Continuous Petri Nets and Polytopes

Zdenek Hanzalek

Czech Technical University Centre for Applied Cybernetics, Department of Control Engineering Karlovo nám. 13, 121 35 Prague 2, Czech Republic hanzalek@fel.cvut.cz

From autonomous PN to autonomous CPN

- no threshold
- modeling of continuous systems / approximation of DES

Continuous state space

the state space is continuous when k tends to infinity

3 Timed Continuous Petri Nets models

CCPN - Constant speed continuous PN

- R = [P, T, V, Pre, Post, M(0)]
 - P, T as in usual PN
 - Pre, Post: PxT $\rightarrow R_0^+$
 - M(0): $P \rightarrow R_0^+$ M(t) is marking at time t
 - V: $T \rightarrow R_0^+$ $v_j(t) \in \langle 0, V_j \rangle$ is instantaneous firing **speed**
- T_j is **strongly enabled** if $\forall P_i \in {}^\circ T_j$; M_i>0
- P_i is **supplied** $\exists T_j \in {}^{\circ}P_i$; T_j is strongly or weakly enabled
- T_j is **weakly enab.** if (∃ P_i∈ °T_j; M_i=0 and P_i is supplied) and (\forall P_k∈ °T_j; P_k≠P_i; M_i>0 or P_k is supplied)

CCPN - Constant speed continuous PN (cont.)

- **Recursively defined** supplied places and weakly enabled transitions ere determined by **iterative algorithm** with proven convergence.
- **Balance** of the place P_i is:

$$B_i(t) = \sum_{T_j \in {}^\circ P_i} Post(P_i, T_j) \cdot v_j(t) - \sum_{T_j \in P_i^\circ} Pre(P_i, T_j) \cdot v_j(t)$$

B_i corresponds to the **derivative** of P_i marking:

 $m_i(t+dt) = m_i(t) + B_i(t) \cdot dt$

Algorithms calculating instantaneous firing speed:

[DA98] ... based on iterative approach

this article ...**analytical** determination of subspace of possible instantaneous firing speeds.

Free speed model

- CCPN without speed maximization (this model does not work in earliest firing mode)
- in the limit case (∀T_j; V_j=∞) this model is identical to autonomous CPN
- system of inequalities (no difference strongly/weakly en.) defines polytop Π $v_j(t) \le V_j \forall$ enabled T_j $v_j(t) \ge 0 \forall$ enabled T_j $B_i(t) \ge 0 \forall P_i$; \exists enabled $T_j \in P_i^{\circ}$ and $M_i=0$

Free speed model – example of conflict

Free speed model – empty loop paradox

Maximum speed model ~ CCPN

reduction of polytop Π (polytop dimension ~ number of weakly enabled transitions)

- **Definition: G, the maximum speed area**, is the subset of polytop Π such that for each speed v \in G there does not exist any other speed u \in \Pi such that $u_k \ge v_k \forall k=1...d$
- face belongs to $G \Leftrightarrow$ all its vertices belong to G i.e. $F_k \in G \Leftrightarrow \forall F_0 \in F_k$; $F_0 \in G$

Actual conflict

- **Definition:** actual conflict between T_j and T_k exists if \exists structural conflict and $\exists v,v' \in G$; such that $v_i < v'_i$ and $v_k > v'_k$
- actual conflict exists \Leftrightarrow there exists face $F_k \in G$; $k \ge 1$
- actual conflict does not exist ⇔ G is exactly one vertex ⇒ one call of LP determines G in polynomial time
- G is not convex:

Resolution of actual conflicts by priorities

Definition: H, the priority determined area, is the subset of G such that for each speed $v \in H$ and for any other speed $u \in G$ and for any T_j such that $v_j < u_j$ there exists some T_k such that priority $(T_k) \ge$ priority (T_j) and $v_k > u_k$ (If exists coordinate $v_j < u_j$ then we find always another coordinate $v_k > u_k$ with higher or equal priority)

Example of area G and area H

- 9 vertices (2³ priority combinations +1)
- G is not convex

Algorithms for instantaneous firing speed

- vertex enumeration (actual conflict resolution not needed)
 - 1. vertex representation of polytop
 - 2. selection of vertices belonging to G
 - 3. selection of vertices belonging to H
- Linear Programming (polynomial time complexity) for each priority level k
 - $1.J_j = 1$ for each j on this priority level otherwise $J_j = 0$
 - 2.find solution by Linear Programming
 - 3.add one equation per each j on this priority level

Evolution graph

 one polytop with determined speed per each IB state

Conclusions

- CCPN speed determination when actual conflicts are present
- vertex enumeration (polytop, G, H) and LP solution (polynomial)
- occurrence of 0⁺ marking in initial IB state
 free speed model of empty circuit
- H⊂G, i.e. speed maximization is prior to priority resolution (weak priority)