
7th International Scientific – Technical Conference – PROCESS CONTROL 2006
June 13 – 16, 2006, Kouty nad Desnou, Czech Republic

TORSCHE SCHEDULING TOOLBOX: LIST
SCHEDULING

STIBOR MILOSLAV, KUTIL MICHAL

Department of Control Engineering,
Czech Technical University in Prague,

Technicka 2, 166 27 Prague 6, Czech Republic
phone: +420 224 355 711, fax: +420 224 355 703

{stibom1,kutilm}@fel.cvut.cz

Abstract: TORSCHE is a scheduling toolbox for MATLAB environment which has been developed
at the Department of Control Engineering (Czech Technical University in Prague, Faculty of Electri-
cal Engineering) and is distributed under the terms of the GNU General Public License. It’s designed
to solve various problems of scheduling and validation by proper algorithms whose number is still
extending. As a basic combinatorial algorithm, List Scheduling has been well known for almost 50
years. In this algorithm, tasks are fed from a pre-specified list. The available first task on the list is
scheduled and removed from the list. There are many heuristics algorithms like The Earliest Start-
ing Time first (EST), The Earliest Completion Time first (ECT), The Longest Processing Time first
(LPT) and etc., based on simple ordering of tasks in the list by various parameters. These algorithms
are needed in a wide range of practical problems in industry,logistics, informatics and etc.

Keywords: Scheduling, Matlab, List Scheduling

1 INTRODUCTION

Scheduling theory has been a popular discipline for a last couple of years. However, there is
no tool, which can be used for a complex scheduling algorithms design and validation. Creation of this
tool is our goal. TORSCHE (Time Optimization of Resources, SCHEduling) is a scheduling toolbox
for MATLAB environment intended for education and rapid prototyping. It contains complex set of
algorithms and utilities for classical scheduling problems, cyclic scheduling, scheduling with positive
and negative time lags, graph theory and more. TORSCHE is distributed under the terms of the GNU
General Public License and number of included algorithms isstill extending.

2 SCHEDULING TOOLBOX BASICS

Main objects of TORSCHE Scheduling Toolbox are Task, TaskSet and Problem. Object Task is a
data structure containing all parameters of the task as process time, release date, deadline etc. Objects of a
type Task can be grouped into a set of tasks and other related information as precedence constrains can be
added. Object Problem is a small structure describing classification of deterministic scheduling problems
in Graham and Baewicz notation. These objects are used as a kernel providing general functions and
graphical interface, making the toolbox easily extensibleby other scheduling algorithms.

2.1 Task

Task is a basic object in scheduling problems, which represents any unit of work or process that
is scheduled by appropriate algorithm and executed by the given system. The graphic representation of
task and its basic parameters are shown on the Figure 1, where

processing Time (ProcTime,pj) is an execution time of the task on the procesor;

release Time (ReleaseTime,rj) is a time at which a task becomes ready for execution;

deadline (DeadLine,d̃j) is a time limit by which the task has to be necessarily completed, otherwise
the schedule is unsuccessful;

R099 – 1

7th International Scientific – Technical Conference – PROCESS CONTROL 2006
June 13 – 16, 2006, Kouty nad Desnou, Czech Republic

Figure 1 – Taks parameters

due date (DueDate,dj) is a time limit by which the task should be completed, otherwise the criterion
function is charged by penalty;

completion time (cj) is a real time of completion of the task;

starting time (sj) is a real time at which the task execution begins;

waiting time (wj) is a delay between release time and starting time of the task;

flow time (Fj) is a time interval from releasing to completion of the task;

lateness (Lj) is a time interval between due date and completion time of thetask in the positive and the
negative sense;

tardiness (Dj) is a time interval between due date and completion time of thetask only in the negative
sense.

Task can be also described by parameters like:

weight (Weight) number which defines the priority of the task in relation withother tasks (it often be
represented bywj symbol which is the similar symbol for waiting time);

processor (Processor)defines processor whereon the task have to be executed.

In the TORSCHE Scheduling Toolbox a task is represented by the object data structure with the
name task. Constructor for this object is command with the following syntax:

t1 = task([Name,]ProcTime[,ReleaseTime[,Deadline[,DueDate[,Weight
[,Processor]]]]])

Input parameters of task constructor fully corresponding with terms mentioned above. Parameter
Name is variable of string data type, which represents name of the task. ProcTime parameter is only
one required and the others are optional. For unrelated processors the ProcTime parameter is a vector
where each number represents processing time on concrete processor. Any parameter of the task can be
modified or define lately by common dot-syntax as it is used to do. Another approach to read or modify
parameters is through common routines get() and set().

2.2 Taskset

Objects of the type task can be grouped into a set of tasks. A set of tasks is an object of the type
taskset which can be created by the command taskset. Syntax for this command is as follows

T = taskset(tasks[,prec])

R099 – 2

7th International Scientific – Technical Conference – PROCESS CONTROL 2006
June 13 – 16, 2006, Kouty nad Desnou, Czech Republic

where variable tasks is an array of task objects or a vector oftask processing times. Vector of
task processing times define the taskset directly without previous task objects definition. Variable prec
is a square matrix containing precedence constrains between tasks. An example of taskset definition by
the task processing time vector is given by the following code, which creates the taskset variable T with
five tasks.

>> T = taskset([5 2 6 3 8], prec);

2.3 Problem

The object problem is a small structure describing the classification of deterministic scheduling
problems in the notation proposed by Graham et al. [1979] andBłażewicz et al. [1983]. An example is
given by the following code.

p = problem(’P|prec|Cmax’)

This notation consists of three parts (α|β|γ). The first term (alpha) describes the processor
environment, the second term (beta) describes the task characteristics of the scheduling problem as the
precedence constrains, or the release time. The last term (gamma) denotes an optimality criterion.

3 LIST SCHEDULING

List Scheduling is a basic and popular combinatorial algorithm intended for scheduling of set
of tasks on a single and even parallel processors. In this algorithm tasks are fed from a pre-specified
list and, whenever a processor becomes idle, the first available task on the list is scheduled and removed
from the list, where the availability of a task means that thetask has been released and, if there are
precedence constraints, all its predecessors have alreadybeen processed Leung [2004]. The algorithm
terminates when all tasks from the list are scheduled. Its time complexity is O(n). In multiprocessor
case, the processor with minimal time is taken in every iteration of algorithm and the others are relaxed.

The fact, which is obvious from the principle of algorithm isthat, there aren’t any requirements of
knowledge about past or future of content of the list. Therefore, this algorithm is capable to solve offline
as well as online no-clairvoyance scheduling problems. There are many heuristics algorithms like The
Earliest Starting Time first (EST), The Earliest CompletionTime first (ECT), The Longest Processing
Time first (LPT) and etc., based on simple ordering of tasks inthe list by various parameters.

4 HEURISTICS BASED ON LIST SCHEDULING

Heuristic algorithms tend toward but do not guarantee to findoptimal solutions for any instance
of an optimization problem. On condition of appropriate choose of heuristic it often provide acceptable
results with very good time and memory complexity.

The Earliest Starting Time first rule:
Reorder tasks in the list to no-decreasing tend of starting timesi before the application of List Scheduling
algorithm. Its time complexity isnlogn.

The Earliest Completion Time first rule:
Reorder tasks in the list to no-decreasing tend of completion timeci in every iteration of List Scheduling
algorithm. Where completion time is computed as

ci = max (ri, tproc) + pi, (1)

andri is release time,pi is processing time andtproc is a minimal actual time on processors.
The Longest Processing Time first rule:

Reorder tasks in the list to no-increasing tend of processing timepi before the application of List Schedul-
ing algorithm. Its time complexity isnlogn.

The Shortest Processing Time first rule:
Reorder tasks in the list to no-decreasing tend of processing time pi before the application of List
Scheduling algorithm. Its time complexity isnlogn.

R099 – 3

7th International Scientific – Technical Conference – PROCESS CONTROL 2006
June 13 – 16, 2006, Kouty nad Desnou, Czech Republic

5 IMPLEMENTATION

List Scheduling is implemented in TORSCHE Scheduling Toolbox by functionlistschwhich
also allows to user to use any of implemented heuristic algorithms and visualize process of scheduling
step by step in text form in MABLAB workspace. Moreover, the last version is able to solve scheduling
problems on unrelated parallel processors. Figure 2 shows aflowchart oflistsch function.

Start

End

Proc := processor with

minimal time.

Task := The firs available

task on the list. (without

incomplete predecessor,

free)

Move Task to processor

Proc.

Remove Task from the

list.

Volání heuristiky, pokud

je po�adována.

Yes

No Is number of
tasks on the list

>= 1?

Initialization.

Final schedule as an

output variable.

Verbose 1

Verbose 2

Verbose 3

Verbose 4

Verbose 5

Call heuristic if is

required.

Verification of

input

parameters.

Error message.

Yes

No

Figure 2 – Flow chart of listsch function

The syntax is given by following code

taskset = listsch(taskset,problem,processors [,heuristic] [,verbose])

or

taskset = listsch(taskset,problem,processors [,options]).

Where

taskset (taskset) is a set of task;

problem (problem) is an object problem;

processors is a number of processors;

heuristic is an algorithm like LPT, SPT, EST;

verbose is a level of verbosity;

options is a global variables of Scheduling Toolbox.

R099 – 4

7th International Scientific – Technical Conference – PROCESS CONTROL 2006
June 13 – 16, 2006, Kouty nad Desnou, Czech Republic

6 CASE STUDIES

6.1 Conveyor Belts

Transportation of goods by two conveyor-belts is simple example of using List Scheduling in
practice. Construction material must be carried out from place to place with minimal time effort. Trans-
ported articles represent five kinds of construction material and two conveyor-belts as processors are
available. Table 1 shows assignment of this problem. Solution of the case study is shown in five steps:

Table 1 – Material transport processing time.

Name sand grit wood bricks cement
Processing Time 40 50 30 50 20

1. Create taskset directly through vector of processing time.

>> T = taskset([40 50 30 50 20]);

2. Since the taskset has been created, is possible to change parameters of all tasks in it.

>> T.Name = {’sand’,’grit’,’wood’,’bricks’,’cement’};

3. Define the problem, which will be solved.

>> p = problem(’P|prec|Cmax’);

4. Call List Scheduling algorithm with taskset and problem created recently and define number of
processors (Conveyor-belts).

>> S = listsch(T,p,2)
Set of 5 tasks
There is schedule: List Scheduling

5. Visualize the final schedule by standard plot function, see Figure 3.

>> plot(S)

Figure 3 – Result of case study 1 as Gantt chart

R099 – 5

7th International Scientific – Technical Conference – PROCESS CONTROL 2006
June 13 – 16, 2006, Kouty nad Desnou, Czech Republic

6.2 Chair manufacturing

This example is slightly more difficult and demonstrates some of advanced possibilities of Tool-
box. It solves a problem of manufacturing of a chair by two workers (cabinetmakers). Their goal is
make four legs, seat and backrest of the chair and assembly all of these parts with minimal time effort.
Material, which is needed to create backrest, will be available after 20 time units of start and assemblage
is divided out into two stages. Figure 4 shows the mentioned problem by graph representation.

leg1 /6 leg2 /6 leg4 /6leg3 /6

assembly1/2 /15

backrest /25/20

seat /15

assembly2/2 /15

Figure 4 – Graph representation of Chair manufacturing

1. Create desired tasks.

>> t1 = task(’leg1’,6)
Task "leg1"
Processing time: 6
Release time: 0

>> t2 = task(’leg2’,6);
>> t3 = task(’leg3’,6);
>> t4 = task(’leg4’,6);
>> t5 = task(’seat’,6);
>> t6 = task(’backrest’,25,20);
>> t7 = task(’assembly1/2’,15);
>> t8 = task(’assembly2/2’,15);

2. Define precedence constraints by precedence matrix prec.Matrix has sizen × n wheren is a
number of tasks.

>> prec = [0 0 0 0 0 1 0 0;...
0 0 0 0 0 1 0 0;...
0 0 0 0 0 1 0 0;...
0 0 0 0 0 1 0 0;...
0 0 0 0 0 1 0 0;...
0 0 0 0 0 0 0 1;...
0 0 0 0 0 0 0 1;...
0 0 0 0 0 0 0 0];

R099 – 6

7th International Scientific – Technical Conference – PROCESS CONTROL 2006
June 13 – 16, 2006, Kouty nad Desnou, Czech Republic

3. Create an object of taskset from recently defined objects.

>> T = taskset([t1 t2 t3 t4 t5 t6 t7 t8],prec)
Set of 8 tasks
There are precedence constraints

4. Define solved problem.

>> p = problem(’P|prec|Cmax’)
P|prec|Cmax

5. Call List Scheduling algorithm with taskset and problem created recently and define number of
processors and desired heuristic.

>> S = listsch(T,p,2,’SPT’)
Set of 8 tasks
There are precedence constraints
There is schedule: List Scheduling
Solving time: 1.1316s

6. Visualize the final schedule by standard plot function, see Figure 5.

>> plot(S)

Figure 5 – Result of case study 2 as Gantt chart

7 SUMMARY AND FUTURE WORK

This paper presents TORSHE Scheduling toolbox for MATLAB, grounding of its usage and a
couple of simple examples inspired by practice problems. This toolbox is a spreading set of algorithms,
utilities, interfaces and applications intended for solving time optimization of resources by a quick and
simple way. It provides a possibility to anyone to realize, try and verify solution of problem in wide
range of real-world projects. In the future work we will focused on incorporating new algorithms and
improving connections to another tools and projects.

This work was supported by the Ministry of Education of the Czech Republic under Project 1M0567.

R099 – 7

7th International Scientific – Technical Conference – PROCESS CONTROL 2006
June 13 – 16, 2006, Kouty nad Desnou, Czech Republic

References

BŁAŻEWICZ, J.; LENSTRA, J. K.; KAN, A. H. R. 1983. Scheduling subject to resource constrains:
classification and complexity.Ann. Discrete Math., 5, 11–24.

GRAHAM, R.; LAWLER, E.; LENSTRA, J.; KAN, A. R. 1979. Optimization and Approximation in
Deterministic Sequencing and Scheduling: A Survey.Ann. Discrete Math., 5, 287–326.

LEUNG, J. Y.-T., editor 2004.Handbook of Scheduling: Algorithms, Models, and Performance Analysis.
CRC Press.

R099 – 8

