TORSCHE Scheduling Toolbox for Matlab

PfemyslISiicha, Michal Kutil, Michal Sojka and Zdenék Hanzalek

~ Abstract—This paper presents a Matlab based Schedul- expression problem (SAT)) or to solve them directly while
ing toolbox TORSCHE (Time Optimization of Resources, choosing appropriate scheduling algorithm. The input data
SCHEduling). The toolbox offers a collection of data structires of the problem instance are typically represented by a set of

that allow the user to formalize various off-line and on- task t of d ootimizati iteri Thewtut
line scheduling problems. Algorithms are simply implemenéd asks, set ofresources and optimization criterion. hewu

as Matlab functions with fixed structure allowing users to data of the optimization problems are typically represente
implement new algorithms. A more complex problem can be by a Gantt chart. The input data might be automatically
formulated as an Integer Linear Programming problem or satis- generated from the problem description (e.g. equationiseof t
fiability of boolean expression problem. The toolbox is intaded filter algorithm) and output data, the schedule, may be used

mainly as a research tool to handle control and scheduling ¢ ¢ ticall t imol tati f bedded
co-design problems. Therefore, we provide an interfaces ta 0 automatically generate an implementation of embedde

real-time Matlab/Simulik based simulator TrueTime and a cade ~ System (e.g. parallel code for dedicated processing units

generator allowing to generate parallel code for FPGA. implemented on FPGA).
I. INTRODUCTION B. Motivation
A. Tool Overview The toolbox is intended mainly as a research tool to handle

TORSCHE (Time Optimization of Resources, SCHEduleontrol and scheduling co-design problems. The objective
ing) is a MATLAB-based toolbox including scheduling al-of these problems is to design a set of controllers and
gorithms, that are used for various applications such as higchedule them as real-time tasks, such that the overaliadont
level synthesis of parallel algorithms or response timd-angperformance is optimized for given set of controlled system
ysis of applications running under fixed-priority opergtin and limited computational resources. In some cases, such
system. Using the toolbox, one can obtain an optimal code optimization problem can be formulated analytically. Unfo
computing intensive control applications running on sfieci tunately, real applications are more complex and therefore
hardware architectures. The tool can also be used to invetesign process cannot be fully automated. In such cases a
tigate application performance prior to its implementatio simulation environment such as Matlab/Simulink presents
These values (e.g. the shortest achievable sampling periexcellent environment for rapid prototyping of new coneept
of the filter implemented on a given set of processors) cagimulation and elaboration of design methodologies that ar
be used in the control system design process performéallored to a specific class of applications and computation
in Matlab/Simulink. The main contribution of the toolbox, resources.
which is built on well-known disciplines of the graph theory For a given control algorithm and computational resources
and operation research, is to make it easy to apply this typlee toolbox makes it possible to derive such real-time
of reasoning to a wide range of problems. Many of them angarameters as sampling period and jitter. These real-time
combinatorial optimization problems, and as such they aggarameters are further used to derive the control perfocean
challenging from the theoretical point of view. (e.g. using TrueTime [3]) and to optimize the controller

The toolbox offers a collection of Matlab routines thatparameters or to choose another control algorithm and to
allow the user to formalize the scheduling problem, whilgepeat the design process.
considering appropriate configuration of resources (eejd F
Programmable Gate Arrays (FPGA) based architecture [1] @. Related Work
micro controllers with real-time operating system [2])ska

. X The toolbox is mostly based on existing well-known
parameters (e.g. deadlines, release dates, preemptidn) an ;
.Scheduling algorithms. In part it contains our previous [4]

optimization criterion (eg makespan minimization, maxi and current research work [5] Itis very convenient p|ﬂtf0l’

mum lateness minimization, the task completion prior it)
0 share ideas and tools among researchers and students.

deadline). The toolbox enables to solve these optlmlzat|(§|everal traditional off-line scheduling algorithms [6]dan

and decision problems by their reformulation (e.g. to Intet'heir extensions represent the basis of the toolbox. In ad-

er Linear Programming (ILP) or satisfiability of boolean... .) .
g 9 g (ILP) y ditional, these algorithms can be simply used for schedulin
This work was supported by EU project ARTIST2 and by the Migis of_ operations on specific hardwar_e archltectu_res, e.g. FPGA
of Education of the Czech Republic under Project 1M0567 argjet ~ with arithmetic modules [7]. On-line scheduling algoritbm
1ET400750406. . _ are based on proven approaches from real-time community
Authors are with Centre for Applied Cybernetics, Departtmen " . .
[8],[9] and on the schedulability analysis for tasks with

of Control Engineering, Czech Technical University in Rrag) -
{suchap, kuti | m soj kant, hanzal ek}@el . cvut. cz static and dynamic offsets [10]. In contrast to the MAST

tool [11] built to support mainly timing analysis of real- P, + | L.
time applications, TORSCHE is not as profound in this area,
but covers also off-line scheduling algorithms and duego it D,
implementation in Matlab it is suited to handle control and | Task T,

scheduling co-design problems. TORSCHE is focused on thd) T, 5, c d; d; t
schedule synthesis and schedulability analysis. Thezdfor _

is complementary to TrueTime, which is a Matlab/Simulink Fig. 1. Task parameters

based simulator.

D. Outline Resulting schedule is represented by the following param-

This paper is organized as follows: Section Il presents theeterS:
it " : " . Start time s;, is the time when the execution of the

tool architecture and basic notation. Section Il preseffts .
line scheduling algorithm for the set of tasks with preceden task is s_tarte_d. . . .
constraints running on parallel identical processors. The * Completl_on .“'."”ec-f' Is the time when the execution of
problem of makespan minimization is solved via formulation the task is finished.
to the satisfiability of boolean expressions problem (SAT). ° LatenessL; = ¢; — d;.
Section IV presents another off-line scheduling problem, ° Tardlne§sDj = max{c; — d;, 0}.))
cyclic scheduling aiming to find a periodic schedule with a The task is represented by the object data structure with
minimum period. The next section describes on-line schedd® nameTask in Matlab. This object is created by the
ing problems, that should be solved when the tasks are éf@mmand with the following syntax rule:
ecuted under real-time operating system based on the fixdd-= task([Nare,] ProcTi ne[, Rel easeTine ...
priority scheduler. In particular we show the schedul&pili [Deadline[, DueDatel , i ght [, Processor]1111)
analysis algorithm for tasks with offsets. All the algonith Commandt ask is a constructor for object of typ@ask
are accompanied by illustrative examples including the usghose output is stored into a variable (in the syntax rule
of the toolbox functions (for more details see the toolboxbove it is variablél). Properties contained inside the square
manual [12]). Section VI concludes the work. brackets are optional.
The objectProblemis used for classification of determin-
ll. TOOL ARCHITECTURE ANDBASIC NOTATION istic scheduling problems in Graham and Blazewicz notatio
TORSCHE is written in Matlab object oriented program-This notation consists of three parts. The first part dessrib
ming language and it is used in Matlab environment as #e processor environment, the second part describesske ta
toolbox. Main objects ar&ask TaskSeandProblem Object characteristics of the scheduling problem as the precedenc
Taskis a data structure including all parameters of the task &®nstrains, or the release time. The last part denotes an
processing time, release date, deadline etc. These obftts optimality criterion. An example of its usage is shown in
be grouped into a set of tasks with other related informatiotme following code:
as precedence constraints intdaskSebbject. prob = probl en(’ P| prec| Crax’)
Object Problemis a small structure describing classifi-) _
cation of deterministic scheduling problems in Graham and Most of all algorithms use the following syntax:
Bfazewicz notation [6]. These objects are used as a bagis tihaskset W6 = al gori t hrmame(t askset, prob, procesors[, paranj)
provide general functionality and make the toolbox easily \y\here

ex;[ensflfbll_e by or:hzr ﬁcheduli)rllg alg(:rrllth:ns.k L by the ° tasksetWS$s the inputtasksetwith an added schedule,
n ofi-ine scheduling problems, the task Is given by the | algorithmnamaes the algorithm command name,

following par_amgters (s_ee.Flg. 1)) « tasksetis the set of tasks to be scheduled,
« Processing timgp,, is time necessary for task execution prob is the object of typeproblem

(also called computation time). « procesorsis the number of processors to be used,

« Release date;, is the moment at which a task becomes | naram denotes additional parameters, e.g. algorithm
ready for execution (also called arrival time, ready time, strategy etc.
request time).

» Deadling d;, specifies a time limit by which the task . SCHEDULING ON PARALLEL IDENTICAL
has to be completed, otherwise the scheduling is as- PROCESSORS
sumed to fail. This section presents the SAT based approach to the

» Due date d;, specifies a time limit by which the task scheduling problems. The main idea is to formulate a given
should be completed, otherwise the criterion function ischeduling problem in the form of CNF (conjunctive normal

charged by penalty. form) clauses (for more details see [13]). TORSCHE includes
« Weightexpresses the priority of the task with respect tathe SAT based algorithm foP|prec|Cy,q. problem, i.e.
other tasks (also called priority). scheduling of tasks with precedence constraints on thefset o

« Processorspecifies dedicated processors at which thparallel identical processors while minimizing the scHedu
task must be executed. makespan.

In the case ofP|prec|Cy,q.. problem, each CNF clause constrains and then we run the scheduling algorigatsch

is a function of Boolean variables in the form;;. If task
T, is started at time unij on the processok thenz;;, =
true, otherwisez;;;, = false. For each task;, wherei =
1...n, there areS x R Boolean variables, wherg denotes
the maximum number of time units adéd denotes the total
number of processors.

The Boolean variables are constrained by the three fo

lowing rules (modest adaptation of [14]):
1. For each task, exactly one of ti$ex R variables has to

T
be equal to 1. Therefore two clauses are generated for eaqlﬁ:iz
task 7;. The first guarantees having at most one variable suM

equal to 1 (true):
(Ti11 V Tio1) A+ AT VTisr) N - - AN (Zi(s—1)R V TiSR)-

Finally we plot the Gantt chart.

>> procTime = [2,2,2,2,2,2,2,3,3,2,2,3,2,3,2,2,2];
>> prec = sparse(...
[6,7,1,11,11,17,3,13,13,15
[1,1,2,2 ,3 ,3 ,4,4 ,56 ,5
[1,1,1,1 ,1 ,1 ,1,1 ,1 ,1
17,17);
> jaumann = taskset(procTime,prec);
>> jaumannSchedule = satsch(jaumann,problem(’P|prec|Cmax’),2)
Set of 17 tasks
are precedence constraints
is schedule: SAT solver
solving time: 0.06s

MAX solving time: 0.04s

Number of iteratioms: 2
>> plot(jaumannSchedule)

,8,6,2,9 ,11,12,17,14,15,2 ,10],...
,7,8,9,10,10,11,12,13,14,16,16], ...
,1,1,1,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1],...

The second guarantees having at least one variable equal
to 11 (Zi11 V Ziz1 V-V Tys—1)r V TisR)-
2. If there is a precedence constrains such fhats the

predecessor df,, thenT, cannot start before the execution 1 nesatschalgorithm performed two iterations. In the first
of T, is finished. Thereforey, jx — ((Zy1 A -« A Zoji A iteration 3633 clauses with 180 variables were solved as

Zy(jeay A -+ A Ty(jip, 1)) for all possible combinations satisfiable forS' = 19 time units. In the second iteration 2610

of processoré and!, wherep,, denotes the processing timeClauses with 146 variables were solved with unsatisfiable
of task T}, result for S = 18 time units. The optimal schedule is

3. At any time unit, there is at most one task executed ofiepicted in Fig. 4.
a given processor. For the couple of tasks with a precedence |,

Fig. 3. Solution of the scheduling problem in the toolbox.

constrain this rule is ensured already by the clauses in the

rule number 2. Otherwise the set of clauses is generated fort| To | Tw | T h Ta T Ts | T
egch processadt and each tin_1e qn'ﬂ for all co.uplesTu, T, P, | Tys My T | Ty | T | Ts | Ts | To | T
without precedence constrains in the following form: o T , L 5 —,

(Tujk = Zujk) N (Tujk = Zogar) A - A (Zuge —

Zo(j4pu—1)k)-

In the toolbox we use &Chaff [15] solver to decide
whether the set of clauses is satisfiable. If it is, the sclkedu
within .S time units is feasible. An optimal schedule is found
in iterative manner. First, the List Scheduling algorithen i PROCESSORS

used to find initial value of. Then we iteratively decrement Cyc“c Schedu"nmeab with a set of Operations (generic
value of S by one and test feasibility of the solution. Thetasks) that have to be performed an infinite number of times
iterative algorithm finishes when the solution is not feksib [17]. This approach is also applicable if the number of

As an example we show a computation loop of a Jaumangop repetitions is large enough. If execution of operation
wave digital filter [16]. Our goal is to minimize computation belonging to different iterations can interleave, the sche
time of the filter loop, shown as directed acyclic graph ing called overlapped An overlapped schedule can be more
Fig. 2. Node in the graph represent the tasks and the edg&fective especially if processors are pipelined hardwaits
represent precedence constrains. The nodes are Iabeledop)brecedence delays are considered. fegodic schedule
the operation type and processing time We look for an s 3 schedule of one iteration that is repeated with a fixed
optimal schedule on two parallel identical processors. time interval called geriod (also calledinitiation interval).

The aim is then to find a periodic schedule with a minimum
period [17].

As an example, we show a computation loop of a wave
digital filter (WDF) [18] consisting of eight tasks. It is
extended to five channels by assuming five clock cycles
processing time of each task (i.e. single channels areeshift
by one clock cycle). Fig. 5 shows the filter with correspond-
ing processing times of operations executed using HSLA
arithmetic library on FPGA (input-output latency of ADD
(MUL) unit is 9 (2) clock cycles, respectively [7]).

Operations in a computation loop can be considered as a

Fig. 3 shows consecutive steps performed within theet ofn generic tasks = {1y, 75, ..., T, } to be performed
toolbox. First, we define the set of task with precedenc& times whereK is usually very large. One execution of

Fig. 4. The optimal schedule of Jaumann filter.

IV. CYCLIC SCHEDULING ON DEDICATED

Fig. 2.

Jaumann wave digital filter

. >> | oad wdf
7T labeled with integer indeX > 1 is called aniteration. >> unitProcTine=[5 5];

. . . . >> UnitLattency=[9 2];
The scheduling problem is to find a start timgk) of every 77 G=cdf g2LHgr aph(wdf . Uni t ProcTi me, Uni t Lat t ency) :

occurrencel; [17]. >> t=taskset (Q);
>> prob=probl en{’ m DEDI CATED) ;
>> schoptions=schoptionsset(’il pSolver’, glpk , ...
for k=1to N do 'cycSchMet hod’ , " integer’,’ varElinm,1);
Ti: a(k) = X (k) +e(k—1) >> taskset _sch=nmdcycsch(t, prob, 1, schoptions)
Ta: b(k) = a(k) —g(k —1) Set of 8 tasks)
Ts: (k) = b(k) + e(k) There are precedence constraints)
Ta d(k) = - b(k) Therekl s schegul e: MONOCYCSCH - | LP based al gorithm
Tasks period: 31
Ts: ek) =d(k) + e(k —1) Solving time: 0.094s
To: f(k) = 72 b(k)] Nunber of iterations: 5
Tz g(k) = f(k) +g(k—1) processing P >> pl ot (taskset_sch)
Ts: Y (k)= c(k) — g(k) time p length 7 height &
end
@ (b) Fig. 7. Solution of a cyclic scheduling problem in the tootbo

Fig. 5. (a) An example of a computation loop of wave digitakfil(WDF).
(b) Corresponding data dependency grapiof WDF. V. REAL-TIME SCHEDULABILITY ANALYSIS

Data dependencies of this problem can be modeled by aReaI-Time schedulings gsually used in RegI-Time oper-
directed graphG. Each task (node i) is characterized ating systems for scheduling a set of periodic tasks. Simple

by the processing time;. Edgee;; from the nodei to j is scheduling algorithms such dixed-priority schedulingare

weighted by a couple of integer constahisandh;. Length usually used sinc_e_they need to be execgted on-line. Given
I;; represents the minimal distance in clock cycles from th@ SYStém comprising of a set of real-time tasks and a
start time of the tasi} to the start time off; and is always scheduling algorithm, a_ver|f|cat|on algorithm can detenm_|
greater than zero (corresponds to input-output latencyiin oWhether all the tasks in the system meet their real-time
example). On the other hand, the height specifies the constraints (deadlines).

shift of the iteration index (dependence distance) related BeSides basicesponse-time analysir rate monotonic
the data produced by; and read (consumed) k. algorithm [9], TORSCHE contains a more advanced tech-

Assuming aperiodic schedulavith the period w (i.e. the nigque: schedulability analysis for tasks with offsefBhis

constant repetition time of each task), each edgén graph technique was firstly introduced by Tindell i_n [20], and late .
G represents one precedence relation constraint further formalized and enhanced by Palencia and Harbour in

[10]. In both papers, authors designed exact algorithm for
this NP-hard problem (determining response times of tasks
s — 8 > lij —w - hyj, (1) in the system) as well as polynomial approximate analysis
that finds upper bound to the task response times. Currently,
where s; denotes the start time of task; in the first TORSCHE contains only the exact algorithm.
iteration. Fig. 5(a) shows the data dependence graph of thenote: This section uses notation different from the rest

computation loop shown in Fig. 5(b). _ of this paper. The reason is that this notation is common in
When the number of processorsis restricted, the cyclic real-time community.

scheduling problem becomes NP—complete [17]. Unfortu-

nately, in our case the number of processors is restrictdd afi- Computational Model

the processors are dedicated to execute specific operationsThe real-time system considered for analysis is composed

In the toolbox we formulate the scheduling problem as af tasks executing in the same processor, but the analysis

problem of Integer Linear Programming (ILP). For morecan be easily extended for multiprocessor systems. Tasks

detail about the scheduling algorithm see [12], [4]. Theare grouped tdransactions Each transactioil; is activated

schedule of the WDF example, obtained as outlined in Fig. By a periodic sequence of external events with pefipd

is shown in Fig. 6. The relative phasing between the different external events
The toolbox is interconnected with Matlab/Simulink baseds arbitrary. Each task will be identified with two subscsipt

simulator TrueTime [3] which facilitates cosimulation ofthe first one identifies the transaction to which it belongs$ an

realtime task execution and continuous plant dynamics. Athe second one the position that the task occupies within the

bitrary schedule can be directly transformed to a model useadsks in its transactions, when they are ordered by inergasi

by TrueTime. This function allows to design complex controbffsets. Task;; is activated (released) when a relative time—

systems and simulate influence of external events on tlealled theoffset ®,,—elapses after the arrival of the external

schedule. event. The offset can be static or dynamic. Dynamic offsets
Furthermore, the scheduling results can be used to geare represented by a value of jittdy;, which specifies the

erate parallel code in Handel C [19] for FPGA. It allowslength of the interval in which a task can be activateg;

to design time critical algorithms especially for FPGA as igs the worst-case execution time.

shown in WDF example in this section. The toolbox provides It is assumed that each task has its unique priority and

to designer full control over the scheduling algorithm. all the tasks are scheduled using a preemptive fixed priority

execution period 1 execution period 2 L execution period 3

—

iteration length A

ﬁrﬁr
—

pcriod length w

N % T B T, | [

T L e e e e L — T T
35 40 55 65 70 75 80 85 ¢

50
iteration: 71" D ond kS d

Fig. 6. The optimal schedule of 5WDF benchmark on HSL&: (= 31). Iteration overlap is even significant due to operationgelming that is not
visible in this figure.

scheduler. If tasks synchronize for using shared resotmceslonger holds for tasks with offsets, as it might be impossibl
a mutually exclusive way they will be using a hard real-timdor some sets of task to be activated at the same time.
synchronization protocol such as the priority ceiling poa The complexity of the algorithm rests in the fact that we
[9]. have to explore all possible combinations of tasks from each
The response timef each taskr;; is defined as a differ- transaction and find which combination produces the worst-
ence between its completion time and the instant at which tliase response time.
associated external event arrived. The worst-case responsFig. 9 shows the scenario of the system from Fig. 8,
time is denoted by?;;. Each task may have associated globafor which the response-time of task; reaches its worst-
deadlineD;;, which is also relative to the arrival of externalcase value. This situation happen when tasks m» and
event. A system is said to be schedulable if for each task; are activated simultaneously after being delayed by their
Ri; < Djj. maximum jitter. The phasing of external events as well as
Fig. 8 shows an example of a real-time system. Thactivation times of all tasks in this scenario are depicted i
horizontal axis represents time. Down-pointing arrows reghe three top-level axes of the picture. The last axis shows
resent periodic external events, filled boxes represeft tathe schedule as produced by the fixed-priority schedules. Th
execution. Dashed lines below each transaction axis represcritical instant is at time 0 of this schedule and the lendth o
task jitter values. busy periodL,, = 150. For this scenario, (the worst-case)
The system in this figure is composed of three transactior@sponse-timeRa; = Lo + ®21 + Jo1 = 200.
The first and the third ones group two tasks, the second one
groups three tasks. No blocking is considered in this exampf- Matlab Session Example

and tasks have assigned priority corresponding to their sub The model of a real-time system is entered into Matlab by
script. The smaller the number the higher the priority. Not@reating appropriatdask and Transactionobject instances.
that taskr;» has its offset greater than completion time of therhe response-time analysis can be performed by calling
previous task in the transaction and that tasks not imtiati t askof f sanal function. Fig. 10 shows the steps needed
the transactions has non-zero jitter (dotted line). INWay, to perform response-time analysis within TORSCHE. Com-
offsets and jitters can be used to represent self-suspgndifuted response times are listedraspTi ne values. Other
tasks (e.g. tasks callingl eep() OS service or waiting for tgolbox functions can be used to automatically draw figures
data from a periphery). like the ones in this section.

o . . >> t 00=t ask(10, 0);
B. Exact Response-Time Analysis Algorithm >> t01=t ask(10.[10 15], 100);:

The calculation of the exact worst-case response-timg fofatpese! o0 101 1003

(WCRT) for any task in the system is NP-hard problem> t11=task(10, [25 30]); .

[21] and thgrefore the_complexity of the exact algorithni {;i;ﬁgﬁ';gif’, OLZ?t 281;1103)1’2]’ 130)

is exponential to the size of the system. In [10] and [22}> t20=task(30, 0); .

approximate methods that calculates an upper bound to tfﬁeglt'ﬁ gﬁ:;if’, o[n?([)t 331;;]5?’ 300) :

WCRT are developed. These polynomial time algorithms are system =[G GL &]; setprio(system 'rmi);
based on simplification of the exact algorithm. TORSCHE, ; o' ' 5am! (system

currently implements only the exact algorithm. Transacti on: per=100.0

. h Task t00: prio=7 weet=10.0 0=0
To find the worst-case response time of a task undertaex ¢ o1 gr:o =6 wecet=10. 0 0=10. 0

analysis t,), it is necessary to build the worst-case scenarioTr ansacti on: per=130. 0
f hi k. Findi hi findi h Task t10: prio=5 weet=25.0 0=0
or this tas inding this scenario rests in finding SUCh gk 111 prio=4 weet=10.0 0=25.0

a combination of higher priority tasks having the highest Task t12: prio=3 wcet=20.0 0=70.0
Transaction: per=300.0

respTi me=10. 0
0 respTime=25.0

g o

respTi me=45.0
0 respTime=60.0
0.0 respTi ne=120.0

Iyl
= 010

cpntr]butlon tor,, response t!me. '_I'he time when this com- 1551 ¢ 20: prio=2 weet=30.0 0=0 =0 respTi me=145.0

bination occurs is called theritical instant of task 7. Task t21: prio=1 wcet=35.0 0=30.0 j=20.0 respTi me=200. 0
In the case where all tasks are independent (without

offsets), the critical instant occur at the time when allhgig Fig. 10. Offset-based response-time analysis in a Matlabice

priority tasks are activated simultaneously with. This no

T00 701 T00 701
To | [

=
r (=]
L
«

0 100 200 300
K To e Ty >
T10 T11 T12 710 T11 T12 T10 T11
r, s
b3, o le Cyo 5 130 260
[OPPY <I—><
J12
T T
F2 20 21 J/
« Jor ol 100 200 300
029 Oy —>
Fig. 8. Graphical representation of the real-time system.
T00 701 T00 701 T00 701
o —— —— j— J
100 200 300
710 T11 T12 1710 T11 T12 T10 T11 T12
ng =] [— —
0) B %0
r 720 T21 720
2 _
0 50 100 150 200 250 300 350
Schedul 700 701 T12 721 T10 711721 700 701 T12 T21
chedule
0 30 60 90 120 150 180 210 240 270 300
K Ry Loy ;

Fig. 9. The schedule that produces the worst-case respioneddr 727 .

VI. CONCLUSIONS AND FUTURE WORK

This paper presents TORSCHE Scheduling Toolbox fois]
Matlab for off-line and on-line scheduling. The toolbox
includes scheduling algorithms, that are used for variou_i,g]
applications as high level synthesis of parallel algorghon [10]
response time analysis of applications running under fixed-
priority operating system. The main objective of this pobje
is to facilitate design of real-time applications mainly in[11]
control domain where the Matlab is frequently used. In thi 2]
paper, we have shown the applicability on three examples:

In the future work we will focus on interconnections to
another designs tools and simulators and we will incorgorat!3
new scheduling algorithms. Actual version of the toolbox
is freely available ahttp://rtine.fel k.cvut.cz/ [14]
schedul i ng-t ool box/ .

[15]
REFERENCES

[1] J. Kadlec, FloatPipelv35 Modules for Virtex and Virtex Eebruary
2004. htt p: / / ww. cel oxi ca. com

[2] L. Waszniowski and Z. Hanzalek, “Analysis of OSEK/VD>a&ed au-

tomotive applications,” iIlFAC Symposium on Advances in Automotive

Control, Salerno Elsevier, April 2004.

M. Andersson, D. Henriksson, and A. CervifrueTime 1.3Reference

Manual Lund University, Sweden, 2005t t p: / / www. control .

I'th.se/ ~dan/truetine/.

P.Slicha, Z. Pohl, and Z. Hanzalek, “Scheduling of iterasilgorithms

on FPGA with pipelined arithmetic unit,” iiOth IEEE Real-Time

and Embedded Technology and Applications Symposium (RI0¥3, 2

Toronto, Canada2004. B

[5] A. Hefmanek, J. Schier, Fslicha, and Z. Hanzalek, “Optimization
of finite interval CMA implementation for FPGA,” inn IEEE 2005
Workshop on Signal Processing Systems (SIPSi)s)75-80, Piscat-
away: IEEE, 2005.

[6] J. Blazewicz, K. Ecker, G. Schmidt, and J. Wegla&cheduling
Computer and Manufacturing ProcesseSpringer, second ed., 2001. [22]

[71 R. Matousek, M. Tichy, A. Z. Pohl, J. Kadlec, and C. 3jt
“Logarithmic number system and floating-point arithmeticsFPGA.”
Field-Programable Logic and Applications: Reconfiguratdenputing

[16]

[17]
(3]
(18]
(4]
[19]

[20]

[21]

Is Going Mainstream. Lecture notes in Computer Science A8243
Springer, Berlin, 2002.

G. C. Buttazzo,Hard Real-Time Computing SystemK&luwer Aca-
demic Publishers, second ed., 2005.

J. W. S. Liu, Real-Time SystemsUpper Saddle River, NJ, USA:
Prentice Hall, 2000.

J. C. Palencia and M. G. Harbour, “Schedulability asayfor tasks
with static and dynamic offsets.,” iRroceedings of the 19th Real-
Time Systems Symposiupp. 26-37, IEEE Computer Society Press,
December 1998.

“MAST (Modeling and Analysis Suite for Real-Time Appétions).”
http://mast. uni can. es/.

M. Kutil, P. Slicha, M. Sojka, and Z. HanzalekpRSCHE:Scheduling
Toolbox Manual February 2006.http://rtime. fel k. cvut.
cz/ schedul i ng- t ool box/ .

Y. Crama and P. L. Hammer, “Boolean functions: Theotgoathms
and applications,” 2006ht t p: / / www. r ogp. hec. ul g. ac. be/
Crana/ Publ i cati ons/ BookPage. ht ni .

S. O. Memik and F. Fallah, “Accelerated SAT-based Salied of
Control/Data Flow Graphs.,” ilCCD, pp. 395-400, IEEE Computer
Society, 2002.

M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and Sall{,
“Chaff: Engineering an Efficient SAT Solver,” iRroceedings of the
38th Design Automation Conference (DAC'02D01.

S. H. de Groot, S. Gerez, and O. Herrmann, “Range-ansided itera-
tive data-flow graph schedulingCircuits and Systems |: Fundamental
Theory and Applications, IEEE Transactions, @ol. 39, pp. 351-364,
1992.

C. Hanen and A. Munier, “A study of the cyclic schedulipgoblem on
parallel processorsDiscrete Applied Mathematicsol. 57, pp. 167—
192, February 1995.

A. Fettweis, “Wave digital filters: theory and practitd®roceedings
of the IEEE vol. 74, pp. 270-327, February 1986.

Celoxica Ltd.,DK Design Suite2005. ht t p: / / ww. cel oxi ca.
conl .

K. Tindell and J. Clark, “Holistic schedulability aryalis for distributed
hard real-time systemsMicroprocess. Microprogramvol. 40, no. 2-
3, pp. 117-134, 1994.

F. Ridouard, P. Richard, and F. Cottet, “Negative rissidr scheduling
independent hard real-time tasks with self-suspensionsThe 25th
IEEE International Real-Time Systems SymposiDecember 2004.
J. Mki-Turja and M. Nolin, “Faster response time anaysf tasks
with offsets,” inWiP Session of Real-Time Systems Symposium (RTSS)
(Cancun, Mexico), December 2003.

