
TORSCHE Scheduling Toolbox for Matlab

PřemyslŠůcha, Michal Kutil, Michal Sojka and Zdeněk Hanzálek

Abstract— This paper presents a Matlab based Schedul-
ing toolbox TORSCHE (Time Optimization of Resources,
SCHEduling). The toolbox offers a collection of data structures
that allow the user to formalize various off-line and on-
line scheduling problems. Algorithms are simply implemented
as Matlab functions with fixed structure allowing users to
implement new algorithms. A more complex problem can be
formulated as an Integer Linear Programming problem or satis-
fiability of boolean expression problem. The toolbox is intended
mainly as a research tool to handle control and scheduling
co-design problems. Therefore, we provide an interfaces toa
real-time Matlab/Simulik based simulator TrueTime and a code
generator allowing to generate parallel code for FPGA.

I. INTRODUCTION

A. Tool Overview

TORSCHE (Time Optimization of Resources, SCHEdul-
ing) is a MATLAB-based toolbox including scheduling al-
gorithms, that are used for various applications such as high
level synthesis of parallel algorithms or response time anal-
ysis of applications running under fixed-priority operating
system. Using the toolbox, one can obtain an optimal code of
computing intensive control applications running on specific
hardware architectures. The tool can also be used to inves-
tigate application performance prior to its implementation.
These values (e.g. the shortest achievable sampling period
of the filter implemented on a given set of processors) can
be used in the control system design process performed
in Matlab/Simulink. The main contribution of the toolbox,
which is built on well-known disciplines of the graph theory
and operation research, is to make it easy to apply this type
of reasoning to a wide range of problems. Many of them are
combinatorial optimization problems, and as such they are
challenging from the theoretical point of view.

The toolbox offers a collection of Matlab routines that
allow the user to formalize the scheduling problem, while
considering appropriate configuration of resources (e.g. Field
Programmable Gate Arrays (FPGA) based architecture [1] or
micro controllers with real-time operating system [2]), task
parameters (e.g. deadlines, release dates, preemption) and
optimization criterion (e.g. makespan minimization, maxi-
mum lateness minimization, the task completion prior its
deadline). The toolbox enables to solve these optimization
and decision problems by their reformulation (e.g. to Inte-
ger Linear Programming (ILP) or satisfiability of boolean

This work was supported by EU project ARTIST2 and by the Ministry
of Education of the Czech Republic under Project 1M0567 and Project
1ET400750406.

Authors are with Centre for Applied Cybernetics, Department
of Control Engineering, Czech Technical University in Prague
{suchap,kutilm,sojkam1,hanzalek}@fel.cvut.cz

expression problem (SAT)) or to solve them directly while
choosing appropriate scheduling algorithm. The input data
of the problem instance are typically represented by a set of
tasks, set of resources and optimization criterion. The output
data of the optimization problems are typically represented
by a Gantt chart. The input data might be automatically
generated from the problem description (e.g. equations of the
filter algorithm) and output data, the schedule, may be used
to automatically generate an implementation of embedded
system (e.g. parallel code for dedicated processing units
implemented on FPGA).

B. Motivation

The toolbox is intended mainly as a research tool to handle
control and scheduling co-design problems. The objective
of these problems is to design a set of controllers and
schedule them as real-time tasks, such that the overall control
performance is optimized for given set of controlled systems
and limited computational resources. In some cases, such
optimization problem can be formulated analytically. Unfor-
tunately, real applications are more complex and therefore
design process cannot be fully automated. In such cases a
simulation environment such as Matlab/Simulink presents
excellent environment for rapid prototyping of new concepts,
simulation and elaboration of design methodologies that are
tailored to a specific class of applications and computational
resources.

For a given control algorithm and computational resources
the toolbox makes it possible to derive such real-time
parameters as sampling period and jitter. These real-time
parameters are further used to derive the control performance
(e.g. using TrueTime [3]) and to optimize the controller
parameters or to choose another control algorithm and to
repeat the design process.

C. Related Work

The toolbox is mostly based on existing well-known
scheduling algorithms. In part it contains our previous [4]
and current research work [5]. It is very convenient platform
to share ideas and tools among researchers and students.
Several traditional off-line scheduling algorithms [6] and
their extensions represent the basis of the toolbox. In ad-
ditional, these algorithms can be simply used for scheduling
of operations on specific hardware architectures, e.g. FPGAs
with arithmetic modules [7]. On-line scheduling algorithms
are based on proven approaches from real-time community
[8],[9] and on the schedulability analysis for tasks with
static and dynamic offsets [10]. In contrast to the MAST

tool [11] built to support mainly timing analysis of real-
time applications, TORSCHE is not as profound in this area,
but covers also off-line scheduling algorithms and due to its
implementation in Matlab it is suited to handle control and
scheduling co-design problems. TORSCHE is focused on the
schedule synthesis and schedulability analysis. Therefore it
is complementary to TrueTime, which is a Matlab/Simulink
based simulator.

D. Outline

This paper is organized as follows: Section II presents the
tool architecture and basic notation. Section III presentsoff-
line scheduling algorithm for the set of tasks with precedence
constraints running on parallel identical processors. The
problem of makespan minimization is solved via formulation
to the satisfiability of boolean expressions problem (SAT).
Section IV presents another off-line scheduling problem,
cyclic scheduling aiming to find a periodic schedule with a
minimum period. The next section describes on-line schedul-
ing problems, that should be solved when the tasks are ex-
ecuted under real-time operating system based on the fixed-
priority scheduler. In particular we show the schedulability
analysis algorithm for tasks with offsets. All the algorithms
are accompanied by illustrative examples including the use
of the toolbox functions (for more details see the toolbox
manual [12]). Section VI concludes the work.

II. TOOL ARCHITECTURE ANDBASIC NOTATION

TORSCHE is written in Matlab object oriented program-
ming language and it is used in Matlab environment as a
toolbox. Main objects areTask, TaskSetandProblem. Object
Taskis a data structure including all parameters of the task as
processing time, release date, deadline etc. These objectscan
be grouped into a set of tasks with other related information
as precedence constraints into aTaskSetobject.

Object Problem is a small structure describing classifi-
cation of deterministic scheduling problems in Graham and
Błażewicz notation [6]. These objects are used as a basis that
provide general functionality and make the toolbox easily
extensible by other scheduling algorithms.

In off-line scheduling problems, the task is given by the
following parameters (see Fig. 1):

• Processing time, pj , is time necessary for task execution
(also called computation time).

• Release date, rj , is the moment at which a task becomes
ready for execution (also called arrival time, ready time,
request time).

• Deadline, d̃j , specifies a time limit by which the task
has to be completed, otherwise the scheduling is as-
sumed to fail.

• Due date, dj , specifies a time limit by which the task
should be completed, otherwise the criterion function is
charged by penalty.

• Weightexpresses the priority of the task with respect to
other tasks (also called priority).

• Processorspecifies dedicated processors at which the
task must be executed.

t

Task

0
~

+ -

rj sj cj dj dj

Tj

pj

Dj

Lj

Fig. 1. Task parameters

Resulting schedule is represented by the following param-
eters:

• Start time, sj , is the time when the execution of the
task is started.

• Completion time, cj , is the time when the execution of
the task is finished.

• Lateness, Lj = cj − dj .
• Tardiness, Dj = max{cj − dj , 0}.
The task is represented by the object data structure with

the nameTask in Matlab. This object is created by the
command with the following syntax rule:
t1 = task([Name,]ProcTime[,ReleaseTime ...

[,Deadline[,DueDate[,Weight[,Processor]]]]])

Commandtask is a constructor for object of typeTask
whose output is stored into a variable (in the syntax rule
above it is variablet1). Properties contained inside the square
brackets are optional.

The objectProblemis used for classification of determin-
istic scheduling problems in Graham and Błażewicz notation.
This notation consists of three parts. The first part describes
the processor environment, the second part describes the task
characteristics of the scheduling problem as the precedence
constrains, or the release time. The last part denotes an
optimality criterion. An example of its usage is shown in
the following code:
prob = problem(’P|prec|Cmax’)

Most of all algorithms use the following syntax:
tasksetWS = algorithmname(taskset,prob,procesors[,param])

Where
• tasksetWSis the inputtasksetwith an added schedule,
• algorithmnameis the algorithm command name,
• tasksetis the set of tasks to be scheduled,
• prob is the object of typeproblem,
• procesorsis the number of processors to be used,
• param denotes additional parameters, e.g. algorithm

strategy etc.

III. SCHEDULING ON PARALLEL IDENTICAL
PROCESSORS

This section presents the SAT based approach to the
scheduling problems. The main idea is to formulate a given
scheduling problem in the form of CNF (conjunctive normal
form) clauses (for more details see [13]). TORSCHE includes
the SAT based algorithm forP |prec|Cmax problem, i.e.
scheduling of tasks with precedence constraints on the set of
parallel identical processors while minimizing the schedule
makespan.

In the case ofP |prec|Cmax problem, each CNF clause
is a function of Boolean variables in the formxijk . If task
Ti is started at time unitj on the processork then xijk =
true, otherwisexijk = false. For each taskTi, wherei =
1 . . . n, there areS ×R Boolean variables, whereS denotes
the maximum number of time units andR denotes the total
number of processors.

The Boolean variables are constrained by the three fol-
lowing rules (modest adaptation of [14]):

1. For each task, exactly one of theS×R variables has to
be equal to 1. Therefore two clauses are generated for each
task Ti. The first guarantees having at most one variable
equal to 1 (true):
(x̄i11 ∨ x̄i21)∧ · · ·∧ (x̄i11 ∨ x̄iSR)∧ · · ·∧ (x̄i(S−1)R ∨ x̄iSR).
The second guarantees having at least one variable equal
to 1: (x̄i11 ∨ x̄i21 ∨ · · · ∨ x̄i(S−1)R ∨ x̄iSR).

2. If there is a precedence constrains such thatTu is the
predecessor ofTv, thenTv cannot start before the execution
of Tu is finished. Therefore,xujk → ((x̄v1l ∧ · · · ∧ x̄vjl ∧
x̄v(j+1)l ∧ · · · ∧ x̄v(j+pu−1)l) for all possible combinations
of processorsk andl, wherepu denotes the processing time
of taskTu.

3. At any time unit, there is at most one task executed on
a given processor. For the couple of tasks with a precedence
constrain this rule is ensured already by the clauses in the
rule number 2. Otherwise the set of clauses is generated for
each processork and each time unitj for all couplesTu, Tv

without precedence constrains in the following form:
(xujk → x̄vjk) ∧ (xujk → x̄v(j+1)k) ∧ · · · ∧ (xujk →
x̄v(j+pu−1)k).

In the toolbox we use azChaff [15] solver to decide
whether the set of clauses is satisfiable. If it is, the schedule
within S time units is feasible. An optimal schedule is found
in iterative manner. First, the List Scheduling algorithm is
used to find initial value ofS. Then we iteratively decrement
value of S by one and test feasibility of the solution. The
iterative algorithm finishes when the solution is not feasible.

As an example we show a computation loop of a Jaumann
wave digital filter [16]. Our goal is to minimize computation
time of the filter loop, shown as directed acyclic graph in
Fig. 2. Node in the graph represent the tasks and the edges
represent precedence constrains. The nodes are labeled by
the operation type and processing timepi. We look for an
optimal schedule on two parallel identical processors.

processing
time p

T14
3

*

T15
2

+

T13
2

+

T5
2

+T4
2

+

T17
2

+

T12
3

*

T3
2

+

T11
2

+T10
2

+T9
3

*

T16
2

+

T2
2

+

T6
2

+

T8
3

*

T1
2

+

T7
2

+

Fig. 2. Jaumann wave digital filter

Fig. 3 shows consecutive steps performed within the
toolbox. First, we define the set of task with precedence

constrains and then we run the scheduling algorithmsatsch.
Finally we plot the Gantt chart.

>> procTime = [2,2,2,2,2,2,2,3,3,2,2,3,2,3,2,2,2];

>> prec = sparse(...

[6,7,1,11,11,17,3,13,13,15,8,6,2,9 ,11,12,17,14,15,2 ,10],...

[1,1,2,2 ,3 ,3 ,4,4 ,5 ,5 ,7,8,9,10,10,11,12,13,14,16,16],...

[1,1,1,1 ,1 ,1 ,1,1 ,1 ,1 ,1,1,1,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1],...

17,17);

>> jaumann = taskset(procTime,prec);

>> jaumannSchedule = satsch(jaumann,problem(’P|prec|Cmax’),2)

Set of 17 tasks

There are precedence constraints

There is schedule: SAT solver

SUM solving time: 0.06s

MAX solving time: 0.04s

Number of iterations: 2

>> plot(jaumannSchedule)

Fig. 3. Solution of the scheduling problem in the toolbox.

Thesatschalgorithm performed two iterations. In the first
iteration 3633 clauses with 180 variables were solved as
satisfiable forS = 19 time units. In the second iteration 2610
clauses with 146 variables were solved with unsatisfiable
result for S = 18 time units. The optimal schedule is
depicted in Fig. 4.

T1

T10T11

T12

T13

T14

T15

T16T17

T2 T3 T4

T5T6

T7T8

T9

P 2

P 1

0 5 10 15 t

Fig. 4. The optimal schedule of Jaumann filter.

IV. CYCLIC SCHEDULING ON DEDICATED
PROCESSORS

Cyclic schedulingdeals with a set of operations (generic
tasks) that have to be performed an infinite number of times
[17]. This approach is also applicable if the number of
loop repetitions is large enough. If execution of operations
belonging to different iterations can interleave, the schedule
is calledoverlapped. An overlapped schedule can be more
effective especially if processors are pipelined hardwareunits
or precedence delays are considered. Theperiodic schedule
is a schedule of one iteration that is repeated with a fixed
time interval called aperiod (also calledinitiation interval).
The aim is then to find a periodic schedule with a minimum
period [17].

As an example, we show a computation loop of a wave
digital filter (WDF) [18] consisting of eight tasks. It is
extended to five channels by assuming five clock cycles
processing time of each task (i.e. single channels are shifted
by one clock cycle). Fig. 5 shows the filter with correspond-
ing processing times of operations executed using HSLA
arithmetic library on FPGA (input-output latency of ADD
(MUL) unit is 9 (2) clock cycles, respectively [7]).

Operations in a computation loop can be considered as a
set ofn generic tasksT = {T1, T2, ..., Tn} to be performed
K times whereK is usually very large. One execution of

T labeled with integer indexk ≥ 1 is called aniteration.
The scheduling problem is to find a start timesi(k) of every
occurrenceTi [17].

for k=1 to N do
T1: a(k) = X(k) + e(k − 1)
T2: b(k) = a(k) − g(k − 1)
T3: c(k) = b(k) + e(k)
T4: d(k) = γ1 · b(k)
T5: e(k) = d(k) + e(k − 1)
T6: f(k) = γ2 · b(k)
T7: g(k) = f(k) + g(k − 1)
T8: Y (k)= c(k) − g(k)

end

T1
5

+

T5
5

+

T2
5

+ T3
5

+

T8
5

+T4
5

* T7
5

+

T6
5

*

(9,0)

(9,0)(2,0)

(9,0)

(9,0)(9,1)(9,0)(9,1)

(2,0)
(9,0)

(9,0)

(9,1)
(9,1)

height hlength l

processing
time p

(a) (b)

Fig. 5. (a) An example of a computation loop of wave digital filter (WDF).
(b) Corresponding data dependency graphG of WDF.

Data dependencies of this problem can be modeled by a
directed graphG. Each task (node inG) is characterized
by the processing timepi. Edgeeij from the nodei to j is
weighted by a couple of integer constantslij andhij . Length
lij represents the minimal distance in clock cycles from the
start time of the taskTi to the start time ofTj and is always
greater than zero (corresponds to input-output latency in our
example). On the other hand, the heighthij specifies the
shift of the iteration index (dependence distance) relatedto
the data produced byTi and read (consumed) byTj .

Assuming aperiodic schedulewith the period w (i.e. the
constant repetition time of each task), each edgeeij in graph
G represents one precedence relation constraint

sj − si ≥ lij − w · hij , (1)

where si denotes the start time of taskTi in the first
iteration. Fig. 5(a) shows the data dependence graph of the
computation loop shown in Fig. 5(b).

When the number of processorsm is restricted, the cyclic
scheduling problem becomes NP–complete [17]. Unfortu-
nately, in our case the number of processors is restricted and
the processors are dedicated to execute specific operations.
In the toolbox we formulate the scheduling problem as a
problem of Integer Linear Programming (ILP). For more
detail about the scheduling algorithm see [12], [4]. The
schedule of the WDF example, obtained as outlined in Fig. 7,
is shown in Fig. 6.

The toolbox is interconnected with Matlab/Simulink based
simulator TrueTime [3] which facilitates cosimulation of
realtime task execution and continuous plant dynamics. Ar-
bitrary schedule can be directly transformed to a model used
by TrueTime. This function allows to design complex control
systems and simulate influence of external events on the
schedule.

Furthermore, the scheduling results can be used to gen-
erate parallel code in Handel C [19] for FPGA. It allows
to design time critical algorithms especially for FPGA as is
shown in WDF example in this section. The toolbox provides
to designer full control over the scheduling algorithm.

>> load wdf
>> UnitProcTime=[5 5];
>> UnitLattency=[9 2];
>> G=cdfg2LHgraph(wdf,UnitProcTime,UnitLattency);
>> t=taskset(G);
>> prob=problem(’m-DEDICATED’);
>> schoptions=schoptionsset(’ilpSolver’,’glpk’, ...
’cycSchMethod’,’integer’,’varElim’,1);
>> taskset_sch=mdcycsch(t, prob, 1, schoptions)
Set of 8 tasks
There are precedence constraints
There is schedule: MONOCYCSCH - ILP based algorithm

Tasks period: 31
Solving time: 0.094s
Number of iterations: 5

>> plot(taskset_sch)

Fig. 7. Solution of a cyclic scheduling problem in the toolbox.

V. REAL-TIME SCHEDULABILITY ANALYSIS

Real-Time schedulingis usually used in Real-Time oper-
ating systems for scheduling a set of periodic tasks. Simple
scheduling algorithms such asfixed-priority schedulingare
usually used since they need to be executed on-line. Given
a system comprising of a set of real-time tasks and a
scheduling algorithm, a verification algorithm can determine
whether all the tasks in the system meet their real-time
constraints (deadlines).

Besides basicresponse-time analysisfor rate monotonic
algorithm [9], TORSCHE contains a more advanced tech-
nique: schedulability analysis for tasks with offsets. This
technique was firstly introduced by Tindell in [20], and later
further formalized and enhanced by Palencia and Harbour in
[10]. In both papers, authors designed exact algorithm for
this NP-hard problem (determining response times of tasks
in the system) as well as polynomial approximate analysis
that finds upper bound to the task response times. Currently,
TORSCHE contains only the exact algorithm.

Note: This section uses notation different from the rest
of this paper. The reason is that this notation is common in
real-time community.

A. Computational Model

The real-time system considered for analysis is composed
of tasks executing in the same processor, but the analysis
can be easily extended for multiprocessor systems. Tasks
are grouped totransactions. Each transactionΓi is activated
by a periodic sequence of external events with periodTi.
The relative phasing between the different external events
is arbitrary. Each task will be identified with two subscripts:
the first one identifies the transaction to which it belongs and
the second one the position that the task occupies within the
tasks in its transactions, when they are ordered by increasing
offsets. Taskτij is activated (released) when a relative time—
called theoffset, Φij—elapses after the arrival of the external
event. The offset can be static or dynamic. Dynamic offsets
are represented by a value of jitterJij , which specifies the
length of the interval in which a task can be activated.Cij

is the worst-case execution time.
It is assumed that each task has its unique priority and

all the tasks are scheduled using a preemptive fixed priority

0 5 10 15 20 25 30 35 40 45 50

ADD

MUL

iteration: 1
st

2
nd

t

T4 T6

T1 T2 T3T5 T7 T8

T4 T6

T1 T2 T3T5 T7 T8

55 60 65 70 75 80 85

period length w

iteration length l

T1 T2

3
rd

execution period 2execution period 1 execution period 3

Fig. 6. The optimal schedule of 5WDF benchmark on HSLA (w∗
= 31). Iteration overlap is even significant due to operations pipelining that is not

visible in this figure.

scheduler. If tasks synchronize for using shared resourcesin
a mutually exclusive way they will be using a hard real-time
synchronization protocol such as the priority ceiling protocol
[9].

The response timeof each taskτij is defined as a differ-
ence between its completion time and the instant at which the
associated external event arrived. The worst-case response
time is denoted byRij . Each task may have associated global
deadlineDij , which is also relative to the arrival of external
event. A system is said to be schedulable if for each task
Rij ≤ Dij .

Fig. 8 shows an example of a real-time system. The
horizontal axis represents time. Down-pointing arrows rep-
resent periodic external events, filled boxes represent task
execution. Dashed lines below each transaction axis represent
task jitter values.

The system in this figure is composed of three transactions.
The first and the third ones group two tasks, the second one
groups three tasks. No blocking is considered in this example
and tasks have assigned priority corresponding to their sub-
script. The smaller the number the higher the priority. Note
that taskτ12 has its offset greater than completion time of the
previous task in the transaction and that tasks not initiating
the transactions has non-zero jitter (dotted line). In thisway,
offsets and jitters can be used to represent self-suspending
tasks (e.g. tasks callingsleep() OS service or waiting for
data from a periphery).

B. Exact Response-Time Analysis Algorithm

The calculation of the exact worst-case response-time
(WCRT) for any task in the system is NP-hard problem
[21] and therefore the complexity of the exact algorithm
is exponential to the size of the system. In [10] and [22]
approximate methods that calculates an upper bound to the
WCRT are developed. These polynomial time algorithms are
based on simplification of the exact algorithm. TORSCHE
currently implements only the exact algorithm.

To find the worst-case response time of a task under
analysis (τab), it is necessary to build the worst-case scenario
for this task. Finding this scenario rests in finding such
a combination of higher priority tasks having the highest
contribution toτab response time. The time when this com-
bination occurs is called thecritical instant of task τab.

In the case where all tasks are independent (without
offsets), the critical instant occur at the time when all higher
priority tasks are activated simultaneously withτab. This no

longer holds for tasks with offsets, as it might be impossible
for some sets of task to be activated at the same time.

The complexity of the algorithm rests in the fact that we
have to explore all possible combinations of tasks from each
transaction and find which combination produces the worst-
case response time.

Fig. 9 shows the scenario of the system from Fig. 8,
for which the response-time of taskτ21 reaches its worst-
case value. This situation happen when tasksτ00, τ12 and
τ21 are activated simultaneously after being delayed by their
maximum jitter. The phasing of external events as well as
activation times of all tasks in this scenario are depicted in
the three top-level axes of the picture. The last axis shows
the schedule as produced by the fixed-priority scheduler. The
critical instant is at time 0 of this schedule and the length of
busy periodLab = 150. For this scenario, (the worst-case)
response-timeR21 = L21 + Φ21 + J21 = 200.

C. Matlab Session Example

The model of a real-time system is entered into Matlab by
creating appropriateTask and Transactionobject instances.
The response-time analysis can be performed by calling
taskoffsanal function. Fig. 10 shows the steps needed
to perform response-time analysis within TORSCHE. Com-
puted response times are listed asrespTime values. Other
toolbox functions can be used to automatically draw figures
like the ones in this section.

>> t00=task(10, 0);
>> t01=task(10,[10 15], 100);
>> G0=transaction([t00 t01], 100);
>> t10=task(25,0);
>> t11=task(10, [25 30]);
>> t12=task(20, [70 80], 100);
>> G1=transaction([t10 t11 t12], 130);
>> t20=task(30, 0);
>> t21=task(35, [30 50], 250);
>> G2=transaction([t20 t21], 300);
>> system = [G0 G1 G2]; setprio(system, ’rm’);
>> taskoffsanal(system)
System:
Transaction: per=100.0
Task t00: prio=7 wcet=10.0 o=0 j=0 respTime=10.0
Task t01: prio=6 wcet=10.0 o=10.0 j=5.0 respTime=25.0

Transaction: per=130.0
Task t10: prio=5 wcet=25.0 o=0 j=0 respTime=45.0
Task t11: prio=4 wcet=10.0 o=25.0 j=5.0 respTime=60.0
Task t12: prio=3 wcet=20.0 o=70.0 j=10.0 respTime=120.0

Transaction: per=300.0
Task t20: prio=2 wcet=30.0 o=0 j=0 respTime=145.0
Task t21: prio=1 wcet=35.0 o=30.0 j=20.0 respTime=200.0

Fig. 10. Offset-based response-time analysis in a Matlab session

Γ0

0 100 200 300

τ00 τ00 τ00τ01 τ01 τ01

T0 T0

Γ1

0 130 260

τ10 τ10 τ10τ11 τ11 τ11

Φ11 C11

τ12 τ12

Φ12

C12

J12

Γ2

0 100 200 300

τ20 τ21

Φ21

J21

C21

Fig. 8. Graphical representation of the real-time system.

Γ0

0 100 200 300

τ00 τ00 τ00τ01 τ01 τ01

Γ1

0 130 260

τ10 τ10 τ10τ11 τ11 τ11τ12 τ12 τ12

80

Γ2

0 50 100 150 200 250 300 350

τ20 τ20τ21

Schedule

0 30 60 90 120 150 180 210 240 270 300

τ00τ00τ00 τ01τ01τ01 τ12τ12τ12 τ21τ21τ21 τ10τ10τ10 τ11τ11τ11 τ21τ21τ21 τ00τ00τ00 τ01τ01τ01 τ12τ12τ12 τ21τ21τ21

L21R21

Fig. 9. The schedule that produces the worst-case response time for τ21.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents TORSCHE Scheduling Toolbox for
Matlab for off-line and on-line scheduling. The toolbox
includes scheduling algorithms, that are used for various
applications as high level synthesis of parallel algorithms or
response time analysis of applications running under fixed-
priority operating system. The main objective of this project
is to facilitate design of real-time applications mainly in
control domain where the Matlab is frequently used. In this
paper, we have shown the applicability on three examples.

In the future work we will focus on interconnections to
another designs tools and simulators and we will incorporate
new scheduling algorithms. Actual version of the toolbox
is freely available athttp://rtime.felk.cvut.cz/
scheduling-toolbox/.

REFERENCES

[1] J. Kadlec,FloatPipe1v35 Modules for Virtex and Virtex 2, February
2004. http://www.celoxica.com.

[2] L. Waszniowski and Z. Hanzálek, “Analysis of OSEK/VDX based au-
tomotive applications,” inIFAC Symposium on Advances in Automotive
Control, Salerno, Elsevier, April 2004.

[3] M. Andersson, D. Henriksson, and A. Cervin,TrueTime 1.3Reference
Manual. Lund University, Sweden, 2005.http://www.control.
lth.se/∼dan/truetime/.

[4] P. Šůcha, Z. Pohl, and Z. Hanzálek, “Scheduling of iterativealgorithms
on FPGA with pipelined arithmetic unit,” in10th IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS 2004),
Toronto, Canada, 2004.

[5] A. Heřmánek, J. Schier, P.̌Sůcha, and Z. Hanzálek, “Optimization
of finite interval CMA implementation for FPGA,” inIn IEEE 2005
Workshop on Signal Processing Systems (SIPS’05), pp. 75–80, Piscat-
away: IEEE, 2005.

[6] J. Błażewicz, K. Ecker, G. Schmidt, and J. Wȩglarz,Scheduling
Computer and Manufacturing Processes. Springer, second ed., 2001.

[7] R. Matoušek, M. Tichý, A. Z. Pohl, J. Kadlec, and C. Softley,
“Logarithmic number system and floating-point arithmeticson FPGA.”
Field-Programable Logic and Applications: Reconfigurablecomputing

Is Going Mainstream. Lecture notes in Computer Science A 2438,
Springer, Berlin, 2002.

[8] G. C. Buttazzo,Hard Real-Time Computing Systems. Kluwer Aca-
demic Publishers, second ed., 2005.

[9] J. W. S. Liu, Real-Time Systems. Upper Saddle River, NJ, USA:
Prentice Hall, 2000.

[10] J. C. Palencia and M. G. Harbour, “Schedulability analysis for tasks
with static and dynamic offsets.,” inProceedings of the 19th Real-
Time Systems Symposium, pp. 26–37, IEEE Computer Society Press,
December 1998.

[11] “MAST (Modeling and Analysis Suite for Real-Time Applications).”
http://mast.unican.es/.

[12] M. Kutil, P. Šůcha, M. Sojka, and Z. Hanzálek,TORSCHE:Scheduling
Toolbox Manual, February 2006.http://rtime.felk.cvut.
cz/scheduling-toolbox/.

[13] Y. Crama and P. L. Hammer, “Boolean functions: Theory, algorithms
and applications,” 2006.http://www.rogp.hec.ulg.ac.be/
Crama/Publications/BookPage.html.

[14] S. O. Memik and F. Fallah, “Accelerated SAT-based Scheduling of
Control/Data Flow Graphs.,” inICCD, pp. 395–400, IEEE Computer
Society, 2002.

[15] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: Engineering an Efficient SAT Solver,” inProceedings of the
38th Design Automation Conference (DAC’01), 2001.

[16] S. H. de Groot, S. Gerez, and O. Herrmann, “Range-chart-guided itera-
tive data-flow graph scheduling,”Circuits and Systems I: Fundamental
Theory and Applications, IEEE Transactions on, vol. 39, pp. 351–364,
1992.

[17] C. Hanen and A. Munier, “A study of the cyclic schedulingproblem on
parallel processors,”Discrete Applied Mathematics, vol. 57, pp. 167–
192, February 1995.

[18] A. Fettweis, “Wave digital filters: theory and practice,” Proceedings
of the IEEE, vol. 74, pp. 270–327, February 1986.

[19] Celoxica Ltd.,DK Design Suite, 2005. http://www.celoxica.
com/.

[20] K. Tindell and J. Clark, “Holistic schedulability analysis for distributed
hard real-time systems,”Microprocess. Microprogram., vol. 40, no. 2-
3, pp. 117–134, 1994.

[21] F. Ridouard, P. Richard, and F. Cottet, “Negative results for scheduling
independent hard real-time tasks with self-suspensions.,” in The 25th
IEEE International Real-Time Systems Symposium, December 2004.

[22] J. Mki-Turja and M. Nolin, “Faster response time analysis of tasks
with offsets,” inWiP Session of Real-Time Systems Symposium (RTSS),
(Cancun, Mexico), December 2003.

