Complexity of Consistency and Complete State Coding for Signal Transition Graphs

Petr Jančar

Center of Applied Cybernetics
Dept of Computer Science
Technical University Ostrava (FEI VŠB-TU)
www.cs.vsb.cz/jancar

CAK, ES-Colloquium, Prague, 1 February 2007

Overview

- ullet A brief recalling of the report from ES-Colloquium 10/2005 on (the following work with colleagues from Univ. Augsburg)
 - Schäfer M., Vogler W., Jančar P.: Determinate STG Decomposition of Marked Graphs; in Proceedings 26th Int. Conf. on Application and Theory of Petri Nets and Other Models of Concurrency (ICATPN 2005), Miami, FL, June 20-25, 2005, Lecture Notes in Computer Science, Vol. 3536, Springer Verlag 2005, p. 365 - 384
- A more detailed report on (the following work with colleagues from Univ. Stuttgart)
 - Esparza J., Jančar P., Miller A.: On the Complexity of Consistency and Complete State Coding for Signal Transition Graphs; in Proceedings 6th International Conference on Application of Concurrency to System Design (ACSD 2006), Turku, Finland, June 2006, IEEE Computer Society 2006, pp. 47–56

Outline

- Asynchronous circuits.
- Signal transition graphs.
- Consistency problem.
- Complete State Coding (CSC) problem,
 Unique State Coding (USC) problem.
- Polynomiality of consistency for Marked Graph STGs (MG-STGs).
- Co-NP completeness of CSC and USC problems (for 1-bounded acyclic MG STGs and) for 1-bounded live MG STGs.
- Some additional results.

Asynchronous circuits

- For implementation of state dependent circuits
- No clock signal
- Communication with **signal edges** (a^+ raising, a^- falling)
- Distinction between
 - input signals (controlled by the environment)
 - output signals (controlled by the circuit)
- Advantages
 - Average case efficiency instead of worst case efficiency
 - Reduced power consumption
 - Very low electromagnetic emission
- Disadvantage
 - Complex synthesis

A (free-choice) STG

Signal transition graphs - definition

STG: a Petri net based specification of the behaviour of an asynchronous circuit (under some assumptions on the environment).

$$A = \{a_1, a_2, \dots, a_n\}$$
 ... a set of signals $\mathcal{L} = \{a_1^+, a_1^-, a_2^+, a_2^-, \dots, a_n^+, a_n^-\}$... the set of (transition) labels

STG: $S = (N, M_0, \ell)$, where

- \bullet (N, M_0) is a Petri net, N = (P, T, F), and
- $\bullet \ \ell : \ T \longrightarrow \mathcal{L}$

An STG S is implementable if there exists a state coding mapping

$$\lambda: Reach(M_0) \longrightarrow \{0,1\}^n$$

 $(\lambda(M))$ gives the signal values of the corresponding circuit state) which is consistent and has the CSC (or stronger USC) property.

Signal transition graphs - definition

STG: a Petri net based specification of the behaviour of an asynchronous circuit (under some assumptions on the environment).

$$\begin{aligned} & A = \{a_1, a_2, \dots, a_n\} \text{ ... a set of signals} \\ & \mathcal{L} = \{a_1^+, a_1^-, a_2^+, a_2^-, \dots, a_n^+, a_n^-\} \text{ ... the set of (transition) labels} \end{aligned}$$

STG: $S = (N, M_0, \ell)$, where

- (N, M_0) is a Petri net, N = (P, T, F), and
- \bullet ℓ : $T \longrightarrow \mathcal{L}$

An STG S is implementable if there exists a state coding mapping

$$\lambda: Reach(M_0) \longrightarrow \{0,1\}^n$$

 $(\lambda(M))$ gives the signal values of the corresponding circuit state) which is consistent and has the CSC (or stronger USC) property.

Consistency (a characterization)

An STG $S = (N, M_0, \ell)$ is inconsistent (i.e., it admits no consistent state coding mapping) iff there is

a pair
$$(M, a)$$

where $M_0 \rightarrow^* M$ and a is a signal

such that one of the following conditions holds:

- M enables ua⁺ and va⁻ for some a-free sequences u, v,
- (2) M enables a^+ua^+ or a^-ua^- for some a-free sequence u,
- (3) M is reachable by w_1a^+u and by w_2a^-v for some a-free sequences u, v (and some w_1, w_2).

Complete State Coding (CSC) and Unique SC (USC)

The signal set $A = \{a_1, a_2, \dots, a_n\}$ is partitioned into input signals and output signals.

A state coding mapping $\lambda : Reach(M_0) \longrightarrow \{0,1\}^n$ has the CSC property if (it is consistent and) it satisfies:

when $\lambda(M) = \lambda(L)$ for two reachable markings $M \neq L$ then M and L enable exactly the same output signals.

 λ has the USC property if it is injective $(\lambda(M) \neq \lambda(L)$ for $M \neq L)$.

Complete State Coding (CSC) and Unique SC (USC)

The signal set $A = \{a_1, a_2, \dots, a_n\}$ is partitioned into input signals and output signals.

A state coding mapping $\lambda: Reach(M_0) \longrightarrow \{0,1\}^n$ has the CSC property if (it is consistent and) it satisfies:

when $\lambda(M) = \lambda(L)$ for two reachable markings $M \neq L$ then M and L enable exactly the same output signals.

 λ has the USC property if it is injective $(\lambda(M) \neq \lambda(L)$ for $M \neq L)$.

Complete State Coding (CSC) and Unique SC (USC)

The signal set $A = \{a_1, a_2, \dots, a_n\}$ is partitioned into input signals and output signals.

A state coding mapping $\lambda : Reach(M_0) \longrightarrow \{0,1\}^n$ has the CSC property if (it is consistent and) it satisfies:

when $\lambda(M) = \lambda(L)$ for two reachable markings $M \neq L$ then M and L enable exactly the same output signals.

 λ has the USC property if it is injective $(\lambda(M) \neq \lambda(L))$ for $M \neq L$.

```
S = (N, M_0, \ell) is an MG STG if N is a marked graph (net), i.e., each place has at most one input and at most one output transition.
```

We note: (the set of places of) any cycle in an MG is a trap (if marked, it cannot get unmarked) and a siphon (if unmarked, it cannot get marked)

Consistency problem for MG STGs:

Instance: an MG STG $S = (N, M_0, \ell)$

Question: does S admit a consistent state coding mapping?

We recall:

boundedness, liveness

(any live and bounded MG is strongly connected)

```
S = (N, M_0, \ell) is an MG STG if N is a marked graph (net), i.e., each place has at most one input and at most one output transition.
```

We note: (the set of places of) any cycle in an MG is a trap (if marked, it cannot get unmarked) and a siphon (if unmarked, it cannot get marked)

```
Consistency problem for MG STGs:

Instance: an MG STG S = (N, M_0, \ell)
Question: does S admit a consistent state coding mapping?

We recall:
boundedness, liveness
(any live and bounded MG is strongly connected)
```

 $S = (N, M_0, \ell)$ is an MG STG if N is a marked graph (net), i.e., each place has at most one input and at most one output transition.

We note: (the set of places of) any cycle in an MG is a trap (if marked, it cannot get unmarked) and a siphon (if unmarked, it cannot get marked)

Consistency problem for MG STGs:

Instance: an MG STG $S = (N, M_0, \ell)$

Question: does S admit a consistent state coding mapping?

We recall: boundedness, liveness (any live and bounded MG is strongly connected)

```
S = (N, M_0, \ell) is an MG STG if N is a marked graph (net), i.e., each place has at most one input and at most one output transition.
```

We note: (the set of places of) any cycle in an MG is a trap (if marked, it cannot get unmarked) and a siphon (if unmarked, it cannot get marked)

Consistency problem for MG STGs:

Instance: an MG STG $S = (N, M_0, \ell)$

Question: does S admit a consistent state coding mapping?

We recall:

boundedness, liveness

(any live and bounded MG is strongly connected)

Polynomiality of consistency for MG STGs

J. Esparza at ACSD'03:

Consistency is polynomial for live, bounded, and cyclic free-choice STGs

```
(here 'cyclic' means: the initial marking can always be (re)reached)
```

(recall that 'free-choice' is the net property guaranteeing that if some output transition of a place is enabled then all its output transitions are enabled)

Remark

- it is still open if polynomial without cyclicity
- liveness is important: consistency is PSPACE-complete for 1-bounded free choice STGs (as we show here)

Theorem: The consistency is polynomial for (all) MG STGs.

Polynomiality of consistency for MG STGs

J. Esparza at ACSD'03:

Consistency is polynomial for live, bounded, and cyclic free-choice STGs

```
(here 'cyclic' means: the initial marking can always be (re)reached)
```

(recall that 'free-choice' is the net property guaranteeing that if some output transition of a place is enabled then all its output transitions are enabled)

Remark:

- it is still open if polynomial without cyclicity
- liveness is important: consistency is PSPACE-complete for 1-bounded free choice STGs (as we show here)

Theorem: The consistency is polynomial for (all) MG STGs.

Polynomiality of consistency for MG STGs

J. Esparza at ACSD'03:

Consistency is polynomial for live, bounded, and cyclic free-choice STGs

```
(here 'cyclic' means: the initial marking can always be (re)reached)
```

(recall that 'free-choice' is the net property guaranteeing that if some output transition of a place is enabled then all its output transitions are enabled)

Remark:

- it is still open if polynomial without cyclicity
- liveness is important: consistency is PSPACE-complete for 1-bounded free choice STGs (as we show here)

Theorem: The consistency is polynomial for (all) MG STGs.

Ideas for polynomiality of consistency for MG STGs

We call a (N, M_0) normalized if every cycle of N is marked at M_0 .

Claim. Let (N, M_0) be a normalized marked graph, where C_N is the incidence matrix of N.

An integer vector $X_0 \ge 0$ is a solution of the inequation $M_0 + C_N \cdot X \ge 0$ if and only if it is the Parikh vector of a transition sequence σ such that $M_0 \xrightarrow{\sigma}$. (If $M_0 \xrightarrow{\sigma} M$ then $M_0 + C_N \cdot X_0 = M$.)

Claim (a fact from linear programming).

Given C_N where every row contains at most one +1 and at most one -1 (which is the case for MG),

for any linear objective function f(X) the optimal solution X_0 of the inequations $X \ge 0$, $M_0 + C_N \cdot X \ge 0$ (if it exists) is integer, and can be computed in polynomial time (by usual linear programmi

Ideas for polynomiality of consistency for MG STGs

We call a (N, M_0) normalized if every cycle of N is marked at M_0 .

Claim. Let (N, M_0) be a normalized marked graph, where C_N is the incidence matrix of N.

An integer vector $X_0 \geq 0$ is a solution of the inequation $M_0 + C_N \cdot X \geq 0$ if and only if it is the Parikh vector of a transition sequence σ such that $M_0 \stackrel{\sigma}{\longrightarrow} M$ then $M_0 + C_N \cdot X_0 = M$.)

Claim (a fact from linear programming).

Given C_N where every row contains at most one +1 and at most one -1 (which is the case for MG),

for any linear objective function f(X) the optimal solution X_0 of the inequations $X \ge 0$, $M_0 + C_N \cdot X \ge 0$ (if it exists) is integer, and can be computed in polynomial time (by usual linear programmir

Ideas for polynomiality of consistency for MG STGs

We call a (N, M_0) normalized if every cycle of N is marked at M_0 .

Claim. Let (N, M_0) be a normalized marked graph, where C_N is the incidence matrix of N.

An integer vector $X_0 \ge 0$ is a solution of the inequation $M_0 + C_N \cdot X \ge 0$ if and only if it is the Parikh vector of a transition sequence σ such that $M_0 \stackrel{\sigma}{\longrightarrow} M$ then $M_0 + C_N \cdot X_0 = M$.)

Claim (a fact from linear programming).

Given C_N where every row contains at most one +1 and at most one -1 (which is the case for MG),

for any linear objective function f(X) the optimal solution X_0 of the inequations $X \ge 0$, $M_0 + C_N \cdot X \ge 0$ (if it exists) is integer, and can be computed in polynomial time (by usual linear programming).

Ideas for polynomiality of consistency for MG STGs - ctd.

Proposition. A marked graph STG $S = (N, M_0, \ell)$ is inconsistent iff one of the following conditions holds:

- (1') there is a reachable M ($M_0 \rightarrow^* M$) such that $M \xrightarrow{a^+}$ and $M \xrightarrow{a^-}$ for some signal a,
- (2') there is a reachable M such that $M \xrightarrow{a^+ua^+}$ or $M \xrightarrow{a^-ua^-}$ for some signal a and some a-free sequence u.

$$f(X) = \sum_{t \in \ell^{-1}(a^+)} X(t) - \sum_{t \in \ell^{-1}(a^-)} X(t)$$

Ideas for polynomiality of consistency for MG STGs - ctd.

Proposition. A marked graph STG $S = (N, M_0, \ell)$ is inconsistent iff one of the following conditions holds:

- (1') there is a reachable M ($M_0 \rightarrow^* M$) such that $M \xrightarrow{a^+}$ and $M \xrightarrow{a^-}$ for some signal a,
- (2') there is a reachable M such that $M \xrightarrow{a^+ua^+}$ or $M \xrightarrow{a^-ua^-}$ for some signal a and some a-free sequence u.

The previous claims enable deciding these conditions by using (usual) linear programming.

E.g.: maximize f(X) subject to $X \ge 0$, $M_0 + C_N \cdot X \ge 0$ where

$$f(X) = \sum_{t \in \ell^{-1}(a^+)} X(t) - \sum_{t \in \ell^{-1}(a^-)} X(t)$$

Theorem.

- The CSC problem and the USC problem are co-NP-hard for (1-bounded acyclic marked graph STGs and for) 1-bounded live marked graph STGs.
- The CSC problem and the USC problem for live and bounded free-choice STGs are in co-NP.

We show the main technical lemma (of the NP-hardness part); a transition sequence is balanced if the numbers of occurrences of labels a^+ and a^- are the same for each signal a:

Lemma. The following problem is NP-complete: Instance: a (consistent) STG $S = (N, M_0, \ell)$ such that (N, M_0) is a 1-bounded, acyclic marked graph.

Question: is there an occurrence sequence $M_0 \stackrel{\sigma}{\longrightarrow} M_1 \stackrel{\tau}{\longrightarrow} M_2$ of S such that τ is nonempty and balanced ?

Theorem.

- The CSC problem and the USC problem are co-NP-hard for (1-bounded acyclic marked graph STGs and for) 1-bounded live marked graph STGs.
- The CSC problem and the USC problem for live and bounded free-choice STGs are in co-NP.

We show the main technical lemma (of the NP-hardness part); a transition sequence is balanced if the numbers of occurrences of labels a^+ and a^- are the same for each signal a:

Instance: a (consistent) STG $S = (N, M_0, \ell)$ such that (N, M_0) is a 1-bounded, acyclic marked graph.

Question: is there an occurrence sequence $M_0 \stackrel{\sigma}{\longrightarrow} M_1 \stackrel{\tau}{\longrightarrow} M_2$ of S such that $M_0 \stackrel{\sigma}{\longrightarrow} M_1 \stackrel{\tau}{\longrightarrow} M_2$ of $M_0 \stackrel{\tau}{\longrightarrow} M_1 \stackrel{\tau}{\longrightarrow} M_2$

Theorem.

- The CSC problem and the USC problem are co-NP-hard for (1-bounded acyclic marked graph STGs and for) 1-bounded live marked graph STGs.
- The CSC problem and the USC problem for live and bounded free-choice STGs are in co-NP.

We show the main technical lemma (of the NP-hardness part); a transition sequence is balanced if the numbers of occurrences of labels a^+ and a^- are the same for each signal a:

Theorem.

- The CSC problem and the USC problem are co-NP-hard for (1-bounded acyclic marked graph STGs and for) 1-bounded live marked graph STGs.
- The CSC problem and the USC problem for live and bounded free-choice STGs are in co-NP.

We show the main technical lemma (of the NP-hardness part); a transition sequence is balanced if the numbers of occurrences of labels a^+ and a^- are the same for each signal a:

Lemma. The following problem is NP-complete:

Instance: a (consistent) STG $S = (N, M_0, \ell)$ such that (N, M_0) is a 1-bounded, acyclic marked graph.

Question: is there an occurrence sequence $M_0 \xrightarrow{\sigma} M_1 \xrightarrow{\tau} M_2$ of S such that τ is nonempty and balanced ?

The crucial point: NP-hardness

Given a boolean formula φ in CNF, we construct a 1-bounded acyclic MG STG S_{φ} so that

 $\varphi \text{ is satisfiable} \iff S_{\varphi} \text{ admits } M_0 \overset{\sigma}{\longrightarrow} M_1 \overset{\tau}{\longrightarrow} M_2$ for some nonempty balanced τ .

```
Example. \varphi \equiv (x_1 \vee \overline{x}_2 \vee x_3) \wedge (x_1 \vee x_2 \vee \overline{x}_3)

Signals of S_{\varphi}:

• x_1, x_2, x_3 (variables)

• c_1, c_2 (clauses)

• p_{1,1}, p_{1,2}, p_{2,2}, p_{3,1} (x_i positively in c_j)

• n_{2,1}, n_{3,2} (x_i negatively in c_j)

• special (auxiliary) signals S_0, S_1, S_2, \ldots ('brackets')
```

The crucial point: NP-hardness

Given a boolean formula φ in CNF, we construct a 1-bounded acyclic MG STG S_{φ} so that

 φ is satisfiable \iff S_{φ} admits $M_0 \stackrel{\sigma}{\longrightarrow} M_1 \stackrel{\tau}{\longrightarrow} M_2$ for some nonempty balanced τ .

Example.
$$\varphi \equiv (x_1 \vee \overline{x}_2 \vee x_3) \wedge (x_1 \vee x_2 \vee \overline{x}_3)$$

Signals of S_{φ} :

- x_1, x_2, x_3 (variables)
- c_1, c_2 (clauses)
- $p_{1,1}$, $p_{1,2}$, $p_{2,2}$, $p_{3,1}$ (x_i positively in c_j)
- $n_{2,1}$, $n_{3,2}$ (x_i negatively in c_j)
- special (auxiliary) signals S_0, S_1, S_2, \dots ('brackets')

$$\varphi \equiv (x_1 \vee \overline{x}_2 \vee x_3) \wedge (x_1 \vee x_2 \vee \overline{x}_3)$$

$$\varphi \equiv (x_1 \vee \overline{x}_2 \vee x_3) \wedge (x_1 \vee x_2 \vee \overline{x}_3)$$

From 1-bounded acyclic MG to 1-bounded live MG

We define a new STG S'_{φ} by adding a 'final segment' to S_{φ} : we add a fresh signal f and construct a 'linear' net N_f with the behaviour

$$f^+ \ell_1 \ell_2 \cdots \ell_k f^-$$

so that S_{φ}' is a live 1-bounded MG STG and the set of all its transitions is balanced ...

CSC and USC in co-NP for live and bounded FC STGs

Using of a result by Yamasaki, Huan, Murata (2001):

Theorem.

Let (N, M_0) be a live and bounded free-choice Petri net, and let C_N be its incidence matrix.

An integer vector $X_0 \ge 0$ is the Parikh vector of a transition sequence enabled at M_0 if and only if

- ① $M_0 + C_N \cdot X_0 \ge 0$, and

For a net N=(P,T,F) and $X:T\to\mathbb{N}$, we denote by $N_X=(P_X,T_X,F_X)$ the subnet of N defined as follows: T_X is the set of transitions of T for which $X(t)\geq 1$, $P_X={}^{\bullet}T_X\cup T_X^{\bullet}$, and F_X is the projection of F on $(P_X\times T_X)\cup (T_X\times P_X)$.

We recall that $Q \subseteq P$ is a <u>trap</u> in N = (P, T, F) if $Q^{\bullet} \subseteq {}^{\bullet}Q$.

CSC and USC in co-NP for live and bounded FC STGs

Using of a result by Yamasaki, Huan, Murata (2001):

Theorem.

Let (N, M_0) be a live and bounded free-choice Petri net, and let C_N be its incidence matrix.

An integer vector $X_0 \ge 0$ is the Parikh vector of a transition sequence enabled at M_0 if and only if

- $M_0 + C_N \cdot X_0 > 0$, and
- $M = M_0 + C_N \cdot X_0$ marks all (nonempty) traps of N_{X_0} .

For a net N = (P, T, F) and $X : T \to \mathbb{N}$, we denote by $N_X = (P_X, T_X, F_X)$ the subnet of N defined as follows: T_X is the set of transitions of T for which $X(t) \geq 1$, $P_X = {}^{\bullet}T_X \cup T_X^{\bullet}$, and F_X is the projection of F on $(P_X \times T_X) \cup (T_X \times P_X)$.

We recall that $Q \subseteq P$ is a trap in N = (P, T, F) if $Q^{\bullet} \subseteq {}^{\bullet}Q$.

CSC and USC in co-NP for LB FC STGs - ctd.

S does not have the CSC property if and only if

- there are sequences u_1 , u_2 such that $M_0 \xrightarrow{u_1} M_1$, $M_0 \xrightarrow{u_2} M_2$.
 - $M_1 \neq M_2$,
 - for each signal a:

$$P(u_1)(a^+) - P(u_1)(a^-) = P(u_2)(a^+) - P(u_2)(a^-)$$

• M_1, M_2 enable different output signals

A nondeterministic polynomial algorithm (to check the above condition)

- make several (straightforward) guesses
- 2 create a corresponding system of linear inequalities,
- guess an integer (candidate for) solution of polynomial size,
- check that it is indeed a solution.

(Variables for transition sequences are replaced by variables for their Parikh vectors. The 'trap problem' can be handled by guessing N_X and a subset of its places not containing a trap ...)

CSC and USC in co-NP for LB FC STGs - ctd.

S does not have the CSC property if and only if

there are sequences u_1 , u_2 such that

- $\bullet \ M_0 \xrightarrow{u_1} M_1, \ M_0 \xrightarrow{u_2} M_2,$
- $M_1 \neq M_2$,
- for each signal a:

$$P(u_1)(a^+) - P(u_1)(a^-) = P(u_2)(a^+) - P(u_2)(a^-)$$

• M_1, M_2 enable different output signals

A nondeterministic polynomial algorithm (to check the above condition)

- make several (straightforward) guesses
- create a corresponding system of linear inequalities,
- guess an integer (candidate for) solution of polynomial size,
- check that it is indeed a solution.

(Variables for transition sequences are replaced by variables for their Parikh vectors. The 'trap problem' can be handled by guessing N_X and a subset of its places not containing a trap ...)

General bounded STGs

Proposition. The consistency problem, the CSC problem and the USC problem are PSPACE-complete for k-bounded STGs (for any fixed k).

Free choice without liveness does not help:

Transforming a 1-bounded STG into a 1-bounded free-choice STG while keeping (in)consistency

General bounded STGs

Proposition. The consistency problem, the CSC problem and the USC problem are PSPACE-complete for k-bounded STGs (for any fixed k).

Free choice without liveness does not help:

Transforming a 1-bounded STG into a 1-bounded free-choice STG while keeping (in)consistency

General STGs

Proposition. The consistency problem and the CSC problem for general STGs are decidable but EXPSPACE-hard.

(the reachability problem for Petri nets ...)

Some open problems

- Is the CSC (USC) problem polynomial on MG STGs with injective labelling of transitions ?
- Is consistency polynomial for live and bounded free-choice STGs ?