FPGA Based Testing of Hybrid Real-time Systems

Jan Krákora and Zdeněk Hanzálek

{krakorj,hanzalek}@fel.cvut.cz

Czech Technical University in Prague, FEE, Department of Control Engineering Karlovo náměstí 13, Prague 2, 121 35, Czech Republic

Outline

- Introduction
- Motivation
- Tester tool structure
- Implementation
 - Continuous system
 - Discrete event system
- Case study
- Conclusion

Introduction

- Hardware-In-the-Loop (HIL)
 - Implementation Under Test (IUT)
 - technology process controller
 - automotive ECU, etc.
 - Tester tool
 - System model
 - Tester case generator
 - Interfaces (verification I/O, HW I/O etc.)

Motivation

- New design methodology of TT
 - continuous system (difference equation)
 - discrete event system (timed automata)
 - simple design
 - verification using temporal logic
 - model checking
 - logical, timed properties, deadlock free detection etc.
 - FPGA platform use
 - speed performance, extensibility, time accuracy
 - not influenced by upper layers (e.g. OS services)

Tester tool structure

Property satisfied: TRUE / FALSE

Continuous system implementation

- Discrete-time system
 - Difference equation
 - filter design and signal processing [Lutovac00]
- equation implementation => FPGA
 - FIR, IIR, etc.

Discrete event system implementation

Timed automata [Alur 94]
UPPAAL tool [Uppaal 02]

– Verification using CTL

- Implementation TA => FPGA [Tripakis 05]
 - $TA \Rightarrow Prog(TA)$

Discrete event system implementation

Discrete event system implementation

Case study – servo-system

- Servo-system
 - without friction to the shaft $G(z) = \frac{2.652z + 0.3143}{z^2 0.9202z + 0.0001003}$
 - with friction

$$G_{inh}(z) = \frac{2.559z + 0.2924}{z^2 - 0.8483z + 9.249 * 10^{-5}}$$

• Two controllers to be tested

Case study – servo-system

• Test cases

- [0; 20) msec motor with no friction
- [20; inf) msec motor with a friction
- Controller properties to be verified <u>Property 1</u>:

The motor **angular velocity in interval (9,11)** Rads-1 **within 5 msec** *For test case 1 only*

Property 2:

The motor **angular velocity in interval (9,11)** Rads-1 **within 5 msec** *For test case 2 only*

Property 3:

The motor **angular velocity does not exceed 12 Rads-1** For test case 1 and 2 as well

Conclusion & Further work

- Conclusion
 - New design methodology of TT into FPGA
 - High sampling period (nsec), Low jitter, Scalability, High degree of parallelism
 - DES based on timed automata
 - Testing framework speed performance
 - 100nsec (in compare to OS based testers)
- Further work
 - Hardware interface improvement
 - DAC/ADC, PWM, IRC etc.
 - Dynamic reconfiguration of FPGA
 - on-line generation of test cases
 - automation of testing process
 - Transformation tool improvement

Thank you for your attention

Jan Krákora and Zdeněk Hanzálek {krakorj,hanzalek}@fel.cvut.cz

Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Control Engineering Karlovo náměstí 13, Prague 2, 121 35, Czech Republic