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• Modern radar system use Passive Coherent Location (PCL)

• Systems with no emitation – only “listen”

• PCL exploit high-power commercial transmitters (FM, TV,
etc.)

• evaluates a function related to direct and reflected signals
from localized targets

• The function to be evaluate = Cross Ambiguity function
(CAF)
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Cross Ambiguity function

CAF represents the power spectral density distribution of the
cross-correlation between direct and reflected signals:

A(τ, k) =
N−1∑
n=0

s1(n)s∗2 (n + τ)e−j2πkn/N (1)

s1,s2 discrete-time analytic (complex) signals

N is the integration period

τ is time delay

k Doppler frequency offset

The magnitude of A(τ, k) peaks when τ and k/N are equal to the
TDOA and/or FDOA between signals s1 and s2.
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Cross Ambiguity function – cont.

The effective CAF computation use direct application of the FFT
into signal product of the signals s1 and s2.

A(τ, k) = FFT(s1(n)s∗2 (n + τ)) (2)

To calculate CAF using this formula for all values of τ and k, an
individual FFT computation is required for each value of τ .
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System Settings

The basic requirements on CAF calculation engine for PCL system
signal processing are as follows:

• Sampling frequency: 100-200 kHz

• Effective bit resolution of input signals: 18-24 bits

• Integration interval: N = 217 = 131 072 samples

• Frequency resolution: < 1 Hz

• Accuracy of the CAF calculation: absolute error about 10−10

compared to the IEEE 64-bit floating-point arithmetic

• Maximum number of time delays: < 600

• Maximum frequency range: 〈−300 : +300〉Hz ( 601 spectral
coefficients)

• Total time of computation: < 1 sec
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Algorithms for FFT

Known algorithms

• FFT (radix -2, radix-4 , split radix)

• Zoom-FFT

• Pre-weighted FFT

• Goertzel algorithm

Suitable algorithms for PCL

• FFT (any radix) only!

• other methods inserts a systematic error and/or are more
complex for a given interval of freqency bins
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Numerical reqirements
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Numerical reqirements – cont.

Conclusion

• we need at least 42 bits in fixed point

• 32-bit IEEE floating point is on the boundary

Available FFT on FPGA

• non of the commercial nor open source such long and such
accurete FFT IP core

• Xilinx: FFT length 216 = 65 536 at 24 bits (fixed pt. or block
floating pt.)

• Altera: 214c = 16384 at 24 bits fixed point
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FFT with reduced number of operation
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System Architecture

Structure of long FFT calc

Stage L0: signal multiplication s1(n)s∗2 (n + τ)

Stage L1: parallel calculation of nested FFTs of size Nf

Stage L2: calculation of the rest of butterflies

Timing

• stage L1 represents N/Nf = 128 nested FFTs – using mono
processor approach, takes 589, 824 cycles.

• stage L2, takes approximately 76, 928 cycles.

• it follows that the most computationally intensive part is the
computation of stage L1.
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Block structure of L0 stage
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• All data paths and operation are complexnumbers/paths.

• to shorten the calculation L1 stage, the first radix-2 butterfly
(addition/subtraction only) is calculated in stage L0
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Block structure of the L1 stage
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• Since the calculation of the nested FFTs is the most
computationally intensive operation, four L1 cores are used in
parallel

• Using two dual ported memories, two input and two output
values are read/stored at the same time – the Radix-2 core is
fully utilized.
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Architecture of the L2 stage

• L2 architecture is the same as L1

• it uses a set of tables W of size ∆ each.

• To optimize the size of intermediate memory and time
schedule, the L2 block is divided to tree logic parts:

L2a, L2b implements three stages of FFT i.e. from 23∆
inputs and calculates ∆ intermediate values

L2c L2c implements the final one stage i.e. from 2∆
values calculates final ∆ results. It use one table
W

• all three parts L2a, L2b and L2c use the same hardware core –
only one part can run at a time
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Block architecuture of the system
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Time Scheduling
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Time Scheduling – cont.

Stage Clock Comp. Comp.
Cycles 33MHz 66MHz

data load L1 1034 31.3µs 15, 7µs
data store L1 304 9.21µs 4.61µs
data load L2a,b 624 18.9µs 9.4µs
data store L2a,b 606 18.3µs 9.1µs
data load L2c 609 18.4µs 9.2µs
data store L2c 609 18.4µs 9.2µs
computation L1 4805 146µs 72.8µs
computation L2a, L2b 4263 129µs 64.6µs
computation L2c 608 18.4µs 9.21µs
computation 1xFFT 219 · 103 6, 64ms 3, 32ms
computation CAF 131 · 106 3, 98s 1, 99s
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Implementation and results

Utilization of XC4VSX55

DSP48s 216 42%
RAMB16s 170 53 %
LUTs 25394 51 %
Slices 16482 67 %
Flip Flops 19266 39 %

Utilization of EP2S180

DSP9s 624 81 %
M512s 846 90 %
M4Ks 472 61 %
M-RAMs 4 44 %
ALUTs 48924 34 %
ALMs 27180 37 %
Registers 25729 17 %
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