
CZECH INSTITUTE OF INFORMATICS
ROBOTICS AND CYBERNETICS

INDUSTRIAL INFORMATICS DEPARTMENT

Thermal-Aware Scheduling for MPSoC in
the Avionics Domain: Tooling and Initial
Results
Ondřej Benedikt, Michal Sojka, Pavel Zaykov, David Hornof, Matěj
Kafka, Přemysl Š̊ucha, Zdeněk Hanzálek

DOI: https://doi.org/10.1109/RTCSA52859.2021.00026
Cite as: O. Benedikt, M. Sojka, P. Zaykov, D. Hornof, M. Kafka, P. Š̊ucha,
and Z. Hanzálek. Thermal-aware scheduling for mpsoc in the avionics domain:
Tooling and initial results. In 2021 IEEE 27th International Conference on
Embedded and Real-Time Computing Systems and Applications (RTCSA),
pages 159–168, 2021

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale
or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

https://doi.org/10.1109/RTCSA52859.2021.00026


Thermal-Aware Scheduling for MPSoC in the
Avionics Domain: Tooling and Initial Results

Czech Technical University in Prague
Prague, Czech Republic
ondrej.benedikt@cvut.cz

Ondřej Benedikt, Michal Sojka, Pavel Zaykov∗, David Hornof, Matěj Kafka, Přemysl Šůcha, Zdeněk Hanzálek

∗Honeywell International s.r.o.
Brno, Czech Republic

pavel.zaykov@honeywell.com

Abstract—The demand for high-performance computing leads
to the adoption of modern Multi-Processor System-on-Chip plat-
forms in the avionics domain, where many applications are safety-
critical. To fulfill the safety requirements, it is vital to avoid the
platform’s overheating. In this paper, we propose a task mapping
method, MultiPAWS, for thermal-aware allocation of the safety-
critical avionics workloads under time isolation constraints. With
the help of MultiPAWS, we jointly find an optimal number of
scheduling windows and their lengths and optimal mapping of
the workload to these windows and available CPU cores. To
guide the optimization, we introduce a thermal model based
on power-characteristic coefficients, which we experimentally
identify for a benchmark dataset on NXP i.MX8QuadMax plat-
form (based on ARMv8 big.LITTLE architecture). Furthermore,
to mimic the execution of safety-critical avionics applications,
we introduce DEmOS, an open-source Linux-based scheduler.
DEmOS provides a time-partitioned scheduling similar to the
ARINC 653 standard. We use DEmOS for the experimental
evaluation on the i.MX8 platform. The experimental results
suggest that MultiPAWS achieves over a 12 % decrease of the
platform temperature compared to the minimum-utilization-
based approach. Moreover, we demonstrate how MultiPAWS
can be used in design space exploration for finding the trade-
off between the platform temperature and the length of the
scheduling hyper-period.

Index Terms—thermal-aware task mapping, MPSoC, safety-
critical, ARINC 653

I. INTRODUCTION

Many high-performance Multi-Processor Systems-on-Chip
(MPSoC) have been adopted or considered for safety-critical
domains such as aerospace. Apart from guaranteeing the high-
performance, the safety-critical systems shall also operate
under harsh environmental conditions such as dust, vibrations,
and extended thermal ranges. In the context of safety and
reliability, it is vital to operate within a given thermal enve-
lope. One of the most straightforward ways to guarantee the
thermal envelope is to introduce active cooling, commonly
implemented by forced airflow. However, the active cooling
significantly complicates the mechanical design and increases
the cost. An alternative way is to employ passive cooling
techniques, such as Dynamic Voltage and Frequency Scaling
(DVFS), Dynamic Power Management (DPM), or thermal-
aware task mapping. In this work, we focus solely on the
latter-most.

We propose an optimization method (referred to as Multi-
PAWS) for thermal-aware static scheduling of a safety-critical
workload under time isolation constraints. The method maps
the applications on the computing resources and sequences
them in time.

The optimization goal in MultiPAWS is to find a schedule
by minimizing the platform’s steady-state temperature while
the workload is periodically executed. We demonstrate, both
theoretically and experimentally, that for relatively short peri-
ods (compared to the platform’s thermal time constants), the
steady-state temperature minimization is essentially equivalent
to the minimization of the average power consumption of the
schedule. To guide the optimization, we introduce a power
model based on power-characteristic coefficients, which are
experimentally measured for each task.

To evaluate the MultiPAWS on a real computing platform,
we needed an execution environment similar to the safety-
critical avionics Real-Time Operating System (RTOS). Such
RTOSes are proprietary [1]–[3]. More importantly, we target
i.MX8QuadMax MPSoC by NXP [4] and such cutting-edge
computing platforms are often not yet fully supported by
the avionics RTOSes. Linux is usually the first operating
system supported on such cutting-edge computing platforms.
Therefore, we evaluate the MultiPAWS under Linux. To allow
the execution of avionics workloads under Linux, we intro-
duce an open-source tool that we referred as DEmOS [5].
DEmOS mimics the time execution of an avionics safety-
critical ARINC-653 RTOS scheduler in a Linux environment
and enables us to validate various optimization methods and
thermal management techniques on a real computing platform.

To summarize, the contributions of this paper are as follows:

• We propose a MultiPAWS method designed for thermal-
aware task mapping of the safety-critical workload under
time partitioning constraints.

• We introduce the power-estimation model, which forms
the basis of the MultiPAWS method and is based on the
extensive benchmarking of various workloads.

• We empirically evaluated the proposed MultiPAWS
method on a real computing platform (i.MX8QuadMax
MPSoC by NXP) and demonstrated how MultiPAWS can
be used in a design-space exploration for finding trade-



offs between platform temperature and scheduling hyper-
period.

• We introduce an open-source tool (DEmOS) that allows
the evaluation of various thermal-aware techniques with
avionics workloads under Linux.

The remainder of the paper is organized as follows. The
problem statement and consequent solution are formally de-
scribed in Section II and in Section III, respectively. The
DEmOS tool is covered in Section IV. The experimental
results are summarized in Section V. Finally, we review related
works in Section VI and conclude the paper with Section VII.

II. SYSTEM MODEL AND PROBLEM DEFINITION

In this section, we introduce the formal notation and de-
scribe the problem of the thermal-aware mapping of safety-
critical tasks under windows isolation constraints. The hard-
ware platform model is introduced in Section II-A and the
task model in Section II-B. Then, we describe the thermal
and power models in Sections II-C and II-D. We conclude this
section by summarizing the problem definition in Section II-E.

A. Hardware Platform Model
The platform is composed of a set of computing clusters
C = {C1, . . . , Cm}. Each cluster Ck is associated with a
number ck ∈ Z>0 representing its capacity, i.e., the number
of its computing elements (cores). The vector of capacities
(c1, c2, . . . , cm) is denoted by c. The individual computing el-
ements of each cluster are assumed to be identical, considering
their performance as well as the power/thermal characteristics.
All cores within a single cluster are running at the same clock
frequency, while different clusters can be operating at different
frequencies. We assume that the clock frequencies are given
and fixed, i.e., DVFS is not considered.

B. Task Model
Figure 1 illustrates the notation of the task model. The basic

unit of our task model is a partition, denoted as τi ∈ T ,
where T is a set of partitions T = {τ1, . . . , τn}. We assume
that a partition hosts a single, single-threaded process. Each
partition needs to be scheduled within a major frame, i.e.,
within a time interval [0, h], where h is the major frame length
(also called hyper-period). We assume that each partition is
ready at time zero and needs to finish at or before time h.
Partitions are independent. Each partition needs to be mapped
to a single cluster Ck ∈ C and a single time window Wj ,
defined by its offset and length within the major frame.
Windows do not overlap and cover the whole major frame.
The partitions assigned to one cluster and window are mapped
to the individual cores in arbitrary order (at most one partition
per core). Note that the number of windows is not known a
priori and needs to be found.

Each partition τi and each cluster Ck has an associated
execution time ei,k ∈ Z>0 ∪ {∞} representing the number of
time units needed to execute a partition τi in a given cluster
Ck. If a partition τi cannot be executed in a cluster Ck, then
we set ei,k := ∞. The execution times are given by matrix
E = [ei,k]τi∈T ,Ck∈C .

0 hMajor frame

Window W1 Window W2 Window W3

Core 0

Core 1

Core 2

Core 3

Core 4

Core 5

Cluster C1

c1 = 4

Cluster C2

c2 = 2

τ2

τ4

τ5

τ7

τ3

τ6

Partition τ1

e1,2

Fig. 1. A time-partitioned schedule with two CPU clusters, three windows,
and seven partitions.

C. Thermal Model

Thermal models are often linked with the thermal-electrical
analogy and RC circuits networks, capturing the transient
behavior of the individual components of the target proces-
sor [6], [7]. The dependent physical parameters, including
the thermal conductance and capacitance values, need to be
identified to employ such a thermal model on a given processor
practically. Moreover, the processor layout shall be known
to model the heat dissipation and transfer among the cores.
Precise temperature measurements from multiple places on a
chip are needed to identify the parameters. However, modern
complex MPSoCs often provide just a limited number of on-
chip thermal sensors with limited resolution. In such a setting,
it is impossible to distinguish how the individual computing
resources thermally influence each other. Therefore, our model
consists of a single thermal node that approximates the overall
on-chip temperature.

Temperature evolution in time is primarily determined by
thermodynamical parameters. It turns out that thermal time
constants of the MPSoC platforms are much larger than
periods of typical safety-critical avionics applications [8].
Therefore, in our model, we neglect the thermal dynamics and
focus on a steady-state temperature only.

Assuming a single node and a steady-state temperature, the
thermal model proposed in [6] simplifies to the following
relation between the steady-state temperature T∞ and the
average power consumption P :

T∞ = βP + Tamb, (1)

where Tamb is the ambient temperature, and β represents the
inverse of the chip’s thermal conductance in [K/W]. Hence
in this setting, minimization of the steady-state temperature
can be achieved by minimizing the power consumption. We
experimentally validate the linear correlation between P and
T∞ in Section V-C.

D. Power Model

The power models of CMOS devices were extensively
studied in the past [9]–[11]. A widely-adopted approach is
to model the dynamic, static, and short-circuit power, as
described by Bambagini et al. [11]:

P = αCV 2f︸ ︷︷ ︸
dynamic

+V Ileak︸ ︷︷ ︸
static

+ αV Ishort︸ ︷︷ ︸
short-circuit

, (2)



0 1 2 3 4

5.5

6

6.5

5.7
Pidle

oi,k

ai,k =
Pi,k(ck)−Pi,k(1)

ck−1

Number of active cores z

P
[W

]

Average power (measured)

Pi,k(z) = z · ai,k + oi,k + Pidle, z ∈ [1, ck]

Fig. 2. Coefficients oi,k and ai,k for Ck = A53 and τi = dijkstra.

where C is the load capacitance, α is the factor correspond-
ing to the transistor switching activity, V is the supply voltage,
f is the clock frequency, Ileak is the leakage current, and Ishort
is the current between the supply voltage and ground during
the gate switching.

Such a model is sufficient for simple circuits, but using it for
complex MPSoC platforms is not straightforward, e.g., due to
multiple clock domains on the chip. Since we assume that the
frequency of the individual clusters is fixed, we do not need
to model the power-frequency relation. We use an empirical
power model based on experimental measurements instead.

The model that we use is similar to the model proposed
by Chen et al. [12], where each task is characterized by a
number representing its activity factor. Contrary to [12], where
only randomly generated power characteristics were used, we
discuss how to obtain such characteristics for each task. Also,
we improve the model by identifying two power characteristic
numbers, instead of one, capturing the activity of the task and
part of the system’s power needed to execute it.

We characterize each partition τi ∈ T by two numbers
for each cluster Ck ∈ C: the activity coefficient ai,k and the
offset coefficient oi,k, respectively. These coefficients (shown
in Fig. 2) are obtained by benchmarking each partition at each
cluster in the following way: for each partition τi ∈ T and
cluster Ck ∈ C, we execute the partition in a loop at 1 and ck
cores of Ck. These two points then characterize a linear seg-
ment Pi,k(z), approximating the average power consumption
of task τi running on z cores of Ck for z ∈ [1, ck]. The activity
coefficient ai,k is then computed as the slope of Pi,k(z). The
offset coefficient oi,k is the offset of Pi,k(z) with respect to
the idle power consumption of the platform Pidle. When no
cores are active (z = 0), the average power consumption is
Pidle. The illustration for one particular benchmark is shown
in Figure 2.

Note that more complex methods could be used to iden-
tify the power characteristics of the tasks. For example, the
measurements could be done for all cores (z ∈ {1, . . . , ck})
while fitting the linear segment, e.g., using the least-squares
method. Even more, piecewise-linear or more complex re-
lations could be used to model the power-behavior of the
partitions. Nevertheless, we use just a linear relation in this

study since (i) linear relation approximates the behavior of
most of the tested benchmarks reasonably well, as shown
in Section V-D, (ii) it is simple – just two coefficients are
needed to characterize each partition, which is beneficial when
building the optimization models and algorithms, (iii) only two
measurements are needed for each partition and cluster, which
makes the benchmarking reasonably short.

In the remainder of this section, we describe how the
task’s characteristics are used to estimate the average power
consumption. First, we assume to have a single window W of
length l, and for each cluster Ck ∈ C a set of tasks Tk assigned
to it. We estimate the steady-state average power consumption
P (W ) of the window when being executed periodically:

P (W ) =
∑
Ck∈C

∑
τi∈Tk

(
ai,k ·

ei,k
l

)
+ max
Ck∈C
τi∈Tk

oi,k + Pidle. (3)

Note that if z tasks of the same type are executed within
the window, and the execution of each one spans the whole
window, then expression (3) can be reduced to Pi,k(z).

For a schedule of multiple windows Wj ∈ W where Wj

has length lj , we estimate the average power consumption to
be as follows:

∑
Wj∈W

lj
h
P (Wj) +

h−
∑
Wj∈W lj

h
· Pidle. (4)

Note that the assignment of tasks to the individual windows
and clusters is unknown.

E. Problem Definition

The input is given by a tuple (C, c, T , E,A,O, h), i.e., the
cluster set C, vector of cluster’s capacities c, set of partitions
T , matrix of their execution times E, matrices of their activity
and offset coefficients A and O, and the major frame length
h. The goal is to find solution σ = (q, l, a(w), a(c)), where q ∈
Z>0 is the number of windows, l = (l1, . . . , lq) ∈ Zq>0 is the
vector of windows’ lengths, a(w) : T → W is a total function
mapping the partitions to windows, and a(c) : T → C is a total
function mapping the partitions to resource clusters. We denote
the set of windows as W , where W = {W1,W2, . . . ,Wq}.

A solution σ is called feasible if the following three types
of constraints are satisfied:

(i) each window Wj ∈ W is at least as long as the longest
partition assigned to it:

lj ≥ max
τi∈T
Ck∈C

{
ei,k | a(w)(τi) = Wj ∧ a(c)(τi) = Ck

}
, (5)

(ii) the total length of all windows is at most equal to the
major frame length:

∑
Wj∈W

lj ≤ h, (6)



and (iii) at most ck partitions are assigned to cluster Ck ∈ C
in each window Wj ∈ W:

∑
τi∈T :a(w)(τi)=Wj

1[a(c)(τi)=Ck] ≤ ck. (7)

We seek such a feasible solution that minimizes the steady-
state temperature of the platform reached after its repeated
execution. The minimization of the steady-state temperature
is achieved by minimizing the average power consumption
(see Section II-C). To approximate the energy consumed by
the execution of a single window, we use the power model
(3)–(4). By using this model, the average power consumption
of solution σ can be expressed as follows:

1

h

∑
Wj∈W

 ∑
τi∈T :a(w)(τi)=Wj

∑
Ck∈C:a(c)(τi)=Ck

(ai,k · ei,k)

+ max
τi∈T
Ck∈C

{
oi,k · lj | a(w)(τi) = Wj ∧ a(c)(τi) = Ck

} .

(8)

Note that constant Pidle was omitted since it does not have
an impact on the optimization. We seek the optimal solution,
i.e., a feasible solution minimizing (8).

III. PROPOSED SOLUTION METHOD

To solve the optimization problem, we propose an Inte-
ger Linear Programming (ILP) model called Multi-Processor
Power-Aware Windowed-Scheduler (MultiPAWS). The Multi-
PAWS model has the following three types of variables.

First, we set the maximal number of windows in the
schedule `max = n (in the worst-case, there is one win-
dow per partition). Having this bound, we introduce a non-
negative variable l̂j ∈ Z≥0 for each potential window
Wj ∈ Wmax = {W1,W2, . . . ,W`max} representing the win-
dow’s length.

Second, for each partition τi ∈ T , the potential window
Wj ∈ Wmax and cluster Ck ∈ C, we introduce a binary variable
xi,j,k ∈ {0, 1} modeling the mapping of a task τi to a window
Wj and a cluster Ck.

Third, we employ auxiliary variable yi,j,k ∈ R≥0 for each
partition τi ∈ T , potential window Wj ∈ Wmax, and cluster
Ck ∈ C to capture the influence of the offset coefficient oi,k
of a partition τi on a cluster Ck and in a window Wj .

The complete mathematical model MultiPAWS follows:

min
1

h

∑
Wj∈Wmax

(∑
τi∈T

∑
Ck∈C

(xi,j,k · ai,k · ei,k)

+ max
τi∈T
Ck∈C

{yi,j,k}

 (9)

subject to:

l̂j ≥ xi,j,k · ei,k ∀τi ∈ T ,Wj ∈ Wmax, Ck ∈ C, (10)∑
Wj∈W

l̂j ≤ h, (11)

∑
τi∈T

xi,j,k ≤ ck ∀Wj ∈ Wmax, Ck ∈ C, (12)∑
Wj∈W

∑
Ck∈C

xi,j,k = 1 ∀τi ∈ T , (13)

xi,j,k = 1⇒ yi,j,k = oi,k · l̂j ∀Wj ∈ Wmax, Ck ∈ C. (14)

Constraints (10) ensure that each window is at least as
long as the longest partition assigned to it, as specified by
(5). Constraint (11) is a direct equivalent of (6) constraining
the total length of all windows by major frame length h.
Constraints (12) implement the cluster capacities as required
by (7). Expression (13) guarantees that each partition will be
assigned to exactly one cluster and window. Together, these
constraints ensure that the schedule found by the solver is
feasible.

Finally, the implication (14) sets auxiliary variables yi,j,k,
which are used in the objective (9). Suppose that partition τi
is assigned to window Wj and cluster Ck. In that case, the
auxiliary variable yi,j,k is set to be equal to the product of the
partition’s offset coefficient oi,k and the window’s length l̂j ;
otherwise, the value is arbitrary (and the solver will force it
to 0, which is, in that case, optimal w.r.t. (9)). Objective (9)
is a direct translation of expression (8) in terms of variables
xi,j,k and yi,j,k.

Note that the model MultiPAWS as described by (9)–(14) is
non-linear due to the maximum in (9) and implication in (14).
Nevertheless, both of these expressions can be linearized (the
first one by introducing additional variables for each window,
and the second one by rewriting with ‘big M’), and the modern
solvers even do the linearization internally. Thus, for better
readability, we leave the model in the non-linear form.

To speed-up the solution process, we introduce the
symmetry-breaking constraints that do not affect the solution
quality, but prune part of the search space. Since the windows
are independent, we enforce their order, according to their
lengths:

l̂j ≥ l̂j+1 ∀j ∈ {1, 2, . . . , `max − 1}. (15)

A. Reconstruction of the Solution

Let us denote the optimal values of xi,j,k and l̂j found by
the solver by x?i,j,k and l̂?j , respectively. After solving the Mul-
tiPAWS model, solution σ = (q, l, a(w), a(c)) is reconstructed
in the following way:

(i) set q as the number of potential windows, to which at
least one partition was assigned by the solver:

q =

∣∣∣∣∣
{
Wj ∈ Wmax

∣∣∣ ∑
τi∈T

∑
Ck∈C

x?i,j,k ≥ 1

}∣∣∣∣∣ , (16)



(ii) set the windows lengths l according to the values of the
corresponding variables l̂?j :

l =

(
l̂?j

∣∣∣Wj ∈ Wmax,
∑
τi∈T

∑
Ck∈C

x?i,j,k ≥ 1

)
, (17)

(iii) assign the partition τi to window according to the value
of x?i,j,k:

∀τi ∈ T ,Wj ∈ Wmax : a(w)(τi) = Wj ⇔
∑
Ck∈C

x?i,j,k = 1,

(18)
(iv) assign the partition τi to cluster according to the value

of x?i,j,k:

∀τi ∈ T , Ck ∈ C : a(c)(τi) = Ck ∈ C ⇔
∑

Wj∈Wmax

x?i,j,k = 1.

(19)

IV. TIME-PARTITIONED SCHEDULERS AND DEMOS TOOL

To execute partitions T on a real hardware following a
given schedule, we developed an open-source tool called
DEmOS [5]. DEmOS provides the scheduling of partitions
following the ARINC 653 concept in a Linux environment.
The DEmOS considers the ARINC 653 specifics of the Deos™
RTOS implementation.

A. ARINC 653

ARINC 653 (abbreviated as A653) is a specification of
the operating environment for the application software used
within Integrated Modular Avionics (IMA). More specifically,
it defines the interface between the Operating System and the
applications [13]. The A653 services can be grouped into the
following categories: partition management, process manage-
ment, time management, inter-partition communication, intra-
partition communication, and health monitoring. The DEmOS
tool implements only scheduling, which is a part of partition
management services.

The partition management allows partitioning the execution
in space (memory partitioning) and time (temporal partition-
ing). Therefore, partitions with different criticality levels can
execute in the same system without affecting one another
spatially or temporally.

Partitions are scheduled deterministically on a fixed, cyclic
basis. Each full cycle of the schedule is called a major frame.
Partitions mapped onto one or more scheduling windows
within a major frame. Each window is being defined by its
offset from the start of the major frame and expected duration.
The order of partition activation is defined at configuration
time using configuration tables [13].

The original ARINC standard published in 2010 did not
address its use in multi-core processor avionics systems. How-
ever, since there was strong market demand, the standard has
evolved, and ARINC 653 Part 1 Supplement 4 (ARINC653P1-
4), published in 2015 [14], mentions multi-core processors and
supports parallel execution of partitions on multiple cores [15].

B. Deos RTOS

Deos™ [1] by DDC-I is one of the popular RTOSes in the
avionics domain. Deos™ supports ARINC-653 time and space
partitioning and has been certified in numerous safety-critical
products to DO-178 DAL-A. In each partition, Deos™ RTOS
supports one of the following three schedulers – harmonic
Rate Monotonic, ARINC-653, and POSIX (leveraging a para-
virtualized RTEMS instance).

In a multi-core processor, a single Deos™ RTOS instance
handles all processor cores. A window has an ID, fixed length,
and spawns across all cores. Each core within the window has
its own scheduler (e.g., A653, POSIX).

User applications (processes with threads) are mapped to the
windows, cores, and schedulers during the system configura-
tion. In the context of an IMA architecture, Deos™ provides
a set of mechanisms that allow a single multi-core platform
to host multiple applications of different criticality levels.

In many cases, just two levels are used: Safety-Critical (SC)
and Best-Effort (BE). Deos™ extends the A653 scheduling
scheme by allowing SC and BE partitions to share a core in
a window. Specifically, SC partitions are always granted for
execution within a given window, and BE partitions can be
optionally scheduled once all SC partitions in the window
complete. In this paper, we focus only on the scheduling
of the SC partitions. The motivation is that under the worst
conditions, the BE partitions will not be executed to avoid
platform overheating.

C. DEmOS Tool

DEmOS partially mimics the time execution of a Deos™
RTOS scheduler (with windows and partitions) in the Linux
environment. Although DEmOS partially implements the
ARINC-653 scheduling scheme, the terminology used in this
section differs from ARINC-653 terminology. Specifically,
an ARINC process represents a single thread of execution.
In contrast, we use the term process for a Linux process,
which can be composed of one or more threads of execution.
Similarly, the ARINC partition is a collection of ARINC
processes, which all share an address space, whereas DEmOS
partition is a collection of Linux processes, which do not share
an address space. DEmOS implements only the scheduling; it
does not aim to be A653 API compatible and provide all A653
services.

DEmOS is a user-space program that uses the Linux cgroups
mechanism to implement the partitions as groups of Linux
processes. Scheduling happens at the cgroup level according
to the configured schedule. The cgroup freeze functionality is
used to prevent individual processes from executing outside
of their windows or after exhausting their budgets. The cpuset
cgroup controller limits the execution of processes to the
configured CPU cores. Besides this, DEmOS does neither
limit use of other Linux services nor change Linux scheduling
policies. Therefore, processes running under DEmOS are free
to use any Linux scheduling policy such as SCHED FIFO and
can internally spawn multiple threads.



windows:
- length: 100
sc_partition: [{cmd: prg1 --arg=value}]

- length: 200
slices:

- {cpu: 0,
sc_partition: [{cmd: prg2, budget: 20}],
be_partition: [{cmd: prg3}]}

- {cpu: 1, sc_partition: [{cmd: prg4}, {cmd: prg5}]}

Fig. 3. Exemplary DEmOS configuration file (top) and a trace of the DEmOS
execution with that configuration (recorded with trace-cmd and visualized with
the kernelshark tool).

DEmOS is configured via YAML-formatted files, which
specify parameters for the windows, partitions, and processes.
The configuration file can be either written manually or
auto-generated by higher-level tools, such as the MultiPAWS
implementation used in this paper.

Figure 3 shows an exemplary configuration file for a dual-
core system (CPU0 and CPU1) with two windows (spanning
100 and 200 ms, respectively) and five programs (prg1 – prg5).
These programs are single-threaded user-defined applications
that execute a while(1) loop. The bottom part of the figure
shows a time trace of how DEmOS executes the programs. The
major frame, composed of the two windows, is delimited with
thick green vertical lines. No CPU restrictions were configured
for prg1 (orange), and we see in the trace that Linux chose
to execute it on CPU1. The other processes running in the
second window are restricted to run on specific CPUs. Process
prg2 (on CPU0, red) has explicitly set a budget so it cannot
run longer than 20 ms. The other safety-critical (SC) processes
have a default budget, which DEmOS configures so that all
processes in safety-critical partitions occupy 60 % of window
length. This is why there is a gap on CPU1 between prg1
(orange) and prg4 (dark blue) and why both prg4 and prg5
(light blue) stop their execution after approximately 60 ms. The
best-effort process (prg3, magenta) executes in the remaining
40 % of the second window. The trace also shows (with black
vertical lines) that DEmOS itself executed on CPU0 but only
when action was required on one of the CPUs.

DEmOS can run arbitrary (unmodified) programs and en-
sures that they run only in configured windows and on config-
ured CPUs. However, it might be beneficial for a program to
use demos-sch library, which allows it to notify DEmOS
about important events. Currently, applications can notify
DEmOS about the completion of their initialization phase and
the completion of a periodic job. The initialization phase is
not a subject of strict window-based scheduling. The periodic
job completion notification allows DEmOS to schedule the
following process in the partition before exhaustion of the
previous process’s budget.

Although we do not use it in this paper, DEmOS sup-

ports frequency scaling (DVFS). This support allows creating
custom power policies, which change operational frequencies
of individual CPU clusters (or cores if supported by the
hardware).

V. EXPERIMENTAL EVALUATION

In this section, we first describe the experimental platform
and benchmark applications. Then, we provide experimental
results for both the proposed power model (3)-(4) and the
scheduling method MultiPAWS.

A. Experimental Platform

As an experimental platform, we choose the i.MX8 MP-
SoC [4], the latest generation of i.MX family by NXP, which
is nowadays among the prominent computing MPSoCs for
the safety-critical domain. In one of its most performant
variations, the i.MX8 processor offers two CPU clusters and
two identical onboard GPUs (Vivante GC7000). The first CPU
cluster has four ARM Cortex-A53 cores, while the second
has two ARM Cortex-A72 cores. The interested reader may
find further information about our testbed setup, measurements
methodology, as well as some preliminary results of the
platform benchmarking in [8].

Throughout all experiments, the computing clusters were
set to be operating at the highest possible frequency, which
is 1600 MHz for the A72 cluster, and 1200 MHz for the A53
cluster, respectively. The idle power of the platform Pidle was
empirically measured to be Pidle = 5.7 W.

B. Benchmark Applications

In the evaluation, we apply the following benchmarks: (i) a
subset of Tacle-bench suite [16] consisting of 6 benchmarks
(dijkstra, fft, prime, sha, susan, test3), (ii) a software 3D
rendering tool known as tinyrenderer [17], and (iii) memory
stressing benchmark membench [8]. Membench is used in two
configurations – membench-1M (stressing the L2 cache) and
membench-4M (stressing the main memory).

For each benchmark b, we report its execution time per
iteration on each i.MX8 cluster together with the ratio between
them (denoted by γb) in Table I.

TABLE I
AVERAGE EXECUTION TIME NEEDED FOR A SINGLE ITERATION

MEASURED FOR THE TESTED BENCHMARKS.

Time per iteration Ratio
Benchmark b Ck = A53 Ck = A72 γi

dijkstra 17.5 ms 10.8 ms 1.62
fft 0.332 ms 0.114 ms 2.91

prime 0.372 µs 0.199 µs 1.87
sha 0.454 ms 0.170 ms 2.67

susan 20.5 ms 5.63 ms 3.64
test3 67.1 ms 34.8 ms 1.92

tinyrenderer 953 ms 409 ms 2.33
membench-1M 814 ms 606 ms 1.34
membench-4M 7.15 s 5.45 s 1.31

We also report the activity and offset coefficients in Fig-
ure 4, which were obtained as described in Section II-D.



dijkstra fft prime sha
susan

test3

tinyrenderer

membench-1M

membench-4M
0

1

2
0
.2

1

0
.2

0
.1

9

0
.2

8

0
.1

7 0
.3

5

0
.2

9

0
.6

1

0
.2

8

0
.2

9

0
.2 0
.2

8

0
.1

9

0
.2

4

0
.2

2

1
.0

4

0
.3

3

1
.7

1

0
.9

1
.2

6

1
.0

6

1
.4

9

1
.2

2

1
.2

7

1
.2

9

0
.7

5

0
.5

4

0
.2

0
.1

1

0
.1

4

0
.0

8

0
.1

3

0
.1

9

1
.0

2

1
.4

1
.8

1

C
oe

ffi
ci

en
t

va
lu

e
[W

]
Ck = A53: ai,k oi,k

Ck = A72: ai,k oi,k

Fig. 4. Measured coefficients of the tested benchmarks.

6 7 8 9 10
20

30

40

Power P [W]

T
∞
−
T

am
b

[°
C

]

A53-1 A53-4
A72-1 A72-2
mix-2 mix-6

Linear fit

Fig. 5. Relation between the measured power and relative temperature; linear
fit: (T∞ − Tamb) ' 4.31P − 3.21.

C. Average Power and Steady-State Temperature

When identifying the coefficients, each benchmark was
executed on 1 and 4 A53 cores and 1 and 2 A72 cores,
respectively. Additionally, we executed the benchmarks in
mix-2 and mix-6 configurations, where in the first case, the
benchmark was running at one A53 core and one A72 core,
while in the second case, the benchmark was running at
all 6 cores of the i.MX8 platform. Each measurement was
repeated three times – after 15 minutes of each benchmark
running, the relative steady-state temperature T∞ − Tamb was
recorded. The resulting relation between the average power
consumption and the relative steady-state temperature for
various benchmarks running under various configurations is
shown in Figure 5. Clearly, we observe the linear relation
between the average power consumption and the steady-state
temperature, as suggested by (1).

D. Power Estimation Evaluation

We evaluate the power model (3) for every single bench-
mark running in a loop in the following 4 configurations: A53-
2 (two active A53 cores), A53-3 (three active A53 cores), mix-
2 (one A53 and one A72 core active), and mix-6 (four A53
and two A72 cores active). Note that for configurations A53-
1, A53-4, A72-1 and A72-2, and a single benchmark running,
the prediction error is zero.

1 2 3 4
6

7

8

Number of active cores z

P
[W

]

dijkstra
tinyrenderer

membench-1M

Fig. 6. Power of various benchmarks with respect to the number of active
cores z and the corresponding segments of Pi,k(z).

We measure the error ε defined as

ε :=
Pmeasured − Pestimated

Pestimated
· 100. (20)

The results are listed in Table II. For most of the bench-
marks, except membench-1M, the estimation error is relatively
low: −0.40 % on average, and at most −2.04 % for tinyrenderer
running under configuration mix-6.

TABLE II
POWER PREDICTION ERROR OF A SINGLE BENCHMARK RUNNING ON

DIFFERENT CLUSTERS IN DIFFERENT DEMOS CONFIGURATIONS.

Error ε [%]
τi A53-2 A53-3 mix-2 mix-6

dijkstra -0.41 -0.43 -1.07 0.40
fft 0.08 -0.18 -0.84 -0.67

prime -0.26 -0.40 -1.52 0.53
sha -0.42 -0.19 -0.96 -0.34

susan -0.54 -0.23 -1.31 -0.15
test3 -0.18 -1.98 -1.11 -0.83

tinyrenderer 1.06 0.68 0.41 -2.04
membench-1M 9.38 4.63 -2.37 -16.15
membench-4M 0.94 0.78 0.37 -2.04

The benchmark membench-1M is an exception – when
running on multiple cores, the individual instances of this
benchmark are not independent since all of them compete
for the L2 cache. This memory stressing benchmark is set
such that one instance fills the whole L2 cache. Therefore,
when multiple instances run in parallel, congestion occurs,
negatively impacting the power consumption as well as the
temperature. The relation between the average power con-
sumption and the number of active cores for three different
benchmarks is shown in Figure 6. Although the prediction,
represented by the line segment, is not very accurate for
membench, we argue that the power model (3) is a preliminary
implementation, which will be improved in the future. Also,
the membench is a rather specific benchmark, only stressing
the memory. Most of the real-world CPU applications would
behave more like the tinyrenderer benchmark.

E. Thermal-Aware Scheduling

Finally, we evaluate the MultiPAWS model. We compare
it with two other methods: util-LTF and RA-LTF. These two
methods work in two stages – first, the allocation of the tasks



to clusters is decided, then the isolation windows are created,
and the tasks are statically scheduled.

For util-LTF, the allocation is done such that the utilization
of the system is minimized (i.e., the total idle time of all cores
is maximized). This is achieved by solving an ILP model. For
RA-LTF, the allocation to clusters is decided randomly (both
clusters have the same chance of being chosen).

The second stage is common for both util-LFT and RA-LTF
– the tasks are scheduled one by one in order of their non-
increasing execution times (hence LTF, i.e., the longest task
first), minimizing the completion time of the last task in the
major frame.

Due to the fact that each experiment is very time-consuming
(a long time is needed for the steady-state temperature to
stabilize), we compare the three methods, MultiPAWS, util-
LTF, and RA-LTF, on a set of 6 instances only. For each
instance, 25 partitions were created. Within each partition, one
of the tested benchmarks, see Section V-B, (picked randomly
with repetitions) was executed. For each partition τi, the exe-
cution time (in milliseconds) for the A72 cluster was generated
uniformly from interval [40,160]. Then the execution time for
A53 was scaled according to the ratio γb, see Table I. The
major frame length was set to p̄·n

κ , where n := 25 for the tested
instances, p̄ is the average execution time (across all clusters),
and κ := 3.5 is empirical constant setting the schedules not
too tight to be infeasible, but not too loose to be trivial.

For each instance and tested method, three independent runs
of the experiment were conducted. The relative steady-state
temperature T∞ − Tamb was measured after 30 minutes when
the temperature was already stable. Three different schedules,
RA-LTF1, RA-LTF2 and RA-LTF3, were generated by the
random assignment policy RA-LTF to illustrate its behavior.
For six instances and five methods (MultiPAWS, util-LTF and
RA-LTF1, RA-LTF2, and RA-LTF3), this gives 45 hours of
the measurements running.

The results are summarized in Table III, reporting the
average relative steady-state temperature and the standard
deviation of the three runs. We see that MultiPAWS is able
to reduce the relative steady-state temperature by up to 12 %
compared with util-LTF and 7 % compared to RA-LTF.

TABLE III
COMPARISON OF THE RELATIVE STEADY-STATE TEMPERATURES
T∞ − TAMB OF TESTED METHODS ON BENCHMARK INSTANCES.

T∞ − Tamb [°C]
MultiPAWS util-LTF RA-LTF-1 RA-LTF-2 RA-LTF-3

#1 30.6± 0.3 34.9± 0.5 33.0± 0.4 32.7± 0.3 32.0± 0.3
#2 29.5± 0.6 33.9± 0.3 32.1± 0.4 32.4± 0.1 32.3± 0.3
#3 29.9± 0.2 33.7± 0.3 31.4± 0.4 30.9± 0.7 31.6± 0.5
#4 30.2± 0.1 34.1± 0.2 31.9± 0.5 32.8± 0.2 30.7± 0.1
#5 30.1± 0.2 34.6± 0.2 33.5± 0.0 34.2± 0.1 33.2± 0.1
#6 30.2± 0.2 34.6± 0.1 32.6± 0.2 32.7± 0.2 32.8± 0.0

The schedules for instance #1 are visualized in Figure 7.
We can observe that util-LTF is able to compactly schedule
the tasks on A72 cores, which are faster and more powerful;
however, at the price of increased temperature of the chip.
Contrary to that, MultiPAWS, guided by the tasks’ charac-

MultiPAWS
A72

A53

40
2

73
0

96
2

11
68

13
12

util-LTF
A72

A53

16
1

32
1

46
4

60
4

73
9

86
7

98
7

10
77

11
54

12
18

12
79

13
29

RA-LTF1
A72

A53

46
3

76
2

94
0

10
68

11
32

11
93

RA-LTF2
A72

A53

46
3

73
5

91
3

10
48

11
38

11
99

12
40

RA-LTF3
A72

A53

58
2

91
0

11
05

12
15

12
79

13
29

dijkstra fft prime sha susan test3 tinyrenderer

Fig. 7. Schedules provided by different methods for instance #1 with fixed
major frame length h = 1330.

teristics, utilizes the resources better by allocating the tasks
to slower A53 cores and balancing the windows. Schedules
produced by RA-LTF are somewhere in between – partially
utilizing both clusters.

Note that even for these 25 tasks, finding such schedules,
including the numbers of windows and allocations, manually
might become quite challenging, especially when the major
frame is tight.

F. Influence of the Major Frame Length on the Steady-State
Temperature

The energy-time trade-off is the topic of many works,
e.g. [18]. Here, we examine the potential trade-off be-
tween the major frame length and the relative steady-state
temperature under time-partitioning constraints. This study
is conducted with instance #1. We experiment with h ∈
{930, 1130, 1330, 1530, 1730, 1930}. Schedules for h = 1330
found by MultiPAWS and util-LTF are shown in Figure 7.
Further, we illustrate the schedules found by MultiPAWS for
different major frame lengths in Figure 8.

This time, we compare MultiPAWS, MultiPAWS-fixed, and
util-LTF methods. Method MultiPAWS-fixed takes the sched-
ule found by MultiPAWS for h = 930 and fixes it – i.e.,
after time 930, nothing is being executed, and the platform is
idling (cooling). The results are shown in Fig. 9. The numbers



h = 930,
A72

A53

32
4

55
6

73
4

86
5

92
9

h = 1130
A72

A53

37
9

67
8

89
7

10
55

10
96

h = 1330
A72

A53

40
2

73
0

96
2

11
68

13
12

h = 1530
A72

A53

46
3

81
0

10
85

12
91

14
35

h = 1730
A72

A53

46
3

81
0

10
85

13
04

14
82

15
92

h = 1930
A72

A53

58
2

96
1

12
60

14
89

16
84

18
62

dijkstra fft prime sha susan test3 tinyrenderer

Fig. 8. Different schedules for instance #1 by MultiPAWS with changing
major frame length h ∈ {930, 1130, 1330, 1530, 1730, 1930}.

reported for each data point represent the total utilization of
all clusters.

One can see that a smart allocation and scheduling of the
tasks combined with the potential increase of the major frame
length can bring substantial benefits.

Clearly, when increasing the major frame length, there is
more space for the thermal-aware allocation. The MultiPAWS
method achieves the highest savings among the tested meth-
ods. Compared to MultiPAWS-fixed, we see the advantage
of the tasks re-allocation and re-scheduling. The util-LTF
method shows the lowest potential utilization of the platform,
compensated by higher temperatures.

To put it into numbers, for this particular instance, we
observe that by prolonging the major frame length h = 930
by about 21 %, MultiPAWS can improve the relative steady-
state temperature by about 10 %, which is about 3 % better
than rescaling the hyper-period (MultiPAWS-fixed). Making
the major frame about two times of its original length (from
h = 930 to h = 1930), we can obtain up to 26 % improve-
ment in terms of the steady-state temperature and about 7 %
improvement compared to MultiPAWS-fixed.

VI. RELATED WORK

Thermal/power-aware task mapping on heterogeneous MP-
SoC has already received attention in the literature [12], [19]–

930 1,130 1,330 1,530 1,730 1,930

30

35
75.8 %

69.6 %

67.3 %

58.7 %
57.9 %

55.9 %

62.4 %
53.0 %

46.1 %
40.7 %

36.5 %

74.3 %
46.6 %

33.8 %

29.0 %
25.6 %

23.0 %

Major frame length h [ms]

T
∞
−
T

am
b

[°
C

]

util-LTF
MultiPAWS-fixed

MultiPAWS

Fig. 9. Relation between the major frame length h and the relative steady-
state temperature T∞ − Tamb for MultiPAWS method on instance 2; total
utilization is reported as a percentage for each schedule.

[23]. Although several authors, such as [12], [22], [24], pro-
pose a mathematical model to solve the problem, the prevailing
approach is to employ heuristics. A typical heuristics, such as
those in [20], [21], work in several steps – first, the tasks
are sorted according to some rule (e.g., power-intensive tasks
first). Then, taking the tasks one by one, each task is mapped
to a best-available resource w.r.t. some objective criterion. We
argue that such a ‘greedy’ approach is not well-suited for time-
partitioned scheduling, where the isolation windows make
the individual cores and resources dependent on each other.
Finding a schedule in a greedy way might not be feasible.

Suyyagh et al. [23] solve the power-aware task mapping
problem with heuristics too, but similarly to our work, they
profile the workload to guide the heuristics. However, their
approach is not suitable for safety-critical applications and
ARINC-653 scheduling.

In the avionics domain, the increased complexity of inte-
grated modular avionics and multi-core platforms leads to the
need to use model-based approaches that employ optimization
techniques to find schedules and other system configuration
parameters. Antonante et al. [25] use the optimization-based
approach in the context of ARINC-653 scheduling for multi-
core platforms. Similarly, Han et al. [26] use a model-based
approach with optimization to solve ARINC-653 scheduling
problem but only for a single-core platform. None of the
mentioned works deals with the thermal aspects.

Balsini et al. [27] extend the real-time scheduling simulator
RTSIM to simulate CPU power consumption of a heteroge-
neous computing platform. They use a similar approach to
power modeling as in this paper – power models are fitted
from data experimentally measured on real hardware. The
difference is that they focus on simulation of event-triggered
RTOS scheduling, whereas our approach allows to synthesize
time-triggered schedules for avionics applications.

With respect to executing ARINC-653 workloads in Linux
environments, both kernel-level and user-level approaches are
used. Notable kernel-level ARINC schedulers are [28], [29].
As these are not a part of the mainline Linux kernel, their use
on modern hardware platforms would require significant port-
ing effort. A user-level ARINC-653 emulator was developed
by Dubey et al. [30] and later published under a non-open-
source (see https://opensource.org/osd-annotated) license at

https://opensource.org/osd-annotated


https://github.com/adubey14/arinc653emulator. Compared to
DEmOS, the emulator uses POSIX signals to start/stop the
partitions, which is known not to be 100 % reliable. DEmOS
relies on cgroups, which are guaranteed to work reliably.
The emulator implements significant portion of scheduling-
unrelated ARINC APIs, which DEmOS does not try to pro-
vide. On the other hand, DEmOS supports DVFS management,
which is not available in the emulator.

VII. CONCLUSIONS

We proposed a task mapping method, MultiPAWS, for
thermal-aware allocation of avionics safety-critical workloads
under ARINC-653 time isolation constraints. Based on the
extensive benchmarking of various workloads, we introduced
a power-estimation model and identified its parameters. The
model is the basis of our MultiPAWS optimization method.

Furthermore, we introduced an open-source tool DEmOS
that allows the evaluation of thermal-aware techniques by
mimicking the A653 scheduler under Linux.

We experimentally evaluated MultiPAWS on a real MPSoC
platform, NXP i.MX8QuadMax. Even without using DVFS,
the MultiPAWS decreased MPSoC temperature by 12 % com-
pared to another method. Furthermore, we demonstrated how
MultiPAWS could be used in design-space exploration for find-
ing trade-offs between platform temperature and scheduling
hyper-period. For example, we observed that when increasing
the major frame length by 21 %, MultiPAWS reduced platform
temperature by 10 %, which was 3 % better than plain rescaling
of the hyper-period.

ACKNOWLEDGMENT

This work was supported by the THERMAC project, which
has received funding from the European Union through the
Clean Sky 2 Joint Undertaking, under the H2020 Framework
Programme (H2020-CS2-CFP08-2018-01), grant agreements
No 832011 and No 945535.

REFERENCES

[1] DDC-I. (2021) Deos, a Time & Space Partitioned, Multi-core
Enabled, DO-178C DAL A Certifiable RTOS. [Online]. Available:
https://www.ddci.com/products deos do 178c arinc 653/

[2] SYSGO, “PikeOS RTOS & Hypervisor.” [Online]. Available: https:
//www.sysgo.com/pikeos

[3] Wind River, “VxWorks Safety Platforms.” [Online]. Available:
https://www.windriver.com/products/vxworks/safety-platforms

[4] NXP. (2021) i.MX 8QuadMax/QuadPlus Multisensory
Enablement Kit. [Online]. Available: https://www.nxp.com/
design/development-boards/i-mx-evaluation-and-development-boards/
i-mx-8quadmax-multisensory-enablement-kit-mek:MCIMX8QM-CPU

[5] “DEmOS,” Apr. 2021. [Online]. Available: https://github.com/CTU-IIG/
demos-sched

[6] S. Pagani, H. Khdr, W. Munawar, J.-J. Chen, M. Shafique, M. Li, and
J. Henkel, “TSP: Thermal safe power: Efficient power budgeting for
many-core systems in dark silicon,” in Int’l Conf. on Hardware/Software
Codesign and System Synthesis (CODES), 2014.

[7] J. Perez Rodriguez and P. Meumeu Yomsi, “Thermal-aware schedulabil-
ity analysis for fixed-priority non-preemptive real-time systems,” in Int’l
Conf. on Real-Time Systems Symposium (RTSS), 2019, pp. 154–166.

[8] M. Sojka, O. Benedikt, Z. Hanzálek, and P. Zaykov, “Testbed for
thermal and performance analysis in MPSoC systems,” in Int’l Conf.
on Computer Science and Information Systems (FedCSIS), 2020, pp.
683–692.

[9] S. Zhuravlev, J. C. Saez, S. Blagodurov, A. Fedorova, and M. Prieto,
“Survey of energy-cognizant scheduling techniques,” IEEE Transactions
on Parallel and Distributed Systems, vol. 24, no. 7, pp. 1447–1464, 2013.

[10] M. E. Gerards, J. L. Hurink, and P. K. Hölzenspies, “A survey of offline
algorithms for energy minimization under deadline constraints,” J. of
Scheduling, vol. 19, no. 1, p. 3–19, Feb. 2016.

[11] M. Bambagini, M. Marinoni, H. Aydin, and G. Buttazzo, “Energy-
aware scheduling for real-time systems: A survey,” ACM Trans. Embed.
Comput. Syst., vol. 15, no. 1, Jan. 2016.

[12] J. Chen, A. Schranzhofer, and L. Thiele, “Energy minimization for
periodic real-time tasks on heterogeneous processing units,” in Int’l
Symp. on Parallel Distributed Processing, 2009, pp. 1–12.

[13] “ARINC specification 653P1-2: Avionics Application Software Standard
Interface, Part 1 – Required Services,” 2006.

[14] “Avionics Application Software Standard Interface, Part 1, Required
Services, ARINC Specification 653 Part 1 Supplement 4 (653P1-4),”
2015.

[15] P. Parkinson, “Update on using multicore processors with a commercial
ARINC 653 implementation,” in Aviation Electronics Europe, Apr.
2017. [Online]. Available: https://resources.windriver.com/i/841405/4

[16] H. Falk, S. Altmeyer, P. Hellinckx, B. Lisper, W. Puffitsch, C. Rochange,
M. Schoeberl, R. B. Sørensen, P. Wägemann, and S. Wegener,
“TACLeBench: A benchmark collection to support worst-case execu-
tion time research,” in Int’l Workshop on Worst-Case Execution Time
Analysis (WCET), M. Schoeberl, Ed., vol. 55, 2016, pp. 2:1–2:10.

[17] D. V. Sokolov, “Tiny renderer or how OpenGL works: software render-
ing in 500 lines of code,” https://github.com/ssloy/tinyrenderer, 2020.

[18] V. W. Freeh, D. K. Lowenthal, F. Pan, N. Kappiah, R. Springer,
B. L. Rountree, and M. E. Femal, “Analyzing the energy-time trade-
off in high-performance computing applications,” IEEE Transactions on
Parallel and Distributed Systems, vol. 18, no. 6, pp. 835–848, 2007.

[19] M. Chrobak, C. Dürr, M. Hurand, and J. Robert, “Algorithms for
temperature-aware task scheduling in microprocessor systems,” in Al-
gorithmic Aspects in Information and Management, R. Fleischer and
J. Xu, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp.
120–130.

[20] C.-F. Kuo and Y.-F. Lu, “Task assignment with energy efficiency con-
siderations for non-DVS heterogeneous multiprocessor systems,” ACM
SIGAPP Applied Computing Review, vol. 14, no. 4, p. 8–18, 2015.

[21] J. Zhou, T. Wei, M. Chen, J. Yan, X. S. Hu, and Y. Ma, “Thermal-
aware task scheduling for energy minimization in heterogeneous real-
time mpsoc systems,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 35, no. 8, pp. 1269–1282, 2016.

[22] J. Zhou, J. Sun, P. Cong, Z. Liu, X. Zhou, T. Wei, and S. Hu,
“Security-critical energy-aware task scheduling for heterogeneous real-
time mpsocs in iot,” IEEE Transactions on Services Computing, vol. 13,
no. 4, pp. 745–758, 2020.

[23] A. Suyyagh and Z. Zilic, “Energy and task-aware partitioning on single-
isa clustered heterogeneous processors,” IEEE Transactions on Parallel
and Distributed Systems, vol. 31, no. 2, pp. 306–317, 2020.

[24] A. Rudi, A. Bartolini, A. Lodi, and L. Benini, “Optimum: Thermal-
aware task allocation for heterogeneous many-core devices,” in 2014
International Conference on High Performance Computing Simulation
(HPCS), Jul. 2014, pp. 82–87.

[25] P. Antonante, J. Valverde-Alcalá, S. Basagiannis, and M. Di Natale,
“Safe Implementation of Mixed-Criticality Applications in Multicore
Platforms: A Model-Based Design Approach,” in Computer Safety,
Reliability, and Security, 2017, pp. 141–156.

[26] P. Han, Z. Zhai, and L. Zhang, “A model-based approach to optimizing
partition scheduling of integrated modular avionics systems,” Electron-
ics, vol. 9, no. 8, 2020.

[27] A. Balsini, L. Pannocchi, and T. Cucinotta, “Modeling and simulation of
power consumption and execution times for real-time tasks on embedded
heterogeneous architectures,” ACM SIGBED Review, vol. 16, no. 3, pp.
51–56, Nov. 2019.

[28] S. Han and H.-W. Jin, “Kernel-level ARINC 653 partitioning for Linux,”
in Int’l Conf. on Applied Computing, ser. SAC, 2012, pp. 1632–1637.

[29] C. Kown, D. Kim, H. Joe, and H. Kim, “Linux-based memory efficient
ARINC 653 partition scheduler,” in Int’l Conf. on IEEE Emerging
Technology and Factory Automation (ETFA), Sep. 2014, pp. 1–5.

[30] A. Dubey, G. Karsai, and N. Mahadevan, “A component model for
hard real-time systems: CCM with ARINC-653,” Software: Practice and
Experience, vol. 41, no. 12, pp. 1517–1550, 2011.

https://github.com/adubey14/arinc653emulator
https://www.ddci.com/products_deos_do_178c_arinc_653/
https://www.sysgo.com/pikeos
https://www.sysgo.com/pikeos
https://www.windriver.com/products/vxworks/safety-platforms
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-8quadmax-multisensory-enablement-kit-mek:MCIMX8QM-CPU
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-8quadmax-multisensory-enablement-kit-mek:MCIMX8QM-CPU
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-8quadmax-multisensory-enablement-kit-mek:MCIMX8QM-CPU
https://github.com/CTU-IIG/demos-sched
https://github.com/CTU-IIG/demos-sched
https://resources.windriver.com/i/841405/4
https://github.com/ssloy/tinyrenderer

	Introduction
	System Model and Problem Definition
	Hardware Platform Model
	Task Model
	Thermal Model
	Power Model
	Problem Definition

	Proposed Solution Method
	Reconstruction of the Solution

	Time-Partitioned Schedulers and DEmOS Tool
	ARINC 653
	Deos RTOS
	DEmOS Tool

	Experimental Evaluation
	Experimental Platform
	Benchmark Applications
	Average Power and Steady-State Temperature
	Power Estimation Evaluation
	Thermal-Aware Scheduling
	Influence of the Major Frame Length on the Steady-State Temperature

	Related Work
	Conclusions
	References

