USING RECONFIGURABLE HW FOR HIGH DIMENSIONAL CAF COMPUTATION

Antonín Heřmánek, Michal Kuneš

Institute of Information Theory and Automation Academy of Sciences of the Czech Republic, Prague, Czech Republic email: {hermaneke, xkunes}@utia.cas.cz

March 27, 2006

OUTLINE

MOTIVATION Cross Ambiguity function

System Settings

Algorithms for FFT

System Architecture

Architecture of the L0 stage Architecture of the L1 stage Architecture of the L2 stage Overall architecture Time Scheduling

IMPLEMENTATION AND RESULTS

- Modern radar system use Passive Coherent Location (PCL)
- Systems with no emitation only "listen"
- PCL exploit high-power commercial transmitters (FM, TV, etc.)
- evaluates a function related to direct and reflected signals from localized targets
- The function to be evaluate = Cross Ambiguity function (CAF)

CROSS AMBIGUITY FUNCTION

CAF represents the power spectral density distribution of the cross-correlation between direct and reflected signals:

$$A(\tau,k) = \sum_{n=0}^{N-1} s_1(n) s_2^*(n+\tau) e^{-j2\pi kn/N}$$
 (1)

 s_1, s_2 discrete-time analytic (complex) signals

N is the integration period

au is time delay

k Doppler frequency offset

The magnitude of $A(\tau, k)$ peaks when τ and k/N are equal to the TDOA and/or FDOA between signals s_1 and s_2 .

Cross Ambiguity function – cont.

The effective CAF computation use direct application of the FFT into signal product of the signals s_1 and s_2 .

$$A(\tau,k) = FFT(s_1(n)s_2^*(n+\tau))$$
 (2)

To calculate CAF using this formula for all values of τ and k, an individual FFT computation is required for each value of τ .

The basic requirements on CAF calculation engine for PCL system signal processing are as follows:

- Sampling frequency: 100-200 kHz
- Effective bit resolution of input signals: 18-24 bits
- Integration interval: $N = 2^{17} = 131\,072$ samples
- ullet Frequency resolution: $< 1~{
 m Hz}$
- Accuracy of the CAF calculation: absolute error about 10⁻¹⁰ compared to the IEEE 64-bit floating-point arithmetic
- Maximum number of time delays: < 600
- Maximum frequency range: $\langle -300: +300 \rangle Hz$ (601 spectral coefficients)
- Total time of computation: < 1 sec

ALGORITHMS FOR FFT

KNOWN ALGORITHMS

- FFT (radix -2, radix-4, split radix)
- Zoom-FFT
- Pre-weighted FFT
- Goertzel algorithm

SUITABLE ALGORITHMS FOR PCL

- FFT (any radix) only!
- other methods inserts a systematic error and/or are more complex for a given interval of frequency bins

NUMERICAL REQIREMENTS

Conclusion

- we need at least 42 bits in fixed point
- 32-bit IEEE floating point is on the boundary

AVAILABLE FFT ON FPGA

- non of the commercial nor open source such long and such accurete FFT IP core
- Xilinx: FFT length $2^{16} = 65\,536$ at 24 bits (fixed pt. or block floating pt.)
- Altera: $2^{14}c = 16384$ at 24 bits fixed point

FFT WITH REDUCED NUMBER OF OPERATION

System Architecture

STRUCTURE OF LONG FFT CALC

STAGE L0: signal multiplication $s_1(n)s_2^*(n+\tau)$

STAGE L1: parallel calculation of nested FFTs of size N_f

STAGE L2: calculation of the rest of butterflies

TIMING

- stage L1 represents $N/N_f=128$ nested FFTs using mono processor approach, takes 589,824 cycles.
- stage L2, takes approximately 76, 928 cycles.
- it follows that the most computationally intensive part is the computation of stage L1.

BLOCK STRUCTURE OF LO STAGE

- All data paths and operation are complexnumbers/paths.
- to shorten the calculation L1 stage, the first radix-2 butterfly (addition/subtraction only) is calculated in stage L0

BLOCK STRUCTURE OF THE L1 STAGE

- Since the calculation of the nested FFTs is the most computationally intensive operation, four L1 cores are used in parallel
- Using two dual ported memories, two input and two output values are read/stored at the same time – the Radix-2 core is fully utilized.

- L2 architecture is the same as L1
- it uses a set of tables W of size Δ each.
- To optimize the size of intermediate memory and time schedule, the L2 block is divided to tree logic parts:
 - L2A, L2B implements three stages of FFT i.e. from $2^3\Delta$ inputs and calculates Δ intermediate values
 - L2C L2c implements the final one stage i.e. from 2Δ values calculates final Δ results. It use one table W
- all three parts L2a, L2b and L2c use the same hardware core only one part can run at a time

BLOCK ARCHITECUTURE OF THE SYSTEM

TIME SCHEDULING

TIME SCHEDULING - CONT.

Stage	Clock	Comp.	Comp.
_	Cycles	33MHz	66MHz
data load L1	1034	$31.3 \mu s$	$15,7\mu s$
data store L1	304	$9.21 \mu s$	$4.61 \mu s$
data load L2a,b	624	$18.9 \mu s$	$9.4 \mu s$
data store L2a,b	606	$18.3 \mu s$	$9.1 \mu s$
data load L2c	609	$18.4 \mu s$	$9.2 \mu s$
data store L2c	609	$18.4 \mu s$	$9.2 \mu s$
computation L1	4805	$146 \mu s$	$72.8 \mu s$
computation L2a, L2b	4263	$129 \mu s$	64.6 <i>µs</i>
computation L2c	608	$18.4 \mu s$	$9.21 \mu s$
computation 1xFFT	$219 \cdot 10^{3}$	6,64 <i>ms</i>	3,32 <i>ms</i>
computation CAF	$131 \cdot 10^6$	3, 98 <i>s</i>	1,99 <i>s</i>

IMPLEMENTATION AND RESULTS

Utilization of XC4VSX55				
DSP48s	216	42%		
RAMB16s	170	53 %		
LUTs	25394	51 %		
Slices	16482	67 %		
Flip Flops	19266	39 %		

Utilization of EP2S180				
DSP9s	624	81 %		
M512s	846	90 %		
M4Ks	472	61 %		
M-RAMs	4	44 %		
ALUTs	48924	34 %		
ALMs	27180	37 %		
Registers	25729	17 %		

О

END