WIRELESS USER LOCALIZATION IN CONTROL SYSTEMS FOR PREDICTIVE DATA DATA PUSH TECHNOLOGY

AUTHOR :

Ondřej Krejcar

Centre for Applied Cybernetics

Department of Measurement and Control Faculty of Electric Engineering and Computer Science

VSB -Technical University of Ostrava Czech Republic

Introduction

- Mobile communication devices
 - Mobile phones
 - Personal digital assistants
 PDA, MDA
 - Notebooks / Tablet PC's
- Information sources
 - Internet
 - e-mail
 - l ftp
 - ICQ
 - ...

Communication

- GPRS (GSM)
 - □ SmartPhone, MDA
 - 100 kb/s
- Bluetooth
 - ~ 10m, wireless, 2.4 GHz
 - SmartPhone, PDA, MDA
 - □ 10 Mb/s
- WiFi (802.11b)
 - ~ 300m, wireless,
 2.4GHz
 - PDA, MDA III
 - 10 Mb/s

Mobile devices in IS

Software

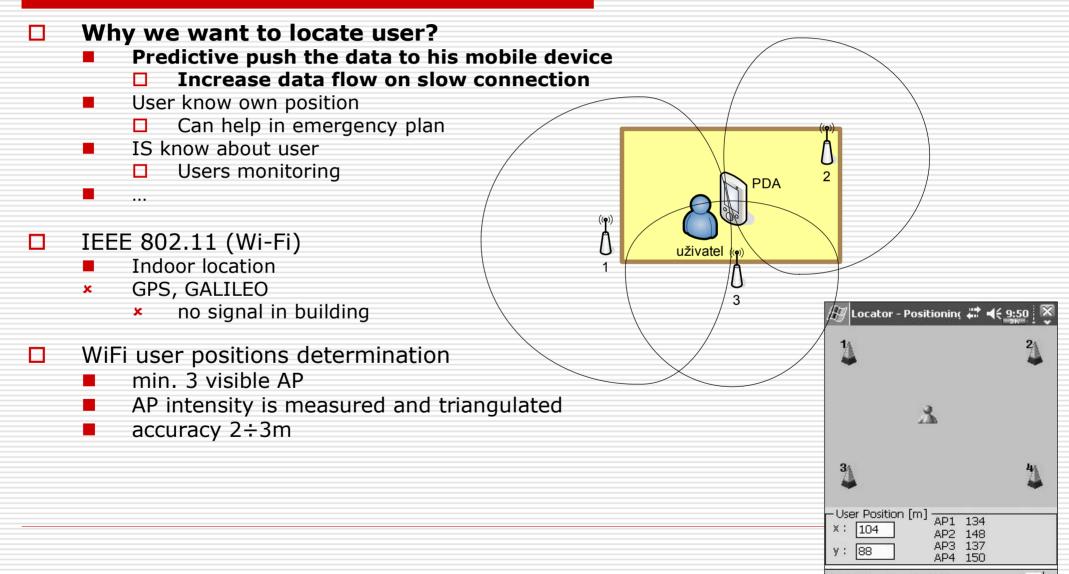
- SmartPhone
 - Java (J2ME)
- PDA, MDA
 - Java, .NET CF
- Mobile technology in information systems
 - On-line connection to information system
 - Small memory of mobile devices
 - Communication networks with small bandwidth
 - **Slow** information transfer from source to target

WiFi quality tests

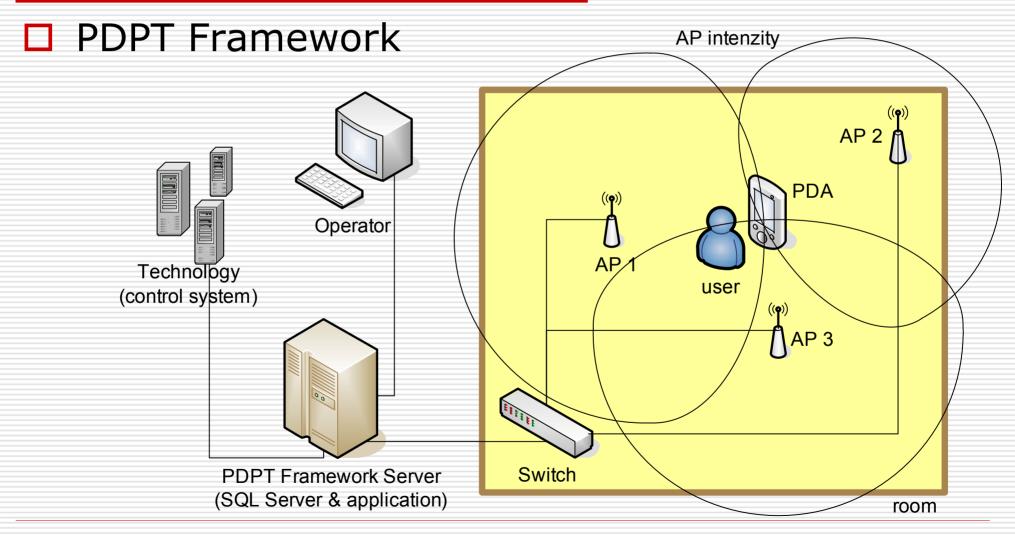
- Test between PC and PDA
- \Box WiFi signal strength = -20 dbm (80%)

	PDA				
	HP iPAQ H4150		HP iPAQ H5550		
File size [kB]*	Transfer rate [kB/s]	Transfer time [s]	Transfer rate [kB/s]	Transfer time [s]	
4 343	160	27	107	41	
7 208	124	58	91	79	
14 757	131	113	88	166	

 \square PC => PDA USB test ~ 268 kB/s


SQL database, technical plan (Acad), images, video, sound

Predictive data push can reduce transfer time


Mobile devices programming – .NET

- **Slow** information transfer from source to target
 - Theoretic transfer rate = 825 kB/s
 - Real transfer rate = 160 kB/s
- Localization of mobile device for predictive data push
 - Enhancement for existing Information Systems
 - ✓ Based on .NET CF (Compact framework)
 - ✓ Special library OpenNETCF 1.4
 - ✓ Used for manage WiFi (802.11b) hardware
 - Designed for SmartPhone & PDA (MDA)
 - Microsoft Windows Mobile operating system

Localization of mobile device

Localization - Framework - Technology

WiFi middleware – signal strength from AP

- dtVisibleAP = new DataTable("Visible AP");
- DataRow drDataRow;
- adptrColection = Networking.GetAdapters();
- foreach (Adapter adptr in adptrColection)

Application.DoEvents();

```
if (adptr.Type==AdapterType.Ethernet)
```

```
foreach (AccessPoint ap in 
adptr.NearbyAccessPoints)
```

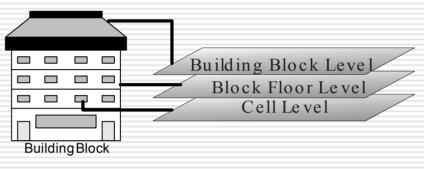
```
-
```

```
drDataRow = dtVisibleAP.NewRow();
```

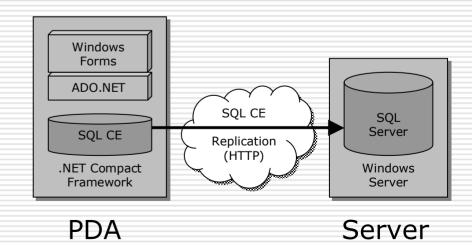
```
drDataRow["BSSID"] =
```

```
(ap.Name.ToString());
```

```
drDataRow["Signal [%]"] =
```

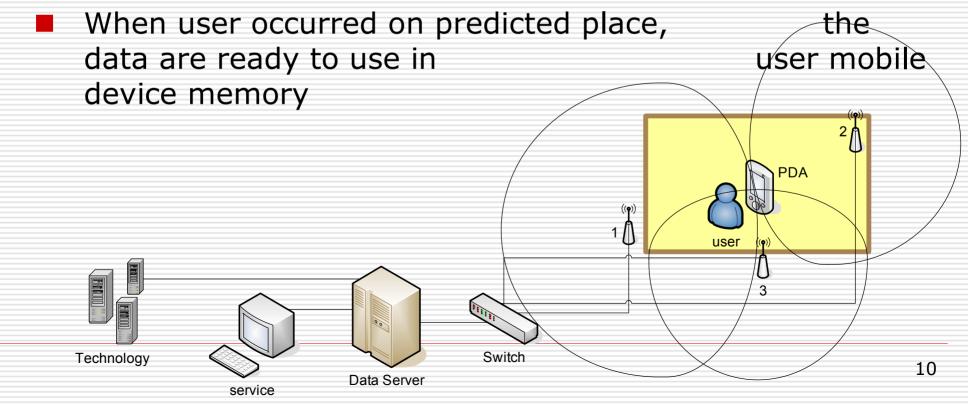

```
((ap.SignalStrength.Decibels).ToString());
```

```
dtVisibleAP.Rows.Add(drDataRow);
```

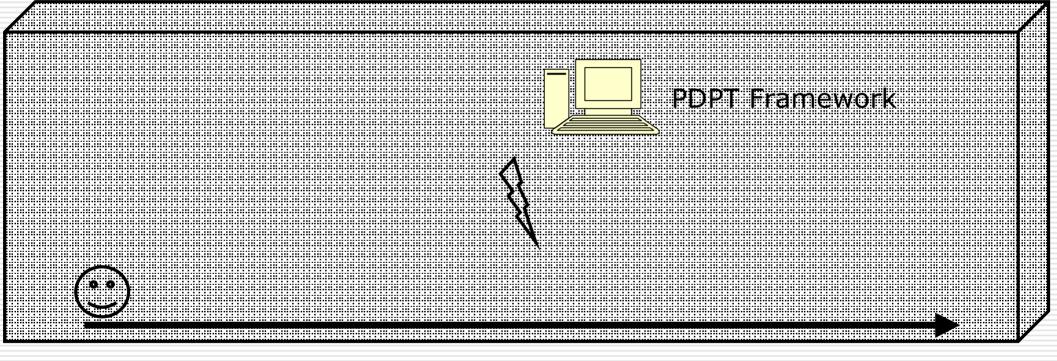

Locator - AP se lumber of AP: 4 Scan for AP E	lect #ੈ ◀< 11 ▼ xport loca	1	ositioninç 🛱 ┥	9:50 ×
visible Access Po P1 KOTNET P2 fialasec1 P3 fialasec2	oint intenzity		3	
P4 CL 88	→ ■			4
fialasec1	-67	= −User Position (m]	
SU 26_Formana	-68	x : 104	- API 134	
KOTNET	-40		AP2 148 AP3 137	
fialasec2	-75	y: 88	AP4 150	
c) by CAK - Krejcar	/ Czech Repub	ic Start/Stop Loca	ate Exit	US

Framework database architecture

- Wireless Location Architecture (WLA)
 - define structure for data store in database
 - defined as data levels in building plan for example
- Replication sequence
 - 1. the data about Building Block
 - 2. the Block Floor data
 - 3. the data about user occurred cell


WLA architecture

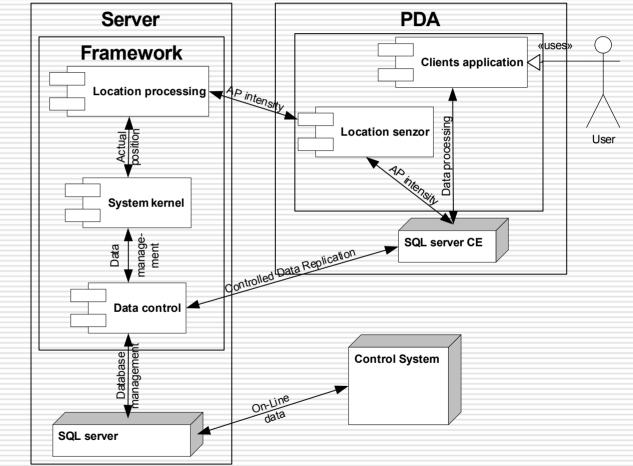
Framework principle


Framework working principle

- User is moving at some direction (from A to B)
- Framework core is respond with command to replication of database part

Framework principle demonstration

Building Blocks


Framework structure

Server User position determination

- Intelligent decision algorithm in Core
- SQL server has WLA architecture

Client

- AP intensity measurement
- Manage and displays prebuffered data
- SQL server CE

Conclusion

- The indoor location of a mobile user is obtained through an infrastructure of WiFi access points.
- User location is used in core of server application of PDPT framework to data pre-buffering and pushing information from server to user PDA.
- The experiments show
 - The location determination mechanism provides a good indication of the actual location of the user in most cases
 - The median resolution of the system ~ 5 meters (size of a typical office room)
- The experiments also show that the current state of the basic technology used for the framework (PDA HW, PDA OS, WiFi) is now at the level of a high usability of the PDPT application.

Conferences

- ACMOS'05, Automatic Control Modeling and Simulation, Prague
- ICINCO 2005, International conference on informatics in control, automation and robotics, Barcelona, Spain
 - 234 submissions accepted from 50 different countries
 - accepted as short paper (108 total)
 - short paper acceptance 28 %
- IEEE Workshop VRŠOV 2005

More information...

Localization

- Ekahau user lokalization <u>http://www.ekahau.com/</u>
- Newburynetworks Wi-Fi net. safety http://www.newburynetworks.com/
- WhereNet monitoring and control of vehicle -<u>http://www.wherenet.com/</u>
- □ .NET
 - Mobile Developer Center http://msdn.microsoft.com/mobility/
 - .NET Compact Framework -<u>http://msdn.microsoft.com/smartclient/understanding/ne</u> tcf/
 - Smart Device Framework <u>http://opennetcf.org</u>