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Overview

A brief recalling of the report from ES-Colloquium 10/2005 on
(the following work with colleagues from Univ. Augsburg)

Schäfer M., Vogler W., Jančar P.: Determinate STG Decomposition of
Marked Graphs; in Proceedings 26th Int. Conf. on Application and
Theory of Petri Nets and Other Models of Concurrency (ICATPN
2005), Miami, FL, June 20-25, 2005, Lecture Notes in Computer
Science, Vol. 3536, Springer Verlag 2005, p. 365 - 384

A more detailed report on
(the following work with colleagues from Univ. Stuttgart)

Esparza J., Jančar P., Miller A.: On the Complexity of Consistency and
Complete State Coding for Signal Transition Graphs; in Proceedings
6th International Conference on Application of Concurrency to System
Design (ACSD 2006), Turku, Finland, June 2006, IEEE Computer
Society 2006, pp. 47–56
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Outline

Asynchronous circuits.

Signal transition graphs.

Consistency problem.

Complete State Coding (CSC) problem,
Unique State Coding (USC) problem.

Polynomiality of consistency for Marked Graph STGs (MG-STGs).

Co-NP completeness of CSC and USC problems (for 1-bounded
acyclic MG STGs and) for 1-bounded live MG STGs.

Some additional results.
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Asynchronous circuits

For implementation of state dependent circuits

No clock signal

Communication with signal edges (a+ raising, a− falling)

Distinction between

input signals (controlled by the environment)
output signals (controlled by the circuit)

Advantages

Average case efficiency instead of worst case efficiency
Reduced power consumption
Very low electromagnetic emission

Disadvantage

Complex synthesis
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A (free-choice) STG

a+ c+

b+ b- a+ c-

a-
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Signal transition graphs - definition

STG: a Petri net based specification of the behaviour of an asynchronous
circuit (under some assumptions on the environment).

A = {a1, a2, . . . , an} ... a set of signals
L = {a+

1 , a−1 , a+
2 , a−2 , . . . , a+

n , a−n } ... the set of (transition) labels

STG: S = (N, M0, `), where

(N, M0) is a Petri net, N = (P, T , F ), and

` : T −→ L

An STG S is implementable if there exists a state coding mapping

λ : Reach(M0) −→ {0, 1}n

(λ(M) gives the signal values of the corresponding circuit state)
which is consistent and has the CSC (or stronger USC) property.
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Consistency (a characterization)

An STG S = (N, M0, `) is inconsistent
(i.e., it admits no consistent state coding mapping)
iff there is

a pair (M, a)
where M0 −→

∗ M and a is a signal

such that one of the following conditions holds:

(1) M enables ua+ and va−

for some a-free sequences u, v ,

(2) M enables a+ua+ or a−ua−

for some a-free sequence u,

(3) M is reachable by w1a
+u and by w2a

−v

for some a-free sequences u, v (and some w1, w2).
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Complete State Coding (CSC) and Unique SC (USC)

The signal set A = {a1, a2, . . . , an} is partitioned into
input signals and output signals.

A state coding mapping λ : Reach(M0) −→ {0, 1}n

has the CSC property if (it is consistent and) it satisfies:

when λ(M) = λ(L) for two reachable markings M 6= L

then M and L enable exactly the same output signals.

λ has the USC property if it is injective (λ(M) 6= λ(L) for M 6= L).
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Consistency for Marked Graph STGs (MG STGs)

S = (N, M0, `) is an MG STG if
N is a marked graph (net), i.e.,
each place has at most one input and at most one output transition.

We note: (the set of places of) any cycle in an MG is a trap (if
marked, it cannot get unmarked) and a siphon (if unmarked, it
cannot get marked)

Consistency problem for MG STGs:
Instance: an MG STG S = (N, M0, `)
Question: does S admit a consistent state coding mapping ?

We recall:
boundedness, liveness
(any live and bounded MG is strongly connected)
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Polynomiality of consistency for MG STGs

J. Esparza at ACSD’03:
Consistency is polynomial for live, bounded, and cyclic free-choice STGs

(here ‘cyclic’ means: the initial marking can always be
(re)reached)
(recall that ‘free-choice’ is the net property guaranteeing that if
some output transition of a place is enabled then all its output
transitions are enabled)

Remark:

it is still open if polynomial without cyclicity

liveness is important: consistency is PSPACE-complete for 1-bounded
free choice STGs (as we show here)

Theorem: The consistency is polynomial for (all) MG STGs.

Petr Jančar (TU Ostrava) Complexity for STG ES-CAK, 1 Feb, 2007 10 / 21



Polynomiality of consistency for MG STGs

J. Esparza at ACSD’03:
Consistency is polynomial for live, bounded, and cyclic free-choice STGs

(here ‘cyclic’ means: the initial marking can always be
(re)reached)
(recall that ‘free-choice’ is the net property guaranteeing that if
some output transition of a place is enabled then all its output
transitions are enabled)

Remark:

it is still open if polynomial without cyclicity

liveness is important: consistency is PSPACE-complete for 1-bounded
free choice STGs (as we show here)

Theorem: The consistency is polynomial for (all) MG STGs.
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Ideas for polynomiality of consistency for MG STGs

We call a (N, M0) normalized if every cycle of N is marked at M0.

Claim. Let (N, M0) be a normalized marked graph, where CN is the
incidence matrix of N.
An integer vector X0 ≥ 0 is a solution of the inequation M0 + CN · X ≥ 0
if and only if it is the Parikh vector of a transition sequence σ such that
M0

σ
−→. (If M0

σ
−→M then M0 + CN · X0 = M.)

Claim (a fact from linear programming).
Given CN where every row contains at most one +1 and at most one -1
(which is the case for MG),
for any linear objective function f (X ) the optimal solution X0 of the
inequations X ≥ 0, M0 + CN · X ≥ 0 (if it exists) is integer,
and can be computed in polynomial time (by usual linear programming).
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Ideas for polynomiality of consistency for MG STGs - ctd.

Proposition. A marked graph STG S = (N, M0, `) is inconsistent iff one of
the following conditions holds:

(1’) there is a reachable M (M0 −→
∗ M) such that

M
a+

−−→ and M
a−
−−→ for some signal a,

(2’) there is a reachable M such that

M
a+ua+

−−−−→ or M
a−ua−
−−−−−→

for some signal a and some a-free sequence u.

The previous claims enable deciding these conditions by using (usual)
linear programming.

E.g.: maximize f (X ) subject to X ≥ 0, M0 + CN · X ≥ 0
where

f (X ) =
∑

t∈`−1(a+)

X (t) −
∑

t∈`−1(a−)

X (t)
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Co-NP-completeness of USC and CSC for MG STGs

Theorem.

The CSC problem and the USC problem are co-NP-hard for
(1-bounded acyclic marked graph STGs and for) 1-bounded live
marked graph STGs.

The CSC problem and the USC problem for live and bounded
free-choice STGs are in co-NP.

We show the main technical lemma (of the NP-hardness part);
a transition sequence is balanced if the numbers of occurrences of labels
a+ and a− are the same for each signal a:

Lemma. The following problem is NP-complete:
Instance: a (consistent) STG S = (N, M0, `) such that (N, M0) is a
1-bounded, acyclic marked graph.
Question: is there an occurrence sequence M0

σ
−→M1

τ
−→M2 of S such

that τ is nonempty and balanced ?
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The crucial point: NP-hardness

Given a boolean formula ϕ in CNF, we construct
a 1-bounded acyclic MG STG Sϕ so that

ϕ is satisfiable ⇐⇒ Sϕ admits M0
σ
−→M1

τ
−→M2

for some nonempty balanced τ .

Example. ϕ ≡ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

Signals of Sϕ :

x1, x2, x3 (variables)

c1, c2 (clauses)

p1,1, p1,2, p2,2, p3,1 (xi positively in cj)

n2,1, n3,2 (xi negatively in cj)

special (auxiliary) signals S0, S1, S2, . . . (‘brackets’)
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ϕ ≡ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

•

•

•

•

•

•
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1,1
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1,2 x+
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2,2 x+

2
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From 1-bounded acyclic MG to 1-bounded live MG

We define a new STG S ′

ϕ by adding a ‘final segment’ to Sϕ: we add a
fresh signal f and construct a ‘linear’ net Nf with the behaviour

f + `1 `2 · · · `k f −

so that S ′

ϕ is a live 1-bounded MG STG and the set of all its transitions is
balanced ...
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CSC and USC in co-NP for live and bounded FC STGs

Using of a result by Yamasaki, Huan, Murata (2001):

Theorem.
Let (N, M0) be a live and bounded free-choice Petri net, and let CN be its
incidence matrix.
An integer vector X0 ≥ 0 is the Parikh vector of a transition sequence
enabled at M0 if and only if

1 M0 + CN · X0 ≥ 0, and

2 M = M0 + CN · X0 marks all (nonempty) traps of NX0 .

For a net N = (P, T , F ) and X : T → IN, we denote by
NX = (PX , TX , FX ) the subnet of N defined as follows: TX is the set of
transitions of T for which X (t) ≥ 1, PX = •TX ∪ T •

X , and FX is the
projection of F on (PX × TX ) ∪ (TX × PX ).

We recall that Q ⊆ P is a trap in N = (P, T , F ) if Q• ⊆ •Q.
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CSC and USC in co-NP for LB FC STGs - ctd.

S does not have the CSC property if and only if
there are sequences u1, u2 such that

M0
u1−−→M1, M0

u2−−→M2,

M1 6= M2,

for each signal a:

P(u1)(a
+) − P(u1)(a

−) = P(u2)(a
+) − P(u2)(a

−)

M1, M2 enable different output signals

A nondeterministic polynomial algorithm (to check the above condition)
1 make several (straightforward) guesses
2 create a corresponding system of linear inequalities,
3 guess an integer (candidate for) solution of polynomial size,
4 check that it is indeed a solution.

(Variables for transition sequences are replaced by variables for their
Parikh vectors. The ‘trap problem’ can be handled by guessing NX and a
subset of its places not containing a trap ...)
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4 check that it is indeed a solution.

(Variables for transition sequences are replaced by variables for their
Parikh vectors. The ‘trap problem’ can be handled by guessing NX and a
subset of its places not containing a trap ...)
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General bounded STGs

Proposition. The consistency problem, the CSC problem and the USC
problem are PSPACE-complete for k-bounded STGs (for any fixed k).

Free choice without liveness does not help:

Transforming a 1-bounded
STG into a 1-bounded free-
choice STG while keeping
(in)consistency

l1 l2 l3

l1

l2

l3

f+

1 f+

2

f−

1

f−

2
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General STGs

Proposition. The consistency problem and the CSC problem for general
STGs are decidable but EXPSPACE-hard.

(the reachability problem for Petri nets ...)
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Some open problems

Is the CSC (USC) problem polynomial on MG STGs with injective
labelling of transitions ?

Is consistency polynomial for live and bounded free-choice STGs ?
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