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1. Motivation
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GSM:

• data transmission rate of approximately 270 kbps

• training sequence approx. 25%

Constant Modulus Algorithm [Godard80]:

• algorithms with no training sequence

• computations in floating-point
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2. Scheduling of Iterative Algorithms
Operations in a computation loop can be considered as a set of n tasks T
performed N times in iterations.

Cyclic scheduling: - N, the number of iterations, is large enough
- results in the periodic schedule (an iteration is repeated

each period w)
- can lead to the overlapped schedule (operations belonging

to different iterations can be execute simultaneously)

Objective: to find a periodic schedule with the minimum period (is NP-hard)

Related work:

[C. Hanen and A. Munier 1995] - Basic Cyclic Scheduling – infinite number of 
processors – O(n3 log n)

[D. Fimmel and J. Müller 2001] - solution by ILP for limited number of processors



Cyclic Scheduling

Algorithm representation by oriented graph G:
• vertex ~ instruction  ~  task

- processing time pi (time to “feed” the processor)
• arc ~ precedence relation

- arc height hij  (shift of the iteration index)
- arc length lij  (input-output latency of the unit) ijijij hwlss ⋅−≥−
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ILP program for fixed w
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precedence constraint -
restriction corresponding to 
algorithm of filter

processor constraints -
one task at maximum is 
executed at a given time

objective function -
minimizes the 
iteration overlap

w*- the shortest period resulting in feasible schedule is found iteratively by 
formulating one ILP program for each integer w ∈ [lowerbound, upperbound]
… interval bisection method



3. Cyclic Scheduling with Nested Loops
Complex data computations (e.g. matrix operations) are implemented as nested 
loops.

perfectly nested loops – all elementary operations are contained in
the innermost loop

imperfectly nested loops – some elementary operations are not contained in
the innermost loop

Objective: to find a periodic schedule with the minimum period and efficient 
FPGA implementation of nested loops.

Related work:

[N. Ahmed, N. Mateev and K.Pingali 2000] – “Tiling imperfectly nested loops”               
- heuristics transformation of imperfectly nested loops

[Q.Zhuge, Z.Shao, and E.Sha 2005] – “Optimization of Nest-Loop Software Pipelining” 
- timing and code size requirements optimization
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Equalizer algorithm

Data dependencies 
represented by a 
condensed graph.

element-wise operation
sum of vector elements

matrix-vector multiplication

scalar operation

vector subtraction



Expansion of Imperfectly Nested Loops
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• Processing Time Fusion – elementary operations are fused into single task.

• United Edges – keeps regularity of the loop.

• Fixed Edges – direct data flow (e.g. memory → arithm. unit).
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Model Optimization
Optimization of graph model

• approximated expansion 
- Iterations of the nested loop are divided into a prologue P,

body B and an epilogue E.
- The body is represented using one task exploiting dedicated

processors

Optimization on ILP model

• elimination of redundant processor constraints
- Method is based on Linear Programming.

• estimation of variable bounds
- Calculation of the longest paths in the graph.



4. Experimental Results

Architecture with HSLA (19-bit precision)
(one twin-adder, four multipliers)

One iteration of equalizer algorithm: 11ms on XC2V1000-5.
⇒ fast enough to perform 8 iterations in GSM.

9        22%- -MULT 18×18
192        7%192        1%TBUFs

50MHz35 MHzClock Rate
300 MFlops210 MFlopsPerformance

4222       82%4349      22%SLICEs
16        40%16        10%Block RAM

XC2V1000-5XCV2000E-6



5. Conclusions
• ILP gives rather good results even for realistic examples in

reasonable time (3,4 seconds).

• model is dependent on number of tasks but it is independent of
period w.

• Equalizer performance increased by 46%.

• Automatic scheduling
(algorithm → graph → schedule → code)

• Rapid prototyping (allows to compare different HW architectures
prior to time consuming implementation).


