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Program of Graduate Course on Embedded Control Systems 

Department of Control Engineering, FEE, CTU Prague 

Karlovo náměstí 13, Building E, Room K112 

Monday 3rd of April 

• 8:00 Registration 
• 8:30 M1 Motivation and examples, Bengt Eriksson and Martin Torngren, 1.5 hour (KTH) 
• 10:00 Coffee  
• 10:15 M2 Control issues, Pedro Albertos, 2 hours (UPVLC)  
• 12:15 Lunch 
• 13:45 M3 RT issues, Alfons Crespo, 2 hours (UPVLC) 

Tuesday 4th of April 

• 9:00 T1 Kernels and safe (back-up) operation, Pedro Albertos and Alfons Crespo, 1 hour 
(UPVLC) 

• 10:00 Coffee 
• 10:15 T2a Control design practical issues - principles, Bengt Eriksson, 1 hour (KTH) 
• 11:15 T2b Control design practical issues - models, Jindrich Fuka, Jiri Roubal, 1 hour 

(laboratories K23 and K26 - CTU) 
• 12:15 Lunch 
• 13:45 T3 Integrated control design and implementation, Karl-Erik Arzen and Anton Cervin,      

2 hours (LTH)  

Wednesday 5th of April 

• 8:00 W1 Control of Computing Systems, Karl-Erik Arzen and Anton Cervin, 2 hours (LTH)  
• 10:00 Coffee 
• 10:15 W2 Jitterbug and Truetime, Karl-Erik Arzen and Anton Cervin, 2 hours              

(laboratory K2 – LTH) 
• 12:15 Lunch 
• 13:45 W3 ECS Deployment, Bengt Eriksson and Martin Torngren, 2 hours (KTH )  

Thursday 6th of April 

• 8:00 Th1 Off-line scheduling, Zdenek Hanzalek, 2 hours (CTU)  
• 10:00 Coffee 
• 10:15 Th2 Platform for Advanced Process Control and Real Time Optimization,            

Vladimir Havlena and Jiri Findejs, 2 hours (Honeywell Laboratory Prague) 
• 12:15 Lunch 
• 13:45 Th3, RT practical issues, Michal Sojka and Ondrej Spinka, 2 hours                  

(laboratory K09 - CTU) 

Friday 7th of April 

• 8:00 F1, Torsche – Matlab scheduling toolbox, Premysl Sucha and Michal Kutil, 2 hours 
(laboratory K2 - CTU) 

• 10:00 Coffee 
• 10:15 F2, Implementing Floating-Point DSP and Control with PicoBlaze Processors,             

Jiri Kadlec, 2 hours (CTU) 
• 12:15 Closing remarks and discussion 



M1 Motivation and examples, Bengt Eriksson and Martin Torngren, 1.5 hour (KTH) 

In this introductory session, the general problem of the course will be presented and 
motivated. What Embedded systems (ES) are? What Embedded control systems (ECS) are? 
Why? Motivating examples: inverted pendulum, mobile robot, car safety control. Main issues 
in the design of ECS: typical requirements, conflicting requirements, design trade-offs, typical 
architectures, design parameters. 

M2 Control issues, Pedro Albertos, 2 hours (UPVLC)  

Real-time implementation of control algorithms in a multitasking environment involves a 
number of issues that should be taken into account. The unavoidable delays, both in 
computation and in data handling, the lost of data, the change of operation mode, the 
changes in sampling periods and the performance degrading are among the main issues to 
be considered. In this session, a review of these concepts for a general audience will be 
presented. The goal of this session would be to emphasize the relevance of these control 
design issues, to be strongly connected to the actual implementation of the control, to be 
discussed in the next sessions.  

M3 RT issues, Alfons Crespo, 2 hours (UPVLC)  

The aim of this session is to introduce the most important concepts of ECS from the real-time 
(RT) systems perspective. The different types of RT tasks are introduced, and the 
importance of RT constraints is emphasized, especially in the context of control systems 
design. The central role of processor scheduling for guaranteeing RT constraints is 
motivated, and the main paradigms of RT scheduling are introduced. Fixed and dynamic 
priority scheduling methods are described, including temporal analysis methods. Resource 
usage and jitter control are also introduced. Finally, implementation approaches in view of 
the existing RT operating systems and programming languages technologies are discussed. 
The level of presentation of the topics is introductory, but a basic knowledge of operating 
systems, computer architecture, and programming in a high-level language is assumed. 

T1 Kernels and safe (back-up) operation, Pedro Albertos and Alfons Crespo, 1 hour 
(UPVLC) 

ECS require to work in a variety of (unexpected) circumstances. The operating system (OS) 
should provide a number of basic options to guarantee the safe behaviour of ECS. In this 
session, a new set of operating services to provide the applications a higher control of faults 
and temporal constraints will be described. Some examples of this functionalities are: 
Execution timers, application defined scheduling, fault tolerant monitors, etc. From the 
control viewpoint, a hierarchical sorting of activities should be scheduled in agreement with 
the OS kernel to get the best, among the possible, control options. Safe (back-up) operation, 
basic control actions, optional and supervision are among the main issues to be discussed. 

T2 Control design practical issues – principles and models, Bengt Eriksson, Jindrich 
Fuka, Jiri Roubal, 2 hours (KTH, CTU) 

Introductory and simple exercises about control design using CACD (computer aided control 
design) packages will allow a better insight into the RT control design algorithms. Moreover, 
using some simple rigs, the participants will get some hands-on control design approaches. 
Some principles will be demonstrated on laboratory models. 

 



T3 Integrated control design and implementation, Karl-Erik Arzen and Anton Cervin, 2 
hours (LTH)  

This session will focus on the interaction between the control design and control 
implementation. In embedded systems, floating point arithmetic is sometimes too costly. The 
problems associated with fixed point arithmetic are discussed. The implementation platform 
normally introduces input-output latencies due to computation and communication delays. 
The effects of this on control performance and how it can be compensated for will be 
discussed. Special emphasis will be given to the recent jitter margin concept. The 
implementation platform also introduces jitter in sampling intervals. This will also be 
discussed. The control server is a computational model for controller tasks that combines the 
benefits of static scheduling and dynamic event-based scheduling. Changing controller task 
parameters such as sampling periods on-line could sometimes be useful in order to adapt to 
changing conditions. The problems associated with this and the risk of switching induced 
instabilities will be discussed. 

W1 Control of Computing Systems, Karl-Erik Arzen and Anton Cervin, 2 hours (LTH)  

Using control-based approaches for modeling, analysis, and design of embedded computer 
and communications systems is currently receiving increased attention from the real-time 
systems community, as a promising foundation for controlling the uncertainty in large and 
complex real-time systems. The control-based approach has the potential to increase 
flexibility, while preserving dependability and efficiency. In this session we will give an 
overview of the work that is being done within the area with a special emphasis on two areas: 
Control of Web-servers and feedback scheduling of controller tasks. An inverted pendulum 
control example will illustrate some of the issues. 

W2 Jitterbug and Truetime, Karl-Erik Arzen and Anton Cervin, 2 hours (laboratory K2 – 
LTH) 

A hands-on session/exercise where the users will become familiar with the two co-design 
tools Jitterbug and TrueTime. Jitterbug is a MATLAB-based toolbox that computes a 
quadratic performance criterion for a linear control system under various timing conditions. 
Using the toolbox, one can easily and quickly assert how sensitive a control system is to 
delay, jitter, lost samples, etc., without resorting to simulation. The tool is quite general and 
can also be used to investigate jitter-compensating controllers, aperiodic controllers, and 
multi-rate controllers. TrueTime is a MATLAB/Simulink-based tool that facilitates simulation 
of the temporal behavior of a multitasking real-time kernel executing controller tasks. The 
tasks are controlling processes that are modeled as ordinary continuous-time Simulink 
blocks. TrueTime also makes it possible to simulate simple models of communication 
networks and their influence on networked control loops. 

W3 ECS Deployment, Bengt Eriksson and Martin Torngren, 2 hours (KTH ) 

The practical issues of ECS deployment will be discussed in this session, including: ECS 
implementation and platform selection (e.g. which type of OS?, which hardware?); OS 
configuration, components selection and loading (static vs dynamic OS types); Cross- 
compiling; Code generation; Verification and validation. A case study will illustrate the 
approach. 

Th1 Off-line scheduling, Zdenek Hanzalek, 2 hours (CTU)  

The objective of this course is to provide an overview of different off-line scheduling problems 
found in embedded systems. In order to classify the scheduling problems, we show 



alpha|beta|gamma notation first. Then we develop several algorithms for real-time 
monoprocessor applications. Namely we show Bratley’s branch&bound algorithm for Cmax 
optimization with release dates and deadlines and we underline main ideas of 0/1 
programming solution for weighted completion time optimization with precedence constraints. 
The class of monoprocessor problems is concluded by minimization of maximum latency, i.e. 
Earliest Due-Date First algorithm and Earliest Deadline First algorithm. Finally we give an 
insight into the scheduling on dedicated processors and we provide examples on code 
synthesis for FPGA.  

Th2 Platform for Advanced Process Control and Real Time Optimization, Vladimir 
Havlena, 2 hours (Honeywell Prague) 

The talk will demonstrate componentised architecture for Advanced Process Control and 
Real Time Optimization. The concept will be illustrated by the Unified Energy Solutions 
(UES) package developed by the Honeywell Laboratory in Prague, a portfolio of advanced 
control and optimization components for utilities and industrial energy, with the objective to 
operate the plant with maximum achievable profit (maximum efficiency) under the constraints 
imposed by technology and environmental impacts. 

Th3, RT practical issues, Michal Sojka and Ondrej Spinka, 2 hours (laboratory K09 - 
CTU) 

In this laboratory exercise the students will learn, how to use the Linux for low level control of 
a laboratory model. The main goal of this session will be to control the velocity of a DC 
motor. The motor is actuated by a PWM signal realized via two bit outputs as one periodic 
thread. The measured velocity is derived from two phase-shifted signals while implementing 
IRC (Incremental Radial Counter) sensor as an aperiodic thread. The motor is connected to 
a PC using printer port through a simple electronics consisting of a motor driver and basic 
logic circuits. The organization of the session will be as follows (it is assumed the students 
know to write a simple RT Linux program, Session T3): First, the students will be provided 
with information on how to control parallel port circuits through the configuration registers. 
Second, the students will try to generate the PWM signal for motor control. Third, they will 
write the code to measure the rotation velocity and they will program a simple PID controller 
for velocity control. Finally the use of RT Linux will be discussed.  

F1, Torsche – Matlab scheduling toolbox, Premysl Sucha and Michal Kutil, 2 hours 
(laboratory K2 - CTU) 

The aim of the seminar is to present a Matlab based Scheduling toolbox TORSCHE (Time 
Optimization of Resources, SCHEduling). The toolbox is intended mainly as a research tool 
to handle control and scheduling co-design problems. It offers a collection of data structures 
that allow the user to formalize various off-line and on-line scheduling problems. Potential of 
the toolbox will be shown on a high level synthesis of parallel algorithms. 

F2, Implementing Floating-Point DSP and Control with PicoBlaze Processors, Jiri 
Kadlec, 2 hours (CTU) 

For developers using reconfigurable HW for the implementation of floating-point DSP and 
Control algorithms, one key challenge is how to decompose the computation algorithm into 
sequences of parallel hardware processes while efficiently managing data flow through the 
parallel pipelines of these processes. Lecture, will summarize our current experiences with 
architecture based on network of Xilinx PicoBlaze controllers on a single chip. Complete 
design path from model-based (Simulink) and C-based designs (Handel-C) to the concrete 
reconfigurable HW will be demonstrated.  
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Outline
• Background: evolution of electronics and software
• Basic concepts and characteristics

– Embedded vs. general purpose computing systems
– Concepts in real-time control
– Characteristics

• Technical issues in ECS design 
• Application examples
• Concluding Remarks
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Electronic components and software will, to a large extent,
shape tomorrow‘s vehicles (90% of vehicle innovations)

The role of software and electronics

Source: The SEA consortia
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Mechanics Mechatronics

Fuel-cell
Distributed control
Electrical actuators

Hy-Wire från GM 
Skateboard concept

(Autonomy 2)

Source:  GM 
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PowertrainPowertrain -- Suspension Suspension -- Displays Displays ––
ComfortComfort -- Diagnosis Diagnosis –– BrakingBraking ––
ActiveActive & Passive & Passive SafetySafety -- TelematicsTelematics
-- AntiAnti--TheftTheft Systems Systems -- ......

•• ComplexityComplexity
•• Permeats Permeats wholewhole life life cyclecycle

Source: The SEA consortia
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Historical perspectives

• "I think there is a world market for about five computers", 
Tomas J Watson Sr, IBM 1943

• "There are no reasons for any individuals to have a computer 
in their home", Ken Olson, Digital Equipment 1977

• "The current rate of progress cannot continue much longer", 
various computer technologists, 1950

• ’Moore’s law’ (Intel, 1965):  Microelectronics performance is 
~doubled every 18 months and chip size is reduced by 50%

• Compare: Intel 4004/1971 vs. Intel Pentium/1996
from 2300 to 5.5 million transistors
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Technology evolution
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Technology basis
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Tools for model based control engineering

Function design

Rapid Control Prototyping
Integration testing

Code Generation/
platform integration

Unit testing

Controller Plant

Controller Plant

Platform

Plant RT-
simulation

Calibration
Controller Plant

Tuning
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Outline
• Background: evolution of electronics and software
• Basic concepts and characteristics

– Embedded vs. general purpose computing systems
– Concepts in real-time control
– Characteristics

• Technical issues in ECS design 
• Application examples
• Concluding Remarks
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Definition of embedded computer 
system

Embedded computer system (IEEE)

A computer system that is part of a larger 
system and performs some of the requirements 
of that system; for example, a computer 
system used in an aircraft or rapid transit 
system.
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Embedded systems (ES)

- An enabling technology
- ES themselves as products (e.g. OS)
- Very broad variety of applications &

different types of requirements:
- from critical to non-critical
- long to short life time etc.
Room for many methodologies and 

technologies
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Computer Architecture Trends

• Harsh environment tolerance; temperature, 
vibration, radiation 

• Low power dissipation, power down modes
• On-chip input-output units, communication and 

memory
• Predictable behavior, support for concurrency

Present proposals for future billion-transistor computers:

Future embedded system computers:

• Desktop uniprocessors for technical applications
• Multiprocessor servers for transaction processing
• Large continuous data-processing capability
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Control systems
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Definition of real-time

A system, where correct timing behavior is strongly 
related to functionality, performance and reliability

Common definitions:
- A computer system is a real-time one if it explicitly 

manages resources in order to meet timing 
constraints  (Douglas Jensen, 1992)

- A real-time system is a system where the correctness 
depends not only on the logical result of computation 
but also on the time at which the results are 
produced".  (Jack Stankovic, 1988).
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Characteristics of ECS

• Rich functionality
• Resource constraints
• Increasing connectivity
• Tight process relation

- RT constraints
- ET and TT, parallelism
- Roughness

• Dependability: safety, reliability/availability, security
• Multidisciplinarity
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Scania diesel engine and controller

ECU connectors 
on top of the ECU 

Engine ECU tasks: control of engine, fan, alternator, engine brake, 
turbo, and the EGR valve + CAN communication, + diagnostics, …

Courtesy of Scania



3/21/2006 8:51 PM3/21/2006 8:51 PM

1010

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

©M. Törngren 2006

3/21/2006

Requirements and conflicts

Safety

Computer
System

Produceability

Availability

Time-to-market

Comprehensibility
Complexity

Reusability

Interoperability

Reliability Performance

Testability

Extensibility
Portability

Reconfigurability

Control Functionality, Stability, and Performance

Security Dependability

Usability

Integrability

Functionality

Cost-effectiveness

Flexibility

Communicability
Analyzability

Changeability

Can you give an example of conflicting requirements?
How can these conflicts affect the design?
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Conflicts?

• Cost vs. Quality (in general) vs. Time
• Testability vs. performance
• Performance vs. flexibility
• Reliability vs. cost
• Safety vs. availability
• Control robustness vs. performance
• …
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Models of computation
Continuous data Discrete data

Continuous
time

Discrete
time

TT

ET

dx/dt(t) = Ax(t)+Bu(t)

x(k+1)=Γ(k)x(k)+Φ(k)u(k)

dxq/dt(t) = Aqxq (t)+Bquq(t)

x(kh+h)=Γx(kh)+Φu(kh)
Reality: A little
of everything!
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Specifications

Architectural design

Mechanics Control Software Electronics

Integration

Multidisciplinary ECS development

Big bang effectsDiffe
rent tra

ditio
ns
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Outline
• Background: evolution of electronics and software
• Basic concepts and characteristics

– Embedded vs. general purpose computing systems
– Concepts in real-time control
– Characteristics

• Technical issues in ECS design 
• Application examples
• Concluding Remarks
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A sample of technical issues in ECS 
design and implementation

• Discretization
• Quantization
• Delays
• Jitter in delays and periods
• Aliasing
• Triggering and tasking partitioning, scheduling
• Code implementation
• Sensor and actuator limitations
• Calibration/diagnostics
• Error detection and error handling
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Codesign, aspects and needs

Platform

HW
SW

Structuring, 
scheduling, 
triggering, 
communication

Drivers:
• Performance
• Cost
• Dependability
• Flexibility

Digital controller

Plant

Trade-offs/optimality requires considering both domains

Control performance,
Stability, control effort,
Sensor accuracy, etc.

Where do
they meet??
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Control system timing behavior

τ(k), 
h(k)

Platform

HW
SW

Digital controller

Plant

Requirements
Constraints
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Period: h(k) = tk-tk-1 and jitter
E2e delay, τ(k), and jitter, e.g. τmin(k) <= τ(k) <=τmax(k)

sample

actuate

timez

u

t

kt1−kt 1+kt 2+kt2−kt

kh

Examples of timing properties caused 
by a particular implementation

How does the given timing scenario affect control performance?
How does choices in computer system design parameters affect 

the timing behavior and thereby the control performance?
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• Analysis of steady state and transient behavior

• Potential compensation for jitter
– Run-time information example: Actual data delay

Proces
s

Controller
( )ktz( )ktu

( )( )ttu τ− ( )tz

( )tτ

samplehold

• How do the timing properties affect the 
closed loop?

Control analysis/compensation 

x(tk+1)=Φ(hk)x(tk)+Σ Γ(hk)u(tk-(nd-g))
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Co-design with respect to timing
Has to be defined to ensure proper operation
Typical solutions:

τ << T enforced (costly)
τ < T assumed (jitter neglected)
τ =T, with deterministic solution, however causing some
performance degradation and reduced flexibility (trade-offs!)

Computer system options: Design for predictability if possible
Control system options: Analyse, and compensate if possible
Co-design options:

- May leave some unpredictability in computer system design
- May be able to handle non-perfect existing computer system
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Illustration of complex dependencies
ME components 

Incl. sensors, actuators, 
& other machine 

elements 

Control design, 
algorithms &  

 structure 

HW platform incl. 
processors and 

network 

SW platform including , 
com. protocol 

Task level behavior 
(utilization, response 

times) 

Quantization 

Basic 
execution & 
com. time 

Legend: 

Control performance  
& robustness (e.g. 
variance, rise time, 

overshoot,..) 

Constrains a 
design choice: 

Mapping decisions

Determines

Choice of sensors, 
actuators, & other 
machine elements 

Choice of control 
strategy, dynamics, 

computational 
structure 

Choice of processor 
and network 

Choice of execution& 
communication 

strategy & SW platform 

Functions to 
processors, signals 

to com. means, 
and types 

Basic closed 
loop dynamics 

Emerging  
behavior: Design activity 

Components or 
policy determined by 

design choice 
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Platform

HW
SW

Digital controller

Plant

”Fault-tolerant control” - Codesign

Fault and failure models
Fault-injection
Error masking
Error detection
Error handling

x(kh+h)=Γx(kh)+Φu(kh)+δ(kh)

Fault and failure models
Diagnostics
Analytic redundancy
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Control for resource management in 
embedded systems

Digital controller
Plant

HW

SW

• Implementation issues similar to RTC,
Constraints may differ depending on application

• Controller implemented as part of the plant
• Plant modeling and characteristics differ

Resource managers



3/21/2006 8:51 PM3/21/2006 8:51 PM

1717

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

©M. Törngren 2006

3/21/2006

Outline
• Background: evolution of electronics and software
• Basic concepts and characteristics

– Embedded vs. general purpose computing systems
– Concepts in real-time control
– Characteristics

• Technical issues in ECS design 
• Application examples
• Concluding Remarks
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Vehicle yaw rate

Vehicle speed

Vehicle slip
angle

Vehicle yaw rate

Vehicle speed

Vehicle slip
angle

Example application: stability control

Source: ESC education
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Disturbances

Engine 
dynamics

Vehicle
dynamics

Wheel
dynamics

Engine
controller

Brake
controller

Yaw/slip
controller

Driver

Disturbances Disturbances

Engine 
dynamics

Vehicle
dynamics

Wheel
dynamics

Engine
controller

Brake
controller

Yaw/slip
controller

Driver

Disturbances

Engine 
dynamics

Vehicle
dynamics

Wheel
dynamics

Engine
controller

Brake
controller

Yaw/slip
controller

Driver

Disturbances

Controller area network
and vehicle computers

Example: vehicle stability control
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Vehicle stability control - characteristics
• Several modes of operation
• Hierarchical and cascaded control
• Multiple input, multiple output
• Control loop closed over in-vehicle network(s)
• Availability critical (graceful degradation)
• Safety critical, real-time operation
• Redundancy in hardware (sensors, actuators, 

processors), information and algorithms
Some challenges:

- Software upgrades (and security)?
- Who is in charge (driver vs. computer control)?
- How to define a suitable scaleable architecture?
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Many high-levels functions

 

dact

ddes vlead v

Examples:
• Driver assistance; e.g. adaptive cruise control
• Active safety functions; e.g. collision mitigation by braking
• Telematics; e.g. dynamic and external road info
• Electrical power management

Adaptive cruise controller example
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Resource sharing; sensors, actuators 
and embedded system

Radar Object
recognition

ACC
controllers

ACC
Mode logic

HMI outputs

Actuators

Internal 
Sensors

HMI inputs

Selector

Set points from other functions

Radar Object
recognition

ACC
controllers

ACC
Mode logic

HMI outputs

Actuators

Internal 
Sensors

HMI inputs

Selector

Set points from other functions
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Source: EAST-EAA 
project
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Robot system hierarchy

Optimization

Planning

Coordination
MIMO control

Actuator
control

Planning

Navigation

Coordination
Balance, gait (e.g. galop)

Joint/leg-
control

Walking robot exemple
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Industrial robotics

GTPU  
Graphical Teach 
Pendant Unit 

Main computer 
 

Axis computer 

TCP/IP 

Web Access 
(optional) 

Drive Module 

IO units or PLC

fieldbusses

Robot Studio 
(optional - offline 
programming)

Robot
Controller 

Courtesy of ABB Robotics

Main node: path generation
Axis node: axis control
I/O node
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Industrial robots: characteristics

• The same controller type is often used for different kinds of 
robots for cost efficiency

• Core part: motion control, the application packages (welding, 
assembling, etc) and robot programming 

• Most other parts provided by suppliers, e.g. I/O and HW 
• Systems integration into e.g. an assembly line for cars

- PLC systems
- Production systems from other vendors

• Central requirement: Availability
• Volume: ~ 10 thousands per year (for leading company) 

- including different kinds of robots

Courtesy of ABB Robotics



3/21/2006 8:51 PM3/21/2006 8:51 PM

2222

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

©M. Törngren 2006

3/21/2006

Industrial robotics; architecture 
requirements

• Openness, to facilitate integration
• Integration with different communication protocols

(Profibus, Interbus, Foundation fieldbus, FIP, …)
• The control system to be configurable to facilitate reuse
• SW has to be easy to port, ‘lives’ longer than HW
• Typical reliability requirement: MTBF > 60000 h

~ production line with 800 robots with one robot 
failing per week in average
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Hw&Sw cost proportion for industrial 
robotics

1990 2000 2010

0

20

40

60

80

100

Software Costs

Hardware Costs

Total Costs %

1990 2000 2010

0

20

40

60

80

100

Software Costs

Hardware Costs

Total Costs %

Courtesy of ABB Robotics

Note: Software for the first control system developed 
in three months by one single person.
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Software architecture: Industrial 
robotics

 

 
G enera l Support, O S, I/O , 

F ile System  and Saftey 

 
M otion C ontrol of R obot 

C ontrol Interface, Robot 
Language and E xternal Interface 

A pplication for Specifik Task  
and M an M achine Interface 

Courtesy of ABB Robotics

• Object oriented approach, 
• Code written in C
• Code size: ~ 2 500 KLOC

divided into 400-500 
components
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Outline
• Background: evolution of electronics and software
• Basic concepts and characteristics

– Embedded vs. general purpose computing systems
– Concepts in real-time control
– Characteristics

• Technical issues in ECS design 
• Application examples
• Concluding Remarks
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The product life cycle and course scope

Idea
Study 

Feasibility
Study

Development

Marketing, Sales
and Customer Education

Maintenance

Production

Operation

degrees of overlaps may vary

D
ec

is
io

n
 t

o
 s

ta
rt

 
d
ev

el
o
p
m

en
t

Retirement

E
n
d
 o

f 
Li

fe

Support Processes

Service and Support

Embedded control systems touch upon all phases
of a product’s life cycle!

The emphasis in this course is on technical issues 
part of the product development phase!
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Discipline X Discipline Y
Technology

e.g. Tools, components

People/organization
e.g. Competence, roles

Integration challenges

integration

Knowledge,
information

Knowledge, information

Process X Process Y

Differences not only in technology, but also in processes,
traditions and organizational roles
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Concluding remarks

• A very broad spectra of ECS applications!
• Multidisciplinary development – a key 

challenge
• Needs for co-design relates to conflicting 

requirements
• Closed-loop control of increasing importance
• Many other issues such as reliability/safety,  

diagnostics, reuse, upgrades, …
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Embedded Control Systems:
Control Issues
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Outline
• Embedded Systems

– RT constraints
• Embedded Control Systems

– Control issues
• Non-uniform sampling
• Missing data
• Changes in sampling period
• Performance degrading 
• Concluding Remarks
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Embedded systems

DiagnosisDiagnosis
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Embedded systems

DEVICE

• Device:
– Stand-alone
– Networked
– RT operation

• ES:
– Compact and reduced size 
– Autonomy
– Missing data operation
– Fault-tolerant
– Reconfigurability
– Safety
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Embedded systems

Control Control isis presentpresent in 99% in 99% ofof thethe
embeddedembedded applicationsapplications
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Embedded Control Systems

Computer
RT issues

Control 
under 

uncertainty

Environmental
interaction 

and implementation

ECS
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Embedded systems: RT Issues
• Resource constraints
• Power aware
• Task Management: Critical and soft real-time activities 

– Task definition 
– Priority assignment
– Time units (periods)

• Full range of communication devices
• Changeable operating conditions
• CPU utilization control 

– Adaptable to the changing conditions
– Self-organizing
– On-line scheduling
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• A task (Tk) is defined by four parameters:

– Ck: Worst Case Execution Time (WCET)

– Dk: Deadline

– Pk: Period

− Φκ: Phase

Ck

Pk

Dk
Φk

Real-Time Task Model
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Time delays

Jitter on input

Data acquisition
Output delivering

Jitter on output
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Basic Control Loop

A/D

Control
Algorithm

D/A

reference
r(t)

Sensor ActuatorProcess

y(t) u(t)

uk
yk

rk
A/D

Regulator

CT

DT
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Control Task Model

t

Period

Deadline

Phase

Computation time

Taskk

Ck

1 2 41 2

3

4

C1 + C2 + C4 = Ck

),,,( kkkKK PDCT Φ=
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Control task
…
…
loop

convert _sensor _analog_ digital (y); 
compute _control _action (u); 

compute _error (e)
compute _control _action (u)   �

send _ converted _ control_ action (u); 
update_internal_variables(y,u, …); 
Next _Iteration:= Next  _Iteration + Period;  
delay until Next _Iteration;

end loop;
…
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Basic assumptions in Computer control
• The Data Acq. system provides the required data
• The actuators’ drivers deliver the control actions
• The CPU computes on-time the control action
• The required data are stored in the memory
• The sampling pattern is regular (constant, 

synchronous and uniform for any control task)
• The control algorithm is well defined
• Alternative controllers are independent
• Power supply is guaranteed
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Implementation

T1

T2

Task Scheduling

GR1(z)
GR2(z)
...

single computer

Fast
Process

Slow
ProcessH2

H1

Alarms
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Embedded Control Systems

• Inputs:
– Device
– Environment 

• Cable
• Wireless

– User 

• Outputs:
– Control actions
– Self organizing
– Data

DEVICE
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Embedded Control Systems

• Embedded systems with:
– hard RT constraints
– guarantee of safe operation
– best possible performances

• Additional issues from viewpoint of:
– implementation
– computation
– algorithmic
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RT Control Issues
• RT Constraints:

– Maximize the time determinism
• For many controllers a worst-case approach works well e.g., 

PI, PID, State Feedback, …
however, many exceptions:

• hybrid controllers that switch between different modes with 
different characteristics

• model-predictive controllers (MPC)
• convex optimization problem solved every sample

execution time can vary an order of magnitude

– Compensate the variations:
• Measure and react
• Feedback robustness
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Control Performances 

• RT Constraints:
– Maximize the time determinism

• For many controllers a worst-case approach works well e.g., 
PI, PID, …

however, a lot of exceptions:
• hybrid controllers that switch between different modes with 

different characteristics
• model-predictive controllers (MPC)
• convex optimization problem solved every sample
• execution time can vary an order of magnitude

– Compensate the variations:
• Feedback robustness
• Measure and counteract

• Relevance of the control actions
The Control Effort concept

• Sensitive to time delays
• Changes in the sampling period:

– Controller parameters
– Past data

• Commutation bumping
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Control requirements

• Multiloop control
• Non-uniform sampling
• Missing data
• Variable delays
• Sampling period changes
• Mode changes
• Fault tolerant
• Safe operation
• CPU optimization
• Battery control

Process to 
control

Environment

ECS

CPUBatt
ery

S1

Si

Memory

A1

Ai
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ECS: Implementation
• The same resources must be shared between 

different tasks
• Alternative control algorithms should be 

ready to get the control of the process
• Working conditions, such as priority, 

allocated time and memory or signals 
availability may change

• Variable delays should be considered 
• Validation and certification
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ECS: Computational viewpoint
• Economic algorithms
• Information updating 
• Optional tasks 
• Hybrid systems 
• CPU use measurement and optimisation
• On-line scheduling
• Memory saving 
• Economic hardware redundancy
• Fault detection and isolation 
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Feedback re-scheduling

CPU

Average CPU utilization
Task CPU use

Re-scheduling

CPU use Reference

Re-scheduling actions:
• Increase/Decrease task periods
• Increase/decrease processor frequency
• Change the set of tasks (mode change)
• …
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ECS: Control algorithm viewpoint
– Reduced order models 
– Non-conventional sampling and updating patterns
– Missing data control
– Event-triggered control
– Hybrid control systems  
– Decision and supervisory control
– Multimode control
– Sampling rate changes
– Fault-tolerant control 
– Degraded and back-up (safe) control strategies
– Battery monitoring and control
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ECS: Control algorithm viewpoint
– Reduced order models 
– Non-conventional sampling and updating patterns
– Missing data control
– Event-triggered control
– Hybrid control systems  
– Decision and supervisory control
– Multimode control
– Sampling rate changes
– Fault-tolerant control 
– Degraded and back-up (safe) control strategies
– Battery monitoring and control
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ECS: Control algorithm viewpoint
– Reduced order models 
– Non-conventional sampling and updating patterns
– Missing data control
– Event-triggered control
– Hybrid control systems  
– Decision and supervisory control
– Multimode control
– Sampling rate changes
– Fault-tolerant control 
– Degraded and back-up (safe) control strategies
– Battery monitoring and control
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Non-uniform sampling

• Irregular sampling
• Time delays
• Relevance of variables

kT0 (k+1)T0
u1

k u2
k ur

k

Uk

y1
k y2

k ys
kys

k-1

YkSampling pattern



��� �������		�	�
��
������������ ��
����	��
��������
�������������������� !��"##$

©P. Albertos 2006

Variable Sampling Time

u(t) = Kpe(t ) + Kd
d
dt

e(t) + Ki e(ττττ )dττττ
o

t

� ;

uk − uk −1 = qoek + q1ek −1 + q2ek −2

PID Controller:
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Control task
…
…
loop

convert _sensor _analog_ digital (y), get  tk;
compute _control _action (u); 

compute T1,T2
compute coefficients qi
compute _error (e)
compute _control _action (u)   �

send _ converted _ control_ action (u); 
update_internal_variables(y,u, …); 
Next _Iteration:= Next  _Iteration + Period;  
delay until Next _Iteration;

end loop;
…

∆
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PID: Time delay effect
• Open loop control
• Discretized controller, independently of the plant
• Degrading as the time delay increases

• EXAMPLE:
)5.1)(5.0(

5.1
)(

++
=

ss
sG

2.32.08 === IDP TTK

Plant:

Parameters:

Sampling period: T= 0.1 sec

T
K

qTK
T
K

Kq
T

K
Kq d

i
d

p
d

p =+−−=+= 210          ;
2

         ;
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PID: computational delays
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Delay Counteraction

• Smith Predictor
• Error prediction
• Output prediction

)()();()()( tCxtytButAxtx =−+= τ&
• Input/output delay

)().()( suesGsy sτ−=

)()();()()( τ−=+= tCxtytButAxtx&
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Delayed Sampling

0 T 2T 3T t

T-period Control updating

T-period Output sampling

∆
T-∆ 2T-∆ 3T-∆

• Classical Smith Predictor Option

TsesG −)(
)(su

)1)(( TsesG −−
)(ˆ syT

)(sy

+
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Smith predictor
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PID: error prediction

)( ,1,, ∆−∆∆ −∆+= kkkk ee
T

ee

∆−∆ ∆−
∆−

∆−
= ,1, kkk e

T
e

T
T

e

∆−∆−∆−∆∆ +++= ,1,22,11,0, kkkkk ueqeqequ

loop
convert_sensor_analog_digital(y); 
compute _control _action (u); 

compute _error(e)
compute _actual _error (e∆∆∆∆) 
compute _control _accion (u)

send _ converted _ control_ action (u); 
update_internal_variables(e∆∆∆∆,y,u, …); 
Next_Iteration:= Next_Iteration + Period;  
delay until Next_Iteration;

end loop;
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Output/State prediction

x k = A(∆)xk,∆ + B(∆)uk−1

0 T 2T 3T t

T-period Control updating

T-period Output sampling

∆
T-∆ 2T-∆ 3T-∆

xk ,∆

uk = K.[A(∆)xk ,∆ + B(∆)uk−1 ] + rk

yk,∆  = C..
xk,∆ ,

zk = C. A(−∆)xk = yk,∆ + C. A(−∆).B(∆)uk−1

ˆ x k+1 = A(T) ˆ x k + B(T)uk + Ko(zk − ˆ z k )

ˆ z k = CA(−∆)ˆ x k

1, )()()( −∆ ∆∆−−∆−= kkk uBAxAx
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z-1

z-1

(A,B,C)

T, ∆

u yk k

k

k

B(T)

A(T)

CA(-∆)B(∆ )

CA(-∆ )

x̂

^

+

+
z

Advanced Observer

,∆

Ko

Delay Predictor
• Advanced (Predictor) Observer

Predictor
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ECS: Control algorithm viewpoint
– Reduced order models 
– Non-conventional sampling and updating patterns
– Missing data control
– Event-triggered control
– Hybrid control systems  
– Decision and supervisory control
– Multimode control
– Sampling rate changes
– Fault-tolerant control 
– Degraded and back-up (safe) control strategies
– Battery monitoring and control
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Output prediction

θψ ⋅=+−= −
=

−
=

− �� T
k

n

i
iki

n

i
ikik ubyay 1

11

ˆˆˆ

Drawbacks:
• Error dynamics is that of the process.
• Lack of robustness against disturbances.

uk yk

+

+
ψ y k,yk

θb

θa

G(q)

Store u

Store y

∃ykψu k,

Model-based open-loop prediction
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Output prediction (2)

uk yk

ek

yk

rk

1-rk
+

+

+
-

+

+

ψ y k,yk

θb

θa

G(q)

Store u

Store y

∃yk
ψu k,

Output estimation with mixed vector of past outputs
∃ ( ) ( )y k kk y

T
a u

T
b= − ⋅ + − ⋅ψ θ ψ θ1 1

y r y r yk k k k k= − ⋅ + ⋅( ) ∃1

[ ]ψ y k k n
T

k y y( ) ( )= − − − −Λ 1

                         [ ]ψ u k k n
T

k u u( ) ( )= − −Λ 1

Convergence?
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Other options
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ΛEnlarged polynomials
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Linear state observer:

( ) 1,,1,ˆˆ 1
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−
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j
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j
jk ΚΛ

LAcA TNTN �)(,)(

uk yk
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∃yk
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∃xk
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Iq-1 cA
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Missing Data

uk yk

ek

yk

rk1-rk

+

-

G(q)

∃yk
kx̂

rkL

1ˆ +kx
b

A

Iq-1 C

The output is only available at some time instants:

KALMAN Filter 

{ }1,0;1 == kk rr
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Missing data Control
r(kT)

y(kNT)

y(t)

y(kT)^

PID PLANT

ESTIMATOR

u(kT)+

Example.
G(s)=1/(s2+4s+3)
N⋅T= 300 ms
Kp=8, Td=0.25, Ti=1.2

0 1 2 3 4
0

0 .2

0 .4

0 .6

0 .8

1

t (s ec )

Extended order predictor
T=100 ms (N=3) 
(Kp=20, Td=0.25, Ti=1.2) 

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

t (sec)

E=1+0.67q-1+0.33q-2
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Parameter estimation
Regular pattern: dual rate model

nNnNN
n

nNnN
nNnN

N

N

zdzdzd

zczczczc

zA

zB
zG ⋅−−−−

−

⋅−−⋅−−
−⋅

−
−⋅

−

−

++++
++++

==
0

)1(
11

0
)1(

1
2

2
1

1
1

1

1)(

)(
)(

Λ
Λ

[ ]TNnkkkNnkNkNkk uuuyyy ⋅−−−⋅−−− −−−= ΛΛ 212ψ

Regression vector and parameters:

[ ]TNnNnnnN cccddd 021021 ΛΛ −⋅−⋅−−=θ

[ ]Tnkknkkkk uuyyy −−−−− −−−= ΛΛ 121 ˆˆˆψ̂

Irregular pattern or fast model

)ˆ,,,ˆ(ˆ jjjjkk yuryfy θ=
Output predictor:

( ) kkb
T

ua
T

ykk yrkkry +⋅−+⋅−−= θψθψ )1()1(ˆ)1(ˆ
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Fast parameter estimation
γ

λ ψ ψk
k

k
T

k k

P

P
=

+ ∃ ∃
∃ ∃ ∃ ( ∃ ∃ )θ θ γ ψ ψ θk k k k k k

T
k ky r= + ⋅ − ⋅ ⋅− −1 1

P I P r P rk k k k
T

k k k k+ = − ⋅ + −1

1
1

λ
γ ψ ψ( ∃ ∃ ) ( )

∃ (∃ , , , ∃ )y f y r u yk k j j j j= θ
(rk=1 if measurement and 0 if not).

• Convergence depend on sampling period and data availability rate.
• The stability of the output predictor is a necessary 
but not sufficient condition for convergence.
• For small T wrong attractors appear close to the dual-rate poles.

(Poles in those positions have an oscillating impulse response with 
the periodicity of the lower-rate sampling).
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Convergence 

Example: G(s)= 13

2
2 ++ ss , withN=3.

If T = 0.02, the estimates are

G z
z

z z
*( )

.
. .

=
+

+ +
−10

0224 5
0986 0984

4
2 ,

instead of the correct one 10
0392 0384

1941 0942
3

2
− −

− +
. .

. .

z

z z .

If T = 0.7, the estimates are the correct parameters.
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Event-driven control

F

θ
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Event-driven sensor
F

θ
θθ
θθ

θ

cos

cos

lyLsinxx

mgTymTsinxm

xksinTFxM

mlm

mm

ll

−=+=
−=−=

−+=
&&&&

&&&

θ
θθθθθθ

2

2

cos

coscos)(

mLLM

sinMgmlsinxkF l

−
−−−−

=
&&&&

Mx F kx ml mlsinl l&& & cos && &= − − +θ θ θ θ2

    M M m= +

)8464.0)5242.0)((9945.0(

)9952.0)(1(10•39.7
)(

22

4

+−−
−−−=

−

zz

zz
zG

T=0.9; M=40:                                  M=15:
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Partial parameter set

m∆
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ECS: Control algorithm viewpoint
– Reduced order models 
– Non-conventional sampling and updating patterns
– Missing data control
– Event-triggered control
– Hybrid control systems  
– Decision and supervisory control
– Multimode control
– Sampling rate changes
– Fault-tolerant control 
– Degraded and back-up (safe) control strategies
– Battery monitoring and control
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Hybrid control system

σ
switch signal

decision
logic

Operating 
conditions

multi-
controller process

u
control 
signal

y measured 
output

Goals
disturbance

H
T
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Supervisory control Alternative controllers
Switch among them online

supervisor

process

σcontroller 1

controller n

y
u

w

σ

bank of candidate 
controllers

measured 
output

control 
signal

disturbance
switching signal

Supervisor:
• places in the feedback loop the ‘best’ controller
• switching effects

Control
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Types of supervision

• Pre-routed supervision

• try one controller after another in 
a pre-defined sequence

• stop when the performance 
seems acceptable• Estimator-based supervision  

• estimate process model from observed data

• select controller based on current estimate –
Certainty Equivalence

• Performance-based supervision  

• keep controller while observed performance is acceptable
• when performance of current controller becomes 

unacceptable, switch to controller that leads to best 
expected performance based on available data

• Goal and Operating-conditions based supervision

• On-line re-scheduling of the control tasks
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External commuting
Goal and operating-condition based supervision

processmulti-
controller

Data filtering 
& Updating

u
control signal

y

w

measured 
output

Operating 
conditions decision

logic

σ
switching 

signal
Data 

updating
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Controller commuting
• Given a change on:

– Goal
– Working point
– Operating conditions

Action Change in
controller

Controller selection (or computation)

Problem • Stability
• Performances

Transfer:
� Parameter updating
� Controller initialization

kk

d
i

d
p

d
p

xTKKu

T
K

qTK
T
K

Kq
T
K

Kq

)*(

   ;
2

  ; 210

+=

=+−−=+=
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Controller commuting:
Stability issues

• Common Lyapunov function
• Controller initialization
• Controller resetting

Each controller stabilizes the plant under control,
But ... what under commuting?
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Controller Commuting
Change in the process:

x1
1/s 0.4

0.5

1/s 3

0.5

+
- -

+
-

x2

Change in the amplifier gain:
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=
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2

1

2

1

5.04.0
35.0

x

x

x

x
&
&

A

R

C

R’’

Cu y
R’

Change in the process gain:

1/s K

0.5

+
-

x2
1/K

5/s

+
-

PI      

x1

+

K=3

3

�1/3
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K=3

1/K

5/s

1/s K

0.5

+
-

+
-

PI      

x1

x2

+

K=1/3

Stability

��� �������		�	�
��
������������ ��
����	��
��������
�������������������� !��"##$

©P. Albertos 2006

�
�
�

>=
≤=

= 03
1

03

21

21

xxK

xxK
t)(σ

�
�
�

<=
≥=

= 03
1

03

21

21

xxK

xxK
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PI      

x1

x2

+(Hybrid) Stability 

resetting
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Supervisory control Online re-scheduling of control 
tasks

supervisor

process

σcontroller 1

controller n

y
u

w

σ

bank of candidate 
controllers

measured 
output

control 
signal

disturbance
switching signal

Supervisor:
• Evaluates the effects of delays
• Assign priorities

Control
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Control Effort

• Definition: Define Control Effort
(CE) as the shift of the poles, from the 
open to the closed loop position in the 
s-plane

n

n

i
ii

n

i
ii kappaCE =−−=−= ��

== 11

)()(

• The maximum allowable time delay is given by the phase margin, 
derived from the frequency analysis of the open loop output feedback 
controlled system

c

m

ω
ψ

≤∆ 1)( =cjG ω ( )cm jG ωπψ ∠+=

• Given )()()( tbutAxtx +=&

∏
=

−=+−=
n

i
ipsbkAsIsp

1

)()(

�
=

−=
n

i
in pP

1

)()()( trtkxtu +−=

• The state feedback control k places 
the closed loop poles: p(s)

∏
=

−=−=
n

i
iasAsIsa

1

)()(

�
=

−=
n

i
in aA

1

being
State feedback:
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Control Effort vs. Time Delay

• Now, assume a control action 
time delay ∆, and Pn>>An, that 
is, the loop poles are shifted well 
on the left

( )su( )sr +

-

( )sx1
se ∆−

( )sa
1

( )sk

• From the loop frequency transfer 
function of the system (without delay)

n

m

nn

m

kAP
ψψ =

−
<∆

1
1

1
1

)()(
)(

)(
AjAj

kjk
jG n

n
n

n
n

+++
++= −

−

Κ
Κ

ωω
ωω

nc

n
c Aj

k
jG

+
≅→=

ω
ω 1,1)(

nnnc APk −=≅→ ω
• That is, an approximate expression 

for the maximum allowable time 
delay is given by
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Example
Given the process: 

Design a controller to achieve:
- over-damped step response
- 0.5 sec settling time

• Estimate the maximum allowable delay in the 
loop to keep stability

)21(

1
)(

2 ss
sG

+
=
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n

m

nn

m

kAP
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−
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20;5.63;5.0

≈≈∆→≈

≅•≥=
πψ m

nnn kPA

��� �������		�	�
��
������������ ��
����	��
��������
�������������������� !��"##$

©P. Albertos 2006

∆=0.073sec

0.5

1

1.5

2
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Performance degrading

• The Control Effort, defined as the shift in damping 
from the open loop poles to the closed loop poles, 
provides a useful way to obtain the maximum 
allowable time delay, for both, continuous and 
discrete systems.

• The longer the sampling period T is, the more 
sensitive to the time delay the design is.
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MIMO controlled plant
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MIMO controlled plant
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Reactor: model
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Reactor: control

7.2282 =− nPS

{ } { } { }987.236,73.7,5878.2)( −−−== Aeigai 3.247−=nA

Control Goal:  p = {-320, -340, -360}. ; Pn= -1020

.


�

�


�

�

−−−
=

5505.02238.4463.40
6683.45676.685.858

K

Assume F active and Fj open 

{{{{ }}}} {{{{ }}}};.,.,.)k.bA(eig 5491336740511 −−−−−−−−−−−−====−−−− 4.7912 −=→ S
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Reactor: variables’ relevance

.

228.7-19612963.6544228.7Relevance
= S-Pn

-719.4-29811485.1-475.9-719.4S=Sum of 
poles

- 340.9
- 225.2
±179.5i

-2513.3
-340.5
-127.2

0.71492.9
–0.4585

0.2    
-135.6     
-340.6                             

-405.7    
-336.1    

-49.5                            

o-l poles

x3x2x1u1u2Variable

The signal relevance depends on 
the control solution!!
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Balance the performances

As a result of the selected controllers and scheduling: 
compute Control Effort

Schedule all the tasks and compute
Delays

Redesign the control taking into account delays
Re-compute the CE and update the delays
Check the schedulability
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Performance’s balance
Computation delays depend on:
• Operating mode: Control Algorithm Complexity
• Priority
• CPU’s load
Delay’s effect depends on:
• Sampling period
• Control effort 
Performance degrading depends on:
• Sampling period
• Delays
• Loops interaction

�
=

∆=
N

i
iiD KJ

1
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Example
1
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=
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=
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)7(100
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+=

ss

s
sM

Initial Plants

Control Goal:

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0
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3

4
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6

7

8

7
1

)(1, +
=

s
sGR

Required controllers

)7(100
1355

)(2, +
+=
s

s
sGR

Plant delay tolerance
Plant cω (rad/sec) mψ (rad) max∆

S1 7,6 1,41 0,185
S2 11 1,22 0,111
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Delays’ Balance

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

2

4

6

8

10

12

M1

M2

0 500 1000 1500 2000 2500
0

1

2

3

4

5

6

M1,0.08 M2,0.03

Same delay: 60 msec 80 & 30  msec delays
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Control Goal:

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6

7

8

7
1

)(1, +
=

s
sGR

)7(100
1355

)(2, +
+=
s

s
sGR

Multitask system:
2  G1
1  G2
1  System task

Table 4. DM scheduling of the 4 tasks
WCET Period Min.

Delay
(msec)

Max.
Delay
(msec)

Average
Delay, ∆
(msec)

CAI
%

Control
Effort

K

Degrading
(rad)
K*∆

TOTAL
degrad.

T1 22 70 22 22 22 0,0 0 0
T2 15 100 15 37 26,0 22,0 7,6 0.198
T3 17 110 17 54 35,5 33,6 11 0.391
T4 19 110 36 95 65,5 53,6 11 0.720 1,309

Re-scheduling minimizing the control performance degrading

WCET Period Min.
Delay
(msec)

Max.
Delay
(msec)

Average
Delay, ∆
(msec)

CAI
%

Priority Degrading
(rad)
K*∆

TOTAL
degrad.

T1 22 70 56 60 58 5,7 3 0
T2 15 100 94 97 95,5 3,0 4 0,726
T3 17 110 22 23 22,5 0,9 1 0,247
T4 19 110 38 40 39 1,8 2 0,429 1,392

DM scheduling with CAI reduction

WCET Period Min.
Delay
(msec)

Max.
Delay
(msec)

Average
Delay, ∆
(msec)

CAI
%

Control
Effort

K

Degrading
(rad)
K*∆

TOTAL
degrad.

T1 22 70 27 28 27,5 1,4 0 0
T2 15 100 39 41 40,0 2,0 7,6 0,304
T3 17 110 53 56 54,5 2,7 11 0,600
T4 19 110 91 95 93,0 3,6 11 1,023 1,927
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Results
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ECS: Control algorithm viewpoint
– Reduced order models 
– Non-conventional sampling and updating patterns
– Missing data control
– Event-triggered control
– Hybrid control systems  
– Decision and supervisory control
– Multimode control
– Sampling rate changes
– Fault-tolerant control 
– Degraded and back-up (safe) control strategies
– Battery monitoring and control
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PID: Sampling period effect
• Open loop control
• Discretized controller, independently of the plant
• Degrading as the sampling period increases

• EXAMPLE: )5.1)(5.0(
5.1

)(
++

=
ss

sG

2.32.08 === IDP TTK

Plant:

Parameters:

Sampling periods: T= 0.04, 0.08, …, 0.24 sec

T
K

qTK
T
K

Kq
T

K
Kq d

i
d

p
d

p =+−−=+= 210          ;
2

         ;
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Variable sampling period
• State Feedback:

)( ''' TTT
KbAeig +≅

K
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Output Controller 

),,( CbA cc

Plant

),,,( TTTT LCbATK

ObserverFeedback
Control law

TiTk Σ
    r      -                      +                      u                             y

                                      -

Integral

• Integral error
• Output feedback
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Observer
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We must update the model (AT ,bT ) as well as the gain LT
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Flexible arm prototype
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Flexible arm prototype
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The dynamical equations of this system are:

The torque is generated by the voltage applied to the d.c. motor:

in this way 

0
121

12

=++
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22
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IK ee
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Mathematical model
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Controllers' gain, 
for T=0.08 sec
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The performance of the controlled 
system when each controller is applied:
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Information updating
Dynamic Controller

100
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Experimental rig: Change in sampling period
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for T2=0.08 sec.
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Experimental rig: Change in sampling period
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T1 =0.01 to T2 =0.08 at t=0.01 sec, new controller

Experimental rig: controller updating
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T2 =0.08 to T1 =0.01 at t=0.01 sec, new controller

Experimental rig: Controller updating

0 2 4 6 8 10 12 14
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

t (sec.)

Y



��� �������		�	�
��
������������ ��
����	��
��������
�������������������� !��"##$

©P. Albertos 2006

Feedback re-scheduling

• According to the mode of operation change 
periods, re-schedule and check if feasible

• Apply transfer controllers
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ECS: Control algorithm viewpoint
– Reduced order models 
– Non-conventional sampling and updating patterns
– Missing data control
– Event-triggered control
– Hybrid control systems  
– Decision and supervisory control
– Multimode control
– Sampling rate changes
– Fault-tolerant control 
– Degraded and back-up (safe) control strategies
– Battery monitoring and control
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Conclusions

• ES is a growing area of interest
– Software issue
– Control presence

• ECS
– Implementation
– Computational
– Algorithmic 

• ECS Design
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Goals

The goal of this lecture is to provide an overview 
of the  basic concepts of the real-time 
embedded systems.



Affiliation

2

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

03/20/06

© Alfons Crespo 20063

Outline

• Introduction
• Real-time task model
• Schedulability analysis
• Real-time operating system support 
• Real-Time Languages

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

03/20/06

© Alfons Crespo 20064

Introduction

Embedded Control System

A embedded control system is composed by a computer system
embedded in a larger engineering system and performing 
control functions in all or part of this environment

Examples

Aerospace systems, trains, cars, robotic systems, communication 
systems, ......
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Introduction
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Introduction

Hardware
RTOS

Control 
Application

Tasks

A/D

Algoritmo
de

Control
D/A

referencia
r(t)

Sensor AccionadorProceso

y(t) u(t)

uk
yk

rk
A/D

Regulador
reference

Control
Algorithm

Controller

Process Actuator

Each task in the application 
has the following structure

task Controller
each Sample do

get_sensor (y); 
determine_action(u); 
send_action(u); 
aupdate(e,y,u,…); 

end do;
end task;
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Characteristics

Functionality

• Continuous control
• Discrete event control
• Data display
• Data logging
• Operator commands
• Communications

Implementation requirements

• Concurrency
• Timeliness/ dependability
• Reliability
• Special hardware platforms
• Limited resources
• Efficiency

There is a growing need for a larger size and 
complexity of embedded control systems
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Simplification factors

• Do not use display  (specialized displays)
• No disk (no file systems)
• Monouser
• Limited security constraints
• Limited number of tasks
• User access limited
• Closed system
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Concurrency
Activities in the real world are simultaneous 
– physical variables change at the same time
– events occur asynchronously, and even at the same time

Control systems have to cope with this simultaneity
– e.g. multivariable control, asynchronous events

… but computers are sequential machines
– different activities must run on the same processor
– simultaneous execution is simulated by multiplexing the usage 

of the  processor among different execution sequences

Concurrency: multiplexed execution of several activities on a 
computer
– concurrent activities are called processes, threads, or tasks
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Real-Time
Concurrent activities with temporal constraints:

– The actions taken by the computer system have to be 
produced within a specified interval      
– The algorithm (task) result has to be logically and 
temporally correct.

Temporal constraints:

– Sampling of analog variables (sensing) must be periodic
– Control actions must be issued in time (actuation)
– Reactions to events have to be executed within some 
deadline
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Temporal Constraints
Based on the deadline, task can be:

Hard deadline (Hard Real-Time Systems)

Soft deadline (Soft Real-Time Systems)

Value 

Deadline

Value 

Deadline
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Temporal constraints

rmin

[r-, r+] [f-, f+]

[e-, e+]

Ci

A real-time task is required to execute within a given time 
interval usually characterized by an activation pattern and a 
relative deadline

Activation time

Relative deadline

Absolute deadline
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Temporal constraints
But … task are executed in a processor multiplexing following a 
scheduling policy

So, a task (depending on the scheduling policy) can have several
delays.
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Temporal constraints
A task can suffer delays 

preempted

At the beginning

Best case

Worst case

At the end

Best case

Worst case

Input Jitter Output Jitter

The effect of jitter is difficult to analyse, both from the computing and control.
Deadline and activation requirements can be used to limit jitter.
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Task Model

Based on the activation patterns for control tasks

• Periodic: the task is activated at regular intervals with period T

ak = φ + k·T

• Aperiodic: the task is activated when some event occurs. 
Event arrival can be modelled in different ways (e.g. Poisson 
distribution)
• Sporadic: aperiodic, with a minimum inter-arrival time T 
between activation events

ak ≥ ak-1 + T

Activation: Ti = (Ci, Di, Pi, φi)
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Scheduling

The scheduling algorithm determines which is the next task to be executed.

Ready queue

CPU

Blocked tasks

Running
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Scheduling

It has a crucial role in ensuring temporal requirements enforcing of 
activation patterns

• releasing periodic tasks for execution at the proper times

• releasing aperiodic tasks when the activation event is detected

• ensuring minimum inter-arrival time for sporadic tasks

Implementing appropriate processor sharing algorithms in order to 
guarantee deadlines

• the aim is not to maximize throughput or to improve average 
performance, but to guarantee deadlines

• hard deadlines have to be guaranteed even in worst-case load conditions, 
i.e. Ri ≤ Di
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Schedulers

Real-Time Systems

Cyclic Priorities

Static Dynamic

Rate 
Monotonic

RM

Deadline 
Monotonic

DM

Earliest 
Deadline First 

EDF

Least
Laxity First

LLF

Ready queue

CPU

Blocked tasks

Running
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Cyclic Scheduling

Each task is characterised by a tupla  (Ci,Ti,Di)

•Ci is the worst case execution time
•Ti is the period
•Di is the deadline

If all tasks are periodic, it is possible to design a fixed execution plan
that is repeated each main cycle Tm

• Main cycle corresponds to the hyperperiod H = mcm(Ti), i=1..n

• Main cycle can be split in secundary cicles TS => TM = kTS
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Cyclic Scheduling

procedure Level_Control is
begin

Level := Get_Level;
Compute(R_Level, Level, ValOut);
Put_Valve(ValOut);

end Level_Control;

procedure pH_Control is
begin

pH := Get_pH;
Compute (R_pH, pH, Val_pH);
Put_Valve(Val_pH);

end pH_Control;

procedure Temp_Control is
begin

Temp := Get_Temp;
Compute(R_Temp, Temp, Val_Temp);
Put_Valve(Val_Temp);

end Temp_Control;
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Cyclic Scheduling

LC
TC
pC

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Level_Control:  C1 = 10 ms; P1 = 20ms
Temp_Control: C2 =    5 ms; P2 = 40ms
pH_Control:      C3 = 10 ms; P3 = 40ms

HyperPeriod = 40ms
SecondaryCicle = 20ms;

LC
TC
pC

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
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Cyclic Scheduling

Level_Control:  C1 =10 ms; P1 = 20ms
Temp_Control: C2 = 5 ms; P2 = 40ms
pH_Control:      C3 = 15 ms; P3 = 40ms

cycle := 0:
Next_Activation := Clock;  -- get the current time
loop

delay until Next_Activation;
Next_Activation := Next_Activation + SecondaryCicle ;
case  (cycle mod 2) is
when 0 => Level_Control; Temp_Control;
when 1 => Level_Control; pH_Control;

end case;
cycle := cycle + 1;

end loop;

HyperPeriod = 40ms
SecondaryCicle = 20ms;

LC
TC
pC

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
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Designing a cyclic plan

• Constraints on Secondary Cycle Ts
– 1.- TS any task has to be included

 ∀i : TS ≥ Ci
– 2.- Should be a submultiple of the Main Cycle (Tp):

Tp = k·Ts
– 3.- A whole TS has to be included between an activation  and its 

deadline for any task.
���∀i : 2 TS – mcd(TS , Ti ) ≤ Di
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Cyclic Scheduling
• Example

Tarea

t1

t2

t3

t4

C T D

10

18

10

20

40

50

200

200

40

50

200

200

U = 10/40 + 18/50 + 10/200 
+ 20/200 = 0’76 < 1 OK

H=mcm(40,50,200)=200

TS Selection
1.- ∀i : TS ≥ Ci → TS ≥ 20
2.- ∃i : Ti /TS = Ti /TS → TS ∈ {20,25,40,50,100,200}
3.- ∀i : 2 TS – mcd(TS, Ti ) ≤ Di

Sups TS=20:
t1: 2*20 – mcd(20,10) = 30 ≤ 40  OK
t2: 2*20 – mcd(20,50) = 30 ≤ 50  OK
t3 y t4: 2*20 – mcd(20,200) = 20 ≤ 200 OK

0 20 40 60 80 100 120 140 160 180 200

t1

1 23 4

t2

t3

t4

1 2 1 2 1 1 2
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Cyclic Scheduling: Summary

• Robust method, appropriate for simple systems
– temporal behaviour guaranteed by construction
– easy to implement and analyse for correctness

• Too rigid for complex systems
– static schedule difficult to build (NP-hard in the general case)
– changes in code require rebuilding the schedule
– difficult to accommodate sporadic tasks

Summary: a low-level method
– more flexible scheduling schemes are easier to implement 

and maintain
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Schedulers

Real-Time Systems

Cyclic Priorities

Static Dynamic

Rate 
Monotonic

RM

Deadline 
Monotonic

DM

Earliest 
Deadline First 

EDF

Least
Laxity First

LLF

Ready queue

CPU

Blocked tasks

Running
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Priority Scheduling

Priority based is a scheduling method for real-time activities using 
threads or task.

Each task has a priority related to some assignement criteria 
(importance, urgence, ….)

- Priorities can be assigned off-line (static) or during the 
execution based on some parameter (dynamic)

- The scheduling policy is implemented in the kernel and selects 
the highest priority task (thread) among the ready tasks.

Schedulers can permit the preemption or not preemption of 
running tasks. 
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Fixed Priority Scheduling

Fixed Priority preemptive scheduling: Priorities are assigned at 
design time

Criteria:
- Designer decides the priority based on the importance of the 

task (semantic criteria)

- Based on the urgence (deadline):

Rate Monotonic (periods = deadline). Higher priority to 
more frequent tasks

Deadline Monotonic : Higher priority to more urgent task 
(Shorter deadline)

OPTIM
AL
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Rate Monotonic Analysis
Assumptions:

- Periods = Deadlines
- Tasks are independent (no shared resources)

Analysis:       Utilisation based feasibility test (Liu & Layland, 73):

n U(n)
1 1,00
2 0,82
3 0,77
4 0,75
5 0,74
... ...
∞ 0,69

For  n tasks:

Utilisation bound for n tasks

It is sufficient but 
not necessary condition

)12()(...
1

2

2

1

1 −⋅=≤+++ n

n

n nnU
P
C

P
C

P
C

A task Ti = (Ci, Pi), uses the CPU
i

i

P
CU =)1(
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C1 = 2     P1 = 10      U1 = 0.2
C2 = 4     P2 = 15      U2 = 0.267
C3 =10    P3 = 35      U3 = 0.286

U1 + U2 + U3 = 0.753
75.3 %  < U(3) = 77.9 %  OK

24.7 % of the CPU can be used for other non real-time activities 

Example 1

Rate Monotonic Analysis
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C1 = 2     P1 = 10      U1 = 0.2
C2 = 4     P2 = 15      U2 = 0.267
C3 = 5     P3 = 25      U3 = 0.2
C4 = 6     P4 = 35      U4 = 0.17

U1 + U2 + U3 + U4 = 0.837
83,7 %  > U(4) = 75.6 %    No

Example 2

But the system is schedulable

Rate Monotonic Analysis
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Response time analysis

A set of n periodic tasks is schedulable under any priority assignement 
iff: All tasks finish its execution in the first period before the deadline 
(Critical instant)  Ri ≤ Di

The worst case response time (Ri) of a task Ti occurs when all taks with 
higher priority start at the same time than Ti.

33
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Response time analysis

Critical Instant

The value of interference (Ii) depends on the relative phases of the task 
activation times

Ii is maximum when a task is activated at the same time as all the tasks 
with a higher priority

It suffices to compute interference for the first period after a critical 
instant – no need for a full hyperperiod

This reduces complexity of analysis to polynomial case
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Response time analysis

Interference calculation

T1

T2

T3

T4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
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Response time analysis

Ri can be determined by: j
ihpj j

i
ii C

T
RCR *

)(
∑
∈ 











+=

It can be solved by a linear iteration: 

ii CR =0
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n
i RR =+1Termination condition

The system is schedulable if for all task 
i

n
i DR ≤+1
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Response time analysis

T1 Di Ci
T1 10 10 3

T2 15 15 3

T3 18 18 2

T4 24 24 5
1030 11

1
1

1
0
1

=≤=+=

=

DCR

CR

T1

T2

T3

T4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
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Response time analysis

T1 Di Ci
T1 10 10 3

T2 15 15 3

T3 18 18 2

T4 24 24 5
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Response time analysis

T1 Di Ci
T1 10 10 3

T2 15 15 3

T3 18 18 2

T4 24 24 5
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T1

T2

T3

T4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Response time analysis

T1 Di Ci
T1 10 10 3

T2 15 15 3

T3 18 18 2

T4 24 24 5
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Extending Response Time Analysis

RTA can be extended to more complex task models

– tasks with any priority assignement
– deadlines shorter than periods
– sporadic tasks
– communication with shared variables
– activation jitter

… and also to distributed systems
– provided the communication link has a bounded transmission time

The computation models covered by RTA can be implemented on a
number of operating systems and programming languages 

This enables many kinds of real-time systems to be built and analysed
for deadline guarantees

– mandatory in high-integrity systems
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Schedulers

Real-Time Systems

Cyclic Priorities

Static Dynamic

Rate 
Monotonic

RMA

Deadline 
Monotonic

DMA

Earliest 
Deadline First 

EDF

Least
Laxity First

LLF

Ready queue

CPU

Blocked tasks

Running

Utilisation test*

RTA test
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Sporadic tasks

Sporadic events are characterized by a minimum inter-arrival time T

The worst case is when the task is activated as often as possible
• pseudo-periodic activation with period T

Sporadic tasks are converted (from the analysis point of view) in periodic task 
with period equal T and, usually, deadlines shorter than T

the pseudo-periodicity assumption: sporadic tasks behave as periodic tasks in 
the worst case
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Aperiodic tasks
Aperiodic events are characterized by different kinds of models, most of 

them stochastic
– e.g. Poisson process

Aperiodic tasks do not usually have any hard deadlines but are required to 
respond as fast as possible

Aperiodic tasks can be scheduled in a DMS framework using a variety of 
aperiodic servers

An aperiodic server is a periodic task serving aperiodic events with a limit of 
computation by period (budget)  

Si = (Bi, Pi)       
- In general, the budget is replenished each period
- As a periodic task it can be integrated into RTA
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Aperiodic tasks

0 5 10 15 20 25 30 35 40

Server available time

B1



Affiliation

24

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

03/20/06

© Alfons Crespo 2006

Jitter evaluation

• Output jitter can play an important role in the control 
performance

• Tasks are pseudo-periodic

• The distance between two consecutives input or outpus is 
variable

• Important aspect: determine the Input/Output Jitter.
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Jitter evaluation

Worst case response time => Maximum finishing time of the task:
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Jitter evaluation

Task WCET Period Deadline Offset
T1 10 40 40 0
T2 20 70 70 0
T3 35 150 150 0
T4 30 250 250 0

WCET Min Max Min Max CAI
T1 0 0 10 10 0%
T2 0 10 20 30 14%
T3 0 20 45 105 40%
T4 0 105 30 240 84%

Begin End
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Jitter reduction

A simple way to reduce the Jitter in a fixed priority scheme is to increase the 
priority of the task.

Reducing the deadline of a task (DM assignement)

Increasing the priority

Reduction of the jitter in a task produce an increase in others. But not all tasks 
are equal sensible to higher jitter.

Other alternatives are also possible:

Task partitioning
Bands of priorities for Input/Output/computation phases
…..
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Using shared resources

Tasks usually shared variables or devices
Shared data structure (list)

CAD device

Tasks
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Using shared resources

Code segments in which shared data are accessed are called critical 
sections

Shared data must be protected so that critical sections are executed in 
mutual exclusion

operating systems provides many mechanisms: semaphores, mutexes, Ada protected 
objects

In real-time systems, mutual exclusion may give rise to priority inversion 
this effect is also called blocking

an undesirable side effect of mutual exclusion
it can even affect tasks not sharing any variables
it can produce unbounded blocking

This may result in unbounded response times
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Using shared resources:
Priority inversion

Shared resourceR1

T1

T2

T3

prio

1

3

2

R1: {T1, T3} 
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Using shared resources:
Priority inheritance protocol

Shared resourceR1

T1

T2

T3

prio

1

3

2

R1: {T1, T3} 

T3 inherits the priority of the blocked task (T1)

T3 recovers its priority
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Using shared resources:
Immediate ceiling protocol

Shared resourceR1

T1

T2

T3

prio

1

3

2

R1: {T1, T3}
Ceiling R1 = 
maxPrio(T1,T3) 

T3 inherits the priority ceiling of R1

T3 recovers its priority

1

Blocking time B1
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Immediate ceiling protocol

A high-priority task blocks at most once in each execution cycle
It is independent of how many shared data items it uses

The maximum duration of blocking for a task Ti equals the duration of the 
longest critical section executed by a lower-priority task using a data item 
with a ceiling priority greater or equal to the priority of Ti

The are no deadlocks, in spite of possible circular wait situations

The effect of (bounded) blocking can be added to the response time 
equation:
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Real-time Operating Systems

• Provides infrastructure for running software on an 
embedded hardware platform

• Provides a hardware abstraction
• Provides access to the devices
• Provides support for multiple processes and threads
• Provides development tools

• Compiler / Linker
• Downloader
• Debugger

• Provides deterministic performance
• Guaranteed interrupt management Latency
• Guaranteed Context Switch
• Small and bounded scheduling overhead 
• Timer and clock access

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

RTOS requirements

• Real-time task scheduling
• Preemptive scheduling
• Interrupt response guarantee
• Static or dynamic priorities
• Synchronous and Asynchronous I/O
• Fast data acquisition
• Deterministic network communications
• Portability 
• Efficient memory management
• Real-Time languages support
• Standard API (POSIX®)
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Commercial RTOS

Interrupt handling 
Scheduling

- FIFO or Round-robin for equal-priority threads  
(EDF scheduling is not provided)

- Priority inversion control  (PIP)
Memory management

- Virtual memory (not pagination)
- Memory protection (some of them)

Most of them provide real-time extensions 
• LynxOS
• pSOS
• QNX
• VRTX
• VxWorks
• ……
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Open Source RTOS

Real-Time Linux:
RT-Linux
KURT
RED Linux
RTAI
Linux/RK (from Mach/RK)

Embedded Linux
MiniRTL
Extension to RTLinux (OCERA)
ELKS project
HA-Linux (High Availability)
Lineo Embeddic
VME Linux Project

RTEMS
ORK
MARTE OS (Ada)
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Open Source RTOS
Linux 2.4 RTAI OCERA

Processors I 386, PPC*, ARM* I 386, PPC* , ARM*

Mult i-processors Yes Yes Yes Yes
Process Yes No No No
Threads Yes Yes Yes Yes

Scheduling policies
FI FO, RR FI FO

Pr ior ity inversion None Ceiling I nher itance Ceiling
Pr ior ity range 0-100 0-100000 0x3fffFfff-0 0-100000
Protected memory Yes No No Yes
Dynamic memory Yes No Yes Yes
Semaphores Yes Yes Yes Yes

Yes Yes Yes Yes
Message queues No No Yes Yes
Barr iers No No No Yes

No No No No
Signals Yes No No Yes
Timers No No No Yes
Execut ion Timers No No No Yes
Time resolut ion Configurable (HRT) Configurable Configurable Configurable
User  t imers Yes No No Yes
Network I P, UDP, TCP, ... No I P, UDP I P, UDP, TCP, ...

No No Yes

POSI X 1003.1c, PSE POSI X 1003.1c, PSE

RTLinux/ GPL
I 386, PPC, ARM, SH, m68k, 

PARI SK, Sparc, MI PS
I 386, PPC, ARM, 

m68k, MI PS

FI FO, EDF, 
SPORADI C

FI FO, EDF, 
SPORADI C, CBS, 

I RI S, ADS

Mutex

rd/ wr  locks

Filesystems Ext2/ 3, ReiserFS, DOS, RAM, 
Flash, XFS, QNX4, ...

API 's POSI X, pSOS, VxWorks Custom, POSI X 
1003.1c (compat)
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Real-Time Programming Languages

• Sequential languages as C/C++ languages do not support 
directly real-time facilities
– Facilities are supported by OS API (POSIX or other API)

• Ada was specifically designed for embedded real-time systems
– Provides support for real-time and concurrency and protected objects

• Java provides support for threads and protected shared data. But 
it does not provide support for real-time
– RTSJ: A specification for Real-Time Java
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Ada

Ada supports many real-time concepts at the programming 
language level

– concurrency
– protected shared data
– fixed priority scheduling & ICPP
– device & interrupt drivers

Ada 95 is the current standard, Ada 2005 to come soon
– Ravenscar profile for high-integrity systems
– additional scheduling methods
– Java-like interfaces
– execution-time clocks
– etc.
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RTJava

Java extension for real-time systems
– developed by the Real-Time for Java Expert Group (version 1.0, 
2001)

Extensions of Java computation model in several areas
– scheduling
– memory management
– synchronization
– event handling
– physical memory access

Implementations available
– TimeSys, AICAS (Jamaica)

…but not so mature as Ada
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Summary

Real-time systems have temporal requirements
not just functionally correct, things must be done in time

Scheduling is crucial in guaranteeing and analysing temporal 
behaviour

timing properties depend on the way processor & other resources are 
shared

Analysable task model based on fixed-priority scheduling
– deadline or rate-monotonic priorities
– controlled access to shared data
– extensible to offsets, jitter, distributed systems, etc.

Other scheduling methods
EDF (earliest-deadline first)              » efficient but no so robust
Static, time-driven scheduling         » robust, but complex to implement
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Embedded Control Systems:
Control Kernel

�����������		�	�
��
������������ ��
����	��
��������
�������������������� !��"##$

©P. Albertos 2006

The kernel concept

• Basic services:
– Task and time management
– Interrupt handling
– Interface to the applications (API) 
– Mode changes
– Fault tolerance

OS kernel:

• Additional services
– File management
– Quality of service
– Tracing and debugging
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Basic Control Loop

A/D

Control
Algorithm

D/A

reference
r(t)

Sensor ActuatorProcess

y(t) u(t)

uk
yk

rk
A/D

Regulator

CT

DT
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Control task
…
…
loop

convert _sensor _analog_ digital (y); 
compute _control _action (u); 

compute _error (e)
compute _control _action (u)   �

send _ converted _ control_ action (u); 
update_internal_variables(y,u, …); 
Next _Iteration:= Next  _Iteration + Period;  
delay until Next _Iteration;

end loop;
…
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The Control Kernel concept
• Ensures control action (CA) delivering
• Data acquisition of major signals
• Transfer to new control structure

• Additional CA computing facilities
• Communication facilities
• Coordination facilities
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Control Kernel
• Ensures control action (CA) delivering

– Safe (back-up) CA computation
– Safe CA computation based on previous data

Plant

CA
deliv

Backup CA 
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Plant

CA
deliv

Backup CA 

Control Kernel (2)
• Data acquisition of major signals

– Safe CA computation based on current data

CA

DA
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CA
computation

Control Kernel (3)
• Transfer to new control structure

– Basic control structure parameters computation
– CA computation 

• Full DA
– Control structures evaluation and selection
– CA computation (different levels)

Plant
CA

deliv

Backup CA CA

DA
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Control Kernel (4)
• Communication facilities

– with the environment
– the operator
– other ECS

• Coordination facilities
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Control Kernel
• Ensures control action (CA) delivering

– Safe (back-up) CA computation
– Safe CA computation based on previous data

• Data acquisition of major signals
– Safe CA computation based on current data

• Transfer to new control structure
– Basic control structure parameters computation
– CA computation 

• Full DA
– Control structures evaluation and selection
– CA computation (different levels)

• Communication facilities
• Coordination facilities
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The control kernel concept

kvku

Plant

CA
deliv

Backup CA CA
user

CA
computation

bu

kx

km
ky

DA

kr

Safe operation in any condition
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Control Kernel Algorithm

• CA delivering 
• Backup CA bk uu =
• Backup CA Computation ),( 1−= kbk xufu

• Current safe b-up CA comp.

kk uv =

• Basic CA computation ),(1 kkk xrfu =

),( kbk xufu =

• CA comp ),( kkik xrfu =
• CA comp. (Process model)

– Essential
– Partial
– Complete 

),( kkk xrFu =
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Control Kernel Algorithm

• Model reduction:
S1

S2

u y

kkkkk
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– Partial control (parts 
of the plant)
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Control Kernel Algorithm
• Model reduction: time scale

[ ]
k

kk

kk
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CCu

B

B

x

x

AA

AA

x

x
�
�

�
�
�

�
=�

�

�
�
�

�
+�

�

�
�
�

�
�
�

�
�
�

�
=�

�

�
�
�

�

+ 2

1
21

2

1

2

1

2221

1211

12

1 y   ;

k,k,k

kk,k,k,

xCxCy
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212122212

++++====
++++++++====++++

modesfast  :  modes; slow : 21 xx

Deleting the “slow” mode: constant  :,1 kx
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Control Kernel Algorithm
• Model reduction: deleting the “fast” mode
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Conclusions

• Kernel concept
• Code rewriting
• Interaction with OS kernel
• Fast, reliable and safe operation
• Include … CPU, power control
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Session Outline

• Control Loop Timing Parameters

• Temporal Non-Determinism

– Input-Output Latency
– Sampling

• Switching

• The Jitter Margin

• The Control Server Model

• Arithmetics

2



Assumptions

In this session we will focus on periodically sampled control
loops.

Process

u t( )

)

uk

y t(u t( )

yk

SamplerHold

Computer

uk
yk

tt

t

y t( )

t

D-A A-D

3

Continuous Controllers: Timing Parameters

4



Control Loop Timing

Classical control assumes deterministic sampling

• in most cases periodic

• sampling interval determined by desired closed loop
performance and the nature of the disturbances acting on
the system

• too long sampling interval or too much jitter cause poor
performance or instability

5

Control Loop Timing

Classical control assumes negligible or constant input-output
latency

• if the latency is small compared to the sampling interval it
can be ignored

• if the latency is constant it can be included in the control
design

• too long latency or too much jitter cause poor performance
or instability

6



Embedded Control Loop Timing

Embedded control systems with limited computing resources
implies temporal non-determinism

• multiple tasks compete for computing resources

• preemption by higher-priority tasks, blocking when access-
ing shared resources, varying computation times, non-
deterministic kernel primitives

Networked control systems with limited communication re-
sources implies temporal non-determinism

• network interface delay, queuing delay, transmission delay,
propagation delay, link layer resending delay, transport
layer ACK delay, ...

• lost packets
7

Timing Relationships

Scheduling method,
(T, D, Priorities, 
Network parameters
Scheduling and

Protocol,...)

Control
Performance

(variance, rise time, 
overshoot, ...)

Loop Timing
Parameters
(latencies, jitter, ...)

Complex relationship Complex relationship

Possibilities:

• Simulation – the TrueTime tool

• “Numerical Analysis” – the Jitterbug tool

• Theoretical results – e.g., the Jitter Margin

8



Input-Output Latency

Always present in computer-based control systems.

LOOP
    wait for clock interrupt;
    read analog input;
    perform calculations;
    set analog output;
END;

Control delay

y

Time

Time

u

y(t  )
k

k+1y(t     )

k+2y(t     )

k+3y(t     )

k

k+1
k+2

k+3

u(t  )
u(t     )

u(t     )
u(t     )

Control
delay

9

Rules of Thumb

A short latency is better than a long latency

A short, but jittery, latency is better than a long constant
latency

But, anomalies exist!

10



Example from Kushner and Tobias (1969)

Plant: P(s) = 6
(s+1)(s+2)

Controller: C(z) = 1 (unit negative feedback)

Sampling period: h = 1.42 + uniform sampling jitter

Unit white input noise. Cost function: J = Ey2(t)

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

Sampling jitter / h

C
os

t

11

Basic Questions

1. How robust is a control loop to temporal nondeterminism?

2. How do we implement the control loop in order to maxi-
mize the temporal determinism?

3. Can we use control techniques in order to improve the
temporal robustness?

12



Implementing Periodic Controller Tasks

Three Main Issues:

1. How do we achieve periodic execution?

2. When is the sampling performed?

3. When is the control signal sent out?

13

1. How Do We Achieve Periodic Execution?

1. Using a static schedule (cyclic executive)?

• High temporal determinism but inflexible

• Does not require any sophisticated RTOS support

2. In interrupt handlers (interrupt service routines) associated
with timers

3. As self-scheduling threads in a RTOS/kernel using time
primitives such as sleep/delay/WaitTime (relative wait) or
sleepUntil/delayUntil/WaitUntil (absolute wait)

4. Using an RTOS/kernel with built-in support for periodic
tasks

• implement the tasks as simple procedures/methods
that are registered with the kernel

• not yet common in commercial RTOS
14



Implementing Self-Scheduling Periodic Tasks

Attempt 1:

LOOP

PeriodicActivity;

WaitTime(h);

END;

Does not work.

Period > h and time-varying.

The execution time of PeriodicActivity is not accounted for.

15

Implementing Self-Scheduling Periodic Tasks

Attempt 2:

LOOP

Start = CurrentTime();

PeriodicActivity;

Stop = CurrentTime();

C := Stop - Start;

WaitTime(h - C);

END;

Does not work. An interrupt causing suspension may occur
between the assignment and WaitTime.

In general, a WaitTime (Delay) primitive is not enough to
implement periodic processes correctly.

A WaitUntil (DelayUntil) primitive is needed.
16



Implementing Self-Scheduling Periodic Tasks

Attempt 3:

t = CurrentTime();

LOOP

PeriodicActivity;

t = t + h;

WaitUntil(t);

END;

Will try to catch up if the actual execution time of PeriodicAc-
tivity occasionally becomes larger than the period (a too long
period is followed by a shorter one to make the average cor-
rect)

Reasonable for alarm clocks, but perhaps not for controllers.

17

2. When is the Sampling Performed?

Two options:

• At the beginning of the controller task

– gives rise to sampling jitter and, hence, sampling
interval jitter

– still quite common

• At the nominal task release instants

– using a dedicated high-priority sampling task or in the
clock interrupt handler

– somewhat more involved scheme
– minimizes the sampling jitter

18



3. When Is the Control Signal Sent Out?

Three Options:

• At the end of the controller task

– creates a longer than necessary input-output latency

• As soon as it can be sent out

– minimizes the input-output latency
– controller task split up in two parts: CalculateOutput

and UpdateState

• At the next sampling instant

– minimizes the latency jitter
– gives a longer latency than necessary
– often gives worse performance, also if the constant

delay is compensated for
– delay compensation easy 19

Minimize Input-Output Latency

General Controller representation:

x(k+ 1) = Fx(k) + Gy(k) + Gryre f (k)
u(k) = Cx(k) + Dy(k) + Dryre f (k)

Do as little as possible between AdIn and DaOut

PROCEDURE Regulate;

BEGIN

AdIn(y);

(* CalculateOutput *)

u := u1 + D*y + Dr*yref;

DaOut(u);

(* UpdateStates *)

x := F*x + G*y + Gr*yref;

u1 := C*x;

END Regulate;
20



Session Outline

• Control Loop Timing Parameters

• Temporal Non-Determinism

– Input-Output Latency
– Sampling

• Switching

• The Jitter Margin

• The Control Server Model

• Arithmetics

21

Why is Input-Output Latency Bad?

A constant input-output latency decreases the phase margin.

Example: Loop gain (controller ⋅ process) with zero delay or one
sample delay:

Bode Diagrams
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Computing the Delay Margin ∗

We have

• Phase margin φm = 32.4○

• Crossover frequency ω c = 16.0 rad/s

How large delay L can be tolerated before we lose stability?

The delay is modeled by G(s) = e−sL

At crossover frequency: argG(iω c) = arg e−iω cL = −ω cL

To retain a positive phase margin, we must have

ω cL < φm

16.0 L < 32.4○ π
180○

L < 0.035
∗ Since we have a sampled system, the analysis is only approximate 23

Delay Compensation

If the delay is constant and known, it is straightforward to
compensate for it in the design.

Delay compensation:
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Compensation for Fixed Delays

Continuous-Time Designs

• Otto-Smith controller

Discrete-Time Designs

• Augment the plant model

25

The Smith Predictor

Prediction using the control signal rather than the output
derivative

Controller Process

Model

Model without
delay

y

+

+

-
y1

r u

y2

+

With perfect model the controller does not see any delay

The control performance the same as without any delay (with
the exception that the output will be delayed) 26



PI versus Smith
Mätsignal

Styrsignal

Börvärde

However, a delay compensating controller can never undo the
delay

27

The Smith Predictor

Assume that the process is given by P(s) = P0(s)e−sL and that
we have a perfect model P̂(s) = P(s).
This gives the transfer function

Y(s) = P0C

1+ P0C
e−sLR(s)

The same as if without any delay + a pure delay

Ideally the controller can be designed for without delay

In practice due to model errors and disturbances the delay
must be taken into account in the control design (a more
conservative design)

28



Delays in Discrete Time

Include the delay in the discrete time model

dx(t)
dt

= Ax(t) + Bu(t− τ ), τ < h

x(kh+ h) − Φx(kh)

=
∫ kh+h

kh

eA(kh+h−s)Bu(s− τ )ds

=
∫ kh+τ

kh

eA(kh+h−s)B ds u(kh− h) +
∫ kh+h

kh+τ

eA(kh+h−s)B ds u(kh)

= Γ1u(kh− h) + Γ0u(kh)

LTI system!
29

A state-space model (with extra state z(kh) = u(kh− h)








x(kh+ h)
z(kh+ h)








=









Φ Γ1

0 0

















x(kh)
z(kh)








+









Γ0

I








u(kh)

Can easily be extended to τ > h
Design:

• apply arbitrary discrete time design using the augmented
model

• e.g., LQG-design

30



LQG with Deadtime Compensation

Designs a discrete-time LQG controller with direct term for a
continuous-time system assuming a constant sampling interval
h and a constant time delay τ .

Controller:

u(k) = −Lx̂e(kpk)
x̂e(kpk) = x̂e(kpk− 1) + K f (y(k) − Ce x̂e(kpk− 1))

x̂e(k+ 1pk) = Φ e x̂e(kpk− 1) + Γeu(k) + K (y(k) − Ce x̂e(kpk− 1))

Used in most of our examples.

Jitterbug command: lqgdesign

31

Why is Jitter Bad?

• The controllers were designed assuming a constant h

• The jitter can be interpreted as a process disturbance

• Very hard to analyze in the general case

– counter-intuitive anomalies can be found

• The Jitterbug toolbox can be used to evaluate the effect of
jitter for a given case

• Many jitter compensation schemes have been developed

32



Example: DC Servo with IO Latency and Jitter

• Process: P(s) = 1

s(s+ 1)
• LQG controller with or without delay compensation

• Process noise R1c = 1, measurement noise R2 = 0.01
• Cost function: J = E

{

y2(t) + 0.001u2(t)
}

• Periodic sampling with h = 0.1
• Constant or random (uniform distribution) IO latency

33

Constant Input-Output Latency
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Input-Output Jitter

0 0.02 0.04 0.06 0.08 0.1
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Input−output jitter

C
os

t

No delay compensation
Compensation for average delay

Note: having uniform jitter J is only slighly worse than having a
constant latency of L = J/2.

35

Compensation for Sampling Jitter

Rule of thumb: Jitter that is less than 10% of the nominal
sampling period need not to be compensated for

Two approaches:

• Gain scheduling

• Robust design methods

36



Gain Scheduling

Assume that the sampling period can be measured

Store several sets of pre-calculated controller parameters in a
table with the sampling period as input parameter.

Switch controller parameters when the sampling period
changes

Assumes that the sampling period varies slowly, i.e., not so
realistic for jitter

May cause switching transients

37

Gain Scheduling

What if the sampling period varies fast?

Parameterize the controller parameters in terms of the sam-
pling period

For example:

dx(t)
dt

( x(tk+1) − x(tk)
hk

Works often well for low order controllers, e.g., PID.

Ad hoc method with no formal guarantees

38



Robust Design Methods

Design the controller to be robust against timing variations

Several robust design methods are available

• H∞

• Quantitative Feedback Theory (QFT)

• µ-design

• ...

39
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Switching Controller Task Parameters

Jitter in sampling and latency

• stochastic changes in controller task parameters (period
and executon time)

• caused by the implementation platform

Sometimes it can be useful to change the controller task
parameters intentionally

• deterministic changes in order to adapt to changing work
loads

• generated by a controller when it changes modes (e.g.
changes its execution time demands)

• generated by a scheduler when the resources change

May cause both scheduling and control problems
41

Mode Changes and Scheduling

A task set that is schedulable under fixed priority scheduling
before the mode changes occurs and after the mode change
has occurred, may not necessarily be schedulable during the
mode change (in transition phase)

Special mode change protocols are needed

Easier under EDF (Earliest Deadline First) scheduling than
under fixed priority scheduling

42



Switching-Induced Instabilities

Deterministic changes of task parameters may lead to instabil-
ity

Example:

Process:

ẋ = Ax + Bu
y= Cx

where

A =
[

0 1

−10000 −0.1

]

B =
[

0

1

]

C = [1 0]

The system is stable with poles in p1,2 = −0.05± 100i.

43

Sampled with h1 = 0.002s and h2 = 0.094s

xk+1 = Φixk + Γiuk

yk = Cixk

i ∈ {1, 2}
where Φi = eAhi, Γi =

∫ hi

0
eAsBds

Both discrete-time systems are stable

44



Control Design:

State feedback controllers: u = −Kix
LQ-design:

J =
∫ ∞

0

(x(t)TQcx(t) + u(t)TRu(t))dt

with

Qc =
[

20000 0

0 20000

]

R = 50

45

Both closed-loop systems, Φi − ΓiKi, are stable

• eigenvalues inside unit circle

However, the switching sequence h1,h2,h2,h1,h2,h2, . . . gives
an unstable system

• eigenvalues of (Φ2 − Γ2K2)2(Φ1 − Γ1K1) outside the unit
circle

46



If we instead switch between the two controller stochastically using
the relative frequency 67% for h2 and 33% for h1 the resulting
system is stable (in the mean-square sense).

The phenomenon can in principle occur also in other cases:

• change of sampling interval for the same controller

• change of input output latency

However, it is rare and so far we have not seen any “realistic”
examples where it has occurred. 47

Switching & Controller State

Switching sampling intervals may also cause problems for
controllers on input-output form

u(k) = a1y(k)+ a2y(k−1)+ a3y(k−2)+ b1u(k−1)+ b2u(k−2)

Remedy:

• only allow switches in stationarity

• use an observer (Kalman filter) to estimate the signal
values at the new points in time

48
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Inverted Pendulum Example

Suppose you want to control three inverted pendulums using
one CPU:

y1

y1

y2

y2

y3

y3

u1

u1

u2

u2

u3

u3

CPU
+

RTOS
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Design

• Discrete-time LQG controllers

• Sampling intervals: (T1, T2, T3) = (10, 14.5, 17.5) ms

• Assumed execution time: Ci = 3.5 ms

• Controllers designed assuming delay of 3.5 ms

– Jitterbug command: lqgdesign

• Schedulable under both RM and EDF (with Di = Ti)

51

Simulation 1 – No Interference
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Simulation 2 – Rate-Monotonic Scheduling
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Simulation 3 – Earliest-Deadline-First Scheduling
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Questions

• How much jitter is there under various scheduling policies?

– Simulation
– Jitter analysis

• How much jitter do the control loops tolerate?

– Simulation
– The jitter margin

Jitter analysis + the jitter margin give hard stability results

55

Jitter Analysis – Rate-Monotonic Scheduling

• Ri – worst-case response time of task i

Ri = Ci +
∑

j∈hp(i)

⌈

Ri

Tj

⌉

Cj

• Rbi – best-case response time of task i

Rbi = Ci +
∑

j∈hp(i)

⌈

Rbi
Tj
− 1

⌉

Cj

• Ji – worst-case input-output jitter of task i:

Ji = Ri − Rbi

(Analysis for earliest-deadline-first scheduling also exists)
56



The Pendulum Example – RM Scheduling

Task T C R Rb J

1 10 3.5 3.5 3.5 0

2 14.5 3.5 7.0 3.5 3.5

3 17.5 3.5 14.0 3.5 10.5

57

The Delay Margin

• Lm – delay margin, the longest delay a loop can tolerate
without becoming unstable

• Simple to compute

– Continuous-time system: Lm = ϕm/ω c
∗ ϕm – phase margin [rad]

∗ ω c – cross-over frequency [rad/s]

– Sampled-data system: need to compute a root locus
with respect to the delay
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Delay Margins in the Pendulum Example

The maximum delay is equal to the response time R

Compute the delay margin Lm for each controller:

Task T C R Lm

1 10 3.5 3.5 9.8

2 14.5 3.5 7.0 12.5

3 17.5 3.5 14.0 14.6

∀i : Ri < Lmi. Still, system 3 was seen to be unstable!

The delay margin is only valid for constant delays!

59

The Jitter Margin

Assumptions:

• Periodic sampling (high-prio/interrupt-driven)

• Arbitrarily time-varying input-output delay ∆ ∈ [L, L + J]
– L – constant part
– J – jitter

Input Output
0

t
T

JL

Jitter margin Jm(L) – the largest J for which stability can be
guaranteed given a value of L
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Checking Stability

P(s)

K (z) ShZOH

∆

Σ
−

• Continuous-time plant P(s)
• Discrete-time controller K (z)
• Arbitrarily time-varying delay ∆ ∈ [L, L + J]
• Closed-loop system assumed stable for ∆ = L

61

Checking Stability

Include the constant delay L in the plant:

P(s)

K (z) ShZOH

∆̃

Σ
− e−sL

• New time-varying delay ∆̃ ∈ [0, J]
• New plant P̃(s) = P(s)e−sL
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Checking stability

Rewrite the control output as one direct path and one error
path:

P̃(s)

K (z) Sh

ZOH

Σ
−

ΛJ

z−1
z

• Difference operator z−1
z

• Time-varying gate function ΛJ (open at most J seconds
every sample)
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Checking Stability

Apply the small gain theorem:

replacements

P̃(s)

K (z) Sh

ZOH

Σ−−

ΛJ

z−1
z

• L2-gain of gate function: qΛJq =
√
J

• L2-gain of the rest:

qHq = max
ω

{∣

∣

∣

∣

Palias(ω )K (eiω )
1+ PZOH(eiω )K (eiω )

∣

∣

∣

∣

∣

∣eiω − 1
∣

∣

}
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Checking Stability

The closed-loop system is stable if qΛJqqHq < 1 \

∣

∣

∣

∣

Palias(ω )K (eiω )
1+ PZOH(eiω )K (eiω )

∣

∣

∣

∣

< 1√
J
∣

∣eiω − 1
∣

∣

, ∀ω ∈ [0, π ]

Here,

• Palias(ω ) =
√

∑∞
k=−∞

∣

∣P̃
(

i(ω + 2π k) 1
h

)∣

∣

2

• PZOH(z) is the ZOH-discretization of P̃(s)

(For small h, Palias(ω ) ( PZOH(eiω ))
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Checking Stability

Graphical test:
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4

10
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G
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Stability bound
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Jitter Margin – Example

Jm(L) for pendulum controller 3:
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• Lm = 14.6
• Jm(3.5) = 8.1
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Deadline Assignment

Stability of the closed-loop systems can be guaranteed by
assigning relative deadlines

Di = Jm(Li) + Li
and verifying that the resulting task set is schedulable.

(In our example, assigning such deadlines gives an unschedu-
lable system under fixed-priority scheduling)
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The Pendulum Example – RM

• Compute the jitter margin Jm(L) for each task

• J < Jm(L) [ Stable

Task R L = Rb J Jm(L) Stable

1 3.5 3.5 0 4.4 Yes

2 7.0 3.5 3.5 6.4 Yes

3 14.0 3.5 10.5 8.1 No?

69

The Pendulum Example – EDF

Task R L = Rb J Jm(L) Stable

1 3.5 3.5 0 4.4 Yes

2 7.5 3.5 4.0 6.4 Yes

3 10.5 3.5 7.0 8.1 Yes
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• Temporal Non-Determinism

– Input-Output Latency
– Sampling

• Switching

• The Jitter Margin

• The Control Server Model

• Arithmetics
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The Control–Scheduling Co-Design Problem

In1 Out1

Plant 3

In1 Out1

Plant 2

In1 Out1

Plant 1

In1

In2

In3

Out1

Out2

Out3

CPU

• Multiple plants controlled by a CPU with limited resources

• Controller and scheduling parameters should be chosen to
optimize the overall control performance

• Very complex problem, due to latencies and jitter
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The Control Server

• Extra layer between the controller and the RTOS

• Provides temporal isolation between the controllers

Controller 1 Controller 2 Controller 3

Control
server

Control
server

Control
server

RTOS

Control design

I/O, scheduling

Execution
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Co-Design Using Control Servers

The CPU is divided into many virtual CPUs:

Virtual CPU 3

Virtual CPU 2Virtual CPU 1

In1 Out1

Plant 3

In1 Out1

Plant 2

In1 Out1

Plant 1

50% 30%

20%

• A share of the processor is assigned to each control task

• Each control loop can be analyzed independently

• Simple to do trade-offs between the loops
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How to Achieve the Virtual CPUs?

Step 1: Constant bandwidth servers (Abeni & Buttazzo, 1998)

A constant bandwidth server (CBS) is described by

• a server period, Ts

• a server bandwidth (maximum utilization), Us

Scheduling mechanism (assuming one task per server):

• Based on earliest-deadline-first scheduling

• Each period Ts, the task has the budget Cs = UsTs
• Normally, the task has the relative deadline D = Ts
• When an overrun occurs (when the budget is exhausted)

– the task deadline is moved one period forward
– the budget is recharged to Cs
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How to Achieve the Virtual CPUs?

• Ideal processor sharing with CBSes requires Ts → 0
• Overhead →∞

However, the observable behavior of a task only consists of

• the input actions

• the output actions

Step 2: Add time-triggered I/O points

• I/O at highest (interrupt) priority

• Unaffected by the task scheduling
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A Simple Control Server Task

I/OI/OI/OI/O

t
0 T 2T 3T

• Period T

• CPU share U

• I/O at beginning and end of each period

Behaves as a task executing alone on a CPU with speed U of
the original speed
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Control Server Tasks with Segments

Multiple segments can be used to reduce the I-O latency

Example:

• Calculate output

• Update state

COCOCO USUSUS

IIII OOO

t
0 T 2T 3T
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Execution

• One job is released in each segment

• Deadline at end of segment

• Scheduled by CBS with variable period = segment length

Segments

Jobs

Budget

CO CO USUS

f 1if 1i f 2i f 2i

II OO

t

t

t
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Scalable Control Components

View the CPU share U as a design parameter. Example:

U = 0.1:

PSfr

CO US

0 L T
t

I O

U = 0.2: CO US

0 L T
t

I O

• Sampling period T ∝ 1/U
• Input-output latency L ∝ 1/U
• Performance J = J(U)
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Composite Control Tasks

Cascade controller:

Ctrl1 Ctrl2 G2 G1

Controller Process

The cascade controller could be built from two control compo-
nents with different rates

• T1 = 2T2 \ U2 = 2U1
• Synchronization required
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Offsets

Communicating tasks can be synchronized using offsets:

Ctrl1

Ctrl2

COCO USUS

COCOCOCO USUSUSUS

0 φ2 T1 2T1
t

I

II

III O

OO

OOO
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Control Experiments

• Ball and beam process

• Multirate cascade PID controller (PID1, PID2)

• Sporadic disturbance task (Spor.)

• Comparison of

– RM
– EDF
– Control server
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Results – RM
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Results – EDF
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Results – Control Server
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Session Outline

• Control Loop Timing Parameters

• Temporal Non-Determinism

– Input-Output Latency
– Sampling

• Switching

• The Jitter Margin

• The Control Server Model

• Arithmetics
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Computer Arithmetics

Control analysis and design assumes floating point arithmetics
(i.e. high range and resolution)

Hardware-supported on modern high-end processors (e.g.,
floating point ALUs (Arithmetic-Logic Units))

Representation:
± f $ 2±e

• f : mantissa, significant, fraction

• 2: radix or base

• e: exponent

88



IEEE 754 Standard

Used by almost all floating-point processors (except certain
DSPs)

Single precision (Java/C float):

• 32-bit word divided into 1 sign bit, 8-bit exponent, and 23-
bit mantissa

• Range: 2−126 − 2128

Double precision format (Java/C double):

• 64-bit word divided into 1 sign bit, 11-bit exponent, and
52-bit mantissa.

• Range: 2−1022 − 21024

Supports infinity and NaN

89

Floating-Point Emulation

Emulate floating-point arithmetics in software

Approaches:

• compiler supported

• manually

– e.g., floating point variables represented as C structs
– floating point operations in the form of a library

Problems:

• Code size becomes too large

• Slows down execution speed

• Non-trivial
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Fixed-Point Arithmetics

Use the binary word directly for representing numbers

MSB LSB

........ b b b b bbb 01234ws−1 ws−2

radix point

• MSB - Most significant bit

• LSB - Least significant bit

• ws - word-size

Unsigned versus signed
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Fixed-Point Arithmetics

Integer arithmetics:

• radix point to right of LSB

• 16 bits signed integer gives range −32768 ≤ x̂ ≤ 32767
((−215) − (215 − 1))

Fractional arithmetics:

• radix point to right of MSB (signed)

• 0.10011001

Generalized fixed point arithmetics:

• application-defined radix point

• 1101.0110

• Scaling: x = x̂/24 – shifting the radix point
92



Fixed-Point Arithmetics

Fixed point arithmetics: N bits (signed) integer

• Example: N=16 gives range −32768 ≤ x̂ ≤ 32767
• We can use fixed scale to get decimals:

x = x̂/28

E.g., x̂ = 315[ x = 1.2305
• Multiplication then requires rescaling:

z = x ⋅ y= x̂/28 ⋅ ŷ/28 [ ẑ =
(

x̂ ⋅ ŷ
)

/28

z = 1.2305 ⋅ 2.4609 = 315/28 ⋅ 630/28 [ ẑ = (315 ⋅ 630)/28

z = 3.0281[ ẑ = 775
93

Fixed-Point Calculations

Fixed point multiplication involves quantization

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

x

y

x ⋅ y

z

$

=

Fixed-point addition is error-free

Quantization (truncation or rounding)

• modeled as “noise”

Overflow (wrap-around or saturation) 94



Example: Scalar Products

Many controllers and filters involve calculations of scalar products,
e.g.,
u = −Lx = −[l1 l2 l3][x1 x2 x3]T = −l1x1 − l2x2 − l3x3
Consider the vectors

a = (100 1 100)
b = (100 1 − 100)

The true scalar product is 1

When computed in fixed point representation using a precision
corresponding to three decimal places, the result will be 0 (100 $
100+ 1$ 1 is rounded to 10000)

The result depends on the order or the operations.

To avoid this it is common to use higher resolution in the accumula-
tor and round to a smaller resolution afterwards.
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Fixed-Point Arithmetics Problems

• Quantization
Fixed-point values are rounded or truncated.

– Coefficient Quantization: Poles and zeros end up somewhere
else

– Signal (state) Quantization:

∗ Noise is added in each operation

∗ Quantization may cause signal bias

∗ Quantization may cause limit cycles. Either in the output
only (LSB) or in the entire system through feedback.

• Overflow
Adding/Multiplying two sufficiently large numbers can produce a
result that does not fit into the representation.

– Scaling important both of variables and of coefficients.
– Overflow characteristics. Saturation or wrap-around? Hardware

supported overflow detection or not.
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Example: Coefficient Quantization

An example controller

C(z) = z
4 − 2.13z3 + 2.351z2 − 1.493z+ 0.5776
z4 − 3.2z3 + 3.997z2 − 2.301z+ 0.5184

8-bit fixed point coefficients with x = x̂/24, so

x ∈
[

−8.0 . . . 7.9375
]

x1 1 1

4 fractional bits

4 integer bits

24
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Example: Coefficient Quantization

• Original:

C(z) = z
4 − 2.13z3 + 2.351z2 − 1.493z+ 0.576
z4 − 3.2z3 + 3.997z2 − 2.301z+ 0.5184

• Quantized:

C(z) = z
4 − 2.125z3 + 2.375z2 − 1.5z+ 0.5625
z4 − 3.188z3 + 4z2 − 2.312z+ 0.5
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Example

Pole−Zero Map
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Issues: Realization of Digital Controllers

A digital controller

u(k) = H(q−1)y(k) = b0 + b1q−1 + ⋅ ⋅ ⋅+ bmq−m
1+ a1q−1 + a2q−2 + ⋅ ⋅ ⋅+ anq−n

y(k)

can be realized in a number of different ways with equivalent
input-output behavior (different choice of state variables)

Issues:

• number of storage elements (memory)

• number of non-zero non-one coefficients

• coefficient range

• sensitivity towards coefficient quantization

• sensitivity towards state quantization

– order of computations matters 100



Direct and Companion Forms

u(k) =
m

∑

i=0
biu(k− i) −

n
∑

i=1
aiy(k− i)

Not minimal (n+m states)

Companion forms (e.g., observable canonical form or controllable canoni-
cal form):

x(k+ 1) =































−a1 1 ⋅ ⋅ ⋅ 0

...
...

. . .
...

−an−1 0 ⋅ ⋅ ⋅ 1

−an 0 ⋅ ⋅ ⋅ 0































x(k) +































b1
...

bm

0































y(k)

u(k) =


 1 0 ⋅ ⋅ ⋅ 0



 x(k)

Minimal
Coefficients in the characteristic polynomial are the coefficients in the
realization. Sensitive to computational errors if the systems are of high
order and if the poles or zeros are close to each other. 101

Example

A linear system can be rewritten in many ways:

C(z) = z
4 − 2.13z3 + 2.351z2 − 1.493z+ 0.5776
z4 − 3.2z3 + 3.997z2 − 2.301z+ 0.5184

=
( z2 − 1.635z+ 0.9025
z2 − 1.712z+ 0.81

)( z2 − 0.4944z+ 0.64
z2 − 1.488z+ 0.64

)

= 1+ −5.396z+ 6.302
z2 − 1.712z+ 0.81 +

6.466z− 4.907
z2 − 1.488z+ 0.64

+

Direct form Cascade form

Parellell form

C(z)

C1(z)

C1(z)

C2(z)

C2(z)
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Cascade Form

Pole−Zero Map
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Well-Conditioned Realizations

Parallel (diagonal/Jordan) and cascade (series) forms have
normally the best numerical properties.

If poles (zeroes) are far apart, direct form is usable.
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State Saturation

For fixed point arithmetics, there is a balance:

• Too high gain in some part of system will cause state to
overflow.

• Too low gain in some part of system will cause a lot of
quantization errors.

Your digital system should have gain γ ( 1.
What is γ ? The gain of the system for the kind of input
signal we expect
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State Saturation

Spread the gain:

Filter 1

Filter 1

Filter 1

Filter 2

Filter 2

Filter 2

Filter 3

Filter 3

Filter 3

Bad accuracy

Overflow

Good

γ = 0.2

γ = 0.2

γ = 1γ = 1

γ = 1

γ = 1

γ = 1

γ = 5

γ = 5
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State Saturation

How to pair and order poles and zeros?

Jackson’s rules (1970):

• Pair the pole closest to the unit circle with its closest zero.
Repeat until all poles and zeros are taken.

• Order the filters in increasing or decreasing order based
on the poles closeness to the unit circle.

This will push down high internal resonance peaks.

107

Summing Up

Problems and solutions:

• Coefficient quantization:

– Avoid direct forms and companion forms
– Always split systems into first- and second-order

systems (cascade, parallel form)

• State quantization:

– Can be modeled as noise sources after multiplicators
– Use double-size accumulator

• State saturation:

– Have equal gains (γ ( 1) for all systems
– Use Jackson’s rules for pole-zero sorting
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Control of Computer Systems

Apply control as a techniques to manage uncertainty and
achieve performance and robustness in computer and com-
munication systems.

One of the strongest increasing areas in real-time computing
(adaptive/flexible scheduling) and networking.

Applications in

• Internet protocols, e.g., TCP and extensions

• Internet servers (HTTP, Email)

• Cellular phone systems (power control, ...)

• CPU scheduling

Control used to manage finite resources (Resource allocation
as a control problem = feedback scheduling)

3

Control of Computer Systems

New area

• However, feedback has been applied in ad hoc ways for
long without always understanding that it is control

Textbooks are emerging:

• “Feedback Control of Computer Systems”, Hellerstein,
Diao, Parekh, Tilbury

• Book by Stankovic, Abdelzaher, . . .

4



Control of Computer Systems

Control of computing systems can benefit from a lot of the
classical control results

• However, several new challenges

• First principle modeling not so natural

• Complex dynamics no longer the problem

5

Example: Internet Protocol

The congestion control in TCP is one of the major reasons why
Internet has been able to expand at the current high rate and
still work properly.

• Congestion window (cw) decides how many un-ack’ed
packets a host can have

• When cw below threshold it grows exponentially

• When cw above threshold it grows linearly

• Whenever there is a timeout the threshold is set to half the
cw and cw is set to 1.

• Nonlinear behavior
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Example: Internet Protocols

Controller
RED Network

Router

Reference
buffer fill level

probability
Drop

Measured
buffer fill level

Random Early Detection (RED) of Router Overloads

• Prevent router buffers from overflowing

• Random drops of packets before the buffer is full

A lot of ongoing work on improvements of IP based on models
and theory rather than on ad hoc fixes
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Example: Lotus Notes E-Mail Server

Client-server application

Interaction using Remote Procedure Calls (RPC)

Server log of RPC statistics
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Example: Lotus Notes E-Mail Server

• Control the number of RPCs in the server (RIS) by adjusting
the maximum allowed users (MaxUsers)

• First-order model derived from data:

y(k+ 1) = 0.43y(k) + 0.47u(k)

where y(k) = RIS(k) − RIS0 and u(k) = MaxUsers(k) −
MaxUsers0

• First-order LP-filter added to remove outliers

• Resulting second-order system controlled by PI-controller
9

Example: Apache HTTP Server

• HTTP requests from
clients to server

• Pool of workers be-
ing either Idle, Busy
or Waiting (Persistent
Connections)

• MaxClients limits the
size of the worker pool

• KeepAlive determines
how long a worker is
waiting before it be-
comes idle

10



Example: Apache HTTP Server

Control of CPU utilization and memory utilization

Too large MaxClients → large consumption of CPU and memory

Too large KeepAlive → under-utilization

Too small KeepAlive increases CPU consumption since connections
must be re-established for requests from the same user

11

Example: Apache HTTP Server

Two first-order transfer functions derived from input-output data

CPU(z) = GMC(z)MC(z) + GKA(z)KA(z)

around a certain operating point

PI-controller using KeepAlive control signal

Design using pole placement
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Example: Queuing Systems

Work requests (customers) arrive and are buffered

Service level objectives (response time for request belonging to
class X should be less than Y time units)

Reduce the delay caused by other requests, i.e., adjust the
buffer size and redirect or block other requests

Admission control

13

Example: Queuing Systems
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Example: Queue Length Control

Assume an M/M/1 - queuing system:

• Random arrivals (requests), average λ per second

• Random service times, average 1/µ and exponentially
distributed

• queue containing x requests

Intuition: x →∞ if λ > µ
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Queue Length Control: Simulation

λ = 0.5, µ = 1:
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Queue Length Control: Model

Approximate the system with a nonlinear flow model (Tipper’s
model from queuing theory)

The expectation of the queue length x is

ẋ = λ − µ
x

x + 1
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Queue Length Control: Model

λ = 0.5, µ = 1 :
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Queue Length Control: Model

Control the queue length by only admitting a fraction u (be-
tween 0 and 1) of the requests

ẋ = λu− µ
x

x + 1
Admission control
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Queue Length Control: Linearization

Linearize around x = x○

Let y= x − x○

ẏ= λ y− µ
1

(x○ + 1)2 y= λu− µay

20



Queue Length Control: P-Control

u = K (r − y)

ẏ= λK (r − y) − µay

(s+ λK + µa)Y(s) = λKR(s)

Gcl(s) =
λK

s+ λK + µa

With K the closed loop poles can be placed arbitrarily
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Queue Length Control: P-Control

Simulations for λ = 2, µ = 1, x○ = 20 and different values of K
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• Stationary error

• Nonlinear system (control signal limitations)
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Queue Length Control: PI-Control

GP(s) =
λ

s+ µa

GR(s) = K (1+
1

sTi
)

Gcl(s) =
GPGR

1+ GPGR
=

λK (s+ 1
Ti
)

s(s+ µa) + λK (s+ 1
Ti
)

With K and Ti the closed loop poles can be placed arbitrarily
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Queue Length Control: PI-Control

Simulations for λ = 2, µ = 1, x○ = 20, K = 0.1 and different
values of Ti
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• Stationary error removed

• Tracking (anti-windup) important
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Queue Length Control: PI-Control on Process
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Example: Task Scheduling

Control CPU utilization by adjusting

• task periods

• task execution demands

• priorities

Setpoint = schedulability bound

Feedforward to handle mode changes
26



Feedback Control Real-Time Scheduling

Stankovic et al (Univ of Virginia)

27

Feedback Control Real-Time Scheduling

EDF scheduler in combination with PID controller

PID that controls the task deadline miss ratio

• setpoint values = 0

The contol signal (u) is the total amount of CPU load that
should be added to or removed from the system

Two actuators:

• Service Level Controller: adjusts the service levels (execu-
tion time demands) of the accepted tasks

• Admission Controller (AC): decides if a new task should be
admitted to the system or not
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Session Outline

1. Overview

2. Some General Observations

3. Control of Web servers

4. Feedback Scheduling of Controllers
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General Observations

The plant under control rarely have any real dynamics or only
very simple dynamics

• static nonlinearities + time delays (possibly time-varying)

• first or (maybe) second-order dynamics

Dynamics introduced through the sensors

• Time averages

Event-based control seems a more natural approach than time-
based (though very few try to apply it)
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General Observations

Seldom any measurement noise

• high gain feedback a possibility

Decentralized control in communication with local and global
contstraints

• control the resource allocation of tasks or jobs

• local minimum constraints

• global maximum contstraints

– schedulability conditions
– total available amount of resource limited (e.g. power)
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General Observations

Much to learn from control engineering

• Control principles

• Model-based design

• Optimization-based design

Simple controllers often enough

• P, I, PI + feedforward, PD

• anti-windup to achieve good performance

Lack of first principles knowledge that can be used to derive models

• queuing systems an exception

– however, the models here are averages over long horizons
– how use these for control?

• models often derived from input-output data
32



General Observations

So far, primarily applications of classical linear and non-linear
time-driven control

It could be expected that there is room for special control
theory developed to better fit these types of application

The interest for this area is currently higher in the computer
community than in the control community (unfortunately)
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Session Outline

1. Overview

2. Some General Observations

3. Control of Web servers

4. Feedback Scheduling of Controllers

34



Outline

• Introduction

• Problem Formulation

• Queuing Model Based Absolute Delay Control
– L. Sha, X. Liu, UIUC and Y. Lu, T. Abdelzaher, UVa

• Improved Feed-forward Prediction
– Y. Lu, T. Abdelzaher, UVa and D. Henriksson, LTH

• Analysis and Design of Admission Controllers
– A. Robertsson, B. Wittenmark, M. Kihl, LTH

– Not covered in the lectures. See papers
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Control at Different Levels
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Controlling Computer Systems

• Feedback control is embedded in the TCP protocol in the
form of a sliding window mechanism.

• Introduced in the 70’s to solve the congestive failure
problems that had brought down the network.

• We have not experienced system-wide congestive failures
again even though the network has grown orders of
magnitude.

• This is a testament of the effectiveness of feedback control
in a highly dynamic, decentralized, and fast changing
environment.

• Can feedback control be applied to accurately control the
performance of web server systems?

37

What to Control?

• Temporal

– local (at server)
– global (End-to-

End/TCP)

• Spatial (routing)

We will focus on temporal control issues at the server.
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Web Service Performance Control

Request
DequeuingCPU Ready Queue

Scheduler

Server
threads

Resource

Access
I/O Queue

Network I/O

Output to Clients

Client Request
Queue

Web Server
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Difficulties

• Web server systems are stochastic with highly non-linear
behavior.

– Response times increase exponentially with utilization
at heavy load.

– Input and output saturations.

• The parameters of the stochastic process, e.g. arrival rate,
can change abruptly without warning.

• How should the server system be modeled?

• What is the control objective?

• How can we influence the system, i.e., which actuators are
available?

40



Web Server Modeling

• Queuing theory models:

– Discrete-event models
– Markov chains

• Control theory models:

– Non-linear flow models (continuous time)
– Discrete-time models

• Differential (or difference) equation models traditionally
used in control theory have their limitations.

• Works well in the case of heavy workload when the web
server can be modeled using fluid approximations.

41

Control Objective

• The main objective is to control the service delay of
individual requests.

• Can be controlled directly or indirectly by manipulating the
server queue lengths.

• The stochastic nature of the system requires averaging
(inherent in the non-linear flow model).

• Want to be able to control both long-term averages and
transient responses.

42



Actuator Mechanisms

• The difference between the service rate, µ, and the arrival
rate, λ , determines the delay experienced by the requests.

• Changing the arrival rate, admission control:

• Changing the service rate:

– Number of server threads
– Quality adaptation
– Dynamic voltage scaling 43

Outline

• Introduction

• Problem Formulation

• Queuing Model Based Absolute Delay Control
– L. Sha, X. Liu, UIUC and Y. Lu, T. Abdelzaher, UVa

• Improved Feed-forward Prediction
– Y. Lu, T. Abdelzaher, UVa and D. Henriksson, LTH

• Analysis and Design of Admission Controllers
– A. Robertsson, B. Wittenmark, M. Kihl, LTH
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Control Objective

• Want to keep the average timing delay experienced by
users close to a desired value, Dr.

• The delay specification, Dr, relates to the QoS agreement
with the end user.

• Delays consistently longer than the specification are
unacceptable to the users,

• and delays consistently shorter than the specification
indicate over-provisioning of resources.
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Absolute Delay Control

Controller Actuator

Server

Measured delay, D

RequestsQueuing
Model

∆µ

Arrival rate, λ

µ f f

∆D

Delay ref, Dr

µ
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Key Ideas

• Use queuing theory to model the non-linear behavior of
the web server.

• Use the steady-state solution of the queuing model as
feed-forward control to bring the system to an equilibrium
point near the desired delay set-point.

• Example: M/M/1 queuing model where D̂ = 1
µ−λ

. Use feed-
forward control, µ f f = 1

Dr
+ λ .

• Use linear feedback control to suppress approximation
errors and transient errors around the operating point.

47

Problems

• Queuing theory predicts delay as a function of arrival and
service rates.

• The prediction applies only to long-term averages.

• Insensitive to sudden load changes and does not handle
transient responses very well.

• Internet load is very bursty and may change abruptly in a
frequent manner.

• Inaccurate assumptions in the queuing model, e.g.,
Poisson distributed arrival and service processes.
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Improved Feed-forward Predictor

Controller Actuator

Server

Measured delay, D

RequestsImproved
Predictor

∆µ

Arrival rate, λ

µ f f

∆D

Delay ref, Dr

µ

• Based on instantaneous measurements instead of long-
term averages.
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Notation

Ĉ = average number of processor cycles required by a request

µ = server speed

N = number of waiting requests

D̂ = average delay experience by the N requests

ND̂ = total delay experienced by the N requests

Âi = 1
N

∑i+N−1
k=i Ak = the average arrival time

Qi = tnow − Âi = average queuing time for the requests being
dequeued in the i’th sample
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The Predictor
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BECF = ABCD + BEC − ABFD

ND̂ = N ⋅ tnow +
N ⋅ (NĈ/µ)

2
−
i+N−1
∑

k=i
Ak
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The Predictor
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The Feedback Controller

• Event-triggered PI-controller with sliding window action.

• Need a long observation window, Nobs, to accurately es-
timate the average values of arrival rates and processing
times of requests.

• Long observation window does not imply slow control
action. Control updated every N < Nobs event (request
departure).

• Quick update steps reduce the variance and control efforts
in each sample.

• The PI-controller is implemented using gain-scheduling

– tuned for different operating points (arrival rate and
delay set-point, Dr).

• Anti-windup crucial.
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Simulations
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c) d)

• Performed using the TrueTime simulator.

• a: M/M/1, b: M/M/1 + PI, c: predictor, d: predictor + PI
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Experiments

• Performed at an Apache web server test-bed at the
University of Virginia.

– Sensor: average response time of incoming requests
– Actuator: number of server processes

• Load generation: Scalable URL Reference Generator
(SURGE). http://www.cs.bu.edu/faculty/crovella/links.html

• Platform: Linux-based PC cluster on 100 Mbit Ethernet.

• 4 machines of which one ran the server with HTTP 1.1,
and the rest ran clients to stress the server.
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Apache Web Server Session Flow

Wait

Wait

Busy

Busy

Idle

Idle

KeepAlive

MaxClients

Accept
Queue

Connection Connection
Requests Close
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Results
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Outline

• Introduction

• Problem Formulation

• Queuing Model Based Absolute Delay Control
– L. Sha, X. Liu, UIUC and Y. Lu, T. Abdelzaher, UVa

• Improved Feed-forward Prediction
– Y. Lu, T. Abdelzaher, UVa and D. Henriksson, LTH

• Analysis and Design of Admission Controllers
– A. Robertsson, B. Wittenmark, M. Kihl, LTH

58



Overview

Work being done in collaboration between the control and
telecommunication departments in Lund

Admission control-based approach

Based on the Tipper’s non-linear flow model, shown previously

Non-linear analysis taking actuator saturation and queue length
constraint into account

Resulting controller based on PI-control with anti-reset windup

59

Session Outline

1. Overview

2. Some General Observations

3. Control of Web servers

4. Feedback Scheduling of Control Task Utilization
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Resource Allocation as a Control problem

In applications with multiple tasks or jobs the dynamic alloca-
tion of resources to the tasks can be viewed as a control prob-
lem in itself

Use feedback as a technique for mastering uncertainty and
guaranteeing performance
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Feedback Scheduling

Dynamic on-line allocation of computing resources

Feedback from actual resource utilization

In principle, any computing resource

Here,

• Scheduling of the execution of real-time tasks

• In particular, real-time controller tasks
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Optimal Feedback Control

Mostly ad-hoc approaches

Adjust sampling periods and/or execution time demands so
that the task set is schedulable

In control it is important to take the application performance
into account

• E.g. adjust scheduling parameters in such a way that the
global performance is optimized

Requires performance metrics that are properly parameterized

• E.g. quadratic cost functions (Jitterbug)
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Optimal Period Assignment

Assume that the performance of each controller i can be
described by a cost function Ji(xi, hi, TFBS)

• xi – the current state of plant i

• hi – the sampling period of controller i

• TFBS – the optimization horizon of the feedback scheduler

The objective is to minimize the combined performance with
respect to the utilization bound:

min
h1... hn

n
∑

i=1
Ji(xi,hi,Tfbs)

subj. to

n
∑

i=1

Ci

hi
≤ Usp
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Optimal Period Assignment, cont’d

• Convex problem if functions Ji(xi, 1/ fi, TFBS) convex in fi.

• Explicit solution if all cost functions have the same shape,

Ji = α i + β ih
ν
i

– ν = 1:
hi =

(Ci

β i

)1/2
∑n

j=1(Cjβ j)1/2
Usp

– ν = 2:

hi =
(Ci

β i

)1/3
∑n

j=1 C
2/3
j β

1/3
j

Usp

• Linear cost functions (ν=1) are often good approximations
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Linear-Quadratic Controllers

The cost function for an LQ controller is given by

J(x,h,Tfbs) = xTS(h)x +
Tfbs

h

(

tr S(h)R1(h) + Jv(h)
)

• S(h) – solution to the LQ Riccati equation

• R1(h) – sampled process noise variance

• Jv(h) – inter-sample cost term
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Example: Integrator Process

• Process: dx = u dt+ dvc
– vc – Wiener process with unit incremental variance

• Design cost function: J =
∫ Tfbs
0
x2(t) dt

• Resulting cost:

J(x,h,Tfbs) =
(

x2
√
3

6
+ Tfbs

√
3+ 3
6

)

h

– Linear in h
– Explicit solution for multiple controllers:

hi ∝
√

Ci

x2i + Tfbs(1+
√
3)
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Feedback Scheduling Structures

Feedback

• Reactive

Feedforward

• Proactive

• Mode changes and admission control
68



Feedback Scheduling Structures

Cascaded/Layered Structure:

• Global utilization controller that outputs the desired utiliza-
tion share for each task

• Local controllers that adjust the task parameters accord-
ingly

• Combine with reservation-based scheduling to provide
temporal protection, cp. the Control Server 69

Indirect Feedback Scheduling

Most proposed approaches are indirect

By adjusting the scheduling parameters (T,D,C) one makes
sure that the task set is schedulable

The scheduling parameters determine the timing attributes
(latency, jitter) which in turn determine the control performance

Problem:

• Complex, nonlinear relationship between scheduling
parameters and timing attributes

• Non-trivial relationship between timing attributes and
control performance

70



Direct Feedback Control

Use the instantaneous cost as a dynamic task priority

Fast sampling and cost evaluation (hardware/interrupt handler)

Always execute the task with the highest instantaneous cost

71

Problems

Event-based sampling / aperiodic system

Very little theory available

The sampling operation is no longer linear

72



Feedback Scheduling Actuators

Two main actuators:

• Changing the task periods

• Changing the allowed execution times

Task periods:

• Easy for simple controllers, e.g. PID & state feedback

• More difficult for complex controllers

• Update the internal state of the controller appropriately

Execution times:

• Not applicable to most controllers
73

Anytime Controllers

Controllers where the quality of the control signal is gradually
refined the more time that is available

Model-based Predictive Control (MPC)

• On-line convex optimization problem solved each sample

• Highly varying execution times

• For fast processes the latency may effect the control perfor-
mance considerably

• The control algorithm is based on a quality-of-service type cost
measure, cp instantaneous cost

• As long as a “feasible control signalt’t’ has been found the itera-
tive search can be aborted before it has reached completion

• Maps well to the imprecise task model

– Mandatory part
– Optional part 74



Quality-of-Control

The control performance can in many cases be viewed as a
quality-of-service parameter

Several open issues:

• Specification of acceptable performance ranges

• Run-time negotiation methods

Research issue within the FLEXCON project

75

A Feedback Scheduling Structure

DispatcherFeedback
Scheduler

jobs
Usp

mode changes

ci}ih{
Tasks
Control

Control system analogy:

• Setpoint: Desired CPU utilization, Usp

• Measurement: Execution times, ci

• Control: Sampling periods, {hi}
• Feedforward: Mode changes
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Case Study: Set of Hybrid Controllers

The double-tank process:

Use pump, u(t), to control
level of lower tank, y(t)

Pump

Hybrid control strategy:

• PID control in steady state

• Optimal control for setpoint changes
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PID Controller

P(t) = K (ysp(t) − y(t))
I(t) = I(t−h) + ai(ysp(t) − y(t))
D(t) = adD(t−h) + bd(y(t−h) − y(t))
u(t) = P(t) + I(t) + D(t)

Average execution time: C = 2.0 ms

78



Optimal Controller

x2(x1) =
1

a
((ax1 − bu)(1+ ln(

axR1 − bu
ax1 − bu

)) + bu)

Vclose =
[

xR1 − x1
xR2 − x2

]T

P(θ ,γ )
[

xR1 − x1
xR2 − x2

]

+ more . . .

Average execution time: C = 10.0 ms
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Nominal Behavior, h = 21 ms
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Scheduling Experiments

• Three hybrid controllers execute on one CPU

• Nominal sampling periods: (h1,h2,h3) = (21, 18, 15) ms

• Potential problem: All controllers in Optimal mode [
U =∑ C

h
= 170%

Compare strategies:

1. Open-loop scheduling

2. Feedback scheduling

3. Feedback + feedforward scheduling

• Co-simulation of scheduler, controllers, and double tanks

• Focus on the lowest-priority controller
81

Open-Loop Scheduling
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Open-Loop Scheduling
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Feedback Scheduler

• A high-priority task, TFBS = 100 ms, CFBS = 2 ms

• Setpoint: Usp = 80%
• Estimate execution times using first-order filters

• Control U by adjusting the sampling periods

– Simple linear rescaling of {hi} such that U = Usp
– Non-optimal
– No regard for current plant states
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Feedback Scheduling

0 0.5 1 1.5 2 2.5 3 3.5 4

0.1

0.15

O
ut

pu
t

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

In
pu

t

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

Time

T
ot

al
 

U
til

iz
at

io
n

85

Feedback Scheduling
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Feedforward

• Controller notifies feedback scheduler when switching from
PID to Optimal mode

• Scheduler is released immediately
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Feedback + Feedforward Scheduling
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Feedback + Feedforward Scheduling
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Control Performance Evaluation
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1

Session Outline

• TrueTime introduction

• TrueTime laboratory session

• Jitterbug overview & demonstration

2



TrueTime – Main Idea

Co-simulation of controller task execution, network
transmissions, and continuous plant dynamics.

The approach enables us to:

• investigate the true, timely behavior of control loops

• develop dynamic compensation schemes

• experiment with flexible scheduling techniques

• simulate event-based and networked control loops

3

Simulink Blocks

• Offers a Kernel and a Network block

– Simulink S-functions written in C++
– Event-based implementation using the Simulink built-in

zero-crossing detection

4



The Kernel Block

• Simulates an event-based real-time
kernel

• Executes user-defined tasks and inter-
rupt handlers

• Arbitrary user-defined scheduling policy

• Supports external interrupts and timers

• Supports common real-time primitives
(sleepUntil, wait/notify, setPriority, etc.)

• Generates a task activation graph

• More features: context switches, overrun
handlers, task synchronization, data
logging

A/D

Interrupts

Rcv

D/A

Snd

Schedule

Monitors

TrueTime Computer

5

Tasks

• Used to model the execution of user code (mainly control
algorithms)

• Tasks may be periodic or aperiodic and are triggered by
creation of jobs

• For periodic tasks the kernel sets up an internal timer to
periodically create task jobs

• Each task is described by a number of (static and dy-
namic) task attributes and a code function

ttCreateTask(name, deadline, priority, codeFcn, data)

ttCreateJob(taskname)

ttKillJob(taskname)

ttCreatePeriodicTask(name, offset, period, prio, codeFcn, data)
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TrueTime Code

Three choices:

• C++ code (fast)

• Matlab code (medium)

• Simulink block diagram (slow)

7

Code Execution Model

1 2 3

Simulated execution time

Execution of user code

• Execution is modeled by a code function (C++ or MATLAB m-
file) consisting of a sequence of segments

• The execution time of each segment is returned by the code
function (may be data-dependent, random, etc.)

• User code executed at the beginning of each segment

• The task can only interact with other tasks and the environment
at the beginning of each code segment
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Example of a Code Function

function [exectime, data] = P_Ctrl(segment, data)

switch (segment),

case 1,

r = ttAnalogIn(1); % Read reference

y = ttAnalogIn(2); % Read process output

data.u = data.K * (r-y); % Compute and store control

% signal in task data

exectime = 0.002; % Return execution time

case 2,

ttAnalogOut(1, data.u); % Output control signal

exectime = 0.001;

case 3,

exectime = -1; % finished

end

9

Initialization

Each kernel block is initialized in a script (block parameter):

nbrInputs = 3;

nbrOutputs = 3;

ttInitKernel(nbrInputs, nbrOutputs, ’prioFP’);

periods = [0.01 0.02 0.04];

code = ’myCtrl’;

for k = 1:3

data.u = 0;

taskname = [’Task ’ num2str(k)];

offset = 0; % Release task at time 0

period = periods(k);

prio = k;

ttCreatePeriodicTask(taskname,offset,period,prio,code,data);

end

10



The Network Block

• Supports six common MAC layer
policies:

– CSMA/CD (Ethernet)
– CSMA/AMP (CAN)
– Token-based
– FDMA
– TDMA
– Switched Ethernet

• Variable network parameters

• Generates a transmission schedule

11

Implementation Details

• TrueTime implements a complete real-time kernel with

– A ready queue for tasks ready to execute
– A time queue for tasks waiting to be released
– Waiting queues for monitors and events

• Queues manipulated by the kernel or by calls to kernel
primitives

• The simulated kernel is ideal (no interrupt latency and no
execution time associated with real-time primitives)

– However, possible to specify a constant context switch
overhead

12



Scheduling Policy

• The scheduling policy of the kernel is defined by a priority
function, which is a function of task attributes

• Pre-defined priority functions exist for fixed-priority, rate-
monotonic, deadline-monotonic, and earliest-deadline-first
scheduling

• EDF priority function

double prioEDF(UserTask* t)

return t->absDeadline;

}

void ttAttachPrioFcn(double (*prioFcn)(UserTask*))
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Scheduling Hooks

• Code that is executed at different stages during the
execution of a task

– Arrival hook – executed when a job is created
– Release hook – executed when the job is first inserted in

the ready queue
– Start hook – executed when the task executes its first

segment
– Suspend hook – executed when the task is preempted,

blocked or voluntarily goes to sleep
– Resume hook – executed when the task resumes execution
– Finish hook – executed after the last code segment

• Facilitates implementation of arbitrary scheduling, such as,
e.g, server-based scheduling

ttAttachHook(char* taskname, int ID, void (*hook)(UserTask*))
14



Overrun Handlers

• Two special interrupt handlers may be associated with
each task (cf. Real-Time Java)

– A deadline overrun handler
– An execution time overrun handler

• Can be used to dynamically handle prolonged computa-
tions and missed deadlines

• Implemented by internal timers and default scheduling
hooks

ttAttachDLHandler(taskname, hdlname)

ttAttachWCETHandler(taskname, hdlname)
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A Real-World Application

• Multiple processors and net-
works

• Based on VxWorks and IBM
Rational Rose RT

• Using TrueTime to describe
timing behavior

• Has ported TrueTime to a
mechatronics simulation
environment

”We found TrueTime to be a great tool for describing
the timing behavior in a straightforward way.”

16



TrueTime Limitations

• The network block only supports data-link layer protocols

– TCP transport protocol available as an example

• A global clock (= simulation time)

– No support for local clocks with offsets and drift

• How decide the execution times?

– Integration with compiler/WCET tools?

• How integrate legacy code?

• How support automatic code generation from TrueTime
models?

– Generate POSIX-thread compativle code?
– Generate monolitic code (“TrueTime Virtual Machine”)?

• Based on Matlab/Simulink
17

More Material

• The toolbox (TrueTime 1.2) together with a complete
reference manual can be downloaded at:

http://www.control.lth.se/˜dan/truetime/

18



Session Outline

• TrueTime Introduction

• TrueTime Laboratory Session

• Jitterbug Overview & Demonstration

19

Example: PID-control of a DC-servo

• Intended to give a basic introduction to the TrueTime
simulation environment

• Consists of a single controller task implementing a stan-
dard PID-controller

• Continuous-time process dynamics

G(s) =
1000

s(s+ 1)

• Can evaluate the effect of sampling period and input-
output latency on control performance

20



Example: Three Controllers on one CPU

• Three controller tasks controlling three different DC-servo
processes

• Sampling periods hi = [0.006 0.005 0.004] sec.

• Execution time of 0.002 sec. for all three tasks for a total
utilization of U = 1.23

• Possible to evaluate the effect of the scheduling policy on
the control performance

• Can use the logging functionality to monitor the response
times and sampling latency under the different scheduling
schemes (connection to Jitterbug)
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Example: Networked Control System

Network

Controller

Sensor

Node

Node
Actuator

Node

Disturbance
Node

DC Servo

• Time-driven sensor node

• Event-driven controller node

• Event-driven actuator node

• Disturbance node generating high-priority traffic
22



Example: Networked Control System

Network

Controller

Sensor

Node

Node
Actuator

Node

Disturbance
Node

DC Servo

• Will try changing the bandwidth occupied by the distur-
bance node

• Possible to experiment with different network protocols and
network parameters

• Can also add a high-priority task to the controller node 23

Session Outline

• TrueTime Introduction

• TrueTime Laboratory Session

• Jitterbug Overview & Demonstration

24



Jitterbug

• MATLAB toolbox

• Stochastic analysis of (mean) control performance

• Control loop described by connected continuous-time and
discrete-time linear systems

• Execution of discrete-time systems described by stochastic
timing model (random delays)

• Systems driven by white noise

• Performance measured by quadratic cost function

J = lim
T→∞

1

T

∫ T

0

xT(t)Qx(t) dt

25

Continuous-time systems

G(s)

v

u y

J

• Continuous or discrete input u

• Continuous output y

• Continuous white noise v

• Continuous cost J
26



Discrete-time systems

H(z)

v

u y

J

XXXXX
XXXX

• Continuous or discrete input u, sampled at instants X

• Discrete output y, updated at instants X

• Discrete white noise v, updated at instants X

• Continuous cost J
27

Timing Model

• Describes the timing of the triggering
of the discrete systems

• Each node can trigger one or more
systems

• The first node may be periodic or
aperiodic

• Delays between nodes described by
discrete probability distributions

1

2

3

H1(z)

H2(z)

H3(z)

τ1

τ2

τ

δ

P(τ )
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Jitterbug Model – Example

S(z)

S(z)

K (z)

K (z)

P(s)
yu

v
1

2

3

Ls

Lio

Signal model: Timing model:

• P(s) – process

• S(z) – sampler

• K (z) – controller/actuator

• Ls – sampling latency
distribution

• Lio – input-output la-
tency distribution
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Jitterbug example script

Ptau1 = 1;

Ptau2 = [zeros(1,round(L/dt)) 1];

N = initjitterbug(dt,h);

% timegrain dt, periodic system with period h

N = addtimingnode(N,1,Ptau1,2);

% add timing node with delay distribution to next node

N = addtimingnode(N,2,Ptau2,3);

N = addtimingnode(N,3);

% add timing node with no next node

30



N = addcontsys(N,1,plant,3,Q,R1,R2);

% add cont-time LTI system taking its input from syst 3

N = adddiscsys(N,2,1,1,2);

% add disc-time LTI system (sampler) taking its input

% from system 1 and executing in timing node 2

N = adddiscsys(N,3,ctrl,2,3);

% add disc-time LTI system (controller) taking its

% input from system 2 and executing in timing node 3

N = calcdynamics(N);

% Calculate internal dynamics

J = calccost(N)

% Calculate (and display) cost

31

Example – “simple”

S(z)

S(z) K (z)K (z)

P(s)
yu

v

1

2

Lio

Signal model: Timing model:

• P(s) =
1

s2 − 1
(inverted pendulum)

• S(z) = 1

• K (z) = lqgdesign(P,...)

32



Example – “simple”

Investigate performance with

• different sampling periods

• constant I-O latency with/without delay comp.

• I-O jitter with/without delay comp.

33

More Complicated Cases

11

22

3

3

4

τ1τ1

τ2∑
τ < t

∑
τ ≥ t

p(2) p(3)

• random choice of path

• choice of path depending on delay

• different update equations in different nodes

• aperiodic systems

34



Pros and cons of Jitterbug

Pros:

• Analytical performance computations

• Fast to evaluate cost for wide range of parameters

• Guarantees stability (in mean-square sense) if J < ∞

Cons:

• Simplistic timing models

• Only linear systems, quadratic cost

• Hard to know the latency distributions

• Cannot handle dependencies between periods

• Based on Matlab

35
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Deployment

• Pronunciation: di-'ploi, 
• Function: verb
• Etymology: French déployer, literally, to unfold, from 

Old French desploier, from des- dis- + ploier, plier to 
fold 

• Uses: 
- to extend (a military unit) especially in width 
- to place in battle formation or appropriate positions
- to spread out, utilize, or arrange especially strategically

Here: Used to in the context of ECS “implementation”
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Outline
• ECS implementation issues and trade-offs

– Technical issues in controller implementation, 
trade-off examples

– Platform selection: Choice of RTOS and processor
• Development approaches: 

– Traditional, CBD, MBD, platform based
– Tool support for deployment 

• Application example
– Smart-1 spacecraft

• Concluding Remarks
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A sample of technical issues in ECS 
design and implementation

• Discretization
• Quantization
• Delays
• Jitter in delays and periods
• Aliasing
• Triggering and tasking partitioning, scheduling
• Code implementation
• Sensor and actuator limitations
• Calibration/diagnostics
• Error detection and error handling
• Check lists for well known pitfalls, e.g. RT and parallel 

programming faults
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Platform

HW
SW

Controller implementation and co-design
Digital controller

Plant

τ(k), h(k)
memory,
accuracy,
reliability,

etc.

Requirements

Constraints

Optimization issues:
• Distribution, task partitioning
• Code structuring
• Other functionality
• Trade-offs
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The mapping problemVehicle stability DiagnosticsSuspension Driver in the loop

Sensor Actuator Sensor Sensor Actuator

Local control 
function

Local control 
function

Sensor(s)

Actuator(s)

Signal cond.

Drive unitComputer
hardware
&
software

Sensor(s)

Actuator(s)

Signal cond.

Drive unit
Computer
hardware
&
software

Sensor(s)

Actuator(s)

Signal cond.

Drive unit
circuitryComputer

hardware
and
software

Gateway
Vehicle
Mechanics
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Mapping related terms
• Assignment in space and in time

– Computations and communciation resources
– Scheduling per resource (nodes & communication)

• Partitioning node software into tasks

Vehicle stability DiagnosticsSuspension Driver in the loop

Sensor Actuator Sensor Sensor Actuator

Local control 
function

Local control 
function

Sensor(s)

Actuator(s)

Signal cond.

Drive unitComputer
hardware
&
software

Sensor(s)

Actuator(s)

Signal cond.

Drive unit
Computer
hardware
&
software

Sensor(s)

Actuator(s)

Signal cond.

Drive unit
circuitryComputer

hardware
and
software

Gateway
Vehicle
Mechanics

Affecting (among others)
- Resource loads
- E2e delays
- Single points of failure
- Maintenance
Constrained by
- Organization
- Policies
- Legacy, technology
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Partitioning example
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Partitioning guidelines and example

Actual partitioning Example reason
• Planner and controller in (i) Runs at different rates. 

separate threads (ii) Set-points, over network
• Controller divided into (iii) To ensure constant delay and 

two threads. fixed sampling period 
~different timing  requirements in one

activity.
• Needs and possibilities also depend on

- Criticality of functions
- Dependencies (coupling and cohesion)
- Development/production modularization
- Type of operating system & tool support
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Controller implementation trade-offs

Accuracy

Time

Memory

(a) Increase in computational
      accuracy desired

Acc.

Time

Memory

(b) Increase in speed

Acc.

Time

Memory

(c) Scarce memory
      desired

Goal: minimize control delay, provide high accuracy in
computations, at a given cost; where is the catch?

The trade-offs: among them the achievable accuracy, required 
memory size and execution speed are typically in conflict.
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Controller implementation 
optimization, trade-off examples

• Improved accuracy:
- better algorithm; typically requires more execution

time and memory
• Improved timing:

- e.g. through simpler algorithms (may result in
reduced performance), function in-lining requires
more memory

• Less memory usage:
- e.g. int16 rather then int32; reduced resolution, less

accurate results
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Controller code optimization, cont.
• Minimize computational delay by code structuring

1. Sample
2. Compute Control Output
3. Actuate
4. State update

• Use of hardware specific instructions --> Drawback: maintenance
• Fixed point operations instead of hardware floating point support

- reduced cost, but reduction in accuracy
• Logging/debugging problem: affects execution time!

Code generation: can facilitate controller implementation optimization
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Outline
• ECS implementation issues and trade-offs

– Technical issues in controller implementation, trade-off 
examples

– Platform selection: Choice of RTOS and processor
• Development approaches: 

– Traditional, CBD, MBD, platform based
– Tool support for deployment 

• Application example
– Smart-1 spacecraft

• Concluding Remarks
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Choosing electronics technology

• Off-the shelf control systems, for example, 
- Programmable logic controllers (PLC) 

• Own design
- Analog (low flexibility, only simple functionality)
- Microprocessor based
- Customized solution for large series

ASIC (Application Specific Integrated Circuit)
- Flexible programmable hardware

FPGA (Field Programmable Gate Array)
• Choosing a microprocessor

- Micro-controller, DSP, general purpose
- Fixed point vs. floating point
- I/O, memory and communication capabilities
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Example trade-offs in choosing 
processor

Choosing a low cost micro-controller:
+ Cheap microcontroller, low cost production
+ Use on-chip memory, no external circuits, robust solution 
- Scarce resources: Little room for later functional extensions
- Can performance requirements be met?
- Increased development (and possibly maintenance) costs

Choosing a highly performing processor:
+ Easier to solve performance and flexibility requirements
+ Reduced development (and possibly maintenance) costs
- Increased production cost
- Power consumption, fan
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Floating point support in hardware?

Usual considerationsCare with concurrency 
handling

Real-time

Trade-off between accuracy, 
speed and required memory

‘High’Speed

Higher - more effortImprovedMaintenance 
cost

LowerHigherProduction cost

Higher - more difficult 
design; scaling effort, 
quantization errors 

Lower - facilitated 
design

Development 
cost

Fixed point hwFloating point hw



3/21/2006 9:31 PM3/21/2006 9:31 PM

99

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

©M. Törngren 2006
3/21/2006

Selecting the software platform: RTOS

Has to be determined based on the actual requirements at hand!

Technical requirements:
• Static vs. dynamic configuration?
• Single processor, communication centric, I/O-intensive?
• RTOS footprint ~ resources required 
• Critical vs. non critical? Error detection & handling by RTOS? 

Other criteria:
• Costs - Development, Production, Maintenance

- e.g. Free-source Linux vs. license cost/system
- Tools, documentation, competence

• Standards and compatibility?
- Specific domains may require compliance, e.g. to OSEK 
- Certification requirements
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RTOS; when, what, how?

• Many categories of RTOS’es – reflecting the broad scope of 
applications.

• Major benefits of using an RTOS: reduced cost and increased 
reliability

• The need for an RTOS increases with the product complexity 
(amount of activities, types of timing requirements, etc.)

• Many companies developing embedded systems still use 
proprietary kernels

Is the answer open source or standards?
Research trends instead point towards increased high level 

configuration and synthesizing the kernel as required 
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Outline
• ECS implementation issues and trade-offs

– Technical issues in controller implementation, trade-off 
examples

– Platform selection: Choice of RTOS and processor
• Development approaches: 

– Traditional, CBD, MBD, platform based
– Tool support for deployment 

• Application example
– Smart-1 spacecraft

• Concluding Remarks
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Robot

C
om

po
ne

nt

Medical

C
ow

bo
t

Domestic
robot

Mecha-
nicsControlComputer

software

Actuators

SensorsC
om

m
un

ic
at

io
n

Combustion
engine

Different deployment approaches

Broad variety of applications & 
different requirements:

- from critical to non-critical
- long to short life time, etc.

Room for many methodologies:
- software vs. control engineering 

company traditions
- top-down/bottom-up/platform based
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Static vs. dynamic configuration
• Pre run-time configuration of software and hardware
• Example: A system controlling two motors, no more, 

no less, configured into e.g. three tasks
• Preferred approach for 

safety critical systems 
• Dependability at the 

expense of flexibility 
(modes of operation 
can increase flexibility)
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Static vs. dynamic configuration

• Pre run-time established infrastructure configuration, 
dynamically varying mobile users and load at run-time

• Example: A telecom 
system with 0-1M
subscribers, spawning 
handler tasks during 
run-time as required.

• Dynamically varying 
configuration, e.g. hand-over

• Configuration driven by 
flexibility requirements
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Top-down, vs. bottom up vs. platform 
based design

Top-down: Synthesizing an appropriate/optimal system
(but product development seldom starts from scratch)

Bottom-up: Purely reusing components
(reuse can be dangerous; what about system requirements, and 
required changes?)

Platform based: Finding common architectures that can support a 
variety of applications – as well as – future evolutions of 
applications.

One definition: A platform comprises the complete technological base
(SW and HW) required to execute an application.

Note: A platform can be seen as a relative concept

In practice the approaches are often combined.
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Traditional implementation

Program
loader

Control design

Software design

??
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Component-based development
A component is a unit of composition with contractually specified 

interfaces and fully explicit context dependencies that can be 
deployed independently and is subject to third-party 
composition (Szyperski, 1998).

Components
Glue code System

Component models and infrastructures in use (examples): 
– CORBA (telecommunication)
– COM/DCOM, .NET – process industry
– OPC (OLE process control Foundation)

CBD is closely related to the software platform definition.
CBD today supports mainly functionality and run-time flexibility. 
Consideration of non-functional requirements (timing, resource 

consumption, reliability, etc.) is an intense research area
Trends:  Is evolving towards model-based  development

Domain specific efforts: e.g. AUTOSAR (automotive)
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Model-based development

• Closely related to engineering!
Work supported by abstract representations, with well
defined syntax and semantics, and with visual representations

• Tool support for communication, analysis and synthesis
• Required to better manage complexity
• Many interpretations and domains where MBD is used:

- e.g. UML in software engineering
- e.g. CAD, STEP and PDM in mechanical engineering

• Large differences in maturity
• Key issue: How to handle the multitude of aspects of interest

– Model and tool integration remains a challenge
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MBD from Control engineering

Function design

Rapid Control Prototyping
Integration testing

Code Generation/
platform integration

Unit testing

Controller Plant

Controller Plant

Platform

Plant RT-
simulation

Calibration
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Question

Is software engineering model based?
I.e. – does coding practices and the use of any 

ordinary programming language represent 
model based development?

Compare work by OMG in defining what model 
driven software development really is about.



3/21/2006 9:31 PM3/21/2006 9:31 PM

1515

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

©M. Törngren 2006
3/21/2006

MBD- Software and systems

• Unified modeling language: UML UML2
- for software, still evolving, 

• Systems modeling language - SysML
- for systems engineering, (in progress)

• Architecture and analysis description language - AADL 
- evolving from avionics (SAE standard) 
- emphasizing real-time and reliability

• An Automotive Description Language – EAST-ADL
-(in progress)

This is an active research area
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OMGs viewpoint on meta-models

metamodel

model

"the real world"

metameta
model

The MOF (some kind of "representation ontology")

The UML metamodel and other MMs

Some UML Models and other Ms

Various usages of these models
M0

M1

M2

M3
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Synthesis from models

Hardware platform

Software integration framework

M
od

el
lin

g/
pr

og
ra

m
m

in
g

E.g. Simulink/Stateflow E.g. UML tool

E.g. OS 
synthesis

Software platform (OS, com., drivers)
I/O drivers

Hardware platform

Software integration framework

M
od

el
lin

g/
pr

og
ra

m
m

in
g

E.g. Simulink/Stateflow E.g. UML tool

E.g. OS 
synthesis

Software platform (OS, com., drivers)
I/O drivers
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From V- to Y cycle for controller 
development

Source: Airbus – Artist roadmaps
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But not so trivial as it seems

Interconnects: Data transfers and interfaces (simplified)

Courtesy of dSPACE
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General needs and trends

• Early validation and throughout development
• Early integration and throughout development
• Reuse of all relevant assets; function designs, 

test definitions, scripts, tool support
• Increasing tool support for complex systems 

model based development
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Outline
• ECS implementation issues and trade-offs

– Technical issues in controller implementation, 
trade-off examples

– Platform selection: Choice of RTOS and processor
• Development approaches: 

– Traditional, CBD, MBD, platform based
– Tool support for deployment –a taster

• Application example
– Smart-1 spacecraft

• Concluding Remarks
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Tools supporting controller 
implementation

• Function development – “model in the loop”
• Rapid controller prototyping
• Software in the loop
• Processor in the loop
• Hardware in the loop

Digital controller

Plant

Referring to different analysis
modes where the different parts
of the controller and plant are

either simulated or “real”
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Function development

Platform

HW
SW

Digital controller

Plant

τ(k), h(k)
accuracy

Example controlled process

abstraction

Tool support:
- dx/dt = f(x,u) , y(h(x)
- numerical solution
- non real-time
- integration solvers
with variable step size
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Rapid control prototyping (RCP)

Basic need: To reduce long delay from control idea to 
actual testing

The RCP concept includes 
• Off-the shelf hardware and software prototyping

platform, which is resource adequate
• Code generation from controller high level description
• Graphical user interface for controlling experiment, 

calibrating controller and view resulting performance
• Bypassing
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Rapid control prototyping (RCP)

Digital controller

Tool support:
- code generation
- real-time execution
- fixed step size
- I/O blocks
- experiment control
- also for systems

identification

Output,
e.g. DA

Input,
e.g. AD
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Software in the loop

• Running implementation code within the 
simulation environment

• Otherwise similar to ‘model in the loop’

Digital controller

Plant

Production software
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system stack

user stack

exec time

Processor-in-the-Loop
simulation
on PCS-function

EVM

RS 232

/ *  pi c t r l  * /
#def i ne " ds t ypes. h
#def i ne G1 ( I nt 32) 0x

voi d pi ct r l ( UI nt 16 r  
{
  I nt 16 e, S2, G_1, x1,
  UI nt 8 i ;
  
  e = ( I nt 16) ( r ef  >>
  G_1 = ( I nt 16) ( ( ( a>
  x1 = ( e >> 4) +x1;
  G_2 = ( I nt 16) ( ( ( a>
  * u = G2 + G1;
}  

C-Code

12.11.1999
Courtesy of dSPACE
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Hardware in the loop - example
Real electronic control unit

throttle

spark advance

ignition time

engine speed

crankshaft angle

engine torque

air-charge .

air massflow

lambda
Engine Model

Vehicle Model

vehicle speed

ECU

Tool support:
- code generation
-real-time simulation 
of plant model
- fixed step size
- ‘Inverted’ I/O blocks
& I/O functionality
- test control



3/21/2006 9:31 PM3/21/2006 9:31 PM

2222

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

©M. Törngren 2006
3/21/2006

Hardware in the loop simulation
Special requirements
• Hardware outputs: sensor emulation
• Hardware inputs: read controller outputs
• Electrical loads, fault injection at inputs and outputs
• Models with sufficient accuracy, parametrizable and real-time

+ Tests under any desired conditions are possible

safety critical failures and stress tests

+ Reproducible tests and automated testing

- “Black“ box testing: additional debugging tools required

Requires test methodology and initial investment
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Outline
• ECS implementation issues and trade-offs

– Technical issues in controller implementation, 
trade-off examples

– Platform selection: Choice of RTOS and processor
• Development approaches: 

– Traditional, CBD, MBD, platform based
– Tool support for deployment 

• Application example
– Smart-1 spacecraft

• Concluding Remarks
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The SMART-1 spacecraft: mission to the 
moon

SMART: Small Missions for Advanced Research & 
Technology

• ESA: European Space Agency
• Prime contractor: Swedish Space Corporation. 

Subsystems were made all over the world
• SMART-1:

launched through Ariane 5 vehicle from  French 
Guiana, on 27 September 2003

http://www.esa.int/SPECIALS/SMART-1/index.html
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Mission
- Scientific experiments, 
- Demonstration of electric primary propulsion
- Commercial off the shelf components including CAN

• Energy sources: solar cells, xenon gas and hydrazine
• One <75 mN stationary plasma thruster ("7 grams 

pulling force")
- Very efficient engine (only 70kg xenon)
- Poor acceleration
- Potential usage for long space journeys in the future

• 2 years lifetime, 350Kg weight

The SMART-1 spacecraft cont.
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Disturbances

Energy from 
thrusting

Sun
energy

Sun sensing

Star tracking

Telemetry and
telecommand

Smart-1 

Disturbances: Gravity, particles and aero drag

Courtesy of Swedish Space
Corporation
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Sun sensors
(3 in total) Star trackers (2 in total)

Hydrazine thrusters
(8 in total)

Reaction wheels
(4 in total)

EP thruster and orientation
mechanism

Smart-1 and examples of 
actuators and sensors 

Courtesy of Swedish Space
Corporation
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Smart-1 sensors and actuator
• Sensors: 

- Sun sensors, 
- Star trackers
- Angular rate sensors
- Thermal sensors

• Actuators:
- Reaction wheels,
- 1N attitude control hydrazine thrusters
- Actuators for deploying and rotating the solar arrays
- Electric propulsion
- Thruster orientation mechanism (gimbal drives)
- Heaters
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Smart-1 block diagram briefly 
explained

• One science subsystem (indicated by dotted 
oval) with dedicated CAN network 

• One control subsystem including
– Telemetry and telecommand
– Power unit, batteries and solar cells (1850W)
– System controllers (one redundant)
– Sensor and actuator subsystems
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Smart-1 block diagram

Courtesy of Swedish Space
Corporation

System controllers

Power units Telemetry/telecommand

Redundant
CAN
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Characteristics: Smart-1 computer 
control system• Distributed I/O system: system controller and 

smart I/O units – loops closed over network
• Dual CAN network 

- Main portion: Master/slave polling
- Also employing asynchronous potential of CAN

• Master slave clock synchronisation
- TMTC maintains and distributes "space elapsed 
time"
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Smart-1: Modes of operation

Courtesy of Swedish Space
Corporation

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

©M. Törngren 2006
3/21/2006

ControllerController

Mode 
logic

Target attitude
Estimated attitude Reaction

wheels

Smart-1 
dyna-
mics

Planetary
system 
and 
Smart-1 
kinematics

Rate

Sun

DisturbancesHydrazine thruster
From rate sensors

Reaction wheel speed

Attitude control system in the 
science mode of operation

Estimation

Sensors

Star 
tracker
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Attitude and orbit control system

• Main computation is done in the system unit
• Distributed I/O, closed loop operation over the 

network
• Sampling period: 1s
• Timing analysis carried out to ensure small 

enough end to end delay
• Passive backup controller: state backed up in 

the power unit (PCDU)
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Specific concerns for spacecraft controllers

• Energy supply
• Autonomous operation

- Must survive without ground contact
- Must handle tough environment & subsystem failures

• Cosmic radiation: 
- Bit-flips in digital electronics by ionizing particles 

(alpha, heavy ions, neutrons, myons etc.)
- Single event upset intensity for SRAM in 0,6 µm:

Space: in the order of 10-3 faults/hour/MB
Ground level: 10-7- 2 x 10-6 faults/hour/MB

• A potential problem for future ground electronics as 
sizes shrink?
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Reliability considerations in Smart-1
Designed for fault-tolerance and autonomy:
• Few single point failures: spare for most functions, 

examples
- Passive redundancy for system controller
- Active redundancy for power unit

• Error detection:
E.g. watchdog timers, periodic messages,
checksums, ...

• Control hierarchy (supervision chain)
• Automatic reconfiguration and graceful degradation: 

safe mode & ground interaction
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TCS695E single chip ERC32 processor, 20 MHz clock

EEPROM 2 Mbyte EDAC (error detection& correction) protected

SRAM 3 Mbytes EDAC protected, 

Additional memory protection through ’scrubbing’ (e.g. Back-
ground software, reading, detecting and correcting faults)

MassMemory 512 Mbyte, EDAC protected

CAN controllers, 2 kBytes FIFO in reception path
Purchased VHDL code; radiation tolerant FPGA

Watchdog

JTAG I/F for EEPROM software upload and board HW checkout

Main on-board computer

Bottom line: “Space compliant technology + VHDL CAN”
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Smart-1 system development

• Matlab/Simulink, rapid prototyping and code 
generation 

• VxWorks RTOS
• Several refined control system releases, subject 

to increasing testing, including HIL
• Software upgrade/upload has been carried for 

the star camera 
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Outline
• ECS implementation issues and trade-offs

– Technical issues in controller implementation, 
trade-off examples

– Platform selection: Choice of RTOS and processor
• Development approaches: 

– Traditional, CBD, MBD, platform based
– Tool support for deployment 

• Application example
– Smart-1 spacecraft

• Concluding Remarks
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Concluding remarks

• A very broad spectra of ECS applications –
e.g. seen in multitude of RTOS’es

• Trade-offs required for resource constrained 
implementations: Memory, accuracy and 
execution time usually in conflict

• Different approaches to development and 
deployment: Traditional compile/link/load 
over CBD to MBD

• Evolving modeling languages for ECS
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A few selected research topics

• Co-design and architectural design
– Functions, software, hardware

• Model integration and management
• Distributed systems support
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• Tools and development today:
– Mainly single node 
– In some domains, there are tools that provide some support 

• Active tools area:
- Plenty of research and prototype tools
- Emerging tools (TTP, Flexray etc.)

• Distributed control systems require “system-wide”
configuration: 
- Execution and communication strategy
- Error detection and handling strategy

Distributed control systems 
development
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Zdenek Hanzalek
Department of Control Engineering

FEE, CTU in Prague
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Off-line scheduling
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Outline

• Motivation and Standard notation α/β/γ
• Monoprocessor scheduling – state of the art

– Cmax minimization

• Scheduling on FPGA with arithmetic unit
– Start Time Related Deadlines
– Cyclic scheduling
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reconstructed
sound to GSM

noise
corrupted
sound

noise

sound corrupted
sound

reconstructed
sound

to GSM+
+

+
-

estimated
channel

Adaptive
filter

Motivation Example

•Digital Signal Processing
•Active noise cancellation
•sampling frequency 
44kHz
•FPGA hardware Virtex II
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Parallel implementation of algorithms

• High-level synthesis
– off-line scheduling

• Specific HW architecture 
(FPGA, DSP)
– high degree of parallelism
– dedicated unit
– Pipelining

• Optimality
– Branch&Bound algorithms
– ILP formulations
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Scheduling

• set T of n tasks T ={T1, T2,…, Tn}
• set P of m processors P ={P1, P2,…, Pm}
• set of additional resources 

Scheduling = assignment of task to processors in 
order to complete the tasks under imposed constraints

• off line – all parameters of the tasks and resources are 
known in advance

• deterministic parameters – combinatorial optimization
algorithms

• schedules are represented by Gantt charts
• J. Blazewicz, K. Ecker, G. Schmidt, J. Weglarz, Scheduling Computer 

and Manufacturing Processes, Springer, 2001
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Basic constraints

• each task is to be processed by at most one processor at 
a time

• each processor is capable of processing at most one task
at a time

• task Tj is processed in time interval [rj,∞)
• all tasks are completed
• if tasks Ti , Tj are in the relation Ti < Tj, the processing of 

Tj is not started before completion of Ti
• in the case of non preemptive scheduling no task is 

preempted, otherwise the number of preemptions if finite
• additional resource constraints, if any, are satisfied
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w p

F

j j

j

Dj

- +

0 r j s j Cj d j d j t

Lj

Tj

Task parameters
• release (arrival) time rj
• start time sj, 
• due date dj
• deadline dj

~ is hard real 
time limit by whichTj must 
be completed

• completion time Cj

• waiting time wj
• processing time pj
• flow (response) time Fj = Cj – rj
• lateness Lj = Cj – dj
• tardiness Dj = max{Cj – dj , 0}
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Standard notation α/β/γ by Graham

α = α1 α2
α1 = … 1 processor 

P parallel identical processors
Q parallel uniform proc.      pij= pj/bi 

(bi is proc. speed)
R parallel unrelated proc.    pij is arbitrary
O dedicated machines “open-shop”
F dedicated machines “flow-shop”
J dedicated machines “job-shop”

α2 = … variable number of processors
k given number of processors
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Tasks: β = β1 β2 β3 β4 β5 β6 β7 β8

β1∈ {…, pmtn} preemption
β2∈ {…, res} additional resources
β3∈ {…, prec,tree,chain} precedence constraints
β4∈ {…, rj} release time
β5∈ {…, pj=k,pL≤ pj≤ pU} var/const/limited proc.time
β6∈ {…, d~ } deadline
β7∈ {…, nj ≤ k} limited number of jobs in Job-shop
β8∈ {…, no-wait} buffers with infinite/zero capacity
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Optimality criterion γ

γ∈{Cmax , ΣCj, ΣwjCj ,Lmax,,…}

Cmax =max∀j {Cj}
Lmax =max∀j {Cj - dj}

For example standard notation P||Cmax means:
variable number of identical parallel processors, non-

preemptive, no precedence constraints, all tasks starting 
at time 0, variable processing time, make-spawn 
minimisation
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Outline

• Motivation and Standard notation α/β/γ
• Monoprocessor scheduling – state of the art

– Cmax minimization

• Scheduling on FPGA with arithmetic unit
– Start Time Related Deadlines
– Cyclic scheduling
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Cmax

• 1|prec|Cmax – simple
– if tasks are assigned in whatever order in accordance with 

precedence relation, then Cmax=Σpj

• 1||Cmax – simple
• 1|rj|Cmax – simple

– tasks are scheduled in order of nondecreasing release times
• 1|dj

~|Cmax – simple
– tasks are scheduled in order of nondecreasing deadlines 

(EDF – earliest deadline first)
– EDF provides optimal solution iff there exists a schedule that 

meets all the deadlines
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root

(T )/r +p 1 11
(T )/r +p 

2 2 2 n(T )/r +p 
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(T ,T )/max(r ,r +p )+p 
1 2 2 1 1 2

(T ,T )/max(r ,r +p )+p 
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.   .   .
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n(n-1) 

n ! 

.  
 . 

  
.

• 1| rj,dj
~|Cmax – NP hard problem

• transfromation from the 3-PARTITION problem
• polynomial algorithm can be found if pj=1
• general problem can be solved by applying 

Branch&Bound algorithm by Bratley

all feasible schedules
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t = r min 0 

root 

1 n-k . . . 

iT 

min c < r i 

(i) exceeding deadlines
– if completion time 
associated with at least 
one of the nodes under 
node v in level k-1 then all 
nodes under v can be 
eliminated

(ii) probl. decomposition
– if the completion time Ci
of all scheduled tasks is 
less than or equal to 
smallest release time of all 
unscheduled tasks

T 

d 1

1

T 2

2d 

T 1 T 1 4T 

d 4

T T 1 3

d 3

due to this vertex it is needed to 
eliminate both “brother” vertices

situation at level k

it remains to 
schedule (n-k) tasks
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Optimality test of Bratley’s algorithm

block is a group of tasks such that the first 
task starts at its release time and all the 
following tasks to the end of the schedule  
are processed without idle time

block satisfies release time property if 
release time of all tasks in the block are 
greater or equal to the release time of the fist 
task in the block
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Lemma: A schedule is optimal iff it contains a 
block that satisfies the release time property

Proof: 
• if part (each schedule with block satisfying 

RTP is optimal) - follows from the definition 
of RTP 

• only if part (each optimal schedule has block 
satisfying RTP) – by contradiction – suppose 
schedules that do not have block with RTP, 
none of them is optimal 
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(T ,T )/6 

(T )/2 

2 1

(T )/2 (T )/3 

(T ,T )/4 

32

2 4

n

root

(T )/6 1

(i) 

(T ,T )/4 
2 3

(T ,T ,T )/6 (T ,T ,T )/6 
2 4 1 2 4 3

(T ,T ,T )/5 
(T ,T ,T )/6 

24 1

324

(T ,T )/3 
24

(T ,T ,T ,T )/7 4 2 3 1

(i) (i) 

(i) (i) (i) 

it is not needed to continue in branching since 
the optimality test holds for this solution

Example: r =[4,1,1,0], p =[2,1,2,2], d~ =[7,5,6,4]
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Outline

• Motivation and Standard notation α/β/γ
• Monoprocessor scheduling – state of the art

– Cmax minimization

• Scheduling on FPGA with arithmetic unit
– Start Time Related Deadlines
– Cyclic scheduling
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Specific HW architecture 

FPGA based High-Speed Logarithmic Arithmetic (HSLA) -
one dedicated ADD/SUB unit

∞1Number of units

29In-Out Latency
[clock cycles]

11Processing time p
[clock cycles]

* ,  / ,   
2 ,  √¯

+ (-)Operation on 
HSLA (19-bit)

HSLA is pipelined … leads to the precedence delays in G
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Problem Statement

Off-line scheduling problem
- Monoprocessor – dedicated unit HSLA in FPGA
- Task Ti, with processing time pi

- Precedence relations and precedence delays wij ≥ pi

- Start time related deadlines – real-time requirements
Objective - to find a feasible schedule with a minimum Cmax

Related work:
[M. Jacomino,D. Gutfreund & J. Pulou 99] - Scheduling Real-time processes 

with timing constraints and its applications to cyclic systems –
problem formulation, mobile phones, heuristiques.

[P. Brucker, T. Hilbig & J. Hurink 99] - A branch and bound algorithm for a 
single-machine scheduling problem with positive and negative time-
lags – B&B alg.
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Problem formalization
Algorithm representation by oriented graph G
• node ~ instruction  ~  task Ti, with processing time pi
• forward arc /positive sign/ ~ express precedence delay, 

including pipelining or processing time on nondedicated
processors

• backward arc /negative sign/ ~ express deadline,     the latest 
starting time sj of Tj relative to the starting time sj of Tj

• both forward and backward edges are weighted by wij, 
satisfying:

ijij wss ≥−

T1 T3 T2 T4 T5

t0        1        2        3        4        5        6        7 8        9       10      11      12      13      14     15      16

w51= -10

T1
1

T4
4

T3
2

T2
3

T5
5

2

1

3 4

4

4

-10

Optimal feasible schedule:
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Problem complexity

Independent tasks
1| rj,dj

~|Cmax

r =[r1,r2,…,rn] 
p =[p1,p2,…,pn] 
d~ =[d1

~,d2
~,…,dn

~]

P-reducible

Our problem is NP-hard, since it is P-reducible from 
Bratley’s problem (P-reducible from 3-PARTITION prob.)

Instance of Bratley’s problem ⇒ instance of our problem

T0
0

T1
p1

T2
p2

Tn
pn

-(d1
~-p1)

r1

r2

rn

-(d2
~-p2)

-(dn
~-pn)
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(?,?,?,?,?)

(0,?,?,?,?)

(0,?,1,?,?)(0,2,?,?,?) (0,?,?,3,?)

(0,3,1,?,?)(0,2,5,?,?) (0,7,?,3,?)(0,?,1,3,?)(0,2,?,5,?) (0,?,7,3,?)

(0,3,1,6,?)(0,2,5,7,?) (0,7,10,3,?)(0,7,1,3,?)(0,2,9,5,?) (0,9,7,3,?)

(0,3,1,6,10)(0,2,5,7,11) (0,7,10,3,14)(0,7,1,3,11)(0,2,9,5,13) (0,9,7,3,13)

Branching procedure with basic bounding

At each step, the set of tasks is partitioned into three disjoint 
subsets: 

Ts already scheduled tasks

Tc candidate tasks (ready to be scheduled)

Tr remaining tasks (not ready due to precedence relations)

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

3/17/2006

© Zdenek Hanzalek 200623

T1
1

T2
1

T3
1

1 1

-1

3 T1 T2 T3

t0        1        2        3        4        5

w32≠ -1

Scheduling Anomaly

Prior to eliminate a solution we have to check 
scheduling anomaly, since the deadlines are relative. 

Two possible solutions:

Shifting procedure – same order of tasks

Decision by LP

T1 T3

t0        1        2        3        4        5

T2

w32= -1

Feasible

Non-feasible
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Ti
pi

Tk
pk

Tj
pj

wji

fkj

Critical Path Bounding
1) Longest path calculation by Floyd’s algorithm

2) For each activated backward edge we calculate lower 
bound of sj as:

jiji wss ≥− ~

3) Does it lead to the 
feasible solution?

kkjj sfSs +=)(~

4) If not, then eliminate  
father’s vertex in the 
search tree
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(?,?,?,?,?)

(0,?,?,?,?)

(0,?,1,?,?)(0,2,?,?,?) (0,?,?,3,?)

(0,3,1,?,?)(0,2,5,?,?) (0,7,?,3,?)(0,?,1,3,?)(0,2,?,5,?) (0,?,7,3,?)

(0,3,1,6,?)(0,2,5,7,?) (0,7,10,3,?)(0,7,1,3,?)(0,2,9,5,?) (0,9,7,3,?)

(0,3,1,6,10)(0,2,5,7,11) (0,7,10,3,14)(0,7,1,3,11)(0,2,9,5,13) (0,9,7,3,13)

Critical Path Bounding

Remaining Processing
Time Bounding

Remaining Processing Time Bounding

Use a sum of processing times of unscheduled tasks to 
calculate lower bound on sj

Illustration in the search tree
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Tin
1

Tout1

win,out

Original 
graph

1
1

1

c

c

Cmax Bounding

The best known solution is used to eliminate a partial 
solution leading to worse Cmax
Cmax is estimated using lower bound on remaining work

Dynamic graph transformation by adding:

•input and output node

•edges to source / sink nodes

•dynamic backward edge
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(?,?,?,?,?)

(0,?,?,?,?)

(0,?,1,?,?)(0,2,?,?,?) (0,?,?,3,?)

(0,3,1,?,?)(0,2,5,?,?) (0,7,?,3,?)(0,?,1,3,?)(0,2,?,5,?) (0,?,7,3,?)

(0,3,1,6,?)(0,2,5,7,?) (0,7,10,3,?)(0,7,1,3,?)(0,2,9,5,?) (0,9,7,3,?)

(0,3,1,6,10)(0,2,5,7,11) (0,7,10,3,14)(0,7,1,3,11)(0,2,9,5,13) (0,9,7,3,13)

Critical Path Bounding

Remaining Processing
Time Bounding

Cmax

Cmax Bounding

Cmax

Illustration in the search tree

Cmax bounding is inactive at the beginning of the 
algorithm, but it is very efficient when C*max is found
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Problem Formulation by ILP

processor constraints ( (n2-n)/2 decision variables and constraints)

a) when Ti precedes Tj (xij= 1)

b) when Ti succeeds Tj (xij= 0)

 

 

          ,,,1,

jji

iij

iijjij

pss

pss

pCCxsspjinji

+≥

+≥

−≤⋅+−≤<∈∀

Ti Tj

t

C

si sj

Tj Ti

t

C

si sj
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ILP program

integers. are  ,      

,0  ,1,0  ,1,0      

:where
s      

      

                                      
:subject to

min      

max

max

max

iji

iji

ii

iijjij

ijij

xs

CCxCs

Cp
pCxCssp

wss

C

∈∈−∈

≤+

−≤⋅+−≤

≥− precedence constraint -
restriction given by graph G

processor constraints -
at maximum one task is 
executed at a given time

objective function -
minimizes makespan
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Outline

• Motivation and Standard notation α/β/γ
• Monoprocessor scheduling – state of the art

– Cmax minimization

• Scheduling on FPGA with arithmetic unit
– Start Time Related Deadlines
– Cyclic scheduling
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Scheduling of Iterative Algorithms 
Cyclic scheduling

- N, the number of iterations, is large enough

- can lead to overlapped schedule - operations belonging to 
different iterations can execute simultaneously

Results in periodic schedule - one iteration repeated each period w

Objective - to find a periodic schedule with a minimum period

Related work:
[C. Hanen & A. Munier 95] - Basic Cyclic Scheduling – infinite number of 
processors – O(n3 log n)

[A. Munier 96] – problem is NP-hard for m processors, polynomial for 2 
processors and unique processing time

[Phillipe Chrétienne 2000] – approximation algorithm for m processors

[Sindorf & Gerez 2000] – problems with communication delays
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BCS - Basic Cyclic Scheduling

Algorithm representation by oriented graph G
• vertex ~ instruction  ~  task
• arc ~ precedence relation

• arc height hij ~  shift of the iteration index

• arc length lij ~  processing time

height
h

length
l41

41
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• Periodic schedule: 
(identical for each iteration)

• Precedence relations:

• Optimization criterion - min. average cycle time:

)()(    ,1 i ijjij hkslksk +≤+≥∀

Start time of Ti in kth iteration

{ }
k

pks
w

iiTi

k

+
= ∈

∞→

)(max
lim

)1()(       ,1    , i −⋅+=≥∀∈∀ kwskskTi i

Iteration period

Start time of Ti in 1st iteration

Formulation of BCS Problem
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height
h

length
l41

41

)(
)(max)(

)( cH
cLGw

GCc∈
=

critical circuit

Standard solution of BCS Problem

overlap of iterations
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Problem statement

• Cyclic scheduling - overlap of iterations
• Some tasks run on the dedicated processor
• The dedicated processor is pipelined

height
h

length
l41

41

pipelining + nondedicated processors

proc.time on dedicated processor

graph G reduced graph G’
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Problem complexity

Independent tasks
1| rj,dj

~|Cmax
r =[r1,r2,…,rn] 
p =[p1,p2,…,pn] 
d =[d1

~,d2
~,…,dn

~]

P-reducible

Our problem is NP-hard, since it is P-reducible from 
Bratley’s problem (P-reducible from 3-PARTITION prob.)

Instance of Bratley’s problem ⇒ instance of our problem
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Dedicated processor –
Problem Formulation by ILP

precedence constraints (ne constraints)

ijijijij hwlssGe ⋅−≥−∈∀         ,

wsi ⋅+= ii qs )
0

,0
≥

∈

i

i

q
s w

( ) ( ) ( )1               , ijijij hwlwwGe ⋅−≥⋅+−⋅+∈∀ iijj qsqs

“offset”

Start time of Ti in 1st iteration

“segment”



Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

3/17/2006

© Zdenek Hanzalek 200638

Problem Formulation by ILP

processor constraints ( (n2-n)/2 constraints)

a) when Ti precedes Tj (xij=1)

(4)     ˆˆ

ˆˆ

wp

wp

j

j

+≤+

+−≤

ij

ji

ss
ss

)3(        ˆˆ

ˆˆ

i

i

p

pww

+≥

−≤+−

ij

ji

ss
ss

( )2    ˆˆ       ,,,1, ij pwwpjinji −≤⋅+−≤<∈∀ ijji xss
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processor constraints ( (n2-n)/2 constraints)

Problem Formulation by ILP (cont.)

( )2    ˆˆ       ,,,1, ij pwwpjinji −≤⋅+−≤<∈∀ ijji xss

jp+≥ ji ss ˆˆ

b) when Ti precedes Tj (xij=0) 
… both inequalities in double inequality (2) holds as well
- proven by exchanging index i with index j in inequalities (3) and (4)

  ˆˆ wpi +≤+ ji ss
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Example:
Ti and Tj without precedence constraints, pi = 2 , pj = 3, w = 8

Processor constraints (cont.) – OR relation
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ILP program for fixed w

integers. are ˆ,ˆ      

ˆ,0ˆ,1,0ŝ      
:where

ˆŝŝ      
                  ˆŝˆŝ      

:subject to

ˆmin      

i

ji

ij

1

iji

iiji

iijj

ijijij

n

i
i

xq
pwxqw

pwxwp
whlwqwq

q

−≤≥−∈

−≤⋅+−≤

⋅−≥⋅−−⋅+

∑
=

precedence constraint -
restriction corresponding to 
algorithm of filter

processor constraints -
at maximum one task is 
executed at a given time

objective function -
minimizes the 
iteration overlap
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Feasible Schedule (w* = w = 11)

w*- the shortest period resulting in feasible schedule

w* is found by formulating one ILP program for each 
integer w ∈ [lowerbound, upperbound] 

… interval bisection method
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RLS (Recursive Least Square) Algorithm
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Schedule for RLS Algorithm

129137.526Automatic

758045Manual

Filter orderMFLOPSwCeloxica rc200e board

50MHz in Virtex II

sampling frequency 44kHz
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Qualitative Parameters of Adaptive Filter
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Achievements

• ILP gives rather good results even for realistic examples in 
reasonable time (2 seconds)
– model is dependent on number of tasks but it is 

independent of w
• Filter performance increased by 70%
• Better utilization of arithmetic unit
• Automatic scheduling 

– systematic design 
algorithm | graph | schedule | code

– rapid prototyping …simulation of the schedule prior to time 
consuming implementation



1

Vladimír Havlena, Jiří Findejs
ACS Advanced Technology Laboratory Prague

Honeywell Intl.
havlena@htc.honeywell.cz, findejs@htc.honeywell.cz

Platform for Advanced Process ControlPlatform for Advanced Process Control
and Real Time Optimizationand Real Time Optimization

Honeywell

© V. Havlena, J. Findejs, 2006
1

Agenda

• Introduction
– Advanced Process Control scope, status, drivers
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– Architecture, components, technology

• Unified Real Time (URT) platform for advanced control applications
– Objectives, architecture, benefits
– Demo of key features
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Plant / technology

Measurement / Instrumentation

Basic Process Control

Advanced Process Control

Real Time Optimization

Planning / scheduling

Business planning

Integrated process 
management

Plant / technology

Measurement / Instrumentation

Basic Process Control

Advanced Process Control

Real Time Optimization

Planning / scheduling

Business planning

Integrated process 
management

• Analog age
• 1980’s computer technology / DCS 

enabled large scale implementations 
of regulatory control (>10 000 I/O 
points)

• 1990’s Advanced Process Control 
(MPC) & Real Time Optimization 
layers followed

• Today’s scope
– Control strategies not  restricted to 

cascaded blocs - controllers, state 
observers, etc.

– APC/RTO + Performance monitoring, 
fault detection & recovery, operator 
decision support / what-if analysis …

– Complex solutions – integration cost 
becoming prohibitive to further 
extension and innovation

– Based on open standards (OPC) and 
solution components

Where we are …

© V. Havlena, J. Findejs, 2006
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Where we go …
• Software enabled control 

– Interaction between control & optimization 
algorithms and sw/hw platforms – dynamic 
environment

– Embedded systems – “hard” real time
– Specific APC/RTO features 

• Supervisory level – “soft” real-time
• Extensive platform management features -

separated from control / optimization 
functionality

• Optimization-based solutions
– Mathematical optimization = basic enabling 

technology in advanced control
– Off-line vs. on-line applications: numerical 

issues of algorithm design
– Specific APC/RTO features

• Large-scale solutions can absorb economics-
related information as a part of internal criteria

• Efficient methods to solve huge problems … 
BUT

• Need for structured, decentralized, hierarchical 
solutions – human effort to set up model / 
maintain / operate 

• Need for consistency between models on 
individual hierarchical levels (APC, RTO, 
planning/scheduling)
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Agenda

• Introduction
– Advanced Process Control scope, status, drivers

• Unified Energy Solutions (UES) portfolio
– Architecture, components, technology

• Unified Real Time (URT) platform for advanced control applications
– Objectives, architecture, benefits
– Demo of key features

• Conclusions
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Unified Energy Solutions

Portfolio of solution components covering
• APC for power generation and industrial 

energy (process steam production)
– Predictive pressure/temperature … controller
– Combustion coordinator

• Real Time Optimization of
– Combustion process
– Load allocation
– Power delivery/ancillary services

• Planning/scheduling
– Contract planning
– Unit commitment

• Performance monitoring
– Efficiency, thermal stress
– Soot blowing optimization
– What-if analysis
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UES portfolio overview
Industrial energy application
(common headers arrangement)

Objectives
• Process steam
• Heating steam
• Power contract
• Costs/profit
• Responsiveness

Distributed arch.
• Control
• Local opt.
• Global opt.
• Interactions
• Variety of operation

modes
Plant reference 
model

ACC

ACC

ACC

EL
A

-B

TLC

ELA-TMPC

© V. Havlena, J. Findejs, 2006
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UES portfolio overview

Utility application
(block arrangement)

Objectives
• Power generation
• Availability/contract execution
• Costs/profit
• Responsiveness

(eligibility for ancillary services)

Distributed arch.
• Control
• Local/Global opt.
• Shared solution components
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UES components
• TLC = Tie Line Control

– Power delivery contracting tool
– Power contract real-time monitoring/execution

• ELA-T = Economic Load Allocation for Turbines
– Optimally allocates generated power on multiple generators
– Multiheader setups with condensing, back-pressure turbines

• MPC = Master Pressure Controller
– Steam balance in headers, using demand prediction

• ELA-B = Economic Load Allocation for Boilers
– Optimally allocates steam production on multiple boilers
– Minimizes total steam production cost

• ACC = Advanced Combustion Control
– Advanced control of combustion process 
– Optimizes boiler thermal efficiency, keeps emissions within given limits

• ATC = Advanced Temperature control
• PRM = Plant Reference Model

– Consistent models, real-time responsiveness

© V. Havlena, J. Findejs, 2006
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Advanced Combustion Control (ACC)

Functionality

• optimal A/F Ratio
• dynamic A/F coordination
• advanced features

• low-NOx burning
• staged air design
• flue-gas recirculation

ACC

ACC

ACC

EL
A

-B

TLC

ELA-TMPC

Fuel demand 
allocated from ELA-
B

Coordinated fuel feed
and air set points
to boiler control

ACC

Optimal air-fuel ratio 
calculated
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Maximum achievable efficiency under emission constraints
Turbulence-driven process – not very deterministic
Cautious strategy = optimization under uncertainty P {CO > COmax} < ε
Constraints defined in terms of posterior probability content  
Compatible with statistical emission evaluation (e.g. 15 min. average)
Operator acceptance – “single knob” solution

Feasible air-fuel ratio

Efficiency

CONOx

NOx limit
Optimal

Efficiency

CO limit

ACC cautious optimization strategy

© V. Havlena, J. Findejs, 2006
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… Need for dynamic coordination

A/F ratio 

CO [ppm] 

variation of 
A/F ratio  

variation of CO 
concentration 

100

200

300

1.0 1.5

 

A/F ratio 

CO [ppm]

variation of 
A/F ratio  

variation of CO 
concentration 

100

200

300

1.0 1.5 

has to be 
reduced

Original design

O2.SP = 5 %

Reduced excess air

O2.SP = 3 %

Problem
• strongly non-linear A/F → CO mapping: E{f(x)} = f (E{x}) + d2f(x)/dx2 . Var{x}

Solution
• minimize A/F ratio variation

Optimal A/F ratio depends on achievable A/F coordination performance

Boiler operation with reduced excess air only not feasible
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• Low NOx/optimal efficiency burning
– Reduced excess air
– Reduced A/F variation

• Model-predictive control formulation + extensions
– Different dynamics
– Ratio control - air/fuel “burner nozzle flow” coordination 

– Set-range concept → calm control – improved coordination performance

coal mill
dynamics

tertiary air
dynamics

secondary air
dynamics

primary air
dynamics

MIMO ROC

master
pressure
controller

&
set point

coordinator

optimal air/fuel
ratio

PSS

O2
CO
NO

#1   (A) 1AFD2C01.PV          3/19/03 07:46:20    4.16 %   (First @ 1 Min)              A O2 CORRECTION CONTROL**
#2   (A) A1005X.PV            3/19/03 07:46:20    24.87 PPM   (First @ 1 Min)           A Boiler C.O.**
#3   (A) 1fdrsum.calc         3/19/03 07:46:20    337.33 KPPH   (First @ 1 Min)         FEEDER**
#4   (A) a1014x.pv            3/19/03 07:46:20    0.36 #/MMBTU   (First @ 1 Min)        A BLR NOX**
#5   (A) 1afw1p03.pv          3/19/03 07:46:20    2746.94 KPPH   (First @ 1 Min)        A TOTAL STM MASS FLOW**
#6   (A) 1pa.calc             3/19/03 07:46:20    399.83 KPPH   (First @ 1 Min)         ALL PA**
#7   (A) 1sa.calc             3/19/03 07:46:20    2503.01 KPPH   (First @ 1 Min)        Secondary AIR  (Duct A + B - PA **
#8 (A) (1pa calc+1sa calc)/13/19/03 07:46:20 7 07 (First @ 1 Min) No Description Define**

10.00

0.00

200.00

0.00

400.00

100.00

2.00

0.00

3200.00

0.00

500.00

0.00

3200.00

0.00

10.00

4.00

3/19/03  04:00:00 3/19/03  10:00:00

Air fuel ratio  @ 6h 0m 0s                                        ACC Coordination strategy
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ACC Performance
ASME power test code
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Economic Load Allocation for Boilers (ELA-B)

low limit

high limit

correction
horizon

time

control
horizon

manipulated
variable

current
time

controlled
variable

r Ts

Functionality
• Allocate total steam production
• Efficiency + fuel cost
• Independent steady-state/dynamic solution

Algorithmic solution
• SQP with IST - Iteration spread in time
• Feasibility constrained SQP

APC/RTO interaction
• Classical approach

• Wait for steady state, run RTO
• MPC-enabled approach

• Predict target steady state
• Optimize at target set point

• RTO execution rate
• Optimum tracking capabilities

(hours → minutes/seconds) Total target 
demand

© V. Havlena, J. Findejs, 2006
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ELA-B – Optimized Load Allocation

Adaptation based on ACC performance (unit-level optimization)Adaptation based on ACC performance (unit-level optimization)

Max achievable 
efficiency (ACC)
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Functionality – on-line / off-line
Tie Line Control (TLC)

Power delivery to the grid

Work flow
• Prepare 24x7 h contract (sales) 

Optimize (predicted demand)
Validate against technology limits

• Approve/download to database

• Upload / Execute (operators)

• Modify by spot market (via Web)

Algorithmic solution
• Diminishing horizon MPC

(target optimization)
• Risk sensitive solution

© V. Havlena, J. Findejs, 2006
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Reference plant topology model
Technology configuration

Driven by “live” and planned process 
data
What if analysis

Generation range, costs (ELA)
Unit commitment optimization

Predictor – trajectories of
Process steam demand
Heating steam demand
Home consumption

Based on
Historical data (incl. categorical)
Climatic data (and predictions)

Used in
Contract optimization – 1 week/1 hour
Contract execution – 2-3 hours/1-5 min
(controlled/dependent resources) 

TLC Information links
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Execution
– Diminishing horizon MPC, cautious strategy
– Minimize risk not to meet contract

Operator intervention
– “Early warning” features
– Start-up/shut-down scenarios
– Decision support - what-if analysis

Uncertainty Sources
– Heating/process steam demand 

(predictions)
– Home consumption

– Equipment trips

TLC Execution

© V. Havlena, J. Findejs, 2006
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UES integration with DCS 

Plant Control Network

GUS stations 
Operator HMI

APP node
URT platform
UES applications:
ACC controller
ATC controller

UCN
HPM controllers

UES Engineering 
GUI / clients

APP node
URT platform
PHD server
UES applications:
SBO optimizer
TSMS, TPPM 

NIMs

TPS LCN Network

• PC node with URT platform hosts UES controllers

• URT communicates with DCS via transparent 
OPC server

• GUI for Engineers – PC station

• GUI for Operators – integrated to DCS stations

Security on DCS level

• Local/remote setpoint (AUTO/CAS)

• Shed-time / shed mode concept

(CAS / BCAS)
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Fuel setpoint

Air setpoint

ACC status

• technical details hidden 
• single knob tuning preferred

(ACC – level of cautiousness)

Fully integrated with DCS
• TPS/Experion PKS
• 3rd party DCS solutions 

available (OPC)

UES Operator GUI

© V. Havlena, J. Findejs, 2006
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OPC Server

OPC Client
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Combustion 
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OPC server for communication with DCS

CASBCASCASBCAS BCASBCASCAS

System Platform –
Windows NT/2k/XP

OPC communication standard 
(client – server)

Safe interaction with DCS – automatic 
backup cascade control modes in DCS

UES data interface – URT/DCS link
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Unified Real Time (URT) Platform - Objectives

• Environment for hosting advanced 
process-control, real-time 
optimization and planning/ 
scheduling applications that
– Are hybrid, large and/or complex
– Use any DCS for underlying 

process measurements and 
regulatory control

– Involve dynamic configuration, 
flexible scheduling, complex 
organization, etc.

• Build on experience with DCS 
applications

• Provide tight integration with DCS 
and business control level

Plant / technology

Measurement / Instrumentation

Basic Process Control

Advanced Process Control

Real Time Optimization

Planning / scheduling

Business planning

Integrated process 
management

Plant / technology

Measurement / Instrumentation

Basic Process Control

Advanced Process Control

Real Time Optimization

Planning / scheduling

Business planning

Integrated process 
management
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URT- Architecture

• Component-based environment built on 
DCOM technology

• Components are organized in a tree 
structure

• URT consists of data items, function 
blocks and schedulers
– Data items – hold application data or 

another components
– Function blocks – provides user-defined 

functionality
– Schedulers – units of execution, execute 

function blocks

• The URT platform is a one process in OS 
(Windows 2000 or later versions)

• OPC DA and A&E server

© V. Havlena, J. Findejs, 2006
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URT – Data Subsystem

• Fixed set of elementary data items (leafs)
– Scalars

• double, float, time
• short, int, long, enumeration
• string, bool, variant, link

– Containers of scalars – array, list, (queue, 
stack)

• Data items for building structures (nodes)
– Component – keeps a reference to any type 

of URT component
– Containers of components – array, list
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URT – Data Subsystem

• Connections – data item may have input and/or output connection
– Input connection reads data from remote source (data item)
– Output connection writes data to remote target (data item)
– Internal connection – uses native URT protocol
– External connection – uses OPC protocol

• Buffering – data items have optional buffers
– Data can be transferred between schedulers (threads) without blocking 

the execution

© V. Havlena, J. Findejs, 2006
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URT – Execution and Scheduling

• Basic unit of execution and scheduling is a scheduler component
• Scheduler owns a thread in which all child components are executed
• Schedulers support:

– Periodical execution
– Asynchronous on-demand execution
– Synchronous on-demand execution
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Scheduler – Execution cycle

• Scheduler’s execution cycle consists of three phases (commands)
– Pre-execute()
– Execute()
– Post-execute()

• The commands are propagated trough the URT tree (post-order 
traversal)

• Data items read data in Pre-execute() and write data in Post-
execute(). They do not use the Execution() phase.

• Function blocks calculate their outputs in Execute() phase. They
usually do not use Pre-execute() and Post-execute() phases.

© V. Havlena, J. Findejs, 2006
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URT – Function Blocks

• Points of customization
• Prepared base classes for C++, C# and VB.NET languages
• User class must implement OnPostBuild() method and Execute() 

method.

HRESULT CMulFB::OnPostBuild() {

m_PVX.SetUp(L”PVX”, L”Input X”);

m_PVY.SetUp(L”PVY”, L”Input Y”);

m_OP.SetUp(L”OP”, L”Output”);

m_VALID.SetUp(L”VALID”, L”Valid”);

m_VALID = false;

return S_OK;

}

HRESULT CMulFB::Execute() {

m_OP = m_PVX * m_PVY;

m_VALID = m_OP <= HI_LIMIT;

return S_OK;

}

• OnPostBuild() configures the function block

– creates all ‘local’ data items

– Initializes the function block

• Execute() does the required functionality

– QP Solver, Data switch, Resampling, ...
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URT – Function Blocks Contd.

• Base class implements all necessary functionality of a URT 
Component

• Base class provides as set of functions for the function block
– Finding a component in the platform
– Locking of the sub-tree
– Subscribing of events
– Generating of messages and events

• URT provides API for platform management (creating platforms, 
creating/deleting components, browsing platform, ...)

© V. Havlena, J. Findejs, 2006
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Function Block Example
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URT – Messages and Persistency

• Messages
– Function blocks can raise messages and events
– URT messages and events are converted to the standard OPC Alarms

and Events and published via OPC A&E server

• Persistency
– Configuration (tree structure) and the data are stored in one file 

(checkpoint file) in XML format
– URT provides built-in function block for automatic periodical saving of 

checkpoints

© V. Havlena, J. Findejs, 2006
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URT - Navigation

• Each component must have a name. Any two sibling components 
must have different names

• The tree of components can be seen as a XML document, where 
names of the components in URT are names of elements in XML 
document

• The URT component can be located using XPath-like queries
• The query can be absolute (including the name of the platform) or 

relative. An absolute query may point to another platform.
– Absolute query: (Plaform1)/$Plaform1/Unit/App/Engine/Item
– Relative query: ../../Params/HILM

• The query may contain some attributes of the component (e.g. 
type)

• The queries are used in connections and links



18

© V. Havlena, J. Findejs, 2006
34

Simple Advanced Control Application

Distributed Control System (DCS)

Application
Real-time input data
PV
CV
DV
SP
limits

Real-time output data
MV

MVTAR
CVTAR

Structured parameters
(models, funnels, ...)

© V. Havlena, J. Findejs, 2006
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Structured parameters
(models, funnels, ...)

More Complex Advanced Control Application

Distributed Control System (DCS)

Master Application

Real-time
input data

Real-time
output data

Structured parameters
(models, funnels, ...)

Structured parameters
(models, funnels, ...)

Slave Application

Structured parameters
(models, funnels, ...)
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Advanced Control Application on the URT

• CONFIG – configuration data, can 
be changed off-line only

• RTDATA – external data 
(underlying DCS)

• PARAMS – application parameters, 
complex data structures, can be 
changed on-line

• LIMITS, ENIGNE, CASCADE –
independent application modules

© V. Havlena, J. Findejs, 2006
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Data Flow in ENGINE Module

• Input values are read to input data 
structures RTIN, PARAMS, HISTORY

• Input values are converted by 
EUTOPCT function blocks to 
DATAPCT/IN structure

• Data are process by function blocks 
EXEC1 and EXEC2

• The results are written to 
DATAPCT/OUT structure

• Output values are converted by 
PCTTOEU function blocks and written 
to output data structure RTOUT
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Application Building

• Special function block for building 
application

• Multi-phase building process
• One function block can create 

several applications inside the 
platform

© V. Havlena, J. Findejs, 2006
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Indirection Example - Problem

• Scenario
– An application has two function block FB_A and FB_B, which calculate the same 

type of outputs and store them in parameters A, B and C
– The function block FB_C read output values of FB_A or FB_B via input 

connections and calculates output value D

• Problem
– How to put information about the source function block to one place?

FB_A

A

B

C

FB_B

A

B

C

FB_C

A

B

C

D

/FB_A/A

/FB_A/B

/FB_A/C

/FB_B/A

/FB_B/B

/FB_B/C
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Indirection Example - Solution

• The function block FB_C creates a link SEL
• All input connection are configured via the link SEL
• The link SEL can point to any URT component having child data items A, B 

and C

FB_A

A

B

C

FB_B

A

B

C

FB_C

A

B

C

D

(link)

../SEL#/B

../SEL#/C

SEL = /FB_A

../SEL#/A
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41

Value Substitution Example

• Scenario
– An application has a set of parameters
– The parameters are stored in the structure PARAMS and they are modified by an 

external application

• Problem
– How to allow substitution of some parameters by real-time data without 

modifying the application and the parameter set

PARAMS

A

B

C

A

B

C

A

B

FB

A

B

C

/PARAMS/*/A

PARAMS

/PARAMS/*/B

/PARAMS/*/CPARAMS

RTDATA
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URT Demo - Advanced Combustion Controller
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Agenda

• Introduction
– Advanced Process Control scope, status, drivers

• Unified Energy Solutions (UES) portfolio
– Architecture, components, technology

• Unified Real Time (URT) platform for advanced control applications
– Objectives, architecture, benefits
– Demo of key features

• Conclusions
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Conclusions

• Advantages of component-oriented approach already proven by 
software community

• Operating systems and general frameworks does not meet the 
needs of control and optimization applications

• Unified Real Time platform
– Fully componentized applications
– Flexible, extensible and distributed environment
– Rapid application development
– Standard data interfaces (OPC)
– Advanced features – real-time reconfiguration, what-if analyses, …
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DC Motor Controller in Linux

The goal is to create a controller in ANSI C 
language, which controls the angular velocity 

of the motor.
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Description of the Model
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Operating System

• We need:
– Fast response to interrupt request
– Accurate timers (sample period, PWM)
– Real-Time scheduler
– Direct access to hardware

• Possible solutions:
– Real-Time OS (RTLinux, vxWorks, ...)
– Writing a device driver for Linux with real-time extensions 

(High resolution timers, real-time preemption patch etc.)
– Modified Linux kernel for accessing hardware from user-

space
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Our approach

• Modification to standard Linux kernel 
– Added high resolution timers patch
– Allow non-root users to:

• enable real-time scheduling for their processes
• access I/O ports

• Interrupt handling in user-space
– VM86 system call
– Mainly for use by DOS Emulator

• User friendly interface through libpos library
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Steps to Create a Controller

1. Create a basic C application.
2. Try to rev up the motor at full speed.
3. Write a thread generating PWM signal

(period 1 ms)
4. Write an IRQ handler (position measuring).
5. Write a thread measuring the velocity.
6. Implement a velocity controller (PID).
7. Write a graphical interface for the controller.
8. Implement communication with GUI.
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Steps to Create a Controller

1. Create a basic C application.
2. Try to rev up the motor at full speed.
3. Write a thread generating PWM signal

(period 1 ms)
4. Write an IRQ handler (position measuring).
5. Write a thread measuring the velocity.
6. Implement a velocity controller (PID).
7. Write a graphical interface for the controller.
8. Implement communication with GUI.
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A Basic C Application

• In directory ~/artist2/hello
• Compile by command

make
• Executable appears in 

~/artist2/_compiled/bin

#include <stdio.h>

int 
main(int argc, char *argv[])
{
        printf("Hello\n");
        return 0;
}

• Run the compiled application by:
~/artist2/_compiled/bin/hello
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Parallel Port

• Motor rotation:
– left: outb(1, 0x378);
– right: outb(2, 0x378);

• IRC signals:
– inb(0x379);

IRQ

PWM: bits 0, 1

IRC  {

IRC

0x379

0x378

0x37a 

PWM (left, right)
IRQ
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The Structure of Control Application

struct motor
{
 int action
 int dir
 ...
}

Control
thread

PWM
thread

Measure
thread

Interrupt
handler

delta, dir

delta
dir

velocity

velocity

action

action

reference

Timer

Timer
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Periodic Threads

#define MS (1000000)

void *thread_func(void *arg)
{

pthread_make_periodic_np(pthread_self(), gethrtime(), 2*MS);
while (1) {

/* do something */
pthread_wait_np();

}
return NULL;

}

int main(void)
{

pthread_t thr;

pthread_create(&thr, NULL, &thread_func, NULL);
return 0;

}

start time (now)

period

wait for the start of the next period
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PWM Generation

• The value of the variable action specifies the control action.
• Use the usleep function to suspend the thread for a given 

number of microseconds.
• The PWM period should be set to 1 ms. This is due to the 

timer resolution (~1 us) and user-space overhead.

while (1) {
set_output (1);
usleep ( action * TPWM );
set_output (0);
pthread_wait_np ();

}

T
PWM

T
PWM

0

1
output

time
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PWM Generation (cont.)

• Constants:
– PWM_PERIOD: a constant containing the period of PWM 

thread (in nanoseconds!!!).
– PWM_RESOLUTION: the maximum value of action 

variable. If action equals to it, the output should be always 
1.

while (1) {
set_output (1);
usleep ( PWM_PERIOD/1000 * action / PWM_RESOLUTION );
set_output (0);
pthread_wait_np ();

}

convert to microseconds
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Thread Priorities

• Rate Monotonic Priority Assignment
– the shorter task period the higher assigned priority

• In Posix: The higher number the higher priority

int init_module(void)
{

pthread_attr_t attr;
struct sched_param param;

pthread_attr_init(&attr);
param.sched_priority = 1;
pthread_attr_setschedparam(&attr, &param);
pthread_create(&thr, &attr, &thread_func, NULL);
return 0;

 }

   

the priotity of the thread
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IRQ Handling

• Register an interrupt handler
– parallel port: IRQ 7

• Enable interrupt generation by setting a bit in 
parallel port control register:
outb(0x10, 0x37a);

void irq_handler(int intno, void *dev_id, void *regs)
{

struct motor *motor = (struct motor *)dev_id;

/* do something */

return 0;
}

status = request_irq(motor­>irq, irq_handler, 0, "motor", motor); 
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Signals From an IRC sensor

• Whenever the value of any IRC sensor channel 
changes, electronics in the motor generates the IRQ.

• The motor is equipped by IRC with 100 pulses per turn 
and there are 4 IRQs per one step. So there are 400 
IRQs per turn.

channel A

channel 
B

 

IRQchannel C (IRQ)
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PID Controller

uk =P⋅e k  I⋅∑
i=0

k−1

e i D⋅e k −e k−1

PID
controller

Motor

+

–

Desired value

Velocity Voltage (PWM duty cycle)

e k 

yk 

• Control error:
– e = motor->reference – motor->velocity;

• P controller:
– motor->action = PWM_RESOLUTION * P * e;

• PID controller:
–

u k 
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How to Start

1. In the boot menu chose ARTIST2 Linux
2. Log in as artist<number>, password realtime
3. Go to the directory: cd ~/artist2
4. Compile everything: make

5. Start GUI application: ./gui

6. Start the controller: ~/artist2/_compiled/bin/motor

7. Exit by Ctrl-C
8. Go to controller directory: cd motor/src
9. Open file motor.c in editor (Kate) and modify it.
10. Compile modified program: make

11. Run it: ~/artist2/_compiled/bin/motor
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Content of Directories

• motor/src – the code for the controller part
– motor.c – the code of application (you will modify this file)
– motor.h – common declarations for both RT and US part
– Makefile – commands for compilation.
– gui – script for starting the GUI application

• motor/qtmotor – graphical user-space interface
• motor/curmotor – text-based user-space interface
• libpos – periodic threads and interrupt emulation 

library
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• Extend the PWM thread to generate PWM 
signal based on the value motor­>action.

• Implement a controller.
– start with a P-controller which computes action as
action = KP * (reference – velocity)

– Experiment to find the value of K
P

– Extend the controller to PI. In the simplest case, you'll 
need to store the sum of errors.

• You may try to do other extensions – windup 
handling, use fixed-point arithmetic, use better 
implementation of PID, etc.

Your Tasks
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Debugging

• Inside the code use the printf() function to print 
the values you are interested in.
printf(“Value of action: %d\n”, action);
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Session Outline

• TORSCHE Introduction
• TORSCHE Quick Start
• Iterative Algorithms Scheduling
• Outlook
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TORSCHE Introduction

TORSCHE (Time Optimization of Resources, SCHEduling) is 
Matlab based toolbox for Scheduling.

Aim of the toolbox:
• rapid prototyping of scheduling algorithms
• co-design of control and scheduling problems
• repository of off-line and on-line scheduling algorithms
• open for new algorithms
• demonstration tool for education 
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TORSCHE – Problem Representation

Maltlab objects are used to represent large variety of 
scheduling problems.

Main objects of the toolbox:
• task - parameters of task
• taskset - object encapsulating set of tasks
• problem - specification of problem (Błażewicz notation)
• graph - representation of graph 
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TORSCHE – Algorithms

The toolbox algorithms structured into several groups.

Groups of the toolbox function:
• functions for manipulation with objects of the toolbox
• scheduling algorithms (List scheduling, EDD, ...)
• graph algorithms (Floyd’s algorithm, ...)
• supplementary algorithms (ILP, MIQP, ...)
• GUIs (graphedit, ...)
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TORSCHE Quick Start

Steps to solve scheduling problems:

1. definition of tasks
2. definition of taskset
3. problem definition
4. scheduling 
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Example – Horn’s algorithm

Problem: 1|pmtn,rj|Lmax

T = { t1,  t2, t3}
p = {  5,   2,  3}
rj = {  1,   0,  5}
dj = {12, 11,  9}

Objective: minimize maximum lateness Lmax = max{Lj}

Algorithm: Horn’s algorithm [Horn74]

 

time 

Task

0
~

 

+  -  

rj sj cj dj dj

Tj

pj
Lj
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Definition of Tasks

Task is defined by command task, for example:

>> t1 = task('task1', 5, 1, inf, 12)
Task "task1"
Processing time: 5
Release time:    1
Due date:        12

This command defines task with name "task1", processing time 5, 
release time 1, without deadline (inf) and due date 11. Other 
tasks can be defined in the same way:

>> t2 = task('task2', 2, 0, inf, 11);
>> t3 = task('task3', 3, 5, inf, 9);
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Definition of Taskset

Set of tasks is created by command taskset :

>> T = taskset([t1 t2 t3])
Set of 3 tasks

For short:

>> T = [t1 t2 t3]
Set of 3 tasks
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Problem Definition

Classification of deterministic scheduling problems:
• notation proposed by [Graham79] and [Błażewicz83]
• special problems, not specified by the notation        

(e.g. m-DEDICATED)

>> p = problem('1|rj,pmtn|Lmax')
1|pmtn,rj|Lmax
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Scheduling

Now we can run the scheduling algorithm, for example 
Horn’s algorithm:

>> TS = horn(T,p)
Set of 3 tasks
There is schedule: Horn's algorithm
Solving time: 0.016s

Graphical representation of the schedule (Gantt chart) can 
be displayed using command plot :

>> plot(TS,'proc',0)
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Schedule – Gantt Chart
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Iterative Algorithms Scheduling

Cyclic scheduling – tasks are repeated in K iterations

Periodic schedule – tasks are repeated periodically with 
constant period w

Objective – to find a periodic schedule with minimal   
period w
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Example – Cyclic Scheduling

Wave Digital Filter (WDF):

Hardware: one addition and one multiplication unit on a 
FPGA architecture with floating-point units

for k=1 to N do
a(k) =X(k) + e(k-1)  %T1
b(k) = a(k) - g(k-1) %T2
c(k) = b(k) + e(k)   %T3
d(k) = gamma1 * b(k) %T4
e(k) = d(k) + e(k-1) %T5
f(k) = gamma2 * b(k) %T6
g(k) = f(k) + g(k-1) %T7
Y(k) = c(k) - g(k)   %T8

end

33multiplication (*)

11addition (+)

latency
[clk]

processing time
[clk]

floating-point unit
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Problem Statement

Dedicated tasks – tasks are assigned to specified processor 
(i.e. floating-point unit)

Instance representation: Cyclic Data Flow Graph (CDFG)

single operation ≈ task ≈ node in the CDFG

precedence constraints between operations ≈ edges 
weighted by height hij (dependence distance)

>> graphedit
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Cyclic Data Flow Graph of WDF

for k=1 to N do
a(k) =X(k) + e(k-1)  %T1
b(k) = a(k) - g(k-1) %T2
c(k) = b(k) + e(k)   %T3
d(k) = gamma1 * b(k) %T4
e(k) = d(k) + e(k-1) %T5
f(k) = gamma2 * b(k) %T6
g(k) = f(k) + g(k-1) %T7
Y(k) = c(k) - g(k)   %T8

end
processor 
number

height
h7,8
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Parameters of Processors

Parameters of processors (floating-point units):
• processing time – processor occupation time
• latency – length lij (minimal distance between tasks), 

i.e. processing in pipeline

Scheduling problem is represented by graph G where 
edges are weighted by couple (lij , hij).

>> UnitProcTime=[1 3];
>> UnitLattency=[1 3];
>> G = cdfg2LHgraph(cdfg,UnitProcTime,UnitLattency);
>> graphedit(G)
Note: Floating point units are considered non-pipelined only for simplicity reasons.

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

© Přemysl Šůcha 2006

Graph G of WDF

height h7,8

length l7,8processor number

proc. time
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Critical Circuit

• critical circuit in graph G determines minimal feasible 
period w with respect to precedence constraints

• problem assumes graph G where edges are weighted 
by a couple of constants length lij and height hij

• objective is to find the critical circuit ratio defined as:

where C is a circuit of graph G. 
• circuit C of graph G with maximal circuit ratio ρ is the 

critical circuit

∑

∑

∈

∈

∈
=

ce
ij

ce
ij

GCc

ij

ij

h

l

)(
maxρ
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Critical Circuit - WDF

c1

c2
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Critical Circuit Ratio

Graph G contains two circuit c1 and c2 with circuit ratio:
ρ(c1) = (1+1+3+1)/(0+0+0+1) = 6
ρ(c2) = (1+3+1)/(0+0+1) = 5

Critical circuit is c1 , therefore period w ≥ 6. Critical circuit 
ratio can be evaluated in the toolbox using command:

>> critical_circuit_ratio(G)
ans =

6.0000
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Solution

Graph G can be directly transformed to the taskset:

>> T=taskset(G)
Set of 8 tasks
There are precedence constraints

>> prob=problem('m-DEDICATED');
>> schoptions=schoptionsset('ilpSolver','glpk');
>> TS=mdcycsch(T, prob, 1, schoptions)
Set of 8 tasks
There are precedence constraints
There is schedule: MONOCYCSCH-ILP based algorithm (integer)

Tasks period: 8
Solving time: 0.126s
Number of iterations: 4

>> plot(TS,'prec',0)
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Resulting Schedule
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Solution Summary

>> graphedit
>> UnitProcTime=[1 3];
>> UnitLattency=[1 3];
>> G = cdfg2LHgraph(cdfg,UnitProcTime,UnitLattency);
>> T=taskset(G);
>> prob=problem('m-DEDICATED');
>> schoptions=schoptionsset('ilpSolver','glpk');
>> TS=mdcycsch(T, prob, 1, schoptions);
>> plot(TS,'prec',0);
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Session Outline

• TORSCHE Introduction
• TORSCHE Quick Start
• Iterative Algorithms Scheduling
• Outlook
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Outlook

Currently we are working on:
• automatic code generation for Handel C and TrueTime
• real-time schedulability analysis
• new graph and optimization algorithms
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More Materials

TORSCHE Scheduling Toolbox for Matlab with a complete 
documentation can be downloaded at:

http://rtime.felk.cvut.cz/scheduling-toolbox/
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Presentation outline

PicoBlaze KCPSM3 processor from Ken Chapman Xilinx

One PicoBlaze Master and four Workers connected by DP BRAMs

Demo1: Four Bouncing Ball on a VGA – 5 PicoBlaze on XC3S200 

Scalable pipelined Floating point

Bit-exact high level simulation in Simulink

Demo2: 400 M Flop (18-bit FP) parallel vector products

Power/area: Virtex2, Spartan3, Spartan3L, Spartan3E

Conclusions
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PicoBlaze KCPSM3 processor
Author: Ken Chapman, Xilinx; chapman@xilinx.com

VHDL Core with assembler: free from www.xilinx.com

Main parameters:

8 bit CPU, 1 BRAM 1024x18 for program, only 96 slices (5% of xc3s200)

16 registers, Scratch pad memory 64 byte, 8bit I/O bus, 8bit port address      

all instructions take constantly 2 clock cycles, 1 level of interrupt

KCPSM3 includes Assembler, RS232 macros and uart_clock demo. 

Optimized for Virtex E, Virtex 2,  and Spartan 3

Our design is reusing parts of Ken’s uart_clock demo

We add inter-processor connect, VGA support and Floating point HW

We add hazard free access to DP BRAM from Master and Worker PicoBlaze

4
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Master includes in addition:

38400 bps UART 

1 microsecond timer

Interrupt-based 1u sec time base 

Worker: 4 input ports, 8 (max 256) output ports 
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Workers provide asynchronous interrupt input and interrupt_ack output 

Master encapsulates serial 38400 bps UART with basic Ken’s SW support 

Each processor includes 1 BRAM with local program

Network is using dual-ported BRAM blocks 2048 x 8 

Master and Worker macros and connectivity: 

6
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Demo 1: Four Bouncing Balls, VGA, 5 PicoBlaze net

Board IO:     SW          led        7seg               7seg    7seg           7seg

PC    Master                   Worker 1        Worker 2         Worker 3        Worker 4  
time base 1u sec        Ball 1             Ball 2     Ball 3             Ball 4   
RS232 38400 bps                                       

Address 11 bit  
(8 banks, each 256 bytes)
Data busses 8 bits

4 Dual ported Block RAMs
2048 Bytes each
Address 11bit
Data 8 bit

4 PicoBlaze workers

1 PicoBlaze
Master

4 PicoBlaze
Workers

VGA HW        Monitor
Support          4-balls   

Ball speed is sent
from PC to BRAMs
Workers read it to
Drive the Balls
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Demo1: 4 Bouncing Balls   
Spartan3               xc3s200-4-ft256                                         
Slices    962 out of 1920     50%
BRAMS     9 out of 12         75% 
System clock                      50 MHz
Up to 5x25MIPs                 125 MIPs
Interrupt latency                   4 clk
Master  DP SRAM     4 x 2048 Byte
Worker DP SRAM           2048 Byte  
HW avoids write conflicts (No hazard in
case of parallel WR to same address).  

Worker 1,2,3
VGA support
Master
Worker 4 

Power estimate:
Dynamic         56  mW
Quiescent       61  mW
Total              117 mW
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Generic Short Latency Floating Point Macros
Based on Celoxica DK 1.1 Handel-C Floating Point Library  

Precisions  <total_length>m<mantissa>: 18m11, 24m17, 32m23, 36m27 

ADD/SUB, MUL       2 stage pipelined (retimed) 

FIXPT2F, F2FIXPT 4 stage pipelined (retimed) 

DIV, SQRT                          Sequential. No of cycles = mantissa width + 2

32 bit Pipelined Floating Point Macros

Based on Celoxica DK 3.1 Handel-C Pipelined Floating Point Library  

32 bit Precisions  <total_length>m<mantissa>: 32m23 

ADD/SUB 10 stage pipelined         MUL  7 stage pipelined 

FIXPT2F   12 stage pipelined F2FIXPT 14 stage pipelined

DIV 28 stage pipelined   SQRT 27 stage pipelined 

Used in
Final FP
Vector
Product
Demo 2
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Modeling & RTL  

Example for 32bit FP ADD

Simple FP ADD and 
SUB (bit exact)

ADD/SUB one block
(bit exact)

ADD/SUB one block
(bit and cycle exact)

Source code
in Handel C VHDL

C++ Simulink
S-functions

RTL level
DK4
Simulator

10

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

© Jiří Kadlec 2006

Area  
Slices used by Scalable Float 

(xc2v1000=5120 slices) 

0

500

1000

1500

2000

2500

18m11 75MHz 24m17 75MHz 32m23 75MHz 36m27 75MHz 32m23 150 MHz

add mul div

fix2f f2fix sqrt

Used in
Final FP
Vector
Product
Design

<                Scalable Short Latency Float                  ><32bit Pipe>

s l
i c

es
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Speed  xc2v1000-4  FP modules

0

20

40

60

80

100

120

140

160

180

18m11 75MHz 24m17 75MHz 32m23 75MHz 36m27 75MHz 32m23 150 MHz

add mul div fix2f

f2fix sqrt target target_fast
Used in
Final FP
Vector
Product
Design

<                 Scalable Short Latency Float               ><32bit Pipe>

M
H

z

75 MHz target

150 MHz target
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Spartan3 xc3s1000-4, L, E

Virtex2  xc2v1000-4

50 MHz clock

125 MIPs

4x 100 M FLOP   
FP Mantissa  11 bit, 
FP Exponent   6 bit, 
FP Sign           1 bit

DSP program:
Wait for signal;
Z[0]=X’ [0:255]*Y[0:255];
interrupt worker;

Demo 2: 400 M Flop (18-bit FP) vector product

DP BRAM connecting processors: 2048 x   8bit (8 banks)
DP BRAM connecting DSP:           1024 x 18bit (4 banks)

1x PicoBlaze Master 
1 us time-base 
RS232 38200bps

4x PicoBlaze
Workers

4x 3 DP BRAMs
X, Y, Z

4x dedicated HW:
18 bit FP 
MACs at 50MHz
From Simulink
and DK4  test b.

Vector 
Product
FP HW 
18m11

Vector 
Product
FP HW
18m11

Vector
Product 
FP HW
18m11 

Vector 
Product
FP HW 
18m11
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Design and verification strategy for FP DSP modules

Step 1: Bit exact model in Simulink. Verification with Double. Create test data.

Step 2: Simulation of identical HW (hand coded in Handel-C) 
in DK4 Software simulator (I/O functions automate connection to Matlab)

Step 3: Compilation from DK4 to HW kit to verify on real HW. Kit specific 
versions of same I/O functions automate connection of the HW kit to Matlab 
without the need to modify code (parallel port in the case of RC200E).

Step 4: Isolate debugged DSP design ( BRAM -> do DSP -> BRAM) as module.

Step 5: Attach these verified DSP modules with PicoBlaze.   

Step 6: Verify the DSP module first on one PicoBlaze worker with mem dump 
support from the Master. Use test data from Step 1  

Step 7: Extend your DSP design to multiple workers, large data sets and real 
time constrains. Concentrate on SW to manage combinations of DSP blocks.
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Step1-3: Bit exact model in Simulink and debugging.
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Step 4-5:
Top level used in all 
design experiments 
to get comparable 
power estimation 
results. Falutest_hcc
contains all 5 
processors and all FP 
ALUs (Handel-C top).

This is detail of X, Y, Z 
BRAMs and one FP 

18bit MAC operating 
bit-exact as Simulink.   
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Step 6: Integrate and test with PicoBlaze on HW 

X[0:7]

Y[0:7]

Z[0]

This is Mem
Dump 

managed by
PicoBlaze net
on rc200e hw.

It prints test
vector data 

and result of 
vector prod. 

identical with 
Simulink.  

Simulink test bench generates data which can be used 
by DK4 simulator, HW board for verrification on the 
HW kit (RC200E with XC2V1000-4 in our case). Finally 
to target PicoBlaze network, data are generated in 
format compatible with 18-bit wide BRAMS X,Y and Z:

Finally, OK on HW  :-)
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Step 7: Real vector product 400mflop 
Virtex2 xc2v1000-4-fg456

Slice Flip Flops 2905 28%
4 input LUTs 4241   42%
Occupied Slices 3292 64%
BRAMS 21         52%
MULT18x18s     4  10% 
Clock 50 MHz ISE: 53,3 MHz

Power (Xpower setting has been verified
by measurement of case temperature):
Vccint Dynamic 666 mW

Quiescent       18 mW
Vccoux Dynamic 0 mW

Quiescent             330  mW
Vcco Dynamic   3 mW

Quiescent       3 mW

Total                1020 mW
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Step 7: Real vector product 400mflop 
Spartan3 xc3s1000(L)-4-fg456

Slice Flip Flops 2637 17%
4 input LUTs 4424   28%
Occupied Slices 3097 40%
BRAMS 21         87%
MULT18x18s     4  16% 
Clock 50 MHz ISE: 50,6 MHz

Power estimate (X_power) S3         S3L
Vccint Dynamic                92,8 mW 91 mW

Quiescent       78 mW 36 mW
Vccoux Dynamic 0 mW 0 mW

Quiescent             62 mW 62 mW
Vcco Dynamic   1 mW 1 mW

Quiescent       0 mW 0 mW

Total                235 mW 191 mW
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Step 7: Real vector product 400mflop 
Spartan3E xc3s1200E-4-fg400

Slice Flip Flops 2829 16%
4 input LUTs 4440   25%
Occupied Slices 3136 36%
BRAMS 21         75%
MULT18x18s     4  14% 
Clock 50 MHz ISE: 50,1 MHz

Power estimate is not available yet
in X power tool. 
The complete 4x 100 M FLOP Vector
product with 5 PicoBlaze processors
has been implemented and tested on
RC200E board from Celoxica with the 
Virtex 2 XC2V1000-4 part, running at
50MHz. 
Spartan 3 designs have been
all compiled but not tested on real HW.

20

Graduate Course on Embedded Control Systems
Prague, Czech Republic. April 3-7, 2006

© Jiří Kadlec 2006

Conclusions
5 PicoBlaze Architecture ++

It is compatible with our design strategy for DSP modules:
Simulink model -> DK4 debug -> HW debug -> Reuse in PicoBlaze net.

PicoBlaze is small and simple, hence manageable.  

5 PicoBlaze Architecture  --

Currently implemented conversion of data formats (8bit - 18bit) is slow.  

Spartan 3(L) power reduction ++ 

Spartan3(L) is 5x reducing power consumption comparing to Virtex2.

Spartan3E is most likely choice for our designs based on PicoBlaze net. 


