On Distributed Bisimilarity over Basic Parallel Processes

Petr Jančar Zdeněk Sawa

Department of Computer Science, FEI Technical University of Ostrava 17. listopadu 15, Ostrava-Poruba 708 33 Czech Republic

26 November 2005

Presented Result

- The result was presented at AVIS'05 workshop (Automated Verification of Infinite-State Systems, Edinburgh, 2nd-3rd April 2005, a part of ETAPS 2005),
- It will be published in Electronic Notes in Theoretical Computer Science.
- A plan to prepare an overview article on non-interleaving equivalences on Basic Parallel Processes with S. Lasota and S. Fröschle.

Introduction

- Equivalence checking deciding for a pair of systems whether they are equivalent with respect to some notion of equivalence
- Basic Parallel Processes (BPP) very simple class of infinite state systems

Basic Parallel Processes (BPP)

- $Act = \{a, b, c, \ldots\}$ actions
- $Var = \{X, Y, Z, \ldots\}$ variables

BPP expressions

$$P ::= \mathbf{0} \mid X \mid a.P \mid P_1 + P_2 \mid P_1 \parallel P_2$$

BPP process definition

$$\Delta = \{X_i \stackrel{\mathrm{def}}{=} P_i \mid 1 \le i \le n\}$$

Basic Parallel Processes (BPP)

- $Act = \{a, b, c, \ldots\}$ actions
- $Var = \{X, Y, Z, \ldots\}$ variables

BPP expressions

$$P ::= \mathbf{0} \mid X \mid a.P \mid P_1 + P_2 \mid P_1 \parallel P_2$$

BPP process definition

$$\Delta = \{X_i \stackrel{\mathrm{def}}{=} P_i \mid 1 \le i \le n\}$$

Example:
$$X \stackrel{\text{def}}{=} a.(X + c.Z) + \mathbf{0}$$

 $Y \stackrel{\text{def}}{=} a.(X \parallel Y) + b.Z$
 $Z \stackrel{\text{def}}{=} c.(X \parallel Z)$

Distributed bisimilarity

Distributed bisimilarity

 one of non-interleaving equivalences ('true concurrency' equivalences)

Distributed bisimilarity

Distributed bisimilarity

- one of non-interleaving equivalences ('true concurrency' equivalences)
- on BPP coincides with many other non-interleaving equivalences: (location equivalence, causal equivalence, history preserving bisimilarity, performance equivalence, . . .)

Distributed bisimilarity

Distributed bisimilarity

- one of non-interleaving equivalences ('true concurrency' equivalences)
- on BPP coincides with many other non-interleaving equivalences: (location equivalence, causal equivalence, history preserving bisimilarity, performance equivalence, . . .)
- distinguishes processes such as

$$a.0 \parallel a.0$$
 and $a.a.0$

Distributed bisimilarity takes the spatial distribution of (sub)processes into account.

Each transition from a process *P* goes to a pair of processes:

- local derivative (P')
- concurrent derivative (P")

Transition

$$P \xrightarrow{a} [P', P'']$$

Structural operational semantics rules

$$\frac{P_{j} \stackrel{a}{\longrightarrow} [P', P''] \text{ for some } j \in I}{\sum_{i \in I} P_{i} \stackrel{a}{\longrightarrow} [P', P'']}$$

$$\frac{P \stackrel{a}{\longrightarrow} [P', P'']}{P \parallel Q \stackrel{a}{\longrightarrow} [P', P'' \parallel Q]}$$

$$\frac{Q \stackrel{a}{\longrightarrow} [Q', Q'']}{P \parallel Q \stackrel{a}{\longrightarrow} [Q', P \parallel Q'']}$$

$$\frac{P \xrightarrow{a} [P', P'']}{X \xrightarrow{a} [P', P'']} ((X \stackrel{\text{def}}{=} P) \in \Delta)$$

Definition

A relation \mathcal{R} is a **distributed bisimulation** iff for each $(P, Q) \in \mathcal{R}$ and each $a \in Act$:

- if $P \xrightarrow{a} [P', P'']$ then $Q \xrightarrow{a} [Q', Q'']$ for some Q', Q'' such that $(P', Q') \in \mathcal{R}$ and $(P'', Q'') \in \mathcal{R}$
- if $Q \stackrel{a}{\longrightarrow} [Q', Q'']$ then $P \stackrel{a}{\longrightarrow} [P', P'']$ for some P', P'' such that $(P', Q') \in \mathcal{R}$ and $(P'', Q'') \in \mathcal{R}$

Definition

A relation \mathcal{R} is a **distributed bisimulation** iff for each $(P, Q) \in \mathcal{R}$ and each $a \in Act$:

- if $P \xrightarrow{a} [P', P'']$ then $Q \xrightarrow{a} [Q', Q'']$ for some Q', Q'' such that $(P', Q') \in \mathcal{R}$ and $(P'', Q'') \in \mathcal{R}$
- if $Q \stackrel{a}{\longrightarrow} [Q', Q'']$ then $P \stackrel{a}{\longrightarrow} [P', P'']$ for some P', P'' such that $(P', Q') \in \mathcal{R}$ and $(P'', Q'') \in \mathcal{R}$

Definition

Processes P and Q are **distributed bisimilar**, denoted $P \sim Q$, iff there is a distributed bisimulation \mathcal{R} such that $(P,Q) \in \mathcal{R}$.

Distributed bisimilarity - example

 $a.0 \parallel a.0$ and a.a.0 are not distributed bisimilar, because

$$a.0 \parallel a.0 \stackrel{a}{\longrightarrow} [0, a.0]$$

but

$$a.a.0 \stackrel{a}{\longrightarrow} [a.0,0]$$

Main problem

Problem BPP-DBISIM

Instance: A BPP process definition Δ and two variables

 $X, Y \in Var(\Delta)$

Question: Is $X \sim Y$?

Remark: Question whether $P_1 \sim P_2$ where P_1, P_2 are BPP expressions can be easily transformed to BPP-DBISIM.

Basic processes

Operators + and \parallel are associative and commutative with respect to \sim .

Definition

Basic process is a process of the form

$$X_1 \parallel X_2 \parallel \cdots \parallel X_n$$

where $n \ge 0$ and each $X_i \in Var$

Remark: $\mathbf{0}$ is a basic process where n = 0.

Basic processes (cont.)

Due to associativity and commutativity of \parallel , basic processes can be viewed as multisets of variables and represented more succinctly.

For example:

can be represented as:

$$X^7Y^2Z^3$$

where numbers as represented in binary

Left merge

Left merge is an auxiliary new operator:

$$P_1 \parallel P_2$$

is similar to $P_1 \parallel P_2$ but P_1 must perform an action first.

$$\frac{P \stackrel{a}{\longrightarrow} [P', P'']}{P \parallel Q \stackrel{a}{\longrightarrow} [P', P'' \parallel Q]}$$

Normal form

Every BPP process can be transformed into equivalent **normal form** where all equations are of the form

$$X \stackrel{\mathrm{def}}{=} \sum_{i \in I} ((a_i.P_i) \parallel Q_i)$$

where all P_i , Q_i are basic processes.

Remark: Variables in Q_i are syntactically unguarded.

Normal form

Every BPP process can be transformed into equivalent **normal form** where all equations are of the form

$$X\stackrel{\mathrm{def}}{=} \sum_{i\in I} ((a_i.P_i) \parallel Q_i)$$

where all P_i , Q_i are basic processes.

Remark: Variables in Q_i are syntactically unguarded.

- $Y \prec_1 X$ holds iff $X \stackrel{\text{def}}{=} \sum_{i \in I} ((a.P_i) \parallel Q_i)$ and Y occurs in some Q_i
- \prec is the transitive closure of \prec_1
- → is irreflexive

Known results

It was shown in

Christensen, S.: Decidability and Decomposition in Process Algebras, Ph.D. thesis, The University of Edinburgh, 1993.

that:

- BPP-DBISIM is decidable.
- Every BPP process definition can be transformed to (a variant of) normal form.

Known results (cont.)

It was shown in

Lasota, S.: A polynomial-time algorithm for deciding true concurrency equivalences of Basic Parallel Processes, MFCS, 2003.

that:

- BPP-DBISIM can be solved in polynomial time.
- BPP process definition can be transformed to normal form in polynomial time.

Remarks on Lasota's algorithm

Lasota's algorithm consists of two steps:

- transformation of BPP process definition to normal form
- algorithm deciding distributed bisimilarity on processes in normal form

Remark: No explicit degrees of the polynomials bounding time complexity of these steps were provided.

Remarks on Lasota's algorithm (cont.)

Our analysis of Lasota's transformation to normal form shows that:

- it can be done in $O(n^3)$
- the size of the constructed process definition can rise to $\Theta(n^3)$

Remarks on Lasota's algorithm (cont.)

Our analysis of Lasota's transformation to normal form shows that:

- it can be done in $O(n^3)$
- the size of the constructed process definition can rise to $\Theta(n^3)$

Lasota's algorithm deciding distributed bisimilarity on processes in normal form:

- repeatedly calls an algorithm for deciding strong bisimilarity on normed BPP as a subroutine
- has time complexity that seems to be in $O(n^5)$, where n is size its instance (BPP in normal form)

Our contribution

We present an algorithm for deciding distributed bisimilarity on processes in normal form that:

- is conceptually simpler
- is self-contained (does not use any other algorithm as a subroutine)
- allows to bound its time complexity by $O(n^3)$

Algorithm

The algorithm:

- is inspired by ideas introduced by P. Jančar in the proof of PSPACE-completeness of deciding strong bisimilarity on BPP
- constructs a sequence of approximations of \sim on the set of basic processes (elements of Var^{\oplus}) from above
- \bullet produces as a by-product a semilinear representation of \sim on the set of basic processes

Thank you