
Earliness/Tardiness Scheduling by Constraint Programming

Jan Kelbel, Zdeněk Hanzálek

Department of Control Engineering Faculty of Electrical Engineering, Czech Technical University Karlovo nám. 13, 121 35 Prague 2 e-mail: kelbelj@fel.cvut.cz

Motivation

- Lacquer production scheduling
- Case study from AMETIST project
 - scheduling lacquer production 29 lacquer orders
 - production of each order consists of a set of operations extended job-shop scheduling problem
 - penalties for orders finished late (after due date)
 - storage cost for orders finished too early
 - using Timed Automata approach
- ILOG OPL Studio as CP tool
- Compare CP results with TA

ETSP

Related Work

[Behrmann, G., Brinksma, E., Hendriks, M., Mader, A., 2005] Production Scheduling by Reachability Analysis – A Case Study.

Original paper from AMETIST project with the case study

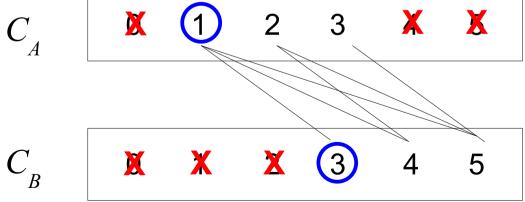
[Baker, K.R., Scudder, G.D., 1990] Sequencing with earliness and tardiness penalties: A review.

[Sourd, F., Kedad-Sidhoum, S., 2003] The One Machine Scheduling With Earliness and Tardiness Penalties. Branch and Bound

[Beck, J.C., Refalo, P. 2003] – A Hybrid Approach to Scheduling with Earliness and Tardiness Costs. Job-shop ETSP, hybrid CSP and MIP approach

Introduction to CP

Constraint Satisfaction Problem (CSP) over finite domains


- finite set of variables
- for each variable a finite set of possible values (called domain)
- finite set of constraints restricting possible combinations of values of variables

CSP is solved using

- constraint propagation (arc consistency)
- search
 - search tree variable selection, value assignment
 - search strategy

Example: Scheduling with CP

Tasks T_A and T_B , $T_A \quad p_A = 1 \quad C_A \in \{0, \dots, 5\}$ $T_B \quad p_B = 2 \quad C_B \in \{0, \dots, 5\}$ $T_A < T_B \quad \Rightarrow \quad C_A \leq C_B - p_B$

E/T Job Shop

• Set of jobs
$$J = \{J_1, \dots, J_n\}$$

For each job set of tasks with precedences lacksquare

$$T_{j} = \{T_{j,1}, \ldots, T_{j,n_{j}}\}$$

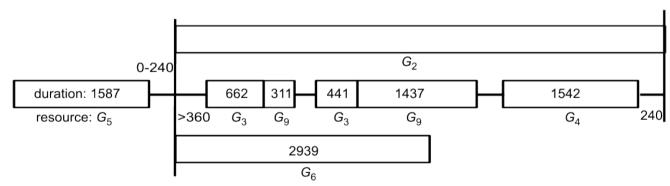
$$T_{j,i} < T_{j,i+1} \ for all \ i \in \{1, ..., n_j - 1\}$$

Each task uses a resource from set R•

Job Shop

Cost function of a job

$$f_j = max(\alpha_j(d_j - C_j), \beta_j(C_j - d_j))$$


earliness cost tardiness cost

Description of The Case Study

- Each job is specified by
 - release date
 - due date
 - earliness and tardiness costs

earliness tardiness job-shop

- quantity of lacquer
- one of three lacquer recipes

- Resources

 unary / cumulative
 operating hours full time / in two shifts / in three shifts
- Feasibility / Minimization of sum of earliness/tardiness costs

Three Case Studies

- Basic case study (BF)
 Feasibility of a basic model
- Extended case study (EO)

Optimization, in addition to basic model

- operating hours of resources
- breakable tasks
- changeover time and cost on one resource group
- processing time of tasks according to quantity of lacquer
- Extended case study with performance factor (EOP) in addition to EO
 - extended processing times due to breakdown or maintenance (EOP instance)

Reducing the state space

- Non-overtaking (NO) heuristic constraint precedence relation between tasks of jobs of the same lacquer type (sorted according to due date) Tasks of a job with earlier due date start earlier.
 [from the original AMETIST paper]
- Simplified objective function for **extended case study**
 - due to Earliness/Tardiness costs ratio 1/50 for majority of jobs due dates → deadlines (infinite tardiness cost)
 - Single earliness cost for all jobs *j*, $\alpha_i = 1$.

$$F = \sum_{j \in J} \alpha_j (d_j - C_j)$$

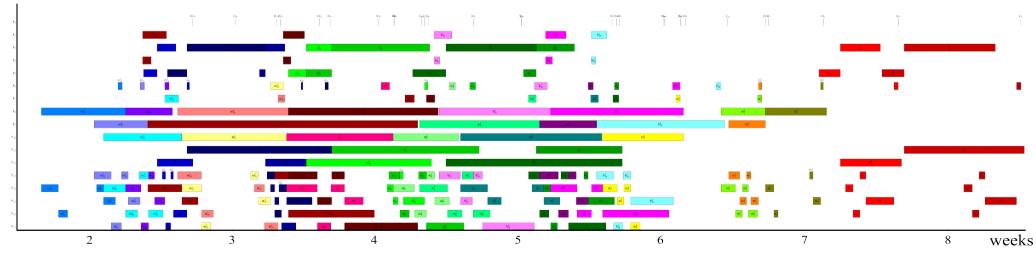
– Special case – Cost optimization (**CO**), job specific α_i

Search

- Conversion to a problem of minimizing total waiting time by reversing time axis (to make it easier for built-in search procedures)
 - Deadline \rightarrow release date
 - Completion time \rightarrow starting time

$$F = \sum_{j \in J} \alpha_j (S_j - r_j)$$

- Search procedure defining the shape of the search tree time-directed labeling
 - 1. sort jobs by earliest starting time in nondecreasing order
 - 2. for each job state two alternatives
 - assign earliest starting time as starting time of job
 - increase earliest starting time
- Search strategies used
 - Depth First Search (DFS)
 - Limited Discrepancy Search (LDS)


Results for the Case Study

- size of the case study instances:
 - 139 tasks (110 of them breakable) in 29 jobs
 - time for the schedule 9 weeks in 1 minute resolution
 - time for each job 2 weeks

	DF	DFS-NO		LDS-NO		LDS		LDS CO		timed automata	
	cost	CPU	cost	CPU	cost	CPU	cost	CPU	cost	CPU	
B	-	0.09 s	-	0.09 s	-	*	-	*	-	0.1 s	
E	455,75	3 1374 s	455,758	18.4 s	457,523	181 s	454,246	185 s	*	*	
EC	P 1,234,9	9 1026 s	1,186,851	12.7 s	920,240	220 s	886,535	206 s	≈ 2,100,000	≈ 600 s	

- value not applicable

value not available

Search Procedure for ETSP

- Improved version for earliness and **tardiness** costs
- denoted as Cost Directed Labeling (CDL)
 - 1. sort last tasks of jobs by size of domain in nondecreasing order
 - 2. for each job select *t* in domain *C*j leading to smallest cost and state two alternatives
 - assign Cj = t
 - assign $Cj \neq t$
- improved solution of EOP case study instance from the cost 886,535 to 777,249

Conclusion and Future Work

- With CP a better solution was found than with timed automata
- ET Job Shop
- Hybrid CP/MIP methods are better

Future Work

• Hybrid CP/Graph algorithm method