
TORSCHE Scheduling
Toolbox for Matlab

User’s Guide
(Release 0.4.0)

TORSCHE Scheduling Toolbox for Matlab
User’s Guide
(Release 0.4.0; Rev. 1926)

Michal Kutil, Přemysl Š̊ucha, Michal Sojka and Zdeněk Hanzálek

Centre for Applied Cybernetics, Department of Control Engineering
Czech Technical University in Prague
{kutilm,suchap,sojkam1,hanzalek}@fel.cvut.cz
http://rtime.felk.cvut.cz/scheduling-toolbox/

Toolbox contributors: Roman Čapek, Miroslav Hájek, Jindřich Jindra, Jan Martinský,
David Matěj́ıček, Pavel Mezera, Josef Mrázik, Vojtěch Navrátil, Miloš Němec, Ondřej
Nývlt, Martin Panáček Rostislav Prikner, Zdeněk Prok̊upek, Milan Šilar and Miloslav
Stibor.

Copyright c© 2004, 2005, 2006, 2007 Centre for Applied Cybernetics, Department of Control
Engineering, Czech Technical University in Prague, Karlovo náměst́ı 13, 121 35 Prague 2, Czech
Republic. All rights reserved.

Permission is granted to make and distribute verbatim copies of this User’s Guide provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this User’s Guide under the conditions
for verbatim copying, provided also that the entire resulting derived work is distributed under the terms
of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this User’s Guide into another language,
under the above conditions for modified versions.

Prague, October 12, 2007

http://rtime.felk.cvut.cz/scheduling-toolbox/

TORSCHE Scheduling Toolbox for Matlab is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free Software Foundation;
either version 2 of the License, or (at your option) any later version.

TORSCHE Scheduling Toolbox for Matlab is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with Scheduling Toolbox; if
not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA

Licences of external software packages are stated below:

• GLPK (GNU Linear Programming Kit) Version 4.6 is free software under GNU General Public
License as published by the Free Software Foundation.

• MATLAB MEX INTERFACE FOR CPLEX is free software under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation.

• Utility “unzip.exe” is licenced by Info-ZIP (for more details see file
\scheduling\contrib\unzip\LICENSE).

• Patch 2.5.9-6, libiconv-2.dll and libintl-2.dll is software under GNU General Public License as
published by the Free Software Foundation.

• gzip (GNU zip) 1.2.4 is software under GNU General Public License as published by the Free
Software Foundation.

Contents

1 Introduction 13

2 Quick Start 15
2.1 Software Requirements . 15
2.2 Installation . 15
2.3 Help . 15
2.4 How to Solve Your Scheduling Problems . 15
2.5 Save and Load Functions . 17

3 Tasks 19
3.1 Introduction . 19
3.2 Creating the task Object . 20
3.3 Graphical Representation of the task Object . 20
3.4 Object task Modifications . 20

3.4.1 Start Time of Task . 21
3.4.2 Color Modification . 21

3.5 Periodic Tasks . 22
3.5.1 Creating the ptask Object . 22
3.5.2 Working with ptask Objects . 22

4 Sets of Tasks 23
4.1 Creating the taskset Object . 23
4.2 Graphical Representation of the Set of Tasks . 23
4.3 Set of Tasks Modification . 23

4.3.1 Modification of Tasks Parameters Inside the Set of Tasks 24
4.3.2 Schedule . 25

4.4 Other Functions . 26
4.4.1 Count and Size . 26
4.4.2 Sort . 26
4.4.3 Random taskset . 26

5 Classification in Scheduling 27
5.1 The problem Object . 27

6 Graphs 29
6.1 Introduction . 29
6.2 Creating Object graph . 29
6.3 Object graph Modification . 30

6.3.1 User Parameters on Edges . 31
6.4 Graphedit . 31

6.4.1 The Graph Construction . 32
6.4.1.1 Placing of Nodes and Edges . 32

6.4.2 Plug-ins . 32
6.4.3 Property editor . 32
6.4.4 Export/Import to/from Matlab workspace . 32
6.4.5 Saving/Loading to/from Binary File . 33
6.4.6 Change of Appearance of Nodes . 33

6.5 Transformations Between Objects taskset and graph . 33
6.5.1 Transformations from graph to taskset . 33
6.5.2 Transformations from taskset to graph . 33

5

CONTENTS

7 Scheduling Algorithms 35
7.1 Structure of Scheduling Algorithms . 35
7.2 List of Algorithms . 35
7.3 Algorithm for Problem 1|rj|Cmax . 36
7.4 Bratley’s Algorithm . 37
7.5 Hodgson’s Algorithm . 38
7.6 Algorithm for Problem P||Cmax . 38
7.7 McNaughton’s Algorithm . 39
7.8 Algorithm for Problem P|rj,prec,˜dj|Cmax . 40
7.9 List Scheduling . 40

7.9.1 LPT . 41
7.9.2 SPT . 42
7.9.3 ECT . 43
7.9.4 EST . 44
7.9.5 Own Strategy Algorithm . 45

7.10 Brucker’s Algorithm . 46
7.11 Scheduling with Positive and Negative Time-Lags . 46
7.12 Cyclic Scheduling . 48
7.13 SAT Scheduling . 51

7.13.1 Instalation . 52
7.13.2 Clause preparing theory . 52
7.13.3 Example - Jaumann wave digital filter . 52

7.14 Hu’s Algorithm . 53
7.15 Coffman’s and Graham’s Algorithm . 54

8 Real-Time Scheduling 59
8.1 Fixed-Priority Scheduling . 59

8.1.1 Response-Time Analysis . 59
8.1.2 Fixed-Priority Scheduler . 59

9 Graph Algorithms 61
9.1 List of Algorithms . 61
9.2 Minimum Spanning Tree . 61
9.3 Dijkstra’s Algorithm . 61
9.4 Floyd’s Algorithm . 63
9.5 Strongly Connected Components . 63
9.6 Minimum Cost Flows . 63
9.7 The Critical Circuit Ratio . 64
9.8 Hamilton Circuits . 65
9.9 Graph coloring . 66
9.10 The Quadratic Assignment Problem . 66

10 Other Algorithms 71
10.1 List of Algorithms . 71
10.2 Scheduling Toolbox Options . 71
10.3 Random Data Flow Graph (DFG) generation . 71
10.4 Universal interface for ILP . 72
10.5 Universal interface for MIQP . 73
10.6 Cyclic Scheduling Simulator . 74

10.6.1 CSSIM Input File . 74
10.6.2 TrueTime . 75

10.7 Export to XML . 78

11 Case Studies 79
11.1 Theoretical Case Studies . 79

11.1.1 Watchmaker’s . 79
11.1.2 Conveyor Belts . 80
11.1.3 Chair manufacturing . 81

11.2 Real Word Case Studies . 82

6

CONTENTS

11.2.1 Scheduling of RLS Algorithm for HW architectures with Pipelined Arithmetic Units 83

12 Reference guide 87

Literature 153

7

List of Figures

2 Quick Start
2.1 The taskset schedule . 16

3 Tasks
3.1 Graphics representation of task parameters . 19
3.2 Creating task objects . 20
3.3 Plot example . 21

4 Sets of Tasks
4.1 Creating a set of tasks and adding precedence constraints 23
4.2 Gantt chart for a set of scheduled tasks . 24
4.3 Access to the virtual property examples . 24
4.4 Schedule inserting example . 25
4.5 Schedule parameters . 25
4.6 Taskset sort example . 26
4.7 Example of random taskset use . 26

6 Graphs
6.1 Creating a graphs from adjacency matrix . 30
6.2 Command set for graph . 30
6.3 Graphedit . 32

7 Scheduling Algorithms
7.1 Structure of scheduling algorithms in the toolbox. 36
7.2 Scheduling problem 1|rj|Cmax solving. 37
7.3 Alg1rjcmax algorithm - problem 1|rj|Cmax . 37
7.4 Scheduling problem 1|rj,˜dj|Cmax solving. 37
7.5 Bratley’s algorithm - problem 1|rj,˜dj|Cmax . 37
7.6 Scheduling problem 1||

∑
Uj solving. 38

7.7 Hodgson’s algorithm - problem 1||
∑

Uj . 38
7.8 Scheduling problem P||Cmax solving. 38
7.9 Algpcmax algorithm - problem P||Cmax . 39
7.10 Scheduling problem P|pmtn|Cmax solving. 39
7.11 McNaughton’s algorithm - problem P|pmtn|Cmax . 39
7.12 Scheduling problem P|pj,prec,˜dj|Cmax solving. 40
7.13 Algprjdeadlinepreccmax algorithm - problem P|pj,prec,˜dj|Cmax 40
7.14 An example of P|prec|Cmax scheduling problem. 41
7.15 Scheduling problem P|prec|Cmax solving. 42
7.16 Result of List Scheduling. 42
7.17 Problem P|prec|Cmax by LS algorithm with LPT strategy solving. 42
7.18 Result of LS algorithm with LPT strategy. 43
7.19 Solving P|prec|Cmax by LS algorithm with SPT strategy. 43
7.20 Result of LS algorithm with SPT strategy. 44
7.21 Solving P|rj|ΣCj by ECT . 44
7.22 Result of LS algorithm with ECT strategy. 44
7.23 Problem P|rj|ΣCj by LS algorithm with EST strategy solving. 45
7.24 Result of LS algorithm with EST strategy. 45
7.25 An example of OwnStrategy function. 46
7.26 Scheduling problem 1|in-tree,pj=1|Lmax solving. 46
7.27 Brucker’s algorithm - problem 1|in-tree,pj=1|Lmax . 47

9

LIST OF FIGURES LIST OF FIGURES

7.28 Graph G representing tasks constrained by positive and negative time-lags. 48
7.29 Resulting schedule of instance in Figure 7.28. 48
7.30 Cyclic Data Flow Graph of WDF. 50
7.31 Graph G weighted by lij and hij of WDF. 50
7.32 Resulting schedule with optimal period w=8. 51
7.33 Jaumann wave digital filter . 53
7.34 The optimal schedule of Jaumann filter . 53
7.35 An example of in-tree precedence constraints . 54
7.36 Scheduling problem P|in-tree,pj=1|Cmax using hu command 55
7.37 Hu’s algorithm example solution . 55
7.38 Coffman and Graham example setting . 56
7.39 Coffman and Graham algorithm example solution . 57

8 Real-Time Scheduling
8.1 Calculating the response time using resptime . 59
8.2 PT FPS example code . 60
8.3 Result of FPS algorithm . 60

9 Graph Algorithms
9.1 Spanning tree example . 62
9.2 Example of minimum spanning tree . 62
9.3 Dijkstra’s algorithm example . 62
9.4 Strongly Connected Components example. 63
9.5 A simple network with optimal flow in the fourth user parameter on edges 63
9.6 Mincostflow example. 64
9.7 A simple network with optimal flow in the fourth user parameter on edges 64
9.8 Critical circuit ratio. 65
9.9 Hamilton circuit identification example. 65
9.10 An example of Hamilton circuit. 66
9.11 An example of Graph coloring . 67
9.12 Quadratic Assignment Problem. 68

10 Other Algorithms
10.1 Simulation scheme with TrueTime Kernel block . 78
10.2 Result of simulation . 78

11 Case Studies
11.1 Result of case study as Gantt chart . 80
11.2 Result of case study as Gantt chart . 81
11.3 Graph representation of Chair manufacturing . 82
11.4 Result of case study as Gantt chart . 83
11.5 An application of Recursive Least Squares filter for active noise cancellation. 83
11.6 The RLS filter algorithm. 84
11.7 Graph G modeling the scheduling problem on one add unit of HSLA. 85
11.8 Resulting schedule of RLS filter. 85

10

List of Tables

6 Graphs
6.1 List of functions . 31

7 Scheduling Algorithms
7.1 List of algorithms . 36
7.2 An example of P|rj|ΣwjCj scheduling problem. 44

9 Graph Algorithms
9.1 List of algorithms . 61

10 Other Algorithms
10.1 List of algorithms . 71
10.2 List of the toolbox options parameters . 72
10.3 Type of constraints - ctype. 73
10.4 Type of constraints - ctype. 73

11 Case Studies
11.1 Information we need to organize the work . 79
11.2 Material transport processing time. 81
11.3 Parameters of HSLA library. 84

11

Chapter 1

Introduction

TORSCHE (Time Optimisation, Resources, SCHEduling) Scheduling Toolbox for Matlab is a freely
(GNU GPL) available toolbox developed at the Czech Technical University in Prague, Faculty of Electrical
Engineering, Department of Control Engineering. The toolbox is designed to undergraduate courses and
to researches in operations research or industrial engineering.

The current version of the toolbox covers following areas of scheduling: scheduling on monoproces-
sor/dedicated processors/parallel processors, cyclic scheduling and real-time scheduling. Furthermore,
particular attention is dedicated to graphs and graph algorithms due to their large interconnection with
scheduling theory. The toolbox offers transparent representation of scheduling/graph problems, various
scheduling/graph algorithms, a useful graphical editor of graphs, an interface for Integer Linear Program-
ming and an interface to TrueTime (MATLAB/Simulink based simulator of the temporal behaviour).

The scheduling problems and algorithms are categorized by notation (α | β | γ) proposed by [Graham79]
and [B lażewicz83]. This notation, widely used in scheduling community, greatly facilitates the presenta-
tion and discussion of scheduling problems.

The toolbox is supplemented by several examples of real applications. The first one is scheduling of
DSP algorithms on a HW architecture with pipelined arithmetic units. Further, there is an application
of response-time analysis in real-time systems. The toolbox is equipped with sets of benchmarks from
research community (e.g. DSP algorithms, Quadratic Assignment Problem).

We are pleased with growing number of users and we are very glad, that this toolbox will be cited in the
third edition of the book ’Scheduling: Theory, Algorithms and Systems’ by Michael Pinedo [Pinedo02].

This user’s guide is organized as follows: Chapter 3, “Tasks”, Chapter 4, “Sets of Tasks”, Chapter 5,
“Classification in Scheduling” and Chapter 6, “Graphs” presents the tool architecture and basic nota-
tion. The most interesting part is Chapter 7, “Scheduling Algorithms” describing implemented off-line
scheduling algorithms demonstrated on various examples. Section Chapter 8, “Real-Time Scheduling”
is dedicated to on-line scheduling and on-line scheduling algorithms. Graph algorithms are discussed in
Chapter 9, “Graph Algorithms”. Supplementary algorithms are described in Chapter 10, “Other Algo-
rithms”. The text is supplemented with case studies, presented in Chapter 11, “Case Studies”, showing
practical applications of the toolbox.

13

Chapter 2

Quick Start

2.1 Software Requirements

TORSCHE Scheduling Toolbox for Matlab (0.4.0) currently supports MATLAB 6.5 (R13) and higher
versions. If you want to use the toolbox on different platforms than MS-Windows or Linux on PC (32bit)
compatible, some algorithms must be compiled by a C/C++ compiler. We recommend to use Microsoft
Visual C/C++ 7.0 and higher under Windows or gcc under Linux.

2.2 Installation

Download the toolbox from web <http://rtime.felk.cvut.cz/scheduling-toolbox/download.php>
and unpack Scheduling toolbox into the directory where Matlab toolboxes are installed (most often in
<Matlab root>\toolbox on Windows systems and on Linux systems in <Matlab root>/toolbox). Run
Matlab and add two new paths into directories with Scheduling toolbox and demos, e.g.:

>> addpath(path,’c:\matlab\toolbox\scheduling’)
>> addpath(path,’c:\matlab\toolbox\scheduling\stdemos’)

Several algorithms in the toolbox are implemented as Matlab MEX-files (compiled C/C++ files).
Compiled MEX-files for MS-Windows and Linux on PC (32bit) compatible are part of this distribution.
If you use the toolbox on a different platform, please compile these algorithms using command make
from \scheduling directory (in Matlab environment). Before that, please specify the compiler using
command mex -setup from (also in Matlab environment). We suggest to use Microsoft Visual C/C++
or gcc compilers.

2.3 Help

To display a list of all available commands and functions please type

>> help scheduling

To get help on any of the toolbox commands (e.g. task) type

>> help task

To get help on overloaded commands, i.e. commands that do exist somewhere in Matlab path (e.g. plot)
type

>> help task/plot

Or alternatively type help plot and then select task/plot at the bottom line line of the help text.

2.4 How to Solve Your Scheduling Problems

Solving procedure of your scheduling problem can be divided into four basic steps:

15

http://rtime.felk.cvut.cz/scheduling-toolbox/download.php

2.4. HOW TO SOLVE YOUR SCHEDULING PROBLEMS CHAPTER 2. QUICK START

1. Define a set of tasks.

2. Define the scheduling problem.

3. Run the scheduling algorithm.

Task is defined by command task, for example:

>> t1 = task(’task1’, 5, 1, inf, 12)
Task "task1"
Processing time: 5
Release time: 1
Due date: 12

This command defines task with name “task1”, processing time 5, release time 1, and duedate at time
12. In the same way we can define next tasks:

>> t2 = task(’task2’, 2, 0, inf, 11);
>> t3 = task(’task3’, 3, 5, inf, 9);

To create a set of tasks use command taskset:

>> T = taskset([t1 t2 t3])
Set of 3 tasks

For short:

>> T = [t1 t2 t3]
Set of 3 tasks

Due to great variety of scheduling problems, it is not easy to choose a proper algorithm. For easier
selection of the proper algorithm, the toolbox uses a notation, proposed by [Graham79] and [B lażewicz83],
to classify scheduling problems. Those classifications are created by command problem:

>> p=problem(’1|pmtn,rj|Lmax’)
1|pmtn,rj|Lmax

Now we can execute the scheduling algorithm, for example Horn’s algorithm:

>> TS = horn(T,p)
Set of 3 tasks
There is schedule: Horn’s algorithm
Solving time: 0.29s

The final schedule, given by Gantt chart ,is shown in Figure 2.1. The figure is plotted by:

>> plot(TS)

Figure 2.1 The taskset schedule

16

CHAPTER 2. QUICK START 2.5. SAVE AND LOAD FUNCTIONS

2.5 Save and Load Functions

Data from the Matlab workspace can be saved and loaded by standard commands save and load. For
example:

>> save file1
>> save file2 t1 t2

>> load file2

17

Chapter 3

Tasks

3.1 Introduction

Task is a basic term in scheduling problems describing a unit of work to be scheduled. The terminology
is adopted from the following publications: I – [B lażewicz01], II – [Butazo97], III – [Liu00]. Graphic
representation of task parameters is shown in Figure 3.1. Task Tj in the toolbox is described by the
following properties:

Name (Name)
label of the task

Processing timeI pj (ProcTime)
is the time necessary to execute task Tj on the processor without interruption

(Computation time II)

Release timeIII rj (ReleaseTime)
is the time at which a task becomes ready for execution

(Arrival time I,II, Ready time I, Request time II)

DeadlineI dj (Deadline)
specifies a time limit by which the task has to be completed, otherwise the scheduling is assumed
to fail

Due dateI d˜
j (DueDate)

specifies a time limit by which the task should be completed, otherwise the criterion function is
charged by penalty

WeightI (Weight)
expresses the priority of the task with respect to other tasks (Priority II)

Processor (Processor)
specifies dedicated processor on which the task must be executed

Figure 3.1 Graphics representation of task parameters

t

Task

0
~

+-

rj sj Cj dj dj

Tj

Fj

pjwj

Dj

Lj

19

3.2. CREATING THE TASK OBJECT CHAPTER 3. TASKS

Rest of the task properties shown in Figure 3.1 are related to start time of task sj, i.e. result of
scheduling (see sections Section 3.4.1 and Section 4.3.2). Properties completion time Cj (Cj=sj+pj),
waiting time wj (wj=sj+rj), flow time Fj (Fj=Cj-rj), lateness Lj (Lj=Cj+dj) and tardiness Dj (Dj=max{Cj-
dj,0}) can be derived from start time sj.

3.2 Creating the task Object

In the toolbox, task is represented by the object task. This object is created by the command with the
following syntax rule (properties contained inside the square brackets are optional):

t1 = task([Name,]ProcTime[,ReleaseTime[,Deadline[,DueDate
[,Weight[,Processor]]]]])

Command task is a constructor of object task and returns the object. In the syntax rule above the
object is the variable t1. Examples of the object task creating are shown in Figure 3.2.

Figure 3.2 Creating task objects
>> t1 = task(5)
Task ""
Processing time: 5
Release time: 0

>> t2 = task(’task2’,5,3,12)
Task "task2"
Processing time: 5
Release time: 3
Deadline: 12

>> t3 = task(’task3’,2,6,18,15,2,2)
Task "task3"
Processing time: 2
Release time: 6
Deadline: 18
Due date: 15
Weight: 2
Processor: 2

3.3 Graphical Representation of the task Object

Parameters of a task can be graphically displayed using command plot. For example parameters of task
t3, created above, can be displayed by command:

>> plot(t3)

For more details see Reference Guide @task/plot.m.

3.4 Object task Modifications

Command get returns the value of the specified property or values of all properties. Command set sets
the value of the specified property. These two commands has the same syntax as is described in Matlab
user’s guide. Property access is allowed using the . (dot) operator too.

Note

To obtain a list of all accessible properties use command get. Note that some private
and virtual properties aren’t accessible using the . (dot) operator, although they are
presented when the automatic completion by Tab key is used.

20

CHAPTER 3. TASKS 3.4. OBJECT TASK MODIFICATIONS

Figure 3.3 Plot example

An example of task modification:

>> get(t3)
Name: ’task3’

ProcTime: 2
ReleaseTime: 6

Deadline: 18
DueDate: 15
Weight: 2

Processor: 2
UserParam:

Notes: ’’
>> set(t3,’ProcTime’,4)
>> get(t3,’ProcTime’)

ans =

4

3.4.1 Start Time of Task

Command add scht adds the start time into an object task. Schedule of a task is described by three
arrays (start, length, processor). The length of array is equal to number of task preemptions mi-
nus one. Opposite command to get scht is appointed for getting a schedule from the task
object.For more details see Reference Guide @task/add scht.m , @task/get scht.m.

3.4.2 Color Modification

Commands set graphic param and get graphic param can be used to define color of tasks. If color of
task is set, command plot will use it. Use of these commands is shoved on the following example:

>> t = task(’task’,5);
>> set_graphic_param(t,’color’,’red’)
>> get_graphic_param(t,’color’)

ans =

red

21

3.5. PERIODIC TASKS CHAPTER 3. TASKS

3.5 Periodic Tasks

Periodic tasks are tasks, which are released periodically with a fixed period. There is a ptask object in
TORSCHE that allows users to work with periodic tasks. Periodic tasks are mainly used in real-time
scheduling area (see Chapter 8, “Real-Time Scheduling”).

3.5.1 Creating the ptask Object

The syntax of ptask constructor is:

pt = ptask([Name,]ProcTime,Period[,ReleaseTime[,Deadline[,Duedate[,Weight[,Processor]]]]])

Almost all parameters are the same as for task object except for Period, which specifies the period
of the task.

3.5.2 Working with ptask Objects

The way of manipulating ptask objects is the same as for task objects. It is possible to change their
properties using set and get methods as well as by dot notation. In addition, there is util method
which returns CPU utilization factor of the task.

22

Chapter 4

Sets of Tasks

4.1 Creating the taskset Object

Objects of the type task can be grouped into a set of tasks. A set of tasks is an object of the type taskset
which can be created by the command taskset. Syntax for this command is:

T = taskset(tasks[,prec])

where variable tasks is an array of objects of the type task. Furthermore, relations between tasks
can be defined by precedence constraints in parameter prec. Parameter prec is an adjacency matrix
(see Chapter 6, “Graphs”) defining a graph where nodes correspond to tasks and edges are precedence
constraints between these tasks. If there is an edge from Ti to Tj in the graph, it means that Ti must be
completed before Tj can be started.

If there are not precedence constraints between the tasks, we can use a shorter form of creating a set
of tasks using square brackets (see the first line in Figure 4.1).

Figure 4.1 Creating a set of tasks and adding precedence constraints
>> T1 = [t1 t2 t3]
Set of 3 tasks

>> T1 = taskset(T1,[0 1 1; 0 0 1; 0 0 0])
Set of 3 tasks
There are precedence constraints

>> T2 = taskset([3 4 2 4 4 2 5 4 8])
Set of 9 tasks

You can also create a set of tasks directly from a vector of processing times. Call the command
taskset as shown in Figure 4.1. Tasks with those processing times will be automatically created inside
the set of tasks. Precedence constraints can be added in the same way as in case of taskset T1 (see
Figure 4.1).

4.2 Graphical Representation of the Set of Tasks

As for single tasks, command plot can be used to draw parameters of set of tasks graphically. An example
of plot output with explanation of used marks is shown in Figure 4.2. For more details see Reference
Guide @taskset/plot.m.

4.3 Set of Tasks Modification

Commands changing parameters of tasksets are the same as for task object. Command get returns the
value of the specified property or values of all properties. Command set sets the value of the specified
property. These two commands has got a standard syntax, which is described in Matlab user manual.
Property access is allowed over the . (dot) operator too.

23

4.3. SET OF TASKS MODIFICATION CHAPTER 4. SETS OF TASKS

Figure 4.2 Gantt chart for a set of scheduled tasks
>> plot(T1)

0 2 4 6 8 10 12 14 16 18

task3

task2

t

Release time

task1

Task

Precedence

constraint

Name of the

task

Deadline

Due Date

Note

To obtain a list of all accessible properties use command get. Note that some private
and virtual properties aren’t accessible over the . (dot) operator, although they are
displayed when the automatic completion by Tab key is used.

4.3.1 Modification of Tasks Parameters Inside the Set of Tasks

Tasks parameters may be modified via virtual properties of object taskset. The list of virtual properties
are: Name, ProcTime, ReleaseTime, Deadline, DueDate, Weight, Processor, UserParam. All parameters
are arrays data type. Items order in the arrays is the same as tasks order in the set of the tasks.

Figure 4.3 Access to the virtual property examples
>> T2.ProcTime
ans =

3 4 2 4 4 2 5 4 8
>> T2.ProcTime(3) = 5;
>> T2.ProcTime
ans =

3 4 5 4 4 2 5 4 8
>> T2.ProcTime = T2.ProcTime -1;
>> T2.ProcTime
ans =

2 3 4 3 3 1 4 3 7

24

CHAPTER 4. SETS OF TASKS 4.3. SET OF TASKS MODIFICATION

4.3.2 Schedule

The only way how to operate with schedule of tasks is through commands add schedule and get schedule.
Command add schedule inserts a schedule (i.e. start time sj, number of assigned processor, ...) into
taskset object. Its syntax is described in Reference Guide @taskset/add schedule.m. An example of
add schedule command use is shown in Figure 4.4. Vector start is vector of start times (i.e. first
task starts at 0), vector processor is vector of assigned processors (i.e. first task is assigned to the firs
processor) and string description is a brief note on used scheduling algorithm.

Figure 4.4 Schedule inserting example
>> start = [0 0 2 3 6 6 7 9 11];
>> processor = [1 2 1 2 1 2 2 1 2];
>> description = ’a handmade schedule’;
>> add_schedule(T2,description,start,T2.ProcTime,processor);
>>
>> get_schedule(T2)
ans =

0 0 2 3 6 6 7 9 11
>> plot(T2);

On the other hand, the schedule can be obtained from a taskset using command get schedule (e.g. as
is shown in Figure 4.4). For more details about this function see Reference Guide @taskset/get schedule.m.
Graphical schedule interpretation (Gantt chart) can be obtained using function plot.

Parameters of a given schedule (e.g. value of optimality criteria, solving time, ...) can be obtained
using function schparam. It returns information about schedule inside the taskset and its syntax is
described in Reference Guide @taskset/schparam.m. An example of use is shown in Figure 4.5.

Figure 4.5 Schedule parameters
>> param = schparam(T2,’cmax’)
param =

19

>> param = schparam(T2)
param =

cmax: 19
sumcj: 80

sumwcj: 80

25

4.4. OTHER FUNCTIONS CHAPTER 4. SETS OF TASKS

4.4 Other Functions

4.4.1 Count and Size

Commands count(T) and size(T) return number of tasks in the set of tasks T. At this moment they
return the same value. Returned value will be different after implementing the general shop problems
into the toolbox. Now it is recommended to use command count.

4.4.2 Sort

The function returns sorted set of tasks inside taskset over selected parameter. Its syntax is described in
Reference Guide @taskset/sort.m. An example is shown in Figure 4.6.

Figure 4.6 Taskset sort example
>> T2.ProcTime
ans =

2 3 4 3 3 1 4 3 7
>> T3 = sort(T2,’ProcTime’,’dec’);
>> T3.ProcTime
ans =

7 4 4 3 3 3 3 2 1

4.4.3 Random taskset

Random taskset T can be created by the command randtaskset. Tasks parameters in the taskset
are generated with a uniform distribution. The syntax is described in Reference Guide randtaskset.m.
Example of its application is shown in Figure 4.7.

Figure 4.7 Example of random taskset use
>> T = randtaskset(8,[8 15],[3 6]);

>> T.ProcTime
ans =

15 12 14 11 14 12 14 9

>> T.ReleaseTime
ans =

4 4 5 3 4 5 5 4

Note

Random task can be created by command randtask.

26

Chapter 5

Classification in Scheduling

5.1 The problem Object

The object problem is a structure describing the classification of deterministic scheduling problems in the
notation proposed by [Graham79] and [B lażewicz83]. An example of its usage is shown in the following
code.

>> prob = problem(’P|prec|Cmax’)
P|prec|Cmax

This notation consists of three parts (α | β | γ). The first part (alpha) describes the processor
environment, the second part (beta) describes the task characteristics of the scheduling problem as
precedence constraints, or release times. The last part (gamma) denotes an optimality criterion.

Special problems, not specified by the notation, can be identified by one-word name, e.g. CSCH. For
more information see Reference Guide @problem/problem.m.

Command is is used to test whether a notation includes specific description. A simple problem test
should be included in each scheduling algorithm of the toolbox. An example is shown below.

if ~is(prob,’alpha’,’P’) | ~is(prob,’betha’,’rj’) | ~is(prob,’gamma’,’Lmax’)
error(’Can not solve this scheduling problem.’);

end

27

Chapter 6

Graphs

6.1 Introduction

Graphs and graph algorithms are often used in scheduling algorithms, therefore operations with graphs
are supported in the toolbox. A graph is data structure including a set of nodes, a set of edges and
information on their relations. As it is known from definition of graph from graph theory: G = (V,E,ε).
If ε is a binary relation of E over V, then G is called a direct graph. When there is no concern about the
direction of an edge, the graph is called undirected. Object Graph in the toolbox is described as directed
graph. Undirected graph can be created by addition of another identical edge in opposite direction.

6.2 Creating Object graph

There is a few of different ways of creating a graph because there are several methods how to express
it. The object graph is generally described by an adjacency matrix1. Graph object is created by the
command with the following syntax:

g = graph(’adj’,A)

where variable A is an adjacency matrix. It is also possible to describe a graph by an incidency
matrix2. The syntax is:

g = graph(’inc’,I)

where vaiable I is an incidency matrix. Another way of creating Graph object is based upon a matrix of
edges weights3. It is obvious, that just simple graphs can be created by this way. The syntax in this case
is:

g = graph(B)

Any key-word is not required here. This method is considered to be default one because it makes
easy setting of weight of an edge. The value of weight is automatically saved as user parameter of the
edge. The most complex way of graph creating is definition by a list of edges (or/and nodes). The
list of edges (nodes) in the form of cell type is ordered as an argument of the graph function. The cell
contains information about initial and terminal node (or number of the node) and arbitrary count of user
parameters (e.g. weight of an edge/node). The syntaxe is:

g = graph(’edl’,edgeList,’ndl’,nodeList)

where edgeList is list of edges and nodeList is list of nodes. An example of graphs creation is shown
in Figure 6.1.

Another possibility to create the object graph is to use a tool [Graphedit], or transform an object
taskset to the graph (see Section 6.5).

1The adjacency matrix A = (aij)n×n of G is defined by aij :=

1, 2, ... if vivj ∈ E
0 otherwise.

.

2The incidency matrix I = (ijk)n×n of G is defined by aij :=

1, 2, ... if vivj ∈ E
0 otherwise.

.

3The matrix of weights B = (b {ij}) {n \times n} of G is defined by b {ij}:=\left{\begin{array}{l} weight {k} \quad
\mbox{ if } v {i} v {j} \in E \\ Inf \quad \mbox{otherwise.} \end{array} \right, where weight {k} matches weight of
k-th edge

29

6.3. OBJECT GRAPH MODIFICATION CHAPTER 6. GRAPHS

Figure 6.1 Creating a graphs from adjacency matrix
>> g1 = graph(’adj’,[0 2 0; 0 1 0; 0 0 0])

adjacency matrix:
0 2 0
0 1 0
0 0 0

>> g2 = graph([0 2; 1 0])

adjacency matrix:
0 1
1 0

>> g3 = graph(’inc’,[0 1 0 -1 -1; 1 0 -1 1 1; -1 -1 1 0 0])

adjacency matrix:
0 0 1
2 0 1
0 1 0

>> g4 = graph(’edl’,{1,2, 35,[5 8]; 2,3, 68,[2 7]})

adjacency matrix:
0 1 0
0 0 1
0 0 0

6.3 Object graph Modification

Command get returns a value of the specified property or values of all properties. Command set sets
the value of the specified property. These two commands have the same syntax as is described in Matlab
user’s guide. Property access is allowed over the . (dot) operator too.

To obtain list of parameters which can by modified use Command set, as is shown bellow.

Figure 6.2 Command set for graph
>> set(g2)

Name: Name of the GRAPHS
N: Array of nodes
E: Array of edges

UserParam: User parameters
DataTypes: Type of UserParam’s data

Color: Color of area of the GRAPH
GridFreq: Grid frequency

Notes: An arbitrary string
inc: Incidency matrix
adj: Adjacency matrix
edl: List of edges (cell)
ndl: List of nodes (cell)

edgeUserparamDatatype: Cell of data types of edges’ UserParam
nodeUserparamDatatype: Cell of data types of nodes’ UserParam

Property Name is a graph name and property N is an array of node objects. Object node includes all
information about node such as name, user parameters ... Property E is an array of edge objects where
object edge carries all information about edge. Edge order in array is determined by command between.
This command returns edge indexes for all edges which interconnect two nodes.

30

CHAPTER 6. GRAPHS 6.4. GRAPHEDIT

6.3.1 User Parameters on Edges

Many algorithms (e.g. for cyclic scheduling in Section 9.4) consider an edge-weighted graph, i.e. edges
are weighted by one or more parameters. In object graph these parameters are stored in user parameters
of corresponding edges. To facilitate access to user parameters, the toolbox contains two couples of
functions for geting/seting data from/to user parameters.

Table 6.1 List of functions
function description
UserParam = edge2param(g) Returns user parameters of edges in graph g as

an n-by-n matrix if the graph is simple and the
value of user parameters is numeric, cell array
otherwise.

g = param2edge(g,UserParam) Adds data in an n-by-n matrix or cell array to
user parameters of edges in graph g.

UserParam = node2param(g) Returns user parameters of nodes in graph g as
a numeric array or cell array.

g = param2node(g,UserParam) Adds data in a numeric array or cell array to
user parameters of n in graph g.

In addition, functions edge2param and param2edge are further extended by optional parameters. The
I-th user parameter can be accessed using

userParam = edge2param(g,I)

and

g = param2edge(g,userParam,I)

Analogical syntax is valid for functions node2param and param2node.
If there is not edge between two nodes, the corresponding user parameter is considered to be Inf. If

there are parallel edges or matrix UserParam does not match with graph g, the algorithm returns cell ar-
ray. The different value indicating that there is not an edge can be defined as a parameter notEdgeParam.

UserParam = edge2param(g,I,notEdgeParam)

and

g = param2edge(g,UserParam,I,notEdgeParam)

An example of practical usage is shown in example of [Critical circuit ratio] computation.

6.4 Graphedit

The toolbox is equipped with a simple but useful edi-tor of graphs called Graphedit based on System
Handle Graphics of Matlab. It allows construct directed graphs with various user parameters on nodes
and edges by simple and intuitive way. The constructed graph can be easily used in the toolbox as
instance of object Graph described in the previous subsections, which can be exported to workspace or
saved to binary mat-file.

The Graphedit is depicted Figure 6.3 . As you can see, drawing canvas is the dominant item in the
main window. One canvas presents one edited graph. In the bottom of the window are tabs for switching
canvases. So there is possibility to work independently with several graphs in one Graphedit. User can
find all functions of Graphedit in the main menu. The most used ones are accessible via icons in the
toolbar. Properties of graph and its edges and nodes (name, user pa-rameters, color...) may be edited in
property editor which is a part of Graphedit.

Graphedit has the following syntax

graphedit(g)

where g is an object graph. To open graphedit with an empty plot call Graphedit without parameters.

31

6.4. GRAPHEDIT CHAPTER 6. GRAPHS

6.4.1 The Graph Construction

Graphedit operates in four editing modes (Add node, Add edge, Delete and Edit). Selection of mode can
be made by four buttons (depicted in Figure 6.3) in the toolbar or in main menu. Mode Add node is
used for creating and placing of node, mode Add edge for connecting nodes by edge, mode Delete for
deleting nodes or edges by clicking on it. And properties of nodes and edges can be edited in Edit mode.

Graphedit also offers a possibility to choice appear-ance of a node and contains tool for design your
own node-picture which can be formed by bitmapped im-age or any geometric pattern or their arbitrary
combi-nation. This function has nothing to do with graph theory; however it is useful for presentation
purposes. The system of designing own nodes is displayed in Fig 6.

Figure 6.3 Graphedit

6.4.1.1 Placing of Nodes and Edges

Placing of nodes or edges is accomplished just by selecting aporiate drawing mode and clicking of the
mouse. Each node can be moved by dragging it to a new location. Because the change of shape of edge
is often required, every edge is represented by Bézier curves. The way of editing its curve is very similar
to way known from common drawing tools dealing with vector graphics. By right click in the edge you
display context menu and in it choose ’Edit’. Shape of the edge can be changed by draging little square
which has appeared.

6.4.2 Plug-ins

Graphedit contains system of plug-ins. It is very helpful tool which allows execution of almost arbitrary
function right from GUI of Graphedit via main menu. The function may be some algorithm from toolbox
or code implemented by user. The only one condition is, that the function must have object graph as first
argument. Other input arguments may be arbitrary; output of the function can be anything – Graph
objects will be automatically drown, other data types will be saved into workspace.

By selecting ’Add New Plug-in’ in main menu of the Graphedit you can plug in chosen function. Its
removing is possible by ’Remove Plugin’.

6.4.3 Property editor

You can displey Property Editor window by main menu ’View’ - ’Property Editor’ or by apropriate icon
in the toolbar. When graph, node or edge is selected its parameters will be shown in Editeable fields.
Values of properties will be changed by enter new data to these fields.

6.4.4 Export/Import to/from Matlab workspace

Data between Graphedit and Matlab workspace are mostly exchanged in the form of graph object.
Exporting and importing is possible by main menu or by icons in Graphedit’s toolbar. Before exporting,

32

CHAPTER 6. GRAPHS 6.5. TRANSFORMATIONS BETWEEN OBJECTS TASKSET AND GRAPH

user is asked to order a name of variable to which will be current graph saved. The same pays for
importing a graph object from the workspace.

6.4.5 Saving/Loading to/from Binary File

Saving and loading proceeds by way similar to exporting and importing. The only change of it is in
necessity to select a file to save graph to or loading graph from.

6.4.6 Change of Appearance of Nodes

Graphedit also offers a possibility to choice appearance of a node and contains tool for design your
own node-picture which can be formed by bitmapped image or any geometric pattern or their arbitrary
combination. This function has nothing to do with graph theory; however it is useful for presentation
purposes. The system of designing own nodes is called Node Designer and it accessible by main menu or
icon in the toolbar.

6.5 Transformations Between Objects taskset and graph

Object graph can be transformed to the object taskset and taskset can be transformed back to the object
graph. Obviously, the nodes from graph are transformed to the tasks in taskset and edges are transformed
to the precedence constrains and vice versa.

6.5.1 Transformations from graph to taskset

The object graph g can be transformed to the taskset as follows:

T = taskset(g)

Each node from the graph G will be converted to a task. Tasks properties (e.g. Processing Time,
Deadline . . .), are taken from node UserParam attribute. The assignment of the attributes of the nodes
can be specified in optional parameters of function taskset. For example, whet the first element of the
node UserParam attribute contains processing time of the task and the second one contains the name of
the task, the conversion can be specified as follows

T = taskset(g,’n2t’,@node2task,’proctime’,’name’)

Default order of UserParam attribute is:

{’ProcTime’,’ReleaseTime’,’Deadline’,’DueDate’,’Weight’,’Processor’,
’UserParam’}

All edges are automatically transformed to the task precedence constrains. Their parameters are
saved to the cell array in:

T.TSUserParam.EdgesParam

For more details please see Reference Guide @taskset/taskset.m.

6.5.2 Transformations from taskset to graph

It is possible to transform taskset to the graph object. The command for transformation is

g = graph(T)

All parameters from taskset are transformed into the graph variables in the opposite direction than
was described above.

For more information about parametrization of tasks to/from node and precedence constrains to/from
edge transformations see taskset and graph help or Reference Guide @graph/graph.m and @taskset/taskset.m.

33

Chapter 7

Scheduling Algorithms

Scheduling algorithms are the most interesting part of the toolbox. This section deal with scheduling
on monoprocessor/dedicated processors/parallel processors and with cyclic scheduling. The scheduling
algorithms are categorized by notation (α | β | γ) proposed by [Graham79] and [B lażewicz83].

7.1 Structure of Scheduling Algorithms

Scheduling algorithm in TORSCHE is a Matlab function with at least two input parameters and at least
one output parameter. The first input parameter must be taskset, with tasks to be scheduled. The
second one must be an instance of problem object describing the reguired scheduling problem in (α | β |
γ) notation. Taskset containing resulting schedule must be the first output parameter. Common syntax
of the scheduling algorithms calling is:

TS = name(T,problem[,processors[,parameters]])

name
command name of algorithm

TS
set of tasks with schedule inside

T
set of tasks to be scheduled

problem
object of type problem describing the classification of deterministic scheduling problems

processors
number of processors for which schedule is computed

parameters
additional information for algorithms, e.g. parameters of mathematical solvers etc.

The common structure of scheduling algorithms is depicted in Figure 7.1. First of all the algorithm must
check whether the reguired scheduling problem can be solved by himself. In this case the function is is
used as is shown in part ”scheduling problem check”. Further, algorithm should perform initialization
of variables like n (number of tasks), p (vector of processing times), ... Then a scheduling algorithm
calculates start time of tasks (starts) and processor assignemen (processor) - if required. Finaly the
resulting schedule is derived from the original taskset using function add schedule.

7.2 List of Algorithms

Table 7.1 shows reference for all the scheduling algorithms available in the current version of the toolbox.
Each algorithm is described by its full name, command name, problem clasification and reference to
literature where the problem is described.

35

7.3. ALGORITHM FOR PROBLEM 1|RJ|CMAX CHAPTER 7. SCHEDULING ALGORITHMS

Figure 7.1 Structure of scheduling algorithms in the toolbox.
function [TS] = schalg(T,problem)
%function description

%scheduling problem check
if ~(is(prob,’alpha’,’P2’) && is(prob,’betha’,’rj,prec’) && ...

is(prob,’gamma’,’Cmax’))
error(’Can not solve this problem.’);

end

%initialization of variables
n = count(T); %number of tasks
p = T.ProcTime %vector of processing time

%scheduling algorithm
...
starts = ... %assignemen of resulting start times
processor = ... %processor assignemen

%output schedule construction
description = ’a scheduling algorithm’;
TS = T;
add_schedule(TS, description, starts, p, processor);

%end of file

Table 7.1 List of algorithms
algorithm command problem reference
[Algorithm for 1|rj|Cmax] alg1rjcmax 1|rj|Cmax [B lażewicz01]
[Bratley’s Algorithm] bratley 1|rj,˜dj|Cmax [B lażewicz01]
[Hodgson’s Algorithm] alg1sumuj 1||

∑
Uj [B lażewicz01]

[Algorithm for P||Cmax] algpcmax P||Cmax [B lażewicz01]
[McNaughton’s Algorithm] mcnaughtonrule P|pmtn|Cmax [B lażewicz01]
[Algorithm for
P|rj,prec,˜dj|Cmax]

algprjdeadlinepreccmax P|rj,prec,˜dj|Cmax

[Hu’s Algorithm] hu P|in-tree,pj=1|Cmax [B lażewicz01]
[Brucker’s algorithm] brucker76 P|in-tree,pj=1|Lmax [Bru76],

[B lażewicz01]
[Horn’s Algorithm] horn 1|pmtn,rj|Lmax [Horn74],

[B lażewicz01]
[List Scheduling] listsch P|prec|Cmax [Graham66],

[B lażewicz01]
[Coffman’s and Graham’s
Algorithm]

coffmangraham P2|prec,pj=1|Cmax [B lażewicz01]

[Scheduling with Positive
and Negative Time-Lags]

spntl SPNTL [Brucker99],
[Hanzalek04]

[Cyclic scheduling (Gen-
eral)]

cycsch CSCH [Hanen95], [Sucha04]

[SAT Scheduling] satsch P|prec|Cmax [TORSCHE06]

7.3 Algorithm for Problem 1|rj|Cmax

This algorithm solves 1|rj|Cmax scheduling problem. Tha basic idea of the algorithm is to arrange and
schedule the tasks in order of nondecreasing release time rj. It is equivalent to the First Come First Served
rule (FCFS). The algorithm usage is outlined in Figure 7.1 and the correspondin schedule is displayed in
Figure 7.2 as a Gantt chart.

36

CHAPTER 7. SCHEDULING ALGORITHMS 7.4. BRATLEY’S ALGORITHM

TS = alg1rjcmax(T,problem)

Figure 7.2 Scheduling problem 1|rj|Cmax solving.
>> T = taskset([3 1 10 6 4]);
>> T.ReleaseTime = ([4 5 0 2 3]);
>> p = problem(’1$|$rj$|$Cmax’);
>> TS = alg1rjcmax(T,p);
>> plot(TS);

Figure 7.3 Alg1rjcmax algorithm - problem 1|rj|Cmax

7.4 Bratley’s Algorithm

Bratley’s algorithm, proposed to solve 1|rj,˜dj|Cmax problem, is algorithm which uses branch and bound
method. Problem is from class NP-hard and finding best solution is based on backtracking in the tree
of all solutions. Number of solutions is reduced by testing availabilty of schedule after adding each task.
For more details about Bratley’s algorithm see [B lażewicz01].

In Figure 7.3 the algorithm usage is shown. The resulting schedule is shown in Figure 7.4.

TS = bratley(T,problem)

Figure 7.4 Scheduling problem 1|rj,˜dj|Cmax solving.
>> T = taskset([2 1 2 2]);
>> T.ReleaseTime = ([4 1 1 0]);
>> T.Deadline = ([7 5 6 4]);
>> p = problem(’1|rj,~dj|Cmax’);
>> TS = bratley(T,p);
>> plot(TS);

Figure 7.5 Bratley’s algorithm - problem 1|rj,˜dj|Cmax

37

7.5. HODGSON’S ALGORITHM CHAPTER 7. SCHEDULING ALGORITHMS

7.5 Hodgson’s Algorithm

Hodgson’s algorithm is proposed to solve 1||
∑

Uj problem, that means it minimalize number of delayed
tasks. Algorithm operates in two steps:

1. The subset Ts of taskset T, that can be processed on time, is determined.

2. A schedule is determined from the subsets Ts and Tn = T – Ts (tasks, that can not be processed
on time).

Implementation: Apply EDD (Earliest Due Date First) rule on taskset T. If each task can be processed
on time, then this is the final schedule. Else move as much tasks with the longest processing time from
Ts to Tn as is needed to process each task from Ts on time. Then schedule subset Tn in an arbitrary
order. Final schedule is [Ts Tn]. For more details about Hodgson’s algorithm see [B lażewicz01].

In Figure 7.5 the algorithm usage is outlined. The resulting schedule is displayed in Figure 7.6.

TS = alg1sumuj(T,problem)

Figure 7.6 Scheduling problem 1||
∑

Uj solving.
>> T = taskset([7 8 4 6 6]);
>> T.DueDate = ([9 17 18 19 21]);
>> p = problem(’1||sumUj’);
>> TS = alg1sumuj(T,p);
>> plot(TS);

Figure 7.7 Hodgson’s algorithm - problem 1||
∑

Uj

7.6 Algorithm for Problem P||Cmax

This algorithm solves problem P||Cmax, where a set of independent tasks has to be assigned to parallel
identical processors in order to minimize schedule length. Preemption is not allowed. Algorithm finds
optimal schedule using Integer Linear Programming (ILP). The algorithm usage is outlined in Figure 7.7
and resulting schedule is displayed in Figure 7.8.

TS = algpcmax(T,problem,processors)

Figure 7.8 Scheduling problem P||Cmax solving.
>> T=taskset([7 7 6 6 5 5 4 4 4]);
>> T.Name={’t1’ ’t2’ ’t3’ ’t4’ ’t5’ ’t6’ ’t7’ ’t8’ ’t9’};
>> p = problem(’P$||$Cmax’);
>> TS = algpcmax(T,p,4);
>> plot(TS);

38

CHAPTER 7. SCHEDULING ALGORITHMS 7.7. MCNAUGHTON’S ALGORITHM

Figure 7.9 Algpcmax algorithm - problem P||Cmax

7.7 McNaughton’s Algorithm

McNaughton’s algorithm solves problem P|pmtn|Cmax, where a set of independent tasks has to be sched-
uled on identical processors in order to minimize schedule length. This algorithm consider preemption of
the task and the resulting schedule is optimal. The maximum length of task schedule can be defined as
maximum of this two values: max(pj); (Σpj)/m, where m means number of processors. For more details
about Hodgson’s algorithm see [B lażewicz01].

The algorithm use is outlined in Figure 7.9. The resulting Gantt chart is shown in Figure 7.10.

TS = mcnaughtonrule(T,problem,processors)

Figure 7.10 Scheduling problem P|pmtn|Cmax solving.
>> T = taskset([11 23 9 4 9 33 12 22 25 20]);
>> T.Name = {’t1’ ’t2’ ’t3’ ’t4’ ’t5’ ’t6’ ’t7’ ’t8’ ’t9’ ’t10’ };
>> p = problem(’P|pmtn|Cmax’);
>> TS = mcnaughtonrule(T,p,4);
>> plot(TS);

Figure 7.11 McNaughton’s algorithm - problem P|pmtn|Cmax

39

7.8. ALGORITHM FOR PROBLEM P|RJ,PREC,˜DJ|CMAXCHAPTER 7. SCHEDULING ALGORITHMS

7.8 Algorithm for Problem P|rj,prec,˜dj|Cmax

This algorithm is designed for solving P|rj,prec,˜dj|Cmax problem. The algorithm uses modified List
Scheduling algorithm [List Scheduling] to determine an upper bound of the criterion Cmax. The optimal
schedule is found using ILP(integer linear programming).

In Figure 7.11 the algorithm usage is shown. The resulting Gantt chart is displayed in Figure 7.12.

TS = algprjdeadlinepreccmax(T,problem,processors)

Figure 7.12 Scheduling problem P|pj,prec,˜dj|Cmax solving.
>> t1 = task(’t1’,4,0,4);
>> t2 = task(’t2’,2,3,12);
>> t3 = task(’t3’,1,3,11);
>> t4 = task(’t4’,6,3,10);
>> t5 = task(’t5’,4,3,12);
>> prec = [0 0 0 0 0;...

0 0 0 0 0;...
0 0 0 1 0;...
0 0 0 0 0;...
0 1 0 0 0];

>> T = taskset([t1 t2 t3 t4 t5],prec);
>> prob = problem(’P$|$rj,prec,\textasciitilde{}dj$|$Cmax’);
>> TS = algprjdeadlinepreccmax(T,prob,3);
>> plot(TS);

Figure 7.13 Algprjdeadlinepreccmax algorithm - problem P|pj,prec,˜dj|Cmax

7.9 List Scheduling

List Scheduling (LS) is a heuristic algorithm in which tasks are taken from a pre-specified list. Whenever
a machine becomes idle, the first available task on the list is scheduled and consequently removed from the
list. The availability of a task means that the task has been released. If there are precedence constraints,
all its predecessors have already been processed. [Leung04] The algorithm terminates when all the tasks
from the list are scheduled. In multiprocessor case, the processor with minimal actual time is taken in
each iteration of the algorithm.

Heuristic (suboptimal) algorithms do not guarantee finding the optimal. A subset of heuristic al-
gorithms constitute approximation algorithms . It is a group of heuristic algorithms with analyt-
ically evaluated accuracy. The accuracy is measured by absolute performance ratio. For example

40

CHAPTER 7. SCHEDULING ALGORITHMS 7.9. LIST SCHEDULING

when the objective of scheduling is to minimize Cmax , absolute performance ratio is defined as RA =
inf {r ≥ 1|Cmax(A(I))/Cmax(OPT (I))∀I ∈ Π}, where Cmax(A(I)) is Cmaxobtained by approximation
algorithm A, Cmax(OPT(I)) is Cmaxobtained by an optimal algorithm [B lażewicz01] and Π is a set of all
instances of the given scheduling problem. For an arbitrary List Scheduling algorithm is proved that
RLS=2-1/m, where m is the number of processors. Time complexity of the LS algorithm is O(n).

List Scheduling algorithm is implemented in Scheduling Toolbox as function:

TS = listsch(T,problem,processors [,strategy])

TS = listsch(T,problem,processors [,schoptions])

T
set of tasks

problem
object problem

processors
number of processors

strategy
strategy for LS algorithm

schoptions
optimization options (see Section [Scheduling Toolbox Options])

The algorithm is able to solve R|prec|Cmax or any easier problem. For more details about List
Scheduling algorithm see [B lażewicz01].

Example 7.9.1 List Scheduling - problem P|prec|Cmax.
The set of tasks contains five tasks named {‘t1’, ‘t2’, ‘t3’, ‘t4’, ‘t5’} with processing times [2 3 1 2 4].
The tasks are constrained by precedence constraints as shown in Figure 7.14.

Figure 7.14 An example of P|prec|Cmax scheduling problem.

T
1

T
2

T
3

T
4

T
5

The solution of the example is shown in Figure 7.16. The LS algorithm found a schedule with Cmax=
7.

7.9.1 LPT

Longest Processing Time first (LPT), intended to solve P||Cmax problem, is a strategy for LS algorithm
in which the tasks are arranged in order of non increasing processing time pj before the application of
List Scheduling algorithm. The time complexity of LPT is O(n · log(n)). The absolute performance ratio
of LPT for problem P||Cmax is RLPT = 4/3− 1/(3 ·m) [B lażewicz01]

LPT is implemented as optional parameter of List Scheduling algorithm and it is able to solve R|prec|
Cmax or any easier problem.

RS = listsch(T,problem,processors,’LPT’)

LS algorithm with LPT strategy demonstrated on the example from previous paragraph is shown in
Figure 7.17. The resulting schedule with Cmax= 7 is in Figure 7.18.

41

7.9. LIST SCHEDULING CHAPTER 7. SCHEDULING ALGORITHMS

Figure 7.15 Scheduling problem P|prec|Cmax solving.
>> t1=task(’t1’,2);
>> t2=task(’t2’,3);
>> t3=task(’t3’,1);
>> t4=task(’t4’,2);
>> t5=task(’t5’,4);

>> prec = [0 0 0 0 0;...
1 0 0 0 0;...
0 0 0 0 0;...
0 0 1 0 0;...
0 0 1 0 0];

>> T = taskset([t1 t2 t3 t4 t5],prec);
>> p = problem(’P|prec|Cmax’);
>> TS = listsch(T,p,2);
>> plot(TS);

Figure 7.16 Result of List Scheduling.

Figure 7.17 Problem P|prec|Cmax by LS algorithm with LPT strategy solving.
>> t1=task(’t1’,2);
>> t2=task(’t2’,3);
>> t3=task(’t3’,1);
>> t4=task(’t4’,2);
>> t5=task(’t5’,4);

>> prec = [0 0 0 0 0;...
1 0 0 0 0;...
0 0 0 0 0;...
0 0 1 0 0;...
0 0 1 0 0];

>> T = taskset([t1 t2 t3 t4 t5],prec);
>> p = problem(’P|prec|Cmax’);
>> TS = listsch(T,p,2,’LPT’);
>> plot(TS);

7.9.2 SPT

Shortest Processing Time first (SPT), intended to solve P||Cmax problem, is a strategy for LS algorithm
in which the tasks are arranged in order of nondecreasing processing time pj before the application of
List Scheduling algorithm. The time complexity of SPT is also O(n · log(n)) [B lażewicz01]

42

CHAPTER 7. SCHEDULING ALGORITHMS 7.9. LIST SCHEDULING

Figure 7.18 Result of LS algorithm with LPT strategy.

SPT is implemented as optional parameter of List Scheduling algorithm and it is able to solve R|prec|
Cmax or any easier problem .

TS = listsch(T,problem,processors,’SPT’)

LS algorithm with SPT strategy demonstrated on the example from Figure 7.14 is shown in Fig-
ure 7.19. The resulting schedule with Cmax= 7 is in Figure 7.20.

Figure 7.19 Solving P|prec|Cmax by LS algorithm with SPT strategy.
>> t1=task(’t1’,2);
>> t2=task(’t2’,3);
>> t3=task(’t3’,1);
>> t4=task(’t4’,2);
>> t5=task(’t5’,4);

>> prec = [0 0 0 0 0;...
1 0 0 0 0;...
0 0 0 0 0;...
0 0 1 0 0;...
0 0 1 0 0];

>> T = taskset([t1 t2 t3 t4 t5],prec);
>> p = problem(’P|prec|Cmax’);
>> TS = listsch(T,p,2,’SPT’);
>> plot(TS);

7.9.3 ECT

Earliest Completion Time first (ECT), intended to solve P||ΣCj problem, is a strategy for LS algorithm
in which the tasks are arranged in order of nondecreasing completion time Cj in each iteration of List
Scheduling algorithm. The time complexity of ECT is equal or better than O

(
n2 · log(n)

)
.

ECT is implemented as optional parameter of List Scheduling algorithm and it is able to solve R|rj,
prec|ΣwjCj or any easier problem.

TS = listsch(T,problem,processors,’ECT’)

An example of P|rj|ΣwjCj scheduling problem given with set of five tasks with names, processing time
and release time is shown in Table 7.2. The schedule obtained by ECT strategy with ΣCj = 58 is shown
in Figure 7.24.

43

7.9. LIST SCHEDULING CHAPTER 7. SCHEDULING ALGORITHMS

Figure 7.20 Result of LS algorithm with SPT strategy.

Table 7.2 An example of P|rj|ΣwjCj scheduling problem.

name processing time release time
t1 3 10
t2 5 9
t3 5 7
t4 5 2
t5 9 0

Figure 7.21 Solving P|rj|ΣCj by ECT
>> t1=task(’t1’,3,10);
>> t2=task(’t2’,5,9);
>> t3=task(’t3’,5,7);
>> t4=task(’t4’,5,2);
>> t5=task(’t5’,9,0);

>> T = taskset([t1 t2 t3 t4 t5]);

>> p = problem(’P|rj|sumCj’);
>> TS = listsch(T,p,2,’ECT’);
>> plot(TS);

Figure 7.22 Result of LS algorithm with ECT strategy.

7.9.4 EST

Earliest Starting Time first (EST), intended to solve P||ΣCj problem, is a strategy for LS algorithm in
which the tasks are arranged in order of nondecreasing starting time rj before the application of List

44

CHAPTER 7. SCHEDULING ALGORITHMS 7.9. LIST SCHEDULING

Scheduling algorithm. The time complexity of EST is O(n · log(n)).
EST is implemented as an optional parameter to List Scheduling algorithm and it is able to solve R|

rj, prec|ΣwjCj or any easier problem.

TS = listsch(T,problem,processors,’EST’)

LS algorithm with EST strategy demonstrated on the example from Figure 7.14 is shown in Fig-
ure 7.23. The resulting schedule with ΣCj = 57 is in Figure 7.24.

Figure 7.23 Problem P|rj|ΣCj by LS algorithm with EST strategy solving.
>> t1=task(’t1’,3,10);
>> t2=task(’t2’,5,9);
>> t3=task(’t3’,5,7);
>> t4=task(’t4’,5,2);
>> t5=task(’t5’,9,0);

>> T = taskset([t1 t2 t3 t4 t5]);

>> p = problem(’P|rj|sumCj’);
>> TS = listsch(T,p,2,’EST’);
>> plot(TS);

Figure 7.24 Result of LS algorithm with EST strategy.

7.9.5 Own Strategy Algorithm

It’s possible to define own strategy for LS algorithm according to the following model of function. Function
with the same name as the optional parameter (name of strategy function) is called from List Scheduling
algorithm:

TS = listsch(T,problem,processors,’OwnStrategy’)

In this case, strategy algorithm is called in each iteration of List Scheduling algorithm upon the set
of unscheduled task. Strategy algorithm is a standalone function with following parameters:

[TS, order] = OwnStrategy(T[,iteration,processor]);

T
set of tasks

order
index vector representing new order of tasks

45

7.10. BRUCKER’S ALGORITHM CHAPTER 7. SCHEDULING ALGORITHMS

iteration
actual iteration of List Scheduling algorithm

processor
selected processor

The internal structure of the function can be similar to implementation of EST strategy in private
directory of scheduling toolbox.

Figure 7.25 An example of OwnStrategy function.
function [TS, order] = OwnStrategy(T, varargin) % head

% body
if nargin>1

if varargin{1}>1
order = 1:length(T.tasks);
return

end
end

wreltime = T.releasetime./taskset.weight;
[TS order] = sort(T,wreltime,’inc’); % sort taskset
% end of body

Standard variable varargin represents optional parameters iteration and processor. The definition
of this variable is required in the head of function when it is used with listsch.

7.10 Brucker’s Algorithm

Brucker’s algorithm, proposed to solve 1|in-tree,pj=1|Lmax problem, is an algorithm which can be
implemented in O(n.log n) time [Bru76][B lażewicz01]. Implementation in the toolbox use listscheduling
algorithm while tasks are sorted in non-increasing order of theyr modified due dates subject to precedence
constraints. The algorithm returns an optimal schedule with respect to criterion Lmax. Parameters of
the function solving this scheduling problem are described in the Reference Guide brucker76.m.

Examples in Figure 7.26 and Figure 7.27 show, how an instance of the scheduling problem [B lażewicz01]
can be solved by the Brucker’s algorithm. For more details see brucker76 demo in \scheduling\stdemos.

Figure 7.26 Scheduling problem 1|in-tree,pj=1|Lmax solving.
>> load brucker76_demo
>> T=taskset(g,’n2t’,@node2task,’DueDate’)
Set of 32 tasks
There are precedence constraints

>> prob = problem(’P|in-tree,pj=1|Lmax’);
>> TS = brucker76(T,prob,4);
>> plot(TS);

7.11 Scheduling with Positive and Negative Time-Lags

Traditional scheduling algorithms (e.g., [B lażewicz01]) typically assume that deadlines are absolute. How-
ever in many real applications release date and deadline of tasks are related to the start time of another
tasks [Brucker99][Hanzalek04]. This problem is in literature called scheduling with positive and negative
time-lags.

The scheduling problem is given by a task-on-node graph G. Each task ti is represented by node ti

in graph G and has a positive processing time pi. Timing constraints between two nodes are represented

46

CHAPTER 7. SCHEDULING ALGORITHMS7.11. SCHEDULING WITH POSITIVE AND NEGATIVE TIME-LAGS

Figure 7.27 Brucker’s algorithm - problem 1|in-tree,pj=1|Lmax

by a set of directed edges. Each edge eij from the node ti to the node tj is labeled with an integer time
lag wij. There are two kinds of edges: the forward edges with positive time lags and the backward edges
with negative time lags. The forward edge from the node ti to the node tj with the positive time lag wij

indicates that sj, the start time of tj, must be at least wij time units after si, the start time of ti. The
backward edge from node tj to node ti with the negative time lag wji indicates that sj must be no more
than wji time units after si. The objective is to find a schedule with minimal Cmax.

Since the scheduling problem is NP-hard [Brucker99], algorithm implemented in the toolbox is based
on branch and bound algorithm. Alternative implemented solution uses Integer Linear Programming
(ILP). The algorithm call has the following syntax:

TS = spntl(T,problem,schoptions)

problem
an object of type problem describing the classification of deterministic scheduling problems (see Sec-
tion Chapter 5, “Classification in Scheduling”). In this case the problem with positive and negative
time lags is identified by ‘SPNTL’.

schoptions
optimization options (see Section [Scheduling Toolbox Options])

The algorithm can be chosen by the value of parameter schoptions - structure schoptions (see [Schedul-
ing Toolbox Options]). For more details on algorithms please see [Hanzalek04].

Example 7.11.1 Example of Scheduling Problem with Positive and Negative Time-Lags.
An example of the scheduling problem containing five tasks is shown in Figure 7.28 by graph G. Execution
times are p=(1,3,2,4,5) and delay between start times of tasks t1 and t5 have to be less then or equal
to 10 (w5,1=-10). The objective is to find a schedule with minimal Cmax.

Solution of this scheduling problem using spntl function is shown below. Graph of the example can be
found in Scheduling Toolbox directory <Matlab root>\toolbox\scheduling\stdemos\benchmarks\spntl\spntl
graph.mat. The graph G corresponding to the example shown in Figure 7.28 can be opened and edited
in Graphedit tool (graphedit(g)).

Resulting graph G is shown in Figure 7.31. Finaly, the graph G is used to generate an object taskset
describing the scheduling problem. Parameters conversion must be specified as parameters of function
taskset. For example in our case, the function is called with following parameters:

T = taskset(LHgraph,’n2t’,@node2task,’ProcTime’,’Processor’, ...
’e2p’,@edges2param)

47

7.12. CYCLIC SCHEDULING CHAPTER 7. SCHEDULING ALGORITHMS

Figure 7.28 Graph G representing tasks constrained by positive and negative time-lags.

T
1

T
2

T
3

T
4

T
5

 −10

 2

 1

 3

 4

 4

 4

For more details see Section 6.5. The optimal solution in Figure 7.29 was obtained in the toolbox as
is depicted below.

>> load <Matlab root>\toolbox\scheduling\stdemos\benchmarks\spntl_graph
>> graphedit(g)
>> T = taskset(LHgraph,’n2t’,@node2task,’ProcTime’,’Processor’, ...

’e2p’,@edges2param)
Set of 5 tasks
There are precedence constraints

>> prob=problem(’SPNTL’)
SPNTL
>> schoptions=schoptionsset(’spntlMethod’,’BaB’);
>> T = spntl(T, prob, schoptions)
Set of 5 tasks
There are precedence constraints
There is schedule: SPNTL - BaB algorithm

>> plot(t)

Figure 7.29 Resulting schedule of instance in Figure 7.28.

7.12 Cyclic Scheduling

Many activities e.g. in automated manufacturing or parallel computing are cyclic operations. It means
that tasks are cyclically repeated on machines. One repetition is usually called an iteration and common

48

CHAPTER 7. SCHEDULING ALGORITHMS 7.12. CYCLIC SCHEDULING

objective is to find a schedule that maximises throughput. Many scheduling techniques leads to overlapped
schedule, where operations belonging to different iterations can execute simultaneously.

Cyclic scheduling deals with a set of operations (generic tasks ti) that have to be performed infinitely
often [Hanen95]. Data dependencies of this problem can be modeled by a directed graph G. Each task ti

is represented by the node ti in the graph G and has a positive processing time pi. Edge eij from the node
ti to tj is labeled by a couple of integer constants lij and hij. Length lij represents the minimal distance
in clock cycles from the start time of the task ti to the start time of tj and it is always greater than zero.
On the other hand, the height hij specifies the shift of the iteration index (dependence distance) from
task ti to task tj.

Assuming periodic schedule with period w, i.e. the constant repetition time of each task, the aim of
the cyclic scheduling problem [Hanen95] is to find a periodic schedule with minimal period w. In modulo
scheduling terminology, period w is called Initiation Interval (II).

The algorithm available in this version of the toolbox is based on work presented in [Hanzalek07] and
[Sucha07]. Function cycsch solves cyclic scheduling of tasks with precedence delays on dedicated sets of
parallel identical processors. The algorithm uses Integer Linear Programming

TS = cycsch(T,problem,m,schoptions)

problem
object of type problem describing the classification of deterministic scheduling problems (see Section
Chapter 5, “Classification in Scheduling”). In this case the problem is identified by ‘CSCH’.

m
vector with number of processors in corresponding groups of processors

schoptions
optimization options (see Section [Scheduling Toolbox Options])

In addition, the algorithm minimizes the iteration overlap [Sucha04]. This secondary objective of opti-
mization can be disabled in parameter schoptions, i.e. parameter secondaryObjective of schoptions
structure (see [Scheduling Toolbox Options]). The optimization option also allows to choose a method for
Cyclic Scheduling algorithm, specify another ILP solver, enable/disable elimination of redundant binary
decision variables and specify another ILP solver for elimination of redundant binary decision variables.

For more details on the algorithm please see [Sucha04].

Example 7.12.1 Cyclic Scheduling - Wave Digital Filter.
An example of an iterative algorithm used in Digital Signal Processing as a benchmark is Wave Digital
Filter (WDF) [Fettweis86].

for k=1 to N do
a(k) =X(k) + e(k-1) %T1
b(k) = a(k) - g(k-1) %T2
c(k) = b(k) + e(k) %T3
d(k) = gamma1 * b(k) %T4
e(k) = d(k) + e(k-1) %T5
f(k) = gamma2 * b(k) %T6
g(k) = f(k) + g(k-1) %T7
Y(k) = c(k) - g(k) %T8

end

The corresponding Cyclic Data Flow Graph is shown in Figure 7.30. Constant on nodes indicates the
number of dedicated group of processors. The objective is to find a cyclic schedule with minimal period
w on one add and one mul unit. Input-output latency of add (mul) unit is 1 (3) clock cycle(s).

To transform Cyclic Data Flow Graph (CDFG) to graph G weighted by lij and hij function LHgraph
can be used:

LHgraph = cdfg2LHgraph(dfg,UnitProcTime,UnitLattency)

49

7.12. CYCLIC SCHEDULING CHAPTER 7. SCHEDULING ALGORITHMS

Figure 7.30 Cyclic Data Flow Graph of WDF.

+T
1

+T
2

+T
3

+T
8

+T
7

+T
5

*T
4

*T
6

 1

 0

 1

 0

 0

 0

 0

 0

 0

 0

 0

LHgraph
graph G weighted by lij and hij

dfg
Data Flow Graph where user parameter (UserParam) on nodes represents dedicated processor and
user parameter (UserParam) on edges correspond to dependence distance - height of the edge.

UnitProcTime
vector of processing time of tasks on dedicated processors

UnitLattency
vector of input-output latency of dedicated processors

Resulting graph G is shown in Figure 7.31. Finaly, the graph G is used to generate an object taskset
describing the scheduling problem. Parameters conversion must be specified as parameters of function
taskset. For example in our case, the function is called with following parameters:

T = taskset(LHgraph,’n2t’,@node2task,’ProcTime’,’Processor’, ...
’e2p’,@edges2param)

For more details see Section 6.5.

Figure 7.31 Graph G weighted by lij and hij of WDF.

+T
1

+T
2

+T
3

+T
8

+T
7

+T
5

*T
4

*T
6

 1, 1

 1, 0

 1, 1

 1, 0

 1, 0

 1, 0

 1, 0

 3, 0

 3, 0

 1, 0

 1, 0

The scheduling procedure (shown below) found schedule depicted in Figure 7.32.

50

CHAPTER 7. SCHEDULING ALGORITHMS 7.13. SAT SCHEDULING

>> load <Matlab root>\toolbox\scheduling\stdemos\benchmarks\dsp\wdf
>> graphedit(wdf)
>> UnitProcTime = [1 3];
>> UnitLattency = [1 3];
>> m = [1 1];
>> LHgraph = cdfg2LHgraph(wdf,UnitProcTime,UnitLattency)

adjacency matrix:
0 1 0 0 0 0 0 0
0 0 1 0 0 0 1 1
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0
1 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0

>>
>> graphedit(LHgraph)
>> T = taskset(LHgraph,’n2t’,@node2task,’ProcTime’,’Processor’, ...

’e2p’,@edges2param)
Set of 8 tasks
There are precedence constraints
>> prob = problem(’CSCH’);
>> schoptions = schoptionsset(’ilpSolver’,’glpk’, ...
’cycSchMethod’,’integer’,’varElim’,1);
>> TS = cycsch(T, prob, m, schoptions)
Set of 8 tasks
There are precedence constraints
There is schedule: General cyclic scheduling algorithm (method:integer)
Tasks period: 8
Solving time: 1.113s
Number of iterations: 4

>> plot(TS,’prec’,0)

Graph of WDF benchmark [Fettweis86] can be found in Scheduling Toolbox directory <Matlab
root>\toolbox\scheduling\stdemos\benchmarks\dsp\wdf.mat. Another available benchmarks are
DCT [CDFG05], DIFFEQ [Paulin86], IRR [Rabaey91], ELLIPTIC, JAUMANN [Heemstra92], vanDon-
gen [Dongen92] and RLS [Sucha04][Pohl05].

Figure 7.32 Resulting schedule with optimal period w=8.

7.13 SAT Scheduling

This section presents the SAT based approach to the scheduling problems. The main idea is to formulate
a given scheduling problem in the form of CNF (conjunctive normal form) clauses. TORSCHE includes
the SAT based algorithm for P|prec|Cmax problem.

51

7.13. SAT SCHEDULING CHAPTER 7. SCHEDULING ALGORITHMS

7.13.1 Instalation

Before use you have to instal SAT solver.

1. Download the zChaff SAT solver (version: 2004.11.15) from the zChaff web site. <http://www.
princeton.edu/~chaff/zchaff.html>

2. Place the dowloaded file zchaff.2004.11.15.zip to the <TORSCHE>\contrib folder.

3. Be sure that you have C++ compiler set to the mex files compiling. To set C++ compiler call:

>> mex -setup

For Windows we tested Microsoft Visual C++ compiler, version 7 and 8. (Version 6 isn’t supported.)

For Linux use gcc compiler.

4. From Matlab workspace call m-file make.m in <TORSCHE>\sat folder.

7.13.2 Clause preparing theory

In the case of P|prec|Cmax problem, each CNF clause is a function of Boolean variables in the form xijk.
If task ti is started at time unit j on the processor k then xijk = true, otherwise xijk = false. For each
task ti, where i = 1 . . . n, there are S × R Boolean variables, where S denotes the maximum number of
time units and R denotes the total number of processors.

The Boolean variables are constrained by the three following rules (modest adaptation of [Memik02]):

1. For each task, exactly one of the S × R variables has to be equal to 1. Therefore two clauses are
generated for each task ti. The first guarantees having at most one variable equal to 1 (true):
(x̄i11 ∨ x̄i21) ∧ · · · ∧ (x̄i11 ∨ x̄iSR) ∧ · · · ∧ (x̄i(S−1)R ∨ x̄iSR) The second guarantees having at least
one variable equal to 1: (x̄i11 ∨ x̄i21 ∨ · · · ∨ x̄i(S−1)R ∨ x̄iSR)

2. If there is a precedence constrains such that tu is the predecessor of tv, then tv cannot start before
the execution of tu is finished. Therefore, xujk → ((x̄v1l ∧ · · · ∧ x̄vjl ∧ x̄v(j+1)l ∧ · · · ∧ x̄v(j+pu−1)l)
for all possible combinations of processors k and l, where pu denotes the processing time of task
tu.

3. At any time unit, there is at most one task executed on a given processor. For the couple of
tasks with a precedence constrain this rule is ensured already by the clauses in the rule number
2. Otherwise the set of clauses is generated for each processor k and each time unit j for all
couples tu, tv without precedence constrains in the following form: (xujk → x̄vjk) ∧ (xujk →
x̄v(j+1)k) ∧ · · · ∧ (xujk → x̄v(j+pu−1)k)

In the toolbox we use a zChaff solver to decide whether the set of clauses is satisfiable. If it is, the
schedule within S time units is feasible. An optimal schedule is found in iterative manner. First, the List
Scheduling algorithm is used to find initial value of S. Then we iteratively decrement value of S by one
and test feasibility of the solution. The iterative algorithm finishes when the solution is not feasible.

7.13.3 Example - Jaumann wave digital filter

As an example we show a computation loop of a Jaumann wave digital filter. Our goal is to minimize
computation time of the filter loop, shown as directed acyclic graph in Figure 7.33. Nodes in the graph
represent the tasks and the edges represent precedence constraints. Green nodes represent addition
operations and blue nodes represent multiplication operations. Nodes are labeled by the processing time
pi. We look for an optimal schedule on two parallel identical processors.

Folowing code shows consecutive steps performed within the toolbox. First, we define the set of task
with precedence constrains and then we run the scheduling algorithm satsch. Finally we plot the Gantt
chart.

>> procTime = [2,2,2,2,2,2,2,3,3,2,2,3,2,3,2,2,2];
>> prec = sparse(...
[6,7,1,11,11,17,3,13,13,15,8,6,2,9 ,11,12,17,14,15,2 ,10],...
[1,1,2,2 ,3 ,3 ,4,4 ,5 ,5 ,7,8,9,10,10,11,12,13,14,16,16],...

52

http://www.princeton.edu/~chaff/zchaff.html
http://www.princeton.edu/~chaff/zchaff.html

CHAPTER 7. SCHEDULING ALGORITHMS 7.14. HU’S ALGORITHM

Figure 7.33 Jaumann wave digital filter

t
1

 2
t
2

 2
t
3

 2
t
4

 2
t
5

 2

t
6

 2

t
7

 2
t
8

 3
t
9

 3
t
10
 2

t
11
 2

t
12
 3

t
13
 2

t
14
 3

t
15
 2

t
16
 2

t
17
 2

[1,1,1,1 ,1 ,1 ,1,1 ,1 ,1 ,1,1,1,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1],...
17,17);
>> jaumann = taskset(procTime,prec);
>> jaumannSchedule = satsch(jaumann,problem(’P|prec|Cmax’),2)
Set of 17 tasks
There are precedence constraints
There is schedule: SAT solver
SUM solving time: 0.06s
MAX solving time: 0.04s
Number of iterations: 2

>> plot(jaumannSchedule)

The satsch algorithm performed two iterations. In the first iteration 3633 clauses with 180 variables
were solved as satisfiable for S=19 time units. In the second iteration 2610 clauses with 146 variables
were solved with unsatisfiable result for S=18 time units. The optimal schedule is depicted in Figure 7.34.

Figure 7.34 The optimal schedule of Jaumann filter

7.14 Hu’s Algorithm

Hu’s algorithm is intend to schedule unit length tasks with in-tree precedence constraints. Problem
notatin is P|in-tree,pj=1|Cmax. The algorithm is based on notation of in-tree levels, where in-tree level
is number of tasks on path to the root of in-tree graph. The time complexity is O(n).

TS = hu(T,problem,processors[,verbose])

53

7.15. COFFMAN’S AND GRAHAM’S ALGORITHM CHAPTER 7. SCHEDULING ALGORITHMS

or

TS = hu(T,problem,processors[,schoptions])

verbose
level of verbosity

schoptions
optimization options

For more details about Hu’s algorithm see [B lażewicz01].

Example 7.14.1 Hu’s algorithm
There are 12 unit length tasks with precedence constraints defined as in Figure 7.35.

Figure 7.35 An example of in-tree precedence constraints

T
1

T
2

T
3

T
4

T
5

T
6

T
7

T
8

T
9

T
10

T
11

T
12

7.15 Coffman’s and Graham’s Algorithm

This algorithm generate optimal solution for P2|prec,pj=1|Cmax problem. Unit length tasks are scheduled
nonpreemptively on two processors with time complexity O(n2). Each task is assigned by label, which
take into account the levels and the numbers of its imediate successors. Algorithm operates in two steps:

1. Assign labels to tasks.

2. Schedule by Hu’s algorithm, use labels instead of levels.

TS = coffmangraham(T,problem[,verbose])

or

TS = coffmangraham(T,problem[,schoptions])

schoptions
optimization options

More about Coffman and Graham algorithm in [B lażewicz01].

54

CHAPTER 7. SCHEDULING ALGORITHMS 7.15. COFFMAN’S AND GRAHAM’S ALGORITHM

Figure 7.36 Scheduling problem P|in-tree,pj=1|Cmax using hu command
>> t1=task(’t1’,1);
>> t2=task(’t2’,1);
>> t3=task(’t3’,1);
>> t4=task(’t4’,1);
>> t5=task(’t5’,1);
>> t6=task(’t6’,1);
>> t7=task(’t7’,1);
>> t8=task(’t8’,1);
>> t9=task(’t9’,1);
>> t10=task(’t10’,1);
>> t11=task(’t11’,1);
>> t12=task(’t12’,1);

>> p = problem(’P|in-tree,pj=1|Cmax’);
>> prec = [

0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0
];

>> T = taskset([t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12],prec);

>> TS= hu(T,p,3);
>> plot(TS);

Figure 7.37 Hu’s algorithm example solution

>> t1 = task(’t1’,1);
>> t2 = task(’t2’,1);
>> t3 = task(’t3’,1);

55

7.15. COFFMAN’S AND GRAHAM’S ALGORITHM CHAPTER 7. SCHEDULING ALGORITHMS

Example 7.15.1 Coffman and Graham algorithm
The set of tasks contains 13 tasks constrained by precedence constraints as shown in Figure 7.38.

Figure 7.38 Coffman and Graham example setting

T
1

T
2

T
3

T
4

T
5

T
6

T
7

T
8

T
9

T
10

T
11

T
12

T
13

>> t4 = task(’t4’,1);
>> t5 = task(’t5’,1);
>> t6 = task(’t6’,1);
>> t7 = task(’t7’,1);
>> t8 = task(’t8’,1);
>> t9 = task(’t9’,1);
>> t10 = task(’t10’,1);
>> t11 = task(’t11’,1);
>> t12 = task(’t12’,1);
>> t13 = task(’t13’,1);
>> t14 = task(’t14’,1);

>> p = problem(’P2|prec,pj=1|Cmax’);
>> prec = [

0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

];
>> T = taskset([t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14],prec);

>> TS= coffmangraham(T,p);
>> plot(TS);

56

CHAPTER 7. SCHEDULING ALGORITHMS 7.15. COFFMAN’S AND GRAHAM’S ALGORITHM

Figure 7.39 Coffman and Graham algorithm example solution

57

Chapter 8

Real-Time Scheduling

This section desribes how to use TORSCHE for analysis of real-time systems. The area of real-time
scheduling is quite broad and currently only the basics are supported. We are working on addition of
more advanced methods to the toolbox.

The real-time system we consider a set of periodic tasks (see Section 3.5). The sections bellow describe
various algorithms that work on sets of real-time tasks.

8.1 Fixed-Priority Scheduling

Algorithms in this section assume that the tasks have assigned fixed priority (property Weight). The
higher number, the higher priority.

8.1.1 Response-Time Analysis

The resptime function implements an algorithm that calculates response times for periodic tasks in a
set. It is assumed, that these tasks are scheduled by a preemtive, fixed priority scheduler on one processor.
Currently, this algorithm doesn’t support any kind of synchronization between tasks. The syntax of the
command is:

[resp, schedulable] = resptime(taskset)

where resp is array of response-times. There is one element for each task in the taskset. The
parameter schedulable is non-zero if the system is schedulable, assuming the deadlines are equal to
periods.

Figure 8.1 Calculating the response time using resptime
>> t1=ptask(’t1’,3,7);
>> t2=ptask(’t2’,3,12);
>> t3=ptask(’t3’,5,20);
>> ts=[t1 t2 t3];
>> setprio(ts, ’rm’);
>> [r,s]=resptime(ts)
r =

3 14 78
s =

1

8.1.2 Fixed-Priority Scheduler

Fixed Priority Scheduling (fps) is an algorithm that schedules periodic tasks in taskset according to their
fixed priorities (property Weight of task).

r = fps(TS)

59

8.1. FIXED-PRIORITY SCHEDULING CHAPTER 8. REAL-TIME SCHEDULING

FPS algorithm is demonstrated on the example shown in next example code. The resulting schedule
is shown in the next figure.

Figure 8.2 PT FPS example code
>> t1=ptask(’t1’,3,7); t1.Weight = 3;
>> t2=ptask(’t2’,3,12); t2.Weight = 2;
>> t3=ptask(’t3’,5,20); t3.Weight = 1;
>> ts=taskset([t1 t2 t3]);
>> s=fps(ts);
>> plot(s, ’Proc’, 1);

Figure 8.3 Result of FPS algorithm

60

Chapter 9

Graph Algorithms

Scheduling algorithms have very close relation to graph algorithms. Scheduling toolbox offer an object
graph (see section Chapter 6, “Graphs”) with several graph algorithms.

9.1 List of Algorithms

List of algorithms related to operations with object graph are summarized in Table 9.1.

Table 9.1 List of algorithms
algorithm command note
Minimum spanning tree spanningtree Polynomial
Dijkstra’s algorithm dijkstra Polynomial
Floyd floyd Polynomial
Minimum Cost Flow mincostflow Using LP
Critical Circuit Ratio criticalcircuitratio Using LP
Hamilton circuit hamiltoncircuit NP-hard
Quadratic Assignment Problem qap NP-hard

9.2 Minimum Spanning Tree

Spanning tree of the graph is a subgraph which is a tree and connects all the vertices together. A
minimum spanning tree is then a spanning tree with minimal sum of the edges cost. A greedy algorithm
with polynomial complexity is used to solve this problem (for more details see [Demel02]). The toolbox
function has following syntax:

gmin = spanningtree(g)

gmin
minimum spanning tree represented by graph

g
input graph

9.3 Dijkstra’s Algorithm

Dijkstra’s algorithm is an algorithm that solves the single-source cost of shortest path for a directed graph
with nonnegative edge weights. Inptut of this algorithm is a directed graph with costs of invidual edges
and reference node r from which we want to find shortest path to other nodes. Output is an array with
distances to other nodes.

61

9.3. DIJKSTRA’S ALGORITHM CHAPTER 9. GRAPH ALGORITHMS

Figure 9.1 Spanning tree example
>> A = [inf 1 2 inf 7;...

inf inf 3 4 inf;...
inf 9 inf 1 1;...
8 5 inf inf inf;...
7 inf 4 5 inf];

>> g = graph(A);
>> gmin = spanningtree(g);
>> graphedit(gmin);

Figure 9.2 Example of minimum spanning tree

T
1

T
2

T
3

T
4

T
5

 1

 2
 1

 1

distances = dijsktra(g,r)

g
graph object

r
reference node

Figure 9.3 Dijkstra’s algorithm example
>> A = [inf 1 2 inf 7;...

inf inf 3 4 inf;...
inf 9 inf 1 1;...
8 5 inf inf inf;...
7 inf 4 5 inf];

>> g = graph(A);
>> distances = dijkstra(g,2)

distances =

11 0 3 4 4

62

CHAPTER 9. GRAPH ALGORITHMS 9.4. FLOYD’S ALGORITHM

9.4 Floyd’s Algorithm

Floyd is a well known algorithm from the graph theory [Diestel00]. This algorithm finds a matrix of
shortest paths for a given graph. Input to the algorithm is an object graph, where the weights of edges
are set in UserParam variables of edges. Output is a matrix of shortest paths (U) and optionally matrix
of the vertex predecessors (P) in the shortest path and adjacency matrix of lengths (M). Algorithm can
be run as follows:

[U,P,M] = floyd(g)

The variable g is an instance of graph object.

9.5 Strongly Connected Components

The Strongly Connected Components (SCC) of a directed graph are maximal subgraphs for which hold
every couple of nodes u and v there is a path from u to v and a path from v to u. For SCC searching
Tarjan algorithm is usullay used.

The algorithm is based on depth-first search where the nodes are placed on a stack in the order in
which they are visited. When the search returns from a subtree, it is determined whether each node is
the root of a SCC. If a node is the root of a SCC, then it and all of the nodes taken off before it form
that SCC. The detailed describtion of the algorithm is in [DSVF06]. SCC in a graph G can be found as
follows:

scc = tarjan(g)

where scc is a vector where the element scc(i) is number of component where the node i belongs
to. For graph in Figure 9.5 the algorithm returns fllowing results.

Figure 9.4 Strongly Connected Components example.
>> tarjan(g)
ans =

2 2 2 1

Figure 9.5 A simple network with optimal flow in the fourth user parameter on edges

T
1

T
2

T
3

T
4

 1

 1

 1

 1

9.6 Minimum Cost Flows

The minimum cost flow model is the most fundamental of all network flow problems. In this problem we
wish to determine a least cost shipment of a commodity through a network in order to satisfy demands
at certain nodes from available supplies at other nodes [Ahuja93]. Let G=(N,A) be a directed network

63

9.7. THE CRITICAL CIRCUIT RATIO CHAPTER 9. GRAPH ALGORITHMS

defined by set N of n nodes and a set A of m directed edges. Each edge (i,j)∈ A has an associated cost
cij that denotes the cost per unit flow on that arc. We also associate with each edge a capacity uij that
denotes the maximum amount that can flow on the arc and a lower bound lij that denotes the minimum
amount that must flow on the arc. We associate with each node i∈ N an integer number b(i) representing
its suply/demand. If b(i)>0, node i is a supply node; If b(i)<0, node i is a demand of -b(i); and if
b(i)=0, node i is a transshipment node. The problem can be solved using function mincostflow:

gminf=mincostflow(g)

where g is a graph, where suply/demand b(i) is stored in the first user parameter (UserParam) of
nodes. Parameters (cij, lij, uij) are given in the first, second and third user parameter (UserParam) of
corresponding edge eij. The function returns graph G minf where the optimal flow fij is stored in the
fourth user parameter (UserParam) on edge eij. A simple example is shown in Figure 9.6 and Figure 9.7.

Figure 9.6 Mincostflow example.
>> gminf=mincostflow(g);
>> graphedit(gminf);

Figure 9.7 A simple network with optimal flow in the fourth user parameter on edges

T
1

T
2

T
3

T
4

 −4, 0, 2, 2

 −1, 0, 2, 1

 4, 0, 3, 0

 1, 0, 2, 2

 1, 0, 2, 1

Note

The algorithm use function ’ilinprog’ from the TORSCHE. Solver GLPK must be
installed. Installation of TORSCHE

9.7 The Critical Circuit Ratio

This problem is also called minimum cost-to-time ratio cycle problem [Ahuja93]. The algorithm assumes
graph G where edges are weighted by a couple of constants length l and height h. The objective is to
find the critical circuit ratio defined as

ρ = minc∈C(G)

∑
eij∈c

lij∑
eij∈c

hij

,

where C is a cycle of graph G. The circuit C with maximal circuit ratio is called critical circuit. Function

rho=criticalcircuitratio(G)

64

CHAPTER 9. GRAPH ALGORITHMS 9.8. HAMILTON CIRCUITS

finds minimal circuit ratio in a graph G, where length l and height h are specified in the first and the
second user parameters on edges (UserParam). Graph weighted by a couple l, h can be created from
matrices L and H as shown in Example [Critical circuit ratio] where element L(i,j), H(i,j) contains
length, height of edge e(i,j) respectively.

Figure 9.8 Critical circuit ratio.
>> L=[inf 2 inf;2 inf 1; 1 inf inf]
L =

Inf 2 Inf
2 Inf 1
1 Inf Inf

>> H=[inf 0 inf;1 inf 0;2 inf inf]
H =

Inf 0 Inf
1 Inf 0
2 Inf Inf

>> G=graph((L~=inf)*1)

adjacency matrix:
0 1 0
1 0 1
1 0 0

>> G=matrixparam2edges(G,L,1);
>> G=matrixparam2edges(G,H,2);
>> rho=criticalcircuitratio(G)
rho =

4.0000

9.8 Hamilton Circuits

A Hamilton circuit in a graph G, is a graph cycle through G that visits each node exactly once. The
general problem of finding a Hamilton circuit is NP-complete [Diestel00]. The solution in the toolbox is
based on Integer Linear Programming.

gham=hamiltoncircuit(g,edgesdirection)

gham
hamilton circuit represented by a graph

g
input graph G

edgesdirection
specifies whether g is undirected (’u’) or directed (’d’) (directed graphs are default)

A simple example representing a traffic network in Czech Republic is shown in Example [Hamilton
Circuit Identification] and Figure 9.10.

Figure 9.9 Hamilton circuit identification example.
>> load <Matlab root>\toolbox\scheduling\stdemos\...

benchmarks\tsp\czech_rep
>> gham=hamiltoncircuit(g,’u’);
>> graphedit(gham);

65

9.9. GRAPH COLORING CHAPTER 9. GRAPH ALGORITHMS

Figure 9.10 An example of Hamilton circuit.

Praha

Brno

Ostrava

Plzen

Ceske Budejovice

Karlovy Vary

Usti n Labem
Liberec

Hradec Kralove

Pardubice

Jihlava

Olomouc

Zlin

 140

 100

 93
 80

 126

 83

 122

 92

 97

 21

 93

 147

 104

Note

The algorithm use function ’ilinprog’ from the Scheduling toolbox. Solver GLPK must
be installed.Installation of TORSCHE.

9.9 Graph coloring

Graph coloring is assignment of values representing colors to nodes in a graph. Any two nodes, which
are connected by an edge, cannot be assigned (colored) the same value. Graphcoloring algorithm is
intended to colour graph by minimal number of colors. The least number of colors needed for coloring
is called chromatic number of the graph χ. This algorithm, based on backtracking, was taken over from
[Demel02]. Assigned values are of integer type saved as user parameter of each node and RGB color for
nodes graphical representation.

G2 = graphcoloring(G1, userparamposition)

G1
input graph

G2
colored graph

userparamposition
specifies position (index) in userparam of node to save ”color”. This parameter is optional. Default
index is 1.

9.10 The Quadratic Assignment Problem

This algorithm solves the Quadratic Assignment Problem (QAP) [Stützle99]. The problem can be stated
as follows. Consider a set of n activities that have to be assigned to n locations (or vice versa). A matrix
D= [dih]n,n gives distances between locations, where dih is distance between location i and location h,
and a matrix F = [fjk]n,n characterizes flows among activities (transfer of data, material, etc.), where
fjk is the flow between activity j and activity k. An assignment is a permutation π of {1,...,n}, where

66

CHAPTER 9. GRAPH ALGORITHMS 9.10. THE QUADRATIC ASSIGNMENT PROBLEM

Example 9.9.1 Graph Coloring example
>> A = [0 0 1 0 1 0;

1 0 0 1 1 0;
0 1 0 1 0 1;
0 0 0 0 1 0;
0 0 1 0 0 1;
1 1 0 0 0 0];

>> g1 = graph(’adj’,A);
>> g2 = graphcoloring(g1);
>> graphedit(g2);

Figure 9.11 An example of Graph coloring

T
1

T
2

T
3

T
4

T
5

T
6

π(i) is the activity that is assigned to location i. The problem is to find a permutation πm such that the
product of the flows among activities is minimized by the distances between their locations. Formally,
the QAP can be formulated as the problem of finding the permutation π which minimizes the following
objective function:

C(π) =
∑n

i=1

∑n
h=1 dihfπ(i)π(h)

The optimal permutation πopt is defined by πopt = arg minπ∈
Q

(n) C(π), where Π(n) is the set of all
permutations of {1,...,n}.

The problem can be reformulated to show the quadratic nature of the objective function: solving the
problem means identifying a permutation matrix X of dimension n × n (whose elements xij are 1 if the
activity j is assigned to location i and 0 in the other cases) such that:

Equation 9.10.1

C(π) =
n∑

i=1

n∑
j=1

n∑
h=1

n∑
k=1

dihfjkxijxhk,

subject to the constraints
∑n

i=1 xij = 1,
∑n

j=1 xij = 1and x ∈ {0, 1}. In the toolbox the problem can
be solved using Mixed Integer Quadratic Programming (MIQP).

[xmin,fmin,status,extra]=qap(distancesgraph,flowsgraph)

The function returns a nonempty output if a solution is found. Matrix xmin is optimal value of
decision variables, fmin is equal to 0.5 times optimal value of the objective function, status is a status
of the optimization (1-solution is optimal) and extra is a data structure containing field time - time (in
seconds) used for solving. Parameters distancesgraph and flowsgraph are graphs, where distances and
flows are specified in first user parameter on edges (UserParam). Graphs can be created form matrices D
and F as shown in Quadratic Assignment Problem example in [Quadratic Assignment Problem]. Some
benchmark instances [QAPLIB06] are located in \scheduling\stdemos\benchmarks\qap\ directory.

67

9.10. THE QUADRATIC ASSIGNMENT PROBLEM CHAPTER 9. GRAPH ALGORITHMS

Figure 9.12 Quadratic Assignment Problem.
>> D = [0 1 1 2 3;1 0 2 1 2;1 2 0 1 2;2 1 1 0 1;3 2 2 1 0]
D =

0 1 1 2 3
1 0 2 1 2
1 2 0 1 2
2 1 1 0 1
3 2 2 1 0

>> F = [0 5 2 4 1;5 0 3 0 2;2 3 0 0 0;4 0 0 0 5;1 2 0 5 0]
F =

0 5 2 4 1
5 0 3 0 2
2 3 0 0 0
4 0 0 0 5
1 2 0 5 0

%Create graph of distances
>> distancesgraph=graph(1*(D~=0));

%Insert distances into the graph
>> distancesgraph=matrixparam2edges(distancesgraph,D,1,0);

%Create graph of flow
>> flowsgraph=graph(1*(F~=0));

%Insert flows into the graph
>> flowsgraph=matrixparam2edges(flowsgraph,F,1,0);

>> [xmin,fmin,status,extra]=qap(distancesgraph,flowsgraph)
xmin =

0 1 0 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 0 1 0 0

fmin =
25

status =
1

extra =
time: 1.2660

Note

The algorithm use function iquadprog from the toolbox.

68

CHAPTER 9. GRAPH ALGORITHMS 9.10. THE QUADRATIC ASSIGNMENT PROBLEM

Note

Smaller benchmark instance (not presented in [QAPLIB06]) can be found
e.g. on <http://ina2.eivd.ch/collaborateurs/etd/problemes.dir/qap.
dir/qap.html>.

69

http://ina2.eivd.ch/collaborateurs/etd/problemes.dir/qap.dir/qap.html
http://ina2.eivd.ch/collaborateurs/etd/problemes.dir/qap.dir/qap.html

Chapter 10

Other Algorithms

TORSCHE is extended with several algorithms and some interfaces to external tools to facilitate develop
of scheduling algorithms.

10.1 List of Algorithms

List of the supplementary algorithms is summarized in the following table.

Table 10.1 List of algorithms
algorithm command
Scheduling Toolbox solvers settings schoptionsset
Random Data Flow Graph (DFG) generator randdfg
Universal interface for ILP ilinprog
Universal interface for MIQP iquadprog

10.2 Scheduling Toolbox Options

Lot of scheduling algorithms require extra parameters, e.g. parameters of external solvers. To create
Scheduling Toolbox structure containing option parameters use

schoptions=schoptionsset(’keyword1’,value1,’keyword2’,value2,...)

The function specifies values (V1, V2, ...) of the specific parameters (C1, C2, ...). To change particular
parameters use

schoptions=schoptionsset(schoptions,’keyword1’,value1,...)

Parameters of Scheduling Toolbox options are summarized in Table 10.2. Defauld values of single
parameters are typed in italics.

10.3 Random Data Flow Graph (DFG) generation

This supplementary function allows to generate random Data Flow Graph (DFG). It is appointed for
benchmarking of scheduling algorithms.

g=randdfg(n,m,degmax,ne)

The function generates Data Flow Graph g, where relation of node (task) to a dedicated processor is
stored in g.N(i).UserParam. The first parameter n is the number of nodes in the DFG, m is the number
of dedicated processors. Parameter degmax restricts upper bound of outdegree of vertices. Parameter ne
is the number of edges.

g=randdfg(n,m,degmax,ne,neh,hmax)

The function with this parameters generates cyclic DFG (CDFG), where neh is number of edges with
user parameter 0 < g.E(i).UserParam <= hmax. Other edges has user parameter g.E(i).UserParam=0.

71

10.4. UNIVERSAL INTERFACE FOR ILP CHAPTER 10. OTHER ALGORITHMS

Table 10.2 List of the toolbox options parameters
parameter meaning value
General
maxIter Maximum number of iterations allowed. positive integer
verbose Verbosity level. 0 = be silent, 1 = dis-

play only critical mes-
sages, 2 = display every-
thing

strategy Strategy of scheduling algorithm. This parameter is spe-
cific for each schedul-
ing algorithm. (e.g.
listsch algorithm
distinguishes ’EST’,
’ECT’, ’LPT’, ’SPT’
or a handler of user
defined function)

logfile Enables logfile creation. 0 = disable, 1 = enable
logfileName Specifies logfile name. character array
Integer Linear Program-
ming (ILP)
ilpSolver Specifies internal ILP solver (GLPK

[Makhorin04], LP SOLVE [Berkelaar05],
CPLEX [CPLEX04], external).

’glpk’, ’lp solve’, ’cplex’,
’external’

extIlinprog Specifies external ILP solver interface. Speci-
fied function must have the same parameters as
function linprog.

function handle

miqpSolver Specifies internal MIQP solver (MIQP
[Bemporad04], CPLEX [CPLEX04], exter-
nal).

’miqp’, ’cplex’, ’exter-
nal’

extIquadprog Specifies external MIQP solver interface. Speci-
fied function must have the same parameters as
function linprog.

function handle

solverVerbosity Verbosity level of ILP solver. 0 = be silent, 1 = dis-
play only critical mes-
sages, 2 = display every-
thing

solverTiLim Sets the maximum time, in seconds, for a call to
an optimizer. When solverTiLim<=0, the time
limit is ignored. Default value is 0.

double

Cyclic Scheduling
cycSchMethod Specifies method for Cyclic Scheduling algo-

rithm.
’integer’, ’binary’

varElim Enables elimination of redundant binary deci-
sion variables in ILP model.

0 = disable, 1 = enable

varElimILPSolver Specifies another ILP solver for elimination of
redundant binary decision variables.

’glpk’, ’lp solve’, ’cplex’,
’external’

secondaryObjective Enables minimization of iteration overlap as sec-
ondary objective.

0 = disable, 1 = enable

Scheduling with Positive
and Negative Time-lags
spntlMethod Specifies an method for spntl algorithm. ’BaB’ - Branch and

Bound, ’ILP’ - Integer
Linear Programming

10.4 Universal interface for ILP

Universal interface for Integer Linear Programming (ILP) allows to call different ILP solvers from Matlab.

72

CHAPTER 10. OTHER ALGORITHMS 10.5. UNIVERSAL INTERFACE FOR MIQP

[xmin,fmin,status,extra] = ...
ilinprog(schoptions,sense,c,A,b,ctype,lb,ub,vartype)

Function ilinprog has the following parameters. Parameter schoptions is Scheduling Toolbox
Options structure (see [Scheduling Toolbox Options]). The next parameter sense indicates whether
the problem is a minimization=1 or a maximization=-1. ILP model is specified with column vector c
containing the objective function coefficients, matrix A representing linear constraints and column vector b
of right sides for the inequality constraints. Column vector ctype determines the sense of the inequalities
as is shown in Table 10.3.

Table 10.3 Type of constraints - ctype.
ctype(i) constraint

‘L’ ‘<=’
‘E’ ‘=’
‘G’ ‘>=’

Further, column vector lb (ub) contains lower (upper) bounds of variables in specified ILP model.
The last parameter is column vector vartype containing the types of the variables (vartype(i) = ’C’
indicates continuous variable and vartype(i) = ’I’ indicates integer variable).

A nonempty output is returned if a solution is found. Afterwards xmin contains optimal values of
variables. Scalar fmin is optimal value of the objective function. Value status indicates the status of
the optimization (1-solution is optimal) and structure extra consisting of fields time and lambda. Field
time contains time (in seconds) used for solving and field lambda contains solution of the dual problem.

10.5 Universal interface for MIQP

Universal interface for Mixed Integer Quadratic Programming (MIQP) allows to call different MIQP
solvers from Matlab. This function is very similar to function ’ilinprog’, described in section Section 10.4.

[xmin,fmin,status,extra] = ...
iquadprog(schoptions,sense,H,c,A,b,ctype,lb,ub,vartype)

Function iquadprog has the following parameters. Parameter schoptions is Scheduling Toolbox
Options structure (see [Scheduling Toolbox Options]). The next parameter sense indicates whether the
problem is a minimization=1 or maximization=-1. ILP model is specified with column vector c and
square matrix H containing the objective function coefficients, matrix A representing linear constraints
and column vector b of right sides for the inequality constraints. Column vector ctype determines the
sense of the inequalities as is shown in Table 10.4.

Table 10.4 Type of constraints - ctype.
ctype(i) constraint

‘L’ ‘<=’
‘E’ ‘=’
‘G’ ‘>=’

Further, column vector lb (ub) contains lower (upper) bounds of variables in specified MIQP model.
The last parameter is column vector vartype containing the types of the variables (vartype(i) = ’C’
indicates continuous variable and vartype(i) = ’I’ indicates integer variable).

A nonempty output is returned if a solution is found. Afterwards xmin contains optimal values of
variables. Scalar fmin is optimal value of the objective function. Value status indicates the status of the
optimization (1-solution is optimal) and structure extra consisting of fields time and lambda contains
time (in seconds) used for solving and optimal values of dual variables respectively.

73

10.6. CYCLIC SCHEDULING SIMULATOR CHAPTER 10. OTHER ALGORITHMS

Warning

In some versions of Matlab, solver miqp [Bemporad04] (see Section [Scheduling Tool-
box Options]) should not find optimal solution in spite of it exists or can find a solution
with worst value of objective function. When you have a problem with the solver,
please read the miqp solver documentation.

Note

The algorithm requires Optimization Toolbox for Matlab (<http://www.
mathworks.com/>).

10.6 Cyclic Scheduling Simulator

CSSIM (Cyclic Scheduling Simulator) is a tool allowing to simulate iterative loops in Matlab Simulink
using TrueTime tool [Cervin06]. The loop described in a language compatible with Matlab can be
transformed into the toolbox structures. In the toolbox the input iterative loop is scheduled using
cyclic scheduling (see [Cyclic scheduling (General)]) and optimized iterative algorithm is transformed
into TrueTime code for real-time simulation. The CSSIM operates in three steps: input file parsing
(function cssimin), cyclic scheduling (see [Cyclic scheduling (General)]) and True-Time code generation
(function cssimout).

[T,m]=cssimin(’dsvf.m’); %input file parsing

TS=cycsch(T, problem(’CSCH’), m, schoptions); %cyclic scheduling

cssimout(TS,’simple_init.m’,’code.m’); %TrueTime code generation

Input parametr of function cssimin is a string specifying input file to be parsed. The function returns
a taskset representing the input algorithm. Extra information about algorithm structure are available in
CodeGenerationData structure contained in TSUserParam of the taskset T. Further, the function returns
the number of processors, contained in vector m. Function cssimout generates two files, which are used for
simulation in TrueTime. The first input parameter specifies a taskset generated using function cssimin,
extended with cyclic schedule. The second parameter specifies name of output TrueTime initialization
file. The third one specifies name of output TrueTime code of simulated loop.

The language structure of input files is described in the following subsection.

10.6.1 CSSIM Input File

The input file for CSSIM is compatible with Matlab language but it has a simpler and fixed structure. The
file is divided into four parts with fixed order: Processors Declaration, Variables Initialization, Iterative
Algorithm and Subfunctions.

• Processors Declaration: Processors are declared as a structure with fields describing processor
parameters. First one is operator assigning an operator in the iterative loop to specific processor.
Second one is number representing number of processors. Following two fields (proctime and
latency) represent timing parameters of the unit (see section [Cyclic scheduling (General)]).

Example:

struct(’operator’,’+’,’number’,1,’proctime’,2,’latency’,2);
struct(’operator’,’ifmin’,’number’,1,’proctime’,1,’latency’,1);

In addition, the simulation frequency for TrueTime can be defined as a structure:

Example:

74

http://www.mathworks.com/
http://www.mathworks.com/

CHAPTER 10. OTHER ALGORITHMS 10.6. CYCLIC SCHEDULING SIMULATOR

struct(’frequency’,10000);

• Variables Initialization: The aim of this part is to initialize variables and define input and output
variable.

Example:

K = 10;
s2{1} = zeros;
y = num2cell([1 1 1 1 1 1 1 1 1 1]);

struct(’output’,{’u’},’input’,’e’);

• Iterative Algorithm: The input iterative algorithm is described as a loop (for ... end) containing
elementary operations (tasks). Each operation is constituted by one line of the loop and can contain
only one operation (addition, multiplication, ...).

Example:

for k=2:K-1
ke(k) = e(k) * Kp;
s2(k) = c1 + ke(k);
s3(k) = ifmax(s2(k),umax);
u(k) = ifmin(s3(k),umin);

end

• Subfunctions: The last part contains subfunction called from the iterative algorithm. It usually
corresponds to units declared in Arithmetic Units Declaration part. In current version of CSSIM
it is used only for simulation of elementary operations. In further version the subfunctions will be
also object of the optimization.

Example:

function y=ifmin(a1,a2)
if(a1<a2)

y=a2;
else

y=a1;
end

return

Note

Work on this function is still in progress. The authors will be appreciative of any
comment and bug report.

10.6.2 TrueTime

For time-exact simulation of schedules of iterative loops TrueTime is used. The scheduled algorithm
is simulated using TrueTime Kernels. The CSSIM generates two M-files. First one is an initialization
code (simple init.m) which creates a task for the simulation and initialize variables used in the scheduled
algorithm. The second one is a code function (code.m) where each code segment corresponds to a task
from the schedule. Lets consider an example of digital state variable filter [DSVF06], shown as CSSIM
code below

75

10.6. CYCLIC SCHEDULING SIMULATOR CHAPTER 10. OTHER ALGORITHMS

function L=dsvf(I)

%Arithmetic Units Declaration
struct(’operator’,’+’,’number’,1,’proctime’,1,’latency’,1);
struct(’operator’,’*’,’number’,1,’proctime’,3,’latency’,3);

struct(’frequency’,220000);

%Variables Declaration
f = 50;
fs = 40000;
Q = 2;
K = 1000;

F1 = 0.0079; %2*pi*f/fs ||| ??? 2*sin(pi*f/fs)
Q1 = 0.5; %1/Q;

%I = num2cell(simout);
I = ones(1,K);

L = zeros(1,K);
B = zeros(1,K);
H = zeros(1,K);
N = zeros(1,K);
FB = zeros(1,K);
QB = zeros(1,K);
IL = zeros(1,K);
FH = zeros(1,K);

%Iterative Algorithm
for k=2:K

FB(k) = F1 * B(k-1);
L(k) = L(k-1) + FB(k); %L = L + F1 * B
QB(k) = Q1 * B(k-1);
IL(k) = I(k) - L(k);
H(k) = IL(k) - QB(k); %H = I - L -Q1*B
FH(k) = F1 * H(k);
B(k) = FH(k) + B(k-1); %B = F1 * H +B
N(k) = H(k) + L(k); %N = H + L

end

L

After processing in CSSIM, as shown above, generated files (simple init.m and code.m shown bellow) are
used in simulation scheme shown in Figure 10.1. Parameter Name of init function is set to simple init
(initialization code).

function simple_init
%
% This file was automatically generated by CSSIM
%

ttInitKernel(1,1,’prioFP’);% nbrOfInputs, nbrOfOutputs, fixed priority

data.frequency=220000; %simulation frequency
data.reg1=0; % initialization of variable B

76

CHAPTER 10. OTHER ALGORITHMS 10.6. CYCLIC SCHEDULING SIMULATOR

data.reg2=0; % initialization of variable H
data.reg3=0; % initialization of variable N
data.reg4=0; % initialization of variable FB
data.reg5=0; % initialization of variable QB
data.reg6=0; % initialization of variable IL
data.reg7=0; % initialization of variable FH
data.reg8=0; % initialization of variable L
data.const1=50; % initialization of constant f
data.const2=40000; % initialization of constant fs
data.const3=2; % initialization of constant Q
data.const4=1000; % initialization of constant K
data.const5=0.007900000000000001; % initialization of constant F1
data.const6=0.5; % initialization of constant Q1
w=11;
period = w/data.frequency;
deadline = period;
offset = 0;
prio = 1;
ttCreatePeriodictask(’task1’, offset, period, prio, ’code’, data);

function [exectime,data] = code(seg,data)
%
% This file was automatically generated by CSSIM
%

i=floor(ttCurrentTime/ttGetPeriod);

switch(seg)
case 1
data.reg4 = data.const5*data.reg1; % T1
exectime = 3/data.frequency;
case 2
data.reg8 = data.reg8+data.reg4;
ttAnalogOut(1,data.reg8); % T2
exectime = 0/data.frequency;
case 3
data.reg5 = data.const6*data.reg1; % T3
exectime = 1/data.frequency;
case 4
data.reg6 = ttAnalogIn(1)-data.reg8; % T4
exectime = 2/data.frequency;
case 5
data.reg2 = data.reg6-data.reg5; % T5
exectime = 1/data.frequency;
case 6
data.reg7 = data.const5*data.reg2; % T6
exectime = 0/data.frequency;
case 7
data.reg3 = data.reg2+data.reg8; % T8
exectime = 3/data.frequency;
case 8
data.reg1 = data.reg7+data.reg1; % T7
exectime = 1/data.frequency;
case 9
exectime = -1;
end

Result of the simulation is shown in Figure 10.2.
For more details see CSSIM TrueTime demo in the toolbox. For the simulation the TrueTime tool

must be installed.

77

10.7. EXPORT TO XML CHAPTER 10. OTHER ALGORITHMS

Figure 10.1 Simulation scheme with TrueTime Kernel block

Figure 10.2 Result of simulation

10.7 Export to XML

All main objects in TORSCHE can be exported to the XML file format. XML format includes all
important information about one or more objects.

XMLSAVE command is used for export to XML for more details see to xmlsave.m.

78

Chapter 11

Case Studies

This chapter presents some case studies fully solvable in the toolbox. Case studies describes the develop
process step by step.

11.1 Theoretical Case Studies

This section shows mostly theoretical examples and their solution in the toolbox.

11.1.1 Watchmaker’s

Imagine that you are a man, who repairs watches. Your boss gave you a list of repairs, which have to
be done tomorrow. Our goal is to decide, how to organize the work to meet all desired finish times if
possible.

List of repairs:

• Watch number 1 needs a battery replacement, which has to be finisched at 14:00.

• Watch number 2 is missing hand and has to be ready at 12:00.

• Watch number 3 has broken clockwork and has to be fixed till 16:00.

• The seal ring has to be replaced on watch number 4. It is necessary to reseal it before 15:00.

• Watch number 5 has bad battery and broken light. It has to be returned to the customer before
13:00.

Batteries will be delivered to you at 9:00, seal ring at 11:00 and the hand for watch number 2 at 10:00.
Time of repairs:

• Battery replacement: 1 hour

• Replace missing hand: 2 hours

• Fix the clockwork: 2 hours

• Seal the case: 1 hour

• Repair of light: 1 hour

Let’s look at the list more closely and try to extract and store the information we need to organize the
work (see Table 11.1). We consider working day starts at 8:00.

Table 11.1 Information we need to organize the work
t1 t2 t3 t4 t5

pj 1 2 2 1 2
rj 9 10 8 11 9
dj 14 12 16 15 13

Solution of the case study is shown in five steps:

79

11.1. THEORETICAL CASE STUDIES CHAPTER 11. CASE STUDIES

1. With formalized information about the work, we can define the tasks.

>> t1=task(’Watch1’,1,9,inf,14);
>> t2=task(’Watch2’,2,10,inf,12);
>> t3=task(’Watch3’,2,8,inf,16);
>> t4=task(’Watch4’,1,11,inf,15);
>> t5=task(’Watch5’,2,9,inf,13);

2. To handle our tasks together, we put them into one object, taskset.

>> T=taskset([t1 t2 t3 t4 t5]);

3. Our goal is to assign the tasks on one processor, in order, which meets the required duedates of all
tasks if possible. The work on each task can be paused at any time, and we can finish it later. In
other words, preemption of tasks is allowed. In Graham-Blaziewicz notation the problem can be
described like this.

>> prob=problem(’1|pmtn,rj|Lmax’);

4. The algorithm is used as a function with 2 parameters. The first one is the taskset we have defined
above, the second one is the type of problem written in Graham-Blaziewitz notation.

>> TS=horn(T,prob)
Set of 5 tasks
There is schedule: Horn’s algorithm
Solving time: 0.046875s

5. Visualize the final schedule by standard plot function, see Figure 11.1.

>> plot(TS,’proc’,0);

Figure 11.1 Result of case study as Gantt chart

11.1.2 Conveyor Belts

Transportation of goods by two conveyor belts is a simple example of using List Scheduling in practice.
Construction material must be carried out from place to place with minimal time effort. Transported
articles represent five kinds of construction material and two conveyor belts as processors are available.
Table 11.2 shows the assignment of this problem.

Solution of the case study is shown in five steps:

1. Create a taskset directly through the vector of processing time.

>> T = taskset([40 50 30 50 20]);

2. Since the taskset has been created, it is possible to change parameters of all tasks in it.

>> T.Name = {’sand’,’grit’,’wood’,’bricks’,’cement’};

80

CHAPTER 11. CASE STUDIES 11.1. THEORETICAL CASE STUDIES

Table 11.2 Material transport processing time.
name processing time
sand 40
grit 50
wood 30
brickc 50
cement 20

3. Define the problem, which will be solved.

>> p = problem(’P|prec|Cmax’);

4. Call List Scheduling algorithm with taskset and the problem created recently and define the
number of processors (conveyor belts).

>> TS = listsch(T,p,2)
Set of 5 tasks
There is schedule: List Scheduling

5. Visualize the final schedule by standard plot function, see Figure 11.2.

>> plot(TS)

Figure 11.2 Result of case study as Gantt chart

11.1.3 Chair manufacturing

This example is slightly more difficult and demonstrates some of advanced possibilities of the toolbox. It
solves a problem of chair manufacturing by two workers (cabinetmakers). Their goal is to make four legs,
seat and backrest of the chair and assembly all of these parts with minimal time effort. Material, which
is needed to create backrest, will be available after 20 time units of start and assemblage is divided out
into two stages. Figure 11.3 shows the mentioned problem by graph representation.

Solution of the case study is shown in six steps:

1. Create desired tasks.

>> t1 = task(’leg1’,6)
Task "leg1"
Processing time: 6
Release time: 0

>> t2 = task(’leg2’,6);
>> t3 = task(’leg3’,6);
>> t4 = task(’leg4’,6);
>> t5 = task(’seat’,6);
>> t6 = task(’backrest’,25,20);
>> t7 = task(’assembly1/2’,15);
>> t8 = task(’assembly2/2’,15);

81

11.2. REAL WORD CASE STUDIES CHAPTER 11. CASE STUDIES

Figure 11.3 Graph representation of Chair manufacturing

leg1

 6, 0

leg2

 6, 0

leg3
 6, 0 leg4

 6, 0

seat

 15, 0

backrest

 25, 20

assembly1/2
 15, 0

assembly2/2

 15, 0

2. Define precedence constraints by precedence matrix prec. Matrix has size n x n where n is a number
of tasks.

>> prec = [0 0 0 0 0 0 1 0;...
0 0 0 0 0 0 1 0;...
0 0 0 0 0 0 1 0;...
0 0 0 0 0 0 1 0;...
0 0 0 0 0 0 1 0;...
0 0 0 0 0 0 0 1;...
0 0 0 0 0 0 0 1;...
0 0 0 0 0 0 0 0];

3. Create an object of taskset from recently defined objects.

>> T = taskset([t1 t2 t3 t4 t5 t6 t7 t8],prec)
Set of 8 tasks
There are precedence constraints

4. Define solved problem.

>> p = problem(’P|prec|Cmax’);

5. Call List Scheduling algorithm with taskset and problem created recently and define number of
processors and desired heuristic.

>> S = listsch(T,p,2,’SPT’)
Set of 8 tasks
There are precedence constraints
There is schedule: List Scheduling
Solving time: 1.1316s

6. Visualize the final schedule by standard plot function, see Figure 11.4.

>> plot(S)

11.2 Real Word Case Studies

An real word example demonstrating applicability of the toolbox is shown in the following section.

82

CHAPTER 11. CASE STUDIES 11.2. REAL WORD CASE STUDIES

Figure 11.4 Result of case study as Gantt chart

11.2.1 Scheduling of RLS Algorithm for HW architectures with Pipelined
Arithmetic Units

As an illustration, an example application of RLS (Recursive Least Squares) filter for active noise cancella-
tion is shown in Figure 11.5 [RLS03]. The filter uses HSLA [HSLA02], a library of logarithmic arithmetic
floating point modules. The logarithmic arithmetic is an alternative approach to floating-point arith-
metic. A real number is represented as the fixed point value of logarithm to base 2 of its absolute value.
An additional bit indicates the sign. Multiplication, division and square root are implemented as fixed-
point addition, subtraction and right shift. Therefore, they are executed very fast on a few gates. On the
contrary addition and subtraction require more complicated evaluation using look-up table with second
order interpolation. Addition and subtraction require more hardware elements on the target chip, hence
only one pipelined addition/subtraction unit is usually available for a given application. On the other
hand the number of multiplication, division and square roots units can be nearly by arbitrary.

Figure 11.5 An application of Recursive Least Squares filter for active noise cancellation.

voice

filter

reconstructed
sound
to GSM

noise

corrupted
sound

estimated

channel

soundnoise

corrupted sound

reconstructed
sound to GSM

-

+

+

+

RLS filter algorithm is a set of equations (see the inner loop in Figure Figure 11.6) solved in an inner
and an outer loop. The outer loop is repeated for each input data sample each 1/44100 seconds. The
inner loop iteratively processes the sample up to the N-th iteration (N is the filter order). The quality of
filtering increases with increasing number of filter iterations. N iterations of the inner loop need to be
finished before the end of the sampling period when output data sample is generated and new input data
sample starts to be processed.

The time optimal synthesis of RLS filter design on a HW architecture with HSLA can be formulated
as cyclic scheduling on one dedicated processor (add unit) [Sucha04]. The tasks are constrained by
precedence relations corresponding to the algorithm data dependencies. The optimization criterion is
related to the minimization of the cyclic scheduling period w (like in an RLS filter application the execution
of the maximum number of the inner loop periods w within a given sampling period increases the filter
quality).

Figure 11.6 shows the inner loop of RLS algorithm. Data dependencies of this problem can be modeled
by graph rls hsla in Figure 11.7, where nodes represent particular operations of the RLS filter algorithm
on add unit, i.e. a task on the dedicated processor. First user parameter on node represents processing
time of task (time to ‘feed’ the add unit). The second one is a number of dedicated processor (unit).

83

11.2. REAL WORD CASE STUDIES CHAPTER 11. CASE STUDIES

Figure 11.6 The RLS filter algorithm.
for (k=1;k<HL;k=k+1)

E(k) = E(k-1) - Gfold(k) * Pold(k-1)
f(k) = Gold(k-1) * E(k-1)
P(k) = Pold(k-1) - Gbold(k) * E(k-1)
b(k) = G(k-1) * P(k-1)
A(k) = A(k-1) - Kold(k) * P(k-1)
Gf(k) = Gfold(k) + bnold(k) * E(k)
F(k) = L * Fold(k) + f(k) * E(k-1) + T
B(k) = L * Bold(k) + b(k) * P(k-1) + T
fn(k) = f(k) / F(k)
bn(k) = b(k) / B(k)
Gb(k) = Gbold(k) + fn(k) * P(k)
K(k) = Kold(k) + bn(k) * A(k)
G(k) = G(k-1) - bn(k) * b(k)

end

Table 11.3 Parameters of HSLA library.
unit processing time input-output latency
add 1 9
mul 1 2
div 1 2

User parameters on edges are lengths and heights, explained in Section [Cyclic scheduling (General)].

Note

In this case we consider two stages of the filter, i.e. one half of iterations is processed
in one stage and second one on the second stage. After processing of the first half of
iterations, partial results are passed to the second stage. When the second stage starts
to process the input partial results, the first stage starts to process a new sample.
Both stages have to share one dedicated processor (add unit), therefore we consider
each operation on add unit to be represented by a task with processing time equal
to 2 clock cycles. In the first clock cycle an operation of the first stage uses the add
unit and in the second clock cycle the add unit is used by the second stage. For more
detail see [Sucha04][RLS03] .

Solution of this scheduling problem is shown in following steps:

1. Load graph of the RLS filter into the workspace (graph rls hsla).

>> load scheduling\stdemos\benchmarks\dsp\rls_hsla

2. Transform graph of the RLS filter to graph g weighted by lengths and heights.

>> T = taskset(rls_hsla,’n2t’,@node2task,’ProcTime’, ...
’Processor’,’e2p’,@edges2param)

Set of 11 tasks
There are precedence constraints

3. Define the problem, which will be solved.

>> prob=problem(’CSCH’)
CSCH

4. Define optimization parameters.

84

CHAPTER 11. CASE STUDIES 11.2. REAL WORD CASE STUDIES

Figure 11.7 Graph G modeling the scheduling problem on one add unit of HSLA.

T
2

T
5 T

8

T
10

T
13

T
14

T
17

T
18

T
22 T

24
T

26

 11, 1

 13, 1

 11, 0

 13, 1
 9, 0

 13, 1

 9, 0

 13, 1

 11, 0
 13, 0

 11, 0

 13, 0

 13, 0

>> schoptions=schoptionsset(’verbose’,0,’ilpSolver’,’glpk’);

5. Call List Scheduling algorithm with taskset and problem created recently and define number of
processors (conveyor belts).

>> TS = cycsch(T, prob, [1], schoptions)
There are precedence constraints
There is schedule: General cyclic scheduling algorithm
Tasks period: 26
Solving time: 1.297s
Number of iterations: 1

6. Visualize the final schedule by standard plot function, see Figure 11.8.

>> plot(TS,’prec’,0);

Figure 11.8 Resulting schedule of RLS filter.

85

Chapter 12

Reference guide

@graph/criticalcircuitratio.m

Name

criticalcircuitratio — finds the minimal circuit ratio of the input graph.

Synopsis

[w]=CRITICALCIRCUITRATIO(G)
[w]=CRITICALCIRCUITRATIO(L,H)

Description

Minimal circuit ratio of the graph is defined as w=min(L(C)/H(C)), where C is a circuit of graph G.
L(C) is sum of lengths L of the circuit C and H(C) is sum of heights H of the circuit C.

[w]=CRITICALCIRCUITRATIO(G) finds minimal cycle ratio in graph G. where length and height are
specified in first and second user parameter on edges (UserParam).

[w]=CRITICALCIRCUITRATIO(L,H) finds minimal circuit ratio in graph where length and height of
edges is specified in matrices L and H.

See also

GRAPH/GRAPH, GRAPH/FLOYD, GRAPH/DIJKSTRA

87

CHAPTER 12. REFERENCE GUIDE

@graph/dijkstra.m

Name

dijkstra — finds the shortest path between reference node and other nodes in graph.

Synopsis

DISTANCE = DIJKSTRA(GRAPH,STARTNODE,USERPARAMPOSITION)

Description

Parameters:

GRAPH
graph with cost betweens nodes

type inf when edge between two edges does not exist

STARTNODE
reference node

USERPARAMPOSITION
position in UserParam of Nodes where number representative color is saved. This parameter is op-
tional. Default is 1.

DISTANCE
list of distances between reference node and other nodes

See also

GRAPH/GRAPH, GRAPH/FLOYD, GRAPH/CRITICALCIRCUITRATIO

88

CHAPTER 12. REFERENCE GUIDE

@graph/edge2param.m

Name

edge2param — returns user parameters of edges in graph

Synopsis

USERPARAM = EDGE2PARAM(G)
USERPARAM = EDGE2PARAM(G,I)
USERPARAM = EDGE2PARAM(G,I,NOTEDGEPARAM)

Description

USERPARAM = EDGE2PARAM(G) returns cell with all UserParams. If there is not an edge between
two nodes, the user parameter is empty array [].

USERPARAM = EDGE2PARAM(G,I) returns matrix of I-th UserParam of edges in graph G. The
function returns cell similar to matrix if I is array.

USERPARAM = EDGE2PARAM(G,I,NOTEDGEPARAM) defines value of user parameter for missing
edges (default is INF). Parameter NOTEDGEPARAM is disabled for graph with parallel edges.

See also

GRAPH/GRAPH, GRAPH/PARAM2EDGE, GRAPH/NODE2PARAM, GRAPH/PARAM2NODE

89

CHAPTER 12. REFERENCE GUIDE

@graph/floyd.m

Name

floyd — finds a matrix of shortest paths for given digraph

Synopsis

[U[,P[,M]]]=FLOYD(G)

Description

The lengths of edges are set as UserParam in object edge included in G. If UserParam is empty, length
is Inf.

Parameters:

G
object graph

U
matrix of shortest paths; if U(i,i)<0 then the digraph contains a cycle of negative length!

P
matrix of the vertex predecessors in the shortest path

M
Adjacency Matrix of lengths

Note: All matrices have the size nxn, where n is a number of vertices.

See also

GRAPH/GRAPH, GRAPH/DIJKSTRA, GRAPH/CRITICALCIRCUITRATIO

90

CHAPTER 12. REFERENCE GUIDE

@graph/graph.m

Name

graph — creates the graph object.

Synopsis

G = GRAPH(Aw[[,noEdge],’Property name’,value,...])
G = GRAPH(’adj’,A[,’Property name’,value,...])
G = GRAPH(’inc’,I[,’Property name’,value,...])
G = GRAPH(’edl’,edgeList[,’edgeDatatype’,dataTypes][,’Property name’,value,...])
G = GRAPH(’ndl’,nodeList[,’nodeDatatype’,dataTypes][,’Property name’,value,...])
G = GRAPH(’ndl’,nodeList,’edl’,edgeList[,’nodeDatatype’,dataTypes]

[,’edgeDatatype’,dataTypes][,’Property name’,value,...])
G = GRAPH(TASKSET[,KW,TransformFunction[,Parameters]])
G = GRAPH(GRAPH[,’edl’,edgeList][,’ndl’,nodeList])

Description

G = GRAPH(...) creates the graph from ordered data structures.

Parameters:

Aw
Matrix of edges weigths (just for simple graph)

noEdge
Value of weigth in place without edge. Default is inf.

A
Adjacency matrix

I
Incidency matrix

edgeList
List of edges (cell): initial node, terminal node, user parameters

nodeList
List of nodes (cell): number of node, user parameters

dataTypes
Cell of data types

Name
Name of the graph - class char UserParam:

User-specified data

Color
Background color of graph in graphical projection

GridFreq
Sets the grid of graph in graphical projection - [x y]

G = GRAPH(TASKSET[,KW,TransformFunction[,Parameters]]) creates a graph from precedence con-
strains matrix of set of tasks:

TASKSET
Set of tasks

KW
Key word - define type of TransformFunction: ’t2n’ - task to node transfer function; ’p2e’ - taskset’s
TSuserparams to edge’s userparam

91

CHAPTER 12. REFERENCE GUIDE

TransformFunction
Handler to a transform function, which transform tasks to nodes (resp. TSuserparam to userparam).
If the variable is empty, standart function ’task/task2node’ and ’graph/param2edge’ are used.

Parameters
Parameters for transform function, frequently used for users selecting and sorting tasks parameters
for setting userparameters of nodes. Parameters are colected to one parameter as cell before calling
the transform function.

G = GRAPH(GRAPH[,’edl’,edgeList][,’ndl’,nodeList]) adds edges or/and nodes to existing graph:

GRAPH
Existing graph object

edgeList
List of edges: initial node, terminal node, user parameters

nodeList
List of nodes: number of node, user parameters

Example

>> Aw = [4 3 0; 0 0 5; 1 2 3]
>> g = graph(Aw,0,’Name’,’g1’)
>> dataTypes = {’double’,’double’,’char’}
>> edgeList = {1,2, 35,[5 8],’edge1’; 2,3, 68,[2 7],’edge2’}
>> g = graph(’edl’,edgeList,’edgeDatatype’,dataTypes)
>>
>> g = graph(T,’t2n’,@task2node,’proctime’,’name’,’p2e’,@param2edges)

See also

TASKSET/TASKSET, TASK/TASK2NODE, TASK/TASK2USERPARAM, GRAPH/PARAM2EDGE

92

CHAPTER 12. REFERENCE GUIDE

@graph/graphcoloring.m

Name

graphcoloring — algorithm for coloring graph by minimal number of colors.

Synopsis

G2 = GRAPHCOLORING(G1,USERPARAMPOSITION)

Description

The function returns coloured graph. Algortihm sets color (RGB) of every node for graphic view and
save it to UserParam of nodes as appropriate value representing the color. Input parameters are:

G1
input graph

USERPARAMPOSITION
position in UserParam of Nodes where number representative color will be saved. This parameter
is optional. Default is 1.

See also

GRAPH/GRAPH, GRAPHEDIT

93

CHAPTER 12. REFERENCE GUIDE

@graph/hamiltoncircuit.m

Name

hamiltoncircuit — finds Hamilton circuit in graph

Synopsis

G_HAM=HAMILTONCIRCUIT(G)
G_HAM=HAMILTONCIRCUIT(G,EDGESDIRECTION)

Description

G HAM=HAMILTONCIRCUIT(G) solves the problem for directed graph G. Both G and G HAM are
Graph objects. Route cost is stored in Graph out.UserParam.RouteCost

G HAM=HAMILTONCIRCUIT(G,EDGESDIRECTION) defines direction of edges, if parameter EDGES-
DIRECTION is ’u’ then the input graph is considered as undirected graph. When the parametr is ’d’
the input graph is considered as directed graph (default).

See also

EDGES2PARAM, PARAM2EDGES, GRAPH/GRAPH, EDGES2MATRIXPARAM

94

CHAPTER 12. REFERENCE GUIDE

@graph/mincostflow.m

Name

mincostflow — finds the least cost flow in graph G.

Synopsis

[G_FLOW, FMIN] = MINCOSTFLOW(G)
[G_FLOW, FMIN] = MINCOSTFLOW(U,C,D,N)

Description

[G FLOW, FMIN] = MINCOSTFLOW(G) finds the cheapest flow in graph G. Prices in graph G, lower
and upper bounds of flows are specified in first, second and third user parameter on edges (UserParam).
The function returns graph G FLOW, i.e. graph G enlarged with fourth user parameter which contains
amount of flow in every edge. FMIN contains total cost.

[G FLOW, FMIN] = MINCOSTFLOW(U,C,D,N) finds the same, but everything without using graph,
only matrixes. U is matrix of prices, C means lower bounds of flows, D upper bounds. The function
returns G FLOW, matrix of minimal flows.

See also

GRAPH/GRAPH, ILINPROG, EDGES2MATRIXPARAM, MATRIXPARAM2EDGES

95

CHAPTER 12. REFERENCE GUIDE

@graph/node2param.m

Name

node2param — returns user parameters of nodes in graph

Synopsis

USERPARAM = NODE2PARAM(G)
USERPARAM = NODE2PARAM(G,i)

Description

USERPARAM = NODE2PARAM(G) returns array or cell of all UserParams of nodes in graph G.

USERPARAM = NODE2PARAM(G,i) returns array or cell of i-th UserParam of nodes in graph G. If i
is array the function returns cell similar to array.

See also

GRAPH/GRAPH, GRAPH/PARAM2NODE, GRAPH/EDGE2PARAM, GRAPH/PARAM2EDGE

96

CHAPTER 12. REFERENCE GUIDE

@graph/param2edge.m

Name

param2edge — add to graph’s user parameters datas from cell or matrix.

Synopsis

graph = PARAM2EDGE(graph,userparam)
graph = PARAM2EDGE(graph,userparam,i)
graph = PARAM2EDGE(graph,userparam,i,notedgeparam)

Description

graph = PARAM2EDGE(graph,userparam) graph - object graph userparam - matrix (simple graph and
just 1 parameter in matrix) or cell (parallel edges or several parameters) with user params for edges.

graph = PARAM2EDGE(graph,userparam,i) graph - object graph userparam - matrix or cell with user
params for edges i - i-th position of 1st value cell of new params (new UserParams replace original
UserParams).

graph = PARAM2EDGE(graph,userparam,i,notedgeparam) graph - object graph userparam - matrix or
cell with user params for edges i - i-th position of 1st value cell of new params (new UserParams replace
original UserParams). notedgeparam - defines value of user parameter for missing edges. This value is
used for checking consistence between graph and matrix userparam (default is INF).

See also

GRAPH/EDGE2PARAM, GRAPH/GRAPH

97

CHAPTER 12. REFERENCE GUIDE

@graph/param2node.m

Name

param2node — add to graph’s user parameters datas from cell or matrix.

Synopsis

graph = PARAM2NODE(graph,param)
graph = PARAM2EDGE(graph,param,N)

Description

graph = PARAM2NODE(graph,param) graph - object graph userparam - array (1 parameter in matrix)
or cell (several parameters) with user params for nodes.

graph = PARAM2EDGE(graph,param,N) graph - object graph userparam - array or cell with user params
for nodes N - N-th position in UserParam (new UserParams replace original UserParams).

See also

GRAPH/NODE2PARAM, GRAPH/GRAPH, GRAPH/EDGE2PARAM, GRAPH/PARAM2EDGE

98

CHAPTER 12. REFERENCE GUIDE

@graph/qap.m

Name

qap — solves the Quadratic Assignment Problem

Synopsis

[MAP,FMIN,STATUS,EXTRA] = QAP(DISTANCESGRAPH,FLOWSGRAPH)

Description

The problem is defined using two graphs: graph of distances DISTANCESGRAPH and graph of flows
FLOWSGRAPH.

A nonempty output is returned if a solution is found. The first return parameter MAP is the optimal
mapping of nodes to locations. FMIN is optimal value of the objective function. Status of the optimization
is returned in the third parameter STATUS (1-solution is optimal). The last parameter EXTRA is a
data structure containing the field TIME - time (in seconds) used for solving.

Example

>> D = [0 1 1 2 3; ... % distances matrix
1 0 2 1 2; ...
1 2 0 1 2; ...
2 1 1 0 1; ...
3 2 2 1 0];

>> F = [0 5 2 4 1; ... % flows matrix
5 0 3 0 2; ...
2 3 0 0 0; ...
4 0 0 0 5; ...
1 2 0 5 0];

>> distancesg=graph(1*(D~=0)); %Create graph of distances
>> distancesg=matrixparam2edges(distancesg,D,1,0); %Insert distances into the graph
>> flowsg=graph(1*(F~=0)); %Create graph of flow
>> flowsg=matrixparam2edges(flowsg,F,1,0); %Insert flows into the graph
>> qap(distancesg,flowsg);

See also

GRAPH/GRAPH, IQUADPROG

99

CHAPTER 12. REFERENCE GUIDE

@graph/spanningtree.m

Name

spanningtree — finds spanning tree of the graph

Synopsis

ST = SPANNINGTREE(GRAPH,USERPARAMPOSITION)

Description

GRAPH - graph with costs between nodes - type inf when edge between two edges does not exist
USERPARAMPOSITION - position in UserParam of Nodes where number representative color is saved.
This parameter is optional. Default is 1. ST - matrix which represetnts minimals body of the graph

See also

GRAPH/GRAPH, GRAPH/DIJKSTRA

100

CHAPTER 12. REFERENCE GUIDE

@graph/tarjan.m

Name

tarjan — finds Strongly Connected Component

Synopsis

[COMPONENTS] = TARJAN(G)

Description

COMPONENTS = TARJAN(G) searches for strongly connected components using Tarjan’s algorithm
(it’s actually depth first search). G is an input directed graph. The function returns a vector COMPO-
NENTS. The value COMPONENTS(X) is number of component where the node X belongs to.

See also

GRAPH/GRAPH, GRAPH/SPANNINGTREE

101

CHAPTER 12. REFERENCE GUIDE

@problem/problem.m

Name

problem — creation of object problem.

Synopsis

PROB = PROBLEM(NOTATION)
PROB = PROBLEM(SPECIALPROBLEM)

Description

The function creates object (PROB) describing a scheduling problem. The input parameter - NOTATION
is composed of three fields alpha|betha|gamma.

alpha - describes the processor enviroment, alpha = alpha1 and alpha2

alpha1 characterizes the type of processor used:

nothing
single procesor

P
identical procesors

Q
uniform procesors

R
unrelated procesors

O
dedicated procesors: open shop system

F
dedicated procesors: flow shop system

J
dedicated procesors: job shop system

alpha2 denotes the number of processors in the problem

betha - describes task and resource characteristic:

pmtn
preemptions are allowed

prec
precedence constrains

rj
ready times differ per task

˜dj
deadlines

in-tree
In-tree precedence constrains

pj=x
processing time equal x (x must be non-negative number)

gamma - denotes optimality criterion Cmax, sumCj, sumwCj, Lmax, sumDj, sumUj

Special scheduling problems (not covered by the notation) can be described by a string SPECIALPROB-
LEM. Permitted strings are: ’SPNTL’ and ’CSCH’;

102

CHAPTER 12. REFERENCE GUIDE

Example

>> prob=PROBLEM(’P3|pmtn,rj|Cmax’)
>> prob=PROBLEM(’SPNTL’)

See also

TASKSET/TASKSET

103

CHAPTER 12. REFERENCE GUIDE

@schedobj/get.m

Name

get — access/query SCHEDOBJ property values.

Synopsis

GET(SCHEDOBJ)
GET(SCHEDOBJ,’PropertyName’)

VALUE = GET(...)

Description

GET(SCHEDOBJ,’PropertyName’) returns the value of the specified property of the SCHEDOBJ.

GET(SCHEDOBJ) displays all properties of SCHEDOBJ and their values.

See also

SCHEDOBJ/SET

104

CHAPTER 12. REFERENCE GUIDE

@schedobj/get graphic param.m

Name

get graphic param — gets graphics params for object drawing

Synopsis

GET_GRAPHIC_PARAM(OBJ,C):

Description

GET GRAPHIC PARAM(OBJ,Parameter) return graphic parameters where:

OBJ
object

Parameter
name of parameter from the following set

Available parameters:

color
color

x
X coordinate

y
Y coordinate

See also

SCHEDOBJ/SET GRAPHIC PARAM

105

CHAPTER 12. REFERENCE GUIDE

@schedobj/set.m

Name

set — sets properties to set of objects.

Synopsis

SET(OBJECT)
SET(OBJECT,’Property’)
SET(OBJECT,’PropertyName’,VALUE)
SET(OBJECT,’Property1’,Value1,’Property2’,Value2,...)

Description

SET(OBJECT) displays all properties of OBJECT and their admissible values.

SET(OBJECT,’Property’) displays legitimate values for the specified property of OBJECT.

SET(OBJECT,’PropertyName’,PropertyValue) sets the property ’PropertyName’ of the OBJECT to the
value PropertyValue.

SET(OBJECT,’Property1’,PropertyValue1,’Property2’,PropertyValue2,...) sets multiple OBJECT prop-
erty values with a single statement.

One string have special meaning for PropertyValues: ’default’ - use default value

See also

SCHEDOBJ/GET

106

CHAPTER 12. REFERENCE GUIDE

@schedobj/set graphic param.m

Name

set graphic param — set graphics params for drawing

Synopsis

SET_GRAPHIC_PARAM(object[,keyword1,value1[,keyword2,value2[...]]])

Description

Set graphics params for drawing where:

object
object

keyword
name of parameter

value
value

Available keywords:

color
color

x
X coordinate

y
Y coordinate

See also

SCHEDOBJ/GET GRAPHIC PARAM

107

CHAPTER 12. REFERENCE GUIDE

@task/add scht.m

Name

add scht — adds schedule (starts time and lenght of time) into a task

Synopsis

Tout = ADD_SCHT(Tin, start, lenght[, processor])

Description

Properties:

Tout
new task with schedule

Tin
task without schedule

start
array of start time

lenght
array of length of time

processor
array of number of processor

See also

TASK/GET SCHT

108

CHAPTER 12. REFERENCE GUIDE

@task/get scht.m

Name

get scht — gets schedule (starts time and length of time) from a task

Synopsis

[start, length, processor, period] = GET_SCHT(T)

Description

Properties:

T
task

start
array of start times

length
array of lengths of time

processor
array of numbers of processor

period
task period

See also

TASK/ADD SCHT

109

CHAPTER 12. REFERENCE GUIDE

@task/plot.m

Name

plot — graphic display of task

Synopsis

PLOT(T[,keyword1,value1[,keyword2,value2[...]]])
PLOT(T[,CELL])

Description

Properties:

T
task

keyword
configuration parameters for plot style

value
configuration value

CELL
cell array of configuration parameters and values

Available keywords:

color
color of task

movtop
vertical position of task (array if task is preempted)

texton
show text description above task (defaut value is true)

textin
show name of task inside the task (defaut value is false)

textins
structure with textin param detail. (see a. taskset/plot)

asap
show ASAP and ALAP borders (defaut value is false)

period
draw period mark

timeOfs
time offset. Used by periodic tasks.

See also

TASK/GET SCHT

110

CHAPTER 12. REFERENCE GUIDE

@task/task.m

Name

task — creates object task.

Synopsis

task = TASK([Name,]ProcTime[,ReleaseTime[,Deadline[,DueDate[,Weight[,Processor]]]]])

Description

Creates a task with parameters:

Name
name of the task (must by char!)

ProcTime
processing time (execution time)

ReleaseTime
release date (arrival time)

Deadline
deadline

DueDate
due date

Weight
weight (priotiry)

Processor
dedicated processor

The output task is a TASK object.

See also

TASKSET/TASKSET

111

CHAPTER 12. REFERENCE GUIDE

@taskset/add schedule.m

Name

add schedule — adds schedule (starts time and lenght of time) for set of tasks

Synopsis

ADD_SCHEDULE(T, description[, start, length[, processor]])
ADD_SCHEDULE(T, keyword1, param1, ..., keywordn, paramn)

Description

Properties:

T
taskset; schedule will be save into this taskset.

description
description for schedule. It must be diferent than a key words below!

start
set of start time

lenght
set of lenght of time

processor
set of number of processor

keyword
key word (char)

param
parameter

Available key words are:

description
schedule description (it is same as above)

time
calculation time for search schedule

iteration
number of interations for search schedule

memory
memory allocation during schedule search

period
taskset period - scalar or vector for diferent period of each task

See also

TASKSET/GET SCHEDULE

112

CHAPTER 12. REFERENCE GUIDE

@taskset/alap.m

Name

alap — compute ALAP(As Late As Posible) for taskset

Synopsis

Tout = ALAP(T, UB, [m])
alap_vector = ALAP(T, ’alap’)

Description

Tout=ALAP(T, UB, [m]) computes ALAP for all tasks in taskset T. Properties:

T
set of tasks

UB
upper bound

m
number of processors

Tout
set of tasks with alap

alap vector = ALAP(T, ’alap’) returns alap vector from taskset. Properties:

T
set of tasks

alap vector
alap vector

ALAP for each task is stored into set of task, the biggest ALAP is returned.

See also

TASKSET/ASAP

113

CHAPTER 12. REFERENCE GUIDE

@taskset/asap.m

Name

asap — computes ASAP(As Soon As Posible) for taskset

Synopsis

Tout = ASAP(T [,m])
asap_vector = ASAP(T, ’asap’)

Description

Tout = ASAP(T [,m]) computes ASAP for all tasks in taskset T. Properties:

T
set of tasks

m
number of processors

Tout
set of tasks with asap

asap vector = ASAP(T, ’asap’) returns asap vector from taskset. Properties:

T
set of tasks

asap vector
asap vector

See also

TASKSET/ALAP

114

CHAPTER 12. REFERENCE GUIDE

@taskset/colour.m

Name

colour — returns taskset where tasks have set the color property

Synopsis

T = COLOUR(T[,colors])

Description

Properties:

T
taskset

colors
colors specification

Colors specification:

• RGB color matrix with 3 columns

• char with color name

• cell with combination RGB and names

• keyword ’gray’ to use gray palete for coloring

• keyword ’colorcube’ to use colorcube for coloring

• nothing - color palete use for coloring

For more information about colors in Matlab, see the documentation:

>>doc ColorSpec

See also

ISCOLOR, SCHEDOBJ/SET GRAPHIC PARAM, SCHEDOBJ/GET GRAPHIC PARAM, COLOR-
CUBE

115

CHAPTER 12. REFERENCE GUIDE

@taskset/count.m

Name

count — returns number of tasks in the Set of Tasks

Synopsis

count = COUNT(T)

Description

Properties:

T
set of tasks

count
number of tasks

See also

TASKSET/SIZE

116

CHAPTER 12. REFERENCE GUIDE

@taskset/get schedule.m

Name

get schedule — gets schedule (starts time, lenght of time and processor) from a taskset

Synopsis

[start, lenght, processor, is_schedule] = GET_SCHEDULE(T)

Description

Properties:

T
taskset

start
cell/array of start times

lenght
cell/array of lengths of time

processor
cell/array of numbers of processor

is schedule
1 - schedule is inside taskset

0 - taskset without schedule

See also

TASKSET/ADD SCHEDULE

117

CHAPTER 12. REFERENCE GUIDE

@taskset/plot.m

Name

plot — graphic display of set of tasks

Synopsis

PLOT(T)
PLOT(T[,C1,V1,C2,V2...])

Description

Parameters:

T
set of tasks

Cx
configuration parameters for plot style

Vx
configuration value

Properties:

MaxTime
... default: LCM (least common multiple) of task periods

Proc
0 - draw each task to one line

1 - draw each task to his processor

Color
0 - Black & White

1 - Generate colors only for tasks without color

2 - Generate colors for all tasks

default value is 1)

ASAP
0 - normal draw (default)

1 - draw tasks to their ASAP

Axis
[tmin tmax] set time interval for plot. Use NaN for automatic setting values. (NaN is default value)

Prec
0 - draw without precedens constrains

1 - draw with precedens constrains (default)

Period
0 - period mark is ignored

1 - draw one period with period mark(s) (default)

n - draw n periods witn n marks

Weight
0 - draw tasks in current order

1 - draw tasks in order by weights

118

CHAPTER 12. REFERENCE GUIDE

Reverse
0 - draw tasks in order (top)1,2,3 .. n(bottom) (default)

1 - draw tasks in order (top)n,n-1,n-2,n-3 .. 1(bottom)

Axname
Cell with Y-axis name

Textins
Text-in setup, structure with ’fontsize’ and ’textmovetop’ fields

See also

TASKSET/TASKSET

119

CHAPTER 12. REFERENCE GUIDE

@taskset/schparam.m

Name

schparam — returns parameters about schedule inside the set of tasks

Synopsis

param = schparam(T[, keyword])

Description

Properties:

T
set of tasks

keyword
schedule properties

param
output value

Keywords:

Cmax
Makespan

sumCj
Sum of completion times

sumwCj
Weighted sum of completion times

lmax
maximum lateness

period
Period

time
Solving time

memory
Memory alocation

iterations
Number of iterations

If keyword isn’t defined, then struct with all properties is returned.

See also

TASKSET/ADD SCHEDULE

120

CHAPTER 12. REFERENCE GUIDE

@taskset/setprio.m

Name

setprio — sets priority (weight) of tasks acording to some rules.

Synopsis

SETPRIO(T, RULE)

Description

Properties:

T
set of tasks

RULE
’rm’ rate monotonic

See also

PTASK/PTASK

121

CHAPTER 12. REFERENCE GUIDE

@taskset/size.m

Name

size — returns number of tasks in the Set of Tasks

Synopsis

size = SIZE(T)

Description

Properties:

T
set of tasks

size
number of tasks

Warning: This functions is deprecated. Please use function COUNT instead.

See also

TASKSET/COUNT

122

CHAPTER 12. REFERENCE GUIDE

@taskset/sort.m

Name

sort — return sorted set of tasks over selected parameter.

Synopsis

TS = SORT(TS,parameter[,tendency])
[TS,order] = SORT(TS,parameter[,tendency])

Description

The function sorts tasks inside taskset. Input parameters are:

TS
Set of tasks

parameter
the propety for sorting (’ProcTime’,’ReleaseTime’, ’Deadline’,’DueDate’,’Weight’,’Processor’ or any
vector with the same length as taskset)

tendency
’inc’ as increasing (default), ’dec’ as decreasing

order
list with re-arranged order

note: ’inc’ tendenci is exactly nondecreasing, and ’dec’ is exactly calcuated as nonincreasing

See also

TASKSET/TASKSET

123

CHAPTER 12. REFERENCE GUIDE

@taskset/taskset.m

Name

taskset — creates a set of TASKs

Synopsis

setoftasks = TASKSET(T[,prec])
setoftasks = TASKSET(ProcTimeMatrix[,prec])
setoftasks = TASKSET(Graph[,Keyword,TransformFunction[,Parameters]...])

Description

creates a set of tasks with parameters:

T
an array or cell array of tasks ([T1 T2 ...] or {T1 T2 ...})

prec
precedence constraints

ProcTimeMatrix
an array of Processing times, for tasks which will be created inside the taskset.

Graph
Graph object

Keyword
Key word - define type of TransformFunction; ’n2t’ - node to task transfer function, ’e2p’ - edges’
userparams to taskset userparam

TransformFunction
Handler to a transform function, which transform node to task or edges’ userparams to taskset user-
param. If the variable is empty, standart functions ’node/node2task’ and ’graph/edges2param’ is
used.

Parameters
Parameters passed to transform functions specified by TransformFunction. It defines assignment
of userparameters in the input graph to task properties. The transfer function will be called
with one input parameter of cell, containing all the input parameters. Default value is: ’Proc-
Time’,’ReleaseTime’,’Deadline’,’DueDate’, ’Weight’,’Processor’,’UserParam’

The output ’setoftasks’ is a TASKSET object.

Example

>> T=taskset(Gr,’n2t’,@node2task,’proctime’,’name’,’e2p’,@edges2param)

See also

TASK/TASK, GRAPH/GRAPH, NODE/NODE2TASK, GRAPH/EDGE2PARAM

124

CHAPTER 12. REFERENCE GUIDE

alg1rjcmax.m

Name

alg1rjcmax — computes schedule with Earliest Release Date First algorithm

Synopsis

TS = alg1rjcmax(T, problem)

Description

TS = alg1rjcmax(T, problem) finds schedule of the scheduling problem 1|rj|Cmax. Parameters:

T
input set of tasks

TS
set of tasks with a schedule

PROBLEM
description of scheduling problem (object PROBLEM) - ’1|rj|Cmax’

See also

PROBLEM/PROBLEM, TASKSET/TASKSET, ALG1SUMUJ, BRATLEY, CYCSCH

125

CHAPTER 12. REFERENCE GUIDE

alg1sumuj.m

Name

alg1sumuj — computes schedule with Hodgson’s algorithm

Synopsis

TS = alg1sumuj(T, problem)

Description

TS = alg1sumuj(T, problem) inds schedule of the scheduling problem ’1||sumUj’. Parameters:

T
input set of tasks

TS
set of tasks with a schedule

PROBLEM
description of scheduling problem (object PROBLEM) - ’1||sumUj’

See also

PROBLEM/PROBLEM, TASKSET/TASKSET, ALG1RJCMAX, HORN

126

CHAPTER 12. REFERENCE GUIDE

algpcmax.m

Name

algpcmax — computes schedule for ’P||Cmax’problem

Synopsis

TS = algpcmax(T, problem, No_Proc)

Description

TS = algpcmax(T, problem, No Proc) finds schedule of scheduling problem ’P||Cmax’. Parameters:

T
input set of tasks

TS
set of tasks with a schedule

PROBLEM
description of scheduling problem (object PROBLEM) - ’P||Cmax’,

No Proc
number of processors for scheduling

See also

ALGPRJDEADLINEPRECCMAX, MCNAUGHTONRULE, HU, LISTSCH

127

CHAPTER 12. REFERENCE GUIDE

algprjdeadlinepreccmax.m

Name

algprjdeadlinepreccmax — computes schedule for P|rj,prec,˜dj|Cmax problem

Synopsis

TS = algprjdeadlinepreccmax(T, problem, No_proc)

Description

TS = algprjdeadlinepreccmax(T, problem, No proc) finds schedule to the scheduling problem ’P|rj,prec,˜dj|
Cmax’. Parameters:

T
input set of tasks

TS
set of tasks with a schedule, PROBLEM:

description of scheduling problem (object PROBLEM) - ’P|rj,prec,˜dj|Cmax’

No proc
number of processors for scheduling

See also

PROBLEM/PROBLEM, TASKSET/TASKSET, ALGPCMAX, CYCSCH

128

CHAPTER 12. REFERENCE GUIDE

bratley.m

Name

bratley — computes schedule by algorithm described by Bratley

Synopsis

TS = BRATLEY(T, problem)

Description

TS = BRATLEY(T, problem) finds schedule of the scheduling problem ’1|rj,˜dj|Cmax’. Parameters:

T
input set of tasks

TS
set of tasks with a schedule

PROBLEM
description of scheduling problem (object PROBLEM)’1|rj,˜dj|Cmax’

See also

PROBLEM/PROBLEM, TASKSET/TASKSET, ALG1RJCMAX, SPNTL

129

CHAPTER 12. REFERENCE GUIDE

brucker76.m

Name

brucker76 — Brucker’s scheduling algorithm

Synopsis

TS = Brucker76(T, PROB, M)

Description

TS = Brucker76(T, PROB, M) returns optimal schedule of problem P|in-tree,pj=1|Lmax defined in object
PROB. Parameters:

T
input taskset

PROB
problem

M
number of processors

See also

PROBLEM/PROBLEM, TASKSET/TASKSET, LISTSCH, HU

130

CHAPTER 12. REFERENCE GUIDE

coffmangraham.m

Name

coffmangraham — is scheduling algorithm (Coffman and Graham) for P2|prec,pj=1|Cmax problem

Synopsis

TS = COFFMANGRAHAM(T, prob)
TS = COFFMANGRAHAM(T, prob, verbose)
TS = COFFMANGRAHAM(T, prob, options)

Description

The function finds schedule of the scheduling problem ’P2|prec,pj=1|Cmax’. Meaning of the input and
output parameters is summarized below:

T
set of tasks, taskset object with precedence constrains

prob
problem P2|prec,pj=1|Cmax

verbose
level of verbosity 0 - no information (default); 1 - display scheduling information

options
global scheduling toolbox variables (SCHOPTIONSSET)

See also

HU, SCHOPTIONSSET, ALGPCMAX, BRUCKER76

131

CHAPTER 12. REFERENCE GUIDE

cssimin.m

Name

cssimin — Cyclic Scheduling Simulator - input parser.

Synopsis

T=cssimin(filename)
T=cssimin(filename,schoptions)

Description

The function creates taskset T from input file describing cyclic scheduling problem. Input parameters
are:

filename
specification file

schoptions
optimization options (See SCHOPTIONSSET)

Example

For more delails see User’s Guide Section 10.6.

See also

CYCSCH, SCHOPTIONSSET

132

CHAPTER 12. REFERENCE GUIDE

cssimout.m

Name

cssimout — Cyclic Scheduling Simulator - True-Time interface.

Synopsis

cssimout(T,ttinifile,ttcodefile)

Description

The function generates m-files for True-Time simulator. Input parameters are:

T
taskset with a cyclic schedule and parsed code in ’TSUserParam’

ttinifile
filename of True-Time initialization file

ttcodefile
filename of True-Time code file

See also

CSSIMIN

133

CHAPTER 12. REFERENCE GUIDE

cycsch.m

Name

cycsch — solves general cyclic scheduling problem.

Synopsis

TASKSET = CYCSCH(TASKSET,PROB,M,SCHOPTIONS)

Description

Function returns optimal schedule for cyclic scheduling problem defined by parameters:

TASKSET
set of tasks (see CDFG2LHGRAPH)

PROB
description of scheduling problem (object PROBLEM)

M
vector with number of processors

SCHOPTIONS
optimization options (see SCHOPTIONSSET)

See also

GRAPH/CRITICALCIRCUITRATIO, TASKSET/TASKSET, ALGPRJDEADLINEPRECCMAX

134

CHAPTER 12. REFERENCE GUIDE

graphedit.m

Name

graphedit — launch user-friendly editor of graphs able to export and import graphs between GUI and
Matlab workspace.

Synopsis

GRAPHEDIT(GRAPH)
GRAPHEDIT(GRAPH1,GRAPH2,...,GRAPHN)
GRAPHEDIT(sKeyWord)
GRAPHEDIT(KeyWord,value,...)

h = GRAPHEDIT(...)

Description

Parameters:

GRAPH
object graph

sKeyWord
single Key word ’fit’ - Fits graph to canvas; ’center’ - Centres drown graph

KeyWord
Keyword

h
handle to the figure object (main Graphedit window)

Available keywords:

zoom
Sets zoom to ordered value (1 == 100%)

viewedgesnames
Views/hides edges names (value: ’on’,’off’)

viewnodesnames
Views/hides nodes names (value: ’on’,’off’)

viewedgesuserparams
Views/hides edges user parameters (value: ’on’,’off’)

viewnodesuserparams
Views/hides nodes user parameters (value: ’on’,’off’)

viewparts
Views parts of graphedit (value: ’toolbar1’,’toolbar2’,’tabs’, ’sliders’,’mainmenu’,’all’)

hideparts
Hides parts of graphedit (value: ’toolbar1’,’toolbar2’,’tabs’, ’sliders’,’mainmenu’,’all’)

position
Sets position and size of graphedit window (value: [x, y, width, height])

lockup
Forgids user any interactions (value: ’on’,’off’)

viewtab
Views graph with ordered tab (value: tab’s ordinal number)

closetab
Closes canvas with ordered tab (value: tabs ordinal numbers)

135

CHAPTER 12. REFERENCE GUIDE

createtab
Creates new canvas (value: graph object)

drawintab
Draws ordered graph in actual viewed tab (value: graph object)

importbackground
Imports picture and put it in canvas (value: picture name, cData)

fitbackground
Fits background image to height or width (value: ’height’,’widht’)

removebackground
Removes last background image

propertyeditor
Views/hides property editor (value: ’on’,’off’)

librarybrowser
Views/hides library browser (value: ’on’,’off’)

nodedesigner
Views/hides node designer (value: ’on’,’off’)

fontsizenames
Sets font size of texts Name (value: numeric value)

fontsizeuserparams
Sets font size of texts UsaerParam (value: numeric value)

arrowsvisibility
Views/hides arrows (value: ’on’,’off’)

saveconfiguration
Saves actual graphedit configuration (value: ”, ’filename’)

movenode
Moves ordered nodes to required position (value: list of nodes and positions (cell))

Example

>> graphedit(graph([4 3 inf; inf inf 5; 1 2 3],’Name’,’graph_1’))
>>
>> graphedit(’zoom’,0.8,’viewedgesuserparams’,’off’)
>>
>> graphedit(’movenode’,{1, 100, 150; 2, 150, 150})

% moves node 1 to position [100,150] and node 2 to [150,150]

See also

GRAPH/GRAPH

136

CHAPTER 12. REFERENCE GUIDE

horn.m

Name

horn — computes schedule with Horn’74 algorithm

Synopsis

TS = horn(T, problem)

Description

TS = horn(T, problem) adds schedule to the set of tasks Parameters:

T
input set of tasks

TS
set of tasks with a schedule

problem
description of scheduling problem - ’1|pmtn,rj|Lmax’

See also

PROBLEM/PROBLEM, TASKSET/TASKSET, ALG1RJCMAX, ALG1SUMUJ

137

CHAPTER 12. REFERENCE GUIDE

hu.m

Name

hu — is scheduling algorithm for P|in-tree,pj=1|Cmax problem (can be called on labeled taskset with
problem P2|prec,pj=1|Cmax)

Synopsis

TS = HU(T, prob, m)
TS = HU(T, prob, m, verbose)
TS = HU(T, prob, m, options)

Description

Properties:

T
set of tasks, taskset object with precedence constrains

prob
P|in-tree,pj=1|Cmax

P2|prec,pj=1|Cmax

m
processors

verbose
0 - default, no information

1 - display scheduling information

options
global scheduling toolbox variables (SCHOPTIONSSET)

See also

COFFMANGRAHAM, SCHOPTIONSSET, ALGPCMAX, BRUCKER76

138

CHAPTER 12. REFERENCE GUIDE

ilinprog.m

Name

ilinprog — universal interface for integer linear programming.

Synopsis

[XMIN,FMIN,STATUS,EXTRA] = ILINPROG(OPTIONS,SENSE,C,A,B,CTYPE,LB,UB,VARTYPE)

Description

Parameters:

OPTIONS
optimization options (see SCHOPTIONSSET)

SENSE
indicates whether the problem is a minimization=1 or maximization=-1

C
column vector containing the objective function coefficients

A
matrix representing linear constraints

B
column vector of right sides for the inequality constraints CTYPE: - column vector that determines
the sense of the inequalities (CTYPE(i) = ’L’ less or equal; CTYPE(i) = ’E’ equal; CTYPE(i) =
’G’ greater or equal)

LB
column vector of lower bounds

UB
column vector of upper bounds

VARTYPE
column vector containing the types of the variables (VARTYPE(i) = ’C’ continuous variable; VAR-
TYPE(i) = ’I’ integer variable)

A nonempty output is returned if a solution is found:

XMIN
optimal values of decision variables

FMIN
optimal value of the objective function

STATUS
status of the optimization (1-solution is optimal)

EXTRA
data structure containing the following fields (TIME - time (in seconds) used for solving; LAMBDA
- dual variables)

See also

SCHOPTIONSSET, MAKE

139

CHAPTER 12. REFERENCE GUIDE

iquadprog.m

Name

iquadprog — Universal interface for mixed integer quadratic programming.

Synopsis

[XMIN,FMIN,STATUS,EXTRA] = ILINPROG(OPTIONS,SENSE,H,C,A,B,CTYPE,LB,UB,VARTYPE)

Description

The function has folowing parameters:

OPTIONS
optimization options (see SCHOPTIONSSET)

SENSE
indicates whether the problem is a minimization=1 or maximization=-1

H
square matrix containing quadratic part of the objective function coefficients

C
column vector containing linear part of the objective function coefficients

A
matrix representing linear constraints

B
column vector of right sides for the inequality constraints

CTYPE
column vector that determines the sense of the inequalities (CTYPE(i) = ’L’ less or equal; CTYPE(i)
= ’E’ equal; CTYPE(i) = ’G’ greater or equal)

LB
column vector of lower bounds

UB
column vector of upper bounds

VARTYPE
column vector containing the types of the variables (VARTYPE(i) = ’C’ continuous variable; VAR-
TYPE(i) = ’I’ integer variable)

A nonempty output is returned if a solution is found:

XMIN
optimal values of decision variables

FMIN
optimal value of the objective function

STATUS
status of the optimization (1-solution is optimal)

EXTRA
data structure containing the only one field TIME, i.e. time (in seconds) used for solving

See also

SCHOPTIONSSET, MAKE

140

CHAPTER 12. REFERENCE GUIDE

listsch.m

Name

listsch — Computes schedule by algorithm described by Graham 1966

Synopsis

taskset = LISTSCH(taskset, problem, m [,strategy] [,verbose])
taskset = LISTSCH(taskset, problem, m [,options])

Description

Function is a list scheduling algorithm for parallel prllel processors. The parameters are:

taskset
set of tasks,

problem
description of scheduling problem (object PROBLEM),

m
number of processors,

strategy
’EST’, ’ECT’, ’LPT’, ’SPT’ or any handler of function,

verbose
level of verbosity 0 - default, 1 - brief info, 2- tell me anything,

options
global scheduling toolbox variables (SCHOPTIONSSET)

See also

PROBLEM/PROBLEM, TASKSET/TASKSET, SORT ECT, SORT EST, SCHOPTIONSSET

141

CHAPTER 12. REFERENCE GUIDE

mcnaughtonrule.m

Name

mcnaughtonrule — computes schedule with McNaughtons’s algorithm

Synopsis

TS = MCNAUGHTONRULE(T, prob, M)

Description

TS = MCNAUGHTONRULE(T, prob, No Proc) finds schedule of scheduling problem ’P|pmtn|Cmax’.
First input parameter T is set of tasks to be schedule. The second parameter is description of the
scheduling problem (see PROBLEM/PROBLEM) and the last parameter M is number of processors.
Resulting schedule is returned in TS.

See also

PROBLEM/PROBLEM, TASKSET/TASKSET, ALGPCMAX

142

CHAPTER 12. REFERENCE GUIDE

private/bezier.m

Name

bezier — computes points on Bezier curve

Synopsis

[x,y] = BEZIER(x0,y0,x1,y1,x2,y2,x3,y3[,reduction])

Description

A cubic Bezier curve is defined by four points. Two are endpoints. (x0,y0) is the origin endpoint. (x3,y3)
is the destination endpoint. The points (x1,y1) and (x2,y2) are control points.

Function remove points in which vectors given by adjacent points inclined angel with tangent smaller
than input value ’reduction’. Default value is 0.005.

See also

TASKSET/PLOT

143

CHAPTER 12. REFERENCE GUIDE

randdfg.m

Name

randdfg — random Data Flow Graph (DFG) generator.

Synopsis

DFG=RANDDFG(N,M,DEGMAX,NE)
G=RANDDFG(N,M,DEGMAX,NE,NEH,HMAX)

Description

DFG=RANDDFG(N,M,DEGMAX,NE) generates DFG, where N is the number of nodes in the graph
DFG, M is the number of dedicated processors. Relation of node to a processor is stored in ’G.N(i).UserParam’.
Parameter DEGMAX restricts upper bound of outdegree of vertices. NE is number of edges. Resultant
graph is Direct Acyclic Graph (DAG).

G=RANDDFG(N,M,DEGMAX,NE,NEH,HMAX) generates cyclic DFG (CDFG), where NEH is num-
ber of edges with parameter ’0 < G.E(i).UserParam <= HMAX’. Other edges has user parameter
’G.E(i).UserParam=0’.

See also

GRAPH/GRAPH, CYCSCH

144

CHAPTER 12. REFERENCE GUIDE

randtaskset.m

Name

randtaskset — Generates set of tasks of random parameters selected from uniform distribution.

Synopsis

RTASKSET =
RANDTASKSET(nbTasks,[Name,]ProcTime[,ReleaseTime[,Deadline ...

[,DueDate[,Weight[,Processor]]]]])

Description

Function has following parameters:

nbTasks
number of tasks in set of tasks

Name
name of the tasks (must by char!)

ProcTime
range of processing time (execution time)

ReleaseTime
range of release date (arrival time)

Deadline
range of deadline

DueDate
range of due date

Weight
range of weight (priotiry)

Processor
range of dedicated processor

The output RTASKSET is a TASKSET object.

See also

TASKSET/TASKSET

145

CHAPTER 12. REFERENCE GUIDE

satsch.m

Name

satsch — computes schedule by algorithm described in [TORSCHE06]

Synopsis

taskset = SATSCH(taskset, problem, m)

Description

Properties:

taskset
set of tasks

problem
description of scheduling problem (object PROBLEM)

m
number of processors

See also

PROBLEM/PROBLEM, TASKSET/TASKSET

146

CHAPTER 12. REFERENCE GUIDE

schoptionsset.m

Name

schoptionsset — Creates/alters SCHEDULING TOOLBOX OPTIONS structure.

Synopsis

SCHOPTIONS = SCHOPTIONSSET(’PARAM1’,VALUE1,’PARAM2’,VALUE2,...)
SCHOPTIONS = OPTIMSET(OLDSCHOPTIONS,’PARAM1’,VALUE1,...)

Description

SCHOPTIONS = SCHOPTIONSSET(’PARAM1’,VALUE1,’PARAM2’,VALUE2,...) creates an opti-
mization options structure SCHOPTIONS in which the named parameters have the specified values.

SCHOPTIONS = SCHOPTIONSSET(OLDSCHOPTIONS,’PARAM1’,VALUE1,...) creates a copy of
OLDSCHOPTIONS with the named parameters altered with the specified values. Supported parameters
are summarized below.

GENERAL:

maxIter
Maximum number of iterations allowed. (positive integer)

verbose
Verbosity level. (0 = be silent, 1 = display only critical messages 2 = display everything)

logfile
Create a log file. (0 = disable, 1 = enable)

logfileName
Specifies logfile name. (character array)

strategy
Specifies strategy of algorithm.

ILP,MIQP:

ilpSolver
Specify ILP solver (’glpk’ or ’lp solve’ or ’external’)

extIlinprog
Specifies external ILP solver interface. Specified function must have the same parameters as func-
tion ILINPROG. (function handle)

miqpSolver
Specify MIQP solver (’miqp’ or ’external’)

extIquadprog
Specifies external MIQP solver interface. Specified function must have the same parameters as func-
tion IQUADPROG. (function handle)

solverVerbosity
Verbosity level. (0 = be silent, 1 = display only critical messages, 2 = display everything)

solverTiLim
Sets the maximum time, in seconds, for a call to an optimizer. When solverTiLim<=0, the time
limit is ignored. Default value is 0. (double)

CYCLIC SCHEDULING:

cycSchMethod
Specifies an method for Cyclic Scheduling algorithm (’integer’ or ’binary’)

147

CHAPTER 12. REFERENCE GUIDE

varElim
Enables elimination of redundant binary decision variables in ILP model (0 = disable, 1 = enable).
varElimILPSolver

Specifies another ILP solver for elimination of redundant binary decision variables.

secondaryObjective
Enables minimization of iteration overlap as secondary objective function (0 = disable, 1 = enable).

qmax
Maximal overlap of iterations qmax>=0 (default [] - undefined).

SCHEDULING WITH POSITIVE AND NEGATIVE TIME-LAGS:

spntlMethod
Specifies an method for SPNTL algorithm (’BaB’ - Branch and Bound algorithm; ’BruckerBaB’ -
Brucker’s Branch and Bound algorithm; ’ILP’ - Integer Linear Programming)

See also

ILINPROG, CYCSCH, SPNTL

148

CHAPTER 12. REFERENCE GUIDE

spntl.m

Name

spntl — computes schedule with Positive and Negative Time-Lags

Synopsis

TS = SPNTL(T,PROB,SCHOPTIONS)

Description

TS = SPNTL(T,PROB,SCHOPTIONS) returns the optimal schedule TS of set of tasks defined in T for
scheduling problem ’SPNTL’ defined in PROB (object PROBLEM). Parameter SCHOPTIONS specifies
an extra optimization options.

See also

ILINPROG, SCHOPTIONSSET, BRATLEY, CYCSCH

149

CHAPTER 12. REFERENCE GUIDE

xmlsave.m

Name

xmlsave — saves variables to file in xml format.

Synopsis

XMLSAVE(FILENAME,VARIABLE1,VARIABLE2,VARIABLE3,...)
XMLSAVE(’’,VARIABLE1,VARIABLE2,VARIABLE3,...)

out = XMLSAVE(’’,VARIABLE1,VARIABLE2,VARIABLE3,...)

Description

XMLSAVE saves variables into XML file named ’FILENAME’. Temporary file is created and immediately
opened in editor if parameter FILENAME is empty string. Alternatively xmlsave returns conntents of
xml file in the first output variable.

Example

>> t=task(’t1’,5,1,10);
>> txml=xmlsave(’’,t)
txml =
<?xml version="1.0" encoding="utf-8"?>
<matlabdata date="24-Sep-2007 08:45:33" proccessor="TORSCHE Scheduling Toolbox for Matlab" ver="0.2">

<task id="t"><!--Basic Params-->
<name>t1</name>
<proctime>5</proctime>
<releasetime>1</releasetime>
<deadline>10</deadline>
<duedate>Inf</duedate>
<weight>1</weight><!--Graphics parameters-->
<graphicparam>

<position>
<x>0</x>
<y>0</y>

</position>
</graphicparam>

</task>
</matlabdata>

See also

TASKSET/TASKSET, CSSIMOUT

150

Literature

[Ahuja93] Network Flows, Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin, Prentice
Hall, February 18, 1993, 864, 013617549X. 9.6, 9.7

[Bemporad04] Mixed Integer Quadratic Program (MIQP) solver for Matlab, Alberto Bemporad and
Domenico Mignone, Automatic Control Laboratory, ETH Zentrum, Zurich, Switzerland,
2004. 10.2, 10.5

[Berkelaar05] lp solve (Open source (Mixed-Integer) Linear Programming system) Version 5.1.0.0 ,
Michel Berkelaar, Kjell Eikland, and Peter Notebaert, 2005. 10.2

[Bru76] Sequencing unit-time jobs with treelike precedence on m processors to minimize maximum
lateness, P.J. Brucker, Proc. IX International Symposium on Mathematical Program-
ming, Budapest, 1976. 7.2, 7.10

[Brucker99] A branch and bound algorithm for a single-machine scheduling problem with positive and
negative time-lags, P. Brucker, T. Hilbig, and J. Hurink, Discrete Applied Mathematics,
1999. 7.2, 7.11

[Butazo97] Hard Real-Time Computing Systems, G. C. Butazo, Kluwer Academic Publishers, 1997,
0-7923-9994-3. 3.1

[B lażewicz01] Scheduling Computer and Manufacturing Process, J. B lażewicz, K. H. Ecker, E. Pesch,
G. Schmidt, and J. Wȩglarz, Springer, 2001, 3-540-41931-4. 3.1, 7.2, 7.4, 7.5, 7.7, 7.9,
7.9.1, 7.9.2, 7.10, 7.11, 7.14, 7.15

[B lażewicz83] Scheduling subject to resource constrains: classification and complexity , J. B lażewicz, J.
K. Lenstra, and A. H. Rinnooy Kan, Ann. Discrete Math, 11-24, 1933. 1, 2.4, 5.1, 7

[CDFG05] Control-Data Flow Graph Toolset , Jinhwan Jeon and Yong-Jin Ahn,
http://poppy.snu.ac.kr/CDFG/, 2005. 7.12

[CPLEX04] CPLEX Version 9.1 , ILOG, Inc., Department for Applied Informatics, Moscow Aviation
Institute, Moscow, 2004. 10.2

[Cervin06] TRUETIME 1.4—Reference Manual , M. Ohlin, D. Henriksson, and A. Cervin, Depart-
ment of Automatic Control, Lund University, 2006. 10.6

[DSVF06] Implementation of Digital Filters as Part of Custom Synthesizer
with NI SPEEDY 33 , National Instruments, National Instruments,
http://zone.ni.com/devzone/cda/tut/p/id/3476, 2006. 10.6.2

[DSVF06] Depth-First Search and Linear Graph Algorithms, Tarjan, R. E., SIAM J. Comput, 146-
160, 1972. 9.5

[Demel02] Grafy a jejich aplikace, Demel, J., Academia, 2002. 9.2, 9.9

[Diestel00] Graph Theory , Reinhard Diestel, Springer, February, 2000, 313, 0-38-798976-5. 9.4, 9.8

[Dongen92] A Polynomial Time Method for Optimal Software Pipelining , V. H. Dongen and G. R.
Gao, Lecture Notes in Computer Science, Springer-Verlag, 1992, 613-624, 3-540-55895-0.
7.12

[Fettweis86] Wave digital filters: theory and practice, A. Fettweis, Proceedings of the IEEE, 270-327,
February, 1986. 7.12, 7.12

[Graham66] Bounds for certain multiprocessing anomalies, R. L. Graham, Bell System Technical
Journal, 1966, 45:1563–1581. 7.2

[Graham79] Optimization and approximation in deterministic sequencing and scheduling theory: a
survey , R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. Rinnooy Kan, Ann.
Discrete Math, 287-326, 1979. 1, 2.4, 5.1, 7

151

LITERATURE LITERATURE

[HSLA02] Logarithmic number system and floating-point arithmetics on FPGA, R. Matoušek, M.
Tichý, Z. Pohl, J. Kadlec, and C. Softley, Field-Programmable Logic and Applications:
Reconfigurable Computing is Going Mainstream, Lecture Notes in Computer Science
2438, 627-636, 2002. 11.2.1

[Hanen95] A Study of the Cyclic Scheduling Problem on Parallel Processors, C. Hanen and A.
Munier, Discrete Applied Mathematics, 167-192, February, 1995. 7.2, 7.12

[Hanzalek04] Scheduling with Start Time Related Deadlines, P. Š̊ucha and Z. Hanzálek, IEEE Confer-
ence on Computer Aided Control Systems Design, September, 2004. 7.2, 7.11

[Hanzalek07] Deadline constrained cyclic scheduling on pipelined dedicated processors considering mul-
tiprocessor tasks and changeover times, P. Š̊ucha and Z. Hanzálek, Mathematical and
Computer Modelling Journal (Article in Press), 2007. 7.12

[Heemstra92] Range-Chart-Guided Iterative Data-Flow-Graph Scheduling , Sonia M. Heemstra de
Groot, Sabih H. Gerez, and Otto E. Herrmann, IEEE Transactions on Circuits and
Systems I: Fundamental Theory and Applications, May, 1992, 351-364, 013617549X.
7.12

[Horn74] Some Simple Scheduling Algorithms, W. A. Horn, Naval Res. Logist. Quart., 21, 1974,
177-185. 7.2

[Leung04] Handbook of Scheduling , Joseph Y-T. Leung, Chapman & Hall/CRC, April 15, 2004,
1120, 1-58488-397-9. 7.9

[Liu00] Real-time systems, J. W. Liu, Prentice-Hall, 2000, 0-13-099651-3. 3.1

[Makhorin04] GLPK (GNU Linear Programming Kit) Version 4.6 , Andrew Makhorin, Department
for Applied Informatics, Moscow Aviation Institute, Moscow, 2004. 10.2

[Memik02] Accelerated SAT-based Scheduling of Control/Data Flow Graphs, S. O. Memik and F.
Fallah, 20th International Conference on Computer Design (ICCD), IEEE Computer
Society, 2002, 395-400. 7.13.2

[Paulin86] HAL: A multi-paradigm approach to automatic data path synthesis, Pierre G. Paulin,
John P. Knight, and Emil F. Girczyc, 23rd IEEE Design Automation Conf, July, 1986,
263-270. 7.12

[Pinedo02] Scheduling , Michael Pinedo, Prentice Hall, 2002, 586, 0-13-028138-7. 1

[Pohl05] Performance Tuning of Iterative Algorithms in Signal Processing , Z. Pohl, P. Š̊ucha, J.
Kadlec, and Z. Hanzálek, The International Conference on Field-Programmable Logic
and Applications (FPL’05), Tampere, Finland, 699-702, 2005. 7.12

[QAPLIB06] QAPLIB - A Quadratic Assignment Problem Library , Rainer E. Burkard, Eranda Çela,
Stefan E. Karisch, and Franz Rendl, Institute of Mathematics, Graz University of Tech-
nology, 2006. 9.10, 9.10

[RLS03] FPGA Implementation of the Adaptive Lattice Filter , A. Heřmánek, Z. Pohl, and J.
Kadlec, Field-Programmable Logic and Applications. Proceedings of the 13th Interna-
tional Conference, 1095-1098, 2003. 11.2.1, 11.2.1

[Rabaey91] Fast Prototyping of Datapath-Intensive Architectures, J. M. Rabaey, C. Chu, P. Hoang,
and M. Potkonjak, IEEE Design and Test of Computers, 1991, 40-51. 7.12

[Rau81] Some scheduling techniques and an easily schedulable horizontal architecture for high
performance scientific computing , B. R. Rau and C. D. Glaeser, Proceedings of the 20th
Annual Workshop on Microprogramming and Microarchitecture, 183-198, 1981.

[Stützle99] New ideas in optimization ACO Algorithms for the Quadratic Assignment Problem (New
ideas in optimization), Thomas Stützle and Marco Dorigo, McGraw-Hill Ltd., UK, 1999,
33-50, 0-07-709506-5. 9.10

152

LITERATURE LITERATURE

[Sucha04] Scheduling of Iterative Algorithms on FPGA with Pipelined Arithmetic Unit , P. Š̊ucha,
Z. Pohl, and Z. Hanzálek, 10th IEEE Real-Time and Embedded Technology and Appli-
cations Symposium, May, 2004. 7.2, 7.12, 7.12, 11.2.1, 11.2.1

[Sucha07] Cyclic Scheduling of Tasks with Unit Processing Time on Dedicated Sets of Parallel Iden-
tical Processors, P. Š̊ucha and Z. Hanzálek, Multidisciplinary International Scheduling
Conference: Theory and Application (MISTA07), August, 2007. 7.12

[TORSCHE06] TORSCHE Scheduling Toolbox for Matlab, P. Š̊ucha, M. Kutil, M. Sojka, and Z.
Hanzálek, IEEE International Symposium on Computer-Aided Control Systems Design
(CACSD’06), Munich, Germany, 2006. 7.2

153

	Contents
	1 Introduction
	2 Quick Start
	2.1 Software Requirements
	2.2 Installation
	2.3 Help
	2.4 How to Solve Your Scheduling Problems
	2.5 Save and Load Functions

	3 Tasks
	3.1 Introduction
	3.2 Creating the task Object
	3.3 Graphical Representation of the task Object
	3.4 Object task Modifications
	3.4.1 Start Time of Task
	3.4.2 Color Modification

	3.5 Periodic Tasks
	3.5.1 Creating the ptask Object
	3.5.2 Working with ptask Objects

	4 Sets of Tasks
	4.1 Creating the taskset Object
	4.2 Graphical Representation of the Set of Tasks
	4.3 Set of Tasks Modification
	4.3.1 Modification of Tasks Parameters Inside the Set of Tasks
	4.3.2 Schedule

	4.4 Other Functions
	4.4.1 Count and Size
	4.4.2 Sort
	4.4.3 Random taskset

	5 Classification in Scheduling
	5.1 The problem Object

	6 Graphs
	6.1 Introduction
	6.2 Creating Object graph
	6.3 Object graph Modification
	6.3.1 User Parameters on Edges

	6.4 Graphedit
	6.4.1 The Graph Construction
	6.4.1.1 Placing of Nodes and Edges

	6.4.2 Plug-ins
	6.4.3 Property editor
	6.4.4 Export/Import to/from Matlab workspace
	6.4.5 Saving/Loading to/from Binary File
	6.4.6 Change of Appearance of Nodes

	6.5 Transformations Between Objects taskset and graph
	6.5.1 Transformations from graph to taskset
	6.5.2 Transformations from taskset to graph

	7 Scheduling Algorithms
	7.1 Structure of Scheduling Algorithms
	7.2 List of Algorithms
	7.3 Algorithm for Problem 1|rj|Cmax
	7.4 Bratley's Algorithm
	7.5 Hodgson's Algorithm
	7.6 Algorithm for Problem P||Cmax
	7.7 McNaughton's Algorithm
	7.8 Algorithm for Problem P|rj,prec,~dj|Cmax
	7.9 List Scheduling
	7.9.1 LPT
	7.9.2 SPT
	7.9.3 ECT
	7.9.4 EST
	7.9.5 Own Strategy Algorithm

	7.10 Brucker's Algorithm
	7.11 Scheduling with Positive and Negative Time-Lags
	7.12 Cyclic Scheduling
	7.13 SAT Scheduling
	7.13.1 Instalation
	7.13.2 Clause preparing theory
	7.13.3 Example - Jaumann wave digital filter

	7.14 Hu's Algorithm
	7.15 Coffman's and Graham's Algorithm

	8 Real-Time Scheduling
	8.1 Fixed-Priority Scheduling
	8.1.1 Response-Time Analysis
	8.1.2 Fixed-Priority Scheduler

	9 Graph Algorithms
	9.1 List of Algorithms
	9.2 Minimum Spanning Tree
	9.3 Dijkstra's Algorithm
	9.4 Floyd's Algorithm
	9.5 Strongly Connected Components
	9.6 Minimum Cost Flows
	9.7 The Critical Circuit Ratio
	9.8 Hamilton Circuits
	9.9 Graph coloring
	9.10 The Quadratic Assignment Problem

	10 Other Algorithms
	10.1 List of Algorithms
	10.2 Scheduling Toolbox Options
	10.3 Random Data Flow Graph (DFG) generation
	10.4 Universal interface for ILP
	10.5 Universal interface for MIQP
	10.6 Cyclic Scheduling Simulator
	10.6.1 CSSIM Input File
	10.6.2 TrueTime

	10.7 Export to XML

	11 Case Studies
	11.1 Theoretical Case Studies
	11.1.1 Watchmaker's
	11.1.2 Conveyor Belts
	11.1.3 Chair manufacturing

	11.2 Real Word Case Studies
	11.2.1 Scheduling of RLS Algorithm for HW architectures with Pipelined Arithmetic Units

	12 Reference guide
	Literature

