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Abstract

Computers are often used as a tool to measure time in various experiments. Benchmarking and hardware
performance evaluation are very common examples. There one typically needs to measure the duration of
certain computer operation. The precision of hardware clocks is typically more than satisfying for this
purpose but the measured time is also influenced by other factors such as the used operating system. In
this paper, we evaluate how does the variance of benchmark results depend on the operating system.

We developed a set of benchmarks to measure the characteristics of memory subsystem, the cost of task
preemption and the cost of task migration between CPU cores/sockets. We run the benchmarks on NOVA
microkernel as well as on two different configurations of Linux, in all cases on x86 architecture. We captured
the data from several tenths of hours of running experiments and compare the obtained results. The mean
measured values are in all cases similar. Besides the mean values, we compare the variance of subsequent
runs of the benchmark. The results vary depending on the experiment, but there is a clearly visible trend
in all experiments – the noise generated by the microkernel is in most cases the lowest, Debian/Linux sits
in the middle and the highest noise is produced by a minimal configuration of the Linux kernel.

1 Introduction

Computers running Linux are often used as a tool to
measure time in various experiments. Perhaps the
most common use case is benchmarking and other
performance related measurements. The precision of
hardware clocks is typically more than satisfying for
this purpose but the measured time is also influenced
by other factors such as the used operating system.

The reason is that besides running the measure-
ment application itself, the operating system per-
forms additional activities, that have the impact on
the measured time. For example, when one measures
the time needed to execute a certain piece of code,
the resulting time also includes the time spent by
the OS in interrupt handling. Therefore the OS can
be seen as a source of noise influencing the measure-
ment.

OS noise is a well known term in high-

performance computing (HPC), where it is regarded
as a source of scalability problems [1, 2, 3]. HPC
applications typically run multiple jobs on dedicated
CPUs in parallel. After the jobs are finished, their
results are collected. When some jobs are finished
later than the others, the other job’s CPUs have to
wait for the late jobs to complete, wasting their com-
putational power.

In this paper we look at the OS noise from dif-
ferent perspective. We are interested in seeing how
it influences the accuracy of time measurements. In
the beginning of our effort was a paper by Bastoni
et al. [4] where the authors empirically evaluate the
cache-related preemption and migration delays. In
short, cache-related preemption delay is the time dif-
ference in execution times of a task before preemp-
tion, when the task’s working set is cached in cache
memory, and after preemption, during which a part
of the working set might have been evicted from the
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cache. Cache-related migration delay is defined anal-
ogously. The exact meaning of those terms is not im-
portant for the purpose of this paper. Here, we treat
the various benchmarks for determining the delays
under various conditions as black boxes. The focus
of this paper is to compare how the resulting num-
bers differ depending on whether the benchmark is
executed on Linux or on microkernel-based OS called
NOVA [5].

We ported a set of benchmarks [6] for measur-
ing cache-related preemption and migration delays
from NOVA to Linux. Then, we run the same set of
benchmarks on the same hardware, but under three
different operating systems. One was a minimal con-
figuration of NOVA, the other two were different con-
figurations of Linux. Our expectation was that the
noise produced by NOVA will be significantly lower
than the noise of Linux. Although this expectation
was largely fulfilled, the outcome of our comparison
is not so straightforward.

The structure of this paper is as follows. In Sec-
tion 2, we give a brief overview of NOVA microhy-
pervisor. Section 3 describes our testbed and the
benchmark used to measure the noise levels. Section
4 contains the main result of the paper. It explains
how we compare the measured noise and summarizes
the results from many experiments. We conclude the
paper in Section 5.

2 NOVA microhypervisor

NOVA1 is an open-source hypervisor built on the
same principles as microkernel-based operating sys-
tems: The kernel contains only the minimal amount
of functionality needed for the system to work.
In particular, NOVA provides only the follow-
ing: scheduling, inter-process communication (IPC),
memory management and interrupt/exception han-
dling. The rest (such as drivers, virtual machine
monitor, etc.) is left to be implemented in the user
space. Although NOVA-based system is able to run
virtual machines, similarly as Xen2 or KVM3, we do
not make use of this functionality in this work and
instead use NOVA as an ordinary microkernel. The
user space used with NOVA in this work is NUL4.
Currently, NOVA can run on x86 systems only.

NOVA and NUL have several interesting prop-
erties that we believe are important for reduction of

1https://github.com/IntelLabs/NOVA,
http://hypervisor.org/

2http://www.xen.org/
3http://www.linux-kvm.org/
4http://tudos.org/nul/

OS noise. These are:

1. Small memory footprint. The size of uncom-
pressed kernel binary is only 66 KiB. The “hot”
code used most often during system execution
(IPC) is extremely small – about 1 KiB. This
code occupies only a fraction of typical L1 cache
memory.

2. Very little kernel code is executed without the
user space explicitly asking for it.

3. User space (also very small) can be configured
to not run components (drivers, services) that
are not needed for the particular application.

The source of OS noise is the situation when the
user-space code is preempted by an unrelated activ-
ity. Here we list all situations when it can happen un-
der NOVA and how we dealt with that in our bench-
mark implementation for NOVA:

• Scheduler timer interrupt (local APIC) is used
to interrupt the user space task after its time
quantum has elapsed. In our benchmark we set
the quantum of our tasks to 100 ms.

• Timer service interrupt (HPET). Timer service
provides alarm timer functionality. In the whole
system, the timers were only used to implement
sleep() function to simulate the preemption for
measurement of cache-related preemption delay.

• Hardware interrupt. In our benchmark, we sim-
ply didn’t use any hardware besides keyboard
and serial line. During the benchmark we nei-
ther pressed any keys nor used the serial line,
therefore no interrupts were generated.

• Page faults. In case of our benchmark, we al-
located and mapped all the needed memory be-
forehand to prevent page faults from occurring
(equivalent of mlockall()).

• High priority task. Our benchmark setup did
not run any task with higher priority than our
measurement task.

When the above mentioned properties are com-
pared with the properties of Linux kernel, Linux is
almost opposite of NOVA. It has big memory foot-
print and lot of activities run in parallel with user
applications.

3 Testbed setup & benchmark

All experiments were run on a Dell Precision T7500
system. The system contains two identical Intel
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Xeon X5650 CPUs comprising of 6 cores per pack-
age. One core has two 32 KiB L1 caches, one for
instructions and one for data and 256 KiB of unified
L2 cache. The L3 cache has the size of 12 MiB and is
shared between all cores in the package. The system
has 24 GiB of main memory in NUMA configura-
tion. The benchmark only touched the memory local
to the first package. However, in some experiments
the benchmark was run on a CPU in the “remote”
package.

The benchmarking application run in total 46
different experiments. In every experiment, the
quantity measured was the time needed for accessing
(i.e. reading or writing) a certain amount of mem-
ory. In the following we call the size of this memory
as working set size or WSS in short. Our exper-
iments can be classified into the following groups:
cache/memory bandwidth measurement (8 exper-
iments), cache-related preemption delay measure-
ment (32 experiments), cache-related migration de-
lay measurement (6 experiments). Each experi-
ment was run several times in order to calculate
the variance of the measured quantity. Most exper-
iments were run 1024 times, migration experiments
512 times and memory bandwidth experiments with
modified cache lines 256 times. More detailed de-
scription of the experiments can be found in [6].

The benchmark was run under three different op-
erating systems:

1. NOVA: The benchmark was booted over net-
work and the results of the experiments were
reported via serial line. No other devices such
as disk or network were used.

2. Linux 3.2.13 with minimal configuration. The
kernel was configured with minimum features.
Some important options were set as follows:
PREEMPT NONE=y, HPET TIMER=n, NO HZ=y. The
benchmark binaries were put directly into initial
ramdisk and the results were sent out via serial
console.

3. Standard installation of Debian with Linux ker-
nel 2.6.32-5-686 (as shipped by Debian). The
system was booted from disk. Only sshd and
openvpn daemons were run. The results were
stored on disk (shell redirection).

4 OS noise comparison

In this section, we compare the noise in measure-
ments from different operating systems.
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Figure 1: Measured values of CPU cycles per mem-
ory access: a) warm cache, b) cold cache. Filled areas
represent min/max range. Vertical lines denote the
sizes of different cache levels.

The overview of results of two different experi-
ments is shown in Figure 1. The top graph a) shows
the number of CPU cycles needed to access the mem-
ory in case of warm cache. This is a classical curve
familiar to most people that have ever benchmarked
memory accesses. The points in the graph represent
the mean value of all runs, the shaded areas span be-
tween the minimum and maximum measured values.
We can observe the following from the graph: (1)
Steps on the NOVA curve are much sharper. This
is due to smaller cache footprint of NOVA system
during the execution of the experiment. (2) The dif-
ferences between the mean values for the two Linux
kernels is very small. (3) The differences at the left
end of the graph is caused by inaccuracy of our mea-
surement method. (4) There are big differences in
the observed noise (min/max values). NOVA’s noise
is pretty low with a few exceptions (spikes, see be-
low). Linux noise is bigger and there are differences
between the two kernel configurations.

The bottom graph b) in Figure 1 shows again the
CPU cycles needed to access the memory but in this
case the cache was dirty. The values in the cache had
to be written back to the main memory before the
cache line could hold the new value requested by the
benchmark. Here, we can make similar observations
as for the top graph. Only (1) does not apply here,
because OS cache footprint is insignificant when the
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Figure 2: Variance of measured values.
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Figure 3: Variance to mean ratio of the same exper-
iment as in Figures 1b and 2.

cache is occupied by something else than the OS.

Both graphs in Figure 1 contain big spikes in
maximum values for NOVA. These spikes signifi-
cantly influence the results at the expense of NOVA.
We do not know exactly what is the source of those
spikes. We believe that they are caused by system
management interrupts (SMI) that does not occur
under Linux because Linux initialized some hardware
(perhaps USB) that is otherwise handled by BIOS
with the help of SMIs. Those spikes does not occur
on other systems (AMD Phenom [6]) where we tried
to run the benchmark on. Unfortunately, we did not
run Linux benchmark on those systems and therefore
we cannot use the results from that system in this
paper.

To proceed further with our analysis of the noise,
we will concentrate on the variance of measured re-
sults rather than on the mean value. For most of
the experiments, the variance graph looks similarly
to the one in Figure 2. It can be seen that variance is
more or less proportional to the size of the working
set, which is in turn proportional to the measured
time. Due the this fact, we use the variance-to-mean
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Figure 6: Summary of noise comparison. Frequency
values show how many times achieved the particular
OS lowest, middle or highest noise level in graphs
from Figure 4.

ratio (depicted in Figure 3) rather than the raw val-
ues of variance in our comparison. The curves in
Figure 3 are more or less flat and it is easier to cal-
culate averages from them.

From the graph in Figure 3, we can see that the
character of the curves is different in different WSS
regions. For example, the variance-to-mean ratio is
much bigger when the working set size is greater than
the size of the cache. Due to this fact we process the
results as follows. We split the working set sizes to
four regions according to the sizes of different caches
(in the graph denoted by thick vertical lines). For
every such region, we calculate the median value.
This process is illustrated in Figure 4, where are raw
measured data on the left and the aggregated results
(medians) on the right.

We performed the aggregation for all 46 experi-
ments and the results can be seen in Figure 4. This
gives us 46 × 4 = 184 comparisons, which are sum-
marized in Table 1 and Figure 6.

OS lowest middle highest
NOVA 108 (59%) 35 (19%) 41 (22%)
Linux min. 37 (20%) 70 (38%) 77 (42%)
Linux Debian 39 (21%) 79 (43%) 66 (36%)

Table 1: Summary of noise comparisons.

It can be seen that NOVA offers the lowest
noise level (variance-to-mean ratio) in more than half
(59%) cases. On the other hand, it exhibits the high-
est noise level in 22% of cases. Configuration with
minimal Linux kernel achieves most often (42%) the
highest noise level of the three compared OSes. De-
bian system sits in the middle between NOVA and
minimal Linux kernel; in 43% of cases it achieves the
middle noise level.
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Figure 4: Results of a single experiment. Left: mean values and min/max values, middle: variance-to-mean
ratio, right: aggregated (median) variance to mean ratio for different WSS regions.

5 Conclusions

We compared the level of operating system noise
of three different systems – NOVA microkernel and
two configurations of Linux. The results are not as
straightforward as we initially expected. We summa-
rize our observations in the following points:

• In most cases the noise produced by NOVA mi-
crokernel is much lower than the noise of Linux.
There are, however, the cases where the oppo-
site is true.

• Operating system is not the only dominant
source of noise. In some experiments we could
see increased level of noise for working set sizes
greater than the cache memory. In those cases
the noise was approximately the same for all
evaluated systems. From this, we conclude that
the access to off-CPU resources is also a signifi-
cant source of noise.

• System management interrupts (provided that
the NOVA spikes are caused by them) are really
big source of noise.

• Configuration of the Linux kernel has significant
impact on the observed noise.

The data used for the analysis in this paper
as well as additional pictures can be obtained from
http://rtime.felk.cvut.cz/˜sojka/papers/os-noise/.
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[6] S. Wächtler, “Evaluation of migration costs in
multi-core CPU scheduling,” Beleg Thesis, TU
Dresden, Germany, March 2012.

5



1e−02

1e+00

1e+02

L1 L2 L3 MEM

RO, warm, local mem

1e−02

1e+00

1e+02

L1 L2 L3 MEM

RO, warm, remote mem

1e−02

1e+00

1e+02

L1 L2 L3 MEM

RW, warm, local mem

1e−02

1e+00

1e+02

L1 L2 L3 MEM

RW, warm, remote mem

1

3

10

30

100

L1 L2 L3 MEM

RO, modif, local mem

1

3

10

30

L1 L2 L3 MEM

RO, modif, remote mem

1

3

10

30

L1 L2 L3 MEM

RW, modif, local mem

1

3

10

30

L1 L2 L3 MEM

RW, modif, remote mem

1

100

L1 L2 L3 MEM

intra−pkg. migration 0−3

10

1000

L1 L2 L3 MEM

inter−pkg. migration 0−6

10

1000

L1 L2 L3 MEM

intra−pkg. migration 3−0

10

1000

L1 L2 L3 MEM

inter−pkg. migration 6−0

1

100

L1 L2 L3 MEM

intra−pkg. migration 6−9

1

10

100

L1 L2 L3 MEM

intra−pkg. migration 9−6

1e−01

1e+01

1e+03

L1 L2 L3 MEM

Preemption 1ms, local mem

1

100

L1 L2 L3 MEM

Preemption 2ms, local mem

1

100

L1 L2 L3 MEM

Preemption 3ms, local mem

1

100

L1 L2 L3 MEM

Preemption 4ms, local mem

1

100

L1 L2 L3 MEM

Preemption 5ms, local mem

1

100

L1 L2 L3 MEM

Preemption 6ms, local mem

1

100

L1 L2 L3 MEM

Preemption 7ms, local mem

1

100

L1 L2 L3 MEM

Preemption 8ms, local mem

1

100

L1 L2 L3 MEM

Preemption 10ms, local mem

1

100

L1 L2 L3 MEM

Preemption 11ms, local mem

1e−01

1e+01

1e+03

L1 L2 L3 MEM

Preemption 12ms, local mem

1

100

L1 L2 L3 MEM

Preemption 13ms, local mem

1

100

L1 L2 L3 MEM

Preemption 14ms, local mem

1e−01

1e+01

1e+03

L1 L2 L3 MEM

Preemption 15ms, local mem

1

100

L1 L2 L3 MEM

Preemption 16ms, local mem

1e−01

1e+01

1e+03

L1 L2 L3 MEM

Preemption 0−20ms, local mem

1e−02

1e+00

1e+02

L1 L2 L3 MEM

Preemption 1ms, remote mem

1e−01

1e+01

1e+03

L1 L2 L3 MEM

Preemption 2ms, remote mem

1

100

L1 L2 L3 MEM

Preemption 3ms, remote mem

1

100

L1 L2 L3 MEM

Preemption 4ms, remote mem

1e−01

1e+01

1e+03

L1 L2 L3 MEM

Preemption 5ms, remote mem

1e−01

1e+01

1e+03

L1 L2 L3 MEM

Preemption 6ms, remote mem

0.1

10.0

L1 L2 L3 MEM

Preemption 7ms, remote mem

1e−01

1e+01

1e+03

L1 L2 L3 MEM

Preemption 8ms, remote mem

0.1

10.0

L1 L2 L3 MEM

Preemption 10ms, remote mem

1e−01

1e+01

1e+03

L1 L2 L3 MEM

Preemption 11ms, remote mem

1

100

L1 L2 L3 MEM

Preemption 12ms, remote mem

1e−01

1e+01

1e+03

L1 L2 L3 MEM

Preemption 13ms, remote mem

1

100

L1 L2 L3 MEM

Preemption 14ms, remote mem

0.1

10.0

L1 L2 L3 MEM

Preemption 15ms, remote mem

0.1

10.0

L1 L2 L3 MEM

Preemption 16ms, remote mem

0.1

10.0

L1 L2 L3 MEM

Preemption 0−20ms, remote mem
Figure 5: Comparison of noise levels (variances-to-mean ratios) in different ex-
periments. The bars are plot in this order from left: NOVA, Linux minimal,
Linux Debian. See also Figure 4 to understand the meaning of the values in the
graphs.
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