ARTISTZ

Graduate Course on Embedded Control Systems

April 3rd-7th, 2006
Prague, Czech Republic

Student QaElglefe]U)ss
Organized by Zdenék Hanzalek ™
Department od Control Engineering
F Faculty of Electrical Engineering c
w 4 Czech Technical University in Prague <

RTIST

Program of Graduate Course on Embedded Control Systems
Department of Control Engineering, FEE, CTU Prague

Karlovo namésti 13, Building E, Room K112
Monday 3" of April

8:00 Registration

8:30 M1 Moativation and examples, Bengt Eriksson and Martin Torngren, 1.5 hour (KTH)
10:00 Coffee

10:15 M2 Control issues, Pedro Albertos, 2 hours (UPVLC)

12:15 Lunch

13:45 M3 RT issues, Alfons Crespo, 2 hours (UPVLC)

Tuesday 4™ of April

e 9:00 T1 Kernels and safe (back-up) operation, Pedro Albertos and Alfons Crespo, 1 hour
(UPVLC)

e 10:00 Coffee

e 10:15 T2a Control design practical issues - principles, Bengt Eriksson, 1 hour (KTH)

e 11:15 T2b Control design practical issues - models, Jindrich Fuka, Jiri Roubal, 1 hour
(laboratories K23 and K26 - CTU)

e 12:15 Lunch

e 13:45 T3 Integrated control design and implementation, Karl-Erik Arzen and Anton Cervin,
2 hours (LTH)

Wednesday 5™ of April

e 8:00 W1 Control of Computing Systems, Karl-Erik Arzen and Anton Cervin, 2 hours (LTH)
e 10:00 Coffee
e 10:15 W2 Jitterbug and Truetime, Karl-Erik Arzen and Anton Cervin, 2 hours
(laboratory K2 — LTH)
e 12:15 Lunch
e 13:45 W3 ECS Deployment, Bengt Eriksson and Martin Torngren, 2 hours (KTH)

Thursday 6™ of April

e 8:00 Thl Off-line scheduling, Zdenek Hanzalek, 2 hours (CTU)

e 10:00 Coffee

e 10:15 Th2 Platform for Advanced Process Control and Real Time Optimization,
Vladimir Havlena and Jiri Findejs, 2 hours (Honeywell Laboratory Prague)

e 12:15 Lunch

e 13:45 Th3, RT practical issues, Michal Sojka and Ondrej Spinka, 2 hours
(laboratory K09 - CTU)

Friday 7" of April

e 8:00 F1, Torsche — Matlab scheduling toolbox, Premysl| Sucha and Michal Kutil, 2 hours
(laboratory K2 - CTU)

e 10:00 Coffee

e 10:15 F2, Implementing Floating-Point DSP and Control with PicoBlaze Processors,
Jiri Kadlec, 2 hours (CTU)

e 12:15 Closing remarks and discussion

M1 Motivation and examples, Bengt Eriksson and Martin Torngren, 1.5 hour (KTH)

In this introductory session, the general problem of the course will be presented and
motivated. What Embedded systems (ES) are? What Embedded control systems (ECS) are?
Why? Motivating examples: inverted pendulum, mobile robot, car safety control. Main issues
in the design of ECS: typical requirements, conflicting requirements, design trade-offs, typical
architectures, design parameters.

M2 Control issues, Pedro Albertos, 2 hours (UPVLC)

Real-time implementation of control algorithms in a multitasking environment involves a
number of issues that should be taken into account. The unavoidable delays, both in
computation and in data handling, the lost of data, the change of operation mode, the
changes in sampling periods and the performance degrading are among the main issues to
be considered. In this session, a review of these concepts for a general audience will be
presented. The goal of this session would be to emphasize the relevance of these control
design issues, to be strongly connected to the actual implementation of the control, to be
discussed in the next sessions.

M3 RT issues, Alfons Crespo, 2 hours (UPVLC)

The aim of this session is to introduce the most important concepts of ECS from the real-time
(RT) systems perspective. The different types of RT tasks are introduced, and the
importance of RT constraints is emphasized, especially in the context of control systems
design. The central role of processor scheduling for guaranteeing RT constraints is
motivated, and the main paradigms of RT scheduling are introduced. Fixed and dynamic
priority scheduling methods are described, including temporal analysis methods. Resource
usage and jitter control are also introduced. Finally, implementation approaches in view of
the existing RT operating systems and programming languages technologies are discussed.
The level of presentation of the topics is introductory, but a basic knowledge of operating
systems, computer architecture, and programming in a high-level language is assumed.

T1 Kernels and safe (back-up) operation, Pedro Albertos and Alfons Crespo, 1 hour
(UPVLC)

ECS require to work in a variety of (unexpected) circumstances. The operating system (OS)
should provide a number of basic options to guarantee the safe behaviour of ECS. In this
session, a hew set of operating services to provide the applications a higher control of faults
and temporal constraints will be described. Some examples of this functionalities are:
Execution timers, application defined scheduling, fault tolerant monitors, etc. From the
control viewpoint, a hierarchical sorting of activities should be scheduled in agreement with
the OS kernel to get the best, among the possible, control options. Safe (back-up) operation,
basic control actions, optional and supervision are among the main issues to be discussed.

T2 Control design practical issues — principles and models, Bengt Eriksson, Jindrich
Fuka, Jiri Roubal, 2 hours (KTH, CTU)

Introductory and simple exercises about control design using CACD (computer aided control
design) packages will allow a better insight into the RT control design algorithms. Moreover,
using some simple rigs, the participants will get some hands-on control design approaches.

Some principles will be demonstrated on laboratory models.

T3 Integrated control design and implementation, Karl-Erik Arzen and Anton Cervin, 2
hours (LTH)

This session will focus on the interaction between the control design and control
implementation. In embedded systems, floating point arithmetic is sometimes too costly. The
problems associated with fixed point arithmetic are discussed. The implementation platform
normally introduces input-output latencies due to computation and communication delays.
The effects of this on control performance and how it can be compensated for will be
discussed. Special emphasis will be given to the recent jitter margin concept. The
implementation platform also introduces jitter in sampling intervals. This will also be
discussed. The control server is a computational model for controller tasks that combines the
benefits of static scheduling and dynamic event-based scheduling. Changing controller task
parameters such as sampling periods on-line could sometimes be useful in order to adapt to
changing conditions. The problems associated with this and the risk of switching induced
instabilities will be discussed.

W1 Control of Computing Systems, Karl-Erik Arzen and Anton Cervin, 2 hours (LTH)

Using control-based approaches for modeling, analysis, and design of embedded computer
and communications systems is currently receiving increased attention from the real-time
systems community, as a promising foundation for controlling the uncertainty in large and
complex real-time systems. The control-based approach has the potential to increase
flexibility, while preserving dependability and efficiency. In this session we will give an
overview of the work that is being done within the area with a special emphasis on two areas:
Control of Web-servers and feedback scheduling of controller tasks. An inverted pendulum
control example will illustrate some of the issues.

W2 Jitterbug and Truetime, Karl-Erik Arzen and Anton Cervin, 2 hours (laboratory K2 —
LTH)

A hands-on session/exercise where the users will become familiar with the two co-design
tools Jitterbug and TrueTime. Jitterbug is a MATLAB-based toolbox that computes a
guadratic performance criterion for a linear control system under various timing conditions.
Using the toolbox, one can easily and quickly assert how sensitive a control system is to
delay, jitter, lost samples, etc., without resorting to simulation. The tool is quite general and
can also be used to investigate jitter-compensating controllers, aperiodic controllers, and
multi-rate controllers. TrueTime is a MATLAB/Simulink-based tool that facilitates simulation
of the temporal behavior of a multitasking real-time kernel executing controller tasks. The
tasks are controlling processes that are modeled as ordinary continuous-time Simulink
blocks. TrueTime also makes it possible to simulate simple models of communication
networks and their influence on networked control loops.

W3 ECS Deployment, Bengt Eriksson and Martin Torngren, 2 hours (KTH)

The practical issues of ECS deployment will be discussed in this session, including: ECS
implementation and platform selection (e.g. which type of OS?, which hardware?); OS
configuration, components selection and loading (static vs dynamic OS types); Cross-
compiling; Code generation; Verification and validation. A case study will illustrate the
approach.

Th1 Off-line scheduling, Zdenek Hanzalek, 2 hours (CTU)

The objective of this course is to provide an overview of different off-line scheduling problems
found in embedded systems. In order to classify the scheduling problems, we show

alpha|betaj]gamma notation first. Then we develop several algorithms for real-time
monoprocessor applications. Namely we show Bratley’s branch&bound algorithm for Cmax
optimization with release dates and deadlines and we underline main ideas of 0/1
programming solution for weighted completion time optimization with precedence constraints.
The class of monoprocessor problems is concluded by minimization of maximum latency, i.e.
Earliest Due-Date First algorithm and Earliest Deadline First algorithm. Finally we give an
insight into the scheduling on dedicated processors and we provide examples on code
synthesis for FPGA.

Th2 Platform for Advanced Process Control and Real Time Optimization, Vladimir
Havlena, 2 hours (Honeywell Prague)

The talk will demonstrate componentised architecture for Advanced Process Control and
Real Time Optimization. The concept will be illustrated by the Unified Energy Solutions
(UES) package developed by the Honeywell Laboratory in Prague, a portfolio of advanced
control and optimization components for utilities and industrial energy, with the objective to
operate the plant with maximum achievable profit (maximum efficiency) under the constraints
imposed by technology and environmental impacts.

Th3, RT practical issues, Michal Sojka and Ondrej Spinka, 2 hours (laboratory K09 -
CTU)

In this laboratory exercise the students will learn, how to use the Linux for low level control of
a laboratory model. The main goal of this session will be to control the velocity of a DC
motor. The motor is actuated by a PWM signal realized via two bit outputs as one periodic
thread. The measured velocity is derived from two phase-shifted signals while implementing
IRC (Incremental Radial Counter) sensor as an aperiodic thread. The motor is connected to
a PC using printer port through a simple electronics consisting of a motor driver and basic
logic circuits. The organization of the session will be as follows (it is assumed the students
know to write a simple RT Linux program, Session T3): First, the students will be provided
with information on how to control parallel port circuits through the configuration registers.
Second, the students will try to generate the PWM signal for motor control. Third, they will
write the code to measure the rotation velocity and they will program a simple PID controller
for velocity control. Finally the use of RT Linux will be discussed.

F1, Torsche — Matlab scheduling toolbox, Premysl Sucha and Michal Kutil, 2 hours
(laboratory K2 - CTU)

The aim of the seminar is to present a Matlab based Scheduling toolbox TORSCHE (Time
Optimization of Resources, SCHEduling). The toolbox is intended mainly as a research tool
to handle control and scheduling co-design problems. It offers a collection of data structures
that allow the user to formalize various off-line and on-line scheduling problems. Potential of
the toolbox will be shown on a high level synthesis of parallel algorithms.

F2, Implementing Floating-Point DSP and Control with PicoBlaze Processors, Jiri
Kadlec, 2 hours (CTU)

For developers using reconfigurable HW for the implementation of floating-point DSP and
Control algorithms, one key challenge is how to decompose the computation algorithm into
sequences of parallel hardware processes while efficiently managing data flow through the
parallel pipelines of these processes. Lecture, will summarize our current experiences with
architecture based on network of Xilinx PicoBlaze controllers on a single chip. Complete
design path from model-based (Simulink) and C-based designs (Handel-C) to the concrete
reconfigurable HW will be demonstrated.

Monday 3" of April

3/21/2006 8:51 PM

A R Tl S T2 Graduate Course on Embedded Control Systems
Prag ech Republic Aprl 2-7 2006

ARTISTZ2

Embedded Control Systems:
Motivation and Examples

M. Térngren and B. Eriksson
Division of Mechatronics, Dept. of Machine Design
KTH - Royal Institute of Technology, Stockholm

www.md.kth.se e-mail: martin@md.kth.se

ARTISTZ

Graduate Course on Embedded Control Systems
Prague ech Renuhlic Aprl 2-7 2006

Outline

Background: evolution of electronics and software

Basic concepts and characteristics

— Embedded vs. general purpose computing systems
— Concepts in real-time control

— Characteristics

Technical issues in ECS design

Application examples

Concluding Remarks

3/21/2006

©M. Térngren 2006

Products relying on embedded control

s ,| Actuators |
- Domestic Y] c
A omputer
5 Control
robeg 2| | software
€ < <
8 Sensors

o
[}

= S
a g o

® £
o

e O

2 c .
el engine 3/21/2006

©M. Toérngren 2006 I

ARTISTZ2 Graaduate Course on Embedded Control Systems
Prage ook 2o -7 o006

The role of software and electronics

Technology change

Electronic components and software will, to a large extent,
shape tomorrow's vehicles (90% of vehicle innovations)

3/21/2006

Source: The SEA consortia

3/21/2006 8:51 PM

ARTI S T2 Graduate Course on Embedded Control Systems

Mechanics = Mechatronics

Hy-Wire fran GM
Skateboard concept
(Autonomy 2)

Distributed control
Electrical actuators

2/21/9006

! Source: GM ﬂ

ARTISTZ2 Graaduate Course on Embedded Control Systems
Prague Cooch Ro 4 7 2006

— Technology change

Powertrain - Suspension - Displays —
Comfort - Diagnosis — Braking —
Active & Passive Safety - Telematics
- Anti-Theft Systems - ...

#Wiring Harness 1949 170V :
#Wiring Harness 1999 S-Class

#Wires ~ 40

#Contact Points ~ 60 #3 Data Bus Systems
: #~ 60 ECUs
#~ 110 Electric Motors

Wiring Harness 1990 S-Class
#Length ~ 3 km
#Wires ~ 1900
#Contact Points ~ 3800
#Weight ~ 39 kg

Source: The SEA consortia

3/21/2006 8:51 PM

ARTIST2

Graduate Course on Embedded Control Systems
OraaelCrech R e Aari

Historical perspectives

"l think there is a world market for about five computers",
Tomas J Watson Sr, IBM 1943
"There are no reasons for any individuals to have a computer

in their home", Ken Olson, Digital Equipment 1977
"The current rate of progress cannot continue much longer",
various computer technologists, 1950

* "Moore’s law’ (Intel, 1965): Microelectronics performance is
~doubled every 18 months and chip size is reduced by 50%

e Compare: Intel 4004/1971 vs. Intel Pentium/1996
- from 2300 to 5.5 million transistors

ARTISTZ

Graduate Course on Embedded Control Systems

Technology evolution
Mechanical, hydraulic and

. Combustion engine
pneumatic controllers 19th century
(e.g. centrifugal re;,iulalor. ’ (Pneumatic controllers :
18th century) W early 20th century)
' X Electrical rela
e ectrical relays
' A}
:
7 \ Analogl_le electronic controllers
(Babbages analytical (1940-50) DO
engine, ~1840) “‘ (transistor, 1947)
|
1
[} .
'\ Direct digital Distributed
1 control computer control
(early 1960:ies) (~1970:1es)
(4004 microprocessor, 1971) |

3/21/2006

©M. Térngren 2006

3/21/2006 8:51 PM

3/21/2006 8:51 PM

A R T| S T2 Graduate Course on Embedded Control Systems

Technology basis

Assembly v
Ca‘C++§I C Compiler F)—b| Assembler I‘ Linker H Obiject Files I

Application
. software .
Microprocessor andfo; Vo ?‘ §
programmable logic "~ Supporting software o
Memories, input/output, g Input/output drivers o
_and communication | HJ P f
T “‘—H-.l’gﬂﬁ-.___ Hardware

3/21/2006

ARTIST2

Tools for model based control engineering

Graduate Course on Embedded Control Systems

Calibration
Function design

. s Integration testin
Rapid Control Prototyping d g

Code Generation/ | Unit testing

platform integration

3/21/2006
©M. Torngren 2006

3/21/2006 8:51 PM

luate Course on Embedded Control Systems
e ech Pepublic Aprl 2-

Outline

» Background: evolution of electronics and software

» Basic concepts and characteristics
— Embedded vs. general purpose computing systems
— Concepts in real-time control
— Characteristics

Technical issues in ECS design
Application examples
Concluding Remarks

©M. Toérngren 2006

ARTISTZ

Definition of embedded computer
system

Embedded computer system (IEEE)

A computer system that is part of a larger
system and performs some of the requirements
of that system; for example, a computer
system used in an aircraft or rapid transit
system.

©M. Térngren 2006

ART' ST2 Graduars L,our se on Embedded C ontrol ¢) stems
7 2006

Embedded systems (ES)

- An enabling technology
s - ES themselves as products (e.g. OS)
b/ - Very broad variety of applications &
different types of requirements:
- from critical to non-critical
- long to short life time etc.
- Room for many methodologies and
technologies

3/21/2006

=
o' ©M. Torngren 2006

ARTISTZ2 Graduate Course on Embedded Control Systems

Computer Architecture Trends

Present proposals for future billion-transistor computers:

» Desktop uniprocessors for technical applications
» Multiprocessor servers for transaction processing
» Large continuous data-processing capability

Future embedded system computers:

» Harsh environment tolerance; temperature,
vibration, radiation

* Low power dissipation, power down modes

e On-chip input-output units, communication and
memory

» Predictable behavior, support for concurrency

©M. Torngren 2006

3/21/2006

3/21/2006 8:51 PM

ARTIST2

Graduate Course on Embedded Control Systems
Prague Crech Republic Aprl 2-

Control systems

Feedforward
| control

Trajectory References

planner

- I'\‘l'(ll}&l(' |
control

Observer:

Actuator

Disturbance

——ib

Output

Controlled system

ARTISTZ

Graduate Course on Embedded Control Systems

Definition of real-time

Sensgors

Common definitions:

A system, where correct timing behavior is strongly
related to functionality, performance and reliability

- A computer system is a real-time one if it explicitly
manages resources in order to meet timing
constraints (Douglas Jensen, 1992)

- A real-time system is a system where the correctness
depends not only on the logical result of computation
but also on the time at which the results are
produced". (Jack Stankovic, 1988).

3/21/2006
©M. Térngren 2006

3/21/2006 8:51 PM

3/21/2006 8:51 PM

ARTI S T2 Graduate Course on Embedded Control Systems

Characteristics of ECS

* Rich functionality W
» Resource constraints %]

* Increasing connectivity %
» Tight process relation
- RT constraints

-ET and TT, parallelism
- Roughness

» Dependability: safety, reliability/availability, security
» Multidisciplinarity

3/21/2006
©M. Toérngren 2006

ARTISTZ2 Graaduate Course on Embedded Control Systems

ECU connectors
on top of the ECU

2/21/2006

| Courtesy of Scania

A R T| S T2 Graduate Course on Embedded Control Systems

Requirements and conflicts
I

I Portability
o yI Extensibility
Functionalit % Changeability
Flexibility”——0O Reconfigurability

I Reliability Performance
Availabilit |
Security o Interoperability
. Safety Dependability .I

N Computer
Reusability System

N Comprehensibili
Usability Complexity<§ Com'?nunicabilit)t/y
Testability Analyzability

Produceability

Integrability

Cost-effectiveness
Time-to-market

Can you give an example of conflicting requirements?
How can these conflicts affect the design?

ARTISTZ

Graduate Course on Embedded Control Systems

Conflicts?

Cost vs. Quality (in general) vs. Time
Testability vs. performance
Performance vs. flexibility
Reliability vs. cost

Safety vs. availability

Control robustness vs. performance

3/21/2006

©M. Térngren 2006

3/21/2006 8:51 PM

10

A R Tl S T2 Graduate Course on Embedded Control Systems

Continuous data

Models of computation

Discrete data

time

Continuous dx/dt(t) = Ax(1)+Bu(t)

dx,/dt(t) = A,

x=/x 1)

Discrete
time

T x(kh+h)= x={(x,)

x={(x, u)

eality: A little

of everything!
K:=

x, (1)+B,u(1)

ET| x(k+1)=C(k)x(k)+@(k)u(k)

b, (x<2)

3/21/2006

©M. Toérngren 2006 I

ARTISTZ2 Graduate Course on Embedded Control Systems
Draque. Crech e 4 7 o005

Multidisciplinary ECS development

Specifications

Architectura

| design

Mechanics

7

“’ Control ‘-H—Software

B

(\\@6
‘%

N

Electronics

Qo

Supporting software

3/21/2006 8:51 PM

11

luate Course on Embedded Control Systems
e ech Pepublic Aprl 2-

Outline

» Background: evolution of electronics and software

 Basic concepts and characteristics
— Embedded vs. general purpose computing systems
— Concepts in real-time control
— Characteristics

Technical issues in ECS design
Application examples
Concluding Remarks

A R T| S T2 Graduate Course on Embez‘ided Qontra/ Systems

A sémp]é of technical issues in ECS

design and implementation

* Discretization

e Quantization

* Delays

« Jitter in delays and periods

 Aliasing

 Triggering and tasking partitioning, scheduling
» Code implementation

» Sensor and actuator limitations
 Calibration/diagnostics

 Error detection and error handling

©M. Térngren 2006

3/21/2006 8:51 PM

12

3/21/2006 8:51 PM

ARTI S T2 Graduate Course on Embedded Control Systems

Codesign, aspects and needs

Control performance,
Stability, control eff
Sensor accuracy, efc.

T |

Where do
they meet?? II .
rivers:
;SZP:ZSZTII:SQ Platform . Ei;fror'mance
) SW .
Tr‘i99€r‘ing' . Ell EI E HW . Dependablllfy
communication - Flexibility

Trade-offs/optimality requires considering both domains

3/21/2006

©M. Toérngren 2006

ARTISTZ2 Graduate Course on Embedded Control Systems

Control system timing behavior

Requirements|™| (k).
h(k) C()Lmintsir. endtoenddelay

: |
Platform . 1 DM peded l
SW : |
Sensor|__ | |
B
E] E 5 HW ciiml [jIZI_I E
Actuate' offset

A
|
"

-
3/21/2006

©M. Torngren 2006

13

EbliddC ntro, /5yt

Exam‘ples of tlmlng properties caused
by a particular implementation

2 tk—l t|<+1 t|<+2
sample i

\ t|me
actuate

Period: h(k) = t,-t,_, and jitter
E2e delay, t(k), and jitter, e.g. t,(K) <= t©(K) <=7,,,(K)

How does the given timing scenario affect control performance?
How does choices in computer system design parameters affect

the timing behavior and thereby the control performance’)

A R T| S T2 G/aduate Cawse an Embedded C‘ontra/ Sysz‘ems

Control analy5|s/compensat|on

» How do the timing properties affect the
closed loop?

u(t—z(t)) 2(t)
Proces

hold S sample

u(ty) 2(ty)

Controller

 Analysis of steady state and transient behavior
X(t.1)=@(hIx(1)+= T(hu(ty_na-g))
 Potential compensation for jitter
— Run-time information example: Actual data delay

©M. Térngren 2006

3/21/2006 8:51 PM

14

ARTIST2

Graduare Course on Embezided Contro/ Systems
L Repub 3

Co- de3|gn with respect to timing

Has to be defined to ensure proper operation
Typical solutions:

T << T enforced (costly)

T < T assumed (jitter neglected)

T =T, with deterministic solution, however causing some
performance degradation and reduced flexibility (trade-offs!)

Computer system options: Design for predictability if possible
Control system options: Analyse, and compensate if possible

Co-design options:
- May leave some unpredictability in computer system design
- May be able to handle non-perfect existing computer system

ARTISTZ

Illustration of bomplex dependencies

G/aduate Cawse an Embedded C‘ontra/ Sysz‘ems

ME components
Incl. sensors, >
& other machine
elements

Choice of sensors,
aclualors, & other
machine elements

Basic closed

HW platform incl.
processors and

foop cymamics \
b Basic Control performance

Cho\ce of processor
and network
I

network
3 v e
*> \ execution & - =—3""oq\ jevel behavior & robustness (e.g.
' g / com. time (utilization, response +=——=p{ variance, rise time,
\ ' Functions to times) overshoot,..)
Choice of control (N4 Control design, Processors, Signals (@ o o = o= = = = =
strategy, dynamics, | ——&—3 algorithms & to com. means,
/N and types
computational SN structure S
structure V
oo
e \

Chmce of execuunn&
communication
strategy & SW platfurm

\
SW platform mclud\ng
com. protocol

Legend: Deteminess, Emerging Design activity
behavior:
Constrains a
design choice'y,

Components or
policy determined by
design choice

©M. Térngren 2006

3/21/2006 8:51 PM

15

ARTI S T2 Graduate Course on Embedded Control Systems

”Fault-tolerant control” - Codesign
x(kh+h)=Ix(kh)+ou(kh)+3(kh)

Fault and failure models
Diagnostics
Analytic redundancy

Fault and failure models

Platform
Fault-injection Sw
Error masking ‘E é % HW
Error detection
Error handling

3/21/2006
©M. Toérngren 2006

A R T| S T2 Gradufaz‘e Cat//{se on Embedded Cant/_’a/ Systems

Control for resource management in
embedded systems

Resource managers

+ Implementation issues similar to RTC,
Constraints may differ depending on application

+ Controller implemented as part of the plant

+ Plant modeling and characteristics differ

3/21/2006

©M. Térngren 2006

3/21/2006 8:51 PM

16

ARTl STQ Graduate mur se on Eml}e(/de1 L nt/a/ %‘L tems

Outllne

Background: evolution of electronics and software

Basic concepts and characteristics

— Embedded vs. general purpose computing systems
— Concepts in real-time control

— Characteristics

Technical issues in ECS design

Application examples

Concluding Remarks

3/21/2006
©M. Toérngren 2006

Example application: stability control

Vehicle slip
angle

Vehicle yaw rate

Source: ESC education

3/21/2006
©M. Torngren 2006

3/21/2006 8:51 PM

17

3/21/2006 8:51 PM

Example: vehicle stability control

% lDistu rbances l Disturbances
. » Brake Wheel N
_’ >
D _ —>| controller dynamics
Yawislip Vehicle >
controller dynamics
Engine | | Engine ~
—> controller dynamics
\ T <

Lrl L'—I L'—I Controller area network
and vehicle computers

ARTISTZ Grade Course neqdd Control z‘ems
Vehicle stability control - characteristics

» Several modes of operation

 Hierarchical and cascaded control

» Multiple input, multiple output

 Control loop closed over in-vehicle network(s)
 Availability critical (graceful degradation)

» Safety critical, real-time operation

» Redundancy in hardware (sensors, actuators,
processors), information and algorithms

Some challenges:
- Software upgrades (and security)?
- Who is in charge (driver vs. computer control)?
- How to define a suitable scaleable architecture?

18

3/21/2006 8:51 PM

A R T| S T2 Graduare Course on Embedded Contro/ Systems

Many hlgh levels functions

Examples:

* Driver assistance; e.g. adaptive cruise control

* Active safety functions; e.g. collision mitigation by braking
« Telematics; e.g. dynamic and external road info

* Electrical power management

Viead P ddes \'
4_

< dacy -V
- " Fovem oJo

Adaptive cruise controller example

A
v

ARTISTZ

G/aduate Cawse an Embedded Control Systems

Resource shahng sensors, actuators
and embedded system

HMI outputs

v v

HMI inputs l >
ACC
Internal Mode logic
Sensors R Selector ppp Actuators

A 4

Object
recognition

ACC >
controllers

Radar

vyVYy
A

1VY A 4

©M. Térngren 2006

19

Hierarchy of functions

Total Vehicle Control

Suspension - Powertrain l

Inter-
Domain 0]

| |

Driver

IDomlln

Sensors
I

4 Steering
System

= Definition of hierarchy
= Specification of interfaces
= Guarantee function interoperability

Basic
System

Source: EAST-EAA

= Partitioning in components, modules, ECUs, software, networks project
02102002 — .
Y (0]0]§]
ARTISTZ2 Graduate Course on Embedded Control Systems

Optimization

Planning ‘

Coordination
MIMO control

Actuator
control

Robot system hierarchy

Planning

’ Navigation ‘

Coordination
Balance, gait (e.g. galop)

Joint/leg-
control

3/21/2006
©M. Torngren 2006

3/21/2006 8:51 PM

20

3/21/2006 8:51 PM

Graduate Course on Embedded Control Systems

Industrial robotics

Web Access Robot Studio
(optional) (optional - offline

nnnnnnnnnnn N\
TCP/IP? !\ |
@S@

GTPU . .
Graphical ’\ Main computer f— IO units or PLC
Pendant Unit

Main node: path generation
Axis node: axis control
— fieldbusses I/0 node

I
Axis computer

»P5 Robot
Controller

T
Drive Module

Courtesy of ABB Robotics

ARTISTZ

Graduate Course on Embedded Control Systems

Industrial robots: characteristics

» The same controller type is often used for different kinds of
robots for cost efficiency

» Core part: motion control, the application packages (welding,
assembling, etc) and robot programming

» Most other parts provided by suppliers, e.g. I/0 and HW

» Systems integration into e.g. an assembly line for cars
- PLC systems
- Production systems from other vendors
» Central requirement: Availability
* Volume: ~ 10 thousands per year (for leading company)
- including different kinds of robots

Courtesy of ABB Roboficé

21

luate Course on Embedded Control Systems

Industrial robotics; architecture
requirements

» Openness, to facilitate integration

* Integration with different communication protocols
(Profibus, Interbus, Foundation fieldbus, FIP, ...)

» The control system to be configurable to facilitate reuse
* SW has to be easy to port, “lives’ longer than HW

» Typical reliability requirement: MTBF > 60000 h
—> ~ production line with 800 robots with one robot
failing per week in average

Hw&Sw cost proportion for industrial
Total Costs % rObOti CS

100

80
Hardware Costs

60 |

40 Software Costs

20

0

1990 2000 2010
Note: Software for the first control system developed
in three months by one single person. Courtesy of ABB Robotics

3/21/2006 8:51 PM

22

A R T| S T2 Graduate Course on Embedded Control Systems

Software architecture: Industrial
robotics

Application for Specifik Task M

and Man Machine Interface

)) Control Interface, Robot
- Object oriented approach, Language and External Interface AN
+ Code writtenin C

* Code size: ~ 2 500 KLOC
divided into 400-500 Motion Control of Robot -&

components @

General Support, OS, 1/0, s
File System and Saftey

Courtesy of ABB Robotics

ARTISTZ

Graduate Course on Embedded Control Systems
Prague ech Republic Anrl 2-7 /o

Outline

Background: evolution of electronics and software

Basic concepts and characteristics

— Embedded vs. general purpose computing systems
— Concepts in real-time control

— Characteristics

Technical issues in ECS design

Application examples

Concluding Remarks

©M. Térngren 2006

3/21/2006 8:51 PM

23

ARTI S T2 Graduate Course on Embedded Control Systems

The product life cycle and course scope

[

I_ End of Lif

n to start
ment

Embedded control systems touch upon all phases
of a product’s life cycle!

The emphasis in this course is on technical issues
{ part of the product development phase!
N

V

3/21/2006

©M. Toérngren 2006

ARTISTZ2

Graduate Course on Embedded Control Systems
Brage (7o Re. iyl 3-7 2|

Integration challenges

Process X c > Process Y

People/organization
e.g. Competence, roles

o integration
Discipline X g
Technology
e.g. Tools, components

Knowledge, > Knowledge, information
information

Differences not only in technology, but also in processes,
traditions and organizational roles

Discipline Y

3/21/2006

©M. Torngren 2006

3/21/2006 8:51 PM

24

raduate Course on Embedded Control Systems
e Cameh R B

Concluding remarks

A very broad spectra of ECS applications!

Multidisciplinary development — a key
challenge

Needs for co-design relates to conflicting
requirements

Closed-loop control of increasing importance

Many other issues such as reliability/safety,
diagnostics, reuse, upgrades, ...

3/21/2006 8:51 PM

25

Embedded Control Systems:
Control Issues

P. Albertos

Universidad Politécnica de Valencia
Dept. of Systems Engineering and Control

POB. 22012 E-46071 Valencia, Spain.
Fax: +34 96 3879579 e-mail: pedro@aii.upv.es

ARTIST2 WNoE on Embedded Systems Design — ECS Graduate Coursg
Prague Apri 3- 006

Outline
 Embedded Systems

— RT constraints

 Embedded Control Systems

— Control issues
* Non-uniform sampling
* Missing data
* Changes in sampling period
e Performance degrading
* Concluding Remarks

ARTI ST2 NoE on Embedded Systems Design — ECS Graduate Course
Pra April 3-7 2006

Eml")edded systems

Diagnosis

©P. Albertos 2006

ARTI ST2 NoE on Embedded Systems Design — ECS Graduate Course
Pra April 3-7 2006

Embedded systems

* Device:
— Stand-alone
— Networked
— RT operation
* ES:
— Compact and reduced size
— Autonomy
— Missing data operation
— Fault-tolerant
— Reconfigurability
— Safety

[©) NLIS I

ARTIST2 Mot on Embedded Systems Design - ECS Graduate Coursg
Prag April 3- 6

Embedded

S

=
.
=00

ystems

Control is present in 99% of the
embedded applications

©P. Albertos 2006

ARTIST2 NoE on Embedded Systems Design - ECS Graduate Coursg
Prag Apr/ 3- e

Embedded Control Systems

©P. Albertos 2006

ARTIST2 WNoE on Embedded Systems Design - ECS Graduate Coursg
Prague April 3- 006

Embedded systems: RT Issues
¢ Resource constraints
e Power aware

» Task Management: Critical and soft real-time activities
— Task definition
— Priority assignment
— Time units (periods)

* Full range of communication devices

* Changeable operating conditions

e CPU utilization control
— Adaptable to the changing conditions
— Self-organizing
— On-line scheduling

ARTIST2 WNoE on Embedded Systems Design — ECS Graduate Coursg
Prague Apri 3- 006

Real-Time Task Model

A task (T,) is defined by four parameters:

— C,: Worst Case Execution Time (WCET)
— D,: Deadline

— P,: Period C

— @, Phase L]

Py
Dk

A7
\ 4

ARTIST2 Mot on Embedded Systems Design - ECS Graduate Coursg
Prague Apri 3- 006

/
m

Time delays

Jitter on input _
Jitter on output

-

Data acquisition

\O

Output delivering

ARTIST2 NoE on Embedded Systems Design - ECS Graduate Coursg
Prague Apri 3- 006

Basic Control Loop

r Regulator
reference | | A/D K >
1(t) Control Y, D/A
AD Yk | Algorithm
DT
CT y(0) u(®)
Sensor ¢ Process Actuator

ARTIST2 WNoE on Embedded Systems Design - ECS Graduate Coursg
Prague April 3- 006

Control Task Model

3 C,+C,+C,=C,

o

Phase ., Period

A
A

ARTIST2 WNoE on Embedded Systems Design — ECS Graduate Coursg
Prague Apri 3- 006

Control task

loop
convert _sensor _analog_ digital (y);
compute _control _action (u);
compute _error (€)
compute _control _action (u) <
send _ converted _ control_ action (u);
update_internal_variables(y,u, ...);
Next Iteration:= Next _Iteration + Period;
delay until Next _Iteration;
end loop;

ARTIST2 WNoE on Embedded Systems Design - ECS Graduate Coursg
Prague April 3- 006

Basic assumptions in Computer control

The Data Acq. system provides the required data
The actuators’ drivers deliver the control actions
The CPU computes on-time the control action
The required data are stored in the memory

The sampling pattern is regular (constant,
synchronous and uniform for any control task)

The control algorithm is well defined
Alternative controllers are independent

Power supply is guaranteed

ARTIST2 WNoE on Embedded Systems Design — ECS Graduate Coursg
Prague Apri 3- 006

Implementation
Task Scheduling
Fast
Gt H; —> Process
Gr2(z2) 4—\11—|
Alarms T O —
Slow
H, || Process
]

single computer

ARTIST2 Mot on Embedded Systems Design - ECS Graduate Coursg
Prag April 3- 6

Embedded Control Systems

* Inputs:
— Device

— Environment
¢ Cable
¢ Wireless

— User

* Qutputs:
— Control actions
— Self organizing
— Data

ARTIST2 NoE on Embedded Systems Design - ECS Graduate Coursg
Prag April 3- 6

Embedded Control Systems

* Embedded systems with:
— hard RT constraints
— guarantee of safe operation
— best possible performances
* Additional issues from viewpoint of:
— implementation
— computation

— algorithmic

ARTIST2 WNoE on Embedded Systems Design - ECS Graduate Coursg
Prague April 3- 006

RT Control Issues

e RT Constraints:

— Maximize the time determinism
* For many controllers a worst-case approach works well e.g.,
PI, PID, State Feedback, ...
however, many exceptions:

* hybrid controllers that switch between different modes with
different characteristics

* model-predictive controllers (MPC)
* convex optimization problem solved every sample
execution time can vary an order of magnitude
— Compensate the variations:
* Measure and react
* Feedback robustness

ARTIST2 WNoE on Embedded Systems Design — ECS Graduate Coursg
Prague Apri 3- 006

Control Performances

Relevance of the control actions
The Control Effort concept

Sensitive to time delays

Changes in the sampling period:
— Controller parameters
— Past data

Commutation bumping

ARTIST2 WNoE on Embedded Systems Design - ECS Graduate Coursg
Prague April 3- 006

Control requirements

* Multiloop control
* Non-uniform sampling

Environment

* Missing data
* Variable delays

S * Sampling period changes

Process to

mE (=~ |e Mode changes

Memory ® Fau1t tOlerant

SIGEZ » Safe operation

* CPU optimization
* Battery control

ARTIST2 WNoE on Embedded Systems Design — ECS Graduate Coursg
Prague Apri 3- 006

ECS: Implementation

The same resources must be shared between
different tasks

Alternative control algorithms should be
ready to get the control of the process

Working conditions, such as priority,
allocated time and memory or signals
availability may change

Variable delays should be considered
Validation and certification

ARTIST2 WNoE on Embedded Systems Design - ECS Graduate Coursg
Prague April 3- 006

ECS: Computational viewpoint
e Economic algorithms
* Information updating
e Optional tasks
e Hybrid systems
* CPU use measurement and optimisation
* On-line scheduling
e Memory saving
e Economic hardware redundancy
e Fault detection and isolation

ARTIST2 WNoE on Embedded Systems Design — ECS Graduate Coursg
Prague Apri 3- 006

Feedback re-scheduling

CPU use Reference

ﬁ)— Re-scheduling — @

Average CPU utilization
Task CPU use

Re-scheduling actions:

* Increase/Decrease task periods
* Increase/decrease processor frequency
* Change the set of tasks (mode change)

ARTIST2 WNoE on Embedded Systems Design - ECS Graduate Coursg
Prague April 3- 006

ECS: Control algorithm viewpoint

— Reduced order models

— Non-conventional sampling and updating patterns
— Missing data control

— Event-triggered control

— Hybrid control systems

— Decision and supervisory control

— Multimode control

— Sampling rate changes

— Fault-tolerant control

— Degraded and back-up (safe) control strategies
— Battery monitoring and control

ARTIST2 WNoE on Embedded Systems Design — ECS Graduate Coursg
Prague Apri 3- 006

ECS: Control algorithm viewpoint

— Reduced order models

ARTIST2 WNoE on Embedded Systems Design - ECS Graduate Coursg
Prague April 3- 006

ECS: Control algorithm viewpoint

— Non-conventional sampling and updating patterns

ARTIST2 WNoE on Embedded Systems Design — ECS Graduate Coursg
Prague Apri 3- 006

Non-uniform sampling

- Y
Sampling pattern &
s ™~
Y}J yllk ylzk YE
TKT, | ! = (k+1)T,
LS D
Uk

* Irregular sampling
e Time delays
* Relevance of variables

ARTIST2 Mot on Embedded Systems Design - ECS Graduate Coursg
Prague Apri 3- 006

Variable Sampling Time

t

fé—z f}< -1 Iy
PID Controller:

u(t) =K,et)+ K, % e(t)+ K, je(Ddr;

Uy —Up_ =gy, +qi€_ +q€; 5

Ky Ky
q, =K, + =K, +—— _
0 P Ty —tr—1 p Tl Tl - tk - tk—l
= Ke _Kg Ty=ti 1~ 4
ha—tlgo T
t, —1_ T, +T
qlz_Kp_Kd k k=2 +Ki(tk_tk—l):_Kp_Kd 1 2
(e =t (=) — 15 =2))

-2

ARTIST2 NoE on Embedded Systems Design - ECS Graduate Coursg
Prague Apri 3- 006

Control task

loop
convert _sensor _analog_ digital (y), get 7;;
compute _control _action (u);
compute T, T,
compute coefficients q;
compute _error (e)
compute _control _action (u) € A
send _ converted _ control_ action (u);
update_internal_variables(y,u, ...);
Next _Iteration:= Next _Iteration + Period;
delay until Next _Iteration;
end loop;

ARTIST2 WNoE on Embedded Systems Design - ECS Graduate Coursg
Prague April 3- 006

PID: Time delay effect

Open loop control
Discretized controller, independently of the plant
Degrading as the time delay increases

- 1.5
 (5+0.5)(s +1.5)

Parameters: KP —3 TD —0.2 TI -39
Sampling period: 7= 0.1 sec

EXAMPLE: Plant: G(s)

K 2K, K
w=Kp+=5 @=-K, -~ KT g ==t

ARTIST2 WNoE on Embedded Systems Design — ECS Graduate Coursg
Prague Apri 3- 006

PID: computational delays

16] / \\ Black cont
1.4} \ Blue: T=.1
t Red: A=.08
120 |
1t ‘/ \/
0.8} | “‘ f <
\ #\ le-, e+]
0.6 |]
A\
0.2
0

ARTIST2 Mot on Embedded Systems Design - ECS Graduate Coursg
Prague Apri 3- 006

Delay Counteraction

* Input/output delay
&t) = Ax(t)+ Bu(t —17); y(t) = Cx(t)
&) = Ax(t)+ Bu(t); y(t) = Cx(t — 1)

y(s)=G(s).e " u(s)

e Smith Predictor
 Error prediction

e QOutput prediction

ARTIST2 NoE on Embedded Systems Design - ECS Graduate Coursg
Prague Apri 3- 006

Delayed Sampling

T-period Output sampling
\ T-AUTAl . 3TA, , ,
G T ! T 3T A
T-period Control updating

* Classical Smith Predictor Option

u(s) B y(s)

ARTIST2 Mot on Embedded Systems Design - ECS Graduate Coursg
Drague. A 3-

Smith predictor
Ref

I u(s) N (s) .
4‘&?—. R(s) Gs)e ™ N

y(s)

Ref

—0)

v

G(s)e I

ARTIST2 NoE on Embedded Systems Design - ECS Graduate Coursg
Prague Apri 3- 006

PID: error prediction

loop
convert_sensor_analog_digital(y);

€A = e +— (ek A ~€k-1,A) compute _control _action (u);

compute _error(e)
compute _actual _error (eA)

Ck-1.A compute _control _accion (u)
send _ converted _ control_ action (u);
update_internal_variables(eA,y,u, ...);
Next_lteration:= Next_Iteration + Period;
delay until Next_Iteration;

end loop;

Ui A =90€kA T €1 A T G222 A T UL

ARTIST2 WNoE on Embedded Systems Design - ECS Graduate Coursg
Prague April 3- 006

Output/State prediction

T-period Output sampling Xe A
L T—A,ZT—A' I 3T—A 1 1 1 1
i } }
G T T 3T A t
T-period Control updating
}k :A(A).xkA + B(A)l/lk_l uk =K. [A(A)xk,A + B(A)uk—l] + rk
Ver =C %A,

Xa = ACA)X, — A8 B(A)uy

X1 = A(T) X +B(T)uy + K (24 — 2)

2, = CA(-A)%,

ARTIST2 WNoE on Embedded Systems Design — ECS Graduate Coursg
Prague Apri 3- 006

Delay Predictor

* Advanced (Predictor) Observer

uy (AB,O) YKA
T,A

Lo -1 |—» CA(—A)B(A)—ﬁ\Z k | Predictor

_>§ 1 »CACA
L

V.

Advanced Observer

ARTIST2 WNoE on Embedded Systems Design - ECS Graduate Coursg
Prague April 3- 006

ECS: Control algorithm viewpoint

Missing data control
Event-triggered control

ARTIST2 WNoE on Embedded Systems Design — ECS Graduate Coursg

Output prediction

Model-based open-loop prediction

n n
Vi = _Zaiyk—i +Zbiuk—i =
i=1 i=l

Uy

~ T
k1 0
k

>
>

Yk

e

Y

Drawbacks:

¢ Error dynamics is that of the process.
¢ [ack of robustness against disturbances.

ARTIST2 WNoE on Embedded Systems Design - ECS Graduate Coursg
Prague April 3- 006

Output prediction (2)
Output estimation with mixed vector of past outputs
A=v,k-D"-0,+y,k-D"-6,
Ve =(l=1) B +71 W
?/y(k)=[—§k A _yk—(n—l)]T

T
‘//u(k)z[”k A ”k—(n—l)]
Vi

ARTIST2 WNoE on Embedded Systems Design — ECS Graduate Coursg

Other options

dig " +A+dig (g +A+bg ") EG) DG
l+e,g +A +c,g7" (A+aq™ +A +a,qg™")-E(g™) Clg™)

Linear state observer:

Enlarged polynomials

% =A%y + AN bug_y +A +buy_ +
+ L(yk —c(AV %y + AN by +A +buy))
j\]k+j = C(A])’ek +Aj_1buk +A +b“k+j—l),_] = LK ’N_l

Uy Yk
G(q)

v

AN (AN =L

ARTIST2 WNoE on Embedded Systems Design - ECS Graduate Coursg
Prague April 3- 006

Missing Data

The output is only available at some time instants: 7 =L 7 ={0,1}

KALMAN Filter % Y
" Gq) EEEN EEER l'.
(5 i +

<
%

=

L-;

0

ARTI ST2 NoE on Embedded Ssm e/gnj_— ECraduaIe Course
Missing data Control g,
HKT), u(kT 0) G(s)=1/(s’+4s5+3)
PID PLANT]
- gl g N-T= 300 ms
ykT) ESTIM'ATOF y(NT) Kp=8’ T=025 T=1.2
Extended order predictor N
T=100 ms (N=3) os
(K,=20, T,=0.25, T;=1.2) 06
08 0'2
0.6 0 ! t Iszec\ ¢ !
04
E=1+0.67¢"+0.33¢
0

ARTIST2 WNoE on Embedded Systems Design - ECS Graduate Coursg
Prague April 3- 006

Parameter estimation

Regular pattern: dual rate model

_By D) _ Cnna? FeynaZ A+ N 4o
AT 1td 2 VA +di V) dy N
Regression vector and parameters:

G(2)

T
Vi = [— VN~ Yi—aN A= Vi Uy A uk—n‘N]
T
Oy = [dn—l d, oA dyCn_1Cpno Co]
Irregular pattern or fast model
A ~ N A T
Vi = [— Vie1— k2N = Yiop Ui ”k—n]

Output predictor: R
Ve =S yirju;ny;)

5 = A=)l (k=17 -6, +y, (k1) -6, J+ .y,

ARTIST2 WNoE on Embedded Systems Design — ECS Graduate Coursg
Prague Apri 3- 006

Fast parameter estimation
o A+ @'kl;Pk 7
ak = a1(—1 Ve Eﬂk(yk - 'lakT ’ 5k—1)'rk

1
Ra=- U= R @@ B +R (1)

A=f@.yr.u.)

(r=1 if measurement and O if not).

¢ The stability of the output predictor is a necessary
but not sufficient condition for convergence.

the periodicity of the lower-rate sampling).

¢ Convergence depend on sampling period and data availability rg

e For small T wrong attractors appear close to the dual-rate poles.

(Poles in those positions have an oscillating impulse response witlj

ARTIST2 WNoE on Embedded Systems Design - ECS Graduate Coursg

Convergence

2
Example: G(5)=2 3,1 » WithN=3.

If T =0.02, the estimates are
G*() = 107 0224z+5
D= 109862 +0984 -
3 0.392z—-0.384

instead of the correct one Z2 — 1941740942 -

If T=0.7, the estimates are the correct parameters.

ARTIST2 WNoE on Embedded Systems Design — ECS Graduate Coursg
Prague Apri 3- 006

Event-driven contro

FICTITIOU
OuUTPUTS
5z %
\ i | § Error
== O - ’?
7 — /
L~ > !

ARTIST2 WNoE on Embedded Systems Design - ECS Graduate Coursg
Prague April 3- 006

Event-driven sensor

M&=F +Tsin0—k&
m&& =—TsinOmd& =T cos@—mg
X,, = X; +Lsinfy,, =—lcosd

. (F—k&) cos@—mlsinfcos6R — gMsin®

ML—mLcos* 8
M&= F — k&—ml cos 08 misind
M=M+m
T=0.9; M=40: M=15:
(0= —7.39-10*‘(z—1)(z—20.9952) 6= —7.541‘10_4(z—1)(12—.995$:
(2-0.9945((z—0.5242)° +0.8464") (2-0.9928)((z-0.6261)" +0.7751")

ARTIST2 WNoE on Embedded Systems Design — ECS Graduate Coursg
Prague Apri 3- 006

Partial parameter set

2043 ~0.0135
2,038 0.0135
| 0986 . 0
T[=739.107* || -107
3.5¢10°° 284107
7360107 107

Am

ARTIST2 Mot on Embedded Systems Design - ECS Graduate Coursg
Prague Apri 3- 006

ECS: Control algorithm viewpoint

— Hybrid control systems
— Decision and supervisory control

ARTIST2 NoE on Embedded Systems Design - ECS Graduate Coursg
Prague Apri 3- 00,

Hybrid control system

decision Operating
logic conditions

switch signal
o riisturbance
Goals —
[colzllturoller H - process measured
control output

T signal

ARTIST2 Mok on Embedded Systems Design - ECS Graduate Coursg
Prague Apri/ 3- 0oo

Alternative controllers

SuperV1sory ContrOI { Switch among them online

supervisor

o Switching signal
disturbance
measured
VlV output
Control process (— Y
u
control
signal

Supervisor:
* places in the feedback loop the ‘best’ controller
* switching effects

ARTIST2 Mok on Embedded Systems Design - ECS Graduate Coursg
Prague Apri/ 3- 006

Types of supervision

« try one controller after another in

. . a pre-defined sequence
* Pre-routed supervision P q

° Performance'based SuperViSion . Stop When the performance
- Estimator-based supervision ~ S€ems acceptable
+ Goal and Operating_—conditions based supervision
» keep controller while observed performance is acceptable
» when performance of current controller becomes
unacceptable, switch to controller that leads to best
expected performance based on available data
 estimate process model from observed data

 select controller based on current estimate —
Certainty Equivalence

* On-line re-scheduling of the control tasks

ARTIST2 WNoE on Embedded Systems Design - ECS Graduate Coursg
Prague April 3- 006

External commuting

Goal and operating-condition based supervision

Operating
conditions decision Data filtering
logic & Updating
J

Data switching
updating o signal VlV
multi- U measured
controller control signal process output

ARTIST2 WNoE on Embedded Systems Design — ECS Graduate Coursg
Prague Apri 3- 006

Controller commuting

+ Given a change on: .
— Goal Action) Change in
— Working point controller

— Operating conditions

K 2K K
q():Kp+7d; q=-K,~- T{[+K1T; q2:7d

#® Controller selection (or computation)
u, =(K+K*T)x,

® Transfer: « Stability
= Parameter updating * Performances
= Controller initialization

ARTIST2 Mot on Embedded Systems Design - ECS Graduate Coursg
Prague Apri/ 3- 0oo

Controller commuting:
Stability issues

Each controller stabilizes the plant under control,
But ... what under commuting?

e Common Lyapunov function
e Controller initialization

e Controller resetting

ARTIST2 NoE on Embedded Systems Design - ECS Graduate Coursg
Prague Apri/ 3- 006

Controller Commuting

Change in the process:

-
Change in the amplifier gain: J\/RW’T
A C1 ly

=

&] [-05 -3 7x
&| | 04 -05|x

PI K=3->1/3

Change in the process gain:

ARTIST2 WNoE on Embedded Systems Design - ECS Graduate Coursg
Prague Apri/ 3- 006

Stability g ™! - T

=3 T T K=1/3

ARTIST2 WNoE on Embedded Systems Design — ECS Graduate Coursg
Prague Apri 3- 006

(Hybrid) Stability Pl ‘ .

ARTIST2 WNoE on Embedded Systems Design - ECS Graduate Coursg
Prague April 3- 006

tasks

Supervisory COntrol { Online re-scheduling of control

o Switching signal
disturbance
measured
VlV output
Control process — Y
u
control
signal
Supervisor:

¢ Evaluates the effects of delays
e Assign priorities

ARTIST2 WNoE on Embedded Systems Design — ECS Graduate Coursg
Prague Apri 3- 006

Control Effort

The maximum allowable time delay is given by the phase margin,

derived from the frequency analysis of the open loop output feedback
contrg

IG(jw)| =1 Y =7+ 2G(j,)

State feedback:)

° leen &t):A.x(f)'f‘bM(t) being a(s):|SI_A|:H(S_Cli)
i=1

u(t) =—kx(t)+r(t)

n
An = _Z a;
i=1

The state feedback control k places

the closed loop poles: p(s) pls)= |SI - Aj-bk| - H(s P
. : P==2p
* Definition: Define Control Effort

(CE) as the shift of the poles, from the

open to the closed loop position in the CE= Z (a;=p)= —Z(Pi —a,) =k,
s-plane - -

ARTIST2 WNoE on Embedded Systems Design - ECS Graduate Coursg
Prague April 3- 006

Control Effort vs. Time Delay

. r(s)+ u(s) 1 X (s)
* Now, assume a control action — e)

time delay A, and P,>>A , that
is, the loop poles are shifted well
on the left

S

k(s)

k,(jo) +K +k,

G(]a)) = . n . n-1
* From the loop frequency transfer (jo)"+A,(jo)" +K + A
function of the system (without delay)) k
lGljo)|=1,—1=|—"—
C + Al‘l
- w.=k,=P,—A,
* That is, an approximate expression 7% 7%
. . A< m =1m
for the maximum allowable time P_A k
delay is given by : =

ARTIST2 WNoE on Embedded Systems Design — ECS Graduate Coursg
Prague Apri 3- 006

Example
1
2
s (1+2s)
Design a controller to achieve:

- over-damped step response
- 0.5 sec settling time

Given the process: G(s) =

 Estimate the maximum allowable delay in the
loop to keep stability

ARTIST2 Mok on Embedded Systems
[

Design — ECS Graduate Coursg
j 006

Apr/ 2-

o 1L ! » A
[s Ls :
Step Input Int Int_ Graph

A, =05P, >2396.5;k, =20

v =80°— A =T 007
180

ARTIST2 WNoE on Embedded Systems Design — ECS Graduate Coursg
Prague Aor/ 2-7 2005

Ao

1.5

1 NAWA

e AR A=0.073sec

0.5 7

ARTIST2 WNoE on Embedded Systems Design - ECS Graduate Coursg
Prague April 3- 006

Performance degrading

» The Control Effort, defined as the shift in damping
from the open loop poles to the closed loop poles,
provides a useful way to obtain the maximum
allowable time delay, for both, continuous and
discrete systems.

e The longer the sampling period T is, the more
sensitive to the time delay the design is.

ARTIST2 WNoE on Embedded Systems Design — ECS Graduate Coursg

MIMO controlled plant

Process

u(t) = Kx(t)

V; Control z 1k
.k

K=k k A k]=
‘ref

ARTIST2 Mot on Embedded Systems Design - ECS Graduate Coursg

MIMO controlled plant
C=1I; y(t)=x(t); u(t)=Kx(t)

Measurement relevance:

o K =l k k., O k... k]
X (sT ~d+ BK,) ',
z;(s)
Control relevance:
F]
k v.(s
M i):.k(sI—A+B/.K)’1bj
iK: 0 u/(s) !
j+1k
M
mk

ARTIST2 NoE on Embedded Systems Design - ECS Graduate Coursg

Reactor: model

o -1.705 -0.2519 0
A=|23.088 -28.71 209 |;
Y | i 0 200.3 -216.89
= p_

R 2918 0
A-—>B @ 0 -415.29

Fo.Ca0, T

ARTIST2 WNoE on Embedded Systems Design - ECS Graduate Coursg
Prague April 3- 006

Reactor: control

{a;}={eig(a)}={-2.5878-7.73,-236.987} A, = 2473

Control Goal: p = {-320, -340, -360}. ; P,= -1020

Ko 858.5 68.5676 4.6683
| -40463 -4.2238 -0.5505

Assume F active and F;open

{eig(A—by .,k)} =1{-405.7-336.1-49.5} — S, =-791.4

S,—P =228.7

ARTIST2 WNoE on Embedded Systems Design — ECS Graduate Coursg

Reactor: variables’ relevance

— The signal relevance depends on
""" = the control solution!!

........ (s
S Gl

............ o,
Variable u, u, X, X, X,
o-1 poles -405.7 0.2 0.71492.9 -2513.3 | - 340.9
-336.1 -135.6 -0.4585 -340.5 | -225.2
-49.5 -340.6 -127.2 | £179.51
S=Sum of -719.4 -475.9 1485.1 -2981 | -719.4
poles
Relevance 228.7 544 2963.6 -1961 | 228.7
=S-P

ARTIST2 WNoE on Embedded Systems Design - ECS Graduate Coursg
Prague April 3- 006

Balance the performances

As a result of the selected controllers and scheduling:
compute Control Effort
Schedule all the tasks and compute
Delays
Redesign the control taking into account delays
Re-compute the CE and update the delays
Check the schedulability

ARTIST2 WNoE on Embedded Systems Design — ECS Graduate Coursg
Prague Apri 3- 006

Performance’s balance

Computation delays depend on:
 Operating mode: Control Algorithm Complexity

* Priority

e CPU’s load

Delay’s effect depends on: N
 Sampling period I =NKA.
* Control effort D Zl =i

Performance degrading depends on:
e Sampling period

* Delays

* Loops interaction

ARTIST2 Mot on Embedded Systems Design - ECS Graduate Coursg
Prague Apri 3- 006

Example
. 100 _ 100
Initial Plants G(s)= " G, (s) o
Control Goal: M(s)= 100(s +7)
s +135+142
Required controllers
1 5s5+135
Gpi(s)=—— G -
IO =T07 Oral) 100(s +7)
Plant delay tolerance
Plant 08 (rad/sec) Yin (rad) max
S 7,6 1,41 0,185
S, 11 1,22 0,111
ARTIST2 Mok on Embedded S slem es/gn; ECS Graduate Coursg
)
Delays’ Balance

Same delay: 60 msec

80 & 30 msec delays

1000 1500 2000 2500

ARTIST2 WNoE on Embedded Systems Design - ECS Graduate Coursg
Prague Apn/ 2-7 2005

Ao

it 100 gy 2 100

Initial Plants G (s)= e 5 () o
Control Goal: M(s)= _100(s+7)
52 +13s+142

1
GR,l(S) = S_ Grals) = S5s+135

+7 100(s +7)
Multitask system:
2 G,
1 G,

1 System task

Table 4. DM scheduling of the 4 tasks
WCET | Period| Min. | Max. | Average | CAI |Control| Degrading | TOTAL

Delay | Delay | Delay, A | % | Effort (rad) degrad.
(msec) | (msec) | (msec) K K*A

T1 22 70| 22 22 22 0,0 0] 0

T2 15 100 15 37 26,0 22,0 7,6 [0.198

T3 17 110 17 54 35,5 33,6 11 | 0.391

T4 19 110] 36 95 65,5 53,6 11 | 0.720 1,309

DM scheduling with CAI reduction

WCET |Period| Min. | Max. | Average | CAI | Control |Degrading| TOTAL
Delay | Delay | Delay, A | % Effort (rad) |degrad.
(msec) | (msec) | (msec) K K*A
T1 22 70 27 28 27,5 1.4 0 0
T2 15| 100 39 41 40,00 2,0 7,6 0,304
T3 17| 110 53 56 54,51 2,7 11 0,600
T4 19| 110 91 95 93,00 3,6 11 1,023] 1,927

Re-scheduling minimizing the control performance degrading

WCET |Period| Min. | Max. | Average | CAI | Priority [Degrading| TOTAL
Delay | Delay | Delay, A | % (rad) |degrad.
(msec) | (msec) | (msec) K*A
Tl 22 70 56 60 58] 57 3 0
T2 151 100 94 97 95,5 3.0 4 0,726
T3 17 110 22 23 22,5 09 1 0,247
T4 19] 110 38 40 39 1,8 2 0,429 1,392

ARTIST2 Mot on Embedded Systems Design - ECS Graduate Coursg
Prague Apri 3- 006

Results

Step responses
Compensated and balanced delays

Without delays 5t

4.5 4t
3.5 3tk
25 2tk
15

0.5

0 s " " N 0 500 1000 1500 2000 2500
0 500 1000 1500 2000

ARTIST2 NoE on Embedded Systems Design - ECS Graduate Coursg
Prague Apri 3- 006

ECS: Control algorithm viewpoint

— Multimode control
— Sampling rate changes

ARTIST2 WNoE on Embedded Systems Design - ECS Graduate Coursg
Prague April 3- 006

PID: Sampling period effect

Open loop control

Discretized controller, independently of the plant

Degrading as the sampling period increases

- 1.5
 (5+0.5)(s+1.5)

Parameters: KP —3 TD —0.2 TI -39
Sampling periods: 7= 0.04, 0.08, ..., 0.24 sec

Plant: G(s)

EXAMPLE:

2K, Ky
T

K
CIOZK,#?”I; 41=—KP—T+KiT; 9=

ARTIST2 WNoE on Embedded Systems Design — ECS Graduate Coursg
Prague Apri/ 3- 006

T effect

-

b5 - T=0.04,0.08,...,0.24
A /\ AN

8

ARTIST2 Mot on Embedded Systems Design - ECS Graduate Coursg
Prague Apri 3- 006

Variable sampling period
 State Feedback:) =A.x(1) +bu(r)

/;\ (AC ’ bc) I u(t) =Kx(t) + r(t)

eig(A, +b,K) =eig(A)={p)

Xpo =ArX, +bru,

Ay =™ by = &M,
p=eig (A, +b,K;)=eig (A, +b K)

el = A, +b. K,

K,=K(I+AT/2)

u, =K, x, +r,

T=T+A;
K, =K, +KAA/2

ARTIST2 NoE on Embedded Systems Design - ECS Graduate Coursg
Prague Apri 3- 006

Output Controller

* Integral error
* Output feedback

Integral Plant
r y- + u y
kipZp (Ap,b,,C)
Feedback v Observer \ 4

Control law Ky (Ap,bp,Cp,Ly)

\ 4
v

ARTIST2 WNoE on Embedded Systems Design — ECS Graduate Courses
P Aol 3-7 2006

Observer

A=A L@ Fey =4 3() + bu(t) + L[y (1) — Cx(1)]
y(t) = Cx(1)
F= (A, -LOT =A%

Ly=L

et = A, —L,C =L, =LT+LT*/2 { ,
Ly = (LCA, + A,LC)C

We must update the model (A;,b;) as well as the gain L

T=T +A, Arip =Ar + A (I +AT)A
bria=br +b.(I+AT)A/2

Lyia = Ly +(L+ A*TC*)A

©P. Albertos 2006

ARTIST2 WNoE on Embedded Systems Design — ECS Graduate Courses
P o 2-7 2006

Flexible arm prototype

©P. Albertos 2006

ARTIST2 WNoE on Embedded Systems Design - ECS Graduate Coursg
2 i/ 3-7 2006

2oue Ap

ARTIST2 WNoE on Embedded Systems Design — ECS Graduate Coursg
£ 0

2oue Ap

Flexible arm prototype

ety

ARTIST2 WNoE on Embedded Systems Design - ECS Graduate Coursg
Prague Apn/ 2-7 2005

Ao

Mathematical model

The dynamical equations of this system are:

thl— qul =7
D@;L+ D@+ K.q =0

The torque is generated by the voltage applied to the d.c. motor:

1. K,
VIR, + K= 1=—V-—<&
in this way
K2
=KJ]=—2tVy -—¢
¢ R ngzl

ARTIST2 Mok on Embedded Systems Design
Drag ;

— ECS Graduate Course
e Apr/ - 006

State+integral feedback control

Controllers' gain, Sampling period effect

o Too0gsee Ko K |=[0824 7.032° -0271 —0.113 1.1623]

forT=001sec |k K |=|64.91 -16.25 8.173 7.2 156.61

The performance of the controlled
system when each controller is applied:

Position

t (seconds)

©P. Albertos 2006

ARTIST2 WNoE on Embedded Systems Design - ECS Graduate Coursg
Prague Ao 005

Apr/ 2-

Change in the sampling period

T, =0.011t0 T, =0.08 at t=0.5 sec

|

r——F—-—F -k -~ =~ -

Position

Updating the parameters (red)

Keeping the same controller (blue)

Sl e e e e
|
|
|
|

2.5 3

t (seconds)

ARTIST2 WNoE on Embedded Systems Design — ECS Graduate Coursg
Prague. Aprl 3- 006

Information updating
Dynamic Centrellet - oo

_ (105.6424z% - 202.7365z + 97.7)

for T=0.01 sec. Grl@)= (z+ 0.498)(z - 1)
:0.01»0. 2
P00 008 (e - 12 0ggen o1
i &0 T T T

a0

40

30

©P. Albertos 2006

ARTIST2 WNoE on Embedded Systems Design - ECS Graduate Coursg
Prague April 3- 006

Experimental rig: Change in sampling period
for T,=0.08 sec. K =[0.206 1.758 —0.06775 —-0.02825 0.290575]

for T,=0.01sec. |K, K, |=[16.22 —4.06 0.1734 0.154 7.17]

ARTIST2 WNoE on Embedded Systems Design — ECS Graduate Coursg
Prague Apri 3- 006

Experimental rig: Change in sampling period
forT,=0.08 sec. K =[0.206 1.758 —0.06775 —-0.02825 0.290575]

for T,=0.01sec. |K, K, |=[16.22 —4.06 0.1734 0.154 7.17]
1.4 ‘

ARTIST2 WNoE on Embedded Systems Design - ECS Graduate Coursg
orag i/ 3-7 2006

e Ao

Experimental rig: controller updating

T, =0.01to T, =0.08 at t=0.01 sec, new controller

ARTIST2 Mok on Embedded Systems Design
Drag ;

— ECS Graduate Course
e Apr/ - 006

Experimental rig: Controller updating

1.2 \ \ \ \ \ \
| |

| | | |
|

| | |

08l __L__ ",\"‘ i N O O S IR

06F---- EM---r---—-r--—--r----+r-—--—-t—--—-—

> 04r--4J~L----L----L____L____L____L____

0.2+ |- -

0.2 _

r r I I T T				
J				
0 1 Y N S SR				
r r r r T T				
L L L L L L

-0.4

0 2 4 6 8 10 12 14
T, =0.08 to T, =0.01 at t=0®¢-kec, new controller

©P. Albertos 2006

ARTIST2 Mot on Embedded Systems Design - ECS Graduate Coursg
Prague Apri 3- 006

Feedback re-scheduling

mode changes

Usp y
Scheduler

{7}

Tasks

Jjobs

¢, U

Dispatcher

* According to the mode of operation change
periods, re-schedule and check if feasible

e Apply transfer controllers

ARTIST2 NoE on Embedded Systems Design - ECS Graduate Coursg
Prague Apri 3- 006

— Multimode control

— Reduced order models

— Missing data control
— Event-triggered control
— Hybrid control systems

— Sampling rate changes
— Fault-tolerant control

— Degraded and back-up (safe) control strategies
— Battery monitoring and control

ECS: Control algorithm viewpoint

— Non-conventional sampling and updating patterns

— Decision and supervisory control

ARTIST2 WNoE on Embedded Systems Design - ECS Graduate Coursg
Prague April 3- 006

Conclusions

e ES is a growing area of interest
— Software issue

— Control presence

« ECS
— Implementation
— Computational
— Algorithmic

e ECS Design

ARTIST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTISTZ2

Real-Time Issues

Alfons Crespo
Universidad Politécnica de Valencia
Instituto de Automatica e Informatica Industrial

http://www.gii.upv.es/personal/alfons
acrespo@disca.upv.es

03/20/06

© Alfons Crespo 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Goals

The goal of this lecture is to provide an overview
of the basic concepts of the real-time
embedded systems.

03/20/06

2 © Alfons Crespo 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Outline

Introduction
Real-time task model
Schedulability analysis

Real-Time Languages

Real-time operating system support

03/20/06

© Alfons Crespo 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Introduction

Embedded Control System

Examples

systems,

A embedded control system is composed by a computer system
embedded in a larger engineering system and performing
control functions in all or part of this environment

Aerospace systems, trains, cars, robotic systems, communication

03/20/06

© Alfons Crespo 2006

ARTIST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Introduction

User Interface

Sensors

)

Controlled

Computer system Process

749

AV

@) %5 @ Actuators

03/20/06

5 © Alfons Crespo 2006

ARTIST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Introduction

User Interface Sensors

quter system ’

Controlled
Process

@b %5 @# Actuators

Computer System

Control
appiicasion | () EDED @
| RTOS |

Hardware
03/20/06

6 © Alfons Crespo 2006

Tasks

Graduate Course on Embedded Control Systems
ARTISTZ2 Prague, Czech Republic. April 3-7, 2006
Tasks
Control
Application

Introduction

Each task in the application

\ RTOS \ has the following structure
reference , Tk Controller
r(t) Control Uy
i D/A
task Controller AD Yk Algorithm
each Sample do
get_sensor (y);
determine_action(u);
send_action(u); 70 0
aupdate(e,y,u,...);
eﬁiﬁ :s(;é, Sensor Process Actuator
03/20/06
.
ARTIST2 O et e, Coech Repubilc Apri 3.7, 2008
Tasks Introduction
Control
Application
\ RTOS |
Process_1 Process_2
YI/ lul YX \uz Y\ YA W
v | ¥\ 4
Controller| [Controller| |Controller| [Controller
Tareas
o s0
T1 -
T2 .
T3
T4 1 ml | |] |
03/20/06
s

ARTIST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Characteristics
Functionality Implementation requirements
+ Continuous control * Concurrency
* Discrete event control * Timeliness/ dependability
 Data display * Reliability
» Data logging * Special hardware platforms
* Operator commands * Limited resources
+ Communications * Efficiency

There is a growing need for a larger size and
complexity of embedded control systems

03/20/06

9 © Alfons Crespo 2006

ARTIST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Simplification factors

Do not use display (specialized displays)
No disk (no file systems)

Monouser

Limited security constraints

Limited number of tasks

User access limited

Closed system

03/20/06

10 © Alfons Crespo 2006

ARTIST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Concurrency

Activities in the real world are simultaneous
— physical variables change at the same time
— events occur asynchronously, and even at the same time

Control systems have to cope with this simultaneity

— e.g. multivariable control, asynchronous events
... but computers are sequential machines

— different activities must run on the same processor

— simultaneous execution is simulated by multiplexing the usage
of the processor among different execution sequences

Concurrency: multiplexed execution of several activities on a
computer
— concurrent activities are called processes, threads, or tasks

03/20/06

11 © Alfons Crespo 2006

ARTIST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Real-Time

Concurrent activities with temporal constraints:

— The actions taken by the computer system have to be
produced within a specified interval

— The algorithm (task) result has to be logically and
temporally correct.

Temporal constraints:

— Sampling of analog variables (sensing) must be periodic
— Control actions must be issued in time (actuation)

— Reactions to events have to be executed within some
deadline

03/20/06

12 © Alfons Crespo 2006

ARTIST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Temporal Constraints

Based on the deadline, task can be:

Hard deadline (Hard Real-Time Systems)

Value
Deadline
Soft deadline (Soft Real-Time Systems)
Value
ik
Deadline 03/20/06
13
A R Tl S T2 Graduate Course on Embedded Control Systems

Prague, Czech Republic. April 3-7, 2006

Temporal constraints

A real-time task is required to execute within a given time
interval usually characterized by an activation pattern and a
relative deadline

Activation time

Absolute deadline
\ /
1O A'—’

[~ /4]

Relative deadline 03/20/06

14 © Alfons Crespo 2006

ARTIST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Temporal constraints

But ... task are executed in a processor multiplexing following a
scheduling policy

Tareas

50 100 150
T1 1111

- » »
o [H[IN
T 3

* »

- 1 - L]

So, a task (depending on the scheduling policy) can have several
delays.

03/20/06

15 © Alfons Crespo 2006

ARTIST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Temporal constraints
A task can suffer delays

At the beginning At the end
Best case Best case
A A
| Input Jitter Output Jitter
orst case orst case
A A
preempted

The effect of jitter is difficult to analyse, both from the computing and control.
Deadline and activation requirements can be used to limit jitter. -

16 © Alfons Crespo 2006

ARTIST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Task Model

Based on the activation patterns for control tasks

* Periodic: the task is activated at regular intervals with period T

Activation: a=0+kT

Ti= (Ci» D;, P, ¢i)

* Aperiodic: the task is activated when some event occurs.
Event arrival can be modelled in different ways (e.g. Poisson
distribution)

* Sporadic: aperiodic, with a minimum inter-arrival time T
between activation events

aza + T
03/20/06
.
ARTIST2 e ot
Scheduling

The scheduling algorithm determines which is the next task to be executed.

Ready queue

~ 0000 — |
/ Running
o

Blocked tasks

03/20/06

18 © Alfons Crespo 2006

A R T | S T2 Graduate Course on Embedded Control Systems

19

Prague, Czech Republic. April 3-7, 2006

Scheduling

+¢ It has a crucial role in ensuring temporal requirements enforcing of
activation patterns

« releasing periodic tasks for execution at the proper times
« releasing aperiodic tasks when the activation event is detected
* ensuring minimum inter-arrival time for sporadic tasks

+ Implementing appropriate processor sharing algorithms in order to
guarantee deadlines

* the aim is not to maximize throughput or to improve average
performance, but to guarantee deadlines

* hard deadlines have to be guaranteed even in worst-case load conditions,
ie. Ri<Di

A R T | S T2 Graduate Course on Embedded Control Systems

20

03/20/06

© Alfons Crespo 2006

Prague, Czech Republic. April 3-7, 2006 |

Ready queue

=~ 0000 —
Schedulers [
/

&

Blocked tasks

Running

Real-Time Systems

Cyclic Priorities

Static Dynamic

Rate
Monotonic
RM

Deadline
Monotonic
DM

Least
Laxity First
LLF

Earliest
Deadline First
EDF

03/20/06

© Alfons Crespo 2006

ARTIST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Cyclic Scheduling
Each task is characterised by a tupla (Ci, Ti,Di)
*Ci is the worst case execution time
*Ti is the period
*Di is the deadline

If all tasks are periodic, it is possible to design a fixed execution plan
that is repeated each main cycle Tm

* Main cycle corresponds to the hyperperiod H = mem(Ti), i=1..n

* Main cycle can be split in secundary cicles TS => TM = kTS

03/20/06

© Alfons Crespo 2006

ARTIST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Cyclic Scheduling

procedure Level_Control is

begin
Level := Get_Level;
Compute(R_Level, Level, ValOut);
Put_Valve(ValOut);

end Level_Control;

procedure pH_Control is
begin
pH := Get_pH;
Compute (R_pH, pH, Val_pH);
Put_Valve(Val_pH);
end pH_Control;

procedure Temp_Control is
begin
Temp := Get_Temp;
Compute(R_Temp, Temp, Val_Temp);
Put_Valve(Val_Temp);
end Temp_Control;

03/20/06

© Alfons Crespo 2006

ARTIST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Cyclic Scheduling

Level Control: C1 =10 ms; P1 = 20ms
Temp_Control: C2 = 5 ms; P2 =40ms
pH_Control: C3 =10 ms; P3 = 40ms

HyperPeriod = 40ms
SecondaryCicle = 20ms;

LC
TC

0 5 |10 15 20 25 30 |35 40 45 50 |55 60 65 70 |75 80

LC
TC]]
pC

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 |75 80

© Alfons Crespo 2006

ARTIST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Cyclic Scheduling

Level Control: C1 =10 ms; P1 = 20ms .
Temp_Control: C2 =5 ms; P2 = 40ms HyperPenod_ = 40ms
pH Control: C3 =15 ms; P3 =40ms SecondaryCicle = 20ms;

cycle := 0:
Next_Activation := Clock; -- get the current time
loop

delay until Next_Activation;
Next_Activation := Next_Activation + SecondaryCicle ;
case (cycle mod 2) is
when 0 => Level_Control; Temp_Control;
when 1 => Level_Control; pH_Control;
end case;

cycle := cycle + 1; LC
end loop; TC B B

pC

0O 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 §

© Alfons Crespo 2006

A R T | S T2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Designing a cyclic plan

¢ Constraints on Secondary Cycle Ts
— 1.- TS any task has to be included
) Vi: Tg = C
— 2.- Should be a submultiple of the Main Cycle (Tp):
Tp=kTs
— 3.- A whole Tg has to be included between an activation and its
deadline for any task.

oooVi : 2 Tg=- med(Tg, T;) < D;

03/20/06

© Alfons Crespo 2006

ARTIST2 T rmgue, cooeh Repubiic At 3, 2006
Cyclic Scheduling
e Example Ts Selection

1.-Vi: Tg2C;, » Tg220
2.-3i :LT;/Ts] = T, /Ts—> T5 € {20,25,40,50,100,200)
PP 3-- Vi:2 Ts- mcd(Ts, T;) < D;

50 50 Sups Ts=20:
t;: 2*¥20 - mcd(20,10) = 30 < 40 OK
200 200 t,: 2*20 - mcd(20,50) = 30 < 50 OK
200 200 t3 y t;: 2¥20 - mcd(20,200) = 20 < 200 OK
U = 10/40 + 18/50 + 10/200
+ 20/200 = 0’76 < 1 OK
H=mcm(40,50,200)=200
by {
t3
& i | . | i
t | | | |
0 20 40 60 80 100 120 140 160 180 200

03/20/06

© Alfons Crespo 2006

A R T | S T2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Cyclic Scheduling: Summary

¢ Robust method, appropriate for simple systems
— temporal behaviour guaranteed by construction
— easy to implement and analyse for correctness

e Too rigid for complex systems
— static schedule difficult to build (NP-hard in the general case)
— changes in code require rebuilding the schedule
— difficult to accommodate sporadic tasks

Summary: a low-level method
— more flexible scheduling schemes are easier to implement

and maintain
03/20/06
ARTIST2 " rague, Coeen Repubte Apr 5., 2005 I
Ready queue
—~—
0000 —
SChedUIers r’ / Running
S o] |
. Blocked tasks
Real-Time Systems
Cyclic Priorities
Static Dynamic
Rate Deadline Earliest Least
Monotonic Monotonic Deadline First Laxity First
RM DM EDF LLF
03/20/06

28 © Alfons Crespo 2006

A R T | S T2 Graduate Course on Embedded Control Systems

29

Prague, Czech Republic. April 3-7, 2006

Priority Scheduling

Priority based is a scheduling method for real-time activities using
threads or task.

Each task has a priority related to some assignement criteria
(importance, urgence,)

- Priorities can be assigned off-line (static) or during the
execution based on some parameter (dynamic)

- The scheduling policy is implemented in the kernel and selects
the highest priority task (thread) among the ready tasks.

Schedulers can permit the preemption or not preemption of
running tasks.

03/20/06

© Alfons Crespo 2006

A R T | S T2 Graduate Course on Embedded Control Systems

30

Prague, Czech Republic. April 3-7, 2006

Fixed Priority Scheduling

Fixed Priority preemptive scheduling: Priorities are assigned at
design time

Criteria:
- Designer decides the priority based on the importance of the
task (semantic criteria)

- Based on the urgence (deadline):

% Rate Monotonic (periods = deadline). Higher priority to <,
more frequent tasks Q >
$

+* Deadline Monotonic : Higher priority to more urgentQask
(Shorter deadline)

03/20/06

© Alfons Crespo 2006

ARTIST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Rate Monotonic Analysis

Assumptions:
- Periods = Deadlines
- Tasks are independent (no shared resources)

Analysis: Utilisation based feasibility test (Liu & Layland, 73):

C
Atask T, = (C,, P;), uses the CPU U(1)=—
Pi n_| Um)
| 1] 1,00
For n tasks: Q+Q+...+QSU(n):n~(2” -1) |2 082
P P P 3] 077
41 0,75
Utilisation bound for n tasks 5| 074
It is sufficient but o] 069
not necessary condition
s

ARTIST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Rate Monotonic Analysis

l . . . l Example 1

Taeal

N [i .

Taea?

3.

__ 1§ BN 1 N |

L L | T | I |

Cl=2 Pl1=10 Ul =0.2

C2=4 P2=15 U2 = 0.267

C3=10 P3=35 U3 = 0.286
Ul + U2 + U3 =0.753

75.3 % < U(3) =77.9% OK

24.7 % of the CPU can be used for other non real-time activities

06

© Alfons Crespo 2006

ARTIST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Example 2 Rate Monotonic Analysis
Tarea 1
i [] B ||

1 N = '
] 1A

Tarea &
a 4 =] 12 16 20 24 28 a3z 36 40 44 48 52 =
Cl=2 P1=10 Ul =0.2
C2=4 P2=15 U2 = 0.267
C3=5 P3=25 U3 =0.2
C4=6 P4=35 u4 = 0.17
Ul + U2 + U3 + U4 = 0.837
83,7 % > U(4) =75.6% No
But the system is schedulable o
ARTIST2 " rague, Coeen Repubte Apr 5., 2005
Response time analysis
A set of n periodic tasks is schedulable under any priority assignement
iff: All tasks finish its execution in the first period before the deadline
(Critical instant) R, < D,
The worst case response time (Ri) of a task Ti occurs when all taks with
higher priority start at the same time than Ti.
W
— 1
R=G+l, =2 Tl
jep@| +j
Ry
T1 I/ = {T}C ;
7 b '
T2
+ * n=| 2323
10
R,
03/20/06

© Alfons Crespo 2006

ARTIST2

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

The value of interference (I;) depends on the relative phases of the task

activation times

Ii is maximum when a task is activated at the same time as all the tasks

Response time analysis

Critical Instant

with a higher priority

It suffices to compute interference for the first period after a critical

instant — no need for a full hyperperiod

This reduces complexity of analysis to polynomial case

03/20/06

ARTIST2 O ormgue, Cooeh Repubiit. Aprl 7, 2008
. .
Response time analysis
Interference calculation

T1

T2

T3 [Jm
T4

u
1 2 3 4 5 6 7 8 910111213 1415 16 17 18 19 2 22 23 24|25 26 27 28 29 30 31 32 33 34 35 36

03/20/06

© Alfons Crespo 2006

ARTIST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Response time analysis

R.
Ri can be determined by: R, = C, + Z L |*C
Jehp ()| £

J

R’
It can be solved by a linear iteration: R."+l = Ci + — \C
i z /
jemn| T

.. e +1 n
Termination condition R"™ = R’
1 1

The system is schedulable if for all task R_”+1 <D.
1 l

03/20/06

© Alfons Crespo 2006

ARTIST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Response time analysis

Tl |Di [Ci

([12| 10[10 3 | 0 _

T2 15| 15 3 R =C,

T3 | 18] 18] 2 1

= = < =

= Y By B R =C/+0=3<D =10
Tl

T2

T3 .

T4

1 2 3 45 6 7 8 910111213 141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

03/20/06

© Alfons Crespo 2006

ARTIST2 7 rague, Coech Republc Ape 37, 2006
Response time analysis
'=(C,=3
Rz_Cz_
T1_[Di_[Ci 1 R 3
11| 10l 10l 3 R.=C.+ 2|7 :34*}3:6
gew| T 10
I T2 15 15 3 .
13 | 18] 18] 2 R=C+Y R, :3%3}3:6
Ta | 24| 24| s : gan| T, 10
R.=R.=6=D,=15
Tl
T2
3 |
T4

1 2 3 45 6 7 8 910111213 141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

© Alfons Crespo 2006

ARTIST2 7 rague, Coech Republc Ape 37, 2006
Response time analysis
'=(C.=2
Rz_C3_
Tl |Di |Ci . R) 27 T2
T1 | 10| 10| 3 R=C+ 2 {; :246 SJBWSZS
Vje(l,2} T
| T2 | 15| 15[3 e L
. -
T3 18] 18 2 P R [8 [8}
=C.+ = =24+ — B+ —3=8
Ta | 24] 24] 5 R=C %JTJ 10 |15
1 2
R3=R2=SSD3=18
T1
T2
T3 |
T4

1 2 3 45 6 7 8 910111213 141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

© Alfons Crespo 2006

ARTIST2 " brague, Coeen Repbte Apr 5, 2008
Response time analysis
R=C:=s
- Rl s[5 [3][5
71 [Di [Ci R=C 2 |7 S*M“M“MZ 13
T1 [10/ 10 3 :_ [RL] . (13,13, [13],_
= T T 3 R47C‘+V/EIZ.2,H T 754{10}34{15}34{1 szm
T3 18] 18 2 . [Ri]_..[16),.[16], [16],_
Ta 24 24 s RA?C4+V/:(Z.2.3>>T,7 5410%{15}341 Wz 19
- Ri|_s [0, [1975, [19],
RﬁCAer%” T 75410}3415}341 “2721
a R 120,25, 20,
" R=Cx X 17 '5410%{15}3{1 WZ‘M
. [R5, [24.[2¢]s, [24,c
T2 R=C % 17 ’541013*{1 13{1 P
T3 | R=Ri=24<D,=24
T4
1 2 3 4 5 6 7 8 910111213 141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
03/20/06
ARTIST2 " rague, Coeen Repubte Apr 5., 2005
Extending Response Time Analysis
RTA can be extended to more complex task models
— tasks with any priority assignement
— deadlines shorter than periods
— sporadic tasks
— communication with shared variables
— activation jitter
... and also to distributed systems
— provided the communication link has a bounded transmission time
The computation models covered by RTA can be implemented on a
number of operating systems and programming languages
This enables many kinds of real-time systems to be built and analysed
for deadline guarantees
— mandatory in high-integrity systems
03/20/06

© Alfons Crespo 2006

ARTIST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

I
. esee—()
SChed u Iers r / Running
L &

Blocked tasks

Real-Time Systems

Cyclic Priorities

Static Dynamic

Utilisation test*

Rate
Monotonic
RMA

Least
Laxity First
LLF

Earliest
Deadline First
EDF

Deadline
Monotonic
DMA

RTA test
03/20/06
43 © Alfons Crespo 2006
ARTISTZ Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Sporadic tasks

Sporadic events are characterized by a minimum inter-arrival time T

The worst case is when the task is activated as often as possible
e pseudo-periodic activation with period T

Sporadic tasks are converted (from the analysis point of view) in periodic task
with period equal T and, usually, deadlines shorter than T

the pseudo-periodicity assumption: sporadic tasks behave as periodic tasks in
the worst case

03/20/06

© Alfons Crespo 2006

ARTIST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Aperiodic tasks

Aperiodic events are characterized by different kinds of models, most of
them stochastic

— e.g. Poisson process

Aperiodic tasks do not usually have any hard deadlines but are required to
respond as fast as possible

Aperiodic tasks can be scheduled in a DMS framework using a variety of
aperiodic servers

An aperiodic server is a periodic task serving aperiodic events with a limit of
computation by period (budget)

S;=(B; P)
- In general, the budget is replenished each period
- As a periodic task it can be integrated into RTA

03/20/06

© Alfons Crespo 2006

ARTIST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Aperiodic tasks

5 10 15 20 25 30 35 40

[° ®

J |
Ju__ gu m pm m
(9]

1[‘ Il'_C 0 !f 0

;N a2 Wzz7pzzzzzz2 vz

Server available time

03/20/06

© Alfons Crespo 2006

A R T | S T2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Jitter evaluation

e Qutput jitter can play an important role in the control
performance

e Tasks are pseudo-periodic

¢ The distance between two consecutives input or outpus is
variable

e Important aspect: determine the Input/Output Jitter.

03/20/06

© Alfons Crespo 2006

A R T | S T2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Jitter evaluation

Worst case response time => Maximum finishing time of the task:

wcC’
WCH =C+ Y e
T J
Jjehp(i) j
Best case response time => Minimum initial time of the task:
: BC! -T. :
n+l _ min i J min
BCri=Cmy Y[2 T e
Jehp (i) J
Control Action Interval
WC, - BC,

CAI =

03/20/06

© Alfons Crespo 2006

ARTIST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Jitter evaluation

Begin End
Task WCET Period | Deadline Offset WCET | Min Max Min Max CAI
Tl 10 40 40 0 Tl 0 0 10 10 0%)
jv) 20 70 70 0 T2 0 10 20 300 14%
13 35 150 150 0 T3 0 20 450 105 40%)
T4 30 250 250 0 T4 o 105 30 240 84%
03/20/06
A R T | S T2 Graduate Course on Embedded Control Systems

Prague, Czech Republic. April 3-7, 2006

Jitter reduction

A simple way to reduce the Jitter in a fixed priority scheme is to increase the
priority of the task.

+* Reducing the deadline of a task (DM assignement)

+¢ Increasing the priority

Reduction of the jitter in a task produce an increase in others. But not all tasks
are equal sensible to higher jitter.

Other alternatives are also possible:

+¢+ Task partitioning
++ Bands of priorities for Input/Output/computation phases

.
RS

03/20/06

© Alfons Crespo 2006

ARTIST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Using shared resources

Tasks usually shared variables or devices

Shared data structure (list)

TaSksC}/
ﬂj< CAD device

03/20/06

© Alfons Crespo 2006

ARTIST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Using shared resources

% Code segments in which shared data are accessed are called critical
sections

+* Shared data must be protected so that critical sections are executed in
mutual exclusion

operating systems provides many mechanisms: semaphores, mutexes, Ada protected
objects

+¢ In real-time systems, mutual exclusion may give rise to priority inversion
this effect is also called blocking

= an undesirable side effect of mutual exclusion
= it can even affect tasks not sharing any variables
= it can produce unbounded blocking

This may result in unbounded response times

03/20/06

© Alfons Crespo 2006

ARTIST2

Graduate Course on Embedded Control Systems

Prague, Czech Republic. April 3-7, 2006

Using shared resources:
Priority inversion

prio
R] ‘ Shared resource
i RI: {T1, T3}
R 3
2 T, I
A
*
3T | s i Il

ARTIST2

prio
R]
T
2 2
3 T,

Graduate Course on Embedded Control Systems

Prague, Czech Republic. April 3-7, 2006

Using shared resources:
Priority inheritance protocol

o — ‘ Shared resource
* R1: {T1, T3}
.

® T
. A

recovers its priority

T, inherits the priority of the blocked task (T,)

03/20/06

© Alfons Crespo 2006

ARTIST2 T rmgue, Coee Repubiit. Aprl 7, 2008
Using shared resources:
Immediate ceiling protocol
prio
1 R, | s ‘ Shared resource
) R1: {T1, T3}
1 T, i Ceiling R1 =
® ZN maxPrio(T1,T3)
2 2
I ® A
3T | |
A
l Blocking time B,
T, recovers its priority
T, inherits the priority ceiling of R,
03/20/06

ARTIST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Immediate ceiling protocol

«* A high-priority task blocks at most once in each execution cycle
«¢ It is independent of how many shared data items it uses

+»The maximum duration of blocking for a task Ti equals the duration of the
longest critical section executed by a lower-priority task using a data item
with a ceiling priority greater or equal to the priority of Ti

+«+ The are no deadlocks, in spite of possible circular wait situations

++The effect of (bounded) blocking can be added to the response time

equation:
R,
R=CoBlr 313 |0C)

Jjehp (i) j

03/20/06

© Alfons Crespo 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Real-time Operating Systems

* Provides infrastructure for running software on an
embedded hardware platform
* Provides a hardware abstraction
* Provides access to the devices
* Provides support for multiple processes and threads
* Provides development tools
» Compiler / Linker
* Downloader
* Debugger
* Provides deterministic performance
* Guaranteed interrupt management Latency
* Guaranteed Context Switch
» Small and bounded scheduling overhead
* Timer and clock access

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

RTOS requirements

ARTIST2

* Real-time task scheduling

* Preemptive scheduling

e Interrupt response guarantee

* Static or dynamic priorities

* Synchronous and Asynchronous 1/0
* Fast data acquisition

* Deterministic network communications
* Portability

* Efficient memory management

* Real-Time languages support

* Standard API (POSIX®)

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Commercial RTOS

ARTIST2

Interrupt handling
Scheduling
- FIFO or Round-robin for equal-priority threads
(EDF scheduling is not provided)
- Priority inversion control (PIP)
Memory management
- Virtual memory (not pagination)
- Memory protection (some of them)
e LynxOS
* pSOS Most of them provide real-time extensions
e QNX
e VRTX
 VVxWorks

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Open Source RTOS

ARTIST2

Real-Time Linux:

RT-Linux

KURT RTEMS

RED Linux ORK

RTAI MARTE OS (Ada)

Linux/RK (from Mach/RK)

Embedded Linux

MiniRTL

Extension to RTLinux (OCERA)
ELKS project

HA-Linux (High Availability)
Lineo Embeddic

VME Linux Project

ARTIST2 7 rague, Coech Republc Ape 37, 2006
Open Source RTOS
Linux 2.4 RTLinux/GPL RTAI OCERA
P 1386, PPC, ARM, SH, m68k, | 1386, PPC*, ARM* 1386, PPC, ARM, 1386, PPC*, ARM*
HOCESSONS PARI SK, Sparc, MIPS m68k, MIPS
Multi-processors Yes Yes Yes Yes
Process Yes No No No
Threads Yes Yes Yes Yes
FIFO,RR FIFO, EDF, FIFO FIFO, EDF,
Scheduling policies SPORADIC SPORADI C, CBS,
IRI'S, ADS
Priority inversion None Ceiling I nheritance Ceiling
Priority range 0-100 0-100000 0x 3fffFfff-0 0-100000
Protected memory Yes No No Yes
Dynamic memory Yes No Yes Yes
Semaphores Yes Yes Yes Yes
Mutex Yes Yes Yes Yes
M essage queues No No Yes Yes
Barriers No No No Yes
rd/ wr locks No No No No
Signals Yes No No Yes
Timers No No No Yes
Execution Timers No No No Yes
Time resolution Configurable (HRT) Configurable Configurable Configurable
User timers Yes No No Yes
Network |P, UDP, TCP, ... No |P, UDP IP,UDP, TCP, ...
y Ext2/ 3, ReiserFS, DOS, RAM, No No Yes
TR Flash, XFS, QNX4, ...
API's POSI X, pSOS, VxWorks |POSIX 1003.1c, PSE| Custom,POSIX [POSIX 1003.1c, PSE|
1003.1c (compat)
ARTIST2 7 rague, Coech Republc Ape 37, 2006

e Sequential languages as C/C++ languages do not support
directly real-time facilities

— Facilities are supported by OS API (POSIX or other API)

e Ada was specifically designed for embedded real-time systems
— Provides support for real-time and concurrency and protected objects

e Java provides support for threads and protected shared data. But
it does not provide support for real-time

— RTSIJ: A specification for Real-Time Java

© Alfons Crespo 2006

ARTIST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Ada

% Ada supports many real-time concepts at the programming
language level
= — concurrency
= —protected shared data
= — fixed priority scheduling & ICPP
= —device & interrupt drivers
«» Ada 95 is the current standard, Ada 2005 to come soon
= — Ravenscar profile for high-integrity systems
= — additional scheduling methods
= — Java-like interfaces
= — execution-time clocks
= —etc.

03/20/06

© Alfons Crespo 2006

ARTIST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

RTJava

% Java extension for real-time systems

= —developed by the Real-Time for Java Expert Group (version 1.0,
2001)

% Extensions of Java computation model in several areas
= — scheduling

= — memory management

= — synchronization

= — event handling

= — physical memory access

% Implementations available
= — TimeSys, AICAS (Jamaica)

X/

X/

...but not so mature as Ada

03/20/06

© Alfons Crespo 2006

ARTIST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Summary

% Real-time systems have temporal requirements
+ not just functionally correct, things must be done in time
% Scheduling is crucial in guaranteeing and analysing temporal
behaviour

<> timiné properties depend on the way processor & other resources are
share

*» Analysable task model based on fixed-priority scheduling
= — deadline or rate-monotonic priorities
= — controlled access to shared data
= —extensible to offsets, jitter, distributed systems, etc.
% Other scheduling methods
= EDF (earliest-deadline first) » efficient but no so robust
= Static, time-driven scheduling » robust, but complex to implement

03/20/06

© Alfons Crespo 2006

Tuesday 4" of April

Embedded Control Systems:
Control Kernel

P. Albertos

Universidad Politécnica de Valencia
* Dept. of Systems Engineering and Control,
E-46071 Valencia, Spain. Fax: +34 96 3879579
e-mail: pedro@aii.upv.es

ARTIST2 WNoE on Embedded Systems Design — ECS Graduate Coursg
Prague Apri 3- 006

The kernel concept

OS kernel: * Basic services:
— Task and time management
— Interrupt handling
— Interface to the applications (API)
— Mode changes
— Fault tolerance

* Additional services
— File management
— Quality of service
— Tracing and debugging

ARTIST2 WNoE on Embedded Systems Design - ECS Graduate Coursg
Prague April 3- 006

Basic Control Loop

I Regulator
reference | | A/D >
r(t) " Con'Erol Y, D/A
A/D »| Algorithm
DT
CT y(®) u(®)
Sensor ¢ Process Actuator
ARTI ST2 NoE on Embedded S s[em Des/gn: ECS Graduate Coursg
Control task

loop

end loop;

convert _sensor _analog_ digital (y);
compute _control _action (u);
compute _error (€)
compute _control _action (u) <
send _ converted _ control_ action (u);
update_internal_variables(y,u, ...);
Next Iteration:= Next _Iteration + Period;
delay until Next _Iteration;

ARTIST2 Mok on Embedded Systems Design - ECS Graduate Coursg
Prague Apri/ 3- 0oo

The Control Kernel concept

* Ensures control action (CA) delivering
e Data acquisition of major signals
e Transfer to new control structure

* Additional CA computing facilities
e Communication facilities
e Coordination facilities

ARTIST2 Mok on Embedded Systems Design - ECS Graduate Coursg
Prague Apri/ 3- 006

Control Kernel
* Ensures control action (CA) delivering

— Safe (back-up) CA computation

— Safe CA computation based on previous data

ARTIST2 Mot on Embedded Systems Design - ECS Graduate Coursg
Prag Apr/ 3- 0

Control Kernel (2)

* Data acquisition of major signals

— Safe CA computation based on current data

ARTIST?2 o on Embedsed systems Design - £CS Graduate Course
Control Kernel (3)

* Transfer to new control structure
— Basic control structure parameters computation
— CA computation

e Full DA
— Control structures evaluation and selection
— CA computation (different levels)

CA
computation

ARTIST2 WNoE on Embedded Systems Design - ECS Graduate Coursg
Prague April 3- 006

Control Kernel (4)

e Communication facilities
— with the environment
— the operator
— other ECS

¢ Coordination facilities

ARTIST2 WNoE on Embedded Systems Design — ECS Graduate Coursg
Prague Apri 3- 006

Control Kernel
* Ensures control action (CA) delivering
— Safe (back-up) CA computation
— Safe CA computation based on previous data
» Data acquisition of major signals
— Safe CA computation based on current data
* Transfer to new control structure
— Basic control structure parameters computation
— CA computation

* Full DA

— Control structures evaluation and selection
— CA computation (different levels)

¢ Communication facilities
¢ Coordination facilities

ARTIST2 Mot on Embedded Systems Design - ECS Graduate Coursg
Prag Apr/ 3- 0oo

The control kernel concept

computation

ARTIST2 NoE on Embedded Systems Design - ECS Graduate Coursg
Prag Apr/ 3- 006

Control Kernel Algorithm

 CA delivering Vi = Uy
e Backup CA u,=1u,

Backup CA Computation u,= f (ub, xk_l)

Current safe b-up CA comp. 4, = f(u,,x,)

¢ Basic CA computation u, = f,(r,,x,)
* CA comp u, = f.(r,,x,)
e CA comp. (Process model) u, =F(r,x,)
— Essential
— Partial

— Complete

ARTIST2 Mot on Embedded Systems Design - ECS Graduate Coursg
Prague Apri 3- 006

Control Kernel Algorithm

e Model reduction: i i
— Partial control (parts i S1 i
of the plant) I R I _______ 1y
S2

|:x1:| =|:A11 A12:||:x1i| +|:Bu B12j||:”1:|, |:y1:| =|:C11 C12:||:x1:|
X2 L Ay Ay X, « B, B, |u, e LY2lk Gy Cyux, X

Xy = AnXy, + B s vy, =Cxg,

ARTIST2 NoE on Embedded Systems Design - ECS Graduate Coursg
Prague Apri 3- 006

Control Kernel Algorithm

* Model reduction: time scale X, :slow modes; x, :fast modes

X A, A, |l x B X
|: 1:| :|: X 12:||: 1:| +|: 1:|uk; yk:[Cl C2]|: 1:|
X2 i Ay Ay | X . LB X 1y

Deleting the “slow” mode: X, :constant

X g4l = AppXy o+ Aoy Xy g + Boiy,

Vi = Coxg e +Cixp

ARTIST2 WNoE on Embedded Systems Design - ECS Graduate Coursg
Prague Apri 3- o0,

Control Kernel Algorithm

* Model reduction: deleting the “fast” mode x4 = X2y

X A, A, | x B X
B I M S N
X2 it Ay Ay | X . LB, X 1k

—1
Xok = (I - Azz) (AZle,k + Bzuk))
A=Ay +AL(1=Ay) Ay
o L B = AlZ(I -Ayp)_1 B, + B,
Yk = Clxl,k + Duk C,=C+Cy(I-Ay)" Ay
D= Cz(I—Azz)_132

Xp k41 = Apxy g + Buy,

To recover the “fast” state:

I N X P
= _ X _ u
%), L-Ay) Vg [T 1= Ay) 'By "

ARTIST2 WNoE on Embedded Systems Design — ECS Graduate Coursg
Prague Apri 3- 006

Conclusions

e Kernel concept

e Code rewriting

e Interaction with OS kernel

e Fast, reliable and safe operation
e Include ... CPU, power control

S00T UaI5

UONOLIJ JEAUIUOU PUB JSIOU JOSUS o
Jwin Jo uonouny

© sk sou0o1ddlel], 's'a jurodjog J0UQIQJY o
uonedynuapt Jajwered [opowr (Juawaoe[dojod)

paseq [opowl ‘S’A SUIUN], :pOYIdW USISI(

AId paId Ly pue ‘ld ‘dd ‘d :eImonns [oNuU0)) e

doysyiom a3 JO S[eO3 UIBIN

10J0W-O(J © SUI[[ONUO))

oy e

[y Urey E1IUCfE;
b1saq swasAs pappaquz uo 308 & | S| 1 HY

95110 8)enpels SJ3 —

$59001d ouIn)-[BAI AU} YIIM
UOT}OBIUI JOJ UOTIE[NIUIS [BUISIXH

o4 Uo peojumo(

* [P 1opout
0d 1504 31 10J J[1] [qANIIXT .HDEQEOOlU
* $11f-D) “212y14°0]
[OUIOY SWI-[BAI B PUB SISALIP O/ SPNOU] HOWH@H MY
* 2 japouu
$00[q oY
WO1J 9p09-0) SARIAUID) MY
puijapou
uonenuis
QUT[-JJO WeISeIpYo0[g JurpnuirS

3uid£101014 [onuo)) prdey

o5 a7 U

[y Uret E1IUCfE;
951100 Sjenpesn so3 - ubisaq swasAs pappaquz uo 3ov ¢ | S| HY

S00T UISUWIOL, ‘NG JuswoBuuwy pus
- BupresuyBug jepasnpu) HAN

IS PW @ UNJIBW ([TRW-0 S I P MMM
woyo01S ‘ASofouyda], Jo amusuy [eA0y - HILM
Uu31S9(UIYIRIA JO 1do(T ‘SOTUOMBYIIA] JO UOISIAL(]
UOSSYLIY "¢ pue ﬁvhwﬁhw,ﬁ ‘A

SANSSI [BINIRIC
u3ISap [0NU0))

5-0 ay ued

Jay RS ey,
951100 2jenpeln 523 — ubisag swasAs pappaquz vo 308 & | S| HY

G00T UISUI0T, ‘NG

Bunser nun

Bunsa) uoneibalu|

uoljeiqieD

3U1I99UI3 U [OIIUOD Paskq [dpoW I0J S[00],

uonesbajul wiope|d
/UOIIBIBUSK) BP0D

BuidAjo10.id |043u0) pidey

ubisap uonoung

95100 Emahmkmu. SO7= t@mmn .m&&&w.&mhhm&tm wogony &1S11HY

S00T USISUWIQL, NG

(440 K10100(en
O[S © J0j uresS 15oySy oY) ST JeYAL "SIQ[[ONU0D JoYJo oY) Suisn synsal oy aredwio) o
*SaL10J0a[e1) MO[S pue 1Se] 10]
swopqod urew oY) aIe 1eyM ‘SILI0d[EI) MO[S PUB ISB) 9S[) "9A0QR WOIJ St uJIsop
d Qwes Yy} YIIm 1Ie)s swasAsqns ay) YSnouy) Joo[Z[onuodsod 1 oy uedQ

‘ug1s sa3ueyo AJ100[oA oy} uoym suaddey jeym 9AISqO e
‘ZH 1°0 Aouanbaiy ‘1 opmyrjdwe ‘10je10ua3 [eusis oy} ur yndur aurs 0) JueyD) o
(d ‘doo[pasoo o1qrssod 1saise) oYl MOU ST IBYAN e

(m[oz 01DNdsT =51
91od doof pasoro sajse) ay) uay) I9)seJ sawn ()g-Og St own [duwes jo sson3 poo3 y e

s1o1owered[onuod
S+ 52 Ay uS1sap 03 }00[q (Id Y} 9sh Pue [01U0ISOJ 0) JoBeq 0D
=()D ‘uren) pue JuBISuOd Wil], ‘srojoweled [opowr om) Ay} puL] e

b4
A1 o1y urnuirs oy uadQ [[opowr & paou am uSISop paseq [OpOUW IO e

(d) ureS o[qeAryoe 1SaySIY AY) 9°1 JSAISLJ Y STIBYA, »
[euS1s [0NUOD 9Y) PUB ‘SONIOO[OA PUE SUONISOd PAINSEAW PUB QOUAIQJOI QAIISA(D) o
Sw ()] 08 = S, "0 sown Surjdwes JUoIJJIp YIIm STy} AI], o

uS1sopqe\yI0m\gdoqeneiN:D
d ¥ d s1ewered[onuod ay) 199[9S 0] A1) pue [01U0ds0d I JuInwis oy} uddQ .

o0c &~ g

95100 2jenpess 73 — ubisag swaishs pappaquiz wo 30n & | S11HY

G00T UISUI0T, ‘NG

pammnmEr e,
Lot Tea,
. ",
.
.
.

MH

MS

I0SUQS

1010N-Dd

=
O3pUq-H [¢

0
. .
ey o
. .

" ..

o .
B L e

juowdinba qerg

00 2 ; 4
§5.1100) 2jenpeln §23 — ublsag swasAs pappaquz vo 308 & | S| HY

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTISTZ2

Embedded Control Systems:
Integrated Control Design &
Implementation

Karl-Erik Arzén and Anton Cervin
Department of Automatic Control
Lund University
Sweden
{karlerik,anton}@control.lth.se

LUND

UNIVERSITY 1
© Lund University 2006
ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Session Outline

Control Loop Timing Parameters

Temporal Non-Determinism

— Input-Output Latency
- Sampling

Switching
The Jitter Margin
The Control Server Model

Arithmetics

2

© Lund University 2006

ARTIST2

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Assumptions

In this session we will focus on periodically sampled control

loops.
Et t

u(t) y(t)

Process
u, Yk
’ Uy, D-A [=-{ Computer [~ A-D Vi
. e o
.y ..
t

3

© Lund University 2006

ARTIST2 s
Continuous Controllers: Timing Parameters
hp_1 - hy, _
LF1 k-1 L% Lk o
S o S Lo
I 0 I 0] I
P N O =
1 | 1 -
Fr—1 Tk Tht1 t
« Task released at r, = hk
« Sampling latency L, o
. s e ;
- Sampling jitter J - L7 — L™
. . w € 1
« Sampling interval jitter Jx = RTEE — g
LR e]
« Input-output latency jitter Jic = Lj,* — L™

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Control Loop Timing

Classical control assumes deterministic sampling

e in most cases periodic

e sampling interval determined by desired closed loop
performance and the nature of the disturbances acting on
the system

e too long sampling interval or too much jitter cause poor
performance or instability

5

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Control Loop Timing

Classical control assumes negligible or constant input-output
latency

e if the latency is small compared to the sampling interval it
can be ignored

e if the latency is constant it can be included in the control
design

e too long latency or too much jitter cause poor performance
or instability

6

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Embedded Control Loop Timing

Embedded control systems with limited computing resources
implies temporal non-determinism

e multiple tasks compete for computing resources

e preemption by higher-priority tasks, blocking when access-
ing shared resources, varying computation times, non-
deterministic kernel primitives

Networked control systems with limited communication re-
sources implies temporal non-determinism

e network interface delay, queuing delay, transmission delay,
propagation delay, link layer resending delay, transport
layer ACK delay, ...

e lost packets

7

ARTIST2 O arague, Gason Ropublic. Apri 37, 008
Timing Relationships
Scheduling and o
Network parameters Loop Timing Pecr:f(())rr]rggnce
(T, D, Priorites, ~———————= Parameters T, (variance, rise time
Scheduling method, ! (latencies, jitter, ...) ¢ hoot '
Protocol,...) f 9 overshoot, ...
Complex relationship Complex relationship
Possibilities:

e Simulation — the TrueTime tool
e “Numerical Analysis” — the Jitterbug tool
e Theoretical results — e.g., the Jitter Margin

8

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Input-Output Latency

Always present in computer-based control systems.

y R
yit kg/-
el A
y(t V
YOV
LOOP
wait for clock interrupt; -
read analog input; Time
perform calculations; Control delay ull
set analog output; Ut
END; Ut)
U(tysn) —
u(t k)
L Control
delay
?me
9
Graduate Course on Embedded Control Systems
ARTIST2

Prague, Czech Republic. April 3-7, 2006

Rules of Thumb

A short latency is better than a long latency

A short, but jittery, latency is better than a long constant
latency

But, anomalies exist!

10

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Example from Kushner and Tobias (1969)

. _ 6
Plant: P(S) = G+D)(6+2)
Controller: C(z) =1 (unit negative feedback)
Sampling period: A = 1.42 + uniform sampling jitter

Unit white input noise. Cost function: J = Ey?(¢)

0 0.2 0.4 0.6 0.8 1
Sampling jitter / h

11

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Basic Questions

1. How robust is a control loop to temporal nondeterminism?

2. How do we implement the control loop in order to maxi-
mize the temporal determinism?

3. Can we use control techniques in order to improve the
temporal robustness?

12

© Lund University 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Implementing Periodic Controller Tasks

Three Main Issues:

1. How do we achieve periodic execution?
2. When is the sampling performed?
3. When is the control signal sent out?

13

© Lund University 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

1. How Do We Achieve Periodic Execution?

1. Using a static schedule (cyclic executive)?
e High temporal determinism but inflexible
e Does not require any sophisticated RTOS support

2. In interrupt handlers (interrupt service routines) associated
with timers

3. As self-scheduling threads in a RTOS/kernel using time
primitives such as sleep/delay/WaitTime (relative wait) or
sleepUntil/delayUntil/WaitUntil (absolute wait)

4. Using an RTOS/kernel with built-in support for periodic
tasks

e implement the tasks as simple procedures/methods
that are registered with the kernel
e not yet common in commercial RTOS

14

© Lund University 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Implementing Self-Scheduling Periodic Tasks

Attempt 1:

LOOP
PeriodicActivity;
WaitTime(h);

END;

Does not work.
Period > A and time-varying.

The execution time of PeriodicActivity is not accounted for.

15

© Lund University 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2
Implementing Self-Scheduling Periodic Tasks

Attempt 2:

LOOP
Start = CurrentTime();
PeriodicActivity;

Stop = CurrentTime();
C := Stop - Start;
WaitTime(h - C);

END;

Does not work. An interrupt causing suspension may occur
between the assignment and WaitTime.

In general, a WaitTime (Delay) primitive is not enough to
implement periodic processes correctly.

A WaitUntil (DelayUntil) primitive is needed.

16

© Lund University 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Implementing Self-Scheduling Periodic Tasks

Attempt 3:

t = CurrentTime();
LOOP
PeriodicActivity;
t =1t + h;
WaitUntil(t);
END;

Will try to catch up if the actual execution time of PeriodicAc-
tivity occasionally becomes larger than the period (a too long
period is followed by a shorter one to make the average cor-
rect)

Reasonable for alarm clocks, but perhaps not for controllers.

17

© Lund University 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

2. When is the Sampling Performed?

Two options:

¢ At the beginning of the controller task

- gives rise to sampling jitter and, hence, sampling
interval jitter

— still quite common
¢ At the nominal task release instants

- using a dedicated high-priority sampling task or in the
clock interrupt handler

- somewhat more involved scheme

- minimizes the sampling jitter

18

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

3. When Is the Control Signal Sent Out?

Three Options:

e At the end of the controller task
- creates a longer than necessary input-output latency
e As soon as it can be sent out

— minimizes the input-output latency
— controller task split up in two parts: CalculateOutput
and UpdateState
e At the next sampling instant

- minimizes the latency jitter
- gives a longer latency than necessary

- often gives worse performance, also if the constant
delay is compensated for

- delay compensation easy 1

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Minimize Input-Output Latency

General Controller representation:

x(k+1) = Fx(k)+ Gy(k) + G yrer()
u(k) = Cx(k)+ Dy(k) + D,y r(k)

Do as little as possible between AdIin and DaOut

PROCEDURE Regulate;

BEGIN
AdIn(y);
(¥ CalculateOutput *)
u := ul + Dxy + Drxyref;
DaOut (u) ;
(* UpdateStates *)
x := Fxx + G*y + Grxyref;
ul := Cxx;

END Regulate;

20

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Session Outline

Control Loop Timing Parameters

Temporal Non-Determinism

— Input-Output Latency
- Sampling

Switching
The Jitter Margin
The Control Server Model

Arithmetics

21

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Why is Input-Output Latency Bad?
A constant input-output latency decreases the phase margin.

Example: Loop gain (controller - process) with zero delay or one
sample delay:

Bode Diagrams

20
o
2 or /
()
E Cross—-over frequency
S -20
=
-40
-135F Phase margin
5 Zero delay
8 -180f 1
Q
8
T 225 One sample delay
-270 - ,
10 10 10

Frequency (rad/sec)
22

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Computing the Delay Margin *

We have

e Phase margin ¢,, = 32.4°
e Crossover frequency o, = 16.0 rad/s

How large delay L can be tolerated before we lose stability?

The delay is modeled by G(s) = e~
At crossover frequency: arg G(iw,) = arge %L = —@, L

To retain a positive phase margin, we must have

w.L < ¢p,
o T
16.0 L < 32.4°:%.
L < 0.035
* Since we have a sampled system, the analysis is only approximate 2
ARTIST2 i e g oS o

Delay Compensation

If the delay is constant and known, it is straightforward to
compensate for it in the design.

Delay compensation:

20

T I
[— - One sample delay + compensation

-20 M

Magnitude (dB)

-40

-135F

A0 T e AN (TR N

Phase (deg)
7

i AN
o5l New phase margin

-270 5 L \
10 10 10

Frequency (rad/sec)

24

© Lund University 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Compensation for Fixed Delays

Continuous-Time Designs
e Otto-Smith controller
Discrete-Time Designs

e Augment the plant model

25

© Lund University 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

The Smith Predictor

Prediction using the control signal rather than the output
derivative

u

Controller Process

= Model : —

Model without
delay

With perfect model the controller does not see any delay

The control performance the same as without any delay (with
the exception that the output will be delayed) %

© Lund University 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Pl versus Smith

Matsignal

. . !
Borvérde |
I

Styrsignal

[

However, a delay compensating controller can never undo the
delay

27

© Lund University 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

The Smith Predictor

Assume that the process is given by P(s) = Py(s)e " and that
we have a perfect model P(s) = P(s).

This gives the transfer function

pP,C

Y& =11pe

e R(s)

The same as if without any delay + a pure delay
Ideally the controller can be designed for without delay

In practice due to model errors and disturbances the delay
must be taken into account in the control design (a more
conservative design)

28

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Delays in Discrete Time

Include the delay in the discrete time model

dx(t)
dt

Ax(t) + Bu(t —1), T<h

x(kh + h) — Px(kh)

kh+h
= / eABR+h=3) By (s — 7)ds
kh

kh+t kh4h
= / eAFh+h=9) B ds u(kh — h) + / eARMh=) B ds u(kh)
kh kh+t

=T1u(kh — h) + Tou(kh)

29

© Lund University 2006

LTI system!

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

A state-space model (with extra state z(kh) = u(kh — h)

(e = (3 5) () (7)o

Can easily be extended to 7 > h
Design:

e apply arbitrary discrete time design using the augmented
model

e €.g., LQG-design

30

© Lund University 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

LQG with Deadtime Compensation

Designs a discrete-time LQG controller with direct term for a
continuous-time system assuming a constant sampling interval
h and a constant time delay 7.

Controller:

u(k) = L. (k|k)
fo(klR) = £(klk — 1) + K7 (y(k) — Cote(klk — 1))
%ol + 1) = oo (klE — 1) + Tou(k) + K (y(k) — Coe(lk — 1))

Used in most of our examples.

Jitterbug command: 1qgdesign

31

© Lund University 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Why is Jitter Bad?

e The controllers were designed assuming a constant 2
e The jitter can be interpreted as a process disturbance
e Very hard to analyze in the general case

— counter-intuitive anomalies can be found

e The Jitterbug toolbox can be used to evaluate the effect of
jitter for a given case

e Many jitter compensation schemes have been developed

32

© Lund University 2006

ARTIST2

Example: DC Servo with IO Latency and Jitter

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Process: P(s) =

LQG controller with or without delay compensation
Process noise R, = 1, measurement noise R, = 0.01
Cost function: J = E{y*(¢) + 0.001u2(¢) }

1

s(s+1)

Periodic sampling with A~ = 0.1

Constant or random (uniform distribution) 10 latency

33

© Lund University 2006

ARTIST2

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Constant Input-Output Latency

—— No delay compensation
— — Delay compensation

1.8}

16}

Cost

14}

121

0.02

0.04

0.06
Latency

0.08 0.1

34

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Input-Output Jitter

2 T T T
— No delay compensation
— - Compensation for average delay
181
161
@
o
O
14r
1.2} ==
1 s ‘ ‘ ‘
0 0.02 0.04 0.06 0.08 0.1

Input-output jitter

Note: having uniform jitter J/ is only slighly worse than having a
constant latency of L = J /2.

35

© Lund University 2006

ARTIST2 s e P A e
Compensation for Sampling Jitter

Rule of thumb: Jitter that is less than 10% of the nominal
sampling period need not to be compensated for

Two approaches:

e Gain scheduling
e Robust design methods

36

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Gain Scheduling

Assume that the sampling period can be measured

Store several sets of pre-calculated controller parameters in a
table with the sampling period as input parameter.

Switch controller parameters when the sampling period
changes

Assumes that the sampling period varies slowly, i.e., not so
realistic for jitter

May cause switching transients

37

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Gain Scheduling

What if the sampling period varies fast?

Parameterize the controller parameters in terms of the sam-
pling period

For example:
dx(t) x(tre1) —x(ts)
dt hy

Works often well for low order controllers, e.g., PID.

Ad hoc method with no formal guarantees

38

© Lund University 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Robust Design Methods

Design the controller to be robust against timing variations

Several robust design methods are available

Session Outline

Control Loop Timing Parameters

Temporal Non-Determinism

— Input-Output Latency
- Sampling

Switching
The Jitter Margin
The Control Server Model

Arithmetics

o H.
e Quantitative Feedback Theory (QFT)
e u-design
o ...
39
ART I ST2 Graduate Colgse on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

40

© Lund University 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2
Switching Controller Task Parameters

Jitter in sampling and latency

e stochastic changes in controller task parameters (period
and executon time)

e caused by the implementation platform

Sometimes it can be useful to change the controller task
parameters intentionally

e deterministic changes in order to adapt to changing work
loads

e generated by a controller when it changes modes (e.g.
changes its execution time demands)

e generated by a scheduler when the resources change

May cause both scheduling and control problems

41

© Lund University 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Mode Changes and Scheduling

A task set that is schedulable under fixed priority scheduling
before the mode changes occurs and after the mode change
has occurred, may not necessarily be schedulable during the
mode change (in transition phase)

Special mode change protocols are needed

Easier under EDF (Earliest Deadline First) scheduling than
under fixed priority scheduling

42

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Switching-Induced Instabilities

Deterministic changes of task parameters may lead to instabil-
ity

Example:
Process:
x =Ax+ Bu
y=Cx
where
A= 0 1 B=|" C=[1 0]
—10000 -0.1 1

The system is stable with poles in p;2 = —0.05 + 100:.

43

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Sampled with A; = 0.002s and A, = 0.094s

Xpr1 = Pixp + Liug
yr = Cixp

ie{1,2}
where ®; = 4%, T, = foh" e**Bds

Both discrete-time systems are stable

44

© Lund University 2006

ARTIST2 e e
Control Design:
State feedback controllers: u = —K;x
LQ-design:
o0
J = / (x(0)7Qux(t) + u(t)" Ru(f))dt
0
with
20000 0
Q. = R =50
0 20000
45
ART I ST2 Graduate Colgse on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Both closed-loop systems, ®; — I'; K;, are stable
e eigenvalues inside unit circle

However, the switching sequence hq,hq, ho,h,ho, hs,... gives
an unstable system

e eigenvalues of (®, — I',K,)?(®; — I'1K;) outside the unit
circle

5

0 5 10 15 20
Time

46

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

If we instead switch between the two controller stochastically using
the relative frequency 67% for he and 33% for Ay the resulting
system is stable (in the mean-square sense).

15

1

0.5

0

5 10 15 20
Time

The phenomenon can in principle occur also in other cases:

e change of sampling interval for the same controller
e change of input output latency

However, it is rare and so far we have not seen any “realistic”

examples where it has occurred. a7
ARTIST2 O arague, Gason Ropublic. Apri 37, 008

Switching & Controller State

Switching sampling intervals may also cause problems for
controllers on input-output form

u(k) = aly(k) + agy(k — 1) + a3y(k — 2) + blu(k — 1) + bglt(k — 2)

Remedy:

e only allow switches in stationarity

e use an observer (Kalman filter) to estimate the signal
values at the new points in time

48

© Lund University 2006

ARTIST2 s e o e
Session Outline
e Control Loop Timing Parameters

Temporal Non-Determinism
— Input-Output Latency

- Sampling

Switching

The Jitter Margin

The Control Server Model
Arithmetics

49

© Lund University 2006

Graduate Course on Embedded Control Systems

ARTIST2

Prague, Czech Republic. April 3-7, 2006

Inverted Pendulum Example

Suppose you want to control three inverted pendulums using

one CPU:

|
I
|
:
I
1,
1
1
1
I
|

Y2
ui uz
T CcPU -
Yo —m=] + - U
RTOS
y3 —=— U3

50

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Design

Discrete-time LQG controllers
Sampling intervals: (T4, Ty, T3) = (10, 14.5, 17.5) ms
Assumed execution time: C; = 3.5 ms

e Controllers designed assuming delay of 3.5 ms
- Jitterbug command: 1qggdesign
e Schedulable under both RM and EDF (with D; = T})
51
ART I ST2 Graduate Colgse on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006
Simulation 1 — No Interference
Pendulum 1 Pendulum 2 Pendulum 3
1.5 1.5 1.5
1 1 1
>
2 o5 0.5 0.5
3
0 0 0
-0.5 -0.5 -0.5
0 0.1 0.2 0.1 0.2 0 0.1 0.2
20 20 20
10 10 10
3 0 0 0
- -10 -10 -10
-20 -20 -20
0.1 0.2 0 0.1 0.2 0 0.1 0.2
Time Time Time
52

© Lund University 2006

ARTIST2 O e, Geoch Ropulic. Apr 37, 008
Simulation 2 — Rate-Monotonic Scheduling
Pendulum 1 Pendulum 2 Pendulum 3
15 15 15
1 1 1/\/
>
3 05 0.5 0.5
>
o "\
0 0 0
-05 -05 -05
0 01 02 0 01 02 0 01 02
20 20 20
10 10 10 J-
S
3 0 0 0
£
-10 -10 -10
-20 -20 -20
0 01 02 0 01_ 02 0 01 02
Time Time Time
53
ARTIST2 O bragu, Groch Republc. Apr 37, 2006
Simulation 3 — Earliest-Deadline-First Scheduling
Pendulum 1 Pendulum 2 Pendulum 3
15 15 15
1 1 1
>
2 05 0.5 0.5
3>
o "\
0 0 0
-05 -05 -05
0 01 02 0 01 02 0 01 02
20 20 20
10 10 10
S
3 0 0 0
=
-10 -10 -10
-20 -20 -20
0 01 02 0 01 02 0 01 02
Time Time Time
54

© Lund University 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2
Questions

e How much jitter is there under various scheduling policies?

— Simulation
- Jitter analysis

e How much jitter do the control loops tolerate?

— Simulation
- The jitter margin

Jitter analysis + the jitter margin give hard stability results

55

© Lund University 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2
Jitter Analysis — Rate-Monotonic Scheduling

e R; — worst-case response time of task i

Ri=C+ > [ﬁ C;
)

jehp(i J

e R? — best-case response time of task i
R?
RI=C+) [Tf—lw C;
)
e J; — worst-case input-output jitter of task i:
Ji=R;— R}

(Analysis for earliest-deadline-first scheduling also exists)

56

© Lund University 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

The Pendulum Example — RM Scheduling

Task T C R R J
1 10 35 35 35 0
2 145 35 7.0 35 35
3 175 35 140 35 105

57

© Lund University 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

The Delay Margin

e L, — delay margin, the longest delay a loop can tolerate
without becoming unstable

e Simple to compute
- Continuous-time system: L,, = ¢,/ ®.
* ¢, — phase margin [rad]
* @, — cross-over frequency [rad/s]

- Sampled-data system: need to compute a root locus
with respect to the delay

58

© Lund University 2006

ARTIST2

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Delay Margins in the Pendulum Example

The maximum delay is equal to the response time R

Compute the delay margin L,, for each controller:

Task T C R L,
1 10 35 35 98
2 145 35 7.0 125
3 175 35 140 146

Vi: R; < L,,;. Still, system 3 was seen to be unstable!

The delay margin is only valid for constant delays!

59

© Lund University 2006

ARTIST2

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

The Jitter Margin
Assumptions:
e Periodic sampling (high-prio/interrupt-driven)

e Arbitrarily time-varying input-output delay A € [L, L + J]
- L — constant part

- J — jitter
L J
I I —F—>1
0 — T
Input Output

Jitter margin J,, (L) — the largest o/ for which stability can be
guaranteed given a value of L

60

© Lund University 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Checking Stability

_?—>

P(s)

A

L ZOH|~{ K (2)

Continuous-time plant P(s)
Discrete-time controller K(z)

Arbitrarily time-varying delay A € [L, L + J]
Closed-loop system assumed stable for A = L

61

© Lund University 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Checking Stability

Include the constant delay L in the plant:

Y

P(s)

T— ZOH|~{ K (2)

e New plant P(s) = P(s)e™*t

o New time-varying delay A € [0, J]

62

© Lund University 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Checking stability

Rewrite the control output as one direct path and one error

path:
,%@, P(s)

o Difference operator 2

e Time-varying gate function A; (open at most J seconds
every sample)

63

ARTIST2 O orague, Gaech Repubic. Apil 37, 2008
Checking Stability

Apply the small gain theorem:

%5——?—»1 B(s)

Ay 7Z0OH

A A

-1
5 K@) - S

e L,-gain of gate function: ||A|| = VJ
e Ly-gain of the rest:

Palias(w)K(eiw)
H| = : .
” ” maé)lX {’ 1 + PZOH(ezw)K(eza))

‘eiw_ll}

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Checking Stability

The closed-loop system is stable if |[AJ|||H|| <1 <

1
< \/j|eia)_1

el voe oA

1 + PZOH(ei“’)K(eiw)

Here,

00 ~ . 2
L4 alias(w) = \/Zk:—oo ‘P (”(w + 2ﬂk)%)‘
e Pjou(2) is the ZOH-discretization of P(s)

(For small A, Pgias(@) ~ Pzou(e'®))

65

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Checking Stability

Graphical test:

Continuous-time plant, discrete-time controller

=~ — it | — - Stability bound

10

10 10 10 10
Frequency [rad/s]

66

© Lund University 2006

Graduate Course on Embedded Control Systems

ARTIST2 Prague, Czech Republic. April 3-7, 2006
Jitter Margin — Example

Jm(L) for pendulum controller 3:

9
£
-
£
[
S
]
1S
g
E
0 5 10 15
Constant delay L

e L, =146

e J,(35) =81

67
ARTIST2 i e g oS o

Deadline Assignment

Stability of the closed-loop systems can be guaranteed by
assigning relative deadlines

Di == Jm(Ll) + Li

and verifying that the resulting task set is schedulable.

(In our example, assigning such deadlines gives an unschedu-
lable system under fixed-priority scheduling)

68

© Lund University 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

The Pendulum Example — RM

e Compute the jitter margin J,,(L) for each task
e J<J,(L) = Stable

Task R L=R® J J,(L) Stable
1 3.5 3.5 0 4.4 Yes
2 7.0 3.5 3.5 6.4 Yes
3 14.0 3.5 10.5 8.1 No?

69

© Lund University 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

The Pendulum Example — EDF

Task R L=R® J J,(L) Stable
1 3.5 3.5 0 4.4 Yes
2 7.5 3.5 4.0 6.4 Yes
3 105 3.5 70 8.1 Yes

70

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Session Outline

Control Loop Timing Parameters

Temporal Non-Determinism

— Input-Output Latency
- Sampling

Switching

The Jitter Margin

The Control Server Model

[]
e Arithmetics
71
ARTIST2 O e et a7 oo

The Control-Scheduling Co-Design Problem

»{Inl Outl
Plant 1
In1 Outlp——
In2 Out2 P Inl Outl
In3 Out3f—
CPU Plant 2

In1 Outl
Plant 3

e Multiple plants controlled by a CPU with limited resources

e Controller and scheduling parameters should be chosen to
optimize the overall control performance

e Very complex problem, due to latencies and jitter

72

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

The Control Server

e Extra layer between the controller and the RTOS
e Provides temporal isolation between the controllers

Controller 1 Controller 2 Controller 3 Control design
Control Control Control /0, scheduling
server server server
RTOS Execution
73
ARTIST2 O arague, Gason Ropublic. Apri 37, 008

Co-Design Using Control Servers

The CPU is divided into many virtual CPUs:

— 50% In1 outt f— 30% In1 out1
Virtual CPU 1 Plant 1 Virtual CPU 2 Plant 2 _‘

\ 4
A 4

— 20% »in1 outtf—

Virtual CPU 3 Plant 3

e A share of the processor is assigned to each control task
e Each control loop can be analyzed independently
e Simple to do trade-offs between the loops

74

© Lund University 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

How to Achieve the Virtual CPUs?

Step 1: Constant bandwidth servers (Abeni & Buttazzo, 1998)
A constant bandwidth server (CBS) is described by

e a server period, T
e a server bandwidth (maximum utilization), U,

Scheduling mechanism (assuming one task per server):

e Based on earliest-deadline-first scheduling
Each period Ty, the task has the budget C, = U,T;
Normally, the task has the relative deadline D = T

When an overrun occurs (when the budget is exhausted)

- the task deadline is moved one period forward
- the budget is recharged to C;

75

© Lund University 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2
How to Achieve the Virtual CPUs?

e |deal processor sharing with CBSes requires T, — 0
e Overhead — oo

However, the observable behavior of a task only consists of

¢ the input actions
e the output actions

Step 2: Add time-triggered 1/O points

¢ |/O at highest (interrupt) priority
e Unaffected by the task scheduling

76

© Lund University 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

A Simple Control Server Task

I/O0 /1O 1/10 I/O
® @ ® []
1 1 f f il 4
0 T 2T 3T
e Period T

e CPU share U
¢ 1/O at beginning and end of each period

Behaves as a task executing alone on a CPU with speed U of
the original speed

77

© Lund University 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Control Server Tasks with Segments

Multiple segments can be used to reduce the I-O latency
Example:

e Calculate output
e Update state

CO us CO us CO U

78

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Execution

e One job is released in each segment
e Deadline at end of segment
e Scheduled by CBS with variable period = segment length

I 0] I 0]
[} ° ° °
Segments CcoO us (6{0)] us
% B
1 2 11 -2 RN
Jobs | f; i 7 _
Budget
¢
79
ARTIST2 O arague, Gason Ropublic. Apri 37, 008

Scalable Control Components

View the CPU share U as a design parameter. Example:

| o]
® ®
U =0.1: CcO us
>
0 L T
|9
U=02 Cco us -
0 L T

e Sampling period T < 1/U
e Input-output latency L « 1/U
e Performance J = J(U)

80

© Lund University 2006

ARTIST2

Graduate Course on Embedded Control Systems

Prague, Czech Republic. April 3-7, 2006

Cascade controller:

The cascade controller could be built from two control compo-

Controller

Process

Composite Control Tasks

nents with different rates
o T\ =2T, & U, =2U;
e Synchronization required

ARTIST2

Ctril

Ctrl2

81
Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006
Offsets
Communicating tasks can be synchronized using offsets:
0O | 0]
® ® ®
co us co us |
0O @] 0 0O
o o » o e o o o
co us co us |co us co us |
. } } A
¢2 T1 2T1
82

© Lund University 2006

ARTIST2

Control Experiments

Ball and beam process
Multirate cascade PID controller (PID1, PID2)
Sporadic disturbance task (Spor.)

Comparison of

- RM

- EDF

- Control server

83

© Lund University 2006

ARTIST2

Results — RM

.
10 15 20 25 30 35 40
im

.
0 5
Time
T T T T T T T T T
.
195 196 197 198 199 20 201 202 203 204 205
Time

84

© Lund University 2006

Graduate Course on Embedded
Prague, Czech Republic. Api

ntrol Systems
2006

Results — EDF

Position

Control
o

195 196 197 198 199 20 201 202 203 204 205
Time

85

University 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Results — Control Server

Position

Control
o

0 5 10 15 20 25 30 35 40

Time

‘

195 196 197 198 199 20 201 202 203 204 205
Time

PID1

86

nd University 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Session Outline

Control Loop Timing Parameters

Temporal Non-Determinism
— Input-Output Latency

- Sampling
e Switching
e The Jitter Margin
e The Control Server Model
e Arithmetics
87
ART I ST2 Graduate Colgse on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Computer Arithmetics

Control analysis and design assumes floating point arithmetics
(i.e. high range and resolution)

Hardware-supported on modern high-end processors (e.g.,
floating point ALUs (Arithmetic-Logic Units))

Representation:
+f x 2%
e f: mantissa, significant, fraction
e 2: radix or base
e e. exponent

88

© Lund University 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

IEEE 754 Standard

Used by almost all floating-point processors (except certain
DSPs)

Single precision (Java/C float):

e 32-bit word divided into 1 sign bit, 8-bit exponent, and 23-
bit mantissa

e Range: 27126 _ 2128
Double precision format (Java/C double):

e 64-bit word divided into 1 sign bit, 11-bit exponent, and
52-bit mantissa.

« Range: 271022 _ 21024

Supports infinity and NaN

89

© Lund University 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Floating-Point Emulation

Emulate floating-point arithmetics in software
Approaches:

e compiler supported
e manually
- e.g., floating point variables represented as C structs
- floating point operations in the form of a library
Problems:

e Code size becomes too large
e Slows down execution speed
e Non-trivial

920

© Lund University 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Fixed-Point Arithmetics

Use the binary word directly for representing numbers

Buot| Busrp| e by | by | by | by | by

MSB LSB

radix point

e MSB - Most significant bit
e LSB - Least significant bit
e WS - word-size

Unsigned versus signed

91

© Lund University 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Fixed-Point Arithmetics

Integer arithmetics:

e radix point to right of LSB

e 16 bits signed integer gives range —32768 < & < 32767
((_215) _ (215 _ 1))

Fractional arithmetics:

e radix point to right of MSB (signed)
e 0.10011001

Generalized fixed point arithmetics:

e application-defined radix point
e 1101.0110
e Scaling: x = £/2* — shifting the radix point

92

© Lund University 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Fixed-Point Arithmetics

Fixed point arithmetics: N bits (signed) integer
e Example: N=16 gives range —32768 < & < 32767
e We can use fixed scale to get decimals:
x = x/2°
E.g.,, £ =315 = x =1.2305

e Multiplication then requires rescaling:

z=x-y=2/2°5/2°=> 2= (%-9)/2°

z = 1.2305 - 2.4609 = 315/28 - 630/2% = 2 = (315 - 630)/2°
z=3.0281= =775

93

© Lund University 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Fixed-Point Calculations

Fixed point multiplication involves quantization

[TP Jafal T Iaf [T T 111 X
A

X
[TTaf e Tl T T T T 701 Y
A —
[laf Tafafal P Uafaf TIaf [T T 111 x-y
[T Taf Jafafaf [Jafa] [Jaf] z
7'y

Fixed-point addition is error-free
Quantization (truncation or rounding)
e modeled as “noise”

Overflow (wrap-around or saturation) o

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Example: Scalar Products

Many controllers and filters involve calculations of scalar products,
e.g.,

u=—Lx= —[ll lz l3][x1 X9 x3]T = —l1x1 — lzXQ - 13x3

Consider the vectors

a = (100 1 100)
b= (100 1 —100)

The true scalar product is 1

When computed in fixed point representation using a precision
corresponding to three decimal places, the result will be 0 (100 x
100 + 1 x 1 is rounded to 10000)

The result depends on the order or the operations.

To avoid this it is common to use higher resolution in the accumula-
tor and round to a smaller resolution afterwards.

95

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Fixed-Point Arithmetics Problems

¢ Quantization
Fixed-point values are rounded or truncated.

- Coefficient Quantization: Poles and zeros end up somewhere
else
- Signal (state) Quantization:
% Noise is added in each operation
x Quantization may cause signal bias
+ Quantization may cause limit cycles. Either in the output
only (LSB) or in the entire system through feedback.

e Overflow
Adding/Multiplying two sufficiently large numbers can produce a
result that does not fit into the representation.
- Scaling important both of variables and of coefficients.
- Overflow characteristics. Saturation or wrap-around? Hardware
supported overflow detection or not.

96

© Lund University 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Example: Coefficient Quantization

An example controller

24 —2.132% + 2.35122 — 1.493z + 0.5776
24 —3.223 +3.99722 — 2.301z + 0.5184

8-bit fixed point coefficients with x = £/2%, so

x € [-8.0...7.9375]

C(2) =

4 integer bits

Lfafap [el [Ix
A Afractional bits
24

97

© Lund University 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Example: Coefficient Quantization

e Original:
C(2) = 2t — 21323 + 2.3512% — 1.493z + 0.576
24 —3.22343.99722 — 2301z + 0.5184
e Quantized:
2t —2.1252% + 2.3752% — 1.5z + 0.5625
C(z) =

24 — 3.18823 4422 —2.31224+ 0.5

98

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Example

Pole-Zero Map

0.8 ©
0.6
0.4

0.2

Imag Axis
o
X

-0.2

-0.4

-0.6

-1 -0.5 0 0.5 1

Real Axis

99

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Issues: Realization of Digital Controllers

A digital controller

bo+big '+ +b,q"

_ -1 —
u(k) _H(q)y(k) - 1+a1q—1+a2q—2++anq

—y(k)

can be realized in a number of different ways with equivalent
input-output behavior (different choice of state variables)

Issues:

e number of storage elements (memory)

number of non-zero non-one coefficients

coefficient range

sensitivity towards coefficient quantization

sensitivity towards state quantization
- order of computations matters 100

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Direct and Companion Forms

u(k) = bu(k—i)— Y aiy(k—i)
=0 i=1
Not minimal (n + m states)

Companion forms (e.g., observable canonical form or controllable canoni-

cal form):
—ai 1 0 bl
k= 0 i am+ \ :]y(k)
—ay_1 o1 b
—a, O 0 0
u(k) = [1 0 .- o] x(k)
Minimal

Coefficients in the characteristic polynomial are the coefficients in the
realization. Sensitive to computational errors if the systems are of high

order and if the poles or zeros are close to each other. o1
ARTIST2 O orague, Gaech Repubic. Apil 37, 2008
Example

A linear system can be rewritten in many ways:

24 — 213823 +2.3512%2 — 1.493z + 0.5776
2+ —3.223 + 3.99722 — 2.301z + 0.5184

C(z) =

_ <22 —1.635z + 0.9025> (zz —0.4944z + 0.64>

22 —1.712z+ 0.81 22 —1.488z + 0.64
—5.396z + 6.302 6.4662 — 4.907

=1
+ 22 —1.712z+0.81 + 22 —1.488z + 0.64

Cy(2)
—») > — e ¥ e
Direct form Cascade form &6
Parellell form

102

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Cascade Form

Pole-Zero Map

()

0.5 e

Imag Axis
o

-0.5)

—_ 1 L i L
-1 -0.5 0 0.5 1
Real Axis
103
© Lund University 2006
ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Well-Conditioned Realizations

Parallel (diagonal/Jordan) and cascade (series) forms have
normally the best numerical properties.

If poles (zeroes) are far apart, direct form is usable.

Bode Diagram Bode Diagram
40, 30
20!
g 2 g
g 0 T = 10
H E 0
g &)
— - —c de form N=8
—— C(2) direct form N=8 10 (2) cascade form
20 20
0 0
48 45
g op—0w— g -
2-135 2 -135
180 180
225 n . 2250 .
10 10° 10° 10° 10 0

Frequency (radisec) Frequency (rad/sec)

Direct form Cascade form

104

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

State Saturation

For fixed point arithmetics, there is a balance:

e Too high gain in some part of system will cause state to
overflow.

e Too low gain in some part of system will cause a lot of
guantization errors.

Your digital system should have gain y ~ 1.

What is y? The gain of the system for the kind of input
signal we expect

105

© Lund University 2006

ARTIST2 Graduate Course on Embadded GantrolSystoms
State Saturation

Spread the gain:

A 4

A 4

—>y:0_2 y:5 — Bad accuracy

’)/:

Filter 1 Filter 2 Filter 3

A

— ¥y =5 » y=1 y = 0.2 —> Overflow

Filter 1 Filter 2 Filter 3
—>y:1 =y:1 :y:l —» Good
Filter 1 Filter 2 Filter 3

106

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

State Saturation

How to pair and order poles and zeros?

Jackson'’s rules (1970):

e Pair the pole closest to the unit circle with its closest zero.
Repeat until all poles and zeros are taken.

e Order the filters in increasing or decreasing order based
on the poles closeness to the unit circle.

This will push down high internal resonance peaks.

107

© Lund University 2006

ARTIST2 O g, Gaech Repuslic. Apoi 37, 2008

Problems and solutions:

e Coefficient quantization:

- Avoid direct forms and companion forms

- Always split systems into first- and second-order
systems (cascade, parallel form)

e State quantization:

- Can be modeled as noise sources after multiplicators
- Use double-size accumulator

e State saturation:

- Have equal gains (y =~ 1) for all systems
- Use Jackson’s rules for pole-zero sorting

108

© Lund University 2006

Wednesday 5" of April

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTISTZ2

Embedded Control Systems:
Control of Computing Systems

Karl-Erik Arzén and Anton Cervin
Department of Automatic Control
Lund University
Sweden

{karlerik,anton}@control.lth.se
LUND
UMNIVERSITY 1
ARTIST2 O orague, Gaech Repubic. Apil 37, 2008

Session Outline

1. Overview

2. Some General Observations
3. Control of Web servers
4. Feedback Scheduling of Controllers

2

© Lund University 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Control of Computer Systems

Apply control as a techniques to manage uncertainty and
achieve performance and robustness in computer and com-
munication systems.

One of the strongest increasing areas in real-time computing
(adaptive/flexible scheduling) and networking.
Applications in

e Internet protocols, e.g., TCP and extensions

¢ Internet servers (HTTP, Email)

e Cellular phone systems (power control, ...)

e CPU scheduling

Control used to manage finite resources (Resource allocation
as a control problem = feedback scheduling)

3

© Lund University 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Control of Computer Systems

New area

e However, feedback has been applied in ad hoc ways for
long without always understanding that it is control

Textbooks are emerging:

e “Feedback Control of Computer Systems”, Hellerstein,
Diao, Parekh, Tilbury

e Book by Stankovic, Abdelzaher, ...

4

© Lund University 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Control of Computer Systems

Control of computing systems can benefit from a lot of the
classical control results

e However, several new challenges

e First principle modeling not so natural

e Complex dynamics no longer the problem

5

© Lund University 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Example: Internet Protocol

The congestion control in TCP is one of the major reasons why
Internet has been able to expand at the current high rate and
still work properly.

e Congestion window (cw) decides how many un-ack’ed
packets a host can have

When cw below threshold it grows exponentially
When cw above threshold it grows linearly

Whenever there is a timeout the threshold is set to half the
cw and cw is set to 1.

Nonlinear behavior

6

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Example: Internet Protocols

Reference Measured
buffer fill level RED Network buffer fill level

Controller Router

Drog
probability

Random Early Detection (RED) of Router Overloads

e Prevent router buffers from overflowing
e Random drops of packets before the buffer is full

A lot of ongoing work on improvements of IP based on models
and theory rather than on ad hoc fixes

7

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Example: Lotus Notes E-Mail Server

Administrative

Tasks

Notes RPC
Client
en RPCs Records

S ™ Notes Server

. wl Server Log
Notes
Client

Client-server application
Interaction using Remote Procedure Calls (RPC)

Server log of RPC statistics

8

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Example: Lotus Notes E-Mail Server

Administrative
Tasks

Reference Maxlsors ————§—-———~—-———-—-—--—
RIS MaxUsers Actual 1 Measured

1
1
RIS RIS
: | gjeol’t\?esr H Sens o
: Target System

e Control the number of RPCs in the server (RIS) by adjusting
the maximum allowed users (MaxUsers)

- _F-

e First-order model derived from data:
y(k+ 1) = 0.43y(k) + 0.47u(k)
where y(k) = RIS(k) — RIS, and u(k) = MaxUsers(k) —
MaxUsers
e First-order LP-filter added to remove outliers
e Resulting second-order system controlled by Pl-controller

9

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Example: Apache HTTP Server

e HTTP requests from
clients to server iorer 1

e Pool of workers be- By
ing either Idle, Busy TN\
or Waiting (Persistent .
Connections) q_»ﬂm<

e MaxClients limits the
size of the worker pool

Connection
Close
—

7N RS
t Busy [™
2 VI \Wanl)

o KeepAlive determines K

N
t Idle)
N

how long a worker is
waiting before it be-
comes idle

10

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Example: Apache HTTP Server

Measured
CPU
Reference \
CPU Y KeepAlive
— aller »1 Apache >
Controller o] Web Server -
Reference A MaxClients
MEM
Measured
MEM

Control of CPU utilization and memory utilization
Too large MaxClients — large consumption of CPU and memory
Too large KeepAlive — under-utilization

Too small KeepAlive increases CPU consumption since connections
must be re-established for requests from the same user

11

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Example: Apache HTTP Server

Two first-order transfer functions derived from input-output data

CPU(z) = Guc(2)MC(2) + Gga(2)KA(2)

around a certain operating point
Pl-controller using KeepAlive control signal

Design using pole placement

12

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Example: Queuing Systems

Service » Service
Requests O_>00mplet|ons

Buffer Server
(Queue)

Work requests (customers) arrive and are buffered

Service level objectives (response time for request belonging to
class X should be less than Y time units)

Reduce the delay caused by other requests, i.e., adjust the
buffer size and redirect or block other requests

Admission control

13

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Example: Queuing Systems

Reference Buffer Measured
Response Time Size ; Response Time
—=| Controller F— qu}?;gﬁg -

!

14

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Example: Queue Length Control

Assume an M/M/1 - queuing system:

Service Service
Requests » O_>Oompletions

Buffer Server
(Queue)

e Random arrivals (requests), average A per second

e Random service times, average 1/u and exponentially
distributed

e (ueue containing x requests

Intuition: x — oo if A > u

15

© Lund University 2006

ARTIST2 e
Queue Length Control: Simulation
A=05 u=1
5 T T T T T T T T T
4 i
o
& 3f]
©
¢ LWFMM |
g
(o4
1
L A LT
0 5 10 15 20 25 30 35 40 45 50
Time
A=20, u=1:
60
.
S 40t
K%
(]
:
gzof
0 5 10 15 20 25 30 35 40 45 50
Time
16

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Queue Length Control: Model

Approximate the system with a nonlinear flow model (Tipper’s
model from queuing theory)

The expectation of the queue length x is

X

x:l_'ux—i—l

17

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Queue Length Control: Model
A=05 u=1:

5
al
=t
Ef
83y
(]
3 2
S
&
1+
0
0 5 10 15 20 25 30 35 40 45 50
Time
A=20, u=1:
60
=4
S 401
c
<
()
1
S 20t
(o3
0

.
0 5 10 15 20 25 30 35 40 45 50
Time

18

© Lund University 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Queue Length Control: Model

Control the queue length by only admitting a fraction u (be-
tween 0 and 1) of the requests

. — l _
* “ ﬂx+1

Admission control

19

© Lund University 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Queue Length Control: Linearization

Linearize around x = x°

Lety=x —x°

y= ly—ﬂ—(xo n 1)2y = Au — uay

20

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Queue Length Control: P-Control

u=K(r—y)
y=AK(r—y)— pay
(s+AK + pna)Y(s) = AKR(s)

AK

Gcl(s) = s-l—/lK—i—,ua

With K the closed loop poles can be placed arbitrarily

21

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Queue Length Control: P-Control

Simulations for A =2, u = 1, x° = 20 and different values of K

25 .
e e Iy
s . K=05
8 K=01
g
g 10F K=005
I3
sl
o . .
o 5 10 15 20 25 30 35 40 45 50
Time
1
s
S o8|
8 -
S o6l k=005
5 i
2 oul
§o.
£
202}
o
o 5 10 15 20 25 30 35 40 45 50

Time

e Stationary error
e Nonlinear system (control signal limitations)

22

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Queue Length Control: PI-Control

A
s+ ua

GP(S) =

1

GR(S) = K(]. —+ STi)

GrGr AK (s + 1)

Gu(s) = =
/(s) 1+GpGr s(s+pua)+ AK(s + T%)

With K and T; the closed loop poles can be placed arbitrarily

23

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Queue Length Control: PI-Control

Simulations for A = 2, u = 1, x° = 20, K = 0.1 and different
values of T;

N
o

N
S}

.
@
-
I
a
o

=
o

Queue length

o o

Admission control
o o o o

o N M o ® »

10 15 20 25 30 35 40 45 50
Time

=)
o

e Stationary error removed
e Tracking (anti-windup) important

24

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Queue Length Control: PI-Control on Process

= N
(5] (=]

[
o

Queue length

Time

Admission control

0 5 10 15 20 25 30 35 40 45 50
Time

25

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Example: Task Scheduling

Feedforward

~ Scheduler Tasks Resources

Feedback

Control CPU utilization by adjusting

e task periods
e task execution demands
e priorities
Setpoint = schedulability bound

Feedforward to handle mode changes

26

© Lund University 2006

ARTIST2

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Feedback Control Real-Time Scheduling

Stankovic et al (Univ of Virginia)

MissRatio =0

+ H

PID controller

Computed Tasks
MissRatio(t)
I
et i amsolctesss S
I
EDF :
Scheduler 1 CPU

Service Level

——————————————————————————————— tasks

Controller L
(SLC) ™~
1
o
: ; Accepted tasks
o
Admission T L. |
Controller __I____) **********
(AC) i
1
: Submitted
27

ARTIST2

EDF scheduler in combination with PID controller

PID that controls the task deadline miss ratio

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

e setpoint values = 0

The contol signal (u) is the total amount of CPU load that
should be added to or removed from the system

Two actuators:

e Service Level Controller: adjusts the service levels (execu-
tion time demands) of the accepted tasks

e Admission Controller (AC): decides if a new task should be
admitted to the system or not

Feedback Control Real-Time Scheduling

28

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Session Outline

1. Overview

2. Some General Observations

3. Control of Web servers

4. Feedback Scheduling of Controllers

29

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

General Observations

The plant under control rarely have any real dynamics or only
very simple dynamics

e static nonlinearities + time delays (possibly time-varying)
e first or (maybe) second-order dynamics

Dynamics introduced through the sensors
e Time averages

Event-based control seems a more natural approach than time-
based (though very few try to apply it)

30

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

General Observations

Seldom any measurement noise
¢ high gain feedback a possibility

Decentralized control in communication with local and global
contstraints

e control the resource allocation of tasks or jobs
e local minimum constraints
e global maximum contstraints

- schedulability conditions
- total available amount of resource limited (e.g. power)

31

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

General Observations

Much to learn from control engineering
e Control principles
e Model-based design
e Optimization-based design
Simple controllers often enough

e P I, Pl + feedforward, PD
e anti-windup to achieve good performance

Lack of first principles knowledge that can be used to derive models

e queuing systems an exception

- however, the models here are averages over long horizons
- how use these for control?

e models often derived from input-output data

32

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

General Observations

So far, primarily applications of classical linear and non-linear
time-driven control

It could be expected that there is room for special control
theory developed to better fit these types of application

The interest for this area is currently higher in the computer
community than in the control community (unfortunately)

33

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Session Outline

1. Overview

2. Some General Observations

3. Control of Web servers

4. Feedback Scheduling of Controllers

34

© Lund University 2006

ARTIST2 O Eragtee, Geoch Ropantir Ao 37, 2008
Outline
¢ Introduction
e Problem Formulation
e Queuing Model Based Absolute Delay Control
=— L. Sha, X. Liu, UIUC and Y. Lu, T. Abdelzaher, UVa
e Improved Feed-forward Prediction
=— Y. Lu, T. Abdelzaher, UVa and D. Henriksson, LTH
e Analysis and Design of Admission Controllers
— A. Robertsson, B. Wittenmark, M. Kihl, LTH
- Not covered in the lectures. See papers
35
ARTIST2 O eregies Canch Rapithie Ao 37, 2006

Control at Different Levels

phone net

36

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Controlling Computer Systems

e Feedback control is embedded in the TCP protocol in the
form of a sliding window mechanism.

e Introduced in the 70’s to solve the congestive failure
problems that had brought down the network.

e We have not experienced system-wide congestive failures
again even though the network has grown orders of
magnitude.

e This is a testament of the effectiveness of feedback control
in a highly dynamic, decentralized, and fast changing
environment.

e Can feedback control be applied to accurately control the
performance of web server systems?

37

ART I ST2 Graduate Colgse on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006
What to Control?
e Temporal
- local (at server) Fe i

- global (End-to- L 4
End/TCP)

e Spatial (routing)

Sender

Arrivals N gg!g
- '/X\) =

" Accepted

o

Rejected

%

We will focus on temporal control issues at the server.

38

© Lund University 2006

ARTIST2

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Web Service Performance Control

Server Web Server

threads Network 1/O -
Output to Clients
\->
- Resource
Access
/0 Queue

4

Echeduler /
D Request

CPU Ready Queue Dequeuing

Client Request
Queue
T 39
ART I ST2 Graduate Colgse on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006
Difficulties
e Web server systems are stochastic with highly non-linear

behavior.

- Response times increase exponentially with utilization
at heavy load.

- Input and output saturations.

The parameters of the stochastic process, e.g. arrival rate,
can change abruptly without warning.

How should the server system be modeled?
What is the control objective?

How can we influence the system, i.e., which actuators are
available?

40

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Web Server Modeling

Queuing theory models:

- Discrete-event models
- Markov chains

Control theory models:

- Non-linear flow models (continuous time)
- Discrete-time models

Differential (or difference) equation models traditionally
used in control theory have their limitations.

Works well in the case of heavy workload when the web
server can be modeled using fluid approximations.

41

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Control Objective

The main objective is to control the service delay of
individual requests.

Can be controlled directly or indirectly by manipulating the
server queue lengths.

The stochastic nature of the system requires averaging
(inherent in the non-linear flow model).

Want to be able to control both long-term averages and
transient responses.

42

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Actuator Mechanisms

e The difference between the service rate, i, and the arrival
rate, A, determines the delay experienced by the requests.

e Changing the arrival rate, admission control:

Arrivals gate

Accepted

o

Rejected

e Changing the service rate:
— Number of server threads
- Quality adaptation
- Dynamic voltage scaling e

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Outline

Introduction

Problem Formulation

Queuing Model Based Absolute Delay Control
— L. Sha, X. Liu, UIUC and Y. Lu, T. Abdelzaher, UVa

Improved Feed-forward Prediction
= Y. Lu, T. Abdelzaher, UVa and D. Henriksson, LTH

Analysis and Design of Admission Controllers
— A. Robertsson, B. Wittenmark, M. Kihl, LTH

44

© Lund University 2006

ARTIST2

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Control Objective

Want to keep the average timing delay experienced by

users close to a desired value, D,.

The delay specification, D,., relates to the QoS agreement

with the end user.

Delays consistently longer than the specification are

unacceptable to the users,

and delays consistently shorter than the specification

indicate over-provisioning of resources.

45

© Lund University 2006

ARTIST2

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Absolute Delay Control

»| Queuing

Arrival rate, A

Model

Delay ref, D,

Requests

Hrf
| y

AD Au u
Controller —>@—> Actyator

Measured delay, D

Y

Server

46

© Lund University 2006

ARTIST2

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Key ldeas

Use gueuing theory to model the non-linear behavior of
the web server.

Use the steady-state solution of the queuing model as
feed-forward control to bring the system to an equilibrium
point near the desired delay set-point.

Example: M/M/1 queuing model where D = ﬁ Use feed-
forward control, s = 5- + 4.

Use linear feedback control to suppress approximation
errors and transient errors around the operating point.

47

© Lund University 2006

ARTIST2

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Problems

Queuing theory predicts delay as a function of arrival and
service rates.

The prediction applies only to long-term averages.

Insensitive to sudden load changes and does not handle
transient responses very well.

Internet load is very bursty and may change abruptly in a
frequent manner.

Inaccurate assumptions in the queuing model, e.g.,
Poisson distributed arrival and service processes.

48

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Improved Feed-forward Predictor

Arrival rate, A

p| Improved | g Requests
Predictor
Delay ref, D,
Hrf
l p Y

AD Au u
— Controller —>@—> Actyator

Measured delay, D

Server

e Based on instantaneous measurements instead of long-
term averages.

49

© Lund University 2006

ARTIST2 O orague, Gaech Repubic. Apil 37, 2008
Notation
C = average number of processor cycles required by a request
i = server speed
N = number of waiting requests
D = average delay experience by the N requests

ND = total delay experienced by the N requests

A, = LM A, = the average arrival time

A

Q; = t,w — A; = average queuing time for the requests being
dequeued in the i'th sample

50

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

The Predictor

[)
TolA iB E
e .
52 . @
25 //%//////%//////%///////% '
8O |............ 77,]
>T
S ;
3 77, :
w :

tnow

[processing time
V77722 queuing time

BECF =ABCD + BEC—-ABFD

+N-1

ND = Nt N V) >

51

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

The Predictor

///////%/%’ //%//////%///////%
%/// %]

W///%///%///%
]
V]

cumulative arrivals
and departures

] t

tnow
N processing time
V2227772 queuing time
5 . NC . NC
D=tww—A+-—" =0+~
now 2“ Q 2#
p NC
ffr = o A
2(D, — Q) .

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

The Feedback Controller

e Event-triggered PI-controller with sliding window action.

e Need a long observation window, N, to accurately es-
timate the average values of arrival rates and processing
times of requests.

e Long observation window does not imply slow control
action. Control updated every N < N, event (request
departure).

e Quick update steps reduce the variance and control efforts
in each sample.

e The Pl-controller is implemented using gain-scheduling

- tuned for different operating points (arrival rate and
delay set-point, D,).

e Anti-windup crucial.

53

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Simulations

1 1

b)
08f

0.6 /
0.4
0

0.8

MMMW\ T il
/U\”\/UVU WY P

0.

o

Average delay (sec.)
Average delay (sec.)

. 0.4
10 20 30 40 50 60 0 10 20 30 40 50 60

Time (sec.) Time (sec.)
1 1
2 9
> 08r > 08
© ©
3 3 A
RPN ALYV %o VoA A oA B i Ak
5 E VWWU\, s o MR (MVEE A P L
2 g
< <
0.4 04
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time (sec.) Time (sec.)

e Performed using the TrueTime simulator.
e a: M/M/1, b: M/M/1 + PI, c: predictor, d: predictor + PI

54

© Lund University 2006

ARTIST2

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Experiments

Performed at an Apache web server test-bed at the

University of Virginia.

— Sensor: average response time of incoming requests
- Actuator: number of server processes

Load generation: Scalable URL Reference Generator

(SURGE).

Platform: Linux-based PC cluster on 100 Mbit Ethernet.

4 machines of which one ran the server with HTTP 1.1,
and the rest ran clients to stress the server.

http://www.cs.bu.edu/faculty/crovella/links.html

55

© Lund University 2006

ARTIST2

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Apache Web Server Session Flow

Accept

Connection Queue
Requests /
\

" Busy A

1 \\ (/ . A
(Busy 1 Wait |
\ r-— ’

\ Wa|t A

3

MaxClients

Connection

Close
—_—

56

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Results

a) b
. W’WMMM\ (k"f“”WvJWW . L\”M""N\JWW\;@J&NWW%mﬁiﬁr‘“ﬂwﬁ"ﬂ”‘f\ﬂw
/

|
o an, ol

number of request per sec
mumber of request per sec

-100 100 an st 0 am 1o 1200 1500 100 100 ki 500 o 90 10 a0 1500

time (sec) time (sec)

a) b

s

e feed-forward prediction "o+« feed-forward prediction

- feed-forward prediction

) F - feed-forward prediction :
| with P controller

with PT controller

average delay (sec)
average delay (sec)

— reference — reference

O R)
time (sec) time (sec)

57

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Outline

¢ Introduction

e Problem Formulation

e Queuing Model Based Absolute Delay Control
— L. Sha, X. Liu, UIUC and Y. Lu, T. Abdelzaher, UVa

e Improved Feed-forward Prediction
= Y. Lu, T. Abdelzaher, UVa and D. Henriksson, LTH

e Analysis and Design of Admission Controllers

— A. Robertsson, B. Wittenmark, M. Kihl, LTH

58

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Overview

Work being done in collaboration between the control and
telecommunication departments in Lund

Admission control-based approach
Based on the Tipper’s non-linear flow model, shown previously

Non-linear analysis taking actuator saturation and queue length
constraint into account

Resulting controller based on PI-control with anti-reset windup

59

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Session Outline

1. Overview

2. Some General Observations

3. Control of Web servers

4. Feedback Scheduling of Control Task Utilization

60

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Resource Allocation as a Control problem

In applications with multiple tasks or jobs the dynamic alloca-
tion of resources to the tasks can be viewed as a control prob-
lem in itself

Use feedback as a technique for mastering uncertainty and
guaranteeing performance

61

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Feedback Scheduling

Dynamic on-line allocation of computing resources
Feedback from actual resource utilization

In principle, any computing resource

Here,

e Scheduling of the execution of real-time tasks
e In particular, real-time controller tasks

62

© Lund University 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Optimal Feedback Control

Mostly ad-hoc approaches

Adjust sampling periods and/or execution time demands so
that the task set is schedulable

In control it is important to take the application performance
into account

e E.g. adjust scheduling parameters in such a way that the
global performance is optimized

Requires performance metrics that are properly parameterized

e E.g. quadratic cost functions (Jitterbug)

63

© Lund University 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Optimal Period Assignment

Assume that the performance of each controller i can be
described by a cost function J;(x;, ki, Tras)

e x; — the current state of plant i

e h; — the sampling period of controller i

e Trps — the optimization horizon of the feedback scheduler

The objective is to minimize the combined performance with
respect to the utilization bound:

min 2 Ji(xi, hi, Thns)
. e
subj. to ZE <U,

i=1

64

© Lund University 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Optimal Period Assignment, contd

e Convex problem if functions oJ;(x;, 1/ f;, Tras) convex in f;.
e Explicit solution if all cost functions have the same shape,

J=o; + ﬁlhf

N2 0 (C B
hi = (%) / Us,

e (G En B
L ﬁi Usp

e Linear cost functions (v=1) are often good approximations

65

© Lund University 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Linear-Quadratic Controllers

The cost function for an LQ controller is given by

J(x,h, Ts) = 27S(h)x + % (trS(h)Rl(h) + Jv(h))

e S(h) — solution to the LQ Riccati equation
e Ri(h) — sampled process noise variance
e J,(h) — inter-sample cost term

66

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Example: Integrator Process

e Process: dx = udt + dv,

- v, — Wiener process with unit incremental variance
e Design cost function: J = OT”’S x2(t) dt
e Resulting cost:

V3 \/§+3>
5 h

J(x,h,Tﬂ,s) = <x2— + Tﬂ;s 6

- Linear in h
— Explicit solution for multiple controllers:

h; G
' x2 + Tps(1++/3)

67

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Feedback Scheduling Structures

Feedforward

—
- Scheduler 1 Tasks 1 Resources
Feedback
Feedback
e Reactive
Feedforward
e Proactive

e Mode changes and admission control

68

© Lund University 2006

ARTIST2

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Feedback Scheduling Structures

s) Global 1
Utilization f———— 1o —————— | oep——— !

&l
Controller : 1 —
Local
i"|Controller Task 1
I .
1 1
!

Cascaded/Layered Structure:

e Global utilization controller that outputs the desired utiliza-
tion share for each task

e Local controllers that adjust the task parameters accord-
ingly

e Combine with reservation-based scheduling to provide
temporal protection, cp. the Control Server 6

© Lund University 2006

ARTIST2

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Indirect Feedback Scheduling

Most proposed approaches are indirect

By adjusting the scheduling parameters (T,D,C) one makes
sure that the task set is schedulable

The scheduling parameters determine the timing attributes
(latency, jitter) which in turn determine the control performance

Problem:

e Complex, nonlinear relationship between scheduling
parameters and timing attributes

e Non-trivial relationship between timing attributes and
control performance

70

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Direct Feedback Control

Use the instantaneous cost as a dynamic task priority
Fast sampling and cost evaluation (hardware/interrupt handler)

Always execute the task with the highest instantaneous cost

J Load disturbance

Example:
Open loop /L/\
unstable

system T T
| [
Control Control
71
ARTIST2 e o et o e

Event-based sampling / aperiodic system
Very little theory available

The sampling operation is no longer linear

72

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Feedback Scheduling Actuators

Two main actuators:

e Changing the task periods
e Changing the allowed execution times

Task periods:

e Easy for simple controllers, e.g. PID & state feedback

e More difficult for complex controllers

e Update the internal state of the controller appropriately
Execution times:

e Not applicable to most controllers

73

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Anytime Controllers

Controllers where the quality of the control signal is gradually
refined the more time that is available

Model-based Predictive Control (MPC)

e On-line convex optimization problem solved each sample
e Highly varying execution times

e For fast processes the latency may effect the control perfor-
mance considerably

e The control algorithm is based on a quality-of-service type cost
measure, cp instantaneous cost

e As long as a “feasible control signaltt has been found the itera-
tive search can be aborted before it has reached completion

e Maps well to the imprecise task model

- Mandatory part
— Optional part “

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Quality-of-Control

The control performance can in many cases be viewed as a
guality-of-service parameter

Several open issues:

e Specification of acceptable performance ranges
¢ Run-time negotiation methods

Research issue within the FLEXCON project

75

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

A Feedback Scheduling Structure

mode changes
Usp Y .
— Feedback | {hi} »| Control JObS> Dispatcher Ci
» Scheduler Tasks

Control system analogy:

o Setpoint: Desired CPU utilization, Uy,
e Measurement: Execution times, c;

e Control: Sampling periods, {&;}

e Feedforward: Mode changes

76

© Lund University 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Case Study: Set of Hybrid Controllers

The double-tank process:

Use pump, u(t), to control G)
level of lower tank, y(¢) o

—

Hybrid control strategy:

e PID control in steady state
e Optimal control for setpoint changes

77

© Lund University 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

PID Controller

P(t) = K (ysp(t) — 5(2))

I(t) = I(t—=h) + ai(ysp(t) — ¥(¢))
D(t) = aaD(t—h) + ba(y(t—h) — y(t))
u(t) =P()+ I(t) + D(t)

Average execution time: C = 2.0 ms

78

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Optimal Controller

1 axf® — bu
xa(x1) = a—((axl —bu)(1+ ln(axl—bﬂ)) + bu)
1—
T
. xf — X1 xf — X1
Vclose - lxg _x2] P(997/) lxg _x2]
+ more ...

Average execution time: C = 10.0 ms

79

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Nominal Behavior, A = 21 ms

Output
o
o [
- o
R
- -
|
|
!

Input
o
o wu K
T T T
! % !

0 0.5 1 1.5 2 25 3 3.5 4
2 T T T T T T T
c
o
=
S a1t .
5
o J] L J L
0 0.5 1 1.5 2 25 3 3.5 4

80

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Scheduling Experiments

e Three hybrid controllers execute on one CPU
e Nominal sampling periods: (h1,hs,h3) = (21,18,15) ms

e Potential problem: All controllers in Optimal mode =
U= <=170%

Compare strategies:

1. Open-loop scheduling
2. Feedback scheduling
3. Feedback + feedforward scheduling

e Co-simulation of scheduler, controllers, and double tanks
e Focus on the lowest-priority controller

81

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Open-Loop Scheduling

5015 | —————— - 7

o

=} [

© 01 —]
1 1
3 35 4
1 1 i
3 35 4

|
|
|
0 0.5 1 15 2 2.5
|
2.5

Input
o
ol

= JI-TL

Total
Utilization
~
T
1

o
o
w1
=
B
4l
N
N
ol
w
w
4l
IN

82

© Lund University 2006

ARTIST2

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Open-Loop Scheduling

T T T T
HHH{H”W[HH]H[H”W[”Hlﬂ[””WﬁﬂJJLﬂﬂJJL
0.5 0.6 0.7 0.8 0.

Task 3

o
»

9

Task 2
p— |

o
~
o
)]
o
o
o
~
o
e}
o
©

Task 1
[:

0.4 0.5 0.6 0.7 0.8 0.9
Time
83
ARTIST2 SradateCourseon Embedded Contol Systoms
Feedback Scheduler

A high-priority task, Trgs = 100 ms, Crgs = 2 ms
Setpoint: U, = 80%

Estimate execution times using first-order filters
Control U by adjusting the sampling periods

- Simple linear rescaling of {A;} such that U = U,
- Non-optimal
- No regard for current plant states

84

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Feedback Scheduling

jo
i)
8w
SN
FE
-]
85
© Lund University 2006
ART I ST2 Graduate Course on Embedded Control Systems

Prague, Czech Republic. April 3-7, 2006

Feedback Scheduling

FBS

0.4 0.5 0.6 0.7 0.8 0.9
: H H }|;
X
[%2]
© M
'_
Il Il Il Il
0.4 0.5 0.6 0.7 0.8 0.9
T T T T
: H H‘ MMLWH_MM
X
[%]
©
'_
Il Il Il Il —
0.4 0.5 0.6 0.7 0.8 0.9
T T T T
3 JUUL -H
X
[%]
© ’—”—II_”—"—II—I I_I ’—“”_I II
'_
Il Il Il Il
0.4 0.5 0.6 0.7 0.8 0.9
Time

86

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Feedforward

e Controller notifies feedback scheduler when switching from
PID to Optimal mode

e Scheduler is released immediately

87

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Feedback + Feedforward Scheduling

Input

Total
Utilization

88

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Feedback + Feedforward Scheduling

m
L
0.4 0.5 0.6 0.7 0.8 0.9
™
x
@
'_
0.4 0.5 0.6 0.7 0.8 0.9
N
X
@
'_
0.4 0.5 0.6 0.7 0.8 0.9
—
4
@
'_
0.4 0.5 0.6 0.7 0.8 0.9
Time
89
ARTIST2 O eregies Canch Rapithie Ao 37, 2006
Control Performance Evaluation
0.02 Accumulated loss due to scheduling V1
0.015F
Open-loop
0.01f
0.005 Feedback
Feedback + feedforward
O L L L
0 20 40 60 80 100
Time [s]
90

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTISTZ2

Embedded Control Systems:
TrueTime & Jitterbug

Anton Cervin and Karl-Erik Arzén
Department of Automatic Control
Lund University
Sweden
{anton,karlerik}@control.lth.se

LUND

UNIVERSITY 1
© Lund University 2006
ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Session Outline

e TrueTime introduction
e TrueTime laboratory session
e Jitterbug overview & demonstration

2

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

TrueTime — Main lIdea

Co-simulation of controller task execution, network
transmissions, and continuous plant dynamics.

The approach enables us to:

investigate the true, timely behavior of control loops

develop dynamic compensation schemes

experiment with flexible scheduling techniques
simulate event-based and networked control loops

3

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Simulink Blocks

[SIEIE

File Edit Wiew =emai Help

Tl (e
snd kv
Infernupts snd 1

Schedle Schedule

Ry

Hanitors

TrueTime Metwark

TrueTime Kernel

TrueTime Block Library 1.2
Copyright (&) 2004 Dan Hertiksson and Anton Cervin
Department of Automatic Contral, Lund University, Swedsn
Please direct questions and bug reports to: trustime@control lth.se

e Offers a Kernel and a Network block

— Simulink S-functions written in C++

- Event-based implementation using the Simulink built-in
zero-crossing detection

4

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

The Kernel Block

¢ Simulates an event-based real-time AD oA
Snd
ke r n el Interrupts

Schedule
Rev

Monitors

o Executes user-defined tasks and inter-
rupt handlers

TrueTime Computer
e Arbitrary user-defined scheduling policy
e Supports external interrupts and timers

e Supports common real-time primitives
(sleepUntil, wait/notify, setPriority, etc.)

e Generates a task activation graph

e More features: context switches, overrun
handlers, task synchronization, data
logging

5

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Tasks

e Used to model the execution of user code (mainly control
algorithms)

e Tasks may be periodic or aperiodic and are triggered by
creation of jobs

e For periodic tasks the kernel sets up an internal timer to
periodically create task jobs

e Each task is described by a number of (static and dy-
namic) task attributes and a code function

ttCreateTask(name, deadline, priority, codeFcn, data)
ttCreateJob(taskname)
ttKillJob(taskname)

ttCreatePeriodicTask(name, offset, period, prio, codeFcn, data)

6

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

TrueTime Code

Three choices:

e C++ code (fast)
e Matlab code (medium)
e Simulink block diagram (slow)

7

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Code Execution Model

Execution of user code

N
ol @ o

| »

Simulated execution time

e Execution is modeled by a code function (C++ or MATLAB m-
file) consisting of a sequence of segments

e The execution time of each segment is returned by the code
function (may be data-dependent, random, etc.)

e User code executed at the beginning of each segment

e The task can only interact with other tasks and the environment
at the beginning of each code segment

8

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Example of a Code Function

function [exectime, data] = P_Ctrl(segment, data)
switch (segment),
case 1,
r = ttAnalogIn(1); % Read reference
y = ttAnalogIn(2); % Read process output
data.u = data.K * (r-y); % Compute and store control
% signal in task data
exectime = 0.002; % Return execution time
case 2,
ttAnalogOut (1, data.u); % Output control signal

exectime = 0.001;

case 3,
exectime = -1; % finished
end
9
Grad Ci Embedded C / S
ARTIST2 " beague, Grash Repubiis Apw 87, 2008

Initialization

Each kernel block is initialized in a script (block parameter):

nbrInputs = 3;
nbrQutputs = 3;
ttInitKernel (nbrInputs, nbrOutputs, ’prioFP’);
periods = [0.01 0.02 0.04];
code = 'myCtrl’;
for k=1:3
data.u = 0;
taskname = [’Task ’ num2str(k)];
offset = 0; % Release task at time O

period = periods(k);

prio = k;

ttCreatePeriodicTask(taskname,offset,period,prio,code,data);
end

10

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

The Network Block

‘:é. al 50 <
Real-Time Network (mask) (link) —‘

— il

e Supports six common MAC layer |-raanes
S Netuorctyse [ESATCD e |
p0|ICIeS' Mumber of nodes
4
- CSMA/CD (Ethernet) B
_ CSMA/AMP (CAN) I;rs{n:;cess‘;mg.uemy ©
— Token_based I;c;s;;;oc_eas\ngdalay(‘s)
_ FDMA P;Aﬁinframesizetbytesj
TDMA Mév(fyame’size (Bytes)
B . I:e::a overhead fbytes)
- Switched Ethernet o
e Variable network parameters
e Generates a transmission schedule

ok | cancel | Heln | epply |

11

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Implementation Details

e TrueTime implements a complete real-time kernel with

- A ready queue for tasks ready to execute
- A time queue for tasks waiting to be released
- Waiting queues for monitors and events
e Queues manipulated by the kernel or by calls to kernel
primitives
e The simulated kernel is ideal (no interrupt latency and no
execution time associated with real-time primitives)

- However, possible to specify a constant context switch
overhead

12

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Scheduling Policy

e The scheduling policy of the kernel is defined by a priority
function, which is a function of task attributes

e Pre-defined priority functions exist for fixed-priority, rate-
monotonic, deadline-monotonic, and earliest-deadline-first
scheduling

e EDF priority function

double prioEDF (UserTask* t)
return t->absDeadline;

void ttAttachPrioFcn(double (*prioFcn) (UserTaskx))

13

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Scheduling Hooks

e Code that is executed at different stages during the
execution of a task
- Arrival hook — executed when a job is created

- Release hook — executed when the job is first inserted in
the ready queue

- Start hook — executed when the task executes its first
segment

- Suspend hook — executed when the task is preempted,
blocked or voluntarily goes to sleep

- Resume hook — executed when the task resumes execution
- Finish hook — executed after the last code segment

e Facilitates implementation of arbitrary scheduling, such as,
e.g, server-based scheduling

ttAttachHook(char* taskname, int ID, void (*hook) (UserTaskx*))
14

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Overrun Handlers

e Two special interrupt handlers may be associated with
each task (cf. Real-Time Java)

- A deadline overrun handler
— An execution time overrun handler

e Can be used to dynamically handle prolonged computa-
tions and missed deadlines

e Implemented by internal timers and default scheduling
hooks

ttAttachDLHandler (taskname, hdlname)
ttAttachWCETHandler (taskname, hdlname)

15

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

A Real-World Application

"Embedded Systems

INSTITUTE

e Multiple processors and net-
works

e Based on VxWorks and IBM
Rational Rose RT

e Using TrueTime to describe
timing behavior

e Has ported TrueTime to a
mechatronics simulation
environment

"We found TrueTime to be a great tool for describing
the timing behavior in a straightforward way.”

16

© Lund University 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

TrueTime Limitations

The network block only supports data-link layer protocols
— TCP transport protocol available as an example

A global clock (= simulation time)
— No support for local clocks with offsets and drift
How decide the execution times?

- Integration with compiler/WCET tools?

How integrate legacy code?

How support automatic code generation from TrueTime
models?

- Generate POSIX-thread compativle code?
- Generate monolitic code (“TrueTime Virtual Machine”)?

Based on Matlab/Simulink

17

© Lund University 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

More Material

e The toolbox (TrueTime 1.2) together with a complete
reference manual can be downloaded at:

http://www.control.lth.se/~dan/truetime/

18

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Session Outline

e TrueTime Introduction
e TrueTime Laboratory Session
e Jitterbug Overview & Demonstration

19

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Example: PID-control of a DC-servo

Intended to give a basic introduction to the TrueTime
simulation environment

Consists of a single controller task implementing a stan-
dard PID-controller

Continuous-time process dynamics

1000

Gls) = s(s+1)

Can evaluate the effect of sampling period and input-
output latency on control performance

20

© Lund University 2006

ARTIST2

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Example: Three Controllers on one CPU

Three controller tasks controlling three different DC-servo
processes

Sampling periods A; = [0.006 0.005 0.004] sec.

Execution time of 0.002 sec. for all three tasks for a total
utilization of U = 1.23

Possible to evaluate the effect of the scheduling policy on
the control performance

Can use the logging functionality to monitor the response
times and sampling latency under the different scheduling
schemes (connection to Jitterbug)

ARTIST2

21

© Lund University 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Example: Networked Control System

DC Servo

b

Sensor Actuator
Node Node

A i S

Network

I e H

Controller Disturbance
Node Node

Time-driven sensor node

Event-driven controller node

Event-driven actuator node

Disturbance node generating high-priority traffic

22

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems

Prague, Czech Republic. April 3-7, 2006

Example: Networked Control System

DC Servo

v

Sensor Actuator
Node Node

T T H

Controller Disturbance
Node Node

e Will try changing the bandwidth occupied by the distur-
bance node

e Possible to experiment with different network protocols and
network parameters

e Can also add a high-priority task to the controller node

23
ART I ST2 Graduate Colgse on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006
Session Outline
e TrueTime Introduction
e TrueTime Laboratory Session
e Jitterbug Overview & Demonstration
24

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Jitterbug

e MATLAB toolbox
e Stochastic analysis of (mean) control performance

e Control loop described by connected continuous-time and
discrete-time linear systems

e Execution of discrete-time systems described by stochastic
timing model (random delays)

e Systems driven by white noise
e Performance measured by quadratic cost function

N Y
J_}%T/O 7 (1)@ (t) dt

25

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Continuous-time systems

L r I

Continuous or discrete input u

Continuous output y
Continuous white noise v

Continuous cost J

26

© Lund University 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Discrete-time systems

XXX X v X
VR |
S P |

Tt

Continuous or discrete input u, sampled
Discrete output y, updated at instants X

Continuous cost J

at instants X

Discrete white noise v, updated at instants X

27

© Lund University 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Timing Model
e Describes the timing of the triggering
of the discrete systems

e Each node can trigger one or more
systems

e The first node may be periodic or
aperiodic

e Delays between nodes described by
discrete probability distributions

P(7)

@ Hi(2)
T1
(2 HE:0)
T2
e Hs(2)

28

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Jitterbug Model — Example

Signal model: Timing model:

g @
P(s)

9 S(2)
(3)-E®

e L, — sampling latency
distribution

e P(s) — process

e S(z) — sampler _
e L;, — input-output la-

e K(z) — controller/actuator tency distribution

29

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Jitterbug example script

Ptaul 1;
Ptau2 [zeros(1,round(L/dt)) 1];
N = initjitterbug(dt,h);
% timegrain dt, periodic system with period h
N = addtimingnode(N,1,Ptaul,2);
% add timing node with delay distribution to next node
= addtimingnode(N,2,Ptau2,3);
N = addtimingnode(N,3);
% add timing node with no next node

=

30

© Lund University 2006

ART I ST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

N = addcontsys(N,1,plant,3,Q,R1,R2);
% add cont-time LTI system taking its input from syst 3
N = adddiscsys(N,2,1,1,2);
% add disc-time LTI system (sampler) taking its input
% from system 1 and executing in timing node 2
N = adddiscsys(N,3,ctrl,2,3);
% add disc-time LTI system (controller) taking its
% input from system 2 and executing in timing node 3
N = calcdynamics(N);
% Calculate internal dynamics
J = calccost(N)
% Calculate (and display) cost

31

ARTIST2 e e ST
Example — “simple”
Signal model: Timing model:

R
! P(s) Y @ S(z2)

Lio

K(2) |- S(2) (2)

e P(s) = -1 (inverted pendulum)
e S(2)=1

e K(2) = lqgdesign(P,...)

32

© Lund University 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Example — “simple”

Investigate performance with

e different sampling periods

e |-O jitter with/without delay comp.

e constant I-O latency with/without delay comp.

33

© Lund University 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

More Complicated Cases

p(2) /P (3)
T2

dYr<t Yr>t

random choice of path

choice of path depending on delay

different update equations in different nodes

aperiodic systems

34

© Lund University 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2
Pros and cons of Jitterbug

Pros:

e Analytical performance computations
e Fast to evaluate cost for wide range of parameters
e Guarantees stability (in mean-square sense) if J < oo

Cons:

e Simplistic timing models

Only linear systems, quadratic cost
Hard to know the latency distributions

Cannot handle dependencies between periods
Based on Matlab

35

© Lund University 2006

te Course on Embedded Control Systems
ech Republic Aprl 2-7 2006

M. Térngren and B. Eriksson
Division of Mechatronics, Dept. of Machine Design
KTH - Royal Institute of Technology, Stockholm
www.md.kth.se e-mail: martin@md.kth.se

KTH Industrial Enginsering

3/21/2006

and Management ©M. Toérngren 2006

ARTISTZ

Graduate Course on Embedded Control Systems
Prague ech Pepublic Aprl 2-7 2

D'éployment

 Pronunciation: di-'ploi,
» Function: verb

» Etymology: French déployer, literally, to unfold, from
Old French desploier, from des- dis- + ploier, plier to

fold
» Uses: N _ _ o
- to extend (a military unit) especially in width
- to place in battle formation or appropriate positions

- to spread out, utilize, or arrange especially strategically

Here: Used to in the context of ECS “implementation”

3/21/2006
©M. Térngren 2006

3/21/2006 9:31 PM

3/21/2006 9:31 PM

ARTIST2

Graduate Course on Embedded Control Systems
Prague ech Pepublic Aprl 2-

Outline

ECS implementation issues and trade-offs

— Technical issues in controller implementation,
trade-off examples

— Platform selection: Choice of RTOS and processor
Development approaches:

— Traditional, CBD, MBD, platform based

— Tool support for deployment

Application example

— Smart-1 spacecraft

Concluding Remarks

A R T| S T2 Graduate Course on Embez‘ided Qontra/ Systems

A sémp]é of technical issues in ECS
design and implementation

» Discretization

e Quantization

* Delays

« Jitter in delays and periods

» Aliasing

» Triggering and tasking partitioning, scheduling
» Code implementation

» Sensor and actuator limitations
 Calibration/diagnostics

 Error detection and error handling

» Check lists for well known pitfalls, e.g. RT and parallel
programming faults

©M. Térngren 2006

ARTI S T2 Graduate Course on Embedded Control Systems

Controller implementation and co-design

T |

Requirementsh T(K), h(k) Optimization issues:
EGUIrEMmEn' memory- .| = Distribution, task partitioning
accuracy,| |CONSUAINLS | 46 giryjctyring
reliability « Other functionality
etc.
* Trade-offs
Platform

2 B

3/21/2006
©M. Toérngren 2006

ARTIST2

Graduate Course on Embedded Control Systems

__oo=on -T===~__ [Driver in the loo
"Vehicle siability | -Suspension| [Diagriasfiss| P

)

\ \

i

! Local control Local control
N function fupction -

.
N
N

Conmputer ->-| Cxive unit |—>|Aduaor(s) |_>,\
hardvare [| ,
&
software \4-|59m|mnd. |4—-|$rm(s) l4_,
- Gateway
- ,,_I Driveunit I-,'ma(s) | Vehicle
i = P el (I \I Mechanics
&
software \<-_I Signd mnd|<—_| Sensor®) |<,
T Pl ol
p hadvare [| ;
and
software \q._lﬁgmlomd_] s |</
12006

3/21/2006 9:31 PM

Graduate Course on Embedded Control Systems

ARTIST2

Mapping related terms

» Assignment in space and in time
— Computations and communciation = resources
— Scheduling per resource (nodes & communication)

. Partitioning node software into tasks
Affecting (among others)
- Resource loads

- E2e delays

- Single points of failure
- Maintenance
Constrained by

- Organization

- Policies

Local control ‘ Locai control
function

fupction -
-~ Sensor | [Actuator | [Sensor-f iSensor | [Actuator |

Vehicle
~ Mechanics

3/21/2006 9:31 PM

- Legacy, technology%w‘g

©M. Toérngren 2006

ARTISTZ2 Graduate Course on. Embedded Control Systems
-7 2006
| Model following
E \ control ;
» [
\
|
% |
Trajectory | A References Gain Actua- || Controlled | Output
planner by vector tor]I system
| 1 L |
\
\ |
\ I
\ " |
\ |
N State observer |_ X
X |
\
\ I
5 |
N I
\ ! B
Planner Message Controller
-
thread queue thread
3/21/2006
©M. Térngren 2006

A R T| S T2 Graduare Course on Embezided Contro/ Systems

Partltlonmg guidelines and example

Actual partitioning Example reason
» Planner and controller in (i) Runs at different rates.
separate threads (ii) Set-points, over network
» Controller divided into (iii) To ensure constant delay and
two threads. fixed sampling period
~different timing requirements in one
activity.

* Needs and possibilities also depend on

- Criticality of functions ‘ \
- Dependencies (coupling and cohesion) = lj"" A
- Development/production modularization
- Type of operating system & tool support

A R T| S T2 G/aduate Cawse an Embedded Control Systems

Controller |mp'lementat|on trade-offs

Goal: minimize control delay, provide high accuracy in
computations, at a given cost; where is the catch?

The trade-offs: among them the achievable accuracy, required
memory size and execution speed are typically in conflict.

Memory A Memory Memory
Time Time Time
Accuracy AccC. Acc.
(@) Increase in computational (b) Increase in speed (c) Scarce memory
accuracy desired desired

©M. Térngren 2006

3/21/2006 9:31 PM

ARTIST2

Graduate Course on Embedded Control Systems
OraaelCrech R i April 3-

Controller Implementation
optimization, trade-off examples

* Improved accuracy:
- better algorithm; typically requires more execution
time and memory
* Improved timing:
- e.g. through simpler algorithms (may result in
reduced performance), function in-lining requires
more memory

* Less memory usage:
- e.g. Int16 rather then int32; reduced resolution, less
accurate results

A R T| S T2 Graduate Course on Embez‘ided Qontra/ Systems

Controller code optimization, cont.

* Minimize computational delay by code structuring
1. Sample
2. Compute Control Output
3. Actuate
4. State update

» Use of hardware specific instructions --> Drawback: maintenance

 Fixed point operations instead of hardware floating point support
- reduced cost, but reduction in accuracy

» Logging/debugging problem: affects execution time!

Code generation: can facilitate controller implementation optimization

©M. Térngren 2006

3/21/2006 9:31 PM

3/21/2006 9:31 PM

ARTIST2

Graduate Course on Embedded Control Systems
Prague ech Pepublic Aprl 2-

Outline

ECS implementation issues and trade-offs

— Technical issues in controller implementation, trade-off
examples

— Platform selection: Choice of RTOS and processor
Development approaches:

— Traditional, CBD, MBD, platform based

— Tool support for deployment

Application example

— Smart-1 spacecraft

Concluding Remarks

ARTISTZ

Graduate Course on Embedded Control Systems

Chéosirig electronics technology

 Off-the shelf control systems, for example,
- Programmable logic controllers (PLC)

e Own design
- Analog (low flexibility, only simple functionality)
- Microprocessor based
- Customized solution for large series
AS | C (Application Specific Integrated Circuit)
- Flexible programmable hardware
FPGA (Field Programmable Gate Array)

» Choosing a microprocessor
- Micro-controller, DSP, general purpose
- Fixed point vs. floating point
- 1/0, memory and communication capabilities

©M. Térngren 2006

3/21/2006 9:31 PM

ARTIST2

Example trade-offs in choosing
processor

Choosing a low cost micro-controller:
+ Cheap microcontroller, low cost production
+ Use on-chip memory, no external circuits, robust solution
- Scarce resources: Little room for later functional extensions
- Can performance requirements be met?
- Increased development (and possibly maintenance) costs

Choosing a highly performing processor:
+ Easier to solve performance and flexibility requirements
+ Reduced development (and possibly maintenance) costs
- Increased production cost
- Power consumption, fan

ARTISTZ2 Grad Course a mez‘idd Qonfca/ z‘ems
Floating point support in hardware?
Floating point hw Fixed point hw

Development Lower - facilitated Higher - more difficult

cost design design; scaling effort,
quantization errors

Production cost | Higher Lower

Maintenance Improved Higher - more effort

cost

Speed ‘High’ Trade-off between accuracy,
speed and required memory

Real-time Care with concurrency | Usual considerations

handling
©M. Térngren 2006

3/21/2006 9:31 PM

A R T| S T2 Graduate Course on Embedded Control Systems
Prague (zoch Po ic April 3-

Selectin;cj't'h“e software platform: RTOS

Has to be determined based on the actual requirements at hand!

Technical requirements:

« Static vs. dynamic configuration?

 Single processor, communication centric, I/0O-intensive?

» RTOS footprint ~ resources required

* Critical vs. non critical? Error detection & handling by RTOS?

Other criteria:

* Costs - Development, Production, Maintenance
- €.9. Free-source Linux vs. license cost/system
- Tools, documentation, competence

» Standards and compatibility? _
- Specific domains may require compliance, e.g. to OSEK
- Certification requirements

ARTISTZ

Graduate Course on Embedded Control Systems

'RT'O'S.; \/{/hen, what, how?

* Many categories of RTOS’es — reflecting the broad scope of
applications.

» Major benefits of using an RTOS: reduced cost and increased
reliability

» The need for an RTOS increases with the product complexity
(amount of activities, types of timing requirements, etc.)

* Many companies developing embedded systems still use
proprietary kernels

Is the answer open source or standards?

Research trends instead point towards increased high level
configuration and synthesizing the kernel as required

©M. Térngren 2006

ARTIST2

Graduare Course on Embedded Cuntm/ Sy stems
£ep Ap, = 6

Outline

ECS implementation issues and trade-offs

— Technical issues in controller implementation, trade-off
examples

— Platform selection: Choice of RTOS and processor
Development approaches:

— Traditional, CBD, MBD, platform based

— Tool support for deployment

Application example

— Smart-1 spacecraft

Concluding Remarks

3/21/2006

Broad variety of apphca‘rlons &
different requirements:

- from critical to non-critical

- long to short life time, etc.

Room for many methodologies:
- software vs. control engineering
company traditions e
- fop- down/boﬁom up/pla‘rform based P\

‘ 6 .ﬁ’ 4
(»«1 Combustion

englne 3/21/2006
©M. Térngren 2006

3/21/2006 9:31 PM

10

ARTIST2

Graduars Course on Embedded C ontrol ¢y stems

Statlc Vs. dynamic configuration

* Pre run-time configuration of software and hardware

« Example: A system controlling two motors, no more,
no less, configured into e.g. three tasks

* Preferred approach for
safety critical systems

» Dependability at the
expense of flexibility
(modes of operation

can increase flexibility) :

3/21/2006

©M. Toérngren 2006 I

ARTIST2

Graduate Caulse on E nbedded Control Systems
4 -7 20

Static vs. dvhamlc configuration

* Pre run-time established infrastructure configuration,
dynamically varying mobile users and load at run-time

» Example: A telecom M
system with 0-1M g f ay s 3
subscribers, spawning . >
handler tasks during
run-time as required. |

» Dynamically varying (e, |
configuration, e.g. hand :

» Configuration driven by
flexibility requirements

User Equipment

Network

Managemaent
Environment

©M. Torngren 2006

3/21/2006 9:31 PM

11

3/21/2006 9:31 PM

ARTIST2

Top-down, vs. bottom up vs. platform
based design

Top-down: Synthesizing an appropriate/optimal system
(but product development seldom starts from scratch)

Bottom-up: Purely reusing components
(reuse can be dangerous; what about system requirements, and
required changes?)

Platform based: Finding common architectures that can support a
variety of applications — as well as — future evolutions of
applications.

One definition: A platform comprises the complete technological base

(SW and HW) required to execute an application.
Note: A platform can be seen as a relative concept

Graduate Course on Embedded Control Systems

In practice the approaches are often combined.

ARTISTZ

Graduate Course on Embedded Control Systems

Traditional implementation

Control design

¥

v

A bly
27 ; ;
L CiC++ C Compiler Assembler Linker Object Files
. I é | I I | I Program
; loader
Software design Application
software E..
Microprocessor andfo?j S ;‘ et
programmable logic "~ Supporting software ©
Memories, mputf_oulpuL @'J_ﬂ‘,', - Input/output drivers @
.and communication “ﬁ ~ .'.E
Bl - (N | Hardware |

3/21/2006
©M. Térngren 2006

12

ARTIST2

Graduate Course on Embedded Control Systems
OraaelCrech R i April 3-

Combbhénf;based development

A component is a unit of composition with contractually specified
interfaces and fully explicit context dependencies that can be
deployed independently and is subject to third-party
composition (Szyperski, 1998).

Component models and infrastructures in use (examples):
— CORBA (telecommunication)
— COM/DCOM, .NET - process industry
— OPC (OLE process control Foundation)

CBD is closely related to the software platform definition.
CBD today supports mainly functionality and run-time flexibility.

Consideration of non-functional requirements (timing, resource
consumption, reliability, etc.) is an intense research area

Trends: - Is evolving towards model-based development
—> Domain specific efforts: e.g. AUTOSAR (automotive)

ARTISTZ

Graduate Course on Embedded Control Systems

Model-based development

» Closely related to engineering! _ _
Work supported by abstract representations, with well
defined syntax and semantics, and with visual representations

» Tool support for communication, analysis and synthesis
» Required to better manage complexity

* Many interpretations and domains where MBD is used:
- e.9. UML in software engineering
- e.g. CAD, STEP and PDM in mechanical engineering

 Large differences in maturity

» Key issue: How to handle the multitude of aspects of interest
— Model and tool integration remains a challenge

©M. Térngren 2006

3/21/2006 9:31 PM

13

Graduate Course on Embedded Control Systems

MBD from Control engineering

L—

Function design

Calibration

Rapid Control Prototyping

Integration testing

. Unit testin
Code Generation/ | 9
platform integration
3/21/2006
F oM Tomgren 2006 |
ARTISTZ2 Gra(/‘a te Course on| Embedded Control Systems

Is software engineering model based?

|.e. — does coding practices and the use of any
ordinary programming language represent
model based development?

Compare work by OMG in defining what model
driven software development really is about.

3/21/2006
©M. Torngren 2006

3/21/2006 9:31 PM

14

ARTIST2

Graduars L,DLIf se on Embedded Cdntrg/ ¢) QI
7 2006

MBD- Software and systems

 Unified modeling language: UML - UML2
- for software, still evolving,

» Systems modeling language - SysML
- for systems engineering, (in progress)

* Architecture and analysis description language - AADL
- evolving from avionics (SAE standard)
- emphasizing real-time and reliability

» An Automotive Description Language — EAST-ADL
-(in progress)

This is an active research area

3/21/2006

ARTISTZ2 Graduate CGUISE' on| Embedded Control Syste/m
5 20

OMGs V|ewp0|nt on meta-models

Various usages of these models
MO "the real world"

3/21/2006
©M. Torngren 2006

3/21/2006 9:31 PM

15

ARTIST2

Graduate Course on Embedded Control Systems
e 7 73-7 2006

Synthésis from models

Modelling/programming

E.g. Simqlink/Staterow | ‘ Eg. UML-tool |

4 Eg.0S
*| synthesis

3/21/2006
©M. Toérngren 2006

ARTIST2

Graduate Course on Embedded Control Systems

From V-to Y cycle for controller
development

Early validation ... and limited number of

iterations/

ualification ofithe ACG

System
(supplier)

Equipment
(manufacturer)

Automatic
code generatio

$2 time
Hevember 2002 g 4 AIRBUS

Source: Airbus - Artist roadmaps

18T 2002

3/21/2006 9:31 PM

16

te Course on Embedded Control Systems

But not so trivial as It seems

Test-Descriptions/Data/Scripts

Idea / Requirement / Specification

Function- / Control-Design &
: (o) (0)
AR

Controller ~ Experiment

Models (Rapid Control Prototyping)
k. . Calibration / Validation
1 Fleettest |
LTPEST) calibration Data Y

SW-in-the-Loop Transfer to Target ‘ HIL-Test / Verification |

Models
Production ECU
Interconnects: Data transfers and interfaces (simplified)

SN "

 Courtesy of dSPACE

ARTISTZ

Graduate Course on Embedded Control Systems
Praque. Crech Renublic. Aozl 3-7 200

General needs and trends

Early validation and throughout development
Early integration and throughout development

Reuse of all relevant assets; function designs,
test definitions, scripts, tool support

Increasing tool support for complex systems
—> model based development

©M. Térngren 2006

3/21/2006 9:31 PM

17

3/21/2006 9:31 PM

uate Course on Embedded Control Systems
Croch B i April 3-7 2006

Outline

ECS implementation issues and trade-offs

— Technical issues in controller implementation,
trade-off examples

— Platform selection: Choice of RTOS and processor
Development approaches:

— Traditional, CBD, MBD, platform based

— Tool support for deployment —a taster
Application example

— Smart-1 spacecraft

Concluding Remarks

3/21/2006
©M. Toérngren 2006

ARTIST2

Graduate Course on Embedded Control Systems

Tools supporting controller
Implementation

Function development — “model in the loop”
Rapid controller prototyping
Software in the loop
Processor in the loop
Hardware in the loop

Referring to different analysis
modes where the different parts
of the controller and plant are
either simulated or “real”

3/21/2006
©M. Torngren 2006

18

uate Course on Embedded Control Systems

Function development

Tool support:

- dx/dt = f(x,u) , y(h(x)

- numerical solution

- non real-time

- integration solvers
with variable step size

T(k), h(k)

abstraction .
accuracy
Platform I_I__{ |= N

EI SW |
I HW Example controlled process

3/21/2006

©M. Toérngren 2006

ARTIST2

Graduate Course on Embedded Control Systems
Dranue. Crech Pe i/ 2.7 2005

Rapid control prototyping (RCP)

Basic need: To reduce long delay from control idea to
actual testing

The RCP concept includes

 Off-the shelf hardware and software prototyping
platform, which is resource adequate

» Code generation from controller high level description

» Graphical user interface for controlling experiment,
calibrating controller and view resulting performance

» Bypassing

3/21/2006
©M. Torngren 2006

3/21/2006 9:31 PM

19

Graduate Course on Embedded Control Systems
ch R 5 2.7 2006

Rap'i control prototyping (RCP)

e
0
0
0
0
0
0
‘e
0

Tool support:

- code generation

- real-time execution
- fixed step size

- 1/O blocks

- experiment control

- also for systems
=1 /EEE identification

3/21/2006
©M. Torngren 2006

ARTISTZ2

Graduate Course on Embedded Control Systems
Pragua. Crech po 7 0|

Software in the loop

* Running implementation code within the
simulation environment

» Otherwise similar to ‘model in the loop’

Production software

3/21/2006
©M. Torngren 2006

3/21/2006 9:31 PM

20

3/21/2006 9:31 PM

A R T| S T2 Graduate Course on Embedded Control Systems
Prag ech Rep ic_Apri 3- 006
-
Processor-in-the-Loop
St - simulation
C) .. -function P
------ 5 = .|| onPC C-Code
In & - rt e et
| | GEEEEETT e, “‘. . : .
el .
v
Piéq plant modal
exec time system stack
w o
©
s
=
© . EVM
® ——
) 3 A —
5 2 ol o o oo ok o ok o o o oo e o o o o i o o o o ol o o o o o o o o o o
o 0.006 001 0018 1 0.005 ol HFEEERF -
ot user stack Summary for model: controller
e —— . o R R R T T R T A T T T T AT A A TR TSR TN FRTTTTTN?
= ° Function Code [bytes]
» B
. /\/\ . $aZ_start_mode 62
- g controller ga
7777777777 ! a2 running mode 150
o oo o ot h oo m — _
Fal_RP _Control enabled 496
12.11.1999
 Courtesy of dSPACE

Graduate Course on Embedded Control Systems

Hardware in the loop - example

Real electronic control unit

) vehicle speed
engine torque >

Vehicle Model

engine speed

throttl crankshaft angle
e | cramenenande, Tool support:
spark advance air-charge . - code generation
—_—> —_—
ignition time ; air massflow -real-time simulation
—_— S

Engine Model lambda of plant model

- fixed step size

- “Inverted’ 1/0O blocks
& I/O functionality ~ F
- test control

1/2006
©M. Térngren 2006

21

A R T| S T2 Graduate Course on Embedded Control Systems

Hardware in the loop simulation

Special requirements

 Hardware outputs: sensor emulation

 Hardware inputs: read controller outputs

* Electrical loads, fault injection at inputs and outputs

» Models with sufficient accuracy, parametrizable and real-time

+ Tests under any desired conditions are possible
-> safety critical failures and stress tests
+ Reproducible tests and automated testing
- “Black” box testing: additional debugging tools required

—> Requires test methodology and initial investment

ARTISTZ

Graduate Course on Embedded Control Systems
Prague ech Republic Anrl 2-7 /o

Outline

ECS implementation issues and trade-offs

— Technical issues in controller implementation,
trade-off examples

— Platform selection: Choice of RTOS and processor
Development approaches:

— Traditional, CBD, MBD, platform based

— Tool support for deployment

Application example

— Smart-1 spacecraft

Concluding Remarks

©M. Térngren 2006

3/21/2006 9:31 PM

22

The SMART-1 spacecraft: mission to the
moon

SMART: Small Missions for Advanced Research &
Technology

» ESA: European Space Agency

* Prime contractor: Swedish Space Corporation.
Subsystems were made all over the world

e SMART-1:
launched through Ariane 5 vehicle from French
Guiana, on 27 September 2003

http://www.esa.int/SPECIALS/SMART-1/index.html

luate Course on Embedded Control Systems
ech e ie Appl 2-7 2006

T'h‘e SMART-l spacecraft cont.

Mission
- Scientific experiments,
- Demonstration of electric primary propulsion
- Commercial off the shelf components including CAN

» Energy sources: solar cells, xenon gas and hydrazine

* One <75 mN stationary plasma thruster ("7 grams
pulling force")
- Very efficient engine (only 70kg xenon)
- Poor acceleration
- Potential usage for long space journeys in the future

2 years lifetime, 350Kg weight

©M. Térngren 2006

3/21/2006 9:31 PM

23

A R T| S T2 Graduare Course on Embezided Cantro/ Syatems
/) Republic Apr 2-

Smart-1

Disturbances T¢lemetry and

’

,-* telecommand
Energy from __
7 ~

thrustings »
|

Sun sensing

Sun
energy \ 7

Disturbances: Gravity, particles and aero drag

Courtesy of Swedish Space
Corporation

A R T| S T2 Graduare Course an Embedded Control Systems
& 2

Smart-1 and examples of
actuators and sensors

Sun sensors
(3 in total)

Star trackers (2 in total)

A r*ln /

— Hydrazine thrusters
(8 in total)

Reaction wheels
(4 in total)

-+t ‘}. EP thruster and orientation
mechanism

Courtesy of Swedish Space
Corporation

3/21/2006 9:31 PM

24

te Course on Embedded Control Systems

Smart-1 sensors and actuator

e Sensors:
- Sun sensors,
- Star trackers
- Angular rate sensors
- Thermal sensors

* Actuators:
- Reaction wheels,
- 1N attitude control hydrazine thrusters
- Actuators for deploying and rotating the solar arrays
- Electric propulsion
- Thruster orientation mechanism (gimbal drives)
- Heaters

ARTISTZ

Graduate Course on Embedded Control Systems

Smart-1 block diagram briefly
explained

» One science subsystem (indicated by dotted
oval) with dedicated CAN network

» One control subsystem including
— Telemetry and telecommand
— Power unit, batteries and solar cells (1850W)
— System controllers (one redundant)
— Sensor and actuator subsystems

©M. Térngren 2006

3/21/2006 9:31 PM

25

[pems}

command

D

Py
@
o
c
=
o
D
=
—

CAN ~L

Courtesy of Swedish Space
Corporation

A R T| S T2 Graduate Course on Embez‘ided Control Systems

Characteristics: Smart-1 computer

 Distributed 1/0 systeh: system controller and
smart I/O units — loops closed over network

e Dual CAN network

- Main portion: Master/slave polling
- Also employing asynchronous potential of CAN

» Master slave clock synchronisation
- TMTC maintains and distributes "space elapsed
time"

3/21/2006
©M. Térngren 2006

3/21/2006 9:31 PM

26

ARTIST2

Graduars L,our se on Embedded C nm;/ %‘\ stems
7 2006

Smart 1: Modes of operation

Courtesy of Swedish Space
Corporation

ARTIST2

Gra(luats' Caurse on E nUedded Control Systems
_7 20

Attitude control system in the
science mode of operation

From rate sensors

Reaction.wheel speed 5

Disturbances

Target attitude remieEtb bbby !
Estimated_attitude ; | Controller i]

Sensors

3/21/2006
©M. Torngren 2006

3/21/2006 9:31 PM

27

Graduate Course on Embedded Control Systems

Attitude and orbit control system

Main computation is done in the system unit

Distributed 1/0O, closed loop operation over the
network

Sampling period: 1s
Timing analysis carried out to ensure small
enough end to end delay

Passive backup controller: state backed up in
the power unit (PCDU)

Specific concerns for spacecraft controllers

Energy supply

Autonomous operation

- Must survive without ground contact

- Must handle tough environment & subsystem failures

Cosmic radiation:
- Bit-flips in digital electronics by ionizing particles
(alpha, heavy ions, neutrons, myons etc.)
- Single event upset intensity for SRAM in 0,6 um:
Space: in the order of 10-3 faults/hour/MB
Ground level: 10-7- 2 x 10-6 faults/hour/MB

A potential problem for future ground electronics as
sizes shrink?

©M. Térngren 2006

3/21/2006 9:31 PM

28

A R T| S T2 Graduate Course on Embedded Control Systems

Reliability considerations in Smart-1

Designed for fault-tolerance and autonomy:

» Few single point failures: spare for most functions,
examples
- Passive redundancy for system controller
- Active redundancy for power unit

 Error detection:
E.g. watchdog timers, periodic messages,
checksums, ...

 Control hierarchy (supervision chain)

« Automatic reconfiguration and graceful degradation:
safe mode & ground interaction

ARTISTZ

Main on-board computer
TCS695E single chip ERC32 processor, 20 MHz clock
EEPROM 2 Mbyte EDAC (error detection& correction) protected
SRAM 3 Mbytes EDAC protected,

Additional memory protection through ’scrubbing’ (e.g. Back-
ground software, reading, detecting and correcting faults)

MassMemory 512 Mbyte, EDAC protected

CAN controllers, 2 kBytes FIFO in reception path
- Purchased VHDL code; radiation tolerant FPGA

Watchdog

JTAG I/F for EEPROM software upload and board HW checkout
Bottom line: “Space compliant technology + VHDL CAN”

©M. Térngren 2006

3/21/2006 9:31 PM

29

luate Course on Embedded Control Systems
e Croch Republic Apri 2-7 200

Smart-1 system development

Matlab/Simulink, rapid prototyping and code

generation
VxWorks RTOS

Several refined control system releases, subject

to increasing testing, including HIL

Software upgrade/upload has been carried for

the star camera

ARTISTZ

©M. Toérngren 2006

Graduate Course on Embedded Control Systems
Prague ech Republic Anrl 2-7

Outline

ECS implementation issues and trade-offs

— Technical issues in controller implementation,
trade-off examples

— Platform selection: Choice of RTOS and processor

Development approaches:

— Traditional, CBD, MBD, platform based
— Tool support for deployment
Application example

— Smart-1 spacecraft

Concluding Remarks

©M. Térngren 2006

3/21/2006 9:31 PM

30

3/21/2006 9:31 PM

raduate Course on Embedded Control Systems
e Cameh R B

Concluding remarks

A very broad spectra of ECS applications —
e.g. seen in multitude of RTOS’es

 Trade-offs required for resource constrained
implementations: Memory, accuracy and
execution time usually in conflict

 Different approaches to development and
deployment: Traditional compile/link/load
over CBD to MBD

» Evolving modeling languages for ECS

luate Course on Embedded Control Systems
Re ie Appl 2-7 2006

A few selected research topics

» Co-design and architectural design
— Functions, software, hardware

* Model integration and management
 Distributed systems support

©M. Térngren 2006

31

te Course on Embedded Control Systems

Distributed control systems
development

» Tools and development today:
— Mainly single node
— In some domains, there are tools that provide some support
* Active tools area:
- Plenty of research and prototype tools
- Emerging tools (TTP, Flexray etc.)
* Distributed control systems require “system-wide”
configuration:
- Execution and communication strategy
- Error detection and handling strategy

3/21/2006 9:31 PM

32

Thursday 6 of April

ARTIST2

ARTISTZ2

Off-line scheduling

Zdenek Hanzalek

Department of Control Engineering
FEE, CTU in Prague
http://dce.felk.cvut.cz/hanzalek, hanzalek@fel.cvut.cz

3/17/2006

0 © Zdenek Hanzalek 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Outline

e Motivation and Standard notation a/f/y

e Monoprocessor scheduling — state of the art
— Cax Minimization

e Scheduling on FPGA with arithmetic unit

— Start Time Related Deadlines
— Cyclic scheduling

3/17/2006

1 © Zdenek Hanzalek 2006

ARTIST2

Digital Signal Processing
<Active noise cancellation
esampling frequency
44KkHz

*FPGA hardware Virtex Il

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Motivation Example

reconstructed < |
sound to GSM

noise .| Adaptive
filter
estimated
channel reconstructed
T - sound

sound)\ corrupted ar to GSM

+ sound

3/17/2006
@ Zdenek Hanzalek 2006

ARTIST2

(FPGA, DSP)
— dedicated unit
— Pipelining

e Optimality

— ILP formulations

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

e High-level synthesis
— off-line scheduling

e Specific HW architecture

— high degree of parallelism

— Branch&Bound algorithms

Parallel implementation of algorithms

3/17/2006

© Zdenek Hanzalek 2006

ARTIST2

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Scheduling

e set Tof ntasks T ={7,, 7,,..., T,}
e set P of mprocessors P ={P,, P,,..., P}
» set of additional resources

Scheduling = assignment of task to processors in
order to complete the tasks under imposed constraints

= off line — all parameters of the tasks and resources are
known in advance

 deterministic parameters — combinatorial optimization
algorithms

e schedules are represented by Gantt charts

e J. Blazewicz, K. Ecker, G. Schmidt, J. Weglarz, Scheduling Computer
and Manufacturing Processes, Springer, 2001

ARTIST2

© Zdenek Hanzalek 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Basic constraints

each task is to be processed by at most one processor at
a time

each processor is capable of processing at most one task
at a time

task 7;is processed in time interval /7,)
all tasks are completed

if tasks 7;, 7; are in the relation 7;< 7} the processing of
7;is not started before completion of T,/

in the case of non preemptive scheduling no task is
preempted, otherwise the number of preemptions if finite

additional resource constraints, if any, are satisfied

© Zdenek Hanzalek 2006

ARTIST2

= release (arrival) time 7; = completion time C;
 starttime s, - waiting time w;

 due date g; processing time p;

e deadline d;~is hard real - flow (response) time £, = C;—r;

time limit by which 7, must
be completed

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Task parameters

 lateness L; = C;—d;
- tardiness D; = max{C;,— d;, O}

Fj - = L4
pi 1 Dj
% %
| J
0 ri sj Cj dj dj t
3/17/2006
:

ARTIST2

Standard notation o/p/y by Graham

QO T

S Ne¥s)

~

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

o =0, 0,

1 processor
parallel identical processors
parallel uniform proc. P;i= Pi/b;

(b;is proc. speed)
parallel unrelated proc. pj is arbitrary
dedicated machines “open-shop”
dedicated machines “flow-shop”
dedicated machines “job-shop”
variable number of processors
given number of processors

3/17/2006

© Zdenek Hanzalek 2006

ARTIST2

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Tasks: B =B, B, B3 BsBsPs B, Bs

B,e {..., pmtn} preemption

B,e {..., res} additional resources

Bse {..., prec,tree,chain} precedence constraints

Bse {1} release time

Bse {.... p=K,p i< p;< py} var/const/limited proc.time
Bee {....,d7} deadline

B,e {.... ;< k} limited number of jobs in Job-shop
Bge {..., no-wait} buffers with infinite/zero capacity

ARTIST2

3/17/2006

© Zdenek Hanzalek 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Optimality criterion y

YE{Cmax ’ ch’ ZwC I-max,!'--}

171

Cmax zmaxvj {CJ}
Limax =mMaxy; {C; - d;}

For example standard notation P||C,, ., means:

variable number of identical parallel processors, non-
preemptive, no precedence constraints, all tasks starting
at time 0, variable processing time, make-spawn
minimisation

3/17/2006

© Zdenek Hanzalek 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Outline

e Motivation and Standard notation o/p/y

e Monoprocessor scheduling — state of the art

— C,ax Minimization

e Scheduling on FPGA with arithmetic unit
— Start Time Related Deadlines

— Cyclic scheduling

3/17/2006

10 © Zdenek Hanzalek 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

max

1|prec|C,, .« — Simple
— if tasks are assigned in whatever order in accordance with
precedence relation, then C,,,=Xp;

1]]C, .« — Simple

1]1;|Cppyax — Simple

— tasks are scheduled in order of nondecreasing release times
1]|d;7|Cpax — Simple

— tasks are scheduled in order of nondecreasing deadlines
(EDF — earliest deadline first)

— EDF provides optimal solution iff there exists a schedule that
meets all the deadlines

3/17/2006

11 © Zdenek Hanzalek 2006

12

ARTIST2

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

1] r;,d;"|Cprax — NP hard problem
« transfromation from the 3-PARTITION problem
= polynomial algorithm can be found if p=1

= general problem can be solved by applying
Branch&Bound algorithm by Bratley

1 root
2

T +p, @

n(n-1) & ('I'l,'I'z)/max(rz,r1+pl)+p2 23 ('I'l,T3)/ma><(r3,r1+pl)+p3
nt I I I Z I
N\ e
v
all feasible schedules 3/17/2006

© Zdenek Hanzalek 2006

ARTIST2

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

13

(i) exceeding deadlines
— if completion time
associated with at least
one of the nodes under
node vin level k-1 then all Z Z
nodes under v can be a a a
eliminated
-
due to this vertex4t1is needed to
eliminate both “brother” vertices
(ii) probl. decomposition

— if the completion time C; _.. .. J E
. situation at level k

of all scheduled tasks is ,
less than or equal to o
smallest release time of all ;; remains to /| oot
unscheduled tasks schedule (n-k) tasks ﬁ

t=

1/_¢\n—k

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Optimality test of Bratley’s algorithm

block is a group of tasks such that the first
task starts at its release time and all the
following tasks to the end of the schedule
are processed_without idle time

block satisfies release time property if
release time of all tasks in the block are
greater or equal to the release time of the fist
task in the block

14 © Zdenek Hanzalek 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Lemma: A schedule is optimal iff it contains a
block that satisfies the release time property

Proof:

e if part (each schedule with block satisfying
RTP is optimal) - follows from the definition
of RTP

e only if part (each optimal schedule has block
satisfying RTP) — by contradiction — suppose
schedules that do not have block with RTP,
none of them is optimal

15 © Zdenek Hanzalek 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Example: r =[4,1,1,0], p =[2,1,2,2], d~ =[7,5,6,4]

root
;f.«

it is not needed to continue in branching since —____ | ;)7
. . . . 4'°2'3’
the optimality test holds for this solution o

3/17/2006

16
ARTIST2
Outline
e Motivation and Standard notation o/p/y
e Monoprocessor scheduling — state of the art
— Cax Minimization
e Scheduling on FPGA with arithmetic unit
— Start Time Related Deadlines
— Cyclic scheduling
"

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Specific HW architecture

FPGA based High-Speed Logarithmic Arithmetic (HSLA) -
one dedicated ADD/SUB unit

Operation on +()|*. T,
HSLA (19-bit) 2, "
Processing time p 1 1
[clock cycles]

In-Out Latency @ 2
[clock cycles]

Number of units 1 ©

/

HSLA is pipelined ... leads to the precedence delays in G

3/17/2006

18 © Zdenek Hanzalek 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Problem Statement

Off-line scheduling problem
- Monoprocessor — dedicated unit HSLA in FPGA
- Task 7, with processing time p;

- Precedence relations and precedence delays w;; > p;

- Start time related deadlines — real-time requirements
Obijective - to find a feasible schedule with a minimum C,_

Related work:

[M. Jacomino,D. Gutfreund & J. Pulou 99] - Scheduling Real-time processes
with timing constraints and its applications to cyclic systems —
problem formulation, mobile phones, heuristiques.

[P. Brucker, T. Hilbig & J. Hurink 99] - A branch and bound algorithm for a
single-machine scheduling problem with positive and negative time-
lags — B&B alg.

3/17/2006

19 © Zdenek Hanzalek 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Problem formalization

Algorithm representation by oriented graph G

* node ~instruction ~ task 7} with processing time p;

« forward arc /positive sign/ ~ express precedence delay,
including pipelining or processing time on nondedicated
processors

« backward arc /negative sign/ ~ express deadline,
starting time S; of 7}-relative to the starting time sjof

the latest

* both forward and backward edges are weighted by v,
satisfying:

S;—§ ZWiJ-

Optimal feasible schedule:

3/17/2006
20
ARTIST2
Problem complexity
Our problem is NP-hard, since it is P-reducible from
Bratley’s problem (P-reducible from 3-PARTITION prob.)
Instance of Bratley’s problem = instance of our problem
Independent tasks
1/ 1,07 [Crax
r=[r,r,....r]
P =[P1Pz P
a =[d,~,d;,...,d7]
3/17/2006
21 © Zdenek Hanzalek 2006

22

ARTIST2

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Branching procedure with basic bounding

At each step, the set of tasks is partitioned into three disjoint
subsets:

7, already scheduled tasks
7. candidate tasks (ready to be scheduled)

7. remaining tasks (not ready due to precedence relations)
(2.2,2,2,?)

0,2,2,2,?)
0.2,2,2,?) 0.2,1,2,?) 0.2,2,3,?)
0,2,5,2,2)(0,2,?,5,2)(0,3,1,?,2)(0,?,1,3,?) (0,7,2,3,?)(0,?,7,3,?)

(0,2,5,7,2)(0,2,9,5,?)(0,3,1,6,?)(0,7,1,3,?) (0,7,10,3,?X0,9,7,3,?)

© l, 11@9{<1310.3,1l,6,1010 l 11)(0,):&44@}52(13)

3/17/2006

23

ARTIST2

© Zdenek Hanzalek 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Scheduling Anomaly

Prior to eliminate a solution we have to check
scheduling anomaly, since the deadlines are relative.

Two possible solutions:

Shifting procedure — same order of tasks
Decision by LP

3/17/2006

© Zdenek Hanzalek 2006

24

ARTIST2

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Critical Path Bounding
1) Longest path calculation by Floyd’s algorithm

2) For each activated backward edge we calculate lower
bound of 5; as:

5;(S)=f, +s,

3) Does it lead to the
feasible solution?

s, -5, 2w,

4) If not, then eliminate
father’s vertex in the
search tree

3/17/2006

© Zdenek Hanzalek 2006

25

ARTIST2

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Remaining Processing Time Bounding

Use a sum of processing times of unscheduled tasks to
calculate lower bound on s;

lllustration in the search tree
Critical Path Bounding

?2.?2,2.2.,7

Remaining Processing
Time Bounding

0,257 0.2,1,2,?) O.2773.)
(0,2,5,?,?) (0,2,?,5,?) (0,3,1,2,?) (0,?,1,3,?) (0,7.273.?) (0.?.7.3.,?)
(0.2+577,?) (0.24875,?) (0,3,1,6,?) (0.7Z+33,?) (0,7,10,3,?) (0,9,7,3,?)

M)@lq)(o.s.ll.e.lo)w) @ : 14)(0; 1)

3/17/2006

© Zdenek Hanzalek 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

C,a Bounding

The best known solution is used to eliminate a partial
solution leading to worse C,,,.

C,.. 1S estimated using lower bound on remaining work
Dynamic graph transformation by adding:
einput and output node
sedges to source / sink nodes

edynamic backward edge

3/17/2006

26 © Zdenek Hanzalek 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

llustration in the search tree

C,... bounding is inactive at the beginning of the
algorithm, but it is very efficient when C*,,,. is found

C,,ax Bounding

Critical Path Bounding

?,2,?2,2,? Remaining Processing
Time Bounding

257 ‘(0/91’)\71 @/‘ff’) Congs,

\ .
(o,z,s‘ﬁ) (0.2)2,5.2) 1 (0,3.152,7) (@A) (0.7.53.2) (0.2.7.3.%)

(,2,5,7,?) (0.2+575,?) (0,3,1,6,?) (0.7+333,?) (0,7,10,3,?) (0,9,7,3,?)

@ l, 11)@%)(0,3,11,6,10)«1){4) (@i@)@ﬁL@)

3/17/2006

27 © Zdenek Hanzalek 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

a) when 7;precedes 7; (x;= 1)

S, 28 +P,

b) when 7;succeeds 7; (x;= 0)

28

Problem Formulation by ILP

Vi,j€<1,n>,i<j, ijSi_Sj+Xij'C_:£(_:_pi

processor _constraints ((r2-n)/ 2 decision variables and constraints)

C
[m o m oo >
T,| |T,
T T T T T T
i Sj t
C
_____________________________________ »
T,| T
T T T T T T
S; Sj t
3/17/2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

ILP program

minC__

subject to:

objective function -
minimizes makespan

S;—§ 2w,

pj<s-5,+C-x,<C—-p, ~_|
where:
5,€(0.C-1), x,(0.1), C,, €(0.C)

S;, X; are integers.

29

precedence constraint

restriction given by graph G

si + pi < Cmax \

processor constraints -
at maximum one task is
executed at a given time

3/17/2006

© Zdenek Hanzalek 2006

30

ARTIST2

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Outline

e Motivation and Standard notation o/p/y

e Monoprocessor scheduling — state of the art
— Chax Minimization

e Scheduling on FPGA with arithmetic unit

— Start Time Related Deadlines
— Cyclic scheduling

3/17/2006

© Zdenek Hanzalek 2006

31

ARTIST2

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Scheduling of Iterative Algorithms

Cyclic scheduling

- N, the number of iterations, is large enough

- can lead to overlapped schedule - operations belonging to
different iterations can execute simultaneously

Results in periodic schedule - one iteration repeated each period w

Obijective - to find a periodic schedule with a minimum period
Related work:

[C. Hanen & A. Munier 95] - Basic Cyclic Scheduling — infinite number of
processors — O(n3 log n)

[A. Munier 96] — problem is NP-hard for m processors, polynomial for 2
processors and unigue processing time

[Phillipe Chrétienne 2000] — approximation algorithm for m processors

[Sindorf & Gerez 2000] — problems with communication delays

3/17/2006

© Zdenek Hanzalek 2006

A RT | S—l— 3 Graduate Course on Embedded Control S)/'S{E'ms

Prague, Czech Republic. April 3-7, 2006

BCS - Basic Cyclic Scheduling

Algorithm representation by oriented graph G

e vertex ~ instruction ~ task

e arc — precedence relation

- arc height /; ~ shift of the iteration index

= arc length /; ~ processing time

for k=1to N do
y(k) = (z(k = 3)+1)* +a
z(k) = y(k) +
2(k) = (2(k—2)—2)%+d

end
3/17/2006
32 © Zdenek Hanzalek 2006
ARTIST2
Formulation of BCS Problem
e Periodic schedule:
(identical for each iteration)
VieT, Vk=>1, s(k)y=s,+w-(k-1)
e Precedence relations: vk>1, s (k +|ij < Sj(k+hi,-)
» Optimization criterion - min. average cycle time:
- maxis; (k) + p;
W= lim—¢
k—o0 k
3/17/2006
33

Graduate Course on Embedded Corn
Prague, Czech Republic. April 3-7, 2006

ARTIST2

@@_

helght

(9 0

overlap of iterations

(2 0) k execution execution execution
; i period 0 period | puiod 2 tail
T\ ynN\Nwew e e b 1
(9 0) . 1
B T Tz 1 :
| ‘5 |
1
€ Ty Ts //,//’ ,1 i
2 ; : A
3P s Ty Ty ,’2%///1
R] il
" . S| T /j’/// :
critical circuit _ £ ;
L(©) e et '
) | > | ; :
G T B . -
w(G) = crer(l: G H 'ij 7
(©) H; | T T | B
a 5 n 15 20 25 30 35 40 a5 SBC
iteration: | ‘ 1" | |2""‘ I,’;;i 3" e
3/17/2006

© Zdenek Hanzalek 2006

34

Graduate Course on Embedded Control
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Problem statement

e Cyclic scheduling - overlap of iterations
e Some tasks run on the dedicated processor
e The dedicated processor is pipelined

pipelining + nondedicated processors

T

° o
/.9.,0)
height /* ,(9.0) AR T6 . \/
i Chi \
length /) R ATNAL0) 3.0
“// [O% Teo VAR /X
L (20> L (9,3?_ 132
o,
.0, @, @
proc.time on dedicated processor
graph G reduced graph G’

3/17/2006

© Zdenek Hanzalek 2006

35

ARTIST2

duate Course on Embedded Control Systems
ague, Czech Republic. April 3-7, 2006

Problem complexity

Our problem is NP-hard, since it is P-reducible from
Bratley’s problem (P-reducible from 3-PARTITION prob.)

Instance of Bratley’s problem = instance of our problem

(wﬂm_-})....

Independent tasks

15857 ‘ .
r=[ry,ry ... rn] 0% .

P =[P1Pz 0] - .
d=[d;,dy.dy7] ~
(w-d ip,1)

© Zdenek Hanzalek 2006

3/17/2006

36

ARTIST2

urse on Embedded Control Systems
Czech Republic. April 3-7, 2006

Dedicated processor —
Problem Formulation by ILP

Graduate Co
Prague,

precedence constraints (7, constraints)

Ve, € G, $;—S; 2 Iij —W- hij b (11 - P

03 a2

<€

Ve, €G, (sj+qj-w)—(si+qi-w)zlij—W-hij (1)

3/17/2006

© Zdenek Hanzalek 2006

37

38

ARTIST2

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Problem Formulation by ILP

processor constraints ((n2-n)/2 constraints)

vi,je(Ln)i<j, p;<§-§+x,;-wsw-p, (2)

a) when T; precedes T; (x;=1)

execution period

1
p; <S8 -8 +w

|§j+pj£§i+w (4)|

3/17/2006

© Zdenek Hanzalek 2006

39

ARTIST2

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Problem Formulation by ILP (cont.)

processor constraints ((n?-n)/2 constraints)

A

Vi,je(Ln)i<j, p;<§-§+x,-wsw-p, (2)

b) when T; precedes T; (x;=0)
.. both inequalities in double inequality (2) holds as well
- proven by exchanging index i with index j in inequalities (3) and (4)

§28+p, S, + P <S;+w

3/17/2006

© Zdenek Hanzalek 2006

uate Course on Embedded Control Systems
rague, Czech Republic. April 3-7, 2006

ARTIST2

Processor constraints (cont.) — OR relation

Example:
7;and T;without precedence constraints, p;=2, p;=3, w=38

3/17/2006

40 © Zdenek Hanzalek 2006

uate Course on Embedded Control Systems
rague, Czech Republic. April 3-7, 2006

ARTIST2

ILP program for fixed w

objective function -
mini . minimizes the
< G iteration overlap

subject to: precedence constraint -
S;+4;-w—§ -G w2l —h;-w restriction corresponding to
P; <8 —§;+W-&; <w-p, —_— algorithm of filter
where : -
processor constraints -
§e(0w=1).60.% <w-p, at maximum one task is
G, X; are integers. executed at a given time

3/17/2006

41 © Zdenek Hanzalek 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Feasible Schedule (w* =w = 11)
TP N v
i B
AT | 1T)
g ,;,,,-__67,,___1,,, N N SR /4?
VA A Bl
25l /v N - T = —
LR I e T T. / d T,
ggl“l/ T i[5 %n A EE [
10 15 20 35 40 45 50 ¢
iteration: |:| A DZ"d % 3
w*- the shortest period resulting in feasible schedule
w* is found by formulating one ILP program for each
integer w < [lowerbound, upperbound]
. interval bisection method
3/17/2006
a2
ARTIST2
reconstructed
sound to GSM
noise ,| Adaptive
filter
estimated
channel reconstructed
- sound
sound)\ corrupted TF to GSM
+ sound i "
3/17/2006
a3

ARTIST2
RLS (Recursive Least Square) Algorithm
fofm=L;m=M;m++) #oreaclsampl/
fofk=1:k<N;k++) Hilteiteratiofié
{
T T
k0 = a0 - kD kD)
T
fo= k) - a®
T T
Ul = vl = (R)
T
b= .k Yna(K)
T T
a = a - (k&) V()
T T
A0 = Ak o+ e o Rk)
) ! T,
b= (v o+ (2 R+ (f - n.K)
T T T,
Bal= v o+ (2 - BukD) + b - oK)
T,
f = 1/ R®
T,
bt = b 8. ()
T T,
A o= Ak + (- %K)
T, T
KK = kKD + (b0 q
T, T
w0 = m® - (B0 b)
)
}
J 3/17/2006
44 © Zdenek Hanzalek 2006

ARTIST2

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Schedule for RLS Algorithm

W
-
of MUL and DIV units)
] — 2
g [I [
40 i
gl | [~
o T
_____________ B
— s
: |
0 I 1‘0 ‘ 2‘0 30 40 50 60 H
[I First iteration . Second iteration

Celoxica rc200e board

w

MFLOPS

Filter order

50MHz in Virtex |1 Manual

45

80

75

Automatic

sampling frequency 44kHz

26

137.5

129

45

3/17

© Zdenek Hanzalek 2006

ART E ST 2 Graduate Course on Embedded Control Sysfems

Prague, Czech Republic. April 3-7, 2(

Qualitative Parameters of Adaptive Filter

1 Stop

E:it

Open Sterea
E - \makrolattic

Open Mano
E - makrolattic

Steren Right: Cornupted Sound

Mic Input. Fieconatructed Sound Mong: Original Sound

46 © Zdenek Hanzalek 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Achievements

ILP gives rather good results even for realistic examples in
reasonable time (2 seconds)

— model is dependent on number of tasks but it is
independent of w

Filter performance increased by 70%
Better utilization of arithmetic unit
Automatic scheduling
— systematic design
algorithm | graph | schedule | code

— rapid prototyping ...simulation of the schedule prior to time
consuming implementation

47 © Zdenek Hanzalek 2006

ARTIST2 Graduate Course on Embedded Conirol Systems
Prague, Czech Republic. April 3-7, 2006

ARTISTZ2

Platform for Advanced Process Control
and Real Time Optimization

Vladimir Havlena, Jifi Findejs
ACS Advanced Technology Laboratory Prague

Honeywell Intl.
havlena@htc.honeywell.cz, findejs@htc.honeywell.cz

Unified Enesgy Solutions

Honeywell ’ UES

Graduate Course on Embedded Conirol Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Agenda

e Introduction
— Advanced Process Control scope, status, drivers
e Unified Energy Solutions (UES) portfolio
— Architecture, components, technology
¢ Unified Real Time (URT) platform for advanced control applications
— Objectives, architecture, benefits
— Demo of key features
e Conclusions

1
© V. Havlena, J. Findejs, 2006

Graduate Course on Embedded Conirol Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Where we are ...

¢ Analog age

e 1980’s computer technology / DCS
enabled large scale implementations
of regulatory control (>10 000 I/O
points)

e 1990’s Advanced Process Control
(MPC) & Real Time Optimization
layers followed

° Today’s scope Basic Process Control
— Control strategies not restricted to -
cascaded blocs - controllers, state |\ Measurement / Instrumentation /I
observers, etc.
— APC/RTO + Performance monitoring, | Plant /technology |
fault detection & recovery, operator Integrated process
decision support / what-if analysis ... management

— Complex solutions — integration cost
becoming prohibitive to further
extension and innovation

— Based on open standards (OPC) and
solution components

2
© V. Havlena, J. Findejs, 2006

Graduate Course on Embedded Conirol Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

\!\Ih 0 ...

are ena ed control

— Interaction between control & optimization
algorithms and sw/hw platforms — dynamic
environment

— Embedded systems — “hard” real time

— Specific APC/RTO features

* Supervisory level - “soft” real-time

* Extensive platform management features -
separated from control / optimization
functionality

. Optlmlzatlon -based solutions
Mathematical optimization = basic enabling
technology in advanced control

— Off-line vs. on-line applications: numerical
issues of algorithm design
— Specific APC/RTO features
¢ Large-scale solutions can absorb economics-
related information as a part of internal criteria
» Efficient methods to solve huge problems ...
BUT

* Need for structured, decentralized, hierarchical
solutions — human effort to set up model /
maintain / operate

* Need for consistency between models on
individual hierarchical levels (APC, RTO,
planning/scheduling)

3
© V. Havlena, J. Findejs, 2006

Graduate Course on Embedded Conirol Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Agenda

e Introduction
— Advanced Process Control scope, status, drivers
¢ Unified Energy Solutions (UES) portfolio
— Architecture, components, technology
¢ Unified Real Time (URT) platform for advanced control applications
— Objectives, architecture, benefits
— Demo of key features
e Conclusions

4
© V. Havlena, J. Findejs, 2006

Graduate Course on Embedded Conirol Systems
Prague, Czech Republic. April 3-7, 2006

Unified Energy Solutions PYUES
“a

ARTIST2

Portfolio of solution components covering
¢ APC for power generation and industrial
energy (process steam production)
— Predictive pressure/temperature ... controller
— Combustion coordinator
¢ Real Time Optimization of
— Combustion process
— Load allocation
— Power delivery/ancillary services
¢ Planning/scheduling
— Contract planning
— Unit commitment
¢ Performance monitoring
— Efficiency, thermal stress
— Soot blowing optimization
— What-if analysis

5
© V. Havlena, J. Findejs, 2006

ARTIST2

Objectives

Distributed arch.

UES portfolio overview

Industrial energy application
(common headers arrangement)

Graduate Course on Embedded Conirol Systems
Prague, Czech Republic. April 3-7, 2006

Process steam
Heating steam
Power contract
Costs/profit
Responsiveness

Control

Local opt.

Global opt.
Interactions
Variety of operation
modes

< S—
4-—--
‘.....
-

Plant reference
model

© V. Havlena, J. Findejs, 2006

ARTIST2

UES portfolio overview

Utility application
(block arrangement)

Objectives

Power generation
Availability/contract execution
Costs/profit

Responsiveness

(eligibility for ancillary services)

Distributed arch.

Control
Local/Global opt.
Shared solution components

Graduate Course on Embedded Conirol Systems
Prague, Czech Republic. April 3-7, 2006

ROCK3

BLOCK 4

© V. Havlena, J. Findejs, 2006

Graduate Course on Embedded Conirol Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

ES component '
UES components PYUES.

* TLC = Tie Line Control
— Power delivery contracting tool
— Power contract real-time monitoring/execution
* ELA-T = Economic Load Allocation for Turbines
— Optimally allocates generated power on multiple generators
— Multiheader setups with condensing, back-pressure turbines
* MPC = Master Pressure Controller
— Steam balance in headers, using demand prediction
ELA-B = Economic Load Allocation for Boilers
— Optimally allocates steam production on multiple boilers

— Minimizes total steam production cost
ACC = Advanced Combustion Control
— Advanced control of combustion process

— Optimizes boiler thermal efficiency, keeps emissions within given limits
ATC = Advanced Temperature control

PRM = Plant Reference Model
— Consistent models, real-time responsiveness

8
© V. Havlena, J. Findejs, 2006

Graduate Course on Embedded Conirol Systems
Prague, Czech Republic. April 3-7, 2006

Advanced Combustion Control (ACC)

ARTIST2

Functionalit
d i L] ;

Ii| Optimal air-fuel ratio ’
. ophma' A/F Ratio 3 calculated B

» dynamic A/F coordination —~

» advanced features
Fuel demand
* low-NOx burning allocated from ELA-

« staged air design

, e & .
flue-gas recirculation D ..g& Coordinated fuel feed

r Y
\ and air set points \ 4
w B to boiler control
~

9
© V. Havlena, J. Findejs, 2006

ARTIST2

Graduate Course on Embedded Conirol Systems
Prague, Czech Republic. April 3-7, 2006

ACC cautious optimization strate

NOx

Optimal
Efficiency

NOy limit

I
CO ilimit

Feasible air-fuel ratio

oncenirace GO [tieyb ~ 120/90/60 th]

5 %ﬁunaemgﬁe NO()

62 64 66 68
b

Maximum achievable efficiency under emission constraints

Turbulence-driven process — not very deterministic
Cautious strategy = optimization under uncertainty
Constraints defined in terms of posterior probability content

P{CO> CO} < €

Compatible with statistical emission evaluation (e.g. 15 min. average)
Operator acceptance — “single knob” solution

ARTIST2

Graduate Course on Embedded Conirol Systems
Prague, Czech Republic. April 3-7, 2006

... Need for dynamic coordination

Boiler operation with reduced excess air only not feasible

variation of CO
concentration

CO [ppm]A
Original design
300 02.8P=5%
200

100 4

1.0 15 AF ratio'
variation of
AJF ratio
Problem
e strongly non-linear A/F — CO mapping:
Solution

e minimize A/F ratio variation
Optimal A/F ratio depends on achievable A/F coordination performance

CO [ppm] A

Reduced excess air
02.8P=3%

variation of CO w = 15 AF ratio
concentration
has to be
—_— - <€— reduced
variation of
AJF ratio

=

E{F()} = f (E{x}) + d2f(x)/dx? . Var{x}

© V. Havlena, J. Findejs, 2006

© V. Havlena, J. Findejs, 2006

ARTIST2 Graduate Course on Embedded Conirol Systems
Prague, Czech Republic. April 3-7, 2006

ACC Coordination strategy §
A B et L anaes
l optimal air/fuel : ! ! !
ratio !
o |
co
NO
MIMO ROC [
master
pressure [
L3 controller
BN
set point
coordinator I
- R e i o At oo
e Low NOx/optimal efficiency burning
— Reduced excess air
— Reduced A/F variation
e Model-predictive control formulation + extensions
— Different dynamics
— Ratio control - air/fuel “burner nozzle flow” coordination
— Set-range concept — calm control — improved coordination performance
g
ARTIST2 T oo o A
ACC Performance
3 : ASME power test code
3omel
:
]

i

7. Flue Gees U |

NpaAUNa

SASOL PLANT East Boiler 6

SASOL PLANT East Boller6

o1
NG gLosadyf0, a5
92 o0
£ o1 895 B
o 63 e
5o =5 e
g m &3 &
H
4 e
o6k
3 e
s 5
550
Main steam flow [t / h]

& 60

© V. Havlena, J. Findejs, 2006

ARTIST2

Graduate Course on Embedded Conirol Systems
Prague, Czech Republic. April 3-7, 2006

Economic Load Allocation for B0|IerL4ELA B)

Functionality ‘
+ Allocate total steam production

 Efficiency + fuel cost

* Independent steady-state/dynamic solution

Algorithmic solution
* SQP with IST - Iteration spread in time
* Feasibility constrained SQP

ELA-B

APC/RTO interaction
« Classical approach 1
» Wait for steady state, run RTO

control >
horizon

. comection _,,

controlled

high limit]_________ & i variable
* MPC-enabled approach ‘ &\\ N
« Predict target steady state e \\\\ N\ — SR
+» Optimize at target set point manpuled
* RTO execution rate n““v _l—'_,_‘__ /
* Optimum tracking capabilities et ~
(hours — minutes/seconds) current Total target ﬁm;

o demand

© V. Havlena, J. Findejs, 2006

ARTIST2

Graduate Course on Embedded Conirol Systems
Prague, Czech Republic. April 3-7, 2006

ELA-B — Optimized Load Allocation

efficiency

0&7

0 865

086

K4 - Efficiency (indirect method) wers. steam output

+ 2% 02
o 3% 02 |]
+ 4% 02
5% 02
7 6% 02 |
——

0.655 - .
7l 80 90

100 110 120 130 140
stearn flow [tonsfhour]

Adaptation based on ACC performance (unit-level optimization) I

© V. Havlena, J. Findejs, 2006

ARTIST2

Graduate Course on Embedded Conirol Systems
Prague, Czech Republic. April 3-7, 2006

Tie Line Control (TLC

Functionality — on-line / off-line

Power delivery to the grid
Work flow

» Prepare 24x7 h contract (sales)

= Optimize (predicted demand)
= Validate against technology limits
» Approve/download to database

» Upload / Execute (operators)

» Modify by spot market (via Web)

Algorithmic solution

« Diminishing horizon MPC
(target optimization)

» Risk sensitive solution

- Actual power generation FLAT reces
. cosmet / generation set point, o meat
of total steam TLC .
consumpiion, o provide .
‘eary fuel set point i
i — v ~ v

:

=i
|

o

-
|

:

J

© V. Havlena, J. Findejs, 2006

ARTIST2

TLC Information links

Reference plant topology model
= Technology configuration

= Driven by “live” and planned process

data
= What if analysis
= Generation range, costs (ELA)
= Unit commitment optimization

Graduate Course on Embedded Conirol Systems
Prague, Czech Republic. April 3-7, 2006

Predictor — trajectories of

= Process steam demand

= Heating steam demand

= Home consumption

Based on

= Historical data (incl. categorical)
= Climatic data (and predictions)
Used in

= Contract optimization — 1 week/1 hour
= Contract execution — 2-3 hours/1-5 min

(controlled/dependent resources)

© V. Havlena, J. Findejs, 2006

ARTIST2

Graduate Course on Embedded Conirol Systems
Prague, Czech Republic. April 3-7, 2006

Execution

TLC

Execution
— Diminishing horizon MPC, cautious strategy
— Minimize risk not to meet contract
Operator intervention
— “Early warning” features
— Start-up/shut-down scenarios
— Decision support - what-if analysis

Uncertainty Sources

— Heating/process steam demand
(predictions)
— Home consumption

— Equipment trips

= nll

il
ooy | e |

© V. Havlena, J. Findejs, 2006

ARTIST2

Graduate Course on Embedded Conirol Systems
Prague, Czech Republic. April 3-7, 2006

UES integration with DCS

UES Engineering
Ul clents.

TPS LON Network

uen
HPM controllers

PC node with URT platform hosts UES controllers
URT communicates with DCS via transparent
OPC server

GUI for Engineers — PC station

GUI for Operators — integrated to DCS stations

Security on DCS level

Local/remote setpoint (AUTO/CAS)
Shed-time / shed mode concept
(CAS / BCAS)

e

L

Figure 82— Mode Structure

© V. Havlena, J. Findejs, 2006

Graduate Course on Embedded Control Systems
P A,

IysoIH\ Fully integrated with DCS
e TPS/Experion PKS
PETTSPTPaES e 31 party DCS solutions
available (OPC)

sTav nR

mn
\
M
S5 wEIS) s @] @N]

L1C210C FWT LEVEL NR

EEEEE

2004 08 16 2% 2:40

technical details hidden
e single knob tuning preferred
(ACC - level of cautiousness)

Fesdy

A
| T v, [T AL | ECHAmS s=zw

20
© V. Havlena, J. Findejs, 2006

ARTIST2 Graduate Course on Embedded Conirol Systems
Prague, Czech Republic. April 3-7, 2006

UES data interface — URT/DCS link

System Platform —
Windows NT/2k/XP

__opeServer
/Mes/ter Pressure |53
Controller 85 v
OPC Client OPC Senved
Economic Load
Allocation
OPC Client
Advanced = Advanced E
\Q:mhustion 83 & - 25 OPC communication standard
P & ombustion 2 "
—— Optimi 151 (client — server)
T —_opcetment_
‘ OPC server for ication with DCS //!

Safe interaction with DCS — automatic
backup cascade control modes in DCS

21
© V. Havlena, J. Findejs, 2006

22

ARTIST2

Graduate Course on Embedded Conirol Systems
Prague, Czech Republic. April 3-7, 2006

Agenda

Introduction

— Advanced Process Control scope, status, drivers

Unified Energy Solutions (UES) portfolio

— Architecture, components, technology

Unified Real Time (URT) platform for advanced control applications
— Objectives, architecture, benefits

— Demo of key features
Conclusions

© V. Havlena, J. Findejs, 2006

ARTIST2

Graduate Course on Embedded Conirol Systems
Prague, Czech Republic. April 3-7, 2006

Unified Real Time (URT) Platform - Objectives

23

Environment for hosting advanced
process-control, real-time
optimization and planning/
scheduling applications that
— Are hybrid, large and/or complex
— Use any DCS for underlying
process measurements and
regulatory control
— Involve dynamic configuration,
flexible scheduling, complex
organization, etc.
Build on experience with DCS
applications
Provide tight integration with DCS
and business control level

Basic Process Control

Measurement / Instrumentation /1

Plant / technology |

Integrated process
management

© V. Havlena, J. Findejs, 2006

Graduate Course on Embedded Conirol Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

URT- Architecture

e Component-based environment built on
DCOM technology

¢ Components are organized in a tree
structure

e URT consists of data items, function

]
]
]

—
blocks and schedulers o
]
]
]
]
—
]

— Data items — hold application data or
another components

— Function blocks — provides user-defined
functionality

— Schedulers — units of execution, execute
function blocks

e The URT platform is a one process in OS
(Windows 2000 or later versions)
e OPC DA and A&E server

24
© V. Havlena, J. Findejs, 2006

Graduate Course on Embedded Conirol Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

URT — Data Subsystem

¢ Fixed set of elementary data items (leafs)

o scalars Name [Type Value Description
§ URT ConFioat float ~L.40000E12 Float value
¢ double, float, time M URT_ConEnum enum ADD Enumeration
! . N URT ConSting sting TextText String value
¢ short, int, long, enumeration ¥ URT_Conlong long 54365465 Long value
. . . N URT_ConDouble double 1.2324540E234 Double value
e string, bool, variant, link X time 20053ul07 10:20:00. 123 Date-Tme valus
— Containers of scalars — array, list, (queue,
stack)

¢ Data items for building structures (nodes)
— Component — keeps a reference to any type

)
Of URT component = B -URT_ConModelist
. o [1 URT_ConArrayComp
— Containers of components — array, list = URT ConListcomp

[-URT_ConModeList
= [- URT_Conhodelist2
= B -URT_ConModelist
N URT_ConComp
N URT_ConComp2
[-URT_ConModelist

25
© V. Havlena, J. Findejs, 2006

ARTIST2

26

¢ Connections — data item may have input and/or output connection

Graduate Course on Embedded Conirol Systems
Prague, Czech Republic. April 3-7, 2006

URT — Data Subsystem

— Input connection reads data from remote source (data item)
— Output connection writes data to remote target (data item)
— Internal connection — uses native URT protocol

— External connection — uses OPC protocol

MName ‘ Type Value | Description | Connection ‘ QutConnection | Timestamp
[] double 0:0 Inputjoutput value .. [../PV f..JOP 200506 22:23:38.441
<end >

» Buffering — data items have optional buffers

— Data can be transferred between schedulers (threads) without blocking
the execution

© V. Havlena, J. Findejs, 2006

27

ARTIST2

Graduate Course on Embedded Conirol Systems
Prague, Czech Republic. April 3-7, 2006

URT — Execution and Scheduling

¢ Basic unit of execution and scheduling is a scheduler component
¢ Scheduler owns a thread in which all child components are executed
e Schedulers support:

— Periodical execution

— Asynchronous on-demand execution

— Synchronous on-demand execution

= 45l DATA Name Type Value Description
= 3R PYProc N urtExecState enum INACTIVE Module execution state
2 r'n FILTER W urtPriority enum MNORMAL Module execution priority
L1 M ¥ urtumOverlaps long 0 Number of execution overlaps
[DEN N urtStartTime time 00:00:00.000 Last time module executed
 EQUATION N urtEndTime time 00:00:00.000 Time to end module execution
N urtElapsedTime time 00:00:00.000 Last module execution duration
N urtIntervalCount long 0 Number of intervals run since platform startup
N urtintervalActual time: -100:00:0... Module execution interval (actual)
W urtinterval time -100:00:0... Module execution interval (desired)
N urtOffset time 00:00:00.000 Meodule execution offset
N urtDemand long 0 Demand module unsynch execution
N urtSyncDemand long 0 Demand module synch execution
M urtMaxOverlaps long 1 Max permitted execution overlaps
M urtMaxOverlaps1 long 5 Max permitted execution overlaps firstinterval (multi...
W urtSpeedup float 1.00000 Speed up scheduling (for simulation): < 0 run contin...
N urtMsgComplID long 0 Internal parameter - Component ID used to raise me...
20k PYProc func blk PY processing

© V. Havlena, J. Findejs, 2006

Graduate Course on Embedded Conirol Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Scheduler — Execution cycle

Scheduler’s execution cycle consists of three phases (commands)

— Pre-execute()

— Execute()

— Post-execute()

e The commands are propagated trough the URT tree (post-order
traversal)

¢ Data items read data in Pre-execute() and write data in Post-
execute(). They do not use the Execution() phase.

¢ Function blocks calculate their outputs in Execute() phase. They

usually do not use Pre-execute() and Post-execute() phases.

28
© V. Havlena, J. Findejs, 2006

Graduate Course on Embedded Conirol Systems
Prague, Czech Republic. April 3-7, 2006

URT — Function Blocks

ARTIST2

¢ Points of customization
¢ Prepared base classes for C++, C# and VB.NET languages

e User class must implement OnPostBuild() method and Execute()
method.

e OnPostBuild() configures the function block | #EsUH cHules: sonoseBaia

m_PVX.SetUp (L”PVX”, L”Input X”);

— creates all ‘local’ data items m_PVY.SetUp (L"PVY”, L”Input Y”);
o . m_OP.SetUp (L”OP”, L”Output”);
— Initializes the function block m_VALID. SetUp (L"VALID”, L”Valid”);

o . . m_VALID = false;
¢ Execute() does the required functionality oturn ok
— i H }

QP Solver, Data switch, Resampling, ... pmmstr Colens et () ¢
m_OP = m _PVX * m_PVY;
m_VALID = m OP <= HI_LIMIT;
return S_OK;

}

29
© V. Havlena, J. Findejs, 2006

Graduate Course on Embedded Conirol Systems
Prague, Czech Republic. April 3-7, 2006

URT — Function Blocks Contd.

ARTIST2

¢ Base class implements all necessary functionality of a URT
Component

¢ Base class provides as set of functions for the function block

— Finding a component in the platform

Locking of the sub-tree

Subscribing of events

Generating of messages and events

e URT provides API for platform management (creating platforms,
creating/deleting components, browsing platform, ...)

30
© V. Havlena, J. Findejs, 2006

Graduate Course on Embedded Conirol Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Function Block Example

£S5 DATA Name Type Valug Description
=SR-3 PyProc) ¥ UrtSetFEState enum STOP SetFB active/inactive
S i FILTER N urtFBstate enum STOP FE run state
£1 NUM M UrtFBExecState enum STOFPED_FB FB execution state - compasite of FB and sched state
[DEN W urtTimeOutinterval time 00:00:00.000 Time out interval
i EQUATION W urtFECritical bool true Flag inidcating whether FB is critical, If true FB runs ...
| double 0 PV to be processed
W PVBACKUP double 0 Backup value for substitution
W MAXSUBS long 0 Maximum number of substitutes
H suBs long 0 Substitute index
mn FILTER struct Filter parameters
' EQUATION struct Equation coeficients
uor double 0 OoP
= 55 DATA Name Type Valug Description
=1-31% PYProc N GAIN double 1.00000000 Equation gain: GAIN * PV + OFFSET
5 i FILTER N OFFSET double @ Equation offset: GAIN * PV + OFFSET
L1 NUM <end >
L] DEN
L EQuATION]

31
© V. Havlena, J. Findejs, 2006

Graduate Course on Embedded Conirol Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

URT — Messages and Persistency

¢ Messages
— Function blocks can raise messages and events

— URT messages and events are converted to the standard OPC Alarms
and Events and published via OPC A&E server

Source [Time | Messags | Seveiity | Condiion | AckR
4] | [| [7| 140 7| 140] 1

CIE B DE_ 7/6/2005 105612 PM__ Data for slaves are invalid WAFN -Low EXECEND__ NO
C KARCE@RTDATAGINDAT... 7/6/200510:8510PM Could net find connection target *./././. 2./ /RATIO/RTPROC., WARN -High BADRESOL.. MO

e Persistency
— Configuration (tree structure) and the data are stored in one file
(checkpoint file) in XML format
— URT provides built-in function block for automatic periodical saving of
checkpoints

32
© V. Havlena, J. Findejs, 2006

Graduate Course on Embedded Conirol Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

URT - Navigation

¢ Each component must have a name. Any two sibling components
must have different names
¢ The tree of components can be seen as a XML document, where
names of the components in URT are names of elements in XML
document
e The URT component can be located using XPath-like queries
e The query can be absolute (including the name of the platform) or
relative. An absolute query may point to another platform.
— Absolute query: (Plaform1)/$Plaform1/Unit/App/Engine/Item
— Relative query: ../../Params/HILM
¢ The query may contain some attributes of the component (e.g.
type)

e The queries are used in connections and links

33
© V. Havlena, J. Findejs, 2006

ARTIST2

Graduate Course on Embedded Conirol Systems
Prague, Czech Republic. April 3-7, 2006

Simple Advanced Control Application

Real-time input data Real-time output data

PV MV
cv MVTAR
DV CVTAR
SP
limits
Distributed Control System (DCS) ‘
ARTIST2 et toeeh Repubies Agrd .7, 2005

More Complex Advanced Control Application

Real-time
input data

Real-time
output data

Y

Distributed Control System (DCS) ‘

© V. Havlena, J. Findejs, 2006

ARTIST2

Graduate Course on Embedded Control Systems

Prague, Czech Republic. April 3-7, 2006

¢ CONFIG - configuration data, can

e PARAMS - application parameters,
complex data structures, can be

e LIMITS, ENIGNE, CASCADE —
independent application modules

37

Prague, Czech Republic. April 3-7, 2006

© V. Havlena, J. Findejs, 2006

Advanced Control Application on the URT
S be changed off-line only
. — e RTDATA - external data
i % (underlying DCS)
—
—
[— I changed on-line
Ho] Ho]
Ho] Ho]
Ho] —
— —
o I —
— —
—
-—
[
[|
]
ART I ST 2 Graduate Course on Embedded Control Systems

Data Flow in ENGINE Module

Input values are read to input data
structures RTIN, PARAMS, HISTORY
Input values are converted by
EUTOPCT function blocks to
DATAPCT/IN structure

Data are process by function blocks
EXEC1 and EXEC2

The results are written to
DATAPCT/OUT structure

Output values are converted by
PCTTOEU function blocks and written
to output data structure RTOUT

© V. Havlena, J. Findejs, 2006

ATION

CONFIG

RTDATA

PARAMS

ARTIST2 Graduate Course on Embedded Conirol Systems
Prague, Czech Republic. April 3-7, 2006

Application Building

o[Fltform- gPltfom | e T e e Special function block for building
[Applnfo - AppInfo W urkSetFEState enum STOP H H
w22 syssched W urtFEState e TP appl|cat|0n
S28 MAINT W urtFEExecState enum STOPPED_F& A o1 g
W urtTimeOutTnkerval time 00:00:00,000 . Mu|t|- hase bu||d|n rocess
SOOI |5 e b P 9p

u ROOT link Cff [APPLE :

i e ¢ One function block can create
several applications inside the
platform

= TE Platform - $Platform name Type value

[AppInfa - AppInfo N urtSetFBstate enum STOP

#- 55 SysSched W urtFEState enum STOP
=55 MAINT N UrtFBEXECTtate Enum STOPPED_F&
u B urtTimeQutinterval time 00:00:00.000

¥ UAFBCritical bool true

% LES.MACE - App1 » ROOT link e BPPL
[Applnfo - Applnfo | acTION enum BLILD

+ ' CONFIG <end >

' EXTERNAL

' RTDATA

IE PM - MODEL

[PM - PERFORMAHNCE

[P - KNOWLEDGE

Ik DPCE

S5 RATIO

S5 umr

22 0P

25 CE

S5 CASCADE

.
ARTIST2 T oo o A
Indirection Example - Problem
e Scenario
— An application has two function block FB_A and FB_B, which calculate the same
type of outputs and store them in parameters A, B and C
— The function block FB_C read output values of FB_A or FB_B via input
connections and calculates output value D
e Problem
— How to put information about the source function block to one place?
/FB_A/A IFB_BIA
/FB_A/B /FB_B/B
/FB_AIC /FB_BIC
39

©V. Havlena, J. Findejs, 2006

Graduate Course on Embedded Conirol Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Indirection Example - Solution

SEL = /FB_A

- ISEL#/A

(link)

.ISEL#/B

.ISEL#/C

e The function block FB_C creates a link SEL
¢ All input connection are configured via the link SEL

e The link SEL can point to any URT component having child data items A, B
and C

40

©V. Havlena, J. Findejs, 2006

Graduate Course on Embedded Conirol Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Value Substitution Example

e Scenario
— An application has a set of parameters

— The parameters are stored in the structure PARAMS and they are modified by an
external application

e Problem

— How to allow substitution of some parameters by real-time data without
modifying the application and the parameter set

RTDATA

/PARAMS/*IA

/PARAMS/*/B

/PARAMS/*IC

PAR

41

©V. Havlena, J. Findejs, 2006

Graduate Course on Embedded Conirol Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

URT Demo - Advanced Combustion Controller

J
« >

42
© V. Havlena, J. Findejs, 2006

Graduate Course on Embedded Conirol Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Agenda

e Introduction
— Advanced Process Control scope, status, drivers
¢ Unified Energy Solutions (UES) portfolio
— Architecture, components, technology
¢ Unified Real Time (URT) platform for advanced control applications
— Objectives, architecture, benefits
— Demo of key features
e Conclusions

sess Data

43
©V. Havlena, J. Findejs, 2006

44

ARTIST2

Graduate Course on Embedded Conirol Systems
Prague, Czech Republic. April 3-7, 2006

Conclusions

¢ Advantages of component-oriented approach already proven by
software community

¢ Operating systems and general frameworks does not meet the
needs of control and optimization applications

¢ Unified Real Time platform

— Fully componentized applications

Flexible, extensible and distributed environment

Rapid application development

Standard data interfaces (OPC)

Advanced features — real-time reconfiguration, what-if analyses, ...

© V. Havlena, J. Findejs, 2006

ARTISTZ2

Real-Time Motor Controller

Michal Sojka
Czech Technical University
http://rtlab.felk.cvut.cz
sojkam1@fel.cvut.cz

ARTIST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

DC Motor Controller in Linux

The goal is to create a controller in ANSI C
language, which controls the angular velocity
of the motor.

03/24/06

© Michal Sojka 2006

ARTIST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Description of the Model

Linux PC

@
— -

ﬁ UDP sockets
J\ ! outb()

Control
Application

PWM, 1 kHz

Printer port

IRQ DC Motor

IRC, 0 - 21 kHz

03/24/06

© Michal Sojka 2006

A RT I S T2 Graduate Course on Embedded Control Systems

Prague, Czech Republic. April 3-7, 2006

Operating System

* We need:

— Fast response to interrupt request
Accurate timers (sample period, PWM)
Real-Time scheduler
Direct access to hardware
» Possible solutions:

— Real-Time OS (RTLinux, vxWorks, ...)

— Writing a device driver for Linux with real-time extensions
(High resolution timers, real-time preemption patch etc.)

— Modified Linux kernel for accessing hardware from user-
space

03/24/06

© Michal Sojka 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Our approach

* Modification to standard Linux kernel
— Added high resolution timers patch
— Allow non-root users to:

» enable real-time scheduling for their processes
» access I/O ports

* Interrupt handling in user-space
— VM86 system call
— Mainly for use by DOS Emulator

» User friendly interface through libpos library

© Michal Sojka 2006

ARTI ST2 Graduate Course on Embedded Control Systems

Prague, Czech Republic. April 3-7, 2006

Steps to Create a Controller

1. Create a basic C application.
. Try to rev up the motor at full speed.

Write a thread generating PWM signal
(period 1 ms)

Write an IRQ handler (position measuring).
Write a thread measuring the velocity.
Implement a velocity controller (PID).

Write a graphical interface for the controller.
Implement communication with GUI.

w N

© N O K

© Michal Sojka 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

w N

(period 1 ms)

© N O BK

Steps to Create a Controller

. Write a thread generating PWM signal

. Implement a velocity controller (PID).

03/24/06

© Michal Sojka 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

A Basic C Application

#include <stdio.h>

int
main(int argc, char *argv[])
{
printf("Hello\n");
return 0;

* Run the compiled application by:
~[artist2/ _compiled/bin/hello

In directory ~/artist2/hello

Compile by command
make

Executable appears in
~[artist2/ _compiled/bin

03/24/06

© Michal Sojka 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Parallel Port

PWM: bits 0, 1
* Motor rotation: sone 2 /
— left: outb (1, 0x378); IR BusY ——
_ right: outb (2, 0x378); RC {enca —
« IRC signals: e—

— inb(0x379);

PWM (left, right)
\

IR
D7|D6|D5|D4 |D3|D2 0X378

cocoe@0e

63666 oD

ey e D ENEN

/’ z3(celEi[en
| RC 0X37a 03/24/06

Graduate Cou ‘mbedded Control Syster
ARTIST2 T ague, Yo ';"prl Aplzrzo}ésm

The Structure of Control Application

Measure 4_,_. Timer

thread

velocity@ ﬁ delta
dir
Interrupt

veIocity struct motor <:| handler

Control | ======| | . action lelta, dir
B thread | =——> int dir

action
@ action
Timer

PWM ‘
."/' thread

© Michal Sojka 2006

reference

}

ARTIST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Periodic Threads

#define MS (1000000) start time (now)
void *thread_func(void *arg)
{
pthread_make_periodic_np(pthread _self(), gethrtime(), 2*MS);
while (1) {
/* do something */)
pthread wait _np(); pe”0d
}
return NULL;
} wait for the start of the next period
int main(void)
{
pthread_t thr;
pthread create(&thr, NULL, &thread_ func, NULL);
return 0;
}

© Michal Sojka 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

PWM Generation

* The value of the variable action specifies the control action.

» Use the usleep function to suspend the thread for a given
number of microseconds.

* The PWM period should be set to 1 ms. This is due to the
timer resolution (~1 us) and user-space overhead.
T

T
PWM PWM

B M e, BE—
1
output |_| |_|
0

while (1) {
set_output (1);
usleep (action * T
set_output (0);
pthread wait np ();

time

© Michal Sojka 2006

ARTIST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

PWM Generation (cont.)

+ Constants:
— PWM_PERIOD: a constant containing the period of PWM
thread (in nanoseconds!!!).

— PWM_RESOLUTION: the maximum value of action

variable. If action equals to it, the output should be always
1.

convert to microseconds

while (1) { /
set_output (1);

usleep (PWM_PERIOD/1000 * action / PWM RESOLUTION);
set_output (0);
pthread wait_np ();

03/24/06

© Michal Sojka 2006

A RT I S T2 Graduate Course on Embedded Control Systems

Prague, Czech Republic. April 3-7, 2006

Thread Priorities

» Rate Monotonic Priority Assignment
— the shorter task period the higher assigned priority
* In Posix: The higher number the higher priority

int init module(void)
{
pthread_attr_t attr;
struct sched param param; ..
- the priotity of the thread
pthread_attr init(&attr);
param.sched_priority = 1;
pthread_attr_ setschedparam(&attr, ¶m);

pthread_create(&thr, &attr, &thread func, NULL);
return 0;

03/24/06

© Michal Sojka 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

IRQ Handling

» Register an interrupt handler
— parallel port: IRQ 7
* Enable interrupt generation by setting a bit in

parallel port control register:
outb (0x10, O0x37a);

void irg_handler(int intno, void *dev_id, void *regs)
{
struct motor *motor = (struct motor *)dev_id;

/* do something */

return 0;

}

status = request_irqg(motor->irq, irqg_handler, 0, "motor", motor);

© Michal Sojka 2006

ARTI ST2 Graduate Course on Embedded Control Systems

Prague, Czech Republic. April 3-7, 2006

Signals From an IRC sensor

channel

channel A I | I | I

L

5 —
channel C (IRQ) |RQf f f f

* Whenever the value of any IRC sensor channel
changes, electronics in the motor generates the IRQ.

* The motor is equipped by IRC with 100 pulses per turn

and there are 4 IRQs per one step. So there are 400
IRQs per turn.

© Michal Sojka 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

PID Controller

Desired value + ~eé (k) PID
controller
u(k)
Velocity Motor =< Voltage (PWM duty cycle)

» Control error:
— e = motor->reference — notor->velocity;

* P controller:
— nmotor->action = PAM RESOLUTION * P * g;

* PID controller:
_u(k)ZP-e(k)+I«ze(i)+D-(e(k)—e(k—1))
i=0

ARTI ST2 Graduate Course on Embedded Control Systems

Prague, Czech Republic. April 3-7, 2006

How to Start

In the boot menu chose ARTIST2 Linux
Log in as artist<number>, password realtime
Go to the directory: cd ~/artist2
Compile everything: make
Start GUI application: . /gui
Start the controller: ~/artist2/ compiled/bin/moto;
Exit by Ctrl-C
Go to controller directory: ed motor/src
Open file motor.c in editor (Kate) and modify it.
. Compile modified program: make
. Runit: ~/artist2/ compiled/bin/motor

T20 0N Rk b=

- O

© Michal Sojka 2006

ARTIST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Content of Directories

» motor/src — the code for the controller part
— motor.c — the code of application (you will modify this file)
motor.h — common declarations for both RT and US part
— Makefile — commands for compilation.
— gui — script for starting the GUI application
« motor/qtmotor — graphical user-space interface
« motor/curmotor — text-based user-space interface

* libpos — periodic threads and interrupt emulation
library

© Michal Sojka 2006

ARTI ST2 Graduate Course on Embedded Control Systems

Prague, Czech Republic. April 3-7, 2006

Your Tasks

« Extend the PWM thread to generate PWM
signal based on the value motor->action.
* Implement a controller.
— start with a P-controller which computes action as
action = K, * (reference — velocity)
— Experiment to find the value of K,

— Extend the controller to PI. In the simplest case, you'll
need to store the sum of errors.
* You may try to do other extensions — windup
handling, use fixed-point arithmetic, use better
implementation of PID, etc.

© Michal Sojka 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Debugging

 Inside the code use the printf () function to print

the values you are interested in.
printf (“vValue of action: %d\n”, action);

03/24/06

© Michal Sojka 2006

Friday 7th of April

ARTIST2

ARTISTZ2

TORSCHE
Scheduling Toolbox for Matlab

Pfemysl Stcha and Michal Kutil
Czech Technical University, Department of Control Engineering
Karlovo namésti 13, 121 35 Prague 2, Czech Republic
{suchap,kutiim}@fel.cvut.cz
http://dce.felk.cvut.cz/sucha
http://www.tim.cz

© Pfemysl Séicha 2006

on Embedded Control Systems
ublic. April 3-7, 2006

ARTIST2

Session Outline

TORSCHE Introduction
TORSCHE Quick Start

Iterative Algorithms Scheduling
Outlook

© Pfemysl Séicha 2006

ARTIST2

TORSCHE (Time Optimization of Resources, SCHEduling) is

Aim of the toolbox:

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

TORSCHE Introduction

Matlab based toolbox for Scheduling.

rapid prototyping of scheduling algorithms

co-design of control and scheduling problems
repository of off-line and on-line scheduling algorithms
open for new algorithms

demonstration tool for education

© PFemysl Sficha 2006

ARTIST2

Maltlab objects are used to represent large variety of

Main objects of the toolbox:

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

TORSCHE — Problem Representation

scheduling problems.

task - parameters of task

taskset - object encapsulating set of tasks

problem - specification of problem (Btazewicz notation)
graph - representation of graph

© PFemysl Sficha 2006

ARTIST2

The toolbox algorithms structured into several groups.

Groups of the toolbox function:

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

TORSCHE — Algorithms

functions for manipulation with objects of the toolbox
scheduling algorithms (List scheduling, EDD, ...)
graph algorithms (Floyd’s algorithm, ...)
supplementary algorithms (ILP, MIQP, ...)

GUIs (graphedit, ...)

© PFemysl Sficha 2006

ARTIST2

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Session Outline

TORSCHE Introduction
TORSCHE Quick Start
Iterative Algorithms Scheduling
Outlook

© PFemysl Sficha 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Steps to solve scheduling problems:

definition of tasks
definition of taskset
problem definition
scheduling

hwDdPE

TORSCHE Quick Start

© PFemysl Sficha 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Problem: 1|pmtn,rjjLmax

Example — Horn’s algorithm

Algorithm: Horn’s algorithm [Horn74]

T={tl, t2 13} by b
p={5 2 3}

1={1 0,5 | T |

d;= {12, 11, 9} 0 s G d d time

Objective: minimize maximum lateness L

= max{L;}

max

© PFemysl Sficha 2006

ARTIST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Definition of Tasks

Task is defined by command task, for example:

>>t1 = task('taskl', 5, 1, inf, 12)

Task "task1l"
Processing tine: 5
Rel ease ti ne: 1
Due date: 12

This command defines task with name "task1", processing time 5,
release time 1, without deadline (inf) and due date 11. Other
tasks can be defined in the same way:

>> t2 = task('task2', 2, 0, inf, 11);
>> t3 = task('task3', 3, 5, inf, 9);
ART | ST2 Graduate Course on Embedded Control Systems

Prague, Czech Republic. April 3-7, 2006

Definition of Taskset

Set of tasks is created by command taskset :

>> T = taskset([t1l t2 t3])
Set of 3 tasks

For short:

>> T = [tl1 t2 t3]
Set of 3 tasks

© PFemysl Sficha 2006

ARTIST2

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Problem Definition

Classification of deterministic scheduling problems:
e notation proposed by [Graham79] and [Btazewicz83]

e special problems, not specified by the notation
(e.g. m-DEDICATED)

>> p = problem(' 1| rj, pntn| Lmax")
1| pntn, rj | Lnax

ARTIST2

© PFemysl Sficha 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Scheduling

Now we can run the scheduling algorithm, for example
Horn’s algorithm:

>> TS = horn(T,p)

Set of 3 tasks

There is schedule: Horn's al gorithm
Solving tine: 0.016s

Graphical representation of the schedule (Gantt chart) can
be displayed using command plot :

>> plot (TS, ' proc', 0)

© PFemysl Sficha 2006

bedded Control Systems
blic. April 3-7, 2006

ARTIST2

Schedule — Gantt Chart

-} Figure No. 1 =100 x|

File Edit Yiew Insert Tools ‘Window Help

1= = F= AN W A

o L- . ‘
Py

task2 ‘
task3
o 2 4 B 8 10 12
t
© Pfemysl Séicha 2006
ARTIST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Session Outline

TORSCHE Introduction

TORSCHE Quick Start

Iterative Algorithms Scheduling
Outlook

© Pfemysl Séicha 2006

ARTIST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Iterative Algorithms Scheduling

Cyclic scheduling — tasks are repeated in K iterations

Periodic schedule — tasks are repeated periodically with
constant period w

Objective — to find a periodic schedule with minimal
period w

© PFemysl Sficha 2006

ARTIST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Example — Cyclic Scheduling

Wave Digital Filter (WDF): for k=1 to N do
a(k) =X(k) + e(k-1) o1
b(k) = a(k) - g(k-1) o2
c(k) = b(k) + e(k) o3
d(k) = gamml * b(k) T4
Il‘J_"I‘]l_> WDF _>|:| e(k) = d(k) + e(k-1) oI5
Ak YiK) f(k) = ganma2 * b(k) a6
Band-Limited Fcn Scope g(k) = f(k) + g(k-1) 7
White MNoise Y(k) = c(k) - g(k) %8

end

Hardware: one addition and one multiplication unit on a
FPGA architecture with floating-point units

floating-point unit processing time latency
[clk] [clk]

addition (+) 1 1

multiplication (*) 3 3

© PFemysl Sficha 2006

ARTIST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Problem Statement

Dedicated tasks — tasks are assigned to specified processor
(i.e. floating-point unit)

Instance representation: Cyclic Data Flow Graph (CDFG)

single operation » task » node in the CDFG

precedence constraints between operations » edges
weighted by height h;; (dependence distance)

>> graphedit

© PFemysl Sficha 2006

ARTIST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Cyclic Data Flow Graph of WDF

-} Figure No. 1 =10 x|
File Edit View Insert Tools ‘Window Help Graph edit
IDzEd& xA A 2o
Fddnodes Deletc | WMrode |70 | edge[1 Dalaout
bddedges| Edt | Wuawe[1 W ocomfvelew ¥| Datain

for k=1 to N do
a(k) =X(k) + e(k-1) 91

b(k) = a(k) - g(k-1) %2
c(K) = b(k) +e(k) 93 @e@e ,,,,,, :::
d(k) gammal * b(k) %4 g ‘E‘r
e(k) = d(k) + e(k-1) %5 % I
f(k) = gamma2 * b(k) %6 4 D : § N N
g(k) = f(k) + g(k-1) %7 @ -------- er— : @u
Y(k) = c(k) - g(k) %8 5. 0 /\
. ‘ height
processor 6 h
number 78

workspace graph name | cdfg

© PFemysl Sficha 2006

ARTIST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Parameters of Processors

Parameters of processors (floating-point units):
e processing time — processor occupation time

* latency — length [; (minimal distance between tasks),
i.e. processing in plpellne

Scheduling problem is represented by graph G where
edges are weighted by couple (l;, hy).

>> UnitProcTine=[1 3];

>> UnitLattency=[1 3];

>> G = cdf g2LHgr aph(cdf g, Uni t ProcTi e, Uni t Lat t ency) ;
>> graphedit(Q

Note: Floating point units are considered non-pipelined only for simplicity reasons.

© PFemysl Sficha 2006

ARTIST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Graph G of WDF

-} Figure No. 2 =100 x|

File Edit Yiew Insert Tools ‘Window Help Graph edit
Inega/xa s/ ®2po

fiddnodes Delets ¥ nade | T_{1} [+ edge| 1 Data out
Add edges Edit v value | 1 I¥ color | pellow 2 Data in

& @@

@ ’ @
proc tlme : /\ heignt hy 5
lengthl; g

procr number

workspace graph name | G

© PFemysl Sficha 2006

ARTIST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Critical Circuit

e critical circuit in graph G determines minimal feasible
period w with respect to precedence constraints

e problem assumes graph G where edges are weighted
by a couple of constants length |; and height h;

e objective is to find the critical circuit ratio defined as:
é. Iij

1
= max g—
o C(G) a hj

gl c
where C is a circuit of graph G.

e circuit C of graph G with maximal circuit ratio r is the
critical circuit

© PFemysl Sficha 2006

ARTIST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Critical Circuit - WDF

-} Figure No. 2 =10l x|
File Edit View Insert Tools ‘Window Help Graph edit
lozga/rars|ppn

s Delete | Mrode[T (1) | Wedse[1 | Daaout

bddedges| Edt | Wuae[1 M oofyslow ¥] Datain

workspace graph name I G

© PFemysl Sficha 2006

ARTIST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Critical Circuit Ratio

Graph G contains two circuit ¢, and c, with circuit ratio:
r(c, = (1+1+3+1)/(0+0+0+1) = 6
r(c,) = (1+3+1)/(0+0+1) =5

Critical circuit is c, , therefore period w 2 6. Critical circuit
ratio can be evaluated in the toolbox using command:

>> critical _circuit_ratio(Q
ans =
6. 0000

© PFemysl Sficha 2006

ARTIST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Solution

Graph G can be directly transformed to the taskset:

>> T=t askset (G
Set of 8 tasks
There are precedence constraints
>> prob=probl enm(* m DEDI CATED')
>> schopti ons=schoptionsset ('il pSolver',"'glpk')
>> TS=mdcycsch(T, prob, 1, schoptions)
Set of 8 tasks
There are precedence constraints
There is schedul e: MONOCYCSCH- | LP based al gorithm (integer)
Tasks period: 8
Solving tinme: 0.126s
Number of iterations: 4
>> plot (TS, ' prec', 0)

© PFemysl Sficha 2006

ARTIST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Resulting Schedule
ol

File Edit View Insert Tools ‘Window Help

InEzmaE/ A 2r | ppo

Processor!

+T +T, +T | +T, +T. +T,

Processor2 |

© Pfemysl Séicha 2006

ARTIST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Solution Summary

>> graphedit

>> UnitProcTinme=[1 3];

>> UnitlLattency=[1 3];

>> G = cdf g2LHgr aph(cdf g, Uni t ProcTi ne, Uni t Latt ency) ;
>> T=t askset (G);

>> prob=probl en(' m DEDI CATED') ;

>> schopti ons=schoptionsset('il pSolver',"'glpk');

>> TS=mdcycsch(T, prob, 1, schoptions);

>> plot (TS, prec', 0);

© Pfemysl Séicha 2006

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Session Outline
e TORSCHE Introduction
e TORSCHE Quick Start
e lterative Algorithms Scheduling
e Outlook
ART | ST2 Graduate Course on Embedded Control Systems

Prague, Czech Republic. April 3-7, 2006

Outlook

Currently we are working on:

e automatic code generation for Handel C and TrueTime
» real-time schedulability analysis

* new graph and optimization algorithms

© PFemysl Sficha 2006

ARTIST2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

More Materials

TORSCHE Scheduling Toolbox for Matlab with a complete
documentation can be downloaded at:

http://rtinme.felk.cvut.cz/scheduling-tool box/

© PFemysl Sficha 2006

ART | ST 2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

ARTIST2

Implementing Floating-Point DSP and
Control with PicoBlaze Processors

Jifi Kadlec
CTU Prague
Pod vodarenskou vézi 4

www.zs.utia.cas.cz kadlec@utia.cas.cz

© Jifi Kadlec 2006

ART | ST 2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Presentation outline

B PicoBlaze KCPSM3 processor from Ken Chapman Xilinx

B One PicoBlaze Master and four Workers connected by DP BRAMs
B Demol: Four Bouncing Ball on a VGA -5 PicoBlaze on XC3S200
B Scalable pipelined Floating point

B Bit-exact high level simulation in Simulink

B Demo2: 400 M Flop (18-bit FP) parallel vector products

B Power/area: Virtex2, Spartan3, Spartan3L, Spartan3E

B Conclusions

© Jifi Kadlec 2006

ARTIST2

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

PicoBlaze KCPSM3 processor
B Author: Ken Chapman, Xilinx;
B VHDL Core with assembler: free from
B Main parameters:

e 8 bit CPU, 1 BRAM 1024x18 for program, only 96 slices (5% of xc3s200)
16 registers, Scratch pad memory 64 byte, 8bit /0O bus, 8bit port address
all instructions take constantly 2 clock cycles, 1 level of interrupt
KCPSM3 includes Assembler, RS232 macros and uart_clock demo.
Optimized for Virtex E, Virtex 2, and Spartan 3

B Our design is reusing parts of Ken’s uart_clock demo

B We add inter-processor connect, VGA support and Floating point HW

B We add hazard free access to DP BRAM from Master and Worker PicoBlaze

3

© Jifi Kadlec 2006

ARTIST2

Worker: 4 input ports, 8 (max 256) output ports

interrupt_3

w_reset

Graduate Course on Embedded Control Systems

Prague, Czech Republic. April 3-7, 2006

z

l
mea s

interrupt

[Er—— S S

address[0:0)]
program_rom

p_w_v1 | address (3] il
instruction[17:0] bl bl instruction[17:0] sort_ld[70] il Ly o AT =
in_port[7:0] out_port[F0] e Lo ow por [0] =

kopsm3d
write_strobe
intemupt read_strobe —
reset

I T

processor

B Master includes in addition:

® 38400 bps UART

ja .
[FoThex a1 £ .
-
[nozhexfr o] - . £3 g p £4
[Fo] aro]
o |
[nodhex o] =8 = in_port[7:0]
2 .
oS e = S 2
in_pdrt_B[7:0]

® 1 microsecond timer

® |Interrupt-based 1u sec time base

© Jifi Kadlec 2006

ART [ST 2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Master and Worker macros and connectivity:
B Workers provide asynchronous interrupt input and interrupt_ack output

B Master encapsulates serial 38400 bps UART with basic Ken’s SW support

B Each processor includes 1 BRAM with local program

B Network is using dual-ported BRAM blocks 2048 x 8 | RAMB16_39_S9
-1 CLKE
- DIPA[D)
- DIFE[D]
- - -1 ENA
4 ENE L
- m_reset - w_interrupt_pulse - SSRA 885@% L
- clk - w_reset f el
m_write_strobe — - - WEA DOA[TO] =
- rx e = clk w_write_strobe — 4 wee
L w_interrupt_ack — DOB[7:0] =
= in01hex7:0] alarm = N0 Thex(7:0]) = ADDRA[10:0]
= in02hex{7:0] m_out_port[70] = = in02hex7:0] CLIPEE [E0)] = ADDRB[10:0]
= in0dhex7.0] m_port_id[7.0] e = inddhex7:0] LIt i) G by LAl
= DIB[7:0
= n08hex7.0] = in03hex(7:0] 0
Instance0
Instance15 Instance14
5
ARTISTZ2 eragee, Ceoch Repubic. Aori 37, 2006

Demo 1: Four Bouncing Balls, VGA, 5 PicoBlaze net

PC Master Worker 1 Worker 2 Worker 3 Worker 4
time base 1u sec Ball 1 Ball 2 Ball 3 Ball 4
RS232 38400 bps
i)
File Edit Setup Control Address 11 bit
Window _ Help (8 banks, each 256 bytes)
H 13t ine | . Data busses 8 bits
0:00:52 _I
>
i E LELELD | 4 Dual ported Block RAMs
plam 07 2048 Bytes each
0:01:43) Address 11bit
nup 1 PicoBlaze Data 8 bit
Master
=l|| 4 PicoBlaze 4 PicoBlaze workers
L 24| | Workers
T % il .
Ball speed is sent —
from PC to BRAMSs = =/
Workers read it to ﬁ]] H
Drive the Balls \S/GA HW 2"‘;”}}”
Board IO: SW led 7seg 7seg 7seg 7seg upport -balls

© Jifi Kadlec 2006

ART | ST 2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Demol: 4 Bouncing Balls e 65 e ey Pt e -
mSpartan3 XC35200-4-ft256 LR LN R RS LE L
BSlices 962 out of 1920 50%
EBRAMS 9outof 12 75%

ESystem clock 50 MHz
HUp to 5x25MIPs 125 MIPs
Hinterrupt latency 4 clk

BEMaster DP SRAM 4 x 2048 Byte
mWorker DP SRAM 2048 Byte

BHW avoids write conflicts (No hazard in
case of parallel WR to same address).

EPower estimate: EWorker 1,2,3
EDynamic 56 mW BVGA support
EQuiescent 61 mW HEMaster -]
]
ETotal 117 mW mWorker 4 satvia 7
7
ARTIST2 T rague, Cooeh Repubie. dori 35, 2008

Generic Short Latency Floating Point Macros O
B Based on Celoxica DK 1.1 Handel-C Floating Point Library

Used in
B Precisions <t0ta|_|ength>m<mantissa>:24m17, 32m23, 36m27 Final FP
Vector

e ADD/SUB, MUL 2 stage pipelined (retimed) Product
e FIXPT2F, F2FIXPT 4 stage pipelined (retimed) Demo 2
e DIV, SQRT Sequential. No of cycles = mantissa width + 2

32 bit Pipelined Floating Point Macros

B Based on Celoxica DK 3.1 Handel-C Pipelined Floating Point Library

B 32 bit Precisions <total_length>m<mantissa>: 32m23

e ADD/SUB 10 stage pipelined MUL 7 stage pipelined
® FIXPT2F 12 stage pipelined F2FIXPT 14 stage pipelined
e DIV 28 stage pipelined SQRT 27 stage pipelined

© Jifi Kadlec 2006

ARTIST2 O rapie. Catch Repubi dprit 3.7 2008
Modeling & RTL RTL level i Esipem_add_top
DK4 I bs
Simulator | L8 2[31:0] 4=
Source code - [37:0]
in Handel C VHDL > = B3]
C++ Simulink

S-functions
pipe28_div_top

-1 as

B Example for 32bit FP ADD

-

- bs
i b = clk 7[51:0] =
e Simple FP ADD and e - a(31:0]
SUB (bit exact) : o)

FloatSub

e ADD/SUB one block

pipe07_mult_top
- as
- bs
= clk
= a[31.0]

= b[310]

7[31°0] =

pipe14_f2fixpt_top
— as
— clk

= a[31:0]
= p4:0]

Z[31:0] o=

pipe12_fixpt2f_top

(bit exact - o I
— clk Z[31:0] = d a1 Z[31:0] =
e ADD/SUB one block - = a[310]
(bit and cycle exact) " g
9

ARTISTZ2 eragee, Ceoch Repubic. Aori 37, 2006
Area
Slices used by Scalable Float
2500 (xc2v1000=5120 slices)
2000 ——add —=— mul div
1500 fix2f —x— f2fix ——sqrt
1000 /
O 500 /r//
[%2]
Used in |5 (;?/
Final FP 0 ‘ ‘ ‘
VeCtOr 18m11 75MHz 24m17 75MHz 32m23 75MHz 36m27 75MHz 32m23 150 MHz
[P)mduct < Scalable Short Latency Float ><32bit Pipe>
esign

10

© Jifi Kadlec 2006

ARTIST2

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Speed xc2v1000-4 FP modules
180
160 |
150MHz target L __
140
120
100 |
80 | /- 77757M[-|727t§ rget
60 |
) 40 4 —e—add —s—mul div fixef
Used in
i 20 - —x— f2fix —e—sqrt - —+ - target - —~—target_fast
Final FP Y q <] get_
Vector = ‘ ‘ ‘
Product 18m11 75MHz 24m17 75MHz 32m23 75MHz 36m27 75MHz 32m23 150 MHz
Design
< Scalable Short Latency Float ><32bhit Pipe>
11
ARTIST2 g oo g A 5 000

Demo 2: 400 M Flop (18-bit FP) vector product

Spartan3 xc3s1000-4, L,
Virtex2 xc2v1000-4

50 MHz clock

125 MIPs

4x 100 M FLOP

FP Mantissa 11 bit,
FP Exponent 6 bit,
FP Sign 1 bit

DSP program:

Wait for signal;

Z[0]=X [0:255]*Y[0:255];
interrupt worker;

- -a

1x PicoBlaze Master
1 us time-base
RS232 38200bps

4x PicoBlaze
Workers

4x 3 DP BRAMs
XY, Z

4x dedicated HW:
18 bit FP
MACs at 50MHz
From Simulink
and DK4 testb.

DP BRAM connecting processors: 2048 x 8bit (8 banks)
DP BRAM connecting DSP: 1024 x 18bit (4 banks)

12

© Jifi Kadlec 2006

ART | ST 2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Design and verification strategy for FP DSP modules

B Step 1: Bit exact model in Simulink. Verification with Double. Create test data.

B Step 2: Simulation of identical HW (hand coded in Handel-C)
in DK4 Software simulator (I/O functions automate connection to Matlab)

Step 3: Compilation from DK4 to HW kit to verify on real HW. Kit specific
versions of same /O functions automate connection of the HW kit to Matlab
without the need to modify code (parallel port in the case of RC200E).

Step 4: Isolate debugged DSP design (BRAM -> do DSP -> BRAM) as module.
B Step 5: Attach these verified DSP modules with PicoBlaze.

Step 6: Verify the DSP module first on one PicoBlaze worker with mem dump
support from the Master. Use test data from Step 1

Step 7: Extend your DSP design to multiple workers, large data sets and real
time constrains. Concentrate on SW to manage combinations of DSP blocks.

13

© Jifi Kadlec 2006

ART | ST 2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Stepl-3: Bit exact model in Simulink and debugging.

[Z)ftest_simulink

-10/x| =10l x|
Fie Ed View Smuston Format Tools Help B LLL ARE BDASE -

D eE& sBRE2E »r s nomsl > M BB REME G ®

-
E
C}

.
loat
i
=111
1

20

Pipelinad floating point MAC
(Multiply Aceumul ate) with
the latency of the Add =2

as
MatFi2e [> I - i
= s
= = =
D” PipeFlaat o
Add 2 Aage pipelined Add o]
Invert float
o

Wector product is computed via 3 paial sums of praducts
‘ Tesinputm ‘ ‘ L ‘ The final sum is computed by single reused ADD unit,
PipeFloat Add1 and PipeFloatadd2 model the reuse

Data to inputdat file Compare If results are identical

Ready [100% [[|FixedStepbiscrete 7
) MATLAB =10 x]
Fle Edt Debug Desktop Window Hep

OcF| s mml o o | 8| | [crmiosecmmdine poot tom o =@
Shorcuds 2] How o Add 2] What's New

Go to DE4 simulator a - - a LI
to generate output.dat from input.dat

> B
Azt Vi

14

© Jifi Kadlec 2006

ARTIST2

Step 4-5:

Top level used in

design experiments
to get comparable

power estimation

results. Falutest_hcc =

contains all 5

processors and all FP
ALUs (Handel-C top).

synplify Pro - sheet 1 of 1 - top level (of ma

|| gt Edt wew Eroect Bun HOL anslyst Options Window Web b
[rocm cad :&e-

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

synplty Pro - [Sheet 1 of 1 - Instance0.Instanced (of module falutest_hee_main) (RTL Uiew) o (=11

[©me Eot view Bropct Bun HOL Araivst Cotiors Window Web beo

|racezagiwea: (wpoo[EaEoresnppesne s [[mn

all ~ —

e

| mo||jeo|egE||[gtes Dopp o0 e |

i = | =
u kD ==y
il - o |
v (test_top) (R View) . reu_1 e ol x|

ROC
Igstance}
[Er=

| fabulest_hee

Instanced

o_te_re200_hee

Ingtancat

Synthesis... (E) fahaost_to

15

This is detail of X, Y, Z

BRAMs and one FP
18bit MAC operating
bit-exact as Simulink.

ARTIST2

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Step 6: Integrate and test with PicoBlaze on HW

Simulink test bench generates data which can be used ~EIEEE —lolx)

by DK4 simulator, HW board for verrification on the
HW kit (RC200E with XC2V1000-4 in our case). Finally
to target PicoBlaze network, data are generated in
format compatible with 18-bit wide BRAMS X,Y and Z:

This is Mem
Dump
managed by
PicoBlaze net
on rc200e hw.

It prints test
vector data
and result of
vector prod.
identical with
Simulink.

i Tora Term - COMI VT

Fe Edt Senp Conwol Window Hep

Wh:010: 00 00
W4:020: 09 @9
Wi 030: 00 00

Wi 04O 00 00
W4:058: 1F 80
Wi 060 00 00

Wi O70: 93 31
W4:080: 00 @9
Wh:090: 00 00

P M UI>time
00:04:27

PMU
Ll |

:¢]

186
L::]
:¢]

:¢]
L::]
:¢]

1]

1]

1]
a3
1]

1]
(=12
1]

19
0]
oe

18
0]
oe

80
o
L:E]

80
o
L:E]

L:E]
o
L:E]

03
e
0o

1]
e
0o

0o
e
0o

oo
oa
o0

&0
oa
o0

oo
oa
o0

03
e
i}

o
e
i}

19
e
:l¢]

18
e
:l¢]

:l¢]
e
:l¢]

" _ioix]
Soubor Bdtace
Mednant Madncst
Mipovida 100% | Mipovids 100%
6, 6, 9, = 8, 8, 8, =2
1, A, 8, 1, 18 a,:l
1. 18, 88, 3, 18, 8@,
3, 15, @, 1, 22, 88,
3,19, 8, 1,16, 0,
3, 8, @, 3, 1F, 80,
1 8. B, a8, F8, @,
3, 1D, 8, 3. 020, © =
LE | M 4

© Jifi Kadlec 2006

16

Finally, OK on HW :-)

© Jifi Kadlec 2006

A R—l— | S—l— 3 Graduate Course on Embedded Control Systems
“ Prague, Czech Republic. April 3-7, 2006

B o § boorpharmer - ldstest_top E =lolx|

Step 7: Real vector product 400mflop % & v sy fwen g s 0
Virtex2 xc2v1000-4-fg456

mSlice Flip Flops 2905 28%
H4 input LUTs 4241 42%
EOccupied Slices 3292 64%
EBRAMS 21 52%
EMULT18x18s 4 10%
EClock 50 MHz ISE: 53,3 MHz
EPower (Xpower setting has been verified
by measurement of case temperature):

EVccint Dynamic 666 mW
Quiescent 18 mW
mVccoux Dynamic 0mw
Quiescent 330 mw
mVcco Dynamic 3mw
Quiescent 3mw 11 T A
ETotal 1020 mW e el
17
ARTIST2 g Coech Repubic 3037, 2005
Step 7: Real vector product 400mflop G ousew & aaens s ansie mjj
Spartan3 xc3s1000(L)-4-fg456 .mw- v ;
- --'!gﬁﬁ'iﬂf':iz e
mSlice Flip Flops 2637 17% 7l I
m4 input LUTSs 4424 28% At =
EOccupied Slices 3097 40%
EBRAMS 21 87%
EMULT18x18s 4 16%
EClock 50 MHz ISE: 50,6 MHz
EPower estimate (X_power) S3 S3L
EVccint Dynamic 92,8 mw 91 mWwW
Quiescent 78 mW 36 mW
mVccoux Dynamic 0 mw 0 mw
Quiescent 62mW 62 mW
mVcco Dynamic 1mw 1 mw
Quiescent 0mw 0mw
ETotal 235 mW 191 mW i P

18

© Jifi Kadlec 2006

ART | ST 2 Graduate Course on Embedded Control Systems

Prague, Czech Republic. April 3-7, 2006

Step 7: Real vector product 400mflop

Spartan3E xc3s1200E-4-fg400

mSlice Flip Flops 2829 16%
B4 input LUTs 4440 25%
EQOccupied Slices 3136 36%
EBRAMS 21 75%
EMULT18x18s 4 14%
EClock 50 MHz ISE: 50,1 MHz

EPower estimate is not available yet

in X power tool.

EThe complete 4x 100 M FLOP Vector

product with 5 PicoBlaze processors
has been implemented and tested on
RC200E board from Celoxica with the
Virtex 2 XC2V1000-4 part, running at

50MHz.
ESpartan 3 designs have been

all compiled but not tested on real HW.

£ il Floorplanner - falutest_top =10l x|
Fit EdU Mew Heardy Paten Foopbn wWndow Hip
D@ 8Lw mavsad s anas

(i fohstest_vop Placement for ocsel 200 GO0

XSO

© Jifi Kadlec 2006

ART | ST 2 Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

Conclusions

B 5 PicoBlaze Architecture ++

B 5 PicoBlaze Architecture --

B It is compatible with our design strategy for DSP modules:
Simulink model -> DK4 debug -> HW debug -> Reuse in PicoBlaze net.

B PicoBlaze is small and simple, hence manageable.

B Currently implemented conversion of data formats (8bit - 18bit) is slow.
B Spartan 3(L) power reduction ++
B Spartan3(L) is 5x reducing power consumption comparing to Virtex2.

B Spartan3E is most likely choice for our designs based on PicoBlaze net.

© Jifi Kadlec 2006

