - given number of processors

Tasks: $\beta = \beta_1 \beta_2 \beta_3 \beta_4 \beta_5 \beta_6 \beta_7 \beta_8$

 $\beta_1 \in \{\dots, \text{pmtn}\}$ preemption additional resources $\beta_2 \in \{\ldots, \operatorname{res}\}$ $\beta_3 \in \{\dots, \text{prec,tree,chain}\}$ precedence constraints $\beta_4 \in \{\ldots, r_i\}$ release time var/const/limited proc.time $\beta_5 \in \{..., p_i = k, p_L \le p_i \le p_U\}$ $\beta_6 \in \{..., d^{\sim}\}$ deadline $\beta_7 \in \{..., n_i \le k\}$ limited number of jobs in Job-shop $\beta_8 \in \{\dots, \text{ no-wait}\}$ buffers with infinite/zero capacity

Optimality criterion γ

$$\gamma \in \{C_{\max}, \Sigma C_j, \Sigma w_j C_j, L_{\max}, \dots\}$$

$$C_{\max} = \max_{\forall j} \{C_j\}$$

$$L_{\max} = \max_{\forall j} \{C_j - d_j\}$$

For example standard notation $P||C_{max}$ means: variable number of identical parallel processors, nonpreemptive, no precedence constraints, all tasks starting at time 0, variable processing time, make spawn optimization