
Scheduling of Iterative Algorithms with
Matrix Operations for Efficient FPGA Design

(Implementation of Finite Interval Constant Modulus Algorithm)

P.Šůcha, Z.Hanzálek
Centre for Applied Cybernetics

Department of Control Engineering
Czech Technical University in Prague
Karlovo nam. 13, 121 35 Prague 2

email: {suchap,hanzalek}@fel.cvut.cz

A.Heřmánek, J.Schier
Institute of Information Theory and Automation

Academy of Sciences of the Czech Republic
Pod vodarenskou vezi 4, 182 08 Praha 8
email: {hermanek,schier}@utia.cas.cz

mailto:@fel.cvut.cz
mailto:@utia.cas.cz

Contents

1. Motivation
2. Cyclic Scheduling
3. Scheduling of Algorithm with Matrix Operation
4. Experimental Results
5. Conclusions

1. Motivation

end
vvw

yQwv
wQy

dotofor

)()()(
)()()1()(

)1()(
 1

3

k / k k
k / Fk k- k

k- k
Kk

T

=

⋅⋅=

⋅=
=

transmitted
signal

noise
received signal

desired signal

GSM:

• data transmission rate of approximately 270 kbps

• training sequence approx. 25%

Constant Modulus Algorithm [Godard80]:

• algorithms with no training sequence

• computations in floating-point

Channel
H

Equalizer
g

s u
b

y
+

2. Scheduling of Iterative Algorithms
Operations in a computation loop can be considered as a set of n tasks T
performed N times in iterations.

Cyclic scheduling: - N, the number of iterations, is large enough
- results in the periodic schedule (an iteration is repeated

each period w)
- can lead to the overlapped schedule (operations belonging

to different iterations can be execute simultaneously)

Objective: to find a periodic schedule with the minimum period (is NP-hard)

Related work:

[C. Hanen and A. Munier 1995] - Basic Cyclic Scheduling – infinite number of
processors – O(n3 log n)

[D. Fimmel and J. Müller 2001] - solution by ILP for limited number of processors

Cyclic Scheduling

Algorithm representation by oriented graph G:
• vertex ~ instruction ~ task

- processing time pi (time to “feed” the processor)
• arc ~ precedence relation

- arc height hij (shift of the iteration index)
- arc length lij (input-output latency of the unit) ijijij hwlss ⋅−≥−

()

()
end

dotofor

d kz k z

b k y k x
k-xk y

Kk

+−−=

+=
++=

=

3

2

2)2()(

)()(
a1)3()(

 1
x+1

(…)2

(…)+ay+b (…)+d (…). (…)

z-2

(…)2

(9,0)

(2,0)
(9,0)

(9,2)

(2,0)

(9,0)

(2,0)

(9,0)

(9,3)

length
l41

height
h41

T1

T2

T5

T6

T3 T7T4 T8

1 11 1

1

1

1

1 processing
time p5

29In-Out Latency [clk]

11Processing time p [clk]

* , / ,
2 , √¯

+ (-)Operation on HSLA

ILP program for fixed w

{ }
integers. are ˆ,ˆ

1,0ˆ,0ˆ,1,0ŝ
:where

ˆŝŝ

 ˆŝˆŝ
:subject to

ˆmin

i

ji

ij

1

iji

iji

iijj

ijijij

n

i
i

xq
xqw

pwxwp
whlwqwq

q

∈≥−∈

−≤⋅+−≤

⋅−≥⋅−−⋅+

∑
=

precedence constraint -
restriction corresponding to
algorithm of filter

processor constraints -
one task at maximum is
executed at a given time

objective function -
minimizes the
iteration overlap

w*- the shortest period resulting in feasible schedule is found iteratively by
formulating one ILP program for each integer w ∈ [lowerbound, upperbound]
… interval bisection method

3. Cyclic Scheduling with Nested Loops
Complex data computations (e.g. matrix operations) are implemented as nested
loops.

perfectly nested loops – all elementary operations are contained in
the innermost loop

imperfectly nested loops – some elementary operations are not contained in
the innermost loop

Objective: to find a periodic schedule with the minimum period and efficient
FPGA implementation of nested loops.

Related work:

[N. Ahmed, N. Mateev and K.Pingali 2000] – “Tiling imperfectly nested loops”
- heuristics transformation of imperfectly nested loops

[Q.Zhuge, Z.Shao, and E.Sha 2005] – “Optimization of Nest-Loop Software Pipelining”
- timing and code size requirements optimization

Equalizer algorithm
Q .vij j vj

2

Σ vj
2

1
(...)

yi
3′

Q ij i.y 3′

(...).α3

α3

yi
4′

Σ yi
4

 ′

4
(...)

µ
α

(...)
(...)

vj .αFµ ∆.v

w -i (...)

y y

v∆

w

v
v

v

αα

α

Fµ

(...)

end
vwv

yQv

y

vw

vQy
dotofor

)()(-)1()(
1)-()(')(

1)-()('
)(

1)-()()1(

1)-v(
11)-(

)1()('
 1

33

4 4

2

k k F k k
k k k

k k
kF

k k k

k
k

k- k
Kk

T

∆

∆

⋅−=
⋅⋅=

⋅
=

⋅=−

=

⋅=
=

∑

µ

µ

α

α

µ
α

α

Equalizer algorithm

Data dependencies
represented by a
condensed graph.

element-wise operation
sum of vector elements

matrix-vector multiplication

scalar operation

vector subtraction

Expansion of Imperfectly Nested Loops

end

end
end

Q
dotofor

dotofor

dotofor

M

M

)1()()(
 1

 1

 1

k- v ky'ky'
Nj

Mi

Kk

jijii ⋅+=
=

=

=

READ
 yi

yi + (...)

(1,0)

gummy edgefixed edge

N

N

(N,0)

T1,2

T1,3

′

′

M

READ
 Qi,1 1v⋅

N

T1,1

(2,0)
READ
 yi

yi + (...)

(1,0)

N

N

(N,0)

T1,5

T1,6

′

′

READ
 Qi,1 2v⋅

N

T1,4

(2,0)
READ
 yi

yi + (...)

(1,0)

N

N

(N,0)

T1,8

T1,9

′

′

READ
 Qi,1 M-1v⋅

N

T1,7

(2,0)
READ
 yi

yi + (...)

(1,0)

N

N

T1,11

T1,12

′

′

READ
 Qi,1 Mv⋅

N

T1,10

(2,0)

• Processing Time Fusion – elementary operations are fused into single task.

• United Edges – keeps regularity of the loop.

• Fixed Edges – direct data flow (e.g. memory → arithm. unit).

ijijij hwlss ⋅−=−

K ; ; 2,3,1,2, iiiiiiii lzsslzss =−−=−−

Model Optimization
Optimization of graph model

• approximated expansion
- Iterations of the nested loop are divided into a prologue P,

body B and an epilogue E.
- The body is represented using one task exploiting dedicated

processors

Optimization on ILP model

• elimination of redundant processor constraints
- Method is based on Linear Programming.

• estimation of variable bounds
- Calculation of the longest paths in the graph.

4. Experimental Results

Architecture with HSLA (19-bit precision)
(one twin-adder, four multipliers)

One iteration of equalizer algorithm: 11ms on XC2V1000-5.
⇒ fast enough to perform 8 iterations in GSM.

9 22%- -MULT 18×18
192 7%192 1%TBUFs

50MHz35 MHzClock Rate
300 MFlops210 MFlopsPerformance

4222 82%4349 22%SLICEs
16 40%16 10%Block RAM

XC2V1000-5XCV2000E-6

5. Conclusions
• ILP gives rather good results even for realistic examples in

reasonable time (3,4 seconds).

• model is dependent on number of tasks but it is independent of
period w.

• Equalizer performance increased by 46%.

• Automatic scheduling
(algorithm → graph → schedule → code)

• Rapid prototyping (allows to compare different HW architectures
prior to time consuming implementation).

