7th International Scientific — Technical Conference — PROCESS ONTROL 2006
June 13 - 16, 2006, Kouty nad Desnou, Czech Republic

TORSCHE SCHEDULING TOOLBOX: LIST
SCHEDULING

STIBOR MILOSLAV, KUTIL MICHAL

Department of Control Engineering,

Czech Technical University in Prague,
Technicka 2, 166 27 Prague 6, Czech Republic
phone: +420 224 355 711, fax: +420 224 355 703

{stibom1,kutilm} @fel.cvut.cz

Abstract: TORSCHE is a scheduling toolbox for MATLAB environment whitas been developed
at the Department of Control Engineering (Czech Technicavérsity in Prague, Faculty of Electri-
cal Engineering) and is distributed under the terms of th&J&xneral Public License. It's designed
to solve various problems of scheduling and validation lyppr algorithms whose number is still
extending. As a basic combinatorial algorithm, List ScHieduhas been well known for almost 50
years. In this algorithm, tasks are fed from a pre-specifs@d The available first task on the list is
scheduled and removed from the list. There are many hagiatgorithms like The Earliest Start-
ing Time first (EST), The Earliest Completion Time first (ECThe Longest Processing Time first
(LPT) and etc., based on simple ordering of tasks in the jistalsious parameters. These algorithms
are needed in a wide range of practical problems in indusigistics, informatics and etc.

Keywords: Scheduling, Matlab, List Scheduling

1 INTRODUCTION

Scheduling theory has been a popular discipline for a laspleoof years. However, there is
no tool, which can be used for a complex scheduling algostidesign and validation. Creation of this
tool is our goal. TORSCHE (Time Optimization of Resource€HE&Eduling) is a scheduling toolbox
for MATLAB environment intended for education and rapid fotgping. It contains complex set of
algorithms and utilities for classical scheduling probderayclic scheduling, scheduling with positive
and negative time lags, graph theory and more. TORSCHE tshdited under the terms of the GNU
General Public License and number of included algorithnssilisextending.

2 SCHEDULING TOOLBOX BASICS

Main objects of TORSCHE Scheduling Toolbox are Task, TaskB& Problem. Object Taskis a
data structure containing all parameters of the task agpsdime, release date, deadline etc. Objects of a
type Task can be grouped into a set of tasks and other retdtadiation as precedence constrains can be
added. Object Problem is a small structure describingifilzestion of deterministic scheduling problems
in Graham and Baewicz notation. These objects are used asal eoviding general functions and
graphical interface, making the toolbox easily extensityi®ther scheduling algorithms.

2.1 Task

Task is a basic object in scheduling problems, which repitessny unit of work or process that
is scheduled by appropriate algorithm and executed by thengiystem. The graphic representation of
task and its basic parameters are shown on the Figure 1, where

processing Time (ProcTimep;) is an execution time of the task on the procesor;
release Time (ReleaseTime;;) is a time at which a task becomes ready for execution;

deadline (DeadLine,Jj) is a time limit by which the task has to be necessarily coreglebtherwise
the schedule is unsuccessful;

R099 -1

7th International Scientific — Technical Conference — PROCESS ONTROL 2006
June 13 - 16, 2006, Kouty nad Desnou, Czech Republic

Task T,

Figure 1 — Taks parameters

due date (DueDate(;) is a time limit by which the task should be completed, othseathe criterion
function is charged by penalty;

completion time (c;) is a real time of completion of the task;

starting time (s;) is a real time at which the task execution begins;

waiting time (w;) is a delay between release time and starting time of the task;
flow time (F}) is a time interval from releasing to completion of the task;

lateness (;) is a time interval between due date and completion time ofetslein the positive and the
negative sense;

tardiness (D;) is a time interval between due date and completion time ofésle only in the negative
sense.

Task can be also described by parameters like:

weight (Weight) number which defines the priority of the task in relation wather tasks (it often be
represented by, symbol which is the similar symbol for waiting time);

processor (Processor)defines processor whereon the task have to be executed.

In the TORSCHE Scheduling Toolbox a task is represented dplbfect data structure with the
name task. Constructor for this object is command with thleong syntax:

t1 = task([Name,] ProcTi ne[, Rel easeTi ne[, Deadl i ne[, DueDat e[, Wi ght
[,Processor]]]]])

Input parameters of task constructor fully correspondiith terms mentioned above. Parameter
Name is variable of string data type, which represents nantleectask. ProcTime parameter is only
one required and the others are optional. For unrelatecepsocs the ProcTime parameter is a vector
where each number represents processing time on concoetesgor. Any parameter of the task can be
modified or define lately by common dot-syntax as it is usedtahother approach to read or modify
parameters is through common routines get() and set().

2.2 Taskset

Objects of the type task can be grouped into a set of taskst éf s&sks is an object of the type
taskset which can be created by the command taskset. Symtthid command is as follows

T = taskset (tasks][, prec])

R099 -2

7th International Scientific — Technical Conference — PROCESS ONTROL 2006
June 13 - 16, 2006, Kouty nad Desnou, Czech Republic

where variable tasks is an array of task objects or a vecttassf processing times. Vector of
task processing times define the taskset directly withoeiipus task objects definition. Variable prec
is a square matrix containing precedence constrains bettasks. An example of taskset definition by
the task processing time vector is given by the followingesashich creates the taskset variable T with
five tasks.

>> T = taskset([5 2 6 3 8], prec);

2.3 Problem

The object problem is a small structure describing the iflaagon of deterministic scheduling
problems in the notation proposed by Graham et al. [1979]Bladewicz et al. [1983]. An example is
given by the following code.

p = problenm(’ P| prec| Chmax’)

This notation consists of three parts|§|v). The first term (alpha) describes the processor
environment, the second term (beta) describes the taskaibastics of the scheduling problem as the
precedence constrains, or the release time. The last temmn(@) denotes an optimality criterion.

3 LIST SCHEDULING

List Scheduling is a basic and popular combinatorial athoriintended for scheduling of set
of tasks on a single and even parallel processors. In thiwitlign tasks are fed from a pre-specified
list and, whenever a processor becomes idle, the first &laitask on the list is scheduled and removed
from the list, where the availability of a task means that thek has been released and, if there are
precedence constraints, all its predecessors have albestyprocessed Leung [2004]. The algorithm
terminates when all tasks from the list are scheduled. rte tomplexity is O(n). In multiprocessor
case, the processor with minimal time is taken in every timeof algorithm and the others are relaxed.

The fact, which is obvious from the principle of algorithnthat, there aren’t any requirements of
knowledge about past or future of content of the list. Tramfthis algorithm is capable to solve offline
as well as online no-clairvoyance scheduling problems.rdlee many heuristics algorithms like The
Earliest Starting Time first (EST), The Earliest Completitime first (ECT), The Longest Processing
Time first (LPT) and etc., based on simple ordering of taskkerlist by various parameters.

4 HEURISTICS BASED ON LIST SCHEDULING

Heuristic algorithms tend toward but do not guarantee todiptilal solutions for any instance
of an optimization problem. On condition of appropriate @b® of heuristic it often provide acceptable
results with very good time and memory complexity.

The Earliest Starting Time first rule:

Reorder tasks in the list to no-decreasing tend of stariiing ; before the application of List Scheduling
algorithm. Its time complexity ialogn.

The Earliest Completion Time first rule:

Reorder tasks in the list to no-decreasing tend of compieiine ¢; in every iteration of List Scheduling
algorithm. Where completion time is computed as

¢; = max (Tia tproc) + Dpi, (l)

andr; is release timep; is processing time ang,... is a minimal actual time on processors.

The Longest Processing Time first rule:
Reorder tasks in the list to no-increasing tend of procgdsimep; before the application of List Schedul-
ing algorithm. Its time complexity islogn.

The Shortest Processing Time first rule:
Reorder tasks in the list to no-decreasing tend of procgsine p; before the application of List
Scheduling algorithm. Its time complexity igdogn.

R099 -3

7th International Scientific — Technical Conference — PROCESS ONTROL 2006
June 13 - 16, 2006, Kouty nad Desnou, Czech Republic

5 IMPLEMENTATION

List Scheduling is implemented in TORSCHE Scheduling Torlby functionl i st sch which
also allows to user to use any of implemented heuristic @hlgos and visualize process of scheduling
step by step in text form in MABLAB workspace. Moreover, thastlversion is able to solve scheduling
problems on unrelated parallel processors. Figure 2 shdlewehart ofl i st sch function.

Verification of
input
parameters.

Error message.

Is number of
tasks on the list

Final schedule as an
output variable.

Call heuristic if is
required

Proc := processor with
minimal time.

Task := The firs available

task on the list. (without

incomplete predecessor,
free)

|

Move Task to processor

Remove Task from the

\—» ————— Verbose 4

End

Figure 2 — Flow chart of listsch function

The syntax is given by following code

taskset = listsch(taskset, probl em processors [, heuristic] [,verbose])
or
taskset = listsch(taskset, probl em processors [, options]).

Where

taskset (taskset)is a set of task;

problem (problem) is an object problem;
processorsis a number of processors;
heuristic is an algorithm like LPT, SPT, EST;
verbose is a level of verbosity;

options is a global variables of Scheduling Toolbox.

R099 -4

7th International Scientific — Technical Conference — PROCESS ONTROL 2006
June 13 - 16, 2006, Kouty nad Desnou, Czech Republic

6 CASE STUDIES
6.1 Conveyor Belts

Transportation of goods by two conveyor-belts is simplengpi@ of using List Scheduling in
practice. Construction material must be carried out froat@lto place with minimal time effort. Trans-
ported articles represent five kinds of construction makemnd two conveyor-belts as processors are
available. Table 1 shows assignment of this problem. Swiuif the case study is shown in five steps:

Table 1 — Material transport processing time.

Name sand| grit | wood | bricks | cement
Processing Time| 40 | 50 30 50 20

1. Create taskset directly through vector of processing.tim
>> T = taskset ([40 50 30 50 20]);

2. Since the taskset has been created, is possible to charayegiers of all tasks in it.
>> T.Name = {'sand’,’'grit’, wood ,’bricks’,’cenment’};

3. Define the problem, which will be solved.
>> p = problen(’ P| prec|Chax’);

4. Call List Scheduling algorithm with taskset and problemated recently and define number of
processors (Conveyor-belts).

>> S = |listsch(T,p,?2)
Set of 5 tasks
There is schedul e: List Scheduling

5. Visualize the final schedule by standard plot functioe, Bgure 3.
>> plot(S)

€ Figure 1 Cialm)by,
Eile Edit W¥iew |nsert Tools Deskiop Window Help k]

DEES|MQAN®|[E|0E|= 0

Processor 1 I
wood

i ricks
it brrick:
EED 40 5 B0 T80 a0 100
t

Figure 3 — Result of case study 1 as Gantt chart

R099 -5

7th International Scientific — Technical Conference — PROCESS ONTROL 2006
June 13 - 16, 2006, Kouty nad Desnou, Czech Republic

6.2 Chair manufacturing

This example is slightly more difficult and demonstrates safhadvanced possibilities of Tool-
box. It solves a problem of manufacturing of a chair by two keos (cabinetmakers). Their goal is
make four legs, seat and backrest of the chair and assentlaytaése parts with minimal time effort.
Material, which is needed to create backrest, will be atéglafter 20 time units of start and assemblage
is divided out into two stages. Figure 4 shows the mentiometdlpm by graph representation.

leg,/6 leg,/6 legs; /6 legs/6 seat/15

backrest/25/20

assembly,, /15

assembly,;, /15

Figure 4 — Graph representation of Chair manufacturing

1. Create desired tasks.

>>t1 = task(’'legl', 6)

Task "l egl”
Processing tinme: 6
Rel ease tine: 0

>> 12 = task(’'leg2,6);
>> 13 = task(’'l1eg3',6);
>> t4 = task(’legd4d’ ,6);
>>t5 = task(’ seat’, 6);
>> t6 = task(’ backrest’, 25, 20);
>> t7 = task(’ assenblyl/ 2 ,15);
>> t8 = task(’'assenbly2/2',15);

2. Define precedence constraints by precedence matrix pedrix has sizen x n wheren is a
number of tasks.

>> prec = [0
0

[eNeoNeoNoNoNolNolNo
OO OO0 0OO0oOo
[eNeoNeoNoNoNolNolNo
OO OO0 O0OO0oOo
QOO FRRFRPEFPRFPF
OO OO0 0OO0oOo

PRPO000O

cooooo
A=),

R099 -6

7th International Scientific — Technical Conference — PROCESS ONTROL 2006
June 13 - 16, 2006, Kouty nad Desnou, Czech Republic

3. Create an object of taskset from recently defined objects.

>> T = taskset ([t1 t2 t3 t4 t5t6 t7 t8], prec)
Set of 8 tasks
There are precedence constraints

4. Define solved problem.

>> p = problem(’ P| prec| Crax’)
P| pr ec| Crrax

5. Call List Scheduling algorithm with taskset and problemeated recently and define number of
processors and desired heuristic.

>> S = |listsch(T,p, 2, SPT)
Set of 8 tasks
There are precedence constraints
There is schedul e: List Scheduling
Solving tinme: 1.1316s

6. Visualize the final schedule by standard plot functioe, Bgure 5.
>> plot(S)

@ Figure 1 IO
File Edit ¥iew Insert Tools Deskiop Window Help

DEES| QAN || 0E | O

Frocessor]
Ieg3 seat / assembly, ,

FrocessorZ

Ieg4

Figure 5 — Result of case study 2 as Gantt chart

7 SUMMARY AND FUTURE WORK
This paper presents TORSHE Scheduling toolbox for MATLABRunding of its usage and a

couple of simple examples inspired by practice problemss Twolbox is a spreading set of algorithms,
utilities, interfaces and applications intended for sodvtime optimization of resources by a quick and
simple way. It provides a possibility to anyone to realizg, and verify solution of problem in wide
range of real-world projects. In the future work we will f@aad on incorporating new algorithms and
improving connections to another tools and projects.

This work was supported by the Ministry of Education of thee@z Republic under Project 1M0567.

R099 -7

7th International Scientific — Technical Conference — PROCESS ONTROL 2006
June 13 - 16, 2006, Kouty nad Desnou, Czech Republic

References

BLAZEWICZ, J.; LENSTRA, J. K.; KAN, A. H. R. 1983. Scheduling $ett to resource constrains:
classification and complexityAnn. Discrete Math., 5, 11-24.

GRAHAM, R.; LAWLER, E.; LENSTRA, J.; KAN, A. R. 1979. Optima&tion and Approximation in
Deterministic Sequencing and Scheduling: A Survayn. Discrete Math., 5, 287—326.

LEUNG, J. Y.-T., editor 2004Handbook of Scheduling: Algorithms, Models, and Performance Analysis.
CRC Press.

R099 -8

