ARTIST2

Graduate Course on Embedded Control Systems

April 3rd-7th, 2006 Prague, Czech Republic

Student handouts

Organized by Zdeněk Hanzálek Department od Control Engineering Faculty of Electrical Engineering Czech Technical University in Prague

Program of Graduate Course on Embedded Control Systems

Department of Control Engineering, FEE, CTU Prague

Karlovo náměstí 13, Building E, Room K112

Monday 3rd of April

- 8:00 Registration
- 8:30 M1 Motivation and examples, Bengt Eriksson and Martin Torngren, 1.5 hour (KTH)
- 10:00 Coffee
- 10:15 M2 Control issues, Pedro Albertos, 2 hours (UPVLC)
- 12:15 Lunch
- 13:45 M3 RT issues, Alfons Crespo, 2 hours (UPVLC)

Tuesday 4th of April

- 9:00 T1 Kernels and safe (back-up) operation, Pedro Albertos and Alfons Crespo, 1 hour (UPVLC)
- 10:00 Coffee
- 10:15 T2a Control design practical issues principles, Bengt Eriksson, 1 hour (KTH)
- 11:15 T2b Control design practical issues models, Jindrich Fuka, Jiri Roubal, 1 hour (laboratories K23 and K26 - CTU)
- 12:15 Lunch
- 13:45 T3 Integrated control design and implementation, Karl-Erik Arzen and Anton Cervin, 2 hours (LTH)

Wednesday 5th of April

- 8:00 W1 Control of Computing Systems, Karl-Erik Arzen and Anton Cervin, 2 hours (LTH)
- 10:00 Coffee
- 10:15 W2 Jitterbug and Truetime, Karl-Erik Arzen and Anton Cervin, 2 hours (laboratory K2 – LTH)
- 12:15 Lunch
- 13:45 W3 ECS Deployment, Bengt Eriksson and Martin Torngren, 2 hours (KTH)

Thursday 6th of April

- 8:00 Th1 Off-line scheduling, Zdenek Hanzalek, 2 hours (CTU)
- 10:00 Coffee
- 10:15 Th2 Platform for Advanced Process Control and Real Time Optimization, Vladimir Havlena and Jiri Findejs, 2 hours (Honeywell Laboratory Prague)
- 12:15 Lunch
- 13:45 Th3, RT practical issues, Michal Sojka and Ondrej Spinka, 2 hours (laboratory K09 - CTU)

Friday 7th of April

- 8:00 F1, Torsche Matlab scheduling toolbox, Premysl Sucha and Michal Kutil, 2 hours (laboratory K2 - CTU)
- 10:00 Coffee
- 10:15 F2, Implementing Floating-Point DSP and Control with PicoBlaze Processors, Jiri Kadlec, 2 hours (CTU)
- 12:15 Closing remarks and discussion

M1 Motivation and examples, Bengt Eriksson and Martin Torngren, 1.5 hour (KTH)

In this introductory session, the general problem of the course will be presented and motivated. What Embedded systems (ES) are? What Embedded control systems (ECS) are? Why? Motivating examples: inverted pendulum, mobile robot, car safety control. Main issues in the design of ECS: typical requirements, conflicting requirements, design trade-offs, typical architectures, design parameters.

M2 Control issues, Pedro Albertos, 2 hours (UPVLC)

Real-time implementation of control algorithms in a multitasking environment involves a number of issues that should be taken into account. The unavoidable delays, both in computation and in data handling, the lost of data, the change of operation mode, the changes in sampling periods and the performance degrading are among the main issues to be considered. In this session, a review of these concepts for a general audience will be presented. The goal of this session would be to emphasize the relevance of these control design issues, to be strongly connected to the actual implementation of the control, to be discussed in the next sessions.

M3 RT issues, Alfons Crespo, 2 hours (UPVLC)

The aim of this session is to introduce the most important concepts of ECS from the real-time (RT) systems perspective. The different types of RT tasks are introduced, and the importance of RT constraints is emphasized, especially in the context of control systems design. The central role of processor scheduling for guaranteeing RT constraints is motivated, and the main paradigms of RT scheduling are introduced. Fixed and dynamic priority scheduling methods are described, including temporal analysis methods. Resource usage and jitter control are also introduced. Finally, implementation approaches in view of the existing RT operating systems and programming languages technologies are discussed. The level of presentation of the topics is introductory, but a basic knowledge of operating systems, computer architecture, and programming in a high-level language is assumed.

T1 Kernels and safe (back-up) operation, Pedro Albertos and Alfons Crespo, 1 hour (UPVLC)

ECS require to work in a variety of (unexpected) circumstances. The operating system (OS) should provide a number of basic options to guarantee the safe behaviour of ECS. In this session, a new set of operating services to provide the applications a higher control of faults and temporal constraints will be described. Some examples of this functionalities are: Execution timers, application defined scheduling, fault tolerant monitors, etc. From the control viewpoint, a hierarchical sorting of activities should be scheduled in agreement with the OS kernel to get the best, among the possible, control options. Safe (back-up) operation, basic control actions, optional and supervision are among the main issues to be discussed.

T2 Control design practical issues – principles and models, Bengt Eriksson, Jindrich Fuka, Jiri Roubal, 2 hours (KTH, CTU)

Introductory and simple exercises about control design using CACD (computer aided control design) packages will allow a better insight into the RT control design algorithms. Moreover, using some simple rigs, the participants will get some hands-on control design approaches. Some principles will be demonstrated on laboratory models.

T3 Integrated control design and implementation, Karl-Erik Arzen and Anton Cervin, 2 hours (LTH)

This session will focus on the interaction between the control design and control implementation. In embedded systems, floating point arithmetic is sometimes too costly. The problems associated with fixed point arithmetic are discussed. The implementation platform normally introduces input-output latencies due to computation and communication delays. The effects of this on control performance and how it can be compensated for will be discussed. Special emphasis will be given to the recent jitter margin concept. The implementation platform also introduces jitter in sampling intervals. This will also be discussed. The control server is a computational model for controller tasks that combines the benefits of static scheduling and dynamic event-based scheduling. Changing controller task parameters such as sampling periods on-line could sometimes be useful in order to adapt to changing conditions. The problems associated with this and the risk of switching induced instabilities will be discussed.

W1 Control of Computing Systems, Karl-Erik Arzen and Anton Cervin, 2 hours (LTH)

Using control-based approaches for modeling, analysis, and design of embedded computer and communications systems is currently receiving increased attention from the real-time systems community, as a promising foundation for controlling the uncertainty in large and complex real-time systems. The control-based approach has the potential to increase flexibility, while preserving dependability and efficiency. In this session we will give an overview of the work that is being done within the area with a special emphasis on two areas: Control of Web-servers and feedback scheduling of controller tasks. An inverted pendulum control example will illustrate some of the issues.

W2 Jitterbug and Truetime, Karl-Erik Arzen and Anton Cervin, 2 hours (laboratory K2 – LTH)

A hands-on session/exercise where the users will become familiar with the two co-design tools Jitterbug and TrueTime. Jitterbug is a MATLAB-based toolbox that computes a quadratic performance criterion for a linear control system under various timing conditions. Using the toolbox, one can easily and quickly assert how sensitive a control system is to delay, jitter, lost samples, etc., without resorting to simulation. The tool is quite general and can also be used to investigate jitter-compensating controllers, aperiodic controllers, and multi-rate controllers. TrueTime is a MATLAB/Simulink-based tool that facilitates simulation of the temporal behavior of a multitasking real-time kernel executing controller tasks. The tasks are controlling processes that are modeled as ordinary continuous-time Simulink blocks. TrueTime also makes it possible to simulate simple models of communication networks and their influence on networked control loops.

W3 ECS Deployment, Bengt Eriksson and Martin Torngren, 2 hours (KTH)

The practical issues of ECS deployment will be discussed in this session, including: ECS implementation and platform selection (e.g. which type of OS?, which hardware?); OS configuration, components selection and loading (static vs dynamic OS types); Cross-compiling; Code generation; Verification and validation. A case study will illustrate the approach.

Th1 Off-line scheduling, Zdenek Hanzalek, 2 hours (CTU)

The objective of this course is to provide an overview of different off-line scheduling problems found in embedded systems. In order to classify the scheduling problems, we show

alpha|beta|gamma notation first. Then we develop several algorithms for real-time monoprocessor applications. Namely we show Bratley's branch&bound algorithm for Cmax optimization with release dates and deadlines and we underline main ideas of 0/1 programming solution for weighted completion time optimization with precedence constraints. The class of monoprocessor problems is concluded by minimization of maximum latency, i.e. Earliest Due-Date First algorithm and Earliest Deadline First algorithm. Finally we give an insight into the scheduling on dedicated processors and we provide examples on code synthesis for FPGA.

Th2 Platform for Advanced Process Control and Real Time Optimization, Vladimir Havlena, 2 hours (Honeywell Prague)

The talk will demonstrate componentised architecture for Advanced Process Control and Real Time Optimization. The concept will be illustrated by the Unified Energy Solutions (UES) package developed by the Honeywell Laboratory in Prague, a portfolio of advanced control and optimization components for utilities and industrial energy, with the objective to operate the plant with maximum achievable profit (maximum efficiency) under the constraints imposed by technology and environmental impacts.

Th3, RT practical issues, Michal Sojka and Ondrej Spinka, 2 hours (laboratory K09 - CTU)

In this laboratory exercise the students will learn, how to use the Linux for low level control of a laboratory model. The main goal of this session will be to control the velocity of a DC motor. The motor is actuated by a PWM signal realized via two bit outputs as one periodic thread. The measured velocity is derived from two phase-shifted signals while implementing IRC (Incremental Radial Counter) sensor as an aperiodic thread. The motor is connected to a PC using printer port through a simple electronics consisting of a motor driver and basic logic circuits. The organization of the session will be as follows (it is assumed the students know to write a simple RT Linux program, Session T3): First, the students will be provided with information on how to control parallel port circuits through the configuration registers. Second, the students will try to generate the PWM signal for motor control. Third, they will write the code to measure the rotation velocity and they will program a simple PID controller for velocity control. Finally the use of RT Linux will be discussed.

F1, Torsche – Matlab scheduling toolbox, Premysl Sucha and Michal Kutil, 2 hours (laboratory K2 - CTU)

The aim of the seminar is to present a Matlab based Scheduling toolbox TORSCHE (Time Optimization of Resources, SCHEduling). The toolbox is intended mainly as a research tool to handle control and scheduling co-design problems. It offers a collection of data structures that allow the user to formalize various off-line and on-line scheduling problems. Potential of the toolbox will be shown on a high level synthesis of parallel algorithms.

F2, Implementing Floating-Point DSP and Control with PicoBlaze Processors, Jiri Kadlec, 2 hours (CTU)

For developers using reconfigurable HW for the implementation of floating-point DSP and Control algorithms, one key challenge is how to decompose the computation algorithm into sequences of parallel hardware processes while efficiently managing data flow through the parallel pipelines of these processes. Lecture, will summarize our current experiences with architecture based on network of Xilinx PicoBlaze controllers on a single chip. Complete design path from model-based (Simulink) and C-based designs (Handel-C) to the concrete reconfigurable HW will be demonstrated.

Monday 3rd of April

• Ba	ckground: evolution of electronics and software
• Ba	sic concepts and characteristics
_	Embedded vs. general purpose computing systems
_	Concepts in real-time control
_	Characteristics
• Te	chnical issues in ECS design
• Ap	oplication examples
• Co	oncluding Remarks

ARTIST2 Graduate Course on Embedded Contro Dengue, Crach Depublic, April 3, 7	trol Systems			
Technology evolution				
Mechanical, hydraulic and pneumatic controllers	Combustion engine 19th century	2		
(e.g. centrifugal regulator, 18th century)	(Pneumatic controllers early 20th century)			
×	Electrical relays			
(Babbages analytical	Analogue electronic controllers			
engine, ~1840)	(transistor, 1947)			
	Direct digital Distributed control			
	(early 1960:ies) (~1970:ies)			
	(4004 microprocessor, 1971)			
	3/21/2 ©M. Törngren 20	006 06		

ARTIST2 Contract of the based o

ARTIST2

Embedded Control Systems: Control Issues

P. Albertos

Universidad Politécnica de Valencia Dept. of Systems Engineering and Control POB. 22012 E-46071 Valencia, Spain. Fax: +34 96 3879579 e-mail: pedro@aii.upv.es

ARTIST2 NoE on Embedded Systems Design – ECS Graduate Course CTU. Prague, April 3-7. 2006
Control task
•••
•••
loop
convert _sensor _analog_ digital (y);
compute _control _action (u);
compute _error (e)
compute _control _action (u) \leftarrow
send _ converted _ control_ action (u);
update_internal_variables(y,u,);
Next _Iteration:= Next _Iteration + Period;
delay until Next _Iteration;
end loop;

ECS: Control algorithm viewpoint

- Reduced order models

ARTIST2 NoE on Embedded Systems Design - ECS Graduate C

- Non-conventional sampling and updating patterns
- Missing data control
- Event-triggered control
- Hybrid control systems
- Decision and supervisory control
- Multimode control
- Sampling rate changes
- Fault-tolerant control
- Degraded and back-up (safe) control strategies

©P. Albertos 20

– Battery monitoring and control

	ECS: Control algorithm viewpoint
_	Reduced order models
	Non-conventional sampling and updating patterns
	Missing data control
	Event-triggered control
	Hybrid control systems
	Decision and supervisory control
	Multimode control
	Sampling rate changes
	Fault-tolerant control
	Degraded and back-up (safe) control strategies
	Battery monitoring and control
	©P. Albertos 20

ARTIST2 NoE on Embedded Systems Design – ECS Graduate Col	rse
C10, 7400C. Abir 57, 2000	
X7 · 11 C	
Variable S	Sampling Time
	$ \rightarrow t $
t_{k-2}	t_{k-1} t_k
PID Controller	
	d t
$u(t) = K_p e(t) + K_d$	$\frac{d}{dt}e(t) + K_i \int e(\tau)d\tau;$
*	at _o
$u_{k} - u_{k-1} = a_{k}e_{k} + b_{k}e_{k}$	$a_1e_{k-1} + a_2e_{k-2}$
$\kappa \kappa \kappa -1 \tau \delta \kappa$	$11^{k} k^{-1}$ $12^{k} k^{-2}$
К, К,	
$q_o = K_p + \frac{K_d}{1 + \frac{K_d}{1$	$T_{i} - t_{i} - t_{i}$
$l_k - l_{k-1}$ I_1	$I_1 = \iota_k \iota_{k-1}$
$K_d = K_d$	$T_2 = t_{k-1} - t_{k-2}$
$q_2 - \frac{1}{t_{k-1} - t_{k-2}} - \frac{1}{T_2}$	
$t_{1} = t_{2}$	$T_{ m c} \pm T_{ m c}$
$q_1 = -K_p - K_d \frac{t_k - t_{k-2}}{(1 - 1)^{k-2}}$	$-+K_i(t_k-t_{k-1}) = -K_p - K_d \frac{T_1 + T_2}{mm} + K_i T_1$
$(t_k - t_{k-1})(t_{k-1} - t_{k-2})$	$I I_1 I_2$
	©P. Albertos 2006

ARTIST2 NoE on Embedded Systems Design - ECS Graduate Course CTU. Praque. Aoril.3-7, 2006	
Control task	
loop	
convert _sensor _analog_ digital (y), get t_k ;	
compute _control _action (u);	
compute T_1, T_2	
compute coefficients q _i	
compute _error (e)	
compute _control _action (u) $\leftarrow \Delta$	
send _ converted _ control_ action (u);	
update_internal_variables(y,u,);	
Next _Iteration:= Next _Iteration + Period;	
delay until Next Iteration;	
end loop;	
	©P. Albertos 2006

ARTIST2 NoE on Embedded Systems Design – ECS Graduate Course CTU, Praque, Aoril 3-7, 2006
Fast parameter estimation
$\gamma_k = \frac{\Gamma_k}{\lambda + \overline{\psi}_k^T P_k \overline{\psi}_k}$
$\vec{\boldsymbol{\theta}}_{k} = \vec{\boldsymbol{\theta}}_{k-1} + \boldsymbol{\gamma}_{k} \cdot \vec{\boldsymbol{\varphi}}_{k} (\boldsymbol{y}_{k} - \vec{\boldsymbol{\varphi}}_{k}^{T} \cdot \vec{\boldsymbol{\theta}}_{k-1}) \cdot \boldsymbol{r}_{k}$
$P_{k+1} = \frac{1}{\lambda} (I - \gamma_k \overline{\not} p_k \overline{\not} p_k^T) P_k \cdot r_k + P_k (1 - r_k)$
$\vec{\mathfrak{P}}_k = f(\vec{\theta}_k, y_j r_j, u_j, \vec{\mathfrak{P}}_j)$
$(r_k=1 \text{ if measurement and } 0 \text{ if not}).$
 Convergence depend on sampling period and data availability ra The stability of the output predictor is a necessary
but not sufficient condition for convergence.
• For small T wrong attractors appear close to the dual-rate poles.
(Poles in those positions have an oscillating impulse response with the periodicity of the lower-rate sampling).
©P. Albertos 2006

Each controller stabilizes the plant under control, But ... what under commuting?

©P Albe

- Common Lyapunov function
- Controller initialization
- Controller resetting

ARTIST2 NoE on Embedde

ARTIST2 NoE on Embedded Sys	stems Design – ECS	Graduate Course	oles' re	levanc	e				
The signal relevance depends on $T_{T_{p}}$ the control solution!!									
Variable	<i>u</i> ₂	<i>u</i> ₁	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃				
o-l poles	-405.7	0.2	0 .71492.9	-2513.3	- 340.9				
1	-336.1	-135.6	-0.4585	-340.5	- 225.2				
	-49.5	-340.6		-127.2	±179.5i				
S=Sum of poles	-719.4	-475.9	1485.1	-2981	-719.4				
Relevance = $S - P_n$	228.7	544	2963.6	-1961	228.7				
					©P. Albertos 200				

								4										
							Table	4. D	M schedu	ling	of th	e 4	tasks					
		WCE	ET P	Period	Mi	in.	Ma	x.	Averag	e	CA	1	Contro	ol E	Degrading		TO	ΓAL
					De	lay	Del	ay	Delay,	Δ	%		Effor	t	(rad)		deg	rad.
					(ms	ec)	(mse	ec)	(msec))			Κ		K*Δ			
	T1	22		70	2	2	22	2	22		0	,0	C)	0			
	T2	15		100	1	5	37	7	26,0		22,0		7,6		0.198			
	T3	17		110	1	7	54	ŀ	35,5		33,6		11		0.391			
	T4	19		110	3	6	95	5	65,5	5 53,		,6	11		0.720		1,3	609
DM scheduling with CAI reduction																		
Dwi scheuuling with CAI reduction																		
		WCF	ET Pe	eriod	Min	. 1	Max.	A	Verage	C	AI	C	ontrol	Deg	rading	тс	TAL	
					Dela	y I	Delay	E	Delay. Δ	0	%	E	ffort	(1	rad)	de	grad.	
					(msec	c) (1	msec)		(msec)				Κ	K	ζ*Δ		0	
	T1		22	70		27	2	8	27,5		1,4		0		0			
	T2		15	100		39 41		1	40,0		2,0	7,6			0,304			
	Т3		17	110		53	5	6	54,5		2,7		11		0,600	1		
	T4		19	110	(91	9	5	93,0)3,0			11		1,023		1,927	
			.]	Re-sch	eduli	ing m	ninimi	izing	g the cont	rol	perf	orn	nance d	legra	ding			
						-			-		-			-	_			
	WCET Period Mir		n.	IX.	Av	verage	CAI		Priorit		riority Deg		ng	тот	AL			
				Del	ay	Del	lay Do		lav. Δ	9	70				(rad)		degrad	
				(ms	ec)	(ms	ec)	(n	nsec)						K*Δ		0	
T1		22	70		56		60		58		5.7	3		3	0			
T2		15	100		94		97		95.5		3.0	4		4	0.726			
T3		17	110		22		23		22.5		0.9		1 0.247					
T4		19	110		38		40		30		1.8			2	0.4	29	1.3	392
114		1)	110		50		10		57		1,0				0,7		-,-	

F	ECS: Control algorithm viewpoint
	Reduced order models
	Non-conventional sampling and updating patterns
	Missing data control
	Event-triggered control
	Hybrid control systems
	Decision and supervisory control
_	Multimode control
_	Sampling rate changes
	Fault-tolerant control
	Degraded and back-up (safe) control strategies
	Battery monitoring and control
	©P. Alberto

ECS: Control algorithm viewpoint				
_	Reduced order models			
_	Non-conventional sampling and updating patterns			
_	Missing data control			
_	Event-triggered control			
_	Hybrid control systems			
_	Decision and supervisory control			
	Multimode control			
_	Sampling rate changes			
_	Fault-tolerant control			
_	Degraded and back-up (safe) control strategies			
_	Battery monitoring and control			
	©P. Albertos			

Concurrency Activities in the real world are simultaneous - physical variables change at the same time - events occur asynchronously, and even at the same time Control systems have to cope with this simultaneity - e.g. multivariable control, asynchronous events ... but computers are sequential machines - different activities must run on the same processor - simultaneous execution is simulated by multiplexing the usage of the processor among different execution sequences Concurrency: multiplexed execution of several activities on a computer - concurrent activities are called **processes**, threads, or tasks © Alfons Cresp

ARTIST2	Graduate Course on Embedded Control Systems Prague, Czech Republic. April 3-7, 2006	
	Cyclic Sc	heduling
procedur begin Level Comp Put_V end Leve	e Level_Control is := Get_Level; ute(R_Level, Level, ValOut) 'alve(ValOut); I_Control;	;
procedur begin pH := Comp Put_\ end pH_C	re pH_Control is = Get_pH; bute (R_pH, pH, Val_pH); /alve(Val_pH); Control;	
procedur begin Temp Comp Put_V end Tem	re Temp_Control is := Get_Temp; oute(R_Temp, Temp, Val_Te /alve(Val_Temp); p_Control;	mp);
		03/20/06

Open Source RTOS						
RTEMS ORK MARTE OS (Ada)						

	Open Source RTOS					
	Linux 2.4	RTLinux/GPL	RTAI	OCERA		
Processors	1386, PPC, ARM, SH, m68k, PARISK, Sparc, MIPS	1386, PPC*, ARM*	1386, PPC, ARM, m68k, M1PS	1 386, PPC*, ARM*		
Multi-processors	Yes	Yes	Yes	Yes		
Process	Yes	No	No	No		
Threads	Yes	Yes	Yes	Yes		
Scheduling policies	FIFO, RR	FIFO, EDF, SPORADIC	FIFO	FIFO, EDF, SPORADIC, CBS, IRIS, ADS		
Priority inversion	None	Ceiling	Inheritance	Ceiling		
Priority range	0-100	0-100000	0x3fffFfff-0	0-100000		
Protected memory	Yes	No	No	Yes		
Dynamic memory	Yes	No	Yes	Yes		
Semaphores	Yes	Yes	Yes	Yes		
Mutex	Yes	Yes	Yes	Yes		
Message queues	No	No	Yes	Yes		
Barriers	No	No	No	Yes		
rd/wrlocks	No	No	No	No		
Signals	Yes	No	No	Yes		
Timers	No	No	No	Yes		
Execution Timers	No	No	No	Yes		
Time resolution	Configurable (HRT)	Configurable	Configurable	Configurable		
User timers	Yes	No	No	Yes		
Network	IP, UDP, TCP,	No	IP, UDP	IP, UDP, TCP,		
Filesystems	Ext2/3, ReiserFS, DOS, RAM, Flash, XFS, QNX4,	No	No	Yes		
API's	POSIX, pSOS, VxWorks	POSIX 1003.1c, PSE	Custom, POSIX 1003.1c (compat)	POSI X 1003.1c, P		

ARTIST2

Graduate Course on Embedded Control System Prague, Czech Republic. April 3-7, 2006

© Alfons Cr

Summary

- Real-time systems have temporal requirements
 - * not just functionally correct, things must be done in time
- Scheduling is crucial in guaranteeing and analysing temporal behaviour
 - \bigstar timing properties depend on the way processor & other resources are shared
- ✤ Analysable task model based on fixed-priority scheduling
 - deadline or rate-monotonic priorities
 - controlled access to shared data
 - extensible to offsets, jitter, distributed systems, etc.
- Other scheduling methods
 - EDF (earliest-deadline first)
- » efficient but no so robust
- Static, time-driven scheduling » robust, but complex to implement

03/20/06 © Alfons Crespo 2006

Tuesday 4th of April

ARTIST2

Embedded Control Systems: Control Kernel

P. Albertos

Universidad Politécnica de Valencia * Dept. of Systems Engineering and Control, E-46071 Valencia, Spain. Fax: +34 96 3879579 e-mail: pedro@aii.upv.es

ARTIST2 NoE on Embedded Systems Design – ECS Graduate Course CTU. Praque, April 3-7, 2006		
The	e kernel concept	
OS kernel:	• Basic services:	
	 Task and time management 	
	 Interrupt handling 	
	- Interface to the applications (API)	
	– Mode changes	
	– Fault tolerance	
	 Additional services – File management 	
	– Quality of service	
	 Tracing and debugging 	
	©P. Albertos 2006	

ARTIST2 NoE on Embedded Systems Design – ECS Graduate Course CTU. Prague, April 3-7. 2006		
Control task		
loop		
convert _sensor _analog_ digital (y);		
compute _control _action (u);		
compute _error (e)		
compute _control _action (u) \leftarrow		
send _ converted _ control_ action (u);		
update_internal_variables(y,u,);		
Next _Iteration:= Next _Iteration + Period;		
delay until Next _Iteration;		
end loop;		

- Ensures control action (CA) delivering
- Data acquisition of major signals
- Transfer to new control structure
- Additional CA computing facilities
- Communication facilities
- Coordination facilities

ARTIST2 NOE on Embed

ARTIST2 NoE on Embedded Systems Design – ECS Graduate Course
Control Kernel
• Ensures control action (CA) delivering
 Safe (back-up) CA computation
 Safe CA computation based on previous data
Data acquisition of major signals
 Safe CA computation based on current data
Transfer to new control structure
 Basic control structure parameters computation
 CA computation
• Full DA
 Control structures evaluation and selection
 CA computation (different levels)
Communication facilities
Coordination facilities
©P. Albertos 2006

ARTIST2 NoE on Embedded Systems Design - ECS Graduate Course CTU, Praque, April 3-7, 2006				
Control Kernel Algorithm				
• CA delivering	$v_k = u_k$			
Backup CA	$u_k = u_b$			
Backup CA Computation	$u_k = f(u_b, x_{k-1})$			
• Current safe b-up CA comp.	$u_k = f(u_b, x_k)$			
Basic CA computation	$u_k = f_1(r_k, x_k)$			
• CA comp	$u_k = f_i(r_k, x_k)$			
• CA comp. (Process model)	$u_k = F(r_k, x_k)$			
– Essential				
– Partial				
– Complete	©P. Albertos 2006			

ARTIST2 Not on Embedded Systems Design - ECS Gaduate Course Control Kernel Algorithm • Model reduction: time scale x_1 : slow modes; x_2 : fast modes $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}_{k+1} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}_k + \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} u_k; \quad y_k = \begin{bmatrix} C_1 & C_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}_k$ Deleting the "slow" mode: $x_{1,k}$: constant $x_{2,k+1} = A_{22}x_{2,k} + A_{21}x_{1,k} + B_2u_k$ $y_k = C_2x_{2,k} + C_1x_{1,k}$

©P. Albertos 2

ARTIST2 Graduate Course on Embedded C Prague, Czech Republic. Apr	Control Systems ril 3-7, 2006
S	Session Outline
Control Loop Timir	ng Parameters
 Temporal Non-Determination 	erminism
 Input-Output La 	atency
 Sampling 	
 Switching 	
 The Jitter Margin 	
 The Control Server 	r Model
 Arithmetics 	
	2
	© Lund University 2006


```
Graduate Course on En
Prague, Czech Re
ARTIST2
      Implementing Self-Scheduling Periodic Tasks
   Attempt 3:
   t = CurrentTime();
   LOOP
     PeriodicActivity;
     t = t + h;
     WaitUntil(t);
   END;
   Will try to catch up if the actual execution time of PeriodicAc-
   tivity occasionally becomes larger than the period (a too long
   period is followed by a shorter one to make the average cor-
   rect)
   Reasonable for alarm clocks, but perhaps not for controllers.
                                                                       17
                                                               © Lund University 200
```


Prague, Czech Republic. April 3-7, 2006	
Minimize Input-Output Latency	
General Controller representation:	
$\begin{array}{lll} x(k+1) &=& Fx(k) + Gy(k) + G_ry_{ref}(k) \\ u(k) &=& Cx(k) + Dy(k) + D_ry_{ref}(k) \end{array}$	
Do as little as possible between AdIn and DaOut	
<pre>PROCEDURE Regulate; BEGIN AdIn(y); (* CalculateOutput *) u := u1 + D*y + Dr*yref; DaOut(u); (* UpdateStates *) x := F*x + G*y + Gr*yref; u1 := C*x; END Regulate;</pre>	

© Lund University 2006

ARTI	ST2 Graduate Course on Embedded Control Systems Prague, Czech Republic. April 3-7, 2006	
	Gain Scheduling	
٧	What if the sampling period varies fast?	
F	Parameterize the controller parameters in terms of the sam- pling period	
F	For example:	
	$rac{dx(t)}{dt}pprox rac{x(t_{k+1})-x(t_k)}{h_k}$	
٧	Norks often well for low order controllers, e.g., PID.	
A	Ad hoc method with no formal guarantees	
		38
	© Lund Unive	rsitv 2006

ARTIST2

Delay Margins in the Pendulum Example

The maximum delay is equal to the response time RCompute the delay margin L_m for each controller:

Task	T	C	R	L_m	
1	10	3.5	3.5	9.8	
2	14.5	3.5	7.0	12.5	
3	17.5	3.5	14.0	14.6	

 $\forall i : R_i < L_{m_i}$. Still, system 3 was seen to be unstable!

The delay margin is only valid for constant delays!

59

© Lund University 2

• Co • J	$< J_m(L)$	$re jitter$) $\Rightarrow S$	r margin J table	$V_m(L)$ f	or each t	ask	
	Task	R	$L = R^b$	J	$J_m(L)$	Stable	_
	1	3.5	3.5	0	4.4	Yes	_
	2	7.0	3.5	3.5	6.4	Yes	
	3	14.0	3.5	10.5	8.1	No?	
							_

ARTIST2	Graduate Cou Prague, C	rse on Embedded Szech Republic. A	Control Systems pril 3-7, 2006				
			T Dh		- (
	lask	R	$L = R^o$	J	${J}_m(L)$	Stable	
	1	3.5	3.5	0	4.4	Yes	
	2	7.5	3.5	4.0	6.4	Yes	
	3	10.5	3.5	7.0	8.1	Yes	
							70
							© Lund University 2006

© Lund University 20

Example: Scalar Products

Many controllers and filters involve calculations of scalar products, e.g.,

$$u = -Lx = -[l_1 \ l_2 \ l_3][x_1 \ x_2 \ x_3]^T = -l_1x_1 - l_2x_2 - l_3x_3$$

Consider the vectors

 $a = (100 \ 1 \ 100)$ $b = (100 \ 1 \ -100)$

The true scalar product is 1

When computed in fixed point representation using a precision corresponding to three decimal places, the result will be 0 ($100 \times 100 + 1 \times 1$ is rounded to 10000)

The result depends on the order or the operations.

To avoid this it is common to use higher resolution in the accumulator and round to a smaller resolution afterwards.

© Lund University 200

ARTIST2

iraduate Course on Embedded Control System Prague, Czech Republic, April 3-7, 2006

Direct and Companion Forms

$$u(k) = \sum_{i=0}^{m} b_i u(k-i) - \sum_{i=1}^{n} a_i y(k-i)$$

Not minimal (n + m states)

Companion forms (e.g., observable canonical form or controllable canonical form):

$$x(k+1) = \begin{pmatrix} -a_1 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n-1} & 0 & \cdots & 1 \\ -a_n & 0 & \cdots & 0 \end{pmatrix} x(k) + \begin{pmatrix} b_1 \\ \vdots \\ b_m \\ 0 \end{pmatrix} y(k)$$
$$u(k) = \begin{pmatrix} 1 & 0 & \cdots & 0 \end{pmatrix} x(k)$$

Minimal

Coefficients in the characteristic polynomial are the coefficients in the realization. Sensitive to computational errors if the systems are of high order and if the poles or zeros are close to each other.

101

© Lund University 200

Wednesday 5th of April

ARTIST2	Graduate Course on Embedded Control Systems - Prague, Czech Republic. April 3-7, 2006	
	Session Outline	
1.	Overview	
2.	Some General Observations	
3.	Control of Web servers	
4.	Feedback Scheduling of Controllers	
		2
		© Lund University 2006

ARTIST2	Graduate Course on Embedded Control Systems Prague, Czech Republic. April 3-7, 2006	
	Control of Computer Systems	
New are	ea	
• Hov long	wever, feedback has been applied in ad hoc ways for g without always understanding that it is control	
Textboo	oks are emerging:	
• "Fe Dia	eedback Control of Computer Systems", Hellerstein, ao, Parekh, Tilbury	
• Boo	ok by Stankovic, Abdelzaher,	
		4
	© Lund Univer	sity 2006

Example: Queuing Systems
Work requests (customers) arrive and are buffered Service level objectives (response time for request belonging to
class X should be less than Y time units)
Reduce the delay caused by other requests, i.e., adjust the buffer size and redirect or block other requests
Admission control
13 © Lund University 2008

Queue Length Control: PI-Control

© Lund University 20

ARTIS	T2 Graduate Course on Embedded Control Systems Prague, Czech Republic. April 3-7, 2006
	Indirect Feedback Scheduling
M	ost proposed approaches are indirect
By	y adjusting the scheduling parameters (T,D,C) one makes are that the task set is schedulable
TI (la	ne scheduling parameters determine the timing attributes atency, jitter) which in turn determine the control performance
P	oblem:
	 Complex, nonlinear relationship between scheduling parameters and timing attributes
	 Non-trivial relationship between timing attributes and control performance
	70
	© Lund University 2006

Apytime Controllers					
Anytime Controllers					
Controllers where the quality of the control signal is gradual refined the more time that is available	ly				
Model-based Predictive Control (MPC)					
 On-line convex optimization problem solved each sample 					
 Highly varying execution times 					
 For fast processes the latency may effect the control perfor- mance considerably 					
 The control algorithm is based on a quality-of-service type of measure, cp instantaneous cost 	ost				
 As long as a "feasible control signalt't' has been found the it tive search can be aborted before it has reached completion 	era- 1				
 Maps well to the imprecise task model 					
 Mandatory part 					
 Optional part 	74				
© Lund	University 2006				

ARTIST2 Graduate Cours Prague, Cz	e on Embedded Control Systems ech Republic. April 3-7, 2006		
	Simulink	Blocks	
• Offers a <i>Ker</i>	Library: truetime File Edit View Formal He Local Advances Schedule TrueTime Kernel TrueTime Kernel Copyright (c) 2004 Dan Hen Department of Automatic Cont Please direct questions and bug rep	Ip Sind 1 schedule True Time Network Library 1.2 riksson and Anton Cervin roj, Lund University, Sweden orts to: truetime@control.ith.se	×
 Simulink Event-ba zero-cros 	S-functions writ sed implementa ssing detection	tten in C++ ation using the	e Simulink built-in
			© Lund University 2000


```
ARTIST2
                 Example of a Code Function
   function [exectime, data] = P_Ctrl(segment, data)
   switch (segment),
      case 1,
       r = ttAnalogIn(1); % Read reference
        y = ttAnalogIn(2); % Read process output
        data.u = data.K * (r-y); % Compute and store control
                                 % signal in task data
        exectime = 0.002; % Return execution time
      case 2,
       ttAnalogOut(1, data.u); % Output control signal
        exectime = 0.001;
      case 3,
        exectime = -1; % finished
   end
```


© Lund University 2006

© Lund University 20

ARTIST2 Graduate Course on Embedded Control Systems Praque. Czech Republic. April 3-7, 2006
Deployment
 Pronunciation: di-'ploi, Function: <i>verb</i> Etymology: French <i>déployer</i>, literally, to unfold, from Old French <i>desploier</i>, from <i>des-</i> dis- + <i>ploier</i>, <i>plier</i> to fold
 Uses: to extend (a military unit) especially in width to place in battle formation or appropriate positions to spread out, utilize, or arrange especially strategically
Here: Used to in the context of ECS "implementation"
3/21/2006 ©M. Törngren 2006

ARTIST2 Graduate Course on Embedded Control Systems Praque, Czech Republic, April 3-7, 2006
Choosing electronics technology
 Off-the shelf control systems, for example, Programmable logic controllers (PLC)
 Own design Analog (low flexibility, only simple functionality) Microprocessor based Customized solution for large series
 Choosing a microprocessor Micro-controller, DSP, general purpose Fixed point vs. floating point I/O, memory and communication capabilities
3/21/2 ©M. Törngren 2

ARTIST2 Graduate Course on Embedded Control Syst Example trade-offs in choosing processor Choosing a low cost micro-controller: + Cheap microcontroller, low cost production + Use on-chip memory, no external circuits, robust solution - Scarce resources: Little room for later functional extensions - Can performance requirements be met? - Increased development (and possibly maintenance) costs Choosing a highly performing processor: + Easier to solve performance and flexibility requirements + Reduced development (and possibly maintenance) costs - Increased production cost - Power consumption, fan ©M Törngren

Floating point support	t in hardware?			
Floating point support in hardware?				
Floating point hw	Fixed point hw			
Development Lower - facilitated design	Higher - more difficult design; scaling effort, quantization errors			
Production cost Higher I	Lower			
Maintenance Improved I	Higher - more effort			
Speed 'High'	Trade-off between accuracy, speed and required memory			
Real-timeCare with concurrencyIhandling	Usual considerations			

Hardware in the loop - example	
Real electronic control unit	
engine torque engine speed Vehicle Model	
throttle crankshaft angle Tool support:	1
spark advance air-charge code generation	
ignition time Finding Model	
lambda of plant model	
- fixed step size - 'Inverted' I/O blocks	
& I/O functionality	μ
- test control	21/2006

ARTIST2 Graduate Course on Embedded Control Systems Pracue, Czech Republic, April 3-7, 2006
The SMART-1 spacecraft cont.
Mission
- Scientific experiments,
- Demonstration of electric primary propulsion
- Commercial off the shelf components including CAN
• Energy sources: solar cells, xenon gas and hydrazine
 One <75 mN stationary plasma thruster ("7 grams pulling force")
- Very efficient engine (only 70kg xenon)
- Poor acceleration
- Potential usage for long space journeys in the future
• 2 years lifetime, 350Kg weight
3/21/2006 ©M. Törngren 2006

Thursday 6th of April

ARTIST2	Graduate Course on Embedded Control Systems Prague, Czech Republic. April 3-7, 2006
	Basic constraints
• ead a t	ch task is to be processed by at most one processor at ime
• ead at	ch processor is capable of processing at most one task a time
• tas	sk T_i is processed in time interval $[r_i, \infty)$
• all	tasks are completed
• if t <i>T_i i</i>	asks T_i , T_j are in the relation $T_i < T_j$, the processing of is not started before completion of T_i
• in pre	the case of non preemptive scheduling no task is eempted, otherwise the number of preemptions if finite
• ad	ditional resource constraints, if any, are satisfied
	3/17/2006
5	© Zdenek Hanzalek 2006

ARTIST2	Graduate Course on Embedded Control Systems Prague, Czech Republic. April 3-7, 2006
	Standard notation $\alpha/\beta/\gamma$ by Graham
	$\alpha = \alpha_1 \alpha_2$
$\alpha_1 =$	1 processor
	P parallel identical processors
	Q parallel uniform proc. $p_{ii} = p_i/b_i$
	(b _i is proc. speed)
	R parallel unrelated proc. p _{ij} is arbitrary
	O dedicated machines "open-shop"
	F dedicated machines "flow-shop"
	J dedicated machines "job-shop"
$\alpha_2 =$	variable number of processors
	k given number of processors
	3/17/2006
7	© Zdenek Hanzalek 2006

ARTIST	2 Graduate Course on Embedded Control Systems Prague, Czech Republic. April 3-7, 2006
	C
	Cmax
•	1 prec C _{max} – simple
	 if tasks are assigned in whatever order in accordance with
	precedence relation, then $C_{max} = \Sigma p_j$
•	1 C _{max} – simple
•	1 r _i C _{max} – simple
	 tasks are scheduled in order of nondecreasing release times
•	1 d _i ~ C _{max} – simple
	 tasks are scheduled in order of nondecreasing deadlines
	(EDF – earliest deadline first)
	 EDF provides optimal solution iff there exists a schedule that meets all the deadlines
11	3/17/2006 © Zdenek Hanzalek 2006

ARTI	ST2 Graduate Course on Embedded Control Systems Prague, Czech Republic. April 3-7, 2006	K /	
(i)	exceeding deadlines	Т	
	- if completion time associated with at least one of the nodes under node ν in level <i>k</i> -1 then all nodes under ν can be eliminated		
		due to this vertex it is needed	d to
		aliminate both "brother" vort	
(ii)	probl. decomposition		
	 if the completion time C_i of all scheduled tasks is less than or equal to 	situation at level k r_i	
	smallest release time of all unscheduled tasks	it remains to schedule (n-k) tasks $r_{a}=r_{m}$	— n-k
13		© Zdenek Hanzal	16 lek 2006

ARTIST2 Graduate Course on Embedded Control Systems Prague, Czech Republic. April 3-7, 2006	
Lemma: A schedule is optimal iff it contains a block that satisfies the release time property Proof:	
 if part (each schedule with block satisfying RTP is optimal) - follows from the definition of RTP 	
 only if part (each optimal schedule has block satisfying RTP) – by contradiction – suppose schedules that do not have block with RTP, none of them is optimal 	
15 © Zdenek Har	3/17/2006 nzalek 2006

<i>function</i> - the erlap <i>constraint</i> - corresponding to	
<i>constraint</i> - corresponding to	$\min \sum_{i=1}^{n} \hat{q}_i$
f filter	subject to : $\hat{\mathbf{s}}_{j} + \hat{q}_{j} \cdot w - \hat{\mathbf{s}}_{i} - \hat{q}_{i} \cdot w \ge l_{ij} - h_{ij} \cdot w$ $p_{j} \le \hat{\mathbf{s}}_{i} - \hat{\mathbf{s}}_{j} + w \cdot \hat{x}_{ij} \le w - p_{i}$
onstraints - m one task is a given time	where : $\hat{\mathbf{s}}_i \in \langle 0, w-1 \rangle, \hat{q}_i \ge 0, \hat{x}_{ij} \le w - p_i$ \hat{q}_i, \hat{x}_{ij} are integers.
m one ta a given ti	$\hat{\mathbf{s}}_i \in \langle 0, w-1 \rangle, \hat{q}_i \ge 0, \hat{x}_{ij} \le w - p_i$ \hat{q}_i, \hat{x}_{ij} are integers.

ARTIST2	Graduate Course on Embeddled Control Systems Prague, Ezech Republic. April 3-7, 2006
	Achievements
•	 ILP gives rather good results even for realistic examples in reasonable time (2 seconds) model is dependent on number of tasks but it is independent of w
•	Filter performance increased by 70%
•	Better utilization of arithmetic unit
•	Automatic scheduling
	– systematic design
	algorithm graph schedule code
	 rapid prototypingsimulation of the schedule prior to time consuming implementation
	3/17/2006
47	© Zdenek Hanzalek 2006

ARTIST2	Graduate Course on Embedded Control Systems Prague, Czech Republic. April 3-7, 2006	
• Op - - -	 Definition of the second second	<complex-block></complex-block>
3		© V. Havlena, J. Findeis, 2006

ARTIST2	Graduate Course on Embedded Control Systems Prague, Czech Republic. April 3-7, 2006	
UES	portfolio overview	,
Utility	application	TL©
(block a	arrangement)	
Objecti • Pow • Avai • Cost • Res (elig	ves er generation lability/contract execution cs/profit ponsiveness libility for ancillary services)	ATC Pressure Control ACC Prock 3
Distribu	uted arch.	
Cont	trol	
• Loca • Shai	al/Global opt. red solution components	
7		© V. Havlena, J. Findeis, 2006

ARTIST2

raduate Course on Embedded Control Systems Prague, Czech Republic, April 3-7, 2006

Unified Real Time (URT) Platform - Objectives

- Environment for hosting advanced process-control, real-time optimization and planning/ scheduling applications that
 - Are hybrid, large and/or complex
 - Use any DCS for underlying process measurements and regulatory control
 - Involve dynamic configuration, flexible scheduling, complex organization, etc.
- Build on experience with DCS applications
- Provide tight integration with DCS and business control level

© V. Havlena, J. Findejs, 2006

ARTIST2	Graduate Course on Embedded Control Systems Prague, Czech Republic. April 3-7, 2006				
URT	r – Data Subsystem				
• Fix _	ed set of elementary data iter Scalars • double, float, time	Name URT_ConFloat	Type float enum	Value -1.40000E12 ADD	Description Float value Enumeration
_	 short, int, long, enumeration string, bool, variant, link Containers of scalars – array, list 	URT_ConString URT_ConLong URT_ConDouble URT_ConTime t. (aueue.	string long double time	TextText 54365465 1.2324540E234 2005Jul07 10:20:00.123	String value Long value Double value Date-Time value
• Da _	stack) ta items for building structure Component – keeps a reference of URT component	s (nodes) to any type	e 🗉	SPlatform Image: Splatform	ist odeList ArrayComp
		ay, iist		- I URT_Con - I URT_Convolution - II - URT_Convolution - URT_Convo	ListComp onNodeList ist2 odeList Comp Comp2 ionNodeList
20					© V. Havlena, J. Findejs, 2006

B→mh FILTER untrB5bxc51ate enum STOP FB vencution state - composite of FB and sched state Light D DEN untrB5bxc51ate enum 0000000,000 Time out interval untrB5bxc51ate untrB5bxc51ate enum 000000,000 Time out interval untrB5bxc51ate untrB5bxc51ate enum 000000,000 Time out interval untrB5bxc51ate untrB5bxc51ate bool Dime out interval untrB5bxc51ate untrB5bxc51ate oduble 0 PV double 0 PV to be processed WAXSUBS long 0 Maximum number of substitution MAXSUBS long 0 Maximum number of substitutes UB PV double 0 OP untrB1LTER struct Filter parameters mh EQUATION struct Equation coeficients U OP double 0 OP	Mr FLTER urf#Biste erum STOPP FB run state C1 NUM urf#BisecState erum STOPPED_F FB exection state - composite of FB and sched state C1 DEN urf#BiceCitate time 00:00:00.00 Time out interval urf#Dictitation urf#BiceCitate bool ture Flig indicating whether FB is critical. If true FB runs P V double 0 Backup value for substitution MAXSUBS long 0 Substitute index MAXSUBS long 0 Substitute index MAXSUBS long 0 Substitute index Mr FLTER struct Filter parameters mr FULTON OP double 0 VProc If GAIN double 1.00000000 Equation coefficients VProc If GAIN double 0 Equation offset: GAIN * PV + OFFSET C1 NUM C1 DEN cend >		urtSetFBState	enum	STOP	Set FB active/inactive
Image: Construction of the co	UP INDM urtmeDutinterval time 00:00:00.00 Time out interval UP INDM urtmeDutinterval time 00:00:00.00 Time out interval PV BEQUATION urtmeDutinterval time 00:00:00.00 Time out interval PV PVESCINCal bool true PV to be processed PV PVESCINCal 0 Bod uply rale for substitution MAXSUBS long 0 Substitute index MAXSUBS long 0 OP MAXSUBS long 0 Substitute index MAXSUBS long 0 OP MAXSUBS long 0 OP	E m FILTER	urtFBState	enum	STOP STOPPED EB	FB run state FB evenution state - composite of FB and sched state
Image: Construction Image: Construct	Name Type Value Description VProc GAIN GAIN double 0 Proc GAIN double 0 Equation offset: GAIN * PV + OFFSET C) NUM C offSET double 0 Equation	L J NUM	 urtTimeOutInterval 	time	00:00:00.000	Time out interval
Image: Second	Nome Type Value Description VProc If GAIN double 0	EQUATION	urtFBCritical	bool	true	Flag inidcating whether FB is critical. If true FB runs
Image: Substruction of the su	Name Type Value Description VProc Image: Apple of the substruct of substruct on substruct	EQUATION	PV	double	0	PV to be processed
Image: SUBS bind of substantial of the substantial of	Image: SUBS Unig 0 Substitute index Image: SUBS Unig 0 Substitute index Image: Substitute index Filter parameters Image: Substitute index Equation coefficients Image: Substitute index OP Image: Substitute index Equation coefficients Image: Substitute index OP Image: Substitute index Equation coefficients Image: Substitute index OP Image: Substitute index Equation coefficients Image: Substitute index OP Image: Substitute index Equation coefficients Image: Substitute index OP Image: Substitute index <td< td=""><td></td><td>MAYSURS</td><td>long</td><td>0</td><td>Backup Value for substitution Maximum number of substitutes</td></td<>		MAYSURS	long	0	Backup Value for substitution Maximum number of substitutes
Image: Struct parameters Filter parameters Image: Struct parameters Filter parameters Image: Struct parameters Equation coefficients Image: Struc	Name Type Value Description VProc I GAFN double 0 VProc I GAFN double 0 Equation coefficients I CP Image: Struct Equation coefficients VProc Image: Struct GaFN Image: Struct Image: Struct Equation coefficients Image: Struct Image: Struct Equation coefficients Image: Struct Image: Struct Image: Struct Image: Struct Image: Str		SUBS	long	ŏ	Substitute index
Image: Struct Equation coefficients Image: OP OP Image: OP double Image: OP OP Ima	Name Type Value Description VProc GAIN double 0 I GAIN double 1.00000000 Equation coefficients 0 QP CP		rth FILTER	struct		Filter parameters
Image: OP double 0 OP Image: OP double 0 OP	Name Type Value Description VProc GAIN double 1.0000000 Equation gain: GAIN * PV + OFFSET GAIN double 0 Equation offset: GAIN * PV + OFFSET C1 NUM < end > C1 DEN Equation		rth EQUATION	struct		Equation coeficients
⊡ □ □ Name Type Value Description ⊡ □	Name Type Value Description VProc II GAIN double 1.0000000 Equation gain: GAIN * PV + OFFSET Mr FLTER OFFSET double 0 Equation offset: GAIN * PV + OFFSET C1 NUM < end > C1 DEN EQUATION	•				
Image	Name I ype Value Description VProc II GAIN double 1.0000000 Equation gains: GAIN * PV + OFFSET /h FLTER II OFFSET double 0 Equation offset: GAIN * PV + OFFSET			-	1	
Climit Private Private Calls	OFFSET OUDFSET double 0.0000000 Equation offset: GAIN * PV + OFFSET		Name	Туре	Value	Description
C) NM C) DEN EQUATION	LINUM < end > Country (country (country))		CATN	allow della		Equation date: $GA(0) = PV + OFESET$
			GAIN	double	1.00000000	Equation offset: GAIN * PV + OFFSET
EQUATION	EQUATION		GAIN OFFSET < end >	double	0	Equation offset: GAIN * PV + OFFSET
		E = BATA E = ## PVProc E = m FILTER C] NUM C] DEN	GAIN OFFSET < end >	double double	0	Equation offset: GAIN * PV + OFFSET
			GAIN OFFSET < end >	double double	0	Equation offset: GAIN * PV + OFFSET
		E SATA D-3111 PPProc E m FILTER C] NUM C] DEN EQUATION	GAIN OFFSET < end >	double double	0	Equation offset: GAIN # PV + OFFSET
		O THE PVProc O THE PVP O THE PVP	GAIN OFFSET < end >	double double	0	Equation offset: GAIN * PV + OFFSET
			GAIN OFFSET < end >	double double	0	Equation offset: GAIN * PV + OFFSET
		Bull PProc Bull PProc Bull PProc Bull PProc During Proc During Proc	GAIN OFFSET < end >	double double	0	Equation offset: GAIN * PV + OFFSET
		Bulli PVProc Hill PVProc Hill PVProc Dunk Dunk Dunk CJ DEN EQUATION	GAIN OFFSET < end >	double double	0	Equation offset: GAIN * PV + OFFSET
			GAIN OFFSET < end >	double double	0	Equation offset: GAIN * PV + OFFSET
			GAIN OFFSET < end >	double double	0	Equation offset: GAIN * PV + OFFSET

ARTIST2 Graduate Course on Embedded Control Systems Prague, Czech Republic. April 3-7, 2006	
URT - Navigation	
 Each component must have a name. Any two sibling compon must have different names 	ients
 The tree of components can be seen as a XML document, wh names of the components in URT are names of elements in X document 	iere (ML
• The URT component can be located using XPath-like queries	
 The query can be absolute (including the name of the platfor relative. An absolute query may point to another platform. Absolute query: (Plaform1)/\$Plaform1/Unit/App/Engine/Item Relative query://Params/HILM 	m) or
 The query may contain some attributes of the component (e. type) 	.g.
 The queries are used in connections and links 	
33	V. Havlena, J. Findejs, 2006

ARTIST2 Graduat Proj	te Course on Embedded Control Systems gue, Czech Republic. April 3-7, 2006	
Application	ame Type Value UrtSetFBState enum STOP UrtFBState enum STOP UrtFBExc26te enum STOP UrtFBExc26te enum STOPPED_FB UrtFBExc26te enum STOPPED_FB UrtFBExc16te enum STOPPED_FB UrtFBExc16te enum BULD	 Special function block for building application Multi-phase building process One function block can create several applications inside the platform
Plaform - \$Plaform Plaform - \$Plaform Plaform Pl	Nome Type Yake # urtBStack enum STOP # urtBStackstake enum STOP # urtBStackstake enum STOPED_FB # ROTOT Ink	
		© V. Havlena, J. Findejs, 2006

ARTIST2	Graduate Course on Embedded Control Systems Prague, Czech Republic. April 3-7, 2006	
	A Basic C	Application
<pre>#inc int main { } • Ru ~/</pre>	<pre>elude <stdio.h> a(int argc, char *argv[]) printf("Hello\n"); return 0; un the compiled applicat artist2/_compiled/bin/h</stdio.h></pre>	 In directory ~/artist2/hello Compile by command make Executable appears in ~/artist2/_compiled/bin
		03/24/06 © Michal Sojka 2006

ARTIST2	Graduate Course on Embedded Control Systems Prague, Czech Republic. April 3-7, 2006
	Your Tasks
•	Extend the PWM thread to generate PWM signal based on the value motor->action.
•	Implement a controller.
	 start with a P-controller which computes action as action = K_p * (reference - velocity)
	$_$ Experiment to find the value of $K_{_{\rm P}}$
	 Extend the controller to PI. In the simplest case, you'll need to store the sum of errors.
•	You may try to do other extensions – windup handling, use fixed-point arithmetic, use better implementation of PID, etc.
	03/24/06 © Michal Sojka 2006

Friday 7th of April

ARTIST2 Graduate Course on Embedded Control Systems Prague, Czech Republic. April 3-7, 2006	
Session Outli	ne
 TORSCHE Introduction TORSCHE Quick Start Iterative Algorithms Schedulin Outlook 	ng
	© Přemysl Šůcha 2006

ARTIST2 Graduate Course on Embedded Control Systems Prague, Czech Republic. April 3-7, 2006	
Definition of Taskset	
Set of tasks is created by command <i>taskset</i> :	
>> T = taskset([t1 t2 t3]) Set of 3 tasks	
For short:	
>> T = [t1 t2 t3] Set of 3 tasks	
© F	Přemvsl Šůcha 2006

ARTIST2 Graduate Course on Embedded Control Systems Prague, Czech Republic. April 3-7, 2006
Scheduling
Now we can run the scheduling algorithm, for example Horn's algorithm:
<pre>>> TS = horn(T,p) Set of 3 tasks There is schedule: Horn's algorithm Solving time: 0.016s</pre>
Graphical representation of the schedule (Gantt chart) can be displayed using command <i>plot</i> :
>> plot(TS,'proc',0)

ARTIST2 Graduate Course on Embedded Control S Prague, Czech Republic. April 3-7, 20	Systems D06		
Example –	Cyclic Sche	eduling	
Wave Digital Filter (WDF): for k=1 a(k)	to N do =X(k) + e(k-1)	%T1
	b(k)	= a(k) - g(k-1)	%T2
	c(k)	= b(k) + e(k)	%T3
		$= \operatorname{gammal} * D(K)$ = d(k) + o(k-1)	814 975
	f(k)	= qamma2 * b(k)	%15 %T6
Band-Limited Fcn	Scope g(k)	= f(k) + g(k-1)	%T7
White Noise	Y(k)	= c(k) - g(k)	%T8
	end		
Llandssons and ald the			
Hardware: one addition	and one mult	iplication unit	on a
FPGA architecture wi	th floating-poin	t units	
		lata and	г
floating-point unit	processing time	latency	
	[CIK]	[CIK]	4
		1	
addition (+)	1	I	

ARTIST2 Graduate Course on Embedde Prague, Czech Republic. Cyclic Da	ata Flow Graph of WDF
for k=1 to N do a(k) = X(k) + e(k-1) %T1 b(k) = a(k) - g(k-1) %T2 c(k) = b(k) + e(k) %T3 d(k) = ganma1 * b(k) %T4 e(k) = d(k) + e(k-1) %T5 f(k) = ganma2 * b(k) %T6 g(k) = f(k) + g(k-1) %T7 Y(k) = c(k) - g(k) %T8 end	
	© Premysi Sucha 2006

ARTIST2 Graduate Course on Embedded Control Systems Prague, Czech Republic. April 3-7, 2006
Solution
Graph G can be directly transformed to the taskset:
>> T=taskset(G)
Set of 8 tasks
There are precedence constraints
>> prob=problem('m-DEDICATED');
>> schoptions=schoptionsset('ilpSolver','glpk');
>> TS=mdcycsch(T, prob, 1, schoptions)
Set of 8 tasks
There are precedence constraints
There is schedule: MONOCYCSCH-ILP based algorithm (integer)
Tasks period: 8
Solving time: 0.126s
Number of iterations: 4
>> plot(TS,'prec',0)

ARTIST2 Graduate Course on Embedded Control Systems Prague, Czech Republic. April 3-7, 2006
Solution Summary
>> graphedit
>> UnitProcTime=[1 3];
>> UnitLattency=[1 3];
>> G = cdfg2LHgraph(cdfg,UnitProcTime,UnitLattency);
>> T=taskset(G);
>> prob=problem('m-DEDICATED');
>> schoptions=schoptionsset('ilpSolver','glpk');
>> TS=mdcycsch(T, prob, 1, schoptions);
>> plot(TS,'prec',0);
© Přemysl Šůcha 2006

ARTIST2 Graduate Course on Embedded Control Prague, Czech Republic. April 3-7,	l Systems 2006	
Generic Short Laten Based on Celoxica DK 1.1 H Precisions <total_length>m ADD/SUB, MUL FIXPT2F, F2FIXPT</total_length>	cy Floating Point Macros landel-C Floating Point Library n <mantissa>: 18m11, 24m17, 32m23, 36m27 2 stage pipelined (retimed) 4 stage pipelined (retimed)</mantissa>	Used in Final FP Vector Product Demo 2
DIV, SQRT	Sequential. No of cycles = mantissa width	+ 2
32 bit Pipelined Floa	ating Point Macros	
Based on Celoxica DK 3.1 H	landel-C Pipelined Floating Point Library	
32 bit Precisions <total_len< p=""></total_len<>	gth>m <mantissa>: 32m23</mantissa>	
ADD/SUB 10 stage pipe	elined MUL 7 stage pipelined	
 FIXPT2F 12 stage pipe 	elined F2FIXPT 14 stage pipelined	
DIV 28 stage pipe	elined SQRT 27 stage pipelined	
	8	0 31 ²⁰ K- 41 2000

Step1-3: Bit exact model in Simuli	nk and debugging.
Nettest_simulink File Edit View Simulation Format Tools Help □ I 26 日 26 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Image: State Stat	
Ready [100% FixedStepDiscrete	500
Re Edit, Debug, Desktoo, Window, Help	
D 😅 3 🐘 🛍 🕫 🖓 📩 💡 c:'homeWadlec'projects05A_picoP_v6lsim_prod	
Shortcute 🛃 How to Add 🕐 What's New	1000
Go to DK4 simulator	▲ 1000
to generate output.dat from input.dat	1500 2 4 6 8
22 A nul	Time offset: 1

ARTIST2	uate Course on Embedded Control Systems Prague, Czech Republic. April 3-7, 2006
Step 6: In	tegrate and test with PicoBlaze on HW
Simulink tes by DK4 sim HW kit (RC2 to target Pic format com	St bench generates data which can be used ulator, HW board for verrification on the 200E with XC2V1000-4 in our case). Finally coBlaze network, data are generated in patible with 18-bit wide BRAMS X,Y and Z: Subtrement of the Souther Educe Motionst Niepokia 100 % 0.0
This is Mem Dump	Tera Term - COMI VT I. C. 0, 0, F8, 0, Fle Edt Setup Control Window Help 3, 1D, 0, 4
managed by	₩4:020: 00 00 00 01 0a 00 01 19 80 03 15 00 03 19 00 03 ₩4:020: 00 00 01 0c 00 03 1d 00 00 00 00 00 00 00 00 00 00 ₩4:030: 00 00 00 00 00 00 00 00 00 00 00 00 0
on rc200e hw.	₩4:040: 00 00 00 01 16 00 03 18 80 01 22 80 01 16 00 03 ₩4:050: 1f 80 00 f8 00 03 20 00 00 00 00 00 00 00 00 00 00 #4:060: 00 00 00 00 00 00 00 00 00 00 00 00 0
It prints test vector data and result of	w4:070:03 03 00
vector prod. identical with Simulink.	P H U1>time 00:04:27 P H U1> Finally, OK on HW :-)
	16

virtex	$2 \times 2 \times 100$	0-4-fa456	
Slice Flip Flops		2905	28%
4 input LUTs		4241	42%
Occupied Slices		3292	64%
BRAMS		21	52%
MULT18x18s		4	10%
Clock 50 MHz		ISE: 53	,3 MHz
Powe by me	r (Xpower set easurement of	ting has be f case temp	en verified perature):
 Powe by me Vccint 	r (Xpower set easurement of Dynamic	ting has be f case temp 666 mV	en verified perature): V
 Powe by me Vccint 	r (Xpower set easurement of Dynamic Quiescent	ting has be f case temp 666 mV 18 mV	en verified perature): V
 Powe by me Vccint Vccoux 	r (Xpower set easurement o Dynamic Quiescent x Dynamic	ting has be f case temp 666 mV 18 mV 0 mV	en verified berature): V V
 Powe by me Vccint Vccoux 	r (Xpower set easurement of Dynamic Quiescent x Dynamic Quiescent	ting has be f case temp 666 mV 18 mV 0 mV 330 mV	en verified berature): V V V W
 Powe by me Vccint Vccou: 	r (Xpower set easurement of Dynamic Quiescent x Dynamic Quiescent Dynamic	ting has be f case temp 666 mV 18 mV 0 mV 330 mV 330 mV 3 mV	en verified berature): v v v v
 Powe by me Vccint Vccout Vcco 	r (Xpower set easurement of Dynamic Quiescent x Dynamic Quiescent Dynamic Quiescent	ting has be f case temp 666 mV 18 mV 0 mV 330 mV 3 mV 3 mV	en verified berature): V V V V V

tep 7 parta	: Real vect n3 xc3s10	or produc 00(L)-4-fg	t 400mflop 456	
Slice F 4 input	lip Flops LUTs	2637 4424	17% 28%	and the second second
Occup BRAM	ied Slices S	3097 21	40% 87%	
MULT1 Clock 4	8x18s 50 MHz	4 ISE: 50,6	16% MHz	
Powe	r estimate (X_	power) S3	S3L	
Vccint	Dynamic Quiescent	92,8 mW 78 mW	91 mW 36 mW	
Vccou	x Dynamic Quiescent	0 mW 62 mW	0 mW 62 mW	State Carling
Vcco	Dynamic Quiescent	1 mW 0 mW	1 mW 0 mW	
		235 mW	191 mW	X81Y63

RTIST2 Graduate Pragu	Course on Embedded Control Systems e, Czech Republic. April 3-7, 2006	🕼 Xiine Rooplanner - fahrtest_top
Spartan3E xc3	s1200E-4-fg400	Pre bot www Heardhy Patern Hoopan whow Prep D 20 20 20 20 20 20 20 20 20 20 20 20 20
 Slice Flip Flops 4 input LUTs Occupied Slices BRAMS MULT18x18s Clock 50 MHz Power estimate is 	2829 16% 4440 25% 3136 36% 21 75% 4 14% ISE: 50,1 MHz	
 The complete 4x 1 product with 5 Pic has been impleme RC200E board froi Virtex 2 XC2V1000 50MHz. 	00 M FLOP Vector oBlaze processors inted and tested on m Celoxica with the I-4 part, running at	i i i i i i i i i i i i i i i i i i i
Spartan 3 designs all compiled but no	have been ot tested on real HW.	
	19	© 1iří Kadle

ARTIST2	Graduate Course on Embedded Control Systems Prague, Czech Republic. April 3-7, 2006
Cor	clusions
= 5	PicoBlaze Architecture ++
	It is compatible with our design strategy for DSP modules: Simulink model -> DK4 debug -> HW debug -> Reuse in PicoBlaze net.
	PicoBlaze is small and simple, hence manageable.
5	PicoBlaze Architecture
	Currently implemented conversion of data formats (8bit - 18bit) is slow.
s	partan 3(L) power reduction ++
	Spartan3(L) is 5x reducing power consumption comparing to Virtex2.
	Spartan3E is most likely choice for our designs based on PicoBlaze net.
1	20

© Jiří Kadlec 2006