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Check Bug Reports for Issues and Fixes

Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks

reports critical known bugs brought to its attention on its Bug Report system at

www . mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs tool
with the search phrase “Incorrect Code Generation” to obtain a report of known bugs that
produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies between
the actual behavior of a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.
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Configure a Model for Code Generation

Model configuration parameters determine the method for generating the
code and the resulting format.

1 Open rtwdemo_throttlecntrl and save a copy as throttlecntrlin a
writable location on your MATLAB path.

Note This model uses Stateflow® software.

2 Open the Configuration Parameters dialog box Solver pane. To generate
code for a model, you must configure the model to use a fixed-step solver.
For this example, set the parameters as noted in the following table.

Parameter

Setting

Effect on Generated
Code

Type

Fixed-step

Maintains a constant
(fixed) step size, which
is required for code
generation

Solver

discrete (no
continuous states)

Applies a fixed-step
integration technique
for computing the state
derivative of the model

Fixed-step size

.001

Sets the base rate;
must be the lowest
common multiple of all
rates in the system

Solver options

Type: | Fixed-step

- | Solver: |discrete (no continuous states) -

Fixed-step size (fundamental sample time):

1-2
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Configure a Model for Code Generation

3 Open the Code Generation pane and make sure that System target
file is set to grt.tlc.

Note The GRT (Generic Real-Time Target) configuration requires a
fixed-step solver. However, the rsim.tlc system target file supports
variable step code generation.

The system target file (STF) defines a target, which i1s an environment
for generating and building code for execution on a certain hardware or
operating system platform. For example, one property of a target is code
format. The grt configuration requires a fixed step solver and the rsim.tlc
supports variable step code generation.

4 Open the Code Generation > Custom Code pane, and under Include
list of additional, select Include directories. In the Include
directories text field, enter:

"$matlabroot$\toolbox\rtw\rtwdemos\EmbeddedCoderOverview\"

This directory includes files that are required to build an executable for
the model.

5 Apply your changes and close the dialog box.
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Scheduling

The following sections explain and illustrate how the Simulink® and
Simulink Coder™ products handle multirate (mixed-rate) models, depending
on whether code is being generated for single-tasking or multitasking
environments.

In this section...

“About Scheduling” on page 1-4

“Single-Tasking and Multitasking Execution Modes” on page 1-5
“Handle Rate Transitions” on page 1-13

“Single-Tasking and Multitasking Model Execution” on page 1-27
“Handle Asynchronous Events” on page 1-34

“Timers” on page 1-78

“Configure Scheduling” on page 1-89

About Scheduling

Simulink models run at one or more sample times. The Simulink product
provides considerable flexibility in building multirate systems, that is,
systems with more than one sample time. However, this same flexibility
also allows you to construct models for which the code generator cannot
generate real-time code for execution in a multitasking environment. To
make multirate models operate as expected in real time (that is, to give
the right answers), you sometimes must modify your model or instruct the
Simulink engine to modify the model for you. In general, the modifications
involve placing Rate Transition blocks between blocks that have unequal
sample times. The following sections discuss issues you must address to use
a multirate model in a multitasking environment. For a comprehensive
discussion of sample times, including rate transitions, see “What Is Sample
Time?”, “Sample Times in Subsystems”, “Sample Times in Systems”, “Resolve
Rate Transitions”, and associated topics.
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Single-Tasking and Multitasking Execution Modes

e “About Tasking Modes” on page 1-5

¢ “Execute Multitasking Models” on page 1-6

e “Multitasking and Pseudomultitasking Modes” on page 1-8

¢ “Build a Program for Multitasking Execution” on page 1-10

e “Single-Tasking Mode” on page 1-10

e “Build a Program for Single-Tasking Execution” on page 1-11
e “Model Execution and Rate Transitions” on page 1-11

® “Simulate Models with the Simulink Product” on page 1-12

¢ “Execute Models in Real Time” on page 1-12

e “Single-Tasking Versus Multitasking Operation” on page 1-13

About Tasking Modes

There are two execution modes for a fixed-step Simulink model: single-tasking

and multitasking. These modes are available only for fixed-step solvers. To
select an execution mode, use the Tasking mode for periodic sample
times menu on the Solver pane of the Configuration Parameters dialog
box. Auto mode (the default) applies multitasking execution for a multirate
model, and otherwise selects single-tasking execution. You can also select
SingleTasking or MultiTasking execution explicitly.

Execution of models in a real-time system can be done with the aid of a
real-time operating system, or it can be done on a bare-board target, where
the model runs in the context of an interrupt service routine (ISR).

The fact that a system (such as The Open Group UNIX® or Microsoft®
Windows® systems) is multitasking does not imply that your program can
execute in real time. This is because the program might not preempt other
processes when required.

In operating systems (such as PC-DOS) where only one process can exist at
a given time, an interrupt service routine (ISR) must perform the steps of
saving the processor context, executing the model code, collecting data, and
restoring the processor context.

1-5
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Other operating systems, such as POSIX-compliant ones, provide automatic
context switching and task scheduling. This simplifies the operations

performed by the ISR. In this case, the ISR simply enables the model execution

task, which 1s normally blocked. The next figure illustrates this difference.

Real-Time Clock

Hardware
Interrupt

Interrupt Service
Routine

Save Context

Y

Execute Model

Y

Collect Data

|

Restore Context

Program execution using an
interrupt service routine
(bareboard, with no real-time
operating system). See the
grt target for an example.

Real-Time Clock

Hardware

Interrupt

Interrupt Service
Routine

semGive

Program execution using a real-time
operating system primitive. See the
Tornado target for an example.

Execute Multitasking Models

In cases where the continuous part of a model executes at a rate that is
different from the discrete part, or a model has blocks with different sample

Context
Switch

Model Execution
Task

semTake

¥

Execute Model

v

Collect Data
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rates, the Simulink engine assigns each block a task identifier (tid) to
associate the block with the task that executes at the block’s sample rate.

You set sample rates and their constraints on the Solver pane of the

Configuration Parameters dialog box. To generate code with the Simulink

Coder software, you must select Fixed-step for the solver type. Certain
restrictions apply to the sample rates that you can use:

® The sample rate of a block must be an integer multiple of the base (that is,

the fastest) sample period.

® When Periodic sample time constraint is unconstrained, the base
sample period is determined by the Fixed step size specified on the
Solvers pane of the Configuration parameters dialog box.

® When Periodic sample time constraint is Specified, the base rate
fixed-step size is the first element of the sample time matrix that you

specify in the companion option Sample time properties. The Solver

pane from the example model rtwdemo_mrmtbb shows an example.

— Simulation time

Start time: [0.0 Stop time: | 10.0

— Solver options

Type: IFixedﬂtep j Solver: IDiscretE (no continuous states) j

Fixed-step size (fundamental sample time): Iauta

— Tasking and sample time options

[ Automatically handle rate transition for data transfer

[ Higher priority value indicates higher task priority

Periodic sample time constraint: ISpeciﬁEd ;I
Sample time properties: I [[1,0,00;[2,0,1];]
Tasking mode for periodic sample times: IMth‘I’asking ;l

¢ Continuous blocks execute by using an integration algorithm that runs
at the base sample rate. The base sample period is the greatest common
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denominator of all rates in the model only when Periodic sample time
constraint is set to Unconstrained and Fixed step size is Auto.

® The continuous and discrete parts of the model can execute at different
rates only if the discrete part is executed at the same or a slower rate than
the continuous part and is an integer multiple of the base sample rate.

Multitasking and Pseudomultitasking Modes

When periodic tasks execute in a multitasking mode, by default the blocks
with the fastest sample rates are executed by the task with the highest
priority, the next fastest blocks are executed by a task with the next higher
priority, and so on. Time available in between the processing of high-priority
tasks is used for processing lower priority tasks. This results in efficient
program execution.

Where tasks are asynchronous rather than periodic, there may not necessarily
be a relationship between sample rates and task priorities; the task with

the highest priority need not have the fastest sample rate. You specify
asynchronous task priorities using Async Interrupt and Task Sync blocks.
You can switch the sense of what priority numbers mean by selecting or
deselecting the Solver option Higher priority value indicates higher
task priority.

In multitasking environments (that is, under a real-time operating system),
you can define separate tasks and assign them priorities. In a bare-board
target (that is, no real-time operating system present), you cannot create
separate tasks. However, Simulink Coder application modules implement
what is effectively a multitasking execution scheme using overlapped
interrupts, accompanied by programmatic context switching.

This means an interrupt can occur while another interrupt is currently

in progress. When this happens, the current interrupt is preempted, the
floating-point unit (FPU) context is saved, and the higher priority interrupt
executes its higher priority (that is, faster sample rate) code. Once complete,
control is returned to the preempted ISR.

The next figures illustrate how timing of tasks in multirate systems are
handled by the Simulink Coder software in multitasking, pseudomultitasking,
and single-tasking environments.
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t0 t1 t2 t3 t4
1 V' 3 V' s V' 3 V' N
Highest Priority rate 1
y N
L R T A O R T
A . . ; A . . H A .
NN N
. 1
A 5 T l l rate 3
v —i -
Lowest Priority
T Vertical arrows indicate sample time hits.

Dotted lines with downward pointing
arrows indicate the release of control
to a lower priority task.

- -

Dark gray areas indicate task execution.
Dotted lines with upward pointing

W Hashed areas indicate task preemption
N by a higher priority task.
arrows indicate preemption by a

higher priority task. Light gray areas indicate task execution
is pending.

[

The next figure shows how overlapped interrupts are used to implement
pseudomultitasking. In this case, Interrupt O does not return until after
Interrupts 1, 2, and 3.

1-9



1 Modeling

Highest Priority

A

v

Lowest Priority

1-10

Interrupt O Interrupt 1 Interrupt 2 Interrupt 3

Begins ! : Begins : |

: | : : | i Interrupt 3

5 ' Interrupt 1 i ! Ends

t0 vt Ends i t3 ; / t4

A A : A 4 : I
; ; : Interrupt 2
i i i 1 l Ends

i : V/
N

— I
R

+Interrupt O
. Ends

T i [
O Y

Build a Program for Multitasking Execution

To use multitasking execution, select Auto (the default) or MultiTasking from
the Tasking mode for periodic sample times menu on the Solver pane
of the Configuration Parameters dialog box. This menu is active only if you
select Fixed-step as the solver type. Auto mode results in a multitasking
environment if your model has two or more different sample times. A model
with a continuous and a discrete sample time runs in single-tasking mode if
the fixed-step size is equal to the discrete sample time.

Single-Tasking Mode

You can execute model code in a strictly single-tasking manner. While this
mode is less efficient with regard to execution speed, in certain situations,
it can simplify your model.

In single-tasking mode, the base sample rate must define a time interval that
is long enough to allow the execution of all blocks within that interval.
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The next figure illustrates the inefficiency inherent in single-tasking
execution.

t0 t1 t2 t3 t4

A A A A A

Single-tasking system execution requires a base sample rate that is long
enough to execute one step through the entire model.

Build a Program for Single-Tasking Execution

To use single-tasking execution, select SingleTasking from the Tasking
mode for periodic sample times menu on the Solver pane of the
Configuration Parameters dialog box. If you select Auto, single-tasking is
used in the following cases:

¢ [f your model contains one sample time

¢ If your model contains a continuous and a discrete sample time and the
fixed step size i1s equal to the discrete sample time

Model Execution and Rate Transitions

To generate code that executes as expected in real time, you (or the Simulink
engine) might need to identify and handle sample rate transitions within

the model. In multitasking mode, by default the Simulink engine flags
errors during simulation if the model contains invalid rate transitions,
although you can use the Multitask rate transition diagnostic to alter this
behavior. A similar diagnostic, called Single task rate transition, exists for
single-tasking mode.

To avoid raising rate transition errors, insert Rate Transition blocks between
tasks. You can request that the Simulink engine handle rate transitions
automatically by inserting hidden Rate Transition blocks. See “Automatic
Rate Transition” on page 1-20 for an explanation of this option.

To understand such problems, first consider how Simulink simulations differ
from real-time programs.
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Simulate Models with the Simulink Product

Before the Simulink engine simulates a model, it orders the blocks based upon
their topological dependencies. This includes expanding virtual subsystems
into the individual blocks they contain and flattening the entire model into a
single list. Once this step is complete, each block is executed in order.

The key to this process is the ordering of blocks. A block whose output is
directly dependent on its input (that is, a block with direct feedthrough)
cannot execute until the block driving its input executes.

Some blocks set their outputs based on values acquired in a previous time
step or from initial conditions specified as a block parameter. The output

of such a block is determined by a value stored in memory, which can be
updated independently of its input. During simulation, computations are
performed prior to advancing the variable corresponding to time. This results
in computations occurring instantaneously (that is, no computational delay).

Execute Models in Real Time

A real-time program differs from a Simulink simulation in that the program
must execute the model code synchronously with real time. Every calculation
results in some computational delay. This means the sample intervals cannot
be shortened or lengthened (as they can be in a Simulink simulation), which
leads to less efficient execution.

Consider the following timing figure.

t0 t1 t2

A 7 N 7 N

Time ———»

Note the processing inefficiency in the sample interval t1. That interval
cannot be compressed to increase execution speed because, by definition,
sample times are clocked in real time.
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You can circumvent this potential inefficiency by using the multitasking
mode. The multitasking mode defines tasks with different priorities to
execute parts of the model code that have different sample rates.

See “Multitasking and Pseudomultitasking Modes” on page 1-8 for a
description of how this works. It is important to understand that section
before proceeding here.

Single-Tasking Versus Multitasking Operation

Single-tasking programs require longer sample intervals, because all
computations must be executed within each clock period. This can result in
inefficient use of available CPU time, as shown in the previous figure.

Multitasking mode can improve the efficiency of your program if the model is
large and has many blocks executing at each rate.

However, if your model is dominated by a single rate, and only a few blocks
execute at a slower rate, multitasking can actually degrade performance. In
such a model, the overhead incurred in task switching can be greater than the
time required to execute the slower blocks. In this case, it is more efficient to
execute all blocks at the dominant rate.

If you have a model that can benefit from multitasking execution, you might
need to modify your model by adding Rate Transition blocks (or instruct the
Simulink engine to do so) to generate expected results. The next section,
“Handle Rate Transitions” on page 1-13, discusses issues related to rate
transition blocks.

Handle Rate Transitions

* “About Rate Transitions” on page 1-14

e “Data Transfer Problems” on page 1-15

e “Data Transfer Assumptions” on page 1-16

e “Rate Transition Block Options” on page 1-17

® “Faster to Slower Transitions in a Simulink Model” on page 1-22

* “Faster to Slower Transitions in Real Time” on page 1-23
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® “Slower to Faster Transitions in a Simulink Model” on page 1-24

e “Slower to Faster Transitions in Real Time” on page 1-25

About Rate Transitions
Two periodic sample rate transitions can exist within a model:

e A faster block driving a slower block

¢ A slower block driving a faster block

The following sections concern models with periodic sample times with zero
offset only. Other considerations apply to multirate models that involve
asynchronous tasks. For details on how to generate code for asynchronous
multitasking, see “Handle Asynchronous Events” on page 1-34.

In multitasking and pseudomultitasking systems, differing sample rates can
cause blocks to be executed in the wrong order. To prevent possible errors in
calculated data, you must control model execution at these transitions. When
connecting faster and slower blocks, you or the Simulink engine must add
Rate Transition blocks between them. Fast-to-slow transitions are illustrated
in the next figure.

—>
—» T=1s » T=2s
—>
Faster Slower
Block Block
becomes
—>
.| Port-based: R _
:: T=1s ”|Tin = 1s; Tout = 2s » T=2s
Faster Rate Transition Slower
Block Block

Slow-to-fast transitions are illustrated in the next figure.
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—>
—»| T=2s » T=1s
—>
Slower Faster
Block Block
becomes
—
R Port-based: R
:: T=2s ”|Tin = 2s; Tout = 1s » T=1s
Slower Rate Transition Faster
Block Block

Note Although the Rate Transition block offers a superset of the capabilities
of the Unit Delay block (for slow-to-fast transitions) and the Zero-Order Hold
block (for fast-to-slow transitions), you should use the Rate Transition block
instead of these blocks.

Data Transfer Problems

Rate Transition blocks deal with issues of data integrity and determinism
associated with data transfer between blocks running at different rates.

® Data integrity: A problem of data integrity exists when the input to a block
changes during the execution of that block. Data integrity problems can be
caused by preemption.

Consider the following scenario:
= A faster block supplies the input to a slower block.

= The slower block reads an input value V, from the faster block and
begins computations using that value.

= The computations are preempted by another execution of the faster
block, which computes a new output value V.
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= A data integrity problem now arises: when the slower block resumes
execution, it continues its computations, now using the “new” input
value V.

Such a data transfer is called unprotected. “Faster to Slower Transitions in
Real Time” on page 1-23 shows an unprotected data transfer.

In a protected data transfer, the output V, of the faster block is held until
the slower block finishes executing.

Deterministic versus nondeterministic data transfer: In a deterministic
data transfer, the timing of the data transfer is completely predictable, as
determined by the sample rates of the blocks.

The timing of a nondeterministic data transfer depends on the availability
of data, the sample rates of the blocks, and the time at which the receiving
block begins to execute relative to the driving block.

You can use the Rate Transition block to protect data transfers in your
application and make them deterministic. These characteristics are
considered desirable in most applications. However, the Rate Transition
block supports flexible options that allow you to compromise data integrity
and determinism in favor of lower latency. The next section summarizes
these options.

Data Transfer Assumptions

When processing data transfers between tasks, the Simulink Coder software
assumes the following:

Data transitions occur between a single reading task and a single writing
task.

A read or write of a byte-sized variable is atomic.

When two tasks interact through a data transition, only one of them can
preempt the other.

For periodic tasks, the faster rate task has higher priority than the slower
rate task; the faster rate task preempts the slower rate task.

All tasks run on a single processor. Time slicing is not allowed.
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® Processes do not crash or restart (especially while data is transferred
between tasks).

Rate Transition Block Options

Several parameters of the Rate Transition block are relevant to its use in code
generation for real-time execution, as discussed below. For a complete block
description, see Rate Transition in the Simulink documentation.

The Rate Transition block handles periodic (fast to slow and slow to fast) and
asynchronous transitions. When inserted between two blocks of differing
sample rates, the Rate Transition block automatically configures its input
and output sample rates for the type of transition; you do not need to specify
whether a transition is slow-to-fast or fast-to-slow (low-to-high or high-to-low
priorities for asynchronous tasks).

The critical decision you must make in configuring a Rate Transition block is
the choice of data transfer mechanism to be used between the two rates. Your
choice is dictated by considerations of safety, memory usage, and performance.
As the Rate Transition block parameter dialog box in the next figure shows,
the data transfer mechanism is controlled by two options.
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E! Function Block Parameters: Rate Transition B3

—R.ateTransition

Handle transfer of data between ports operating at different rates. Configuration
options allow ywou ko trade off transfer delay and code efficiency For safety and
determinism of data transfer. The default configuration assures safe and
deterministic data transfer. The block's behavior depends on option settings andjar
the sample times of its input and output ports, Updating the block diagram causes
text on the black's icon to indicate its behavior as Follows:

ZOH: Zero Order Hold
1fz: Unit Delay
Buf: Copy input to outpuk under semaphore control
Db_buf: Copy input ko output, using double buffers
Copy: Unprotected copy From input to output
MNoCp: Mo Opetation
Mixed: Expanded to multiple blocks with different
behaviors
—Parameters

¥ Ensure data integrity during data transfer
[V Ensure deterministic data transfer (maximum delay)
Initial conditions:

o

Oukput part sample time options: | Specify LI

Outpuk port sample time:

-1

oK Cancel | Help | Appliy |

¢ Ensure data integrity during data transfer: When this option is on,
data transferred between rates maintains its integrity (the data transfer
is protected). When this option is off, the data might not maintain its
integrity (the data transfer is unprotected). By default, Ensure data
integrity during data transfer is on.

¢ Ensure deterministic data transfer (maximum delay): This option is
supported for periodic tasks with an offset of zero and fast and slow rates
that are multiples of each other. Enable this option for protected data
transfers (when Ensure data integrity during data transfer is on).
When this option is on, the Rate Transition block behaves like a Zero-Order
Hold block (for fast to slow transitions) or a Unit Delay block (for slow to
fast transitions). The Rate Transition block controls the timing of data
transfer in a completely predictable way. When this option is off, the data
transfer is nondeterministic. By default, Ensure deterministic data
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transfer (maximum delay) is on for transitions between periodic rates
with an offset of zero; for asynchronous transitions, it cannot be selected.

Thus the Rate Transition block offers three modes of operation with respect to
data transfer. In order of level of safety:

¢ Protected/Deterministic (default): This is the safest mode. The
drawback of this mode is that it introduces deterministic latency into the
system for the case of slow-to-fast periodic rate transitions. For that case,
the latency introduced by the Rate Transition block is one sample period of
the slower task. For the case of fast-to-slow periodic rate transitions, the
Rate Transition block introduces no additional latency.

* Protected/NonDeterministic: In this mode, for slow-to-fast periodic rate
transitions, data integrity is protected by double-buffering data transferred
between rates. For fast-to-slow periodic rate transitions, a semaphore
flag is used. The blocks downstream from the Rate Transition block use
the latest available data from the block that drives the Rate Transition
block. Maximum latency is less than or equal to one sample period of the
faster task.

The drawbacks of this mode are its nondeterministic timing. The advantage
of this mode is i1ts low latency.

¢ Unprotected/NonDeterministic: This mode is not recommended for
mission-critical applications. The latency of this mode is the same as for
Protected/NonDeterministic mode, but memory requirements are reduced
since neither double-buffering nor semaphores are required. That is, the
Rate Transition block does nothing in this mode other than to pass signals
through; it simply exists to notify you that a rate transition exists (and can
cause generated code to compute incorrect answers). Selecting this mode,
however, generates the least amount of code.

Note In unprotected mode (Ensure data integrity during data
transfer option off), the Rate Transition block does nothing other than
allow the rate transition to exist in the model.
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Avutomatic Rate Transition. The Simulink engine can detect mismatched
rate transitions in a multitasking model and automatically insert Rate
Transition blocks to handle them. To instruct the engine to do this, select
Automatically handle rate transition for data transfer on the Solver
pane of the Configuration Parameters dialog box.

The Automatically handle rate transition for data transfer option is off
by default. When you select it,

® The Simulink engine handles transitions between periodic sample times
and asynchronous tasks.

¢ The Simulink engine inserts “hidden” Rate Transition blocks that are not
visible on the block diagram.

® The Simulink Coder software generates code for the automatically inserted
Rate Transition blocks that is identical to that generated for manually
inserted Rate Transition blocks.

® Automatically inserted Rate Transition blocks operate in protected mode
for periodic tasks and asynchronous tasks, which you cannot alter. For
periodic tasks, automatically inserted Rate Transition blocks operate
with the level of determinism specified by the Solver pane parameter
Deterministic data transfer. (The default setting is Whenever
possible, which enables determinism for data transfers between periodic
sample-times that are related by an integer multiple; for more information,
see “Deterministic data transfer” in the Simulink reference documentation.)
To use other modes, you must insert Rate Transition blocks and set their
modes manually.

For example, in the following model SineWave2 has a Sample time of 2, and
SineWave3 has a Sample time of 3.
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If Automatically handle rate transition for data transfer is on, the
Simulink engine inserts an invisible Rate Transition block between each Sine
Wave block and the Product block. The inserted blocks have the parameter
values required to reconcile the Sine Wave block sample times.

Inserted Rate Transition Block HTML Report

When the Simulink engine has automatically inserted Rate Transition blocks
into a model, after code generation the optional HTML code generation report
includes a List of inserted blocks that describes the blocks. For example,
the following report describes the two Rate Transition blocks that the engine

automatically inserts into the previous model.

E Code Generation Report

(=] @ s

-

Back Forward

Contents
Summary
Subsystem Report

Generated Files

[-1 Model files

m

Inserted Block

RateTransition block:
<Root>/TmpRTBAtProductInportl

RateTransition block:
<Root>/TmpRTBAtProductInport2

List of Inserted Blocks for rtb_sample

Destination Comment
<Root>/SineWaveZ2 at _<R00t>,-fProduc:t at Inserted to handle

Source

outport 1

<Root>/SineWave3 at _<R00t>,-’Pr0duu:t at Inserted to handle

outport 1

m

inport 1 data transfer
between tasks

inport 2 data transfer
between tasks

oK [ Hep
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Only automatically inserted Rate Transition blocks appear in a List of
inserted blocks. If no such blocks exist in a model, the HTML code
generation report does not include a List of inserted blocks.

Rate Transition Blocks and Continuous Time. The sample time at the
output port of a Rate Transition block can only be discrete or fixed in minor
time step. This means that when a Rate Transition block inherits continuous
sample time from its destination block, it treats the inherited sample time
as Fixed in Minor Time Step. Therefore, the output function of the Rate
Transition block runs only at major time steps. If the destination block
sample time is continuous, Rate Transition block output sample time is the
base rate sample time (if solver is fixed-step), or zero-order-hold-continuous
sample time (if solver is variable-step).

The next four sections describe cases in which Rate Transition blocks are
required for periodic sample rate transitions. The discussion and timing
diagrams in these sections are based on the assumption that the Rate
Transition block is used in its default (protected/deterministic) mode;

that is, the Ensure data integrity during data transfer and Ensure
deterministic data transfer (maximum delay) options are both on. These
are the settings used for automatically inserted Rate Transition blocks.

Faster to Slower Transitions in a Simulink Model

In a model where a faster block drives a slower block having direct
feedthrough, the outputs of the faster block are computed first. In simulation
intervals where the slower block does not execute, the simulation progresses
more rapidly because there are fewer blocks to execute. The next figure
illustrates this situation.

t0 t1 2 t3
_’ A A A A
—»| T=1s p T=2s
— T=1s| T=2s |T=1s|T=1s| T=2s |T=1s
Faster Slower
Block Block Time N

A Simulink simulation does not execute in real time, which means that it is
not bound by real-time constraints. The simulation waits for, or moves ahead
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to, whatever tasks are required to complete simulation flow. The actual time
interval between sample time steps can vary.

Faster to Slower Transitions in Real Time

In models where a faster block drives a slower block, you must compensate
for the fact that execution of the slower block might span more than one
execution period of the faster block. This means that the outputs of the faster
block can change before the slower block has finished computing its outputs.
The next figure shows a situation in which this problem arises (T = sample
time). Note that lower priority tasks are preempted by higher priority tasks
before completion.

L

i 1 9c=EN IO
T

T=1s —®» T=2s
Faster Slower 1 Sec A \> é > A
Block Block Task

T=1s @ T=1s @ T=1s @

Time P

=1s @

@ The faster task (T=1s) completes.
@ Higher priority preemption occurs.

@ The slower task (T=2s) resumes and its inputs
have changed. This leads to unpredictable results.

In the above figure, the faster block executes a second time before the slower
block has completed execution. This can cause unpredictable results because
the input data to the slow task is changing. Data might not maintain its
integrity in this situation.

To avoid this situation, the Simulink engine must hold the outputs of the 1
second (faster) block until the 2 second (slower) block finishes executing. The
way to accomplish this is by inserting a Rate Transition block between the 1
second and 2 second blocks. The input to the slower block does not change
during its execution, maintaining data integrity.
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—>
—| T=1s |—»Tin=1Tout=2—» T=2s
—>

Faster Block Rate Transition Slower Block

It 1s assumed that the Rate Transition block is used in its default
(protected/deterministic) mode.

The Rate Transition block executes at the sample rate of the slower block, but
with the priority of the faster block.

0 2
2
2 Sec T T=25 I T=2s

yal Val

0 t 2 3

V' N A A V' N
1Sec | 1=1s| RT T=1s T=1s | RT T=1s
Task

v

Time

When you add a Rate Transition block, the block executes before the 2 second
block (its priority is higher) and its output value is held constant while the 2
second block executes (it executes at the slower sample rate).

Slower to Faster Transitions in a Simulink Model

In a model where a slower block drives a faster block, the Simulink engine
again computes the output of the driving block first. During sample intervals
where only the faster block executes, the simulation progresses more rapidly.

The next figure shows the execution sequence.
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t0 t1 t2 t3
_’ A A y N A
—»| T=2s p T=1s
- T=2s |T=1s|T=1s| T=2s |T=1s|T=1s
Slower Faster
Block Block Time N

As you can see from the preceding figures, the Simulink engine can simulate
models with multiple sample rates in an efficient manner. However, a
Simulink simulation does not operate in real time.

Slower to Faster Transitions in Real Time

In models where a slower block drives a faster block, the generated code
assigns the faster block a higher priority than the slower block. This means
the faster block is executed before the slower block, which requires special
care to avoid incorrect results.

t0 t2
A
2 Sec T=2s T=2s
Task M M ™
—
—> T=2s T=1s t2 3 t4
- A V' N A
Block Faster
Block 1 Sec T=1s T=1s T=1s
Task

v

Time

@ The faster block executes a second time prior
to the completion of the slower block.

@ The faster block executes before the slower block.

This timing diagram illustrates two problems:

¢ Execution of the slower block is split over more than one faster block
interval. In this case the faster task executes a second time before the
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slower task has completed execution. This means the inputs to the faster
task can have incorrect values some of the time.

® The faster block executes before the slower block (which is backward from
the way a Simulink simulation operates). In this case, the 1 second block
executes first; but the inputs to the faster task have not been computed.
This can cause unpredictable results.

To eliminate these problems, you must insert a Rate Transition block between
the slower and faster blocks.

—
—» T=2s i Tin =2 Tout =1 »p T=1s
—
Slower Rate Transition Faster
Block Block

It is assumed that the Rate Transition block is used in its default
(protected/deterministic) mode.

The next figure shows the timing sequence that results with the added Rate

Transition block.

2 Sec _ RT _ RT
Task /’ T=2s update \ /’ T=2s update
t0
A
1 Sec
Task | output| T=1S T=1s ®

v

Time
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Three key points about transitions in this diagram (refer to circled numbers):

1 The Rate Transition block output runs in the 1 second task, but at a slower
rate (2 seconds). The output of the Rate Transition block feeds the 1 second
task blocks.

2 The Rate Transition update uses the output of the 2 second task to update
its internal state.

3 The Rate Transition output in the 1 second task uses the state of the Rate
Transition that was updated in the 2 second task.

The first problem is alleviated because the Rate Transition block is updating
at a slower rate and at the priority of the slower block. The input to the Rate
Transition block (which is the output of the slower block) is read after the
slower block completes executing.

The second problem is alleviated because the Rate Transition block executes
at a slower rate and its output does not change during the computation of the
faster block it is driving. The output portion of a Rate Transition block is
executed at the sample rate of the slower block, but with the priority of the
faster block. Since the Rate Transition block drives the faster block and has
effectively the same priority, it is executed before the faster block.

Note This use of the Rate Transition block changes the model. The output
of the slower block is now delayed by one time step compared to the output
without a Rate Transition block.

Single-Tasking and Multitasking Model Execution

® “Introduction” on page 1-28
® “Single-Tasking Execution” on page 1-28
e “Multitasking Execution” on page 1-30
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Introduction

This section examines how a simple multirate model executes in both real
time and simulation, using a fixed-step solver. It considers the operation of
both SingleTasking and MultiTasking Solver pane tasking modes.

The example model is shown in the next figure. The discussion refers to the
six blocks of the model as A through F, as labeled in the block diagram.

The execution order of the blocks (indicated in the upper right of each block)
has been forced into the order shown by assigning higher priorities to blocks F,
E, and D. The ordering shown is one possible valid execution ordering for this
model. (See “Simulating Dynamic Systems” in the Simulink documentation.)

The execution order is determined by data dependencies between blocks.

In a real-time system, the execution order determines the order in which
blocks execute within a given time interval or task. This discussion treats the
model’s execution order as a given, because it is concerned with the allocation
of block computations to tasks, and the scheduling of task execution.

T e [ o5

. | 1 =i KTs
;i L KTs »
E m m 1+0.521 m *I]]]I] z1

- Si"l: #:E; . Rate Trars fion Si“’:*_ﬁ:"‘_: Rste Trans kion
e (Fast o Slow) el (Slow to Fast)

Diorete Stte Space
Sampie Time=0.1

Diorete Time
Integrator
Sample Time=0.1

Note The discussion and timing diagrams in this section are based on
the assumption that the Rate Transition blocks are used in the default
(protected/deterministic) mode, with the Ensure data integrity during
data transfer and Ensure deterministic data transfer (maximum
delay) options on.

Single-Tasking Execution

This section considers the execution of the above model when the solver
Tasking mode is SingleTasking.

In a single-tasking system, if the Block reduction option on the
Optimization pane is on, fast-to-slow Rate Transition blocks are optimized
out of the model. The default case is shown (Block reduction on), so block B
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does not appear in the timing diagrams in this section. For more information,
see “Block reduction”.

The following table shows, for each block in the model, the execution order,
sample time, and whether the block has an output or update computation.
Block A does not have discrete states, and accordingly does not have an
update computation.

Execution Order and Sample Times (Single-Tasking)

Blocks

(in Execution Sample Time

Order) (in Seconds) Output Update
F 0.1 Y Y

E 0.1 Y Y

D 1 Y Y

A 0.1 Y N

C 1 Y Y

Real-Time Single-Tasking Execution. The next figure shows the
scheduling of computations when the generated code is deployed in a real-time
system. The generated program is shown running in real time, under control
of interrupts from a 10 Hz timer.

(wait) (wait)

Update: FEDC] | [FE | | [FE] .. [FEDC]..

Time: 0.0 0.1 0.2 1.0

—
——
v
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At time 0.0, 1.0, and every second thereafter, both the slow and fast blocks
execute their output computations; this is followed by update computations
for blocks that have states. Within a given time interval, output and update
computations are sequenced in block execution order.

The fast blocks execute on every tick, at intervals of 0.1 second. Output
computations are followed by update computations.

The system spends some portion of each time interval (labeled “wait”) idling.
During the intervals when only the fast blocks execute, a larger portion

of the interval is spent idling. This illustrates an inherent inefficiency of
single-tasking mode.

Simulated Single-Tasking Execution. The next figure shows the execution
of the model during the Simulink simulation loop.

Output: [FEA] [FEA [FEDAC

v v A

y y
Update: FEDC| FE | [FEDC]...

Time: 0.0 0.1 0.2 1.0

v

Because time is simulated, the placement of ticks represents the iterations
of the simulation loop. Blocks execute in exactly the same order as in the
previous figure, but without the constraint of a real-time clock. Therefore
there is no idle time between simulated sample periods.

Multitasking Execution

This section considers the execution of the above model when the solver
Tasking mode is MultiTasking. Block computations are executed under
two tasks, prioritized by rate:

¢ The slower task, which gets the lower priority, is scheduled to run every
second. This is called the I second task.
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® The faster task, which gets higher priority, is scheduled to run 10 times
per second. This is called the 0.1 second task. The 0.1 second task can
preempt the 1 second task.

The following table shows, for each block in the model, the execution order,
the task under which the block runs, and whether the block has an output
or update computation. Blocks A and B do not have discrete states, and

accordingly do not have an update computation.

Task Allocation of Blocks in Multitasking Execution

Blocks
(in Execution
Order) Task Output | Update
F 0.1 second task Y Y
E 0.1 second task Y Y
D The Rate Transition block uses Y Y

port-based sample times.

Output runs at the output port

sample time under 0.1 second

task.

Update runs at input port sample

time under 1 second task.

For more information on

port-based sample times, see

“Inherit Sample Times” in the

Simulink documentation.
A 0.1 second task Y N
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Task Allocation of Blocks in Multitasking Execution (Continued)

Blocks
(in Execution
Order) Task Output | Update
B The Rate Transition block uses Y N
port-based sample times.
Output runs at the output port
sample time under 0.1 second
task.
For more information on
port-based sample times, see
“Inherit Sample Times” in the
Simulink documentation.
C 1 second task Y Y

Real-Time Multitasking Execution. The next figure shows the scheduling
of computations in MultiTasking solver mode when the generated code is
deployed in a real-time system. The generated program is shown running in
real time, as two tasks under control of interrupts from a 10 Hz timer.
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Simulated Multitasking Execution. The next figure shows the Simulink
execution of the same model, in MultiTasking solver mode. In this case,
the Simulink engine runs the blocks in one thread of execution, simulating
multitasking. No preemption occurs.
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Handle Asynchronous Events

® “About Asynchronous Events” on page 1-35

¢ “Handling Interrupts” on page 1-37

e “Rate Transitions and Asynchronous Blocks” on page 1-53

e “Use Timers in Asynchronous Tasks” on page 1-58

® “Create a Customized Asynchronous Library” on page 1-60

¢ “Import Asynchronous Event Data for Simulation” on page 1-69

* “Asynchronous Support Limitations” on page 1-73

1.1

v
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About Asynchronous Events

* “Asynchronous Support” on page 1-35

e “Block Library for Wind River Systems VxWorks Real-Time Operating
System” on page 1-35

® “Access the VxWorks Block Library” on page 1-36
® “Generate Code with the VxWorks Library Blocks” on page 1-37

e “Examples and Additional Information” on page 1-37

Asynchronous Support. Simulink Coder models are normally timed from
a periodic interrupt source (for example, a hardware timer). Blocks in a
periodically clocked single-rate model run at a timer interrupt rate (the base
rate of the model). Blocks in a periodically clocked multirate model run at the
base rate or at submultiples of that rate.

Many systems must also support execution of blocks in response to events that
are asynchronous with respect to the periodic timing source of the system. For
example, a peripheral device might signal completion of an input operation
by generating an interrupt. The system must service such interrupts, for
example, by acquiring data from the interrupting device.

This chapter explains how to use blocks to model and generate code for
asynchronous event handling, including servicing of hardware-generated
Interrupts, maintenance of timers, asynchronous read and write operations,
and spawning of asynchronous tasks under a real-time operating system
(RTOS). Although the blocks target the Wind River® Systems VxWorks®
Tornado® RTOS, this chapter provides source code analysis and other
information you can use to develop blocks that support asynchronous event
handling for an alternative target RTOS.

Block Library for Wind River Systems VxWorks Real-Time Operating

System. The next figure shows the blocks in the VxWorks block library
(vx1lib1).
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The key blocks in the library are the Async Interrupt and Task Sync blocks.
These blocks are targeted for the VxWorks Tornado operating system. You
can use them, without modification, to support VxWorks applications.

If you want to implement asynchronous support for an RTOS other than
VxWorks RTOS, guidelines and example code are provided that will help
you to adapt the VxWorks library blocks to target your RTOS. This topic is
discussed in “Create a Customized Asynchronous Library” on page 1-60.

The VxWorks library includes blocks you can use to

¢ Generate interrupt-level code — Async Interrupt block

® Spawn a VxWorks task that calls a function call subsystem — Task Sync
block

® Enable data integrity when transferring data between blocks running as
different tasks — Protected RT block

¢ Use an unprotected/nondeterministic mode when transferring data
between blocks running as different tasks — Unprotected RT block

The use of protected and unprotected Rate Transition blocks in asynchronous
contexts is discussed in “Rate Transitions and Asynchronous Blocks” on page
1-53. For general information on rate transitions, see “Scheduling” on page
1-4.

Access the VxWorks Block Library. To access the VxWorks library, enter
the MATLAB® command vx1ib1.
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Generate Code with the VxWorks Library Blocks. To generate a
VxWorks compatible application from a model containing VxWorks library
blocks, select one of the following targets from the System Target File Browser
associated with the model:

® ert.tlc Embedded Coder. This target is provided with the Embedded
Coder® product.

When using the ERT target with VxWorks library blocks, you must
select the Generate an example main program option, and select
VxWorksExample from the Target operating system menu.

® tornado.tlc Tornado (VxWorks) Real-Time Target.

Examples and Additional Information. Additional information relevant
to the topics in this chapter can be found in

¢ The rtwdemo_async model. To open this example, type rtwdemo_async
at the MATLAB command prompt.

® The rtwdemo_async_mdlreftop model. To open this example, type
rtwdemo_async_mdlreftop at the MATLAB command prompt.

® “Scheduling” on page 1-4, discusses general multitasking and rate
transition issues for periodic models.

¢ The Embedded Coder documentation discusses the Embedded Real-Time
(ERT) target, including task execution and scheduling.

® See your VxWorks system documentation for detailed information about
the VxWorks system calls mentioned in this chapter.

Handling Interrupts

® “Generate Interrupt Service Routines” on page 1-37

® “Spawn a Wind River Systems VxWorks Task” on page 1-46

Generate Interrupt Service Routines. To generate an interrupt service
routine (ISR) associated with a specific Wind River Systems VxWorks VME
interrupt level, use the Async Interrupt block. The Async Interrupt block
enables the specified interrupt level and installs an ISR that calls a connected
function call subsystem.
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You can also use the Async Interrupt block in a simulation. It provides an
input port that can be enabled and connected to a simulated interrupt source.

Connecting the Async Interrupt Block

To generate an ISR, connect an output of the Async Interrupt block to the
control input of

¢ A function call subsystem
¢ The input of a Task Sync block
¢ The input to a Stateflow chart configured for a function call input event

The next figure shows an Async Interrupt block configured to service two

interrupt sources. The outputs (signal width 2) are connected to two function
call subsystems.

i
[N
20 Hz
| Sim
Out #(SimIRQ  IRQN

Coder
ﬂ'ﬁ Envircnment Async Interrupt |

Controller T )
0 Hz I utt

Unprotected RT1

b

> (D)
I [ out2
Count1 Unprotected RT2

Requirements and Restrictions
Note the following requirements and restrictions:

® The Async Interrupt block supports VME interrupts 1 through 7.

® The Async Interrupt block requires a VxWorks Board Support Package
(BSP) that supports the following VxWorks system calls:
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= sysIntEnable
= sysIntDisable
= intConnect

= intLock

= intUnlock

= tickGet

Performance Considerations

Execution of large subsystems at interrupt level can have a significant impact
on interrupt response time for interrupts of equal and lower priority in the
system. As a general rule, it is best to keep ISRs as short as possible. Connect
only function call subsystems that contain a small number of blocks to an
Async Interrupt block.

A better solution for large subsystems is to use the Task Sync block to
synchronize the execution of the function call subsystem to a VxWorks

task. The Task Sync block is placed between the Async Interrupt block and
the function call subsystem. The Async Interrupt block then installs the
Task Sync block as the ISR. The ISR releases a synchronization semaphore
(performs a semGive) to the task, and returns immediately from interrupt
level. The task is then scheduled and run by the VxWorks RTOS. See “Spawn
a Wind River Systems VxWorks Task” on page 1-46 for more information.

Using the Async Interrupt Block in Simulation and Code Generation

This section describes a dual-model approach to the development and
implementation of real-time systems that include ISRs. In this approach, you
develop one model that includes a plant and a controller for simulation, and
another model that only includes the controller for code generation. Using a
Simulink library, you can implement changes to both models simultaneously.
The next figure shows how changes made to the plant or controller, both of
which are in a library, are propagated to the models.
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ol Model .
| Plant | |Controller| ant (for simulation)
Library: Changes made here Interrupt
affect both models. Block
_ (Simulation v
input enabled) Controller
Interrupt
Block Viodel
Simulink Coder library Interrupt (for code generation)
> Block l
Controller

Dual-Model Use of Async Interrupt Block for Simulation and Code Generation

A single-model approach is also possible. In this approach, the Plant
component of the model is active only in simulation. During code generation,
the Plant components are effectively switched out of the system and code is
generated only for the interrupt block and controller parts of the model. For
an example of this approach, see the rtwdemo_async model.

Dual-Model Approach: Simulation
The following block diagram shows a simple model that illustrates the

dual-model approach to modeling. During simulation, the Pulse Generator
blocks provide simulated interrupt signals.
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The simulated interrupt signals are routed through the Async Interrupt
block’s input port. Upon receiving a simulated interrupt, the block calls the
connected subsystem.

During simulation, subsystems connected to Async Interrupt block outputs
are executed in order of their VxWorks priority. In the event that two or more
interrupt signals occur simultaneously, the Async Interrupt block executes
the downstream systems in the order specified by their interrupt levels (level
7 gets the highest priority). The first input element maps to the first output
element.

You can also use the Async Interrupt block in a simulation without enabling
the simulation input. In such a case, the Async Interrupt block inherits the
base rate of the model and calls the connected subsystems in order of their
VxWorks priorities. (In this case, the Async Interrupt block behaves as if all
inputs received a 1 simultaneously.)

Dual-Model Approach: Code Generation

In the generated code for the sample model,

¢ Ground blocks provide input signals to the Environment Controller block
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® The Async Interrupt block does not use its simulation input

The Ground blocks drive control input of the Environment Controller block so

code 1s not generated for that signal path. The Simulink Coder code generator

does not generate code for blocks that drive the simulation control input to the
Environment Controller block because that path is not selected during code
generation. However, the sample times of driving blocks for the simulation
input to the Environment Controller block contribute to the sample times
supported in the generated code. To avoid including unnecessary sample
times in the generated code, use the sample times of the blocks driving the
simulation input in the model where generated code is intended.
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Standalone functions are installed as ISRs and the interrupt vector table
is as follows:

Offset
192 &isr_numi_vec192()
193 &isr_num2_vec193()

Consider the code generated from this model, assuming that the Async
Interrupt block parameters are configured as shown in the next figure.
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Initialization Code

In the generated code, the Async Interrupt block installs the code in the
Subsystem blocks as interrupt service routines. The interrupt vectors for
IRQ1 and IRQ2 are stored at locations 192 and 193 relative to the base of the
interrupt vector table, as specified by the VME interrupt vector offset(s)
parameter.

Installing an ISR requires two VxWorks calls, int_connect and
sysInt_Enable. The Async Interrupt block inserts these calls in the
model_initialize function, as shown in the following code excerpt.

/* VxWorks Interrupt Block: '<Root>/Async Interrupt' */
/* Connect and enable ISR function: isr_numi_vec192 */
if( intConnect (INUM_TO_IVEC(192), isr_numi_vec192, 0) != OK) {
printf("intConnect failed for ISR 1.\n");

}
sysIntEnable(1);
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/* VxWorks Interrupt Block: '<Root>/Async Interrupt' */
/* Connect and enable ISR function: isr_num2_vec193 */
if( intConnect (INUM_TO_IVEC(193), isr_num2_vec193, 0) != OK)
{
printf("intConnect failed for ISR 2.\n");
}
sysIntEnable(2);

The hardware that generates the interrupt is not configured by the Async
Interrupt block. Typically, the interrupt source is a VME I/O board, which
generates interrupts for specific events (for example, end of A/D conversion).
The VME interrupt level and vector are set up in registers or by using jumpers
on the board. You can use the md1Start routine of a user-written device
driver (S-function) to set up the registers and enable interrupt generation on
the board. You must match the interrupt level and vector specified in the
Async Interrupt block dialog to the level and vector set up on the I/0 board.

Generated ISR Code

The actual ISR generated for IRQ1 is listed below.

/* VxWorks Interrupt Block: '<Root>/Async Interrupt' */

void isr_numi_vec192(void)
{

int_T lock;

FP_CONTEXT context;

/* Use tickGet() as a portable tick counter example.
A much higher resolution can be achieved with a
hardware counter */

Async_Code_M->Timing.clockTick2 = tickGet();

/* disable interrupts (system is configured as non-ive) */
lock = intLock();

/* save floating point context */
fppSave (&context);
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/* Call the system: <Root>/Subsystem A */
Count (0, 0);

/* restore floating point context */
fppRestore(&context);

/* re-enable interrupts */
intUnlock(lock);

There are several features of the ISR that should be noted:

® Because of the setting of the Preemption Flag(s) parameter, this ISR is
locked; that is, it cannot be preempted by a higher priority interrupt. The
ISR is locked and unlocked by the VxWorks int_lock and int_unlock
functions.

® The connected subsystem, Count, is called from within the ISR.

¢ The Count function executes algorithmic (model) code. Therefore, the
floating-point context is saved and restored across the call to Count.

e The ISR maintains its own absolute time counter, which is distinct from
other periodic base rate or subrate counters in the system. Timing data is
maintained for the use of any blocks executed within the ISR that require
absolute or elapsed time.

See “Use Timers in Asynchronous Tasks” on page 1-58 for details.

Model Termination Code

The model’s termination function disables the interrupts:

/* Model terminate function */

void Async_Code_terminate(void)

{
/* VxWorks Interrupt Block: '<Root>/Async Interrupt' */
/* Disable interrupt for ISR system: isr_numi_vec192 */
sysIntDisable(1);
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/* VxWorks Interrupt Block: '<Root>/Async Interrupt' */
/* Disable interrupt for ISR system: isr_num2_vec193 */
sysIntDisable(2);

}

Spawn a Wind River Systems VxWorks Task. To spawn an independent
VxWorks task, use the Task Sync block. The Task Sync block is a function
call subsystem that spawns an independent VxWorks task. The task calls the
function call subsystem connected to the output of the Task Sync block.

Typically, the Task Sync block is placed between an Async Interrupt block
and a function call subsystem block or a Stateflow chart. Another example
would be to place the Task Sync block at the output of a Stateflow chart that
has an event, Output to Simulink, configured as a function call.

The Task Sync block performs the following functions:

® An independent task is spawned, using the VxWorks system call
taskSpawn. When the task is activated, it calls the downstream function
call subsystem code. The task is deleted using taskDelete during model
termination.

® A semaphore is created to synchronize the connected subsystem to the
execution of the Task Sync block.

® The spawned task is wrapped in an infinite for loop. In the loop, the
spawned task listens for the semaphore, using semTake. When semTake is
first called, NO_WAIT is specified. This allows the task to determine whether
a second semGive has occurred prior to the completion of the function call
subsystem. This would indicate that the interrupt rate is too fast or the
task priority is too low.

¢ The Task Sync block generates synchronization code (for example,
semGive()). This code allows the spawned task to run; the task in turn
calls the connected function call subsystem code. The synchronization
code can run at interrupt level. This is accomplished by connecting the
Task Sync block to the output of an Async Interrupt block, which triggers
execution of the Task Sync block within an ISR.

¢ If blocks in the downstream algorithmic code require absolute time, it can
be supplied either by the timer maintained by the Async Interrupt block,
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or by an independent timer maintained by the task associated with the
Task Sync block.

For an example of how to use the Task Sync block, see the rtwdemo_async
example. The block diagram for the model appears in the next figure. Before
reading the following discussion, open the example model and double-click
the Generate Code button. You can then examine the generated code in the
HTML code generation report produced by the example.

Sim ] [
20 Hz ISR Out »{ SIMIRQ IRQN l
Coder
- Environment Async Interrupt f":a“()uut . 1:.:1 &b
15 Hz ISR Controller m I out
EI ’ Count Unprotected RT1
E Task Sync
f-call() =
a— out1 —» ——— —P.—P
In1_;3[hz [ LI g} outz
@— » ——— [—>*{In Protected RT2
In2_60_hz [ [ =
Protected RT1 Out2 [—» - »(3)
In3_60hz Oout3
- Unprotected RT2
Algorithm

In this model, the Async Interrupt block is configured for VME interrupts 1
and 2, using interrupt vector offsets 192 and 193. Interrupt 2 is connected to
the Task Sync block, which in turn drives the Algorithm subsystem. Consider
the code generated from this model, assuming that the Task Sync block
parameters are configured as shown in the next figure.
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=) Function Block Parameters: Task Sync x|
—w'orks Task Block [mask] [link)
Creates a Task function which is spawned as a separate Vaworks Task. The Task

function runz the code of the downstream function-call subsystern. When this block is
run, a semaphore iz used to enable the task execution.

—Parameter

Tazk name [10 characters or less):
|Taskn

Simulink tazk priorty [0-255):
|E

Stack size [bytes]:
|6192

¥ Synchronize the data transfer of this task with the caller task

aK Cancel Apply

Initialization Code

The Task Sync block generates initialization code for initialization by
Md1Start, which itself creates and initializes the synchronization semaphore.
It also spawns an independent task (taskO).

/* VxWorks Task Block: <S85>/S-Function (vxtaskil) */

/* Spawn task: TaskO with priority 50 */

if ((*(SEM_ID *)rtwdemo_async_DWork.SFunction_PWORK.SemID =
semBCreate (SEM_Q_PRIORITY, SEM_EMPTY)) == NULL) {
printf("semBCreate call failed for block TaskO.\n");

}

if ((rtwdemo_async_DWork.SFunction_IWORK.TaskID = taskSpawn("Task0",
50.0, VX_FP_TASK, 8192.0, (FUNCPTR)Tasko, 0, 0, 0, 0, 0, 0, O,
0, 0, 0)) == ERROR) {
printf("taskSpawn call failed for block TaskO0.\n");

After spawning Task0, Md1Start connects and enables the ISR
(isr_num2_vec193) for interrupt 2:

/* VxWorks Interrupt Block: '<Root>/Async Interrupt' */

/* Connect and enable ISR function: isr_numi_vec192 */
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if( intConnect (INUM_TO_IVEC(192), isr_numi_vec192, 0) != OK) {
printf("intConnect failed for ISR 1.\n");

}

sysIntEnable(1);

The ordering of these operations is significant. The task must be spawned
before the interrupt that activates it can be enabled.

Task and Task Synchronization Code

The function TaskO0, generated by the Task Sync block, runs as a VxWorks
task. The task waits for a synchronization semaphore in an infinite for loop.
If it obtains the semaphore, it updates its task timer and calls the Algorithm
subsystem.

For this example, the Synchronize the data transfer of this task with
the caller task option of the Task Sync block is selected. Therefore, the
timer associated with the Task Sync block (rtM->Timing.clockTick?2) is
updated with the value of the timer that is maintained by the Async Interrupt
block (rtM->Timing.clockTick3). Therefore, blocks within the Algorithm
subsystem use timer values based on the time of the most recent interrupt
(not the most recent activation of TaskO0).

/* VxWorks Task Block: <S5>/S-Function (vxtaskil) */
/* Spawned with priority: 50 */
void TaskO(void)
{
/* Wait for semaphore to be released by system:
rtwdemo_async/Task Sync */
for(;;) {
if (semTake(*(SEM_ID
*)rtwdemo_async_DWork.SFunction_PWORK.SemID,NO_WAIT) !=
ERROR) {
logMsg("Rate for Task TaskO() too fast.\n",0,0,0,0,0,0);
#1if STOPONOVERRUN
logMsg("Aborting real-time simulation.\n",0,0,0,0,0,0);
semGive (stopSem);
return(ERROR) ;
#endif
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else {

semTake (* (SEM_ID
*)rtwdemo_async_DWork.SFunction_PWORK.SemID,
WAIT_FOREVER);

}

/* Use the upstream clock tick counter for this Task. */
rtwdemo_async_M->Timing.clockTick2 =

rtwdemo_async_M->Timing.clockTick3;

/* Call the system: <Root>/Algorithm */

/* Output and update for function-call system: '<Root>/Algorithm' */

uint32_T rt_currentTime = ((uint32_T)rtwdemo_async_M->Timing.clockTick2);
uint32_T rt_elapseTime = rt_currentTime -
rtwdemo_async_DWork.Algorithm_PREV_T;

rtwdemo_async_DWork.Algorithm_PREV_T = rt_currentTime;
int32_T i;
/* DiscretelIntegrator: '<S1>/Integrator' */
rtwdemo_async_B.Integrator = rtwdemo_async_DWork.Integrator_DSTATE;
for(i = 0; i < 60; i++) {

/* Sum: '<S81>/Sum' */

rtwdemo_async_B.Sum[i] = rtwdemo_async_B.ProtectedRT1[i] + 1.25;

/* Sum: '<S1>/Sumil' */
rtwdemo_async_B.Sum1 = rtwdemo_async_B.Sum[0];

{
int_T it

const real_T *u0 = &rtwdemo_async_B.Sum[1];
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for (i1=0; i1 < 59; it++) {

rtwdemo_async_B.Sum1 += u0[il1];

int32_T i;
if (rtwdemo_async_DWork.ProtectedRT2_ActiveBufIdx) {
for(i = 0; i < 60; i++) {

rtwdemo_async_DWork.ProtectedRT2_Buffer0O[i]

rtwdemo_async_B.Sum[i];
}
rtwdemo_async_DWork.ProtectedRT2_ActiveBufIdx = (boolean_T)O0U;
} else {

for(i = 0; i < 60; i++) {

rtwdemo_async_DWork.ProtectedRT2_Buffer1[i]
rtwdemo_async_B.Sum[i];
}
rtwdemo_async_DWork.ProtectedRT2_ActiveBufIdx = (boolean_T)1U;

/* Update for DiscretelIntegrator: '<S1>/Integrator' */

rtwdemo_async_DWork.Integrator_DSTATE = (real_T)rt_elapseTime *
1.6666666666666666E-002 * rtwdemo_async_B.Suml +
rtwdemo_async_DWork.Integrator_DSTATE;

The semaphore is granted by the function isr_num2_vec193, which is called
from interrupt level:

/* VxWorks Interrupt Block: '<Root>/Async Interrupt' */
void isr_num2_vec193(void)

{
/* Use tickGet() as a portable tick counter example. A much
higher resolution can be achieved with a hardware counter */

rtwdemo_async_M->Timing.clockTick3 = tickGet();

/* Call the system: <S4>/Subsystem */
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/* Output and update for function-call system:
'<84>/Subsystem' */

int32_T 1i;
for(i = 0; i < 60; i++) {
if (rtwdemo_async_DWork.ProtectedRT1_ActiveBufIdx) {
rtwdemo_async_B.ProtectedRT1[i] =
rtwdemo_async_DWork.ProtectedRT1_Buffer1[i];
} else {
rtwdemo_async_B.ProtectedRT1[i] =

rtwdemo_async_DWork.ProtectedRT1_Buffer0[i];

/* VxWorks Task Block: <S5>/S-Function (vxtaskl) */
/* Release semaphore for system task: Task0 */

semGive (*(SEM_ID *)rtwdemo_async_DWork.SFunction_PWORK.SemID) ;

The ISR maintains a timer that stores the tick count at the time of interrupt.
This timer is updated before releasing the semaphore that activates TaskO.

As this example shows, the Task Sync block generates only a small amount of
interrupt-level code.
Task Termination Code

The Task Sync block also generates the following termination code.

/* Model terminate function */

void rtwdemo_async_terminate(void)

{



Scheduling

/* VxWorks Interrupt Block: '<Root>/Async Interrupt' */
/* Disable interrupt for ISR system: isr_numi_vec192 */

sysIntDisable(1);

/* VxWorks Interrupt Block: '<Root>/Async Interrupt' */
/* Disable interrupt for ISR system: isr_num2_vec193 */
sysIntDisable(2);

/* Terminate for function-call system: '<S4>/Subsystem' */
/* VxWorks Task Block: <S5>/S-Function (vxtaskl) */

/* Destroy task: Task0 */
taskDelete(rtwdemo_async_DWork.SFunction_IWORK.TaskID);

}

Rate Transitions and Asynchronous Blocks

® “About Rate Transitions and Asynchronous Blocks” on page 1-53
¢ “Handle Rate Transitions for Asynchronous Tasks” on page 1-55

¢ “Handle Multiple Asynchronous Interrupts” on page 1-56

About Rate Transitions and Asynchronous Blocks. Because an
asynchronous function call subsystem can preempt or be preempted by other
model code, an inconsistency arises when more than one signal element is
connected to an asynchronous block. The issue is that signals passed to and
from the function call subsystem can be in the process of being written to or
read from when the preemption occurs. Thus, some old and some new data
is used. This situation can also occur with scalar signals in some cases. For
example, if a signal is a double (8 bytes), the read or write operation might
require two machine instructions.

The Simulink Rate Transition block is designed to deal with preemption
problems that occur in data transfer between blocks running at different
rates. These issues are discussed in “Scheduling” on page 1-4.

You can handle rate transition issues automatically by selecting the
Automatically handle data transfers between tasks option on the Solver
pane of the Configuration Parameters dialog box. This saves you from having
to manually insert Rate Transition blocks to avoid invalid rate transitions,
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including invalid asynchronous-to-periodic and asynchronous-to-asynchronous
rate transitions, in multirate models. For asynchronous tasks, the Simulink
engine configures inserted blocks for data integrity but not determinism
during data transfers.

For asynchronous rate transitions, the Rate Transition block provides data
integrity, but cannot provide determinism. Therefore, when you insert Rate
Transition blocks explicitly, you must clear the Ensure data determinism
check box in the Block Parameters dialog box.

When you insert a Rate Transition block between two blocks to maintain
data integrity and priorities are assigned to the tasks associated with the
blocks, the Simulink Coder software assumes that the higher priority task can
preempt the lower priority task and the lower priority task cannot preempt
the higher priority task. If the priority associated with task for either block is
not assigned or the priorities of the tasks for both blocks are the same, the
Simulink Coder software assumes that either task can preempt the other task.

Priorities of periodic tasks are assigned by the Simulink engine, in accordance
with the options specified in the Solver options section of the Solver pane
of the Configuration Parameters dialog box. When the Periodic sample
time constraint option field of Solver options is set to Unconstrained, the
model base rate priority is set to 40. Priorities for subrates then increment or
decrement by 1 from the base rate priority, depending on the setting of the
Higher priority value indicates higher task priority option.

You can assign priorities manually by using the Periodic sample time
properties field. The Simulink engine does not assign a priority to
asynchronous blocks. For example, the priority of a function call subsystem
that connects back to an Async Interrupt block is assigned by the Async
Interrupt block.

The Simulink task priority field of the Async Interrupt block specifies
a priority level (required) for every interrupt number entered in the VME
interrupt number(s) field. The priority array sets the priorities of the
subsystems connected to each interrupt.

For the Task Sync block, if the Wind River Systems VxWorks RTOS is the
target, the Higher priority value indicates higher task priority option
should be deselected. The Simulink task priority field specifies the block
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priority relative to connected blocks (in addition to assigning a VxWorks
priority to the generated task code).

The VxWorks library provides two types of rate transition blocks as a
convenience. These are simply preconfigured instances of the built-in
Simulink Rate Transition block:

® Protected Rate Transition block: Rate Transition block that is configured
with the Ensure data integrity during data transfers on and Ensure
deterministic data transfer off.

® Unprotected Rate Transition block: Rate Transition block that is configured
with the Ensure data integrity during data transfers option off.

Handle Rate Transitions for Asynchronous Tasks. For rate transitions
that involve asynchronous tasks, you can maintain data integrity. However,
you cannot achieve determinism. You have the option of using the Rate
Transition block or target-specific rate transition blocks.

Consider the following model, which includes a Rate Transition block.

[.
I
I
I
I
I
I
1
1

¥ ¥
function) (| function)
p I Cut1 1 p|Int Outt fp
M [
Function-Call Rate Trans ition Function-Call
Subsystemn Task1 Subsystem1 Task2

You can use the Rate Transition block in either of the following modes:

® Maintain data integrity, no determinism

® Unprotected

Alternatively, you can use target-specific rate transition blocks. The following
blocks are available for the VxWorks RTOS:

1-55



Modeling

1-56

® Protected Rate Transition block (reader)
® Protected Rate Transition block (writer)

e Unprotected Rate Transition block

Handle Multiple Asynchronous Interrupts. Consider the following model,
in which two functions trigger the same subsystem.

)

Trigger A I
,

Trigger B fumction()
Aint Outi

Function-Call
Subsystem

The two tasks must have equal priorities. When priorities are the same, the
outcome depends on whether they are firing periodically or asynchronously,
and also on a diagnostic setting. The following table and notes describe
these outcomes:

Supported Sample Time and Priority for Function Call Subsystem with Multiple Triggers

Async
Async Async Priority Periodic Periodic
Priority = 1 | Priority = 2 | Unspecified | Priority = 1 | Priority = 2

Async
Priority = 1

Supported (1)

Async Supported (1)

Priority = 2

Async Supported (2)
Priority

Unspecified
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Supported Sample Time and Priority for Function Call Subsystem with Multiple Triggers

(Continued)
Async
Async Async Priority Periodic Periodic
Priority = 1 | Priority = 2 | Unspecified | Priority = 1 | Priority = 2
Periodic Supported

Priority = 1

Periodic
Priority = 2

Supported

1 Control these outcomes using the Tasks with equal priority option in
the Diagnostics pane of the Configuration Parameters dialog box; set this
diagnostic to none if tasks of equal priority cannot preempt each other
in the target system.

2 For this case, the following warning message is issued unconditionally:

The function call subsystem <name> has multiple asynchronous
triggers that do not specify priority. Data integrity will
not be maintained if these triggers can preempt one another.

Empty cells in the above table represent multiple triggers with differing
priorities, which are unsupported.

The Simulink Coder product provides absolute time management for a
function call subsystem connected to multiple interrupts in the case where
timer settings for TriggerA and TriggerB (time source, resolution) are the
same.

Assume that all of the following conditions are true for the model shown above:

e A function call subsystem is triggered by two asynchronous triggers
(TriggerA and TriggerB) having identical priority settings.

¢ Each trigger sets the source of time and timer attributes by calling the
functions ssSetTimeSource and ssSetAsyncTimerAttributes.
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® The triggered subsystem contains a block that needs elapsed or absolute
time (for example, a Discrete Time Integrator).

The asynchronous function call subsystem has one global variable,
clockTick# (where # is the task ID associated with the subsystem). This
variable stores absolute time for the asynchronous task. There are two ways
timing can be handled:

o If the time source is set to SS_TIMESOURCE_BASERATE, the Simulink Coder
code generator generates timer code in the function call subsystem,
updating the clock tick variable from the base rate clock tick. Data integrity
is maintained if the same priority is assigned to TriggerA and TriggerB.

e [fthe time source is SS_TIMESOURCE_SELF, generated code for both TriggerA
and TriggerB updates the same clock tick variable from the hardware clock.

The word size of the clock tick variable can be set directly or be established
according to the Application lifespan (days) setting and the timer
resolution set by the TriggerA and TriggerB S-functions (which must be the
same). See “Use Timers in Asynchronous Tasks” on page 1-58 and “Control
Memory Allocation for Time Counters” on page 16-8 for more information.

Use Timers in Asynchronous Tasks

An ISR can set a source for absolute time. This is done with the function
ssSetTimeSource, which has the following three options:

® SS_TIMESOURCE_SELF: Each generated ISR maintains its own absolute time
counter, which is distinct from a periodic base rate or subrate counters in
the system. The counter value and the timer resolution value (specified in
the Timer resolution (seconds) parameter of the Async Interrupt block)
are used by downstream blocks to determine absolute time values required
by block computations.

® SS TIMESOURCE_CALLER: The ISR reads time from a counter maintained by
its caller. Time resolution is thus the same as its caller’s resolution.

® SS_TIMESOURCE_BASERATE: The ISR can read absolute time from the
model’s periodic base rate. Time resolution is thus the same as its base
rate resolution.
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Note The function ssSetTimeSource cannot be called before
ssSetOutputPortWidth is called. If this occurs, the program will come to a
halt and generate an error message.

By default, the counter is implemented as a 32-bit unsigned integer member
of the Timing substructure of the real-time model structure. For a target that
supports the rtModel data structure, when the time data type is not set by
using ssSetAsyncTimeDataType, the counter word size is determined by the
Application lifespan (days) model parameter. As an example (from ERT
target code),

/* Real-time Model Data Structure */
struct _RT_MODEL_elapseTime_exp_Tag {
const char *errorStatus;

/*
* Timing:
* The following substructure contains information regarding
* the timing information for the model.
*/
struct {
uint32_T clockTickl;
uint32_T clockTick2;
} Timing;

b

The example omits unused fields in the Timing data structure (a feature of
ERT target code not found in GRT). For a target that supports the rtModel
data structure, the counter word size is determined by the Application
lifespan (days) model parameter.

By default, the library blocks for the Wind River Systems VxWorks RTOS
set the timer source to SS_TIMESOURCE_SELF and update their counters by
using the system call tickGet. tickGet returns a timer value maintained by
the VxWorks kernel. The maximum word size for the timer is UINT32. The
following VxWorks example for the shows a generated call to tickGet.

/* VxWorks Interrupt Block: '<Root>/Async Interrupt' */
void isr_num2_vec193(void)
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/* Use tickGet() as a portable tick counter example. A much
higher resolution can be achieved with a hardware counter */
rtM->Timing.clockTick2 = tickGet();

The tickGet call is supplied only as an example. It can (and in many
instances should) be replaced by a timing source that has better resolution. If
you are targeting the VxWorks RTOS, you can obtain better timer resolution

by replacing the tickGet call and accessing a hardware timer by using your
BSP instead.

If you are implementing a custom asynchronous block for an RTOS other than
the VxWorks RTOS, you should either generate an equivalent call to the
target RTOS, or generate code to read a timer register on the target hardware.

The default Timer resolution (seconds) parameter of your Async Interrupt
block implementation should be changed to match the resolution of your
target’s timing source.

The counter is updated at interrupt level. Its value represents the tick value
of the timing source at the most recent execution of the ISR. The rate of this
timing source is unrelated to sample rates in the model. In fact, typically it

is faster than the model’s base rate. Select the timer source and set its rate

and resolution based on the expected rate of interrupts to be serviced by the
Async Interrupt block.

For an example of timer code generation, see “Async Interrupt Block
Implementation” on page 1-61.

Create a Customized Asynchronous Library

“About Implementing Asynchronous Blocks” on page 1-61

“Async Interrupt Block Implementation” on page 1-61

“Task Sync Block Implementation” on page 1-66

“asynclib.tle Support Library” on page 1-68
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About Implementing Asynchronous Blocks. This section describes how
to implement asynchronous blocks for use with your target RTOS, using the
Async Interrupt and Task Sync blocks as a starting point. (Rate Transition
blocks are target-independent, so you do not need to develop customized rate
transition blocks.)

You can customize the asynchronous library blocks by modifying the block
implementation. These files are

® The block’s underlying S-function MEX-file
e The TLC files that control code generation of the block

In addition, you need to modify the block masks to remove references specific
to the Wind River Systems VxWorks RTOS and to incorporate parameters
required by your target RTOS.

Custom block implementation is an advanced topic, requiring familiarity with
the Simulink MEX S-function format and API, and with the Target Language
Compiler (TLC). These topics are covered in the following documents:

e Simulink topics “What Is an S-Function?”, “Use S-Functions in Models”,
“How S-Functions Work”, and “Implementing S-Functions” describe MEX
S-functions and the S-function API in general.

¢ The “Inlining S-Functions”, “Inlining C MEX S-Functions”, and “Insert
S-Function Code” on page 14-45 describe how to create a TLC block
implementation for use in code generation.

The following sections discuss the C/C++ and TLC implementations of the
asynchronous library blocks, including required SimStruct macros and
functions in the TLC asynchronous support library (asynclib.tlc).

Async Interrupt Block Implementation. The source files for the Async
Interrupt block are located in matlabroot/rtw/c/tornado/devices:

e vxinterrupti.c: C MEX-file source code, for use in configuration and
simulation

e vxinterruptil.tlc: TLC implementation, for use in code generation
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® asynclib.tlc: library of TLC support functions, called by the TLC
implementation of the block. The library calls are summarized in
“asynclib.tlc Support Library” on page 1-68.

C MEX Block Implementation

Most of the code in vxinterrupti.c performs ordinary functions that are
not related to asynchronous support (for example, obtaining and validating
parameters from the block mask, marking parameters nontunable, and
passing parameter data to the model.rtw file).

The mdlInitializeSizes function uses special SimStruct macros and
SS_OPTIONS settings that are required for asynchronous blocks, as described
below.

Note that the following macros cannot be called before ssSetOutputPortWidth
is called:

® ssSetTimeSource

® ssSetAsyncTimerAttributes

® ssSetAsyncTimerResolutionEl

® ssSetAsyncTimerDataType

® ssSetAsyncTimerDataTypeEl

® ssSetAsyncTaskPriorities

® ssSetAsyncTaskPrioritiesEl

If one of the above macros is called before ssSetOutputPortWidth, the
following error message appears:

SL_SfcnMustSpecifyPortWidthBfCallSomeMacro {
S-function '%s' in 'S%<BLOCKFULLPATH>'

must set output port %d width using
ssSetOutputPortWidth before calling macro %s

}
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ssSetAsyncTimerAttributes

ssSetAsyncTimerAttributes declares that the block requires a timer,
and sets the resolution of the timer as specified in the Timer resolution
(seconds) parameter.

The function prototype is

ssSetAsyncTimerAttributes(SimStruct *S, double res)

where

® Sis a Simstruct pointer.

® res is the Timer resolution (seconds) parameter value.

The following code excerpt shows the call to ssSetAsyncTimerAttributes.

/* Setup Async Timer attributes */
ssSetAsyncTimerAttributes(S,mxGetPr(TICK_RES)[0]);

ssSetAsyncTaskPriorities

ssSetAsyncTaskPriorities sets the Simulink task priority for blocks
executing at each interrupt level, as specified in the block’s Simulink task
priority field.

The function prototype is

ssSetAsyncTaskPriorities(SimStruct *S, int numISRs,
int *priorityArray)

where

® Sisa SimStruct pointer.

® numISRs is the number of interrupts specified in the VME interrupt
number(s) parameter.

® priorityarray is an integer array containing the interrupt numbers
specified in the VME interrupt number(s) parameter.

The following code excerpt shows the call to ssSetAsyncTaskPriorities:
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/* Setup Async Task Priorities */
priorityArray = malloc(numISRs*sizeof (int_T));
for (i=0; i<numISRs; i++) {
priorityArray[i] = (int_T) (mxGetPr(ISR_PRIORITIES)[i]);
}
ssSetAsyncTaskPriorities (S, numISRs, priorityArray);
free(priorityArray);
priorityArray = NULL;

SS_OPTION Settings

The code excerpt below shows the SS_OPTION settings for vxinterrupti.c.
SS_OPTION_ASYNCHRONOUS INTERRUPT should be used when a function
call subsystem is attached to an interrupt. For more information, see

the documentation for SS_OPTION and SS_OPTION_ASYNCHRONOUS in
matlabroot/simulink/include/simstruc.h

ssSetOptions( S, (SS_OPTION_EXCEPTION_FREE_CODE |
SS_OPTION_DISALLOW_CONSTANT_SAMPLE_TIME |
SS_OPTION_ASYNCHRONOUS_INTERRUPT |

TLC Implementation
This section discusses each function of vxinterrupt1.tlc, with an emphasis

on target-specific features that you will need to change to generate code for
your target RTOS.

Generate #include Directives
vxinterrupt1.tlc begins with the statement
%include "vxlib.tlc"
vxlib.tlc is a target-specific file that generates directives to include

VxWorks header files. You should replace this with a file that generates
includes for your target RTOS.
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BlockInstanceSetup Function

For each connected output of the Async Interrupt block, BlockInstanceSetup
defines a function name for the corresponding ISR in the generated code.
The functions names are of the form

isr_num_vec_offset

where num is the ISR number defined in the VME interrupt number(s)
block parameter, and offset is an interrupt table offset defined in the VME
interrupt vector offset(s) block parameter.

In a custom implementation, this naming convention is optional.

The function names are cached for use by the Outputs function, which
generates the actual ISR code.

Outputs Function

Outputs iterates over the connected outputs of the Async Interrupt block. An
ISR is generated for each such output.

The ISR code is cached in the "Functions" section of the generated code.
Before generating the ISR, Outputs does the following:

® Generates a call to the downstream block (cached in a temporary buffer).

® Determines whether the ISR should be locked or not (as specified in the
Preemption Flag(s) block parameter).

¢ Determines whether the block connected to the Async Interrupt block is a
Task Sync block. (This information is obtained by using the asynclib calls
LibGetFcnCallBlock and LibGetBlockAttribute.) If so,

= The preemption flag for the ISR must be set to 1. An error results
otherwise.

= VxWorks calls to save and restore floating-point context are generated,
unless the user has configured the model for integer-only code
generation.
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When generating the ISR code, Outputs calls the asynclib function
LibNeedAsyncCounter to determine whether a timer is required by

the connected subsystem. If so, and if the time source is set to be
SS_TIMESOURCE_SELF by ssSetTimeSource, LibSetAsyncCounter is called to
generate a VxWorks tickGet function call and update the counter. In your
implementation, you should generate either an equivalent call to the target
RTOS, or generate code to read the a timer register on the target hardware.

If you are targeting the VxWorks RTOS, you can obtain better timer resolution
by replacing the tickGet call and accessing a hardware timer by using your
BSP instead. tickGet supports only a 1/60 second resolution.

Start Function

The Start function generates the required VxWorks calls (int_connect and
sysInt_Enable) to connect and enable each ISR. You should replace this
with calls to your target RTOS.

Terminate Function

The Terminate function generates the call sysIntDisable to disable each
ISR. You should replace this with calls to your target RTOS.

Task Sync Block Implementation. The source files for the Task Sync block
are located in matlabroot/rtw/c/tornado/devices. They are

® vxtaski.c: MEX-file source code, for use in configuration and simulation.
e vxtaski.tlc: TLC implementation, for use in code generation.

® asynclib.tlc: library of TLC support functions, called by the TLC
implementation of the block. The library calls are summarized in
“asynclib.tle Support Library” on page 1-68.

C MEX Block Implementation

Like the Async Interrupt block, the Task Sync block sets up a timer, in this
case with a fixed resolution. The priority of the task associated with the block
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is obtained from the Simulink task priority parameter. The SS_OPTION
settings are the same as those used for the Async Interrupt block.

ssSetAsyncTimerAttributes(S, 0.01);

priority = (int_T) (*(mxGetPr(PRIORITY)));
ssSetAsyncTaskPriorities(S,1,&priority);

ssSetOptions(S, (SS_OPTION_EXCEPTION_FREE_CODE |

SS_OPTION_ASYNCHRONOUS |
SS_OPTION_DISALLOW_CONSTANT SAMPLE_TIME |

TLC Implementation

Generate #include Directives
vxtaskil.tlc begins with the statement
%sinclude "vxlib.tlc"
vxlib.tlc is a target-specific file that generates directives to include
VxWorks header files. You should replace this with a file that generates
includes for your target RTOS.

BlockInstanceSetup Function
The BlockInstanceSetup function derives the task name, block name, and
other identifier strings used later in code generation. It also checks for
and warns about unconnected block conditions, and generates a storage
declaration for a semaphore (stopSem) that is used in case of interrupt
overflow conditions.

Start Function

The Start function generates the required VxWorks calls to define storage
for the semaphore that is used in management of the task spawned by the
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Task Sync block. Depending on the code format of the target, either a static
storage declaration or a dynamic memory allocation call is generated. This
function also creates a semaphore (semBCreate) and spawns a VxWorks task
(taskSpawn). You should replace these with calls to your target RTOS.

Outputs Function

The Outputs function generates a VxWorks task that waits for a semaphore.
When it obtains the semaphore, it updates the block’s tick timer and calls the
downstream subsystem code, as described in “Spawn a Wind River Systems
VxWorks Task” on page 1-46. Outputs also generates code (called from
interrupt level) that grants the semaphore.

Terminate Function

The Terminate function generates the VxWorks call taskDelete to end
execution of the task spawned by the block. You should replace this with calls
to your target RTOS.

Note also that if the target RTOS has dynamically allocated memory
associated with the task, the Terminate function should deallocate the
memory.

asynclib.tlc Support Library. asynclib.tlc is a library of TLC functions
that support the implementation of asynchronous blocks. Some functions
are specifically designed for use in asynchronous blocks. For example,
LibSetAsyncCounter generates a call to update a timer for an asynchronous
block. Other functions are utilities that return information required by
asynchronous blocks (for example, information about connected function call
subsystems).

The following table summarizes the public calls in the library. For details,
see the library source code and the vxinterrupt1.tlc and vxtaskl.tlc
files, which call the library functions.
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Summary of asynclib.tlc Library Functions

Function

Description

LibBlockExecuteFcnCall

For use by inlined S-functions with function call outputs.
Generates code to execute a function call subsystem.

LibGetBlockAttribute

Returns a field value from a block record.

LibGetFcnCallBlock

Given an S-Function block and call index, returns the block
record for the downstream function call subsystem block.

LibGetCallerClockTickCounter

Provides access to the time counter of an upstream
asynchronous task.

LibGetCallerClockTickCounter-
HighWord

Provides access to the high word of the time counter of an
upstream asynchronous task.

LibManageAsyncCounter

Determines whether an asynchronous task needs a counter
and manages its own timer.

LibNeedAsyncCounter

If the calling block requires an asynchronous counter,
returns TLC_TRUE, otherwise returns TLC_FALSE.

LibSetAsyncClockTicks

Returns code that sets clockTick counters that are to be
maintained by the asynchronous task.

LibSetAsyncCounter

Generates code to set the tick value of the block’s
asynchronous counter.

LibSetAsyncCounterHighWord

Generates code to set the tick value of the high word of the
block’s asynchronous counter

Import Asynchronous Event Data for Simulation

Capabilities. You can inport asynchronous event data into a function-call
subsystem via an Inport block. For standalone fixed-step simulations, you

can specify:

® The time points at which each asynchronous event occurs

¢ The number of asynchronous events at each time point
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Input Data Format. You can enter your asynchronous data at the MATLAB
command line or on the Data Import/Export pane of the Configuration
Parameters dialog box. In either case, a number of restrictions apply to the
data format.

® The expression for the parameter Data Import/Export > Input must be a
comma-separated list of tables, as described in “Enable Data Import”.

® The table corresponding to the input port outputting asynchronous events
must be a column vector containing time values for the asynchronous
events.

= The time vector of the asynchronous events must be of double data type
and monotonically increasing.

= All time data must be integer multiples of the model step size.

= To specify multiple function calls at a given time step, you must repeat
the time value accordingly. In other words, if you wish to specify three
asynchronous events at ¢ = 1 and two events at ¢t = 9, then you must list 1
three times and 9 twice in your time vector. (¢=[11199])

® The table corresponding to normal data input port can be of any other
supported format as described in “Enable Data Import”.

Example. In this model, a function-call subsystem is used to track the total
number of asynchronous events and to multiply a set of inputs by 2.
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1 To input data via the Configuration Parameters dialog box,

a Select Simulation > Configuration Parameters > Data

Import/Export.

b Select the Input parameter.

¢ For this example, enter the following command in the MATLAB window:

>t =011590909]',

u=1_[[0:10]"

[0:10] "]

Alternatively, you can enter the data as ¢, tu in the Data Import/Export

pane:
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Select: Load from workspace
é""SoIver Input: t, tu
-~ Data Import/Export

- Optimization
+-Diagnostics

é""Hardware Implementa...
E""Model Referencing

?--Simulation Target Time: tout Format: Array -
+-Code Generation

[ Initial state: |xInitial

Save to workspace

Time, State, Output

- HDL Code Generation [[] states: Xout Limit data points to last: 1000
Qutput: yout Decimation: 1
[7] Final states: |xFinal Save complete SimState in final state

Here, ¢ is a column vector containing the times of asynchronous events
for Inport block In1 while tu is a table of input values versus time for
Inport block In2.

2 By default, the Time and Output options are selected and the output
variables are named tout and yout.

3 Simulate the model.

4 Display the output by entering [tout yout] at the MATLAB command
line and obtain:

ans =

O OWoOw~NOOP»WNM—=O
OO WWWwwMNmNDdDNDNDO
N
o

—_

Here the first column contains the simulation times.

1-72



Scheduling

The second column represents the output of Outl — the total number of
asynchronous events. Since the function-call subsystem is triggered twice
at £ = 1, the output is 2. It is not called again until ¢ = 5, and so does not
increase to 3 until then. Finally, it is called three times at 9, so it increases
to 6.

The third column contains the output of Out2 obtained by multiplying the
input value at each asynchronous event time by 2. At any other time, the
output is held at its previous value

Asynchronous Support Limitations

® “Asynchronous Task Priority” on page 1-73

¢ “Convert an Asynchronous Subsystem into a Model Reference” on page 1-73

Asynchronous Task Priority. The Simulink product does not simulate
asynchronous task behavior. Although you can specify a task priority for an
asynchronous task represented in a model with the Task Sync block, the
priority setting is for code generation purposes only and is not honored during
simulation.

Convert an Asynchronous Subsystem into a Model Reference. You
can use the Asynchronous Task Specification block to specify an asynchronous
function-call input to a model reference. However, you must convert the
Async Interrupt and Function-Call blocks into a subsystem and then convert
the subsystem into a model reference.

Following is an example with step-by-step instructions for conversion.

20 Hz ISR Sim

Out #|SimIRQ  IRQM
Codar l
Environment Async Interrupt f-zall) O
Controller Out 1)
I Outt
Count Unprotected RT

1-73



1 Modeling

1 Convert the Async Interrupt and Count blocks into a subsystem. Select
both blocks and right-click Count. From the menu, select Subsystem &
Model Reference > Create Subsystem from Selection.

T
Sim =
20 Hz ISR Out o] 0 Qust 1 p T
Coder m |]]]]]]]— .@D““
Elaronment Unprotected RT
Controller Subsysteny
\
/ \
(T —w{SimIRQ IRQA
In1
Async Interrupt VO
f-call
F—cal Out_@
Out1
Count

2 To prepare for converting the new subsystem to a Model block, set
the following configuration parameters in the top model. Open the
Configuration Parameters dialog box.

¢ [fyou are simulating in Normal mode, then you must make the following
change. From the Optimization node, navigate to the Signals and
Parameters pane. Under Simulation and code generation, select the
Inline parameters option.

® From the Diagnostics node, navigate to the Sample Time pane. Then set
Multitask rate transition to error and Multitask conditionally
executed subsystem to error.

¢ Under Diagnostics, navigate to the Data Validity pane and set the
Multitask data store option to error and set the Underspecified
initialization detection to Simplified. If your model is large
or complex, in the Model Advisor, run the Check consistency of
initialization parameters for Outport and Merge blocks check and
make suggested changes.

¢ Under Diagnostics, navigate to the Connectivity pane. Set Mux
blocks used to create bus signals, Bus signal treated as
vector, and Invalid function-call connection to error. Also set
Context-dependent inputs to Enable All.
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3 Convert the subsystem to an atomic subsystem. Select Edit > Subsystem
Parameters > Treat as atomic unit.

20 Hz ISR Sim
Out »|SimIRQ  IRQN
Coder 1
Envircnment Async Interrupt f-call]) O
Controller Out e e e D
I [ Out1
Count Unprotected RT
il
—I—’
20 Hz ISR Sim  —
_ Out #{Inl OQutl > T JI. "C)"
Coder [ (I ot
Enwircnment Unprotected RT
Confroller
Subsystem

4 Convert the subsystem to a Model block. Right-click the subsystem
and select Subsystem & Model Reference > Convert Subsystem
to > Referenced Model. A window opens with a model reference block
inside of it.

5 Replace the subsystem in the top model with the new model reference block.

ﬁﬁ Subsys
1 1
janiiaid P
20HzISR C'"ﬂ)m pin1  cun » (1)
»(Coder m [m
Out1
Environment Unprotected RT

@ Controller Subeystem

6 Move the Async Interrupt block from the model reference to the top model,
before the model reference block.
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ﬂﬁ Subsys
P =
20 HzISR Bt » SimIRQ IRQN st ount bt
» Coder o Out1
Environment Async Interrupt Unprotected RT

@ Controller Subsysten

7 Insert an Asynchronous Task Specification block in the model reference.
Set the priority of the Asynchronous Task Specification block. (For more
information on setting the priority, see Asynchronous Task Specification.)

(1 ——m P10
In1
Asynchronous Task

Specification f-call ()
O

utl ()

Dt

Count

8 In the model reference, double-click the input port to open its Source Block
Parameters dialog box. Click theSignal Attributes tab and select the
Output function call option. Click OK.
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E Source Block Parameters: Inl @
Inport

Provide an input port for a subsystem or model.

For Triggered Subsystems, 'Latch input by delaying outside signal'
produces the value of the subsystem input at the previous time step.
For Function-Call Subsystems, turning 'On' the 'Latch input for feedback
signals of function-call subsystem outputs' prevents the input value to
this subsystem from changing during its execution.

The other parameters can be used to explicitly specify the input signal
attributes.

Main Signal Attributes

Output function call

Minimum: Maximum:
f f
Data type: | double
Lock output data type setting against changes by the fixed-point tools

Port dimensions (-1 for inherited):

1
Variable-size signal: | Inherit

Sample time (-1 for inherited):

Signal type:  real

Sampling mode: | Sample based

‘} oK H Cancel H Help ]

9 Save your model and then perform Simulation > Update Diagram to
verify your settings.
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Coder +
Out1
Environment
Controller
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Timers

® “Absolute and Elapsed Time Computation” on page 1-78
® “APIs for Accessing Timers” on page 1-80

e “Klapsed Timer Code Generation Example” on page 1-84
e “Limitations on the Use of Absolute Time” on page 1-87

Absolute and Elapsed Time Computation

e “About Timers” on page 1-78

¢ “Timers for Periodic and Asynchronous Tasks” on page 1-79

e “Allocation of Timers” on page 1-79

¢ “Integer Timers in Generated Code” on page 1-80

¢ “Elapsed Time Counters in Triggered Subsystems” on page 1-80

About Timers. Certain blocks require the value of either absolute time
(that is, the time from the start of program execution to the present time) or
elapsed time (for example, the time elapsed between two trigger events).
Targets that support the real-time model (rtModel) data structure provide
efficient time computation services to blocks that request absolute or elapsed
time. Absolute and elapsed timer features include

¢ Timers are implemented as unsigned integers in generated code.

® In multirate models, at most one timer is allocated per rate. If no blocks
executing at a given rate require a timer, a timer is not allocated to that
rate. This minimizes memory allocated for timers and significantly reduces
overhead involved in maintaining timers.

e Allocation of elapsed time counters for use of blocks within triggered
subsystems is minimized, further reducing memory usage and overhead.
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® The Simulink Coder product provides S-function and TLC APIs that let
your S-functions access timers, in both simulation and code generation.

® The word size of the timers is determined by a user-specified maximum
counter value, Application lifespan (days). If you specify this value,
timers will not overflow. For more information, see “Control Memory
Allocation for Time Counters” on page 16-8.

See “Limitations on the Use of Absolute Time” on page 1-87 and “Blocks that
Depend on Absolute Time” on page 1-88 for more information about absolute
time and the restrictions that it imposes.

Timers for Periodic and Asynchronous Tasks. This chapter discusses
timing services provided for blocks executing within periodic tasks (that is,
tasks running at the model’s base rate or subrates).

The Simulink Coder product also provides timer support for blocks whose
execution is asynchronous with respect to the periodic timing source of the
model. See the following sections of the Asynchronous Support chapter:

e “Use Timers in Asynchronous Tasks” on page 1-58

® “Create a Customized Asynchronous Library” on page 1-60

Allocation of Timers. If you create or maintain an S-Function block that
requires absolute or elapsed time data, it must register the requirement (see
“APIs for Accessing Timers” on page 1-80). In multirate models, timers are
allocated on a per-rate basis. For example, consider a model structured as
follows:

There are three rates, A, B, and C, in the model.

No blocks running at rate B require absolute or elapsed time.

Two blocks running at rate C register a requirement for absolute time.

One block running at rate A registers a requirement for absolute time.

In this case, two timers are generated, running at rates A and C respectively.
The timing engine updates the timers as the tasks associated with rates A
and C execute. Blocks executing at rates A and C obtain time data from the
timers associated with rates A and C.
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Integer Timers in Generated Code. In the generated code, timers for
absolute and elapsed time are implemented as unsigned integers. The default
size 1s 64 bits. This is the amount of memory allocated for a timer if you
specify a value of inf for the Application lifespan (days) parameter. For
an application with a sample rate of 1000 MHz, a 64-bit counter will not
overflow for more than 500 years. See “Use Timers in Asynchronous Tasks”
on page 1-58 and “Control Memory Allocation for Time Counters” on page
16-8 for more information.

Elapsed Time Counters in Triggered Subsystems. Some blocks, such

as the Discrete-Time Integrator block, perform computations requiring the
elapsed time (delta T) since the previous block execution. Blocks requiring
elapsed time data must register the requirement (see “APIs for Accessing
Timers” on page 1-80). A triggered subsystem then allocates and maintains a
single elapsed time counter if required. This timer functions at the subsystem
level, not at the individual block level. The timer is generated if the triggered
subsystem (or a unconditionally executed subsystem within the triggered
subsystem) contains one or more blocks requiring elapsed time data.

Note If you are using simplified initialization mode, elapsed time is reset
on first execution after becoming enabled, whether or not the subsystem is
configured to reset on enable. For more information, see “Underspecified
initialization detection” in the Simulink documentation.

APIs for Accessing Timers

® “About Timer APIs” on page 1-80

e “C API for S-Functions” on page 1-81

e “TLC API for Code Generation” on page 1-83

About Timer APIs. This section describes APIs that let your S-functions
take advantage of the efficiencies offered by the absolute and elapsed timers.

SimStruct macros are provided for use in simulation, and TLC functions are
provided for inlined code generation. Note that
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® To generate and use the new timers as described above, your
S-functions must register the need to use an absolute or elapsed
timer by calling ssSetNeedAbsoluteTime or ssSetNeedElapseTime in
mdlInitializeSampleTime.

e Existing S-functions that read absolute time but do not register by using
these macros will continue to operate as expected, but will generate
old-style, less efficient code.

C API for S-Functions. The SimStruct macros described in this section
provide access to absolute and elapsed timers for S-functions during
simulation.

In the functions below, the SimStruct *S argument is a pointer to the
simstruct of the calling S-function.

e void ssSetNeedAbsoluteTime (SimStruct *S, boolean b): if b is TRUE,
registers that the calling S-function requires absolute time data, and
allocates an absolute time counter for the rate at which the S-function
executes (if such a counter has not already been allocated).

® int ssGetNeedAbsoluteTime (SimStruct *S):returns 1 if the S-function
has registered that it requires absolute time.

® double ssGetTaskTime(SimStruct *S, tid): read absolute time
for a given task with task identifier tid. ssGetTaskTime operates
transparently, regardless of whether or not you use the new timer features.
ssGetTaskTime is documented in the SimStruct Functions chapter of the
Simulink documentation.

® void ssSetNeedElapseTime (SimStruct *S, boolean b): if b is TRUE,
registers that the calling S-function requires elapsed time data, and
allocates an elapsed time counter for the triggered subsystem in which the
S-function executes (if such a counter has not already been allocated). See
also “Elapsed Time Counters in Triggered Subsystems” on page 1-80.

® int ssGetNeedElapseTime(SimStruct *S): returns 1 if the S-function
has registered that it requires elapsed time.

® void ssGetElapseTime(SimStruct *S, (double *)elapseTime):
returns, to the location pointed to by elapseTime, the value (as a double)
of the elapsed time counter associated with the S-function.
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® void ssGetElapseTimeCounterDtype(SimStruct *S, (int *)dtype):

returns the data type of the elapsed time counter associated with the
S-function to the location pointed to by dtype. This function is intended for
use with the ssGetElapseTimeCounter function (see below).

void ssGetElapseResolution(SimStruct *S, (double *)resolution):
returns the resolution (that is, the sample time) of the elapsed time counter
associated with the S-function to the location pointed to by resolution.
This function is intended for use with the ssGetElapseTimeCounter
function (see below).

void ssGetElapseTimeCounter(SimStruct *S, (void *)elapseTime):
This function is provided for the use of blocks that require the elapsed time
values for fixed-point computations. ssGetElapseTimeCounter returns,

to the location pointed to by elapseTime, the integer value of the elapsed
time counter associated with the S-function. If the counter size is 64 bits,
the value is returned as an array of two 32-bit words, with the low-order
word stored at the lower address.

To determine how to access the returned counter value, obtain the data
type of the counter by calling ssGetElapseTimeCounterDtype, as in the
following code:

int *y dtype;
ssGetElapseTimeCounterDtype(S, y_dtype);

switch(*y_dtype) {
case SS_DOUBLE_UINT32:

{
uint32_T dataPtr[2];
ssGetElapseTimeCounter (S, dataPtr);
}
break;
case SS_UINT32:
{
uint32_T dataPtr[1];
ssGetElapseTimeCounter (S, dataPtr);
}
break;
case SS_UINT16:
{

uint16_T dataPtr[1];
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ssGetElapseTimeCounter (S, dataPtr);

}
break;
case SS_UINTS:
{
uint8 T dataPtr[1];
ssGetElapseTimeCounter (S, dataPtr);
}
break;
case SS_DOUBLE:
{
real T dataPtr[1];
ssGetElapseTimeCounter (S, dataPtr);
}
break;
default:
ssSetErrorStatus(S, "Invalid data type for elaspe time
counter");
break;

}

If you want to use the actual elapsed time, issue a call to the
ssGetElapseTime function to access the elapsed time directly. You do not
need to get the counter value and then calculate the elapsed time.

double *y elapseTime;

ssGetElapseTime (S, elapseTime)

TLC API for Code Generation. The following TLC functions support
elapsed time counters in generated code when you inline S-functions by
writing TLC scripts for them.

e |ibGetTaskTimeFromTID(block): Generates code to read the absolute
time for the task in which block executes.

LibGetTaskTimeFromTID is documented with other sample time functions
in the TLC Function Library Reference pages of the Target Language
Compiler documentation.
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Note Do not use LibGetT for this purpose. LibGetT always reads the base
rate (tid 0) timer. If LibGetT is called for a block executing at a subrate,
the wrong timer is read, causing serious errors.

® LibGetElapseTime(system): Generates code to read the elapsed time
counter for system. (system is the parent system of the calling block.) See
“Elapsed Timer Code Generation Example” on page 1-84 for an example
of code generated by this function.

® |LibGetElapseTimeCounter(system): Generates code to read the integer
value of the elapsed time counter for system. (system is the parent system
of the calling block.) This function should be used in conjunction with
LibGetElapseTimeCounterDtypeld and LibGetElapseTimeResolution.
(See the discussion of ssGetElapseTimeCounter above.)

® | ibGetElapseTimeCounterDtypeld(system): Generates code that returns
the data type of the elapsed time counter for system. (systemis the parent
system of the calling block.)

® | ibGetElapseTimeResolution(system): Generates code that returns the
resolution of the elapsed time counter for system. (system is the parent
system of the calling block.)

Elapsed Timer Code Generation Example

This section shows a simple model illustrating how an elapsed time counter is
generated and used by a Discrete-Time Integrator block within a triggered
subsystem. The following block diagrams show the model elapseTime_exp,
which contains subsystem Amplifier, which includes a Discrete-Time
Integrator block.



Scheduling

;%Tl
]

1.5 » ————»(_ 1)

INPUT OuUTPUT

Amplifier

elapseTime_exp Model

K. T
M sem " g &0

z-1

Dis orete-Time
Integrator

Amplifier Subsystem

A 32-bit timer for the base rate (the only rate in this model) is defined within
the rtModel structure, as follows, in model.h.

_/*
* Timing:
* The following substructure contains information regarding
* the timing information for the model.
*/
struct {
time_T stepSize;
uint32_T clockTickO;
uint32_T clockTickHO;
time_T stepSizeO;
time_T tStart;
time_T tFinal;
time_T timeOfLastOutput;
void *timingData;
real T *varNextHitTimesList;
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SimTimeStep simTimeStep;
boolean T stopRequestedFlag;
time T *sampleTimes;
time_T *offsetTimes;
int_T *sampleTimeTaskIDPtr;
int_T *sampleHits;
int_T *perTaskSampleHits;
time T *t;
time T sampleTimesArray[1];
time T offsetTimesArray[1];
int_T sampleTimeTaskIDArray[1];
int_T sampleHitArray[1];
int_T perTaskSampleHitsArray[1];
time T tArray[1];

} Timing;

Had the target been ERT instead of GRT, the Timing structure would have
been pruned to contain only the data required by the model, as follows:

/* Real-time Model Data Structure */ (for ERT!)
struct _RT_MODEL_elapseTime_exp_Tag {

/*
* Timing:
* The following substructure contains information regarding
* the timing information for the model.
*/
struct {
uint32_T clockTickO;
} Timing;

b

Storage for the previous-time value of the Amplifier subsystem
(Amplifier PREV_T)is allocated in the D_Work (states) structure in model.h

typedef struct D_Work_elapseTime_exp_tag {
real T DiscreteTimelIntegrator_DSTATE; /* '<S1>/Discrete-Time
Integrator' */
int32_T clockTickCounter; /* '<Root>/Pulse Generator' */
uint32_T Amplifier_ PREV_T; /* '<Root>/Amplifier' */
} D_Work_elapseTime_exp;
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These structures are declared in model.c:

/* Block states (auto storage) */
D Work_elapseTime_exp elapseTime_exp_DWork;

/* Real-time model */
rtModel_elapseTime_exp elapseTime_exp_M_;
rtModel_elapseTime_exp *elapseTime_exp_M = &elapseTime_exp_M_;

The elapsed time computation is performed as follows within the model step
function:

/* Output and update for trigger system: '<Root>/Amplifier' */
uint32_T rt_currentTime =
((uint32_T)elapseTime_exp_M->Timing.clockTickO) ;
uint32_T rt_elapseTime = rt_currentTime -
elapseTime_exp_DWork.Amplifier_ PREV_T;
elapseTime_exp_DWork.Amplifier_PREV_T = rt_currentTime;

As shown above, the elapsed time is maintained as a state of the triggered
subsystem. The Discrete-Time Integrator block finally performs its output
and update computations using the elapsed time.

/* DiscreteIntegrator: '<S1>/Discrete-Time Integrator' */
OUTPUT = elapseTime_exp_DWork.DiscreteTimeIntegrator_DSTATE;

/* Update for Discretelntegrator: '<S1>/Discrete-Time Integrator'*/
elapseTime_exp_DWork.DiscreteTimeIntegrator_DSTATE += 0.3 *
(real_T)rt_elapseTime * 1.5 ;

Because the triggered subsystem maintains the elapsed time, the TLC

implementation of the Discrete-Time Integrator block needs only a single call
to LibGetElapseTime to access the elapsed time value.

Limitations on the Use of Absolute Time

¢ “About Absolute Time Limitations” on page 1-88
¢ “Logging Absolute Time” on page 1-88
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® “Absolute Time in Stateflow Charts” on page 1-88
® “Blocks that Depend on Absolute Time” on page 1-88

About Absolute Time Limitations. Absolute time is the time that has
elapsed from the beginning of program execution to the present time, as
distinct from elapsed time, the interval between two events. See “Absolute
and Elapsed Time Computation” on page 1-78 for more information.

When you design an application that is intended to run indefinitely, you must
take care when logging time values, or using charts or blocks that depend

on absolute time. If the value of time reaches the largest value that can

be represented by the data type used by the timer to store time, the timer
overflows and the logged time or block output is incorrect.

If your target uses rtModel, you can avoid timer overflow by specifying a
value for the Application life span parameter. See “Integer Timers in
Generated Code” on page 1-80 for more information.

Logging Absolute Time. If you log time values by opening the Configuration
Parameters dialog box and enabling Data Import/Export > Save to
workspace > Time, your model uses absolute time.

Absolute Time in Stateflow Charts. Every Stateflow chart that uses time
1s dependent on absolute time. The only way to eliminate the dependency is to
change the Stateflow chart to not use time.

Blocks that Depend on Absolute Time. The following Simulink blocks
depend on absolute time:

® Backlash

® Chirp Signal

® Clock

® Derivative

¢ Digital Clock

® Discrete-Time Integrator (only when used in triggered subsystems)

e From File
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* From Workspace

® Pulse Generator

e Ramp

® Rate Limiter

® Repeating Sequence

e Signal Generator

® Sine Wave (only when the Sine type parameter is set to Time-based)
* Step

e To File

* To Workspace (only when logging to StructureWithTime format)
® Transport Delay

e Variable Time Delay

e Variable Transport Delay

In addition to the Simulink blocks above, blocks in other blocksets may depend
on absolute time. See the documentation for the blocksets that you use.

Configure Scheduling

¢ “Configure Start and Stop Times” on page 1-89
® “Configure the Solver Type” on page 1-90
® “Configure the Tasking Mode” on page 1-90

For details about solver options, see “Solver Pane” in the Simulink reference
documentation.

Configure Start and Stop Times

The Stop time must be greater than or equal to the Start time. If the stop
time is zero, or if the total simulation time (Stop minus Start) is less than
zero, the generated program runs for one step. If the stop time is set to inf,
the generated program runs indefinitely.
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When using the GRT or Wind River Systems Tornado targets, you can
override the stop time when running a generated program from the Microsoft
Windows command prompt or UNIX! command line. To override the stop
time that was set during code generation, use the -tf switch.

model -tf n

The program runs for n seconds. If n = inf, the program runs indefinitely.

Certain blocks have a dependency on absolute time. If you are designing a
program that is intended to run indefinitely (Stop time = inf), and your
generated code does not use the rtModel data structure (that is, it uses
simstructs instead), you must not use these blocks. See “Limitations on the
Use of Absolute Time” on page 1-87 for a list of blocks that can potentially
overflow timers.

If you know how long an application that depends on absolute time needs to
run, you can prevent the timers from overflowing and force the use of optimal
word sizes by specifying the Application lifespan (days) parameter on the
Optimization pane. See “Control Memory Allocation for Time Counters” on
page 16-8 for details.

Configure the Solver Type

For code generation, you must configure a model to use a fixed-step solver for
all targets except the S-function and RSim targets. You can configure the
S-function and RSim targets with a fixed-step or variable-step solver.

Configure the Tasking Mode

The Simulink Coder product supports both single-tasking and multitasking
modes for periodic sample times. See “Scheduling” on page 1-4 for details.

1. UNIX® is a registered trademark of The Open Group in the United States and other
countries.
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Supported Products and Block Usage

In this section...

“Related Products” on page 1-91

“Simulink Built-In Blocks That Support Code Generation” on page 1-93
“Block Set Support for Code Generation” on page 1-115

“Fixed-Point Tool Data Type Override” on page 1-115

“Data Type Overrides Unavailable for Most Blocks in Embedded Targets
and Desktop Targets” on page 1-115

Related Products

The following table summarizes MathWorks® products that extend and
complement Simulink Coder software. For information about these and other
MathWorks products, see www.mathworks.com.

Product

Extends Code Generation Capabilities for

Aerospace Blockset™

Aircraft, spacecraft, rocket, propulsion
systems, and unmanned airborne vehicles

Communications System Toolbox™

Physical layer of communication systems

Computer Vision System Toolbox™

Video processing, image processing, and
computer vision systems

Control System Toolbox™

Linear control systems

DSP System Toolbox™

Signal processing systems

Embedded Coder

Embedded systems, on-target rapid prototyping
boards, microprocessors in mass production,
and real-time simulators

Fixed-Point Designer™

Control and signal processing systems
implemented with fixed-point arithmetic

Fuzzy Logic Toolbox™

System designs based on fuzzy logic
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Product

Extends Code Generation Capabilities for

Gauges Blockset™

Linking generated code executing on a target
system with graphical instrumentation in a
Simulink model

Model-Based Calibration Toolbox™

Developing processes for systematically
identifying optimal balance of engine
performance, emissions, and fuel economy,
and reusing statistical models for control
design, hardware-in-the-loop (HIL) testing, or
powertrain simulation

Model Predictive Control Toolbox™

Controllers that optimize performance of
multi-input and multi-output systems that are
subject to input and output constraints

Real-Time Windows Target™

Rapid prototyping or hardware-in-the-loop
(HIL) simulation of control system and signal
processing algorithms

SimDriveline™ Driveline (drivetrain) systems

SimElectronics® Electronic and electromechanical systems

SimHydraulics® Hydraulic power and control systems

SimMechanics™ Three-dimensional mechanical systems

SimPowerSystems™ Systems that generate, transmit, distribute,
and consume electrical power

Simscape™ Systems spanning mechanical, electrical,

hydraulic, and other physical domains as
physical networks

Simulink 3D Animation™

Systems with 3D visualizations

Simulink Design Optimization™

Systems requiring maximum overall system
performance

Simulink Report Generator™

Automatically generating project
documentation in a standard format
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Product Extends Code Generation Capabilities for

Simulink Verification and Validation™ Applications requiring automated
requirements tracing, model standards
compliance checking, and test harness
generation

System Identification Toolbox™ Systems constructed from measured
input-output data

Support exceptions:
e Nonlinear IDNLGREY Model, IDDATA
Source, IDDATA Sink, and estimator blocks

e Nonlinear ARX models that contain custom
regressors

® neuralnet nonlinearities

e customnet nonlinearities

] T™
Velidls Netmes sl Support exception: CAN Configuration, CAN

Receive, and CAN Transmit blocks in the CAN
Communication library

xPC Target™ Rapid control prototyping,
hardware-in-the-loop (HIL) simulation, and
other real-time testing applications

xPC Target Embedded Option™ Deploying real-time embedded systems on a PC
for production, data acquisition, calibration,
and testing applications

Simulink Built-In Blocks That Support Code
Generation

The following tables summarize Simulink Coder and Embedded Coder
support for Simulink blocks. There is a table for each block library. For more
detail, including data types each block supports, in the MATLAB Command
Window, type showblockdatatypetable, or consult the block reference pages.
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1-94

Additional Math and Discrete: Additional Discrete on page 1-95
Additional Math and Discrete: Increment/Decrement on page 1-96
Continuous on page 1-96

Discontinuities on page 1-97

Discrete on page 1-98

Logic and Bit Operations on page 1-100

Lookup Tables on page 1-101

Math Operations on page 1-102

Model Verification on page 1-105

Model-Wide Utilities on page 1-106

Ports & Subsystems on page 1-106

Signal Attributes on page 1-107

Signal Routing on page 1-108

Sinks on page 1-109

Sources on page 1-111

User-Defined on page 1-114
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Additional Math and Discrete: Additional Discrete

Block

Support Notes

Fixed-Point State-Space

The Simulink Coder software does not explicitly
group primitive blocks that constitute a
nonatomic masked subsystem block in the
generated code. This flexibility allows for more
efficient code generation. In certain cases, you
can achieve grouping by configuring the masked
subsystem block to execute as an atomic unit by
selecting the Treat as atomic unit option.

Transfer Fen Direct Form 11

Transfer Fen Direct Form IT Time Varying

Unit Delay Enabled

Unit Delay Enabled External IC

Unit Delay Enabled Resettable

Unit Delay Enabled Resettable External IC

Unit Delay External IC

Unit Delay Resettable

Unit Delay Resettable External IC

Unit Delay With Preview Enabled

Unit Delay With Preview Enabled Resettable

Unit Delay With Preview Enabled Resettable
External RV

Unit Delay With Preview Resettable

Unit Delay With Preview Resettable
External RV

¢ The Simulink Coder software does not
explicitly group primitive blocks that
constitute a nonatomic masked subsystem
block in the generated code. This flexibility
allows for more efficient code generation. In
certain cases, you can achieve grouping by
configuring the masked subsystem block to
execute as an atomic unit by selecting the
Treat as atomic unit option.

¢ Generated code might rely on memcpy or
memset (string.h).
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Additional Math and Discrete: Increment/Decrement

Block

Support Notes

Decrement Real World

Decrement Stored Integer

The Simulink Coder software does not explicitly group primitive
blocks that constitute a nonatomic masked subsystem block in
the generated code. This flexibility allows for more efficient
code generation. In certain cases, you can achieve grouping by
configuring the masked subsystem block to execute as an atomic
unit by selecting the Treat as atomic unit option.

Decrement Time To Zero

Supports code generation.

Decrement To Zero

Increment Real World

Increment Stored Integer

The Simulink Coder software does not explicitly group primitive
blocks that constitute a nonatomic masked subsystem block in
the generated code. This flexibility allows for more efficient
code generation. In certain cases, you can achieve grouping by
configuring the masked subsystem block to execute as an atomic
unit by selecting the Treat as atomic unit option.

Continuous
Block Support Notes
Derivative Not recommended for production-quality code. Relates to resource
limits and restrictions on speed and memory often found in
Integrator

Integrator Limited

PID Controller

PID Controller (2DOF)

Second-Order Integrator

Second-Order Integrator
Limited

State-Space

Transfer Fen

Transport Delay

Variable Time Delay

embedded systems. The code generated can contain dynamic
allocation and freeing of memory, recursion, additional memory
overhead, and widely-varying execution times. While the code
is functionally valid and generally acceptable in resource-rich
environments, smaller embedded targets often cannot support
such code.

In general, consider using the Simulink Model Discretizer to
map continuous blocks into discrete equivalents that support
production code generation. To start the Model Discretizer,
select Analysis > Control Design > Model Discretizer. One
exception is the Second-Order Integrator block because, for
this block, the Model Discretizer produces an approximate
discretization.
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Continuous (Continued)

Block

Support Notes

Variable Transport Delay

Zero-Pole

Discontinuities
Block Support Notes
Backlash Supports code generation.

Coulomb and Viscous
Friction

The Simulink Coder software does not explicitly group primitive
blocks that constitute a nonatomic masked subsystem block in
the generated code. This flexibility allows for more efficient
code generation. In certain cases, you can achieve grouping by
configuring the masked subsystem block to execute as an atomic
unit by selecting the Treat as atomic unit option.

Dead Zone

Supports code generation.

Dead Zone Dynamic

The Simulink Coder software does not explicitly group primitive
blocks that constitute a nonatomic masked subsystem block in
the generated code. This flexibility allows for more efficient
code generation. In certain cases, you can achieve grouping by
configuring the masked subsystem block to execute as an atomic
unit by selecting the Treat as atomic unit option.

Hit Crossing

Not recommended for production code. Relates to resource limits
and restrictions on speed and memory often found in embedded
systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally
valid and generally acceptable in resource-rich environments,
smaller embedded targets often cannot support such code. Usually,
blocks evolve toward being suitable for production code. Thus,
blocks suitable for production code remain suitable.

Quantizer

Supports code generation.

Rate Limiter

Cannot use inside a triggered subsystem hierarchy.
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Discontinvuities (Continued)

Block

Support Notes

Rate Limiter Dynamic

The Simulink Coder software does not explicitly group primitive

blocks that constitute a nonatomic masked subsystem block in

the generated code. This flexibility allows for more efficient
code generation. In certain cases, you can achieve grouping by
configuring the masked subsystem block to execute as an atomic
unit by selecting the Treat as atomic unit option.

Relay

Saturation

Support code generation.

Saturation Dynamic

Wrap To Zero

The Simulink Coder software does not explicitly group primitive
blocks that constitute a nonatomic masked subsystem block in
the generated code. This flexibility allows for more efficient
code generation. In certain cases, you can achieve grouping by
configuring the masked subsystem block to execute as an atomic
unit by selecting the Treat as atomic unit option.

Discrete
Block Support Notes
Delay Supports code generation.
Difference ¢ The Simulink Coder software does not explicitly group primitive

1-98

blocks that constitute a nonatomic masked subsystem block in
the generated code. This flexibility allows for more efficient
code generation. In certain cases, you can achieve grouping by
configuring the masked subsystem block to execute as an atomic
unit by selecting the Treat as atomic unit option.

* Not recommended for production code. Relates to resource limits
and restrictions on speed and memory often found in embedded
systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally
valid and generally acceptable in resource-rich environments,
smaller embedded targets often cannot support such code.
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Discrete (Continued)

Block

Support Notes

Usually, blocks evolve toward being suitable for production
code. Thus, blocks suitable for production code remain suitable.

Discrete Derivative

® Generated code might rely on memcpy or memset (string.h).

¢ Depends on absolute time when used inside a triggered
subsystem hierarchy.

Discrete Filter

Discrete FIR Filter

Support code generation.

PID Controller

PID Controller (2DOF)

® Generated code might rely on memcpy or memset (string.h).

® Depends on absolute time when used inside a triggered
subsystem hierarchy.

Discrete State-Space

Discrete Transfer Fen

Discrete Zero-Pole

Generated code might rely on memcpy or memset (string.h).

Discrete-Time Integrator

Depends on absolute time when used inside a triggered subsystem
hierarchy.

First-Order Hold

Not recommended for production code. Relates to resource limits
and restrictions on speed and memory often found in embedded
systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally
valid and generally acceptable in resource-rich environments,
smaller embedded targets often cannot support such code. Usually,
blocks evolve toward being suitable for production code. Thus,
blocks suitable for production code remain suitable.

Memory

Tapped Delay

Support code generation.
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Discrete (Continued)

Block

Support Notes

Transfer Fen First Order

Transfer Fen Lead or Lag

Transfer Fcn Real Zero

The Simulink Coder software does not explicitly group primitive
blocks that constitute a nonatomic masked subsystem block in
the generated code. This flexibility allows for more efficient
code generation. In certain cases, you can achieve grouping by
configuring the masked subsystem block to execute as an atomic
unit by selecting the Treat as atomic unit option.

Unit Delay

Generated code might rely on memcpy or memset (string.h).

Zero-Order Hold

Supports code generation.

Logic and Bit Operations

Block Support Notes
Bit Clear Support code generation.
Bit Set

Bitwise Operator

Combinatorial Logic

Compare to Constant

Compare to Zero

Detect Change

Detect Decrease

Detect Fall Negative

Detect Fall Nonpositive

Detect Increase

Detect Rise Nonnegative

Detect Rise Positive

Generated code might rely on memcpy or memset (string.h).
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Logic and Bit Operations (Continued)

Block

Support Notes

Extract Bits

Interval Test

Interval Test Dynamic

Logical Operator

Relational Operator

Shift Arithmetic

Support code generation.

Lookup Tables

Block

Support Notes

Cosine

The Simulink Coder software does not explicitly group primitive
blocks that constitute a nonatomic masked subsystem block in
the generated code. This flexibility allows for more efficient
code generation. In certain cases, you can achieve grouping by
configuring the masked subsystem block to execute as an atomic
unit by selecting the Treat as atomic unit check box.

Direct Lookup Table (n-D)

Interpolation Using
Prelookup

1-D Lookup Table

2-D Lookup Table

n-D Lookup Table

Lookup Table Dynamic

Prelookup

Support code generation.

Sine

The Simulink Coder software does not explicitly group primitive
blocks that constitute a nonatomic masked subsystem block in
the generated code. This flexibility allows for more efficient
code generation. In certain cases, you can achieve grouping by
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Lookup Tables (Continued)

Block

Support Notes

configuring the masked subsystem block to execute as an atomic
unit by selecting the Treat as atomic unit option.

Math Operations

Block Support Notes
Abs Support code generation.
Add

Algebraic Constraint

Ignored during code generation.

Assignment

Bias

Complex to
Magnitude-Angle

Complex to Real-Imag

Divide

Dot Product

Find Nonzero Elements

Gain

Magnitude-Angle to
Complex

Math Function (10"u)

Math Function (conj)

Math Function (exp)

Math Function (hermitian)

Math Function (hypot)

Math Function (log)

Math Function (log10)
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Math Operations (Continued)

Block

Support Notes

Math Function
(magnitude”2)

Math Function (mod)

Math Function (pow)

Math Function (reciprocal)

Math Function (rem)

Math Function (square)

Math Function (transpose)

Matrix Concatenate

MinMax

MinMax Running
Resettable

Permute Dimensions

Polynomial

Product

Product of Elements

Real-Imag to Complex

Reciprocal Sqrt

Reshape

Rounding Function

Sign

Signed Sqrt
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Math Operations (Continued)

Block

Support Notes

Sine Wave Function

® Does not refer to absolute time when configured for
sample-based operation. Depends on absolute time when in
time-based operation.

® Depends on absolute time when used inside a triggered
subsystem hierarchy.

Slider Gain

Sqrt

Squeeze

Subtract

Sum

Sum of Elements

Support code generation.

Trigonometric Function

Functions asinh, acosh, and atanh are not supported by all
compilers. If you use a compiler that does not support those
functions, the software issues a warning for the block and the
generated code fails to link.

Unary Minus

Vector Concatenate

Weighted Sample Time
Math

Support code generation.
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Model Verification

Block Support Notes
Assertion Supports code generation.
Check Discrete Gradient Not recommended for production code. Relates to resource limits

and restrictions on speed and memory often found in embedded
systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally
valid and generally acceptable in resource-rich environments,
smaller embedded targets often cannot support such code. Usually,
blocks evolve toward being suitable for production code. Thus,
blocks suitable for production code remain suitable.

Check Dynamic Gap Support code generation.

Check Dynamic Lower
Bound

Check Dynamic Range

Check Dynamic Upper

Bound
Check Input Resolution Not recommended for production code. Relates to resource limits
Clinssls Staie G and restrictions on speed and memory often found in embedded

systems. Generated code can contain dynamic allocation and
Check Static Lower Bound | freeing of memory, recursion, additional memory overhead, and
Check Static Range widely-varying execution times: While the cpde is functionally
valid and generally acceptable in resource-rich environments,
Check Static Upper Bound | smaller embedded targets often cannot support such code. Usually,
blocks evolve toward being suitable for production code. Thus,
blocks suitable for production code remain suitable.
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Model-Wide Utilities

Block Support Notes
Block Support Table Ignored during code generation.
DocBlock Uses the template symbol you specify for the Embedded Coder

Flag block parameter to add comments to generated code.
Requires an Embedded Coder license. For more information, see
“Use a Simulink DocBlock to Add a Comment”.

Model Info Ignored during code generation.

Timed-Based Linearization

Trigger-Based
Linearization

Ports & Subsystems

Block Support Notes

Atomic Subsystem Support code generation.

CodeReuse Subsystem

Configurable Subsystem
Enable

Enabled Subsystem

Enabled and Triggered
Subsystem

For Each
For Each Subsystem

For Iterator Subsystem

Function-Call Generator

Function-Call Split

Function-Call Subsystem
If
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Ports & Subsystems (Continued)

Block Support Notes

If Action Subsystem
Model

Subsystem

Switch Case

Switch Case Action
Subsystem

Triggered Subsystem

While Iterator Subsystem

Signal Attributes

Block Support Notes

Bus to Vector Support code generation.

Data Type Conversion

Data Type Conversion
Inherited

Data Type Duplicate

Data Type Propagation

Data Type Scaling Strip

1C Not recommended for production code. Relates to resource limits
and restrictions on speed and memory often found in embedded
systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally
valid and generally acceptable in resource-rich environments,
smaller embedded targets often cannot support such code. Usually,
blocks evolve toward being suitable for production code. Thus,
blocks suitable for production code remain suitable.

Probe Supports code generation.

1-107



1 Modeling

Signal Atiributes (Continued)

Block

Support Notes

Rate Transition

® Generated code might rely on memcpy or memset (string.h).

® (Cannot use inside a triggered subsystem hierarchy.

Signal Conversion

Signal Specification

Weighted Sample Time

Width

Support code generation.

Signal Routing

Block

Support Notes

Bus Assignment

Bus Creator

Bus Selector

Data Store Memory

Data Store Read

Data Store Write

Demux

Support code generation.

Environment Controller

Not recommended for production code. Relates to resource limits
and restrictions on speed and memory often found in embedded
systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally
valid and generally acceptable in resource-rich environments,
smaller embedded targets often cannot support such code. Usually,
blocks evolve toward being suitable for production code. Thus,
blocks suitable for production code remain suitable.

1-108



Supported Products and Block Usage

Signal Routing (Continued)

Block Support Notes
From Support code generation.
Goto

Goto Tag Visibility

Index Vector

Manual Switch

Not recommended for production code. Relates to resource limits
and restrictions on speed and memory often found in embedded
systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally
valid and generally acceptable in resource-rich environments,
smaller embedded targets often cannot support such code. Usually,
blocks evolve toward being suitable for production code. Thus,
blocks suitable for production code remain suitable.

Merge

When multiple signals connected to a Merge block have a non-Auto
storage class, all non-Auto signals connected to that block must be
identically labeled and have the same storage class. When Merge
blocks connect directly to one another, these rules apply to all
signals connected to Merge blocks in the group.

Multiport Switch

Mux

Support code generation.

Selector

Switch Generated code might rely on memcpy or memset (string.h).
Sinks

Block Support Notes

Display Ignored for code generation.

Floating Scope

Outport (Outl)

Supports code generation.
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Sinks (Continued)

Block

Support Notes

Scope

Ignored for code generation.

Stop Simulation

® Not recommended for production code. Relates to resource limits
and restrictions on speed and memory often found in embedded
systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally
valid and generally acceptable in resource-rich environments,
smaller embedded targets often cannot support such code.
Usually, blocks evolve toward being suitable for production
code. Thus, blocks suitable for production code remain suitable.

® Generated code stops executing when the stop condition is true.

Terminator

Supports code generation.

To File

Not recommended for production code. Relates to resource limits
and restrictions on speed and memory often found in embedded
systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally
valid and generally acceptable in resource-rich environments,
smaller embedded targets often cannot support such code. Usually,
blocks evolve toward being suitable for production code. Thus,
blocks suitable for production code remain suitable.

To Workspace

XY Graph

Ignored for code generation.
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Sources

Block

Support Notes

Band-Limited White Noise

Cannot use inside a triggered subsystem hierarchy.

Chirp Signal

Clock

Not recommended for production code. Relates to resource limits
and restrictions on speed and memory often found in embedded
systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally
valid and generally acceptable in resource-rich environments,
smaller embedded targets often cannot support such code. Usually,
blocks evolve toward being suitable for production code. Thus,
blocks suitable for production code remain suitable.

Constant

Supports code generation.

Counter Free-Running

Not recommended for production code. Relates to resource limits
and restrictions on speed and memory often found in embedded
systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally
valid and generally acceptable in resource-rich environments,
smaller embedded targets often cannot support such code. Usually,
blocks evolve toward being suitable for production code. Thus,
blocks suitable for production code remain suitable.

Counter Limited

¢ The Simulink Coder software does not explicitly group primitive
blocks that constitute a nonatomic masked subsystem block in
the generated code. This flexibility allows for more efficient
code generation. In certain cases, you can achieve grouping by
configuring the masked subsystem block to execute as an atomic
unit by selecting the Treat as atomic unit option.

® Not recommended for production code. Relates to resource limits
and restrictions on speed and memory often found in embedded
systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally
valid and generally acceptable in resource-rich environments,
smaller embedded targets often cannot support such code.
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Sources (Continued)

Block

Support Notes

Usually, blocks evolve toward being suitable for production
code. Thus, blocks suitable for production code remain suitable.

Digital Clock

Not recommended for production code. Relates to resource limits
and restrictions on speed and memory often found in embedded
systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally
valid and generally acceptable in resource-rich environments,
smaller embedded targets often cannot support such code. Usually,
blocks evolve toward being suitable for production code. Thus,
blocks suitable for production code remain suitable.

Enumerated Constant

Supports code generation.

From File

From Workspace

Ignored for code generation.

Ground

Inport (In1)

Support code generation.

Pulse Generator

Cannot use inside a triggered subsystem hierarchy. Does not refer
to absolute time when configured for sample-based operation.
Depends on absolute time when in time-based operation.

Ramp

Not recommended for production code. Relates to resource limits
and restrictions on speed and memory often found in embedded
systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally
valid and generally acceptable in resource-rich environments,
smaller embedded targets often cannot support such code. Usually,
blocks evolve toward being suitable for production code. Thus,
blocks suitable for production code remain suitable.

Random Number

Supports code generation.
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Sources (Continued)

Block

Support Notes

Repeating Sequence

¢ Not recommended for production code. Relates to resource limits
and restrictions on speed and memory often found in embedded
systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally
valid and generally acceptable in resource-rich environments,
smaller embedded targets often cannot support such code.
Usually, blocks evolve toward being suitable for production
code. Thus, blocks suitable for production code remain suitable.

® Consider using the Repeating Sequence Stair or Repeating
Sequence Interpolated block instead.

Repeating Sequence
Interpolated

¢ The Simulink Coder software does not explicitly group primitive
blocks that constitute a nonatomic masked subsystem block in
the generated code. This flexibility allows for more efficient
code generation. In certain cases, you can achieve grouping by
configuring the masked subsystem block to execute as an atomic
unit by selecting the Treat as atomic unit option.

¢ Cannot use inside a triggered subsystem hierarchy.

Repeating Sequence Stair

The Simulink Coder software does not explicitly group primitive
blocks that constitute a nonatomic masked subsystem block in
the generated code. This flexibility allows for more efficient
code generation. In certain cases, you can achieve grouping by
configuring the masked subsystem block to execute as an atomic
unit by selecting the Treat as atomic unit option.

Signal Builder

Signal Generator

Not recommended for production code. Relates to resource limits
and restrictions on speed and memory often found in embedded
systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally
valid and generally acceptable in resource-rich environments,
smaller embedded targets often cannot support such code. Usually,
blocks evolve toward being suitable for production code. Thus,
blocks suitable for production code remain suitable.
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Sources (Continued)

Block

Support Notes

Sine Wave

® Depends on absolute time when used inside a triggered
subsystem hierarchy.

® Does not refer to absolute time when configured for
sample-based operation. Depends on absolute time when in
time-based operation.

Step

Not recommended for production code. Relates to resource limits
and restrictions on speed and memory often found in embedded
systems. Generated code can contain dynamic allocation and
freeing of memory, recursion, additional memory overhead, and
widely-varying execution times. While the code is functionally
valid and generally acceptable in resource-rich environments,
smaller embedded targets often cannot support such code. Usually,
blocks evolve toward being suitable for production code. Thus,
blocks suitable for production code remain suitable.

Uniform Random Number

Supports code generation.

User-Defined

Block

Support Notes

Fen

Supports code generation.

Interpreted MATLAB
Function

Consider using the MATLAB Function block instead.

Level-2 MATLAB
S-Function

Ignored during code generation.

MATLAB Function

Supports code generation.

S-Function

S-Function Builder

S-functions that call into MATLAB are not supported for code
generation.
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Block Set Support for Code Generation

Several products that include blocks are available for you to consider for
code generation. However, before using the blocks for one of these products,
consult the documentation for that product to confirm which blocks support
code generation.

Fixed-Point Tool Data Type Override

SIL/PIL does not support signals with data types overridden by the
Fixed-Point Tool Data type override parameter at the SIL/PIL component
boundary.

You may see an exception message like the following:

Simulink.DataType object 'real_T' is not in scope
from 'mpil_mtrig_no_ic_preread/TmpSFcnForModelReference_unitInTopMdl'.
This error message is related to a hidden S-Function block.

There is no resolution for this issue.

Data Type Overrides Unavailable for Most Blocks in
Embedded Targets and Desktop Targets

When you attempt to perform a datatype override on a block, you may get an
error message similar to the following example:

Error reported by S-function 'sfun_can_frame_splitter' in
'c2000_host_CAN_monitor/CAN Message Unpacking/CAN Message
Unpacking': Incompatible DataType or Size specified.

Data type overrides using the Fixed point tool are not available for blocks
in Simulink Coder > Desktop Targets and Embedded Coder > Embedded
Targets libraries that support fixed-point.

There is no resolution for this issue.

1-115



1 Modeling

Modeling Semantic Considerations

1-116

In this section...

“Data Propagation” on page 1-116

“Sample Time Propagation” on page 1-118
“Latches for Subsystem Blocks” on page 1-119
“Block Execution Order” on page 1-119
“Algebraic Loops” on page 1-121

Data Propagation

The first stage of code generation is compilation of the block diagram. This
stage is analogous to that of a C or C++ program. The compiler carries out
type checking and preprocessing. Similarly, the Simulink engine verifies that
input/output data types of block ports are consistent, line widths between
blocks are of expected thickness, and the sample times of connecting blocks
are consistent.

The Simulink engine propagates data from one block to the next along signal
lines. The data propagated consists of

e Data type
¢ Line widths

® Sample times
You can verify what data types a Simulink block supports by typing

showblockdatatypetable

at the MATLAB prompt, or (from the Help browser) clicking the command
above.

The Simulink engine typically derives signal attributes from a source block.
For example, the Inport block’s parameters dialog box specifies the signal
attributes for the block.
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E!Source Block Parameters: Inl x|

—Inport

Provide an input port for a subsystem or model.

For Triggered Subsystems, ‘Latch input by delaying outside signal'
produces the value of the subsystem input at the previous time step.
For Function-Call Subsystems, turning 'On’ the ‘Latch input for feedback
signals of function-call subsystem outputs' prevents the input value to
this subsystem from changing during its execution.

The other parameters can be used to explicitly specify the input signal
attributes,

Mairn Signal Attributes I
Minimum: Maximum:

I0 [0

Data type: | double ;I == |

™ Lock output data type setting against changes by the fixed-point tocls

Part dimensions {-1 for inherited):

|3

Variable-size signal: IInherit ;I

Sample time (-1 for inherited):

jo.o1
Signal type: Icomplex ;I
Sampling mode: |auh0 x|

J- Ok I Cancel | Help

In this example, the Inport block has a port width of 3, a sample time of .01
seconds, the data type is double, and the signal is complex.

This figure shows the propagation of the signal attributes associated with the

Inport block through a simple block diagram.

double (21(3) 2 double ()03

D
[111 .
Sain

Dt

In this example, the Gain and Outport blocks inherit the attributes specified

for the Inport block.

1-117



1 Modeling

1-118

Sample Time Propagation

Inherited sample times in source blocks (for example, a root inport) can
sometimes lead to unexpected and unintended sample time assignments.
Since a block may specify an inherited sample time, information available at
the outset is often insufficient to compile a block diagram completely.

In such cases, the Simulink engine propagates the known or assigned sample
times to those blocks that have inherited sample times but that have not

yet been assigned a sample time. Thus, the engine continues to fill in the
blanks (the unknown sample times) until sample times have been assigned
to as many blocks as possible. Blocks that still do not have a sample time
are assigned a default sample time.

For a completely deterministic model (one where no sample times are set
using the above rules), you should explicitly specify the sample times of

all your source blocks. Source blocks include root inport blocks and blocks
without input ports. You do not have to set subsystem input port sample
times. You might want to do so, however, when creating modular systems.

An unconnected input implicitly connects to ground. For ground blocks and
ground connections, the sample time is always constant (inf).

All blocks have an inherited sample time (T, = -1). They are assigned a
sample time of (T, - T,)/50.

Constant Block Sample Times

You can specify a sample time for Constant blocks. This has certain
implications for code generation.

When a sample time of inf is selected for a Constant block,

e [f Inline parameters is on, the block takes on a constant sample time,
and propagates a constant sample time downstream.

e [f Inline parameters is off, the Constant block inherits its sample time —

which is nonconstant — and propagates that sample time downstream.

Generated code for a block differs when it has a constant sample time; its
outputs are represented in the constant block outputs structure instead of in
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the general block outputs structure. The generated code thus reflects that the
Constant block propagates a constant sample time downstream if a sample
time of inf is specified and Inline parameters is on.

Latches for Subsystem Blocks

When an Inport block is the signal source for a triggered or function-call
subsystem, you can use latch options to preserve input values while the
subsystem executes. The Inport block latch options include:

For... You Can Use...

Triggered Latch input by delaying outside signal
subsystems

Function-call Latch input for feedback signals of function-call
subsystems subsystem outputs

When you use Latch input for feedback signals of function-call
subsystem outputs for a function-call subsystem, the Simulink Coder code
generator

® Preserves latches in generated code regardless of optimizations that might
be set

¢ Places the code for latches at the start of a subsystem’s output/update
function

For more information on these options, see the description of the Inport block
in the Simulink documentation.

Block Execution Order

Once the Simulink engine compiles the block diagram, it creates a model.rtw
file (analogous to an object file generated from a C or C++ file). The model.rtw
file contains the connection information of the model, as well as the signal
attributes. Thus, the timing engine in can determine when blocks with
different rates should be executed.

You cannot override this execution order by directly calling a block
(in handwritten code) in a model. For example, in the next figure the
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disconnected_trigger model on the left has its trigger port connected to
ground, which can lead to all blocks inheriting a constant sample time. Calling
the trigger function, f (), directly from user code does not work. Instead, you
should use a function-call generator to specify the rate at which f () should be
executed, as shown in the connected trigger model on the right.

In1

3y fO
Y o . Connected
: Disconnected Function-call Trigger
: Trigger Generator
v v
fo fo
outtf——(D) Il out1
Out1 In1 Out1
Triggered Triggered
Subsystem Subsystem
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Instead of the function-call generator, you could use another block that can
drive the trigger port. Then, you should call the model’s main entry point to
execute the trigger function.

For multirate models, a common use of the Simulink Coder product is to build
individual models separately and then manually code the I/O between the
models. This approach places the burden of data consistency between models
on the developer of the models. Another approach is to let the Simulink

and Simulink Coder products maintain data consistency between rates and
generate multirate code for use in a multitasking environment. The Simulink
Rate Transition block is able to interface both periodic and asynchronous
signals. For a description of the Simulink Coder libraries, see “Handle
Asynchronous Events” on page 1-34. For more information on multirate code
generation, see “Scheduling” on page 1-4.
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Algebraic Loops

Algebraic loops are circular dependencies between variables. This prevents
the straightforward direct computation of their values. For example, in the
case of a system of equations

.X:y+2

[ ] y -X

the values of x and y cannot be directly computed.

To solve this, either repeatedly try potential solutions for x and y (in an
intelligent manner, for example, using gradient based search) or “solve” the
system of equations. In the previous example, solving the system into an
explicit form leads to

® 2x = 2
oy = -x
® x =1
ey = -1

An algebraic loop exists whenever the output of a block having direct
feedthrough (such as Gain, Sum, Product, and Transfer Fcn) is fed back as an
input to the same block. The Simulink engine is often able to solve models
that contain algebraic loops, such as the next diagram.

"\
Sine Wave
; ; — (D)
© Cut1
Constant g

1-121



1 Modeling

1-122

The Simulink Coder software does not produce code that solves algebraic
loops. This restriction includes models that use Algebraic Constraint blocks
in feedback paths. However, the Simulink engine can often eliminate all

or some algebraic loops that arise, by grouping equations in certain ways

in models that contain them. It does this by separating the update and
output functions to avoid circular dependencies. See “Algebraic Loops” in the
Simulink documentation for details.

Algebraic Loops in Triggered Subsystems

While the Simulink engine can minimize algebraic loops involving atomic
and enabled subsystems, a special consideration applies to some triggered
subsystems. An example for which code can be generated is shown in the
following model and triggered subsystem.

i o[
|
Puke
Generator Scope
r
£
1 —® I Ot 1 A
L Ot
Constant Triggered
Subsystem

The default Simulink behavior is to combine output and update methods for
the subsystem, which creates an apparent algebraic loop, even though the
Unit Delay block in the subsystem has no direct feedthrough.

You can allow the Simulink engine to solve the problem by splitting the output
and update methods of triggered and enabled-triggered subsystems when
feasible. If you want the Simulink Coder code generator to take advantage of
this feature, select the Minimize algebraic loop occurrences check box in
the Subsystem Parameters dialog box. Select this option to avoid algebraic
loop warnings in triggered subsystems involved in loops.
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Note If you check this box, the generated code for the subsystem might
contain split output and update methods, even if the subsystem is not actually
involved in a loop. Also, if a direct feedthrough block (such as a Gain block)
1s connected to the inport in the above triggered subsystem, the Simulink
engine cannot solve the problem, and the Simulink Coder software is unable
to generate code.

A similar Minimize algebraic loop occurrences option appears on the
Model Referencing pane of the Configuration Parameters dialog box.
Selecting it enables the Simulink Coder software to generate code for models
containing Model blocks that are involved in algebraic loops.
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¢ “Code Generation of Subsystems” on page 2-2

® “Generate Code and Executables for Individual Subsystem” on page 2-4
¢ “Inline Subsystem Code” on page 2-7

® “Generate Subsystem Code as Separate Function and Files” on page 2-10

® “Generate Reusable Function for Identical Subsystems Within a Model”
on page 2-11

® “Optimize Code for Identical Nested Subsystems” on page 2-14

® “Generate Reusable Code for Subsystems Containing S-Function Blocks”
on page 2-15

® “Generate Reusable Code from Stateflow Charts” on page 2-16
® “Code Reuse Limitations for Subsystems” on page 2-17

¢ “Code Reuse For Subsystems Shared Across Referenced Models” on page
2-19

¢ “Reusable Library Subsystem” on page 2-20
¢ “Code Generation of Constant Parameters” on page 2-22
¢ “Shared Constant Parameters for Code Reuse” on page 2-23

® “Generate Reusable Code for Subsystems Shared Across Models” on page
2-25

® “Determine Why Subsystem Code Is Not Reused” on page 2-32
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For you to control how code is generated for a nonvirtual subsystem, the
Simulink Coder software provides subsystem parameters that you can use.
The categories of nonvirtual subsystems are:

® Conditionally executed subsystems. Execution depends upon a control
signal or control block. These subsystems include:

= Triggered
= Enabled
= Action

= Iterator

= Function-call

For more information, see “About Conditional Subsystems”.

® Atomic subsystems: A virtual subsystem can be declared atomic (and
therefore nonvirtual) by using the “Treat as atomic unit” parameter in the

Subsystem Parameters dialog box.

For more information on nonvirtual subsystems and atomic subsystems, see
“Systems and Subsystems” and run the s1_subsys_semantics model.

You can design and configure your model to control the code generated from

nonvirtual subsystems.

TO...

See...

Generate inlined code from a selected
nonvirtual subsystem.

“Inline Subsystem Code” on page 2-7

Generate code for only a subsystem.

“Generate Code and Executables for
Individual Subsystem” on page 2-4

Generate separate functions with no
arguments, and optionally place the
subsystem code in a separate file.

“Generate Subsystem Code as
Separate Function and Files” on
page 2-10
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To... See...

Generate a single reentrant function | “Generate Reusable Function for
for a subsystem that is included in Identical Subsystems Within a
multiple places within a model. Model” on page 2-11

Generate a single reentrant function | “Generate Reusable Code for

for a subsystem that is included in Subsystems Shared Across Models”
multiple places in a model reference | on page 2-25 and “Code Reuse
hierarchy. For Subsystems Shared Across
Referenced Models” on page 2-19

Note If you generate code for a virtual subsystem, code generator treats the
subsystem as atomic and generates the code accordingly. The resulting code
can change the execution behavior of your model, for example, by applying
algebraic loops, and therefore introduce inconsistencies with the simulation
behavior. Declare virtual subsystems as atomic subsystems, which makes
simulation and execution behavior consistent for your model consistent.

Subsystem Code Dependence

Code generated from nonvirtual subsystems may or may not be completely
independent of the generating model. When generating code for a subsystem,
the code may reference global data structures of the model, even if the
subsystem code is in a separate file. Each subsystem code file contains
include directives and comments describing the dependencies. The Simulink
Coder software checks for cyclic file dependencies and warns about them

at build time. For descriptions of how generated code is packaged, see
“Generated Source Files and File Dependencies” on page 10-4.

To generate subsystem code that is independent of the generating model,
place the subsystem in a library and configure it as a reusable subsystem. For
more information, see “Code Reuse For Subsystems Shared Across Referenced
Models” on page 2-19.
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Generate Code and Executables for Individual Subsystem

You can generate code and build an executable for a subsystem within a
model. The code generation and build process uses the code generation and
build parameters of the root model.

1 In the Configuration Parameters dialog box, set up the code generation and
build parameters, similar to setting up the code generation for a model.

2 Right-click the Subsystem block. From the context menu, select C/C++
Code > Build This Subsystem from the context menu.

Alternatively, in the current model, click a subsystem and then from the
Code menu, select C/C++ Code > Build Selected Subsystem.

Note When you select Build This Subsystem, if the model is operating in
external mode, the Simulink Coder build process automatically turns off
external mode for the duration of the build. Simulink Coder then restores
external mode upon completion of the build process.
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3 The Build code for Subsystem window displays a list of the subsystem
parameters. The upper pane displays the name, class, and storage class
of each variable (or data object) that is referenced as a block parameter
in the subsystem. When you select a parameter in the upper pane, the
lower pane shows the blocks that reference the parameter and the parent
system of each block.

The Storage Class column contains a menu for each row. The menu
options set the storage class or inline the parameter. To declare a parameter
to be tunable, set the Storage Class to a value other than Inlined.

‘4\ Build code for Subsystem:Subsystem EI@
Fick tunable parameters
“ariahle Kame Class Storage Class

e W

HHkes - doubla ExportedGlohal R

@ kit Simulink Parameter | E¥pOtedGlabal v

HH kinline double Inlined v

B kirta ints ExportedGlohal -

H ksingle single ExportedGlohal Y

© Kuser Simulink.Parameter | EXPOrtedGlobal v

Blocks using selected variable: Walias'

Elock Parent
0 Gaing rwdemo_paramdtiSubsystem
0 Saturations rwdemo_paramdifSubsystem

[ Builn [ cancel ][ Help

Status
Selecttunable parameters and click Build

For more information on tunable and inlined parameters and storage
classes, see “Parameters” on page 7-10.

4 After selecting tunable parameters, Build to initiate the code generation
and build process.

5 The build process displays status messages in the MATLAB Command
Window. When the build is complete, the generated executable is in your
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working folder. The name of the generated executable is subsystem.exe
(on PC platforms) or subsystem (on The Open Group UNIX platforms).
subsystem is the name of the source subsystem block.

The generated code is in a build subfolder, named subsystem_target rtw.
subsystem is the name of the source subsystem block and target is the
name of the target configuration.

When you generate code for a subsystem, you can generate an S-function
by selecting Code > C/C++ Code> Generate S-Function, or you can use
the right-click subsystem build. For more information on S-functions, see
“Automate S-Function Generation” on page 14-23 and in Embedded Coder,
“Generate S-Function Wrappers”.

Subsystem Build Limitations
The following limitations apply to building subsystems:

When you right-click build a subsystem that includes an Outport block for
which the Data type parameter specifies a bus object, you must address
errors that result from setting signal labels. To configure the software to
display these errors, in the Configuration Parameters dialog box for the
parent model, on the Diagnostics > Connectivity pane, set the Signal
label mismatch parameter to error.

When a subsystem is in a triggered or function-call subsystem, the
right-click build process might fail if the subsystem code is not sample-time
independent. To find out whether a subsystem is sample-time independent:

1 Copy all blocks in the subsystem to an empty model.
2 In the Configuration Parameters dialog box, on the Solver pane, set:
a. Type to Fixed-step.

b. Periodic sample time constraint to Ensure sample time
independent.

c. Click Apply.

3 Update the model. If the model is sample-time dependent, Simulink
generates an error in the process of updating the diagram.
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Inline Subsystem Code

You can configure a nonvirtual subsystem to inline the subsystem code
with the model code. In the Subsystem Parameters dialog box, setting the
Function packaging parameter to Auto or Inline inlines the generated
code of the subsystem.

The Auto option is the default. When there is only one instance of a subsystem
in the model, the Auto option inlines the subsystem code. When multiple
instances of a subsystem exist, the Auto option results in a single copy of the
function (as a reusable function). For function-call subsystems with multiple
callers, the subsystem code is generated as if you specified Nonreusable
function.

To inline subsystem code, select Inline. The Inline option explicitly directs
the code generator to inline the subsystem unconditionally.

Configure Subsystem to Inline Code

To configure your subsystem for inlining:

1 Right-click the Subsystem block. From the context menu, select Block
Parameters (Subsystem).

2 In the Subsystem Parameters dialog box, if the subsystem is virtual, select
Treat as atomic unit. This option makes the subsystem nonvirtual.
On the Code Generation tab, the Function packaging option is now
available.

If the system is already nonvirtual, the Function packaging option is
already selected.

3 Click the Code Generation tab and select Auto or Inline from the
Function packaging parameter.
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E Function Block Parameters: AtomicSubsysl @
Subsystem
Select the settings for the subsystem block. To enable parameters on the
Code Generation tab, on the Main tab, select 'Treat as atomic unit'.

Code Generation
Function packaging: [Auto -
P [ oK l I Cancel I I Help Apply

4 Click Apply and close the dialog box.

The border of the subsystem thickens, indicating that it is nonvirtual.

When you generate code from your model, the code generator inlines
subsystem code within model.c or model.cpp (or in its parent system’s source
file). You can identify this code by system/block identification tags, such as:

/* Atomic SubSystem Block: <Root>/AtomicSubsysi */

Exceptions to Inlining

There are certain cases in which the code generator does not inline a
nonvirtual subsystem, even though the Inline option is selected.

¢ [f the subsystem is a function-call subsystem that is called by a noninlined
S-function, the Inline option is ignored. Noninlined S-functions make calls
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by using function pointers. Therefore, the function-call subsystem must
generate a function with all arguments present.

¢ In a feedback loop involving function-call subsystems, the code generator
forces one of the subsystems to be generated as a function instead of
inlining it. Based on the order in which the subsystems are sorted
internally, the software selects the subsystem to be generated as a function.

e [f a subsystem is called from an S-function block that sets the option
SS_OPTION_FORCE_NONINLINED FCNCALL to TRUE, it is not inlined.
When user-defined Async Interrupt blocks or Task Sync blocks are
present, this result might occur. Such blocks must be generated as
functions. These blocks are located in the VxWorks block library
(vx1ib1) shipped with the Simulink Coder product and use the
SS_OPTION_FORCE_NONINLINED FCNCALL option.?

2. VxWorks® is a registered trademark of Wind River® Systems, Inc.
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Generate Subsystem Code as Separate Function and Files

To generate both a separate subsystem function and a separate file for a
subsystem in a model:

1 Right-click a Subsystem block. From the context menu, select Block
Parameters (Subsystem).

2 In the Subsystem Parameters dialog box, if the subsystem is virtual, select
Treat as atomic unit. On the Code Generation tab, the Function
packaging parameter is now available.

3 Click the Code Generation tab and select Nonreusable function from
the Function packaging parameter. The Nonreusable function option
enables two parameters:

¢ The “Function name options” parameter controls the naming of the
generated function.

¢ The “File name options” parameter controls the naming of the generated
file.

4 Set the Function name options parameter.

5 Set the File name options parameter to a value other than Auto. If you
are generating a reusable function for your subsystem, see “Generate
Reusable Function for Identical Subsystems Within a Model” on page
2-11 or “Generate Reusable Code for Subsystems Shared Across Models”
on page 2-25.

6 Click Apply and close the dialog box.
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Generate Reusable Function for Identical Subsystems
Within a Model

In the Subsystem Parameters dialog box, the Function packaging
parameter option Nonreusable function generates functions that use global
data. The Reusable function option generates reusable functions that
have data passed as arguments (enabling them to be reentrant). Selecting
Reusable function generates a function with arguments that allows the
subsystem code to be shared by other instances of it in the model. This action
supports less code instead of replicating the code for each instance of a
subsystem or each time it is called.

To determine reusability of the subsystem code, the code generator performs a
checksum to determine if subsystems are identical. The generated function
has arguments, for example, for block inputs and outputs (rtB_*), continuous
states (rtDW_*), parameters (rtP_%*).

Note In the generated code, the call interface is subject to change from
release to release. Therefore, do not directly call reusable functions from
external code.

To generate one reusable function for identical subsystems within a model:

1 Right-click the Subsystem block. From the context menu, select Block
Parameters (Subsystem).

2 In the Subsystem Parameters dialog box, if the subsystem is virtual, select
Treat as atomic unit. On the Code Generation tab, the Function
packaging menu is now available.

If the subsystem is already nonvirtual, the Function packaging menu is
already selected.

3 Click the Code Generation tab and select Reusable function for the
Function packaging parameter.
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E Function Block Parameters: AtomicSubsysl @
Subsystem
Select the settings for the subsystem block. To enable parameters on the
Code Generation tab, on the Main tab, select 'Treat as atomic unit'.
Code Generation
Function packaging: [Reusable function v]
Function name options: ’Auto v]
File name options: ’huto v]
J [ oK l ’ Cancel ] ’ Help ] ’ Apply ]

For more information about this setting, see “Considerations for Function
Packaging Options Auto and Reusable function” on page 2-13.

4 Set the function name using the “Function name options” parameter.

Note If you do not choose Auto, for other Subsystem blocks that you want

to share this code, specify the same function name for those Subsystem
blocks.

5 Set the file name using the “File name options” parameter to a value other
than Auto. If your generated code is under source control, a value other

than Auto prevents the generated file name from changing due to unrelated
model modifications.
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Note For other Subsystem blocks that you want to share this code, specify
the same file name for those Subsystem blocks.

6 Click Apply and close the dialog box.

For a summary of code reuse limitations, see “Code Reuse Limitations for
Subsystems” on page 2-17.

Considerations for Function Packaging Options Auto
and Reusable function

When you want multiple instances of a subsystem to be represented as one
reusable function, you can designate each one of them as Auto or as Reusable
function. Use one or the other, because using both creates two reusable
functions, one for each specification. The outcomes of these choices differ
only when reuse is not possible. Selecting Auto does not allow control of the
function or file name for the subsystem code.

The Reusable function and Auto options both try to determine if multiple
instances of a subsystem exist and if the code can be reused. When reuse is
not possible, there are differences in the options behavior:

® Auto yields inlined code. If circumstances prohibit inline, then the
generated code is separate functions without arguments for each subsystem
instance.

® Reusable function yields a separate function with arguments for each
subsystem instance in the model.
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Optimize Code for Identical Nested Subsystems

The Function packaging parameter Auto option can optimize code in
situations in which identical subsystems contain other identical subsystems,
by both reusing and inlining generated code. Suppose a model, such as the
one shown in Reuse of Identical Nested Subsystems on page 2-14, contains
1dentical subsystems A1 and A2. A1 contains subsystem B1, and A2 contains
subsystem B2, which are identical. In such cases, the Auto option causes one
function to be generated which is called for both A1 and A2. This function
contains one piece of inlined code to execute B1 and B2. This optimization
generates less code which improves execution speed.

Speciol Cose Optimizotion:

When B1=B2und A1=A2, selecting the Auto
option inlines cod e for B within code for function A

Al

Q—P—h B1 |—™
CO—

Az

Reuse of Identical Nested Subsystems
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Generate Reusable Code for Subsystems Containing
S-Function Blocks

There are several requirements that need to be met in order for subsystems
containing S-function blocks to be reused. For the list of requirements, see
“S-Functions That Support Code Reuse” on page 14-111.

When you select the Reusable function option, two additional options are
enabled, Function name options and File name options. If you use
these fields to enter a function name and/or a file name, you must specify
exactly the same function name and file name for each instance of identical
subsystems for the code generator to reuse the subsystem code. For an
example, follow the procedure in “Generate Reusable Function for Identical
Subsystems Within a Model” on page 2-11.
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Generate Reusable Code from Stateflow Charts

You can generate reusable code from a Stateflow chart, or from a subsystem
containing a chart, except in the following cases:

® The Stateflow chart contains exported graphical functions.

® The Stateflow model contains machine parented events.
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Code Reuse Limitations for Subsystems

The code generator uses a checksum to determine whether subsystems are
identical and reusable. Subsystem code is not reused, if:

® A port used by multiple instances of a subsystem has different sample
times, data types, complexity, frame status, or dimensions across the
Instances.

® The output of a subsystem 1s marked as a global signal.

® Subsystems contain identical blocks with different names or parameter
settings.

® The output of a subsystem is connected to a Merge block, and the output of
the Merge block is a custom storage class that i1s implemented in the C code
as memory that is nonaddressable (for example, BitField).

® The input of a subsystem is nonscalar and has a custom storage class that
is implemented in the C code as memory that is nonaddressable.

* A masked subsystem has a parameter that is nonscalar and has a custom
storage class that is implemented in the C code as memory that is
nonaddressable.

If you select Reusable function, and the code generator determines that
code for a subsystem cannot be reused, it generates a separate function that
1s not reused. The code generation report might show that the separate
function is reusable, even if it is used by only one subsystem. If you prefer
that subsystem code be inlined in such circumstances rather than deployed as
functions, then choose Auto for the Function packaging option.

Blocks That Prevent Code Reuse
Use of the following blocks in a subsystem can also prevent the subsystem

code from being reused:
® Scope blocks (with data logging enabled)

¢ S-Function blocks that fail to meet certain criteria (see “S-Functions That
Support Code Reuse” on page 14-111)

® To File blocks (with data logging enabled)
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® To Workspace blocks (with data logging enabled)

Code Reuse Limitations for Subsystems Shared
Across Referenced Models

The code generator uses a checksum to determine whether reusable library
subsystems are identical. The reusable library subsystem code is placed in
the shared utilities folder and is independent of the generated code of the top
model or the referenced model. For example, the reusable library subsystem
code does not include model .h or model types.h.

Reusable code that is generated to the shared utilities folder and is dependent
on the model code does not compile. If the code generator determines that the
reusable library subsystem code is dependent on the model code, the reusable
subsystem code is not generated to the shared utilities folder. The following
cases might generate code that is dependent on the model code, when the
reusable library subsystem:

¢ Contains a block that uses time-related functionality, such as a Step block,
or continuous time or multirate blocks.

¢ Contains one or more Model blocks.

¢ (Contains subsystems that are not inlined or a reusable library subsystem.

¢ Contains a For Each subsystem and the model configuration parameter,
Inline parameters, is cleared. In this case, types are defined in
model_types.h.

¢ Contains a signal that is not an Auto storage class. Variables of non-Auto
storage classes are generated to model.h.

¢ Contains a parameter that is not an Auto storage class.

¢ Contains a user-defined type where Data Scope is not set to Exported.
The code generator might place the type definition in model types.h.

¢ Is a variant subsystem that generates preprocessor conditionals.
Preprocessor directives defining the variant objects are included in
model_types.h.
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Code Reuse For Subsystems Shared Across Referenced

Models

To reuse common functionality, you can include multiple instances of a
subsystem within a model and across referenced models. To generate a
reusable function for a subsystem which is included in multiple referenced
models:

¢ If the subsystem is in a model reference hierarchy, set the configuration
parameter, Shared code placement to Auto. Otherwise, for each
model that uses the subsystem, set Shared code placement to Shared
location. The Shared code placement parameter is in the Configuration
Parameters dialog box, on the Code Generation > Interface pane.

¢ The subsystem must be defined in a library and configured for reuse.
This subsystem 1is referred to as a reusable library subsystem. For more
information, see “Reusable Library Subsystem” on page 2-20.

For an example, see “Generate Reusable Code for Subsystems Shared Across
Models” on page 2-25.

The code generator performs a checksum to determine reusability. There

are cases when the code generator cannot reuse subsystem code. For more
information, see “Code Reuse Limitations for Subsystems” on page 2-17.
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Reusable Library Subsystem

2-20

A reusable library subsystem is a subsystem included in a library that is
configured for reuse. The Subsystem parameters must be set as follows:

* Treat as an atomic unit is selected.

¢ On the Code Generation tab:
= Function packaging is set to Reusable function.
= Function name options

and File name options are set to Auto or Use subsystem name.

For more information on creating a library, see “Libraries”. For an example
of creating a reusable library subsystem, see “Generate Reusable Code for
Subsystems Shared Across Models” on page 2-25.

Code Generation of a Reusable Library Subsystem

For incremental code generation, if the reusable library subsystem changes,
a rebuild of itself and its parents occurs. During the build, if a matching
function is not found, a new instance of the reusable function is generated
into the shared utilities folder. If a different matching function is found
from previous builds, that function is used, and a new reusable function is
not emitted.

For subsequent builds, unused files are not replaced or deleted from your
folder. During development of a model, when many obsolete shared functions
exist in the shared utilities folder, you can delete the folder and regenerate
the code. If all instances of a reusable library subsystem are removed from a
model reference hierarchy and you regenerate the code, the obsolete shared
functions remain in the shared utilities folder until you delete them.

If a model changes such that the change might cause different generated code
for the subsystem, a new reusable function is generated. For example, model
configuration parameters that modify code comments might cause different
generated code for the subsystem even if the reusable library subsystem did
not change.



Reusable Library Subsystem

Reusable Library Subsystem Code Placement and
Naming

The code generator uses checksums to determine reusability. The generated
code of a reusable library subsystem is independent of the generated code of
the model. Code for the reusable library subsystem is generated to the shared
utility folder, slprj/target/_sharedutils, instead of the model reference
hierarchy folders. The generated code for the supporting types, which are
generated to the .h file, are also in the shared utilities folder.

In the Subsystem Parameters dialog box, the Function name options

and File name options must be set to Auto or Use subsystem name. For
unique naming, reusable function names have a checksum string appended to
the reusable library subsystem name. For example, the code and files for a
subsystem, SS1, which links to a reusable library subsystem, RLS, might be:

® Function name: RLS_mgdjlngd
¢ File name: RLS_mgdjlnd.c and RLS_mgdjlnd.h

Reusable Library Subsystem in the Top Model

In a model reference hierarchy, if an instance of the reusable library
subsystem is in the top model, then on the Model Referencing pane of the
Configuration Parameters dialog box, you must select the Pass fixed-size
scalar root input by value for code generation parameter. If you do

not select the parameter, a separate shared function is generated for the
reusable library subsystem instance in the top model, and a reusable function
is generated for instances in the referenced models.

Reusable Library Subsystem Connected to Root
Outport

If a reusable library subsystem is connected to the root outport, reuse does not
happen with identical subsystems that are not connected to the root outport.
However, you can set Pass reusable system outputs as to Individual
arguments on the Optimizations > Signals and Parameters pane to make
sure that reuse occurs between these subsystems. This parameter requires
an Embedded Coder license.
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Code Generation of Constant Parameters

The code generator attempts to generate constant parameters to the shared
utilities folder first. If constant parameters are not generated to the shared
utilities folder, they are defined in the top model in a global constant
parameter structure. The declaration of the structure, ConstParam_model, is
in model.h:

/* Constant parameters (auto storage) */
typedef struct {
/* Expression: [1 2 3 4 5 6 7]
* Referenced by: '<Root>/Constant'
*/
real T Constant_Value[7];

/* Expression: [7 6 5 4 3 2 1]
* Referenced by: '<Root>/Gain'
*/
real T Gain_Gain[7];

} ConstParam_model;

The definition of the constant parameters, model constP, is in:

/* Constant parameters (auto storage) */
const ConstParam_model model_ConstP = {
/* Expression: [1 2 3 4 5 6 7]
* Referenced by: '<Root>/Constant'’
*/
{1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0 },

/* Expression: [7 6 5 4 3 2 1]

* Referenced by: '<Root>/Gain'

*/

{7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0 }
};

The model constP is passed as an argument to referenced models. For more
information on how shared constants are generated, see “Shared Constant
Parameters for Code Reuse” on page 2-23.
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Shared Constant Parameters for Code Reuse
You can share the generated code for constant parameters across models if:

® Constant parameters are shared in a model reference hierarchy, or

® On the Code Generation > Interface pane, the model configuration
parameter Shared code placement is set to Shared location.

The shared constant parameters are generated individually to the
const_params.c file, which is placed in the shared utilities folder
slprj/target/_sharedutils.

For example, if a constant has multiple uses within a model reference
hierarchy where the top model is named topmod, the code for the shared
constant is as follows:

® In the shared utility folder, slprj/grt/_sharedutils, the constant
parameters are defined in const_params.c and named rtCP_pooled_
appended to a unique checksum string:

extern const real_T rtCP_pooled_lfcjjmohiecj[7];
const real_T rtCP_pooled_lfcjjmohiecj[7] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0 };

extern const real_T rtCP_pooled_ppphohdbfcba[7];
const real_T rtCP_pooled_ppphohdbfcba(7] = { 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0 };

® In top_model_private.h or in a referenced model, ref_model private.h,
for better readability, the constants are renamed as follows:

extern const real_T rtCP_pooled_lfcjjmohiecj[7];
extern const real_T rtCP_pooled_ppphohdbfcba[7];

#define rtCP_Constant_Value rtCP_pooled_1lfcjjmohiecj /* Expression: [1 2 3 4 5 6 7]
* Referenced by: '<Root>/Constant'*/
#define rtCP_Gain_Gain rtCP_pooled_ppphohdbfcba /* Expression: [7 6 5 4 3 2 1]

* Referenced by: '<Root>/Gain' */

® In topmod.c or refmod.c, the call site might be:

for (i = 0; i < 7; i++) {
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topmod_Y.Out1[i] = (topmod_U.In1 + rtCP_Constant_Value[i]) * rtCP_Gain_Gain[i];

The code generator attempts to generate all constants as individual constants
to the const_params.c file in the shared utilities folder. Otherwise, constants
are generated as described in “Code Generation of Constant Parameters”

on page 2-22.

Shared Constant Parameters Limitations

No shared constants or shared functions are generated for a model when:

® The model has a Code Replacement Library (CRL) that is specified for
data alignment.

¢ The model is specified to replace data type names in the generated code.

¢ The Memory Section for constants is MemVolatile or MemConstVolatile.
Individual constants are not shared, if:

® A constant is referenced by a non-inlined S-function.

® A constant has a user-defined type where Data Scope is not set to
Exported.
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Generate Reusable Code for Subsystems Shared Across

Models

This example shows you how to configure a reusable library subsystem and

generate a reusable function for a subsystem shared across referenced models.

The result is reusable code for the subsystem, which is generated to the
shared utility folder (slprj/target/_sharedutils). For more information
about a reusable library subsystem, see “Code Reuse For Subsystems Shared
Across Referenced Models” on page 2-19.

Create a reusable library subsystem.

1 In the Simulink Editor, select File > New > Library. Open

rtwdemo_ssreuse to copy and paste subsystem SS1 into the Library Editor.

This action loads the variables for SS1 into the base workspace. Rename
the subsystem block to RLS.

#& Library: ssreuselib EI@
File Edit View Display Diagram Analysis Help
| bl = (A
2 - = g = @
Model Browser = | ssreuselib
& ssreuselib ® |Pa|ssreuselib h
@
3
Aini
Out1p
Jinz
RLS
« [
Ready 100%

2 Click the Subsystem block and press Ctrl+U to view the contents of
subsystem RLS.

2-25



2 Subsystems

2-26

#& Library: ssreuselib/RLS EI@
File Edit View Display Diagram Analysis Help
O =
2 - =5 ¢ FElE -
Model Browser = | RLS
4 P3| ssreuselib © |Pa)ssreuselib b [Pa[RLS hd
|Pa| RLS
@ Sum
CO—e)—{ [ D
'+ =
& In1 I'—I—‘ Outt
Lookup Table
In2
« [
Ready 100%

3 To configure the subsystem, in the Library editor, right-click RLS. In the
context menu, select Block Parameters(Subsystem). In the Subsystem
Parameters dialog box, choose the following options:

e Select Treat as an atomic unit.
® On the Code Generation tab:
= Set Function packaging to Reusable function.

= Set Function name options and File name options to Auto.

4 Click Apply and OK.

5 Save the reusable library subsystem as ssreuselib, which creates a file,
ssreuselib.slx.

Create the example model.

1 Create a model which includes one instance of RLS from ssreuselib. Name
this subsystem SS1. Add another subsystem and name it SS2. Name the

model ex_modeli.
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ex_modell -
1) #in1
Int outt—»(1 )
(2 ) »in2 Out1
In2 )
551
Lo in1
outt—( 2 )
#inz Out2
552

2 Create another model which includes one instance of RLS from ssreuselib.
Name this subsystem SS1. Add another subsystem and name it SS3. Name
the model ex_model2.
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ex_modell
1 3} » In1
In1 outt—»(1 )
@ o inz Out1
In2 =
551
*In1
outtk—w{ 2 )
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553

3 Create a top model with two model blocks that reference ex_model1 and
ex_model2. Save the top model as ex_mdlref_ssreuse.

ex_mdlref_ssreuse b

ex_modell ex_model2
L) outt |—a{in1 outt—»(1 )
In1 Out1
In2 Out2  In2 Out2 —D‘
In2 Qut2
Medel1 Model2

Set configuration parameters of the top model.
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1 With model ex_mdlref_ssreuse open in the Simulink Editor, select
Simulation > Model Configuration Parameters to open the
Configuration Parameters dialog box.

2 On the Solver pane, specify the Type as Fixed-step.

3 On the Optimization > Signals and Parameters pane:
¢ Select Inline parameters.

¢ Set Pass reusable subsystem outputs as to Individual arguments.

4 On the Model Referencing pane, select Pass fixed-size scalar root
inputs by value for code generation.

5 On the Code Generation > Report pane, select Create code generation
report and Open report automatically.

6 On the Code Generation > Interface pane, set the Shared code
placement to Shared location.

7 On the Code Generation > Symbols pane, set the Maximum identifier
length to 256. This step is optional.

8 Click Apply and OK.
Create and propagate a configuration reference.

1 In the Simulink Editor, select View > Model Explorer to open the Model
Explorer. In the left navigation column of the Model Explorer, expand the
ex_mdlref_ssreuse node.

2 Right-click Configuration and select Convert to Configuration
Reference.

3 In the Convert Active Configuration to Reference dialog box, click OK. This
action converts the model configuration set to a configuration reference,
Simulink.ConfigSetRef, and creates the configuration reference object,
configSet0Obj, in the base workspace.

4 In the left navigation column, right-click Reference (Active) and select
Propagate to Referenced Models.
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5 In the Configuration Reference Propagation to Referenced Models dialog
box, select the referenced models in the list. Click Propagate.

Now, the top model and referenced models use the same configuration
reference, Reference (Active), which points to a model configuration
reference object, configSetObj, in the base workspace. When you save your
model, you also need to export the configSetObj to a MAT-file. For more
information, see “Save a Referenced Configuration Set”.

Generate and view the code.

1 To generate code, in the Simulink Editor, press Ctrl-B. After the code is
generated, the code generation report opens.

2 To view the code generation report for a referenced model, in the left
navigation pane, in the Referenced Models section, select ex_modeli.
The code generation report displays the generated files for ex_modeli.

3 In the left navigation pane, expand the Shared Utility files. The
code generator uses the reusable library subsystem name and a unique
string to name the reused function. The code for subsystem SS1 is in
RLS aaaippph.c and RLS_aaaippph.h.
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Related
Examples

Concepts

Code Generation Report

Contents
Summary
Subsystem Report

Generated Code

[-1 Model files
ex_modell.c
ex_modell.h
ex_modell_private.h
ex_modell_types.h

[-1Subsystem files
ex_modell 552.c
ex_modell_S§52.h

[-1Shared Utility files
BLS_aaaippph.c
RLS_aaaippph.h
lookl _binlxpw.c
rtw_shared_utils.h
rtwiypes.h

File: RLS_aaaippph.c

(E=8 ECH =

nd 1 for stomic system: 'SSi' (”
_aaaippph(const real T *rtu Inl, const real T *rtu_In2, real T *rty (=
const real T rtp y[11], const real T rtp x[11])

¢') incorporates:

*rty Cutl = lookl binlxpw(*rtu Inl + *rtu In2, rtp X, rtp_y, 100);

m v

4 Click Back and navigate to the ex_model2 code generation report.
ex_model2 uses the same source code, RLS aaaippph.c and

RLS aaaippph.h, as the code for ex_modell. Your subsystem function and
file names will be different.

“Determine Why Subsystem Code Is Not Reused” on page 2-32

“Share a Configuration Across Referenced Models”

“Generate Reusable Function for Identical Subsystems Within a Model”
on page 2-11

® “Code Generation of Subsystems” on page 2-2

¢ “Code Reuse For Subsystems Shared Across Referenced Models” on page
2-19
® “Code Reuse Limitations for Subsystems” on page 2-17

“Libraries”
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Determine Why Subsystem Code Is Not Reused

Due to the limitations described in “Code Reuse Limitations for Subsystems”
on page 2-17, the code generator might not reuse generated code as you
expect. To determine why code generated for a subsystem is not reused, see
“Review the Subsystems Section of the HTML Code Generation Report” on
page 2-32. If you cannot determine why based on the report, see “Compare
Subsystem Checksum Data” on page 2-32.

Review the Subsystems Section of the HTML Code
Generation Report

If you determine that the code generator does not generate code for a
subsystem as reusable code, and you specified the subsystem as reusable,
examine the Subsystems section of the HTML code generation report (see
“Generate a Code Generation Report” on page 11-5). The Subsystems section
contains:

® A table that summarizes how nonvirtual subsystems were converted to
generated code.

¢ Diagnostic information that describes why the contents of some subsystems
were not generated as reusable code.

The Subsystems section also indicates the mapping of each noninlined
subsystem in the model to functions or reused functions in the generated code.
For an example, open and build the rtwdemo_atomic model.

Compare Subsystem Checksum Data

You can determine why subsystem code is not reused by accessing and
comparing subsystem checksum data. The code generator determines whether
subsystems are identical by comparing subsystem checksums, as noted in
“Code Reuse Limitations for Subsystems” on page 2-17. For subsystem reuse
across referenced models, this procedure might not catch every difference.

Consider the model, rtwdemo_ssreuse. SS1 and SS2 are instances of the

same subsystem. In both instances the subsystem parameter Function
packaging is set to Reusable function.
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Use the method, Simulink.SubSystem.getChecksum, to get the checksum for
a subsystem. Compare the results to determine why code is not reused.

1 Open the model rtwdemo_ssreuse. Save a copy of the model in a folder
where you have write access.

2 In the model window, select subsystem SS1. In the command window, enter

SS1 = gcb;

3 In the model window, select subsystem SS2. In the command window, enter

SS2 = gcb;

4 Use the method, Simulink.SubSystem.getChecksum, to get the checksum
for each subsystem. This method returns two output values: the checksum
value and details on the input used to compute the checksum.

[chksum1, chksum1_details] = ...
Simulink.SubSystem.getChecksum(SS1);
[chksum2, chksum2_details] = ...
Simulink.SubSystem.getChecksum(SS2);

5 Compare the two checksum values. They should be equal based on the
subsystem configurations.

isequal(chksumi1, chksum2)
ans =
1
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6 To see how you can use Simulink.SubSystem.getChecksum to determine
why the checksums of two subsystems differ, change the data type mode of
the output port of SS1 so that it differs from that of SS2.

a Look under the mask of SS1. Right-click the subsystem. In the context
menu, select Mask > Look Under Mask.

b In the block diagram of the subsystem, double-click the Lookup Table
block to open the Subsystem Parameters dialog box.

¢ Click Data Types.

d Select Saturate on integer overflow and click OK.

7 Get the checksum for SS1. Compare the checksums for the two subsystems.
This time, the checksums are not equal.

[chksum1, chksumi_details] =
Simulink.SubSystem.getChecksum(SS1);
isequal(chksumi1, chksum2)
ans =

0

8 After you determine that the checksums are different, find out why. The
Simulink engine uses information, such as signal data types, some block
parameter values, and block connectivity information, to compute the
checksums. To determine why checksums are different, you compare the
data used to compute the checksum values. You can get this information
from the second value returned by Simulink.SubSystem.getChecksum,
which is a structure array with four fields.

Look at the structure chksumi1_details.

chksumi1_details

chksumi1_details =
ContentsChecksum: [1x1 struct]
InterfaceChecksum: [1x1 struct]
ContentsChecksumItems: [287x1 struct]
InterfaceChecksumItems: [53x1 struct]

ContentsChecksum and InterfaceChecksum are component
checksums of the subsystem checksum. The remaining two fields,
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ContentsChecksumItems and InterfaceChecksumItems, contain the

checksum details.

9 Determine whether a difference exists in the subsystem contents, interface,

or both. For example:

isequal(chksumi1_details.ContentsChecksum.Value,...

chksum2_details.ContentsChecksum.Value)

ans =

0

isequal(chksum1_details.InterfaceChecksum.Value,...

chksum2_details.InterfaceChecksum.Value)

ans =

1

In this case, differences exist in the contents.

10 Write a script like the following to find the differences.

idxForCDiffs=[];

for

end

idx = 1:length(chksumi_details.ContentsChecksumItems)
if (~strcmp(chksumi_details.ContentsChecksumItems(idx).Identifier,
chksum2_details.ContentsChecksumItems(idx).Identifier))
disp(['Identifiers different for contents item ', num2str(idx)]);
idxForCDiffs=[idxForCDiffs, idx];
end
if (ischar(chksumi_details.ContentsChecksumItems(idx).Value))
if (~strcmp(chksumi_details.ContentsChecksumItems(idx).Value,
chksum2_details.ContentsChecksumItems (idx).Value))
disp(['String values different for contents item ', num2str(idx)]);
idxForCDiffs=[idxForCDiffs, idx];
end
end
if (isnumeric(chksumi_details.ContentsChecksumItems(idx).Value))
if (chksumi_details.ContentsChecksumItems(idx).Value ~= ...
chksum2_details.ContentsChecksumItems(idx).Value)
disp([ 'Numeric values different for contents item ', num2str(idx)]);
idxForCDiffs=[idxForCDiffs, idx];
end

end
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11 Run the script. The following example assumes that you named the script
check_details.

check_details
String values different for contents item 202

The results indicate that differences exist for index item 202 in the
subsystem contents.

12 Use the returned index values to get the handle, identifier, and value
details for each difference found.

chksum1_details.ContentsChecksumItems(202)
ans =
Handle: 'rtwdemo_ssreuse/SS1/Lookup Table'
Identifier: 'SaturateOnIntegerOverflow'’

Value: 'on'

The details identify the Lookup Table block parameter Saturate on
integer overflow as the focus for debugging a subsystem reuse issue.

2-36



Referenced Models

® “Code Generation for Referenced Models” on page 3-2

® “Generate Code for Referenced Models” on page 3-4

® “Project Folder Structure for Model Reference Targets” on page 3-16
¢ “Configure Referenced Models” on page 3-17

¢ “Build Model Reference Targets” on page 3-18

e “Simulink® Coder™ Model Referencing Requirements” on page 3-19
o “Storage Classes for Signals Used with Model Blocks” on page 3-25
¢ “Inherited Sample Time for Referenced Models” on page 3-29

¢ “Customize Library File Suffix and File Type” on page 3-31

¢ “Reusable Code and Referenced Models” on page 3-32

e “Simulink® Coder™ Model Referencing Limitations” on page 3-36



3 Referenced Models

Code Generation for Referenced Models

3-2

This section describes model referencing considerations that apply specifically
to code generation by the Simulink Coder. This section assumes that you
understand referenced models and related terminology and requirements, as
described in “Overview of Model Referencing” and associated topics.

When generating code for a referenced model hierarchy, the code generator
produces a stand-alone executable for the top model, and a library module
called a model reference target for each referenced model. When the code
executes, the top executable invokes the model reference targets to compute
the referenced model outputs. Model reference targets are sometimes called
Simulink Coder targets.

Be careful not to confuse a model reference target (Simulink Coder target)
with other types of targets:

e Hardware target — A platform for which the Simulink Coder software
generates code

® System target — A file that tells the Simulink Coder software how to
generate code for particular purpose

e Rapid Simulation target (RSim) — A system target file supplied with the
Simulink Coder product

® Simulation target — A MEX-file that implements a referenced model that
executes with Simulink Accelerator™ software

The code generator places the code for the top model of a hierarchy in the
current working folder, and the code for submodels in a folder named slprj
within the current working folder. Subfolders in slprj provide separate
places for different types of files. See “Project Folder Structure for Model
Reference Targets” on page 3-16 for details.

By default, the product uses incremental code generation. When generating
code, it compares structural checksums of referenced model files with the
generated code files to determine whether to regenerate model reference
targets. To control when rebuilds occur, use the configuration parameter
Model Referencing > Rebuild. For details, see “Rebuild”.
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In addition to incremental code generation, the Simulink Coder software
uses incremental loading. The code for a referenced model is not loaded into
memory until the code for its parent model executes and needs the outputs of
the referenced model. The product then loads the referenced model target and
executes. Once loaded, the target remains in memory until it is no longer used.

Most code generation considerations are the same whether or not a

model includes referenced models: the code generator handles the details
automatically insofar as possible. This chapter describes topics that you may
need to consider when generating code for a model reference hierarchy.

If you have a Embedded Coder license, custom targets must declare
themselves to be model reference compliant if they need to support Model
blocks. For more information, see “Support Model Referencing” on page
24-101.
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Generate Code for Referenced Models

In this section...

“About Generating Code for Referenced Models” on page 3-4
“Create and Configure the Subsystem” on page 3-4

“Convert Model to Use Model Referencing” on page 3-7
“Generate Model Reference Code for a GRT Target” on page 3-11
“Work with Project Folders” on page 3-14

About Generating Code for Referenced Models

To generated code for referenced models, you

1 Create a subsystem in an existing model.

2 Convert the subsystem to a referenced model (Model block).
3 Call the referenced model from the top model.

4 Generate code for the top model and referenced model.

5 Explore the generated code and the project folder.

You can accomplish some of these tasks automatically with a function called
Simulink.Subsystem.convertToModelReference.

Create and Configure the Subsystem

In the first part of this example, you define a subsystem for the vdp
example model, set configuration parameters for the model, and use the
Simulink.Subsystem.convertToModelReference function to convert it into
two new models — the top model (vdptop) and a referenced model vdpmultRM
containing a subsystem you created (vdpmult).
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1 In the MATLAB Command Window, create a new working folder wherever
you want to work and cd into it:

mkdir mrexample
cd mrexample

2 Open the vdp example model by typing:

vdp

3 Drag a box around the three blocks outlined in blue below:

van der Pol Equation
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4 ChooseCreate Subsystem from Selected from the model’s Diagram >
Subsystem & Model Reference menu.
A subsystem block replaces the selected blocks.

5 If the new subsystem block is not where you want it, move it to a preferred
location.

6 Rename the block vdpmult.

7 Right-click the vdpmult block and select Subsystem Parameters.
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The Function Block Parameters dialog box appears.

8 In the Function Block Parameters dialog box, select Treat as atomic
unit, then click OK.

The border of the vdpmult subsystem thickens to indicate that it is now
atomic. An atomic subsystem executes as a unit relative to the parent
model: subsystem block execution does not interleave with parent block
execution. This property makes it possible to extract subsystems for use as
stand-alone models and as functions in generated code.

The block diagram should now appear as follows:

van der Pol Equation
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You must set several properties before you can extract a subsystem for use as
a referenced model. To set the properties,

1 Open Model Explorer by selecting Model Explorer from the model’s
View menu.

2 In the Model Hierarchy pane, click the symbol preceding the model name
to reveal its components.

3 Click Configuration (Active) in the left pane.
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4 In the center pane, select Solver.

5 In the right pane, under Solver Options change the Type to Fixed-step,
then click Apply. You must use fixed-step solvers when generating code,
although referenced models can use different solvers than top models.

6 In the center pane, select Optimization. In the right pane, select
the Signals and Parameters tab, and under Simulation and code
generation, select Inline parameters. Click Apply.

7 In the center pane, select Diagnostics. In the right pane:

a Select the Data Validity tab. In the Signals area, set Signal
resolution to Explicit only.

b Select the Connectivity tab. In the Buses area, set Mux blocks used
to create bus signals to error.

8 Click Apply.
The model now has the properties that model referencing requires.

9 In the center pane, click Model Referencing. In the right pane, set
Rebuild to If any changes in known dependencies detected. Click
Apply. This setting prevents code regeneration when it is not required.

10 In the vdp model window, choose File > Save as. Save the model as
vdptop in your working folder. Leave the model open.

Convert Model to Use Model Referencing

In this portion of the example, you use the conversion function
Simulink.SubSystem.convertToModelReference to extract the subsystem
vdpmult from vdptop and convert vdpmult into a referenced model named

vdpmultRM. To see the complete syntax of the conversion function, type at
the MATLAB prompt:

help Simulink.SubSystem.convertToModelReference

For additional information, type:

doc Simulink.SubSystem.convertToModelReference
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If you want to see an example of
Simulink.SubSystem.convertToModelReference before using it
yourself, type:

sldemo_mdlref_conversion

Simulink also provides a menu command, Subsystem & Model
Reference > Convert Subsystem to > Referenced Model, that you
can use to convert a subsystem to a referenced model. The command calls
Simulink.SubSystem.convertToModelReference with default arguments.
For more information, see “Convert a Subsystem to a Referenced Model”.

Extract the Subsystem to a Referenced Model

To use Simulink.SubSystem.convertToModelReference to extract vdpmult
and convert it to a referenced model, type:

Simulink.SubSystem.convertToModelReference...

('vdptop/vdpmult', 'vdpmultRM',...
'ReplaceSubsystem', true, 'BuildTarget', 'Sim')

This command:

1 Extracts the subsystem vdpmult from vdptop.

2 Converts the extracted subsystem to a separate model named vdpmultRM
and saves the model to the working folder.

3 In vdptop, replaces the extracted subsystem with a Model block that
references vdpmultRM.

4 Creates a simulation target for vdptop and vdpmultRM.

The converter prints progress messages and terminates with

ans =
1
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The parent model vdptop now looks like this:

()

Out2

x xi
—) 1/s 1

Dut1
vdpmult . Muzx I:l

o

b J

Soope

7 Double-click
here for
Simulink Help

Note the changes in the appearance of the block vdpmult. These changes
indicate that it 1s now a Model block rather than a subsystem. As a Model
block, it does not have contents of its own: the previous contents now exist
in the referenced model vdpmultRM, whose name appears at the top of the
Model block. Widen the Model block to expose the complete name of the
referenced model.

If the parent model vdptop had been closed at the time of conversion, the
converter would have opened it. Extracting a subsystem to a referenced model
does not automatically create or change a saved copy of the parent model. To
preserve the changes to the parent model, save vdptop.

Right-click the Model block vdpmultRM and choose Open Model
’'vdpmultRM’ to open the referenced model. The model looks like this:

In1 X —I-D—»
o
In2

Mu Crut 1
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Files Created and Changed by the Converter
The files in your working folder now consist of the following (not in this order).

File Description

vdptop model file Top model that contains a Model block
where the vdpmult subsystem was

vdpmultRM model file Referenced model created for the vdpmult
subsystem

vdpmultRM_msTf.mexw32 Static library file (Microsoft Windows

platforms only). The last three characters
of the suffix are system-dependent and may
differ. This file executes when the vdptop
model calls the Model block vdpmult. When
called, vdpmult in turn calls the referenced
model vdpmultRM.

/slprj Project folder for generated model reference
code

Code for model reference simulation targets is placed in the slprj/sim
subfolder. Generated code for GRT, ERT, and other Simulink Coder targets is
placed in slprj subfolders named for those targets. You will inspect some
model reference code later in this example. For more information on project
folders, see “Work with Project Folders” on page 3-14.
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Run the Converted Model

Open the Scope block in vdptop if it is not visible. In the vdptop window, click
the Run tool or choose Run from the Simulation menu. The model calls the
vdpmultRM_msf simulation target to simulate. The output looks like this:

Generate Model Reference Code for a GRT Target

The function Simulink.SubSystem.convertToModelReference created the
model and the simulation target files for the referenced model vdpmultRM. In
this part of the example, you generate code for that model and the vdptop
model, and run the executable you create:

1 Verify that you are still working in the mrexample folder.
2 If the model vdptop is not open, open it. Make sure it is the active window.

3 Open Model Explorer by selecting Model Explorer from the model’s
View menu.

4 In the Model Hierarchy pane, click the symbol preceding the vdptop
model to reveal its components.

5 Click Configuration (Active) in the left pane.

6 In the center pane, select Data Import/Export.
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7 In the Save to workspace section of the right pane, check Time and
Output and clear Data stores. Click Apply. The pane shows the following
information:

Load from workspace

7] nput: [tim_var, data_var] Edit Input

[T Initial state: | xInitial

Save to workspace

Time, State, Output

Time: tout Format: Array ~
[[] states: Xout [7] Limit data points to last: 1000

Output: yout Decimation: 1

[7] Final states: |xFinal Save complete SimState in final state

Signals

Signal logging:  logsout Signal logging format: |Dataset A

I Configure Signals to Log...

Data Store Memory

[7] Data stores: | dsmout

Save options
[C] save simulation output as single object | out

[”] Record and inspect simulation output

These settings instruct the model vdptop (and later its executable) to log
time and output data to MAT-files for each time step.

8 Generate GRT code (the default) and an executable for the top model and
the referenced model by selecting Code Generation in the center pane
and then clicking the Build button.
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The Simulink Coder build process generates and compiles code. The current
folder now contains a new file and a new folder:

File Description

vdptop.exe The executable created by the build
process

vdptop_grt_rtw/ The build folder, containing
generated code for the top model

The build process also generated GRT code for the referenced model, and
placed it in the slprj folder.

To view a model’s generated code in Model Explorer, the model must be
open. To use the Model Explorer to inspect the newly created build folder,
vdptop_grt_rtw:

1 Open Model Explorer by selecting Model Explorer from the model’s
View menu.

2 In the Model Hierarchy pane, click the symbol preceding the model name
to reveal its components.

3 Click the symbol preceding Code for vdptop to reveal its components.
4 Directly under Code for vdptop, click This Model.
A list of generated code files for vdptop appears in the Contents pane:

rtmodel.h
vdptop.c
vdptop.h
vdptop.mk
vdptop_private.h
vdptop_types.h
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You can browse code by selecting a file of interest in the Contents pane.

To open a file in a text editor, click a filename, and then click the hyperlink
that appears in the gray area at the top of the Document pane. The
figure below illustrates viewing code for vdptop.c, in a text editor. Your
code may differ.

Model Hierarchy % Bl | Contentsof: This Model | Document
4 [l simuiink Root Column View: [BlockDataTypes = | Show Detsiis poblecty) - erammieivdblo ot dhavdofon
¥ Base Workspace
+ B vaptop: Name ! Editor - C:\mrexample\vdptop_grt_rtwiveptop.c
i Model Workspace [E) tmodetn
4 g Code forvaptop 2] vaptop.c File Edit Tet Go Tools Debug Desktop Window Help
[5) is mocel =) vaptoph NEHE|$RR20¢ &A@ BB RE BB | stec|Bae
E:Z’::ﬁ:s:mmw [] vdptop.mk BB -0 |+ | (11 x| |@,
% Advice for vdptop [£) vaptop privaten 1 |-
[3] simulink Design Verifier results [£) vaptop_typesn 2
&y Configuration [Active] 3
[2] More Info 4
L vdpmult (vdpmultRi) 5
4 W vdpmultRM &
B Model Workspace 7
&y MadelReferencing (Active) e
&h Code for vdpmuttRM 8
% Advice for vdpmuttRM 10
[ simulink Design Verifier results 1
12

To view the generated code in the HTML code generation report, see
“Generate a Code Generation Report” on page 11-5.

Work with Project Folders

When you view generated code in Model Explorer, the files listed in the
Contents pane can exist either in a build folder or a project folder. Model
reference project folders (rooted under slprj), like build folders, are created
in your current working folder, and this implies certain constraints on when
and where model reference targets are built, and how they are accessed.

The models referenced by Model blocks can be stored anywhere. A given
top model can include models stored on different file systems or in different
folders. The same is not true for the simulation targets derived from these
models; under most circumstances, models referenced by a given top model
must be set up to simulate and generate model reference target code in a
single project folder. The top and referenced models can exist anywhere on
your path, but the project folder is assumed to exist in your current folder.

This means that, if you reference the same model from several top models,
each stored in a different folder, you must either
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® Always work in the same folder and be sure that the models are on your
path

* Allow separate project folders, simulation targets, and Simulink Coder
targets to be generated in each folder in which you work

The files in such multiple project folders are generally quite redundant.
Therefore, to minimize code regeneration for referenced models, choose a
specific working folder and remain in it for all sessions.

As model reference code generated for Simulink Coder targets as well as
for simulation targets is placed in project folders, the same considerations
as above apply even if you are generating target applications only. That is,
code for all models referenced from a given model ends up being generated
in the same project folder, even if it is generated for different targets and at
different times.

3-15



3 Referenced Models

Project Folder Structure for Model Reference Targets

Code for models referenced by using Model blocks is generated in project
folders within the current working folder. The top-level project folder is named
/slprj. The next level within slprj contains parallel build area subfolders.

The following table lists principal project folders and files. In the paths listed,
model 1s the name of the model being used as a referenced model, and target
1s the system target file acronym (for example, grt, ert, rsim, and so on).

Folders and Files Description

slprj/sim/model/ Simulation target files for referenced
models

slprj/sim/model/tmwinternal MAT-files used during code generation

slprj/target/model/referenced_model_include$ Header files from models referenced by
this model

slprj/target/model Model reference target files

slprj/target/model/tmwinternal MAT-files used during code generation

slprj/sl proj.tmw Marker file

slprj/target/_sharedutils Utility functions for model reference

targets, shared across models

slprj/sim/_sharedutils Utility functions for simulation targets,
shared across models

If you are building code for more than one referenced model within the same
working folder, the model reference files are added to the existing slprj
folder.
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Configure Referenced Models

Minimize occurrences of algebraic loops by selecting the Minimize algebraic
loop occurrences parameter on the Model Reference pane. The setting
of this option affects only generation of code from the model. See “Hardware
Targets” on page 9-11 in the Simulink Coder documentation for information
on how this option affects code generation. For more information, see “Model
Blocks and Direct Feed through”.

Use the Integer rounding mode parameter on your model’s blocks to
simulate the rounding behavior of the C compiler that you intend to use to
compile code generated from the model. This setting appears on the Signal
Attributes pane of the parameter dialog boxes of blocks that can perform
signed integer arithmetic, such as the Product and n-D Lookup Table blocks.

For most blocks, the value of Integer rounding mode completely defines
rounding behavior. For blocks that support fixed-point data and the Simplest
rounding mode, the value of Signed integer division rounds to also affects
rounding. For details, see “Rounding”.

When models contain Model blocks, all models that they reference must be
configured to use identical hardware settings. For information on the Model
Referencing pane options, see “Model Referencing Pane” and “Configuration
Parameter Requirements”.
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Build Model Reference Targets

3-18

By default, the Simulink engine rebuilds simulation targets before the
Simulink Coder software generates model reference targets. You can change
the rebuild criteria or specify when the engine rebuilds targets. For more
information, see “Rebuild”.

The Simulink Coder software generates a model reference target directly from
the Simulink model. The product automatically generates or regenerates
model reference targets, for example, when they require an update.

You can command the Simulink and Simulink Coder products to generate a
simulation target for an Accelerator mode referenced model, and a model
reference target for a referenced model, by executing the slbuild command
with arguments in the MATLAB Command Window.

The Simulink Coder software generates only one model reference target for
all instances of a referenced model. See “Reusable Code and Referenced
Models” on page 3-32 for details.

Reduce Change Checking Time

You can reduce the time that the Simulink and Simulink Coder products
spend checking whether simulation targets and model reference targets need
to be rebuilt by setting configuration parameter values as follows:

¢ In the top model, consider setting the model configuration parameter Model
Referencing > Rebuild to If any changes in known dependencies
detected. (See “Rebuild”.)

¢ In all referenced models throughout the hierarchy, set the configuration
parameter Diagnostics > Data Validity > Signal resolution to
Explicit only. (See “Signal resolution”.)

These parameter values exist in a referenced model’s configuration set, not
in the individual Model block. Setting either value for an instance of a
referenced model, sets it for all instances of that model.
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Simulink Coder Model Referencing Requirements

A model reference hierarchy must satisfy various Simulink Coder
requirements, as described in this section. In addition to these requirements,
a model referencing hierarchy to be processed by the Simulink Coder software
must satisfy:

¢ The Simulink requirements listed in:
= “Configuration Requirements for All Referenced Model Simulation”
= “Model Structure Requirements”
® The Simulink limitations listed in “Limitations on All Model Referencing”

¢ The Simulink Coder limitations listed in “Simulink® Coder™ Model
Referencing Limitations” on page 3-36

Configuration Parameter Requirements

A referenced model uses a configuration set in the same way a top model does,
as described in “Manage a Configuration Set”. By default, every model in a
hierarchy has its own configuration set, which it uses in the same way that it
would if the model executed independently.

Because each model can have its own configuration set, configuration
parameter values can be different in different models. Furthermore, some
parameter values are intrinsically incompatible with model referencing. The
response of the Simulink Coder software to an inconsistent or unusable
configuration parameter depends on the parameter:

® Where an inconsistency has no significance, the product ignores or resolves
the inconsistency without posting a warning.

® Where a nontrivial and possibly acceptable solution exists, the product
resolves the conflict silently; resolves it with a warning; or generates an
error. See “Model configuration mismatch” for details.

e If an acceptable resolution is not possible, the product generates an error.
You must then change parameter values to eliminate the problem.

When a model reference hierarchy contains many submodels that have
incompatible parameter values, or a changed parameter value must propagate
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to many submodels, manually eliminating all configuration parameter
incompatibilities can be tedious. You can control or eliminate such overhead
by using configuration references to assign an externally-stored configuration
set to multiple models. See “Manage a Configuration Reference” for details.

The following tables list configuration parameters that can cause problems if
set in certain ways, or if set differently in a referenced model than in a parent
model. Where possible, the Simulink Coder software resolves violations of
these requirements automatically, but most cases require changes to the
parameters in some or all models.

Configuration Requirements for Model Referencing with All System
Targets

Dialog Box Option Requirement
Pane

Solver Start time Some system
targets require
the start time of
all models to be
Z€ero.

Hardware Emulation hardware options Values must be
Implementation the same for top
and referenced
models.

Code System target file Must be the
Generation same for top
and referenced
models.

Language Must be the
same for top
and referenced
models.

Generate code only Must be the
same for top
and referenced
models.
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Configuration Requirements for Model Referencing with All System
Targets (Continued)

Dialog Box
Pane

Option

Requirement

Symbols

Maximum identifier length

Cannot be longer
for a referenced
model than for
its parent model.

Interface

Code replacement library

Must be the
same for top
and referenced
models.

Data

C API

exchange > Interface

The C API check
boxes for signals,
parameters, and
states must be
the same for top
and referenced
models.

ASAP2

Can be on or off
in a top model,
but must be off
in a referenced
model. If it is
not, the Simulink
Coder software
temporarily sets
it to of f during
code generation.
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Configuration Requirements for Model Referencing with ERT System
Targets (Requires Embedded Coder License)

Dialog
Box Pane

Option

Requirement

Code
Generatio]

Ignore custom storage
nclasses

Must be the same for top and
referenced models.

Symbols

Global variables

Global types

Subsystem methods

Local temporary variables
Constant macros

$R token must appear.

Signal naming

Must be the same for top and
referenced models.

M-function

If specified, must be the same
for top and referenced models.

Parameter naming

Must be the same for top and
referenced models.

#define naming

Must be the same for top and
referenced models.

Interface

Support floating-point
numbers

Must be the same for both top
and referenced models

Support non-finite
numbers

If of f for top model, must be
off for referenced models.

Support complex numbers

If of f for top model, must be
off for referenced models.

Suppress error status in
real-time model

If on for top model, must be
on for referenced models.
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Configuration Requirements for Model Referencing with ERT System
Targets (Requires Embedded Coder License) (Continued)

Dialog Option Requirement
Box Pane
Data Module Naming Must be the same for top and
Placement referenced models.
Module Name (if specified) If set, must be the same for

top and referenced models.

Signal display level Must be the same for top and
referenced models.

Parameter tune level Must be the same for top and
referenced models.

Naming Requirements

Within a model that uses model referencing, names of the constituent models
can not collide. When you generate code from a model that uses model
referencing, the Maximum identifier length parameter must be large
enough to accommodate the root model name and the name mangling string.
A code generation error occurs if Maximum identifier length is not large
enough.

When a name conflict occurs between a symbol within the scope of a
higher-level model and a symbol within the scope of a referenced model, the
symbol from the referenced model is preserved. Name mangling is performed
on the symbol from the higher-level model.

Embedded Coder Naming Requirements

The Embedded Coder product provides a Symbol format field that lets you
control the formatting of generated symbols in much greater detail. When

generating code with an ERT target from a model that uses model referencing:

e The $R token must be included in the Identifier format control
parameter specifications (in addition to the $M token).
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¢ The Maximum identifier length must be large enough to accommodate
full expansions of the $R and $M tokens.

See “Code Generation Pane: Symbols” for more information.

Custom Target Requirements

If you have an Embedded Coder license, a custom target must meet various
requirements to support model referencing. For details, see “Support Model
Referencing” on page 24-101.
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Storage Classes for Signals Used with Model Blocks

Models containing Model blocks can use signals of storage class Auto without
restriction. However, when you declare signals to be global, you must be
aware of how the signal data will be handled.

A global signal is a signal with a storage class other than Auto:

® ExportedGlobal

® ImportedExtern

® ImportedExternPointer
® Custom

The above are distinct from SimulinkGlobal signals, which are treated as
test points with Auto storage class.

Global signals are declared, defined, and used as follows:
® An extern declaration is generated by all models that use a given global
signal.

As a result, if a signal crosses a Model block boundary, the top model and
the referenced model both generate extern declarations for the signal.

® For an exported signal, the top model is responsible for defining (allocating
memory for) the signal, whether or not the top model itself uses the signal.

® Global signals used by a referenced model are accessed directly (as global
memory). They are not passed as arguments to the functions that are
generated for the referenced models.

Custom storage classes also follow the above rules. However, certain custom

storage classes are not currently supported for use with model reference. See
“Custom Storage Class Limitations” for details.
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Storage Classes for Parameters Used with Model
Blocks

Storage classes are supported for both simulation and code generation, and all
except Auto are tunable. The supported storage classes thus include

® SimulinkGlobal

® ExportedGlobal

® ImportedExtern

® ImportedExternPointer

® Custom
Note the following restrictions on parameters in referenced models:

® Tunable parameters are not supported for noninlined S-functions.

® Tunable parameters set using the Model Parameter Configuration dialog
box are ignored.

Note the following considerations concerning how global tunable parameters
are declared, defined, and used in code generated for targets:

® A global tunable parameter is a parameter in the base workspace with a
storage class other than Auto.

® An extern declaration is generated by all models that use a given
parameter.

e If a parameter is exported, the top model is responsible for defining
(allocating memory for) the parameter (whether it uses the parameter
or not).

® Global parameters are accessed directly (as global memory). They are not
passed as arguments to the functions that are generated for the referenced
models.

® Symbols for SimulinkGlobal parameters in referenced models are
generated using unstructured variables (rtP_xxx) instead of being written
into the model_ P structure. This is so that each referenced model can be
compiled independently.
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Certain custom storage classes for parameters are not currently supported for
model reference. See “Custom Storage Class Limitations” for details.

Parameters used as Model block arguments must be defined in the referenced
model’s workspace. See “Parameterize Model References” in the Simulink
documentation for specific details.

Signal Name Mismatches Across Model Reference
Boundary

Within a parent model, the name and storage class for a signal entering or
leaving a Model block might not match those of the signal attached to the root
inport or outport within that referenced model. Because referenced models
are compiled independently without regard to a parent model, they cannot
adapt to the possible variations in how parent models label and store signals.

The Simulink Coder software accepts all cases where input and output signals
in a referenced model have Auto storage class. When such signals are test
pointed or are global, as described above, certain restrictions apply. The
following table describes how mismatches in signal labels and storage classes
between parent and referenced models are handled:

Relationships of Signals and Storage Classes Across Model Reference
Boundary

Signal

Referenced Signal Passing | Mismatch
Model Parent Model | Method Checking
Auto Any storage class | Function None

argument
SimulinkGlobal | Any storage class | Function Signal label
or resolved to argument mismatch
Signal Object
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Relationships of Signals and Storage Classes Across Model Reference
Boundary (Continued)

Signal
Referenced Signal Passing | Mismatch
Model Parent Model | Method Checking
Global Auto or Global variable Signal label
SimulinkGlobal mismatch
Global Global Global variable Labels and

storage classes
must be identical
(else error)

To summarize, the following signal resolution rules apply to code generation:

e [f the storage class of a root input or output signal in a referenced model is
Auto (or is SimulinkGlobal), the signal is passed as a function argument.

= When such a signal is SimulinkGlobal or resolves to a Simulink.Signal
object, the Signal label mismatch diagnostic is applied.

e If a root input or output signal in a referenced model is global, it is
communicated by using direct memory access (global variable). In addition,

= If the corresponding signal in the parent model is also global, the names
and storage classes must match exactly.

= If the corresponding signal in the parent model is not global, the Signal
label mismatch diagnostic is applied.

You can set the Signal label mismatch diagnostic to error, warning,
or none in the Diagnostics > Connectivity pane of the Configuration
Parameters dialog box.
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Inherited Sample Time for Referenced Models

See “Inherit Sample Times” in the Simulink documentation for
information about Model block sample time inheritance. In
generated code, you can control inheriting sample time by using
ssSetModelReferenceSampleTimeInheritanceRule in different ways:

® An S-function that precludes inheritance: If the sample time is used
in the S-function’s run-time algorithm, then the S-function precludes a
model from inheriting a sample time. For example, consider the following
md1lOutputs code:

static void mdlOutputs(SimStruct *S, int_T tid)

{
const real T *u = (const real T*)
ssGetInputPortSignal(S,0);
real T *y = ssGetOutputPortSignal(S,0);
y[0] = ssGetSampleTime(S,tid) * u[O0];

}

This md10utputs code uses the sample time in its algorithm, and the
S-function therefore should specify

ssSetModelReferenceSampleTimeInheritanceRule
(S, DISALLOW_SAMPLE_TIME_INHERITANCE) ;

¢ An S-function that does not preclude Inheritance: If the sample time
is only used for determining whether the S-function has a sample hit,
then it does not preclude the model from inheriting a sample time. For
example, consider the mdlOutputs code from the S-function example
sfun_multirate.c:

static void mdlOutputs(SimStruct *S, int T tid)
{

InputRealPtrsType enablePtrs;

int *enabled = ssGetIWork(S);

if (ssGetInputPortSampleTime

(S,ENABLE_IPORT)==CONTINUOUS_SAMPLE_TIME &&
ssGetInputPortOffsetTime (S,ENABLE_IPORT)==0.0) {
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if (ssIsMajorTimeStep(S) &&

ssIsContinuousTask(S,tid)) {
enablePtrs =
ssGetInputPortRealSignalPtrs(S,ENABLE_IPORT);
*enabled = (*enablePtrs[0] > 0.0);

}

} else {

int enableTid =

ssGetInputPortSampleTimeIndex(S,ENABLE_IPORT);

if (ssIsSampleHit(S, enableTid, tid)) {
enablePtrs =
ssGetInputPortRealSignalPtrs(S,ENABLE_IPORT);
*enabled = (*enablePtrs[0] > 0.0);

}

if (*enabled) {
InputRealPtrsType uPtrs =
ssGetInputPortRealSignalPtrs(S,SIGNAL_IPORT) ;
real T signal = *uPtrs[0];
int ij;

for (i = 0; i < NOUTPUTS; i++) {
if (ssIsSampleHit(S,
ssGetOutputPortSampleTimeIndex(S,i), tid)) {
real T *y = ssGetOutputPortRealSignal(S,i);
*y = signal;

}

}
} /* end mdlOutputs */

The above code uses the sample times of the block, but only for determining
whether there is a hit. Therefore, this S-function should set

ssSetModelReferenceSampleTimeInheritanceRule
(S, USE_DEFAULT_FOR_DISCRETE_INHERITANCE);
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Customize Library File Suffix and File Type

You can control the library file suffix and file type extension that the Simulink
Coder code generator uses to name generated model reference libraries. Use
the model configuration parameter TargetLibSuffix to specify the string for
the suffix and extension. The string must include a period (.). If you do not set
this parameter, the Simulink Coder software names the libraries as follows:

® On Windows systems, model rtwlib.lib

¢ On UNIX or Linux® systems, model rtwlib.a
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Reusable Code and Referenced Models

Models that employ model referencing might require special treatment when
generating and using reusable code. The following sections identify general
restrictions and discuss how reusable functions with inputs or outputs
connected to a referenced model’s root Inport or Outport blocks can affect
code reuse.

General Considerations

You can generate code for subsystems that contain referenced models
using the same procedures and options described in “Code Generation of
Subsystems” on page 2-2. However, the following restrictions apply to such
builds:

® A top model that uses single-tasking mode and that has a submodel that
uses multi-tasking mode executes for blocks with the different rates that
are not connected. However, you get an error if the blocks with different
rates are connected by Rate Transition block (inserted either manually
or by Simulink).

e ERT S-functions do not support subsystems that contain a continuous
sample time.

® The Simulink Coder S-function target is not supported.

® The Tunable parameters table (set by using the Model Parameter
Configuration dialog box) is ignored; to make parameters tunable, you
must define them as Simulink parameter objects in the base workspace.

e All other parameters are inlined into the generated code and S-function.

Note You can generate subsystem code using any target configuration
available in the System Target File Browser. However, if the S-function
target is selected, Build This Subsystem and Build Selected
Subsystem behaves identically to Generate S-Function. (See “Automate
S-Function Generation” on page 14-23.)
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Code Reuse and Model Blocks with Root Inport or
Outport Blocks

Reusable functions with inputs or outputs connected to a referenced model’s
root Inport or Outport block can affect code reuse. This means that code for

certain atomic subsystems cannot be reused in a model reference context the
same way it is reused in a standalone model.

For example, suppose you create the following subsystem and make the
following changes to the subsystem’s block parameters:

e Select Treat as an atomic unit

® Go to the Code Generation tab and set Function packaging to
Reusable function

O
I Ot 1

Zain

Suppose you then create the following model, which includes three instances
of the preceding subsystem.

Y

In1 Ot plind  Outd In Ouﬂ—h-

In1 Out1

Subsystem 1 Subsystem 2 Subsystemn 3

With the Inline parameters option enabled in this stand-alone model,
the code generator can optimize the code by generating a single copy of the
function for the reused subsystem, as shown below.

void reuse_subsysi1_Subsystemi(
real T rtu_O,
rtB_reuse_subsysi_Subsystemi *1localB)
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/* Gain: '<S1>/Gain' */
localB->Gain_k = rtu_0 * 3.0;
}

When generated as code for a Model block (into an slprj project folder), the
subsystems have three different function signatures:

/* Output and update for atomic system: '<Root>/Subsystemi' */
void reuse_subsysi_Subsystemi(const real T *rtu_O,
rtB_reuse_subsysi_Subsystem1

*localB)

{

/* Gain: '<81>/Gain' */
localB->Gain_w = (*rtu_0) * 3.0;
}

/* Output and update for atomic system: '<Root>/Subsystem2' */
void reuse_subsysi_Subsystem2(real_T rtu_Int,
rtB_reuse_subsysi_Subsystem2

*]localB)

{

/* Gain: '<82>/Gain' */
localB->Gain_y = rtu_In1 * 3.0;
}

/* Output and update for atomic system: '<Root>/Subsystem3' */
void reuse_subsysi_Subsystem3(real_T rtu_In1, real T *rty_O0)
{
/* Gain: '<S3>/Gain' */
(*rty_0) = rtu_Int * 3.0;
}

One way to make all the function signatures the same for code reuse, is
to insert Signal Conversion blocks. Place one between the Inport and
Subsystem1 and another between Subsystem3 and the Outport of the
referenced model.
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¥

Il Qutl In1  Outt p{in1  Cutl
In Out

Signal Sgnal
Comversipn  —uosystem Subsystem 2 Subsystem 2 convermiond

The result is a single reusable function:

void reuse_subsys2_Subsystemi(real_T rtu_Int,
rtB_reuse_subsys2_ Subsystemi1 *1localB)

{

/* Gain: '<S81>/Gain' */
localB->Gain_g = rtu_Int1 * 3.0;
}

You can achieve the same result (reusable code) with only one Signal
Conversion block. You can omit the Signal Conversion block connected to the
Inport block if you select the Pass fixed-size scalar root inputs by value
check box at the bottom of the Model Referencing pane of the Configuration
Parameters dialog box. When you do this, you still need to insert a Signal
Conversion block before the Outport block.
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Simulink Coder Model Referencing Limitations

The following Simulink Coder limitations apply to model referencing. In
addition to these limitations, a model reference hierarchy used for code
generation must satisfy:
¢ The Simulink requirements listed in:
= “Configuration Requirements for All Referenced Model Simulation”
= “Model Structure Requirements”
® The Simulink limitations listed in “Model Referencing Limitations”.

® The Simulink Coder requirements applicable to the code generation target,
as listed in “Configuration Parameter Requirements” on page 3-19.

Customization Limitations

¢ The code generator ignores custom code settings in the Configuration
Parameter dialog box and custom code blocks when generating code for
a referenced model.

e Referenced models do not support custom storage classes if the parent
model has inline parameters off.

¢ This release does not include Stateflow target custom code in simulation
targets generated for referenced models.

e Data type replacement is not supported for simulation target code
generation for referenced models.

® Simulation targets do not include Stateflow target custom code.

¢ Ifyou have an Embedded Coder license, some restrictions exist on grouped
custom storage classes in referenced models. For details, see “Custom
Storage Class Limitations”.

Data Logging Limitations

* To Workspace blocks, Scope blocks, and all types of runtime display,
such as the display of port values and signal values, are ignored when
the Simulink Coder software generates code for a referenced model. The
resulting code is the same as if the constructs did not exist.



Simulink® Coder™ Model Referencing Limitations

® Code generated for referenced models cannot log data to MAT-files. If data
logging is enabled for a referenced model, the Simulink Coder software
disables the option before code generation and re-enables it afterwards.

e If you log states for a model that contains referenced models, the ordering
of the states in the output is determined by block sorted order, and might
not match between simulation output and generated code MAT-file logging
output.

State Initialization Limitation

When a top model uses the Load from workspace > Initial state option
to specify initial conditions, the Simulink Coder software does not initialize
the states of the referenced models.

Reusability Limitations
If a referenced model used for code generation has any of the following
properties, the model must specify the configuration parameter Model
Referencing > Total number of instances allowed per top model as
One, and no other instances of the model can exist in the hierarchy. If you do
not set the parameter to One, or more than one instance of the model exists in
the hierarchy, an error occurs. The properties are:
® The model references another model which has been set to single instance
® The model contains a state or signal with non-auto storage class
® The model uses any of the following Stateflow constructs:
= Machine-parented data
= Machine-parented events
= Stateflow graphical functions
® The model contains a subsystem that is marked as function
® The model contains an S-function that is:
= Inlined but has not set the option SS_OPTION_WORKS WITH_ CODE_REUSE
= Not inlined

® The model contains a function-call subsystem that:
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= Has been forced by the Simulink engine to be a function

= Is called by a wide signal

S-Function Limitations

If a referenced model contains an S-function that should be inlined using a
Target Language Compiler file, the S-function must use the ssSetOptions
macro to set the SS_ OPTION _USE_TLC WITH_ACCELERATOR option in its
mdlInitializeSizes method. The simulation target will not inline the
S-function unless this flag is set.

¢ A referenced model cannot use noninlined S-functions generated by the

Simulink Coder software.

The Simulink Coder S-function target does not support model referencing.

For additional information, in the Simulink documentation, see “S-Functions
with Model Referencing”.

Simulink Tool Limitations

Simulink tools that require access to a model’s internal data or
configuration (including the Model Coverage tool, the Simulink Report
Generator product, the Simulink debugger, and the Simulink profiler) have
no effect on code generated by the Simulink Coder software for a referenced
model, or on the execution of that code. Specifications made and actions
taken by such tools are ignored and effectively do not exist.

Subsystem Limitations

¢ [fa subsystem contains Model blocks, you cannot build a subsystem module

by right-clicking the subsystem (or by using Code > C/C++ Code > Build
Selected Subsystem) unless the model is configured to use an ERT target.

If you generate code for an atomic subsystem as a reusable function,
inputs or outputs that connect the subsystem to a referenced model might
prevent code reuse, as described in “Reusable Code and Referenced Models”
on page 3-32.



Simulink® Coder™ Model Referencing Limitations

Target Limitations

¢ The Simulink Coder S-function target does not support model referencing.
Other Limitations

¢ Errors or unexpected behavior can occur if a Model block is part of a cycle,

the Model block is a direct feedthrough block, and an algebraic loop results.
For details, see “Model Blocks and Direct Feed through”.

¢ The External mode option is not supported. If it is enabled, it is ignored
during code generation.
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Combined Models

® “Combined Models” on page 4-2

o “Use GRT with Generate Reusable Code Option to Combine Models” on
page 4-4
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Combined Models

4-2

If you want to combine several models (or several instances of the same model)
into a single executable, the Simulink Coder product offers several options.

The most powerful solution is to use Model blocks. Each instance of a
Model block represents another model, called a referenced model. For code
generation, the referenced model effectively replaces the Model block that
references it. For details, see “Overview of Model Referencing” and “Generate
Code for Referenced Models” on page 3-4.

When developing embedded systems using the Embedded Coder product, you
can interface the code for several models to a common harness program by
directly calling the entry points to each model. However, the Embedded Coder
target has certain restrictions, relating to embedded processing, that might
not be compatible with your application.

The GRT target with the model option Generate reusable code selected is a
another possible solution. Use it in situations where you want to:

¢ Deploy more than one instance of a model

e Selectively control calls to more than one instance of a model

¢ Use dynamic memory allocation

¢ Include models that employ continuous states

® Log data to multiple files

¢ Run one of the models in external mode

For more information, see “Use GRT with Generate Reusable Code Option to
Combine Models” on page 4-4.

To summarize by target, your options are as follows:



Combined Models

Target Support for Combining Multiple
Models?

Generic Real-Time Target (grt.tlc) | Yes (using Model blocks or
Generate reusable code)

Embedded Coder (ert.tlc) Yes

S-function Target (rtwsfcn.tlc) No
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Use GRT with Generate Reusable Code Option to Combine

Models

This section discusses how to use the GRT target, with the Generate
reusable code option selected, to combine models into a single program.

Building a multiple-model executable is fairly straightforward:

1 Generate and compile code from each of the models that are to be combined.
If you want to include multiple instances of the same model, or if you want
model data to be dynamically allocated, select the model option Generate
reusable code.

2 Combine the makefiles for each of the models into one makefile for creating
the final multiple model executable.

3 Create a combined simulation engine by modifying a main program, such
as rt_malloc_main.c, to initialize and call the models.

4 Run the combination makefile to link the object files from the models and
the main program into an executable.

Share Data Across Models

Use unidirectional signal connections between models. This affects the order
in which models are called. For example, if an output signal from modelA is
used as input to modelB, modelA's output computation should be called first.

Timing Issues

You must generate all of the models you are combining with the same solver
mode (either all single-tasking or all multitasking.) In addition, if the models
employ continuous states, the same solver should be used for all of the models.

Because each model has its own model-specific definition of the rtModel
data structure, you must use an alternative mechanism to control model
execution, as follows:

® The file rtw/c/src/rtmcmacros.h provides an rtModel API clue that can
be used to call the rt_OneStep procedure.



Use GRT with Generate Reusable Code Option to Combine Models

® The rtmcmacros.h header file defines the rtModelCommon data structure,
which has the minimum common elements in the rtModel structure
required to step a model forward one time step.

e The rtmcsetCommon macro populates an object of type rtModelCommon by
copying the respective similar elements in the model’s rtModel object. Your
main routine must create one rtModelCommon structure for each model
being called by the main routine.

¢ The main routine will subsequently invoke rt_OneStep with a pointer to
the rtModelCommon structure instead of a pointer to the rtModel structure.

If the base rates for the models are not the same, the main program (such as
rt_malloc_main.c) must set up the timer interrupt to occur at the greatest
common divisor rate of the models. The main program calls each model at

a time interval.

Data Logging and External Mode Support

A multiple-model program can log data to separate MAT-files for each model.

Only one of the models in a multiple-model program can use external mode.
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Configure Model
Parameters

e “Hardware Targets” on page 9-11

® “Describing the Emulation and Embedded Targets” on page 9-45

® “Describing Embedded Hardware Characteristics” on page 9-55

® “Describing Emulation Hardware Characteristics” on page 9-56

e “Control the Location for Generated Files” on page 5-18

® “Control Generated Files Location Used for Simulation” on page 5-20
e “Control the Location for Code Generation Files” on page 5-22

® “Override Build Folder Settings for Current Session” on page 5-24
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Platform Options for Development and Deployment

When you use Simulink software to create and execute a model, and Simulink
Coder software to generate code, you may need to consider up to three
platforms, often called hardware targets:

e MATLAB Host — The platform that runs MathWorks® software during
application development

® Embedded Target — The platform on which an application will be deployed
when it is put into production

¢ Emulation Target — The platform on which an application under
development is tested before deployment

The same platform might serve in two or possibly three capacities, but they
remain conceptually distinct. Often the MATLAB host and the emulation
target are the same. The embedded target is usually different from, and less
powerful than, the MATLAB host or the emulation target; often it can do little
more than run a downloaded executable file.

When you use Simulink software to execute a model for which you will
later generate code, or use Simulink Coder software to generate code for
deployment on an embedded target, you must provide information about the
embedded target hardware and the compiler that you will use with it. The
Simulink software uses this information to get bit-true agreement for the
results of integer and fixed-point operations performed in simulation and in
code generated for the embedded target. The Simulink Coder code generator
uses the information to create code that executes with maximum efficiency.

When you generate code for testing on an emulation target, you must
additionally provide information about the emulation target hardware and the
compiler that you will use with it. The code generator uses this information
to create code that provides bit-true agreement for the results of integer and
fixed-point operations performed in simulation, in code generated for the
embedded target, and in code generated for the emulation target. Agreement
can result even though the embedded target and emulation target may use
very different hardware, and the compilers for the two targets may use
different defaults where the C standard does not completely define behavior.
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Configure Emulation and Embedded Target Hardware

The Configuration Parameters dialog Hardware Implementation pane
provides options that you can use to describe hardware properties, such as
data size and byte ordering, and compiler behavior details that may vary with
the compiler, such as integer rounding. The Hardware Implementation
pane contains two subpanes:

* Embedded Hardware — Describes the embedded target hardware
and the compiler that you will use with it. This information affects both
simulation and code generation.

* Emulation Hardware — Describes the emulation target hardware and
the compiler that you will use with it. This information affects only code
generation.

The two subpanes provide identical options and value choices. By default, the
Embedded Hardware subpane initially looks like this:

Embedded hardware (simulation and code generation)

Device vendor: |Generic " Device type: |Unspeciﬁed (assume 32-bit Generic) v|

Number of bits Largest atomic size

har: 8 hort: 16 int: 32
char sho = n = integer: |Char '|

long: 32 float: 32 double: 64

floating-point: |None v|

native: 32 pointer: 32

Byte ordering: |Unspecified Signed integer division rounds to: | Undefined -

Shift right on a signed integer as arithmetic shift

The default assumption is that the embedded target and emulation target are
the same, so the Emulation Hardware subpane by default does not need

to specify anything and contains only a checked option labeled None. Code
generated under this configuration will be suitable for production use, or for
testing in an environment identical to the production environment.

If you clear the check box, the Emulation Hardware subpane appears,
initially showing the same values as the Embedded Hardware subpane. If
you change any of these values, then generate code, the code will be able to
execute in the environment specified by the Emulation Hardware subpane,
but will behave as if it were executing in the environment specified by the
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Embedded Hardware subpane. See “Describing Emulation Hardware
Characteristics” on page 9-56 for details.

If you have used the Code Generation pane to specify a System target
file, and the target file specifies a default microprocessor and its hardware
properties, the default and properties appear as initial values in the
Hardware Implementation pane.

Options with only one possible value cannot be changed. An option that has
more than one possible value provides a list of legal values. If you specify
any hardware properties manually, check carefully that their values are
consistent with the system target file. Otherwise, the generated code may fail
to compile or execute, or may execute but give incorrect results.

Note Hardware Implementation pane options do not control hardware
or compiler behavior. They describe hardware and compiler properties to
MATLAB software, which uses the information to generate code for the
platform thatruns as efficiently as possible, and gives bit-true agreement for
the results of integer and fixed-point operations in simulation, production
code, and test code.

The rest of this section describes the options in the Embedded Hardware
and Emulation Hardware subpanes. Subsequent sections describe
considerations that apply only to one or the other subpane. For more about
Hardware Implementation options, see “Hardware Implementation Pane”.
To see an example of Hardware Implementation pane capabilities, run the
rtwdemo_targetsettings example.

Identify the Device Vendor

The Device vendor option gives the name of the device vendor. To set the
option, select a vendor name from the Device vendor menu. Your selection
of vendor will determine the available device values in the Device type list.
If the desired vendor name does not appear in the menu, select Generic and
then use the Device type option to further specify the device.
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Note

® For complete lists of Device vendor and Device type values, see “Device
vendor” and “Device type” in the Simulink reference documentation.

® To add Device vendor and Device type values to the default set that
1s displayed on the Hardware Implementation pane, see “Registering
Additional Device Vendor and Device Type Values” on page 9-48.

Identify the Device Type

The Device type option selects a hardware device among the supported
devices listed for your Device vendor selection. To set the option, select
a microprocessor name from the Device type menu. If the desired
microprocessor does not appear in the menu, change the Device vendor
to Generic.

If you specified the Device vendor as Generic, examine the listed device
descriptions and select the device type that matches your hardware. If no
available device type matches, select Custom.

If you select a device type for which the target file specifies default hardware
properties, the properties appear as initial values in the subpane. Options
with only one possible value cannot be changed. An option that has more
than one possible value provides a list of legal values. Select values for your
hardware. If the device type is Custom, more options can be set, and each
option has a list of possible values.

Register Additional Device Vendor and Device Type
Values

To add Device vendor and Device type values to the default set that is
displayed on the Hardware Implementation pane, you can use a hardware
device registration API provided by the Simulink Coder software.

To use this API, you create an s1_customization.m file, located in your

MATLAB path, that invokes the registerTargetInfo function and fills
in a hardware device registry entry with device information. The device
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information will be registered with Simulink software for each subsequent
Simulink session. (To register your device information without restarting
MATLAB, issue the MATLAB command s1_refresh_customizations.)

For example, the following s1 customization.m file adds device vendor
MyDevVendor and device type MyDevType to the Simulink device lists.

function sl_customization(cm)
cm.registerTargetInfo(@loc_register_device);
end

function thisDev = loc_register_device
thisDev = RTW.HWDeviceRegistry;
thisDev.Vendor = 'MyDevVendor';
thisDev.Type = 'MyDevType';
thisDev.Alias = {};
thisDev.Platform = {'Prod', 'Target'};
thisDev.setWordSizes([8 16 32 32 32]);

thisDev.LargestAtomicInteger = 'Char';
thisDev.LargestAtomicFloat = 'None’;
thisDev.Endianess = 'Unspecified';

thisDev.IntDivRoundTo = 'Undefined’;

thisDev.ShiftRightIntArith = true;

thisDev.setEnabled({'IntDivRoundTo'});
end

If you subsequently select the device in the Hardware Implementation
pane, it is displayed as follows:

Embedded hardware (simulation and code generation)

Device vendor: |MyDevVendUr " Device type: |MyDevape 7
Number of bits Largest atomic size
char: ] short: 16 int: 3z . .
integer: Char
long: 32 float: 32 double: 64

. ; floating-point: | Mone
native: 32 pointer: 32

Byte ordering: | Unspecified Signed integer division rounds to: | Undefined -

Shift right on a signed integer as arithmetic shift



Configure Emulation and Embedded Target Hardware

To register multiple devices, you can specify an array of
RTW.HWDeviceRegistry objects in your sl _customization.m file. For
example,

function sl_customization(cm)
cm.registerTargetInfo(@loc_register_device);
end

function thisDev = loc_register_device

thisDev(1) = RTW.HWDeviceRegistry;
thisDev(1).Vendor = 'MyDevVendor';
thisDev(1).Type = 'MyDevTypel';

thisDev(4) = RTW.HWDeviceRegistry;
thisDev(4).Vendor = 'MyDevVendor';
thisDev(4).Type = 'MyDevType4d';

end

The following table lists the RTW.HWDeviceRegistry properties that you can
specify in the registerTargetInfo function call in your s1_customization.m
file.

Property Description

Vendor String specifying the Device vendor value for your
hardware device.

Type String specifying the Device type value for your
hardware device.
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Property

Description

Alias

Cell array of strings specifying aliases or legacy
names that users might specify that should
resolve to this device. Specify each alias or

legacy name in the format 'Vendor->Type'.
(Embedded Coder software provides the

utility functions RTW.isHWDeviceTypeEq and
RTW.resolveHWDeviceType for detecting and
resolving alias values or legacy values when testing
user-specified values for the target device type.)

Platform

Cell array of enumerated string values specifying
whether this device should be listed in the
Embedded hardware subpane ({'Prod'}), the
Emulation hardware subpane ({'Target'}), or
both ({'Prod', 'Target'}).

setWordSizes

Array of integer sizes to associate with the Number
of bits parameters char, short, int, long, and
native word size, respectively.

LargestAtomicIntegs

rString specifying an enumerated value for the
Largest atomic size: integer parameter: 'Char’,
‘Short','Int', or 'Long"'.

LargestAtomicFloat

String specifying an enumerated value for the
Largest atomic size: floating-point parameter:
'Float', 'Double', or 'None"'.

Endianess

String specifying an enumerated value for the Byte
ordering parameter: 'Unspecified', 'Little' for
little Endian, or 'Big' for big Endian.

IntDivRoundTo

String specifying an enumerated value for the
Signed integer division rounds to parameter:
‘Zero', 'Floor', or 'Undefined'.
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Property Description

ShiftRightIntArith | Boolean value specifying whether your compiler
implements a signed integer right shift as an
arithmetic right shift (true) or not (false).

setEnabled Cell array of strings specifying which device
properties should be enabled (modifiable) in

the Hardware Implementation pane when

this device type is selected. In addition to

the 'Endianess', 'IntDivRoundTo', and
'ShiftRightIntArith' properties listed above, you
can enable individual Number of bits parameters
using the property names 'BitPerChar’,
'BitPerShort', 'BitPerInt', 'BitPerLong', and
‘NativeWordSize'.

Set Native Word Size for the Device

The Number of bits options describe the native word size of the
microprocessor, and the bit lengths of char, short, int, and long data. For
code generation to succeed:

® The bit lengths must be such that char <= short <= int <= long.

¢ Bit lengths must be multiples of 8, with a maximum of 32.

¢ The bit length for long data must not be less than 32.

Simulink Coder integer type names are defined in the file rtwtypes.h. The
values that you provide must be consistent with the word sizes as defined in
the compiler’s 1imits.h header file. The following table lists the standard
Simulink Coder integer type names and maps them to the corresponding
Simulink names.

Simulink Coder Integer Simulink Integer Type

Type

boolean_T boolean
int8_ T int8
uint8_T uint8
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Simulink Coder Integer Simulink Integer Type

Type

int16_T int16
uint16_T uint16
int32 T int32
uint32 T uint32

If no ANSI® C type with a matching word size is available, but a larger ANSI
C type is available, the Simulink Coder code generator uses the larger type
for int8 T, uint8_T, int16_T, uint16_T, int32_T, and uint32_T.

An application can use integer data of length from 1 (unsigned) or 2 (signed)
bits up 32 bits. If the integer length matches the length of an available type,
the Simulink Coder code generator uses that type. If no matching type is
available, the code generator uses the smallest available type that can hold
the data, generating code that does not use unnecessary higher-order bits.
For example, on a target that provided 8-bit, 16-bit, and 32-bit integers, a
signal specified as 24 bits would be implemented as an int32_T or uint32_T.

Code that uses emulated integer data is not maximally efficient, but can be
useful during application development for emulating integer lengths that are
available only on production hardware. The use of emulation does not affect
the results of execution.

Set Byte Ordering Used By Device

The Byte ordering option specifies whether the target hardware uses Big
Endian (most significant byte first) or Little Endian (least significant byte
first) byte ordering. If left as Unspecified, the Simulink Coder software
generates code that determines the endianness of the target; this is the least
efficient option.

Set Quotient Rounding Technique for Signed Integer
Division

ANSI C does not completely define the quotient rounding technique to

be used when dividing one signed integer by another, so the behavior is
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implementation-dependent. If both integers are positive, or both are negative,
the quotient must round down. If either integer is positive and the other is
negative, the quotient can round up or down.

The Signed integer division rounds to parameter tells the Simulink
Coder code generator how the compiler rounds the result of signed integer
division. Providing this information does not affect the operation of the
compiler, it only describes that behavior to the code generator, which uses
the information to optimize code generated for signed integer division. The
parameter options are:

e Zero — If the quotient is between two integers, the compiler chooses the
integer that is closer to zero as the result.

® Floor — If the quotient is between two integers, the compiler chooses the
integer that is closer to negative infinity.

® Undefined — Choose this option if neither Zero nor Floor describes the

compiler’s behavior, or if that behavior is unknown.

The following table illustrates the compiler behavior that corresponds to each
of these three options:

Ideal
N D N/D Zero Floor Undefined
33 4 8.25 8 8 8
-33 4 -8.25 -8 -9 -8 or -9
33 -4 -8.25 -8 -9 -8 or -9
-33 -4 8.25 8 8 8or9

Note Select Undefined only as a last resort. When the code generator does
not know the signed integer division rounding behavior of the compiler, it
generates extra code.

The compiler’s implementation for signed integer division rounding can be

obtained from the compiler documentation, or by experiment if documentation
is not available.
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Set Arithmetic Right Shift Behavior for Signed
Integers

ANSI C does not define the behavior of right shifts on negative integers, so the
behavior is implementation-dependent. The Shift right on a signed integer
as arithmetic shift parameter tells the code generator how the compiler
implements right shifts on negative integers. Providing this information does
not affect the operation of the compiler, it only describes that behavior to the
code generator, which uses the information to optimize the code generated for
arithmetic right shifts.

Select the option if the C compiler implements a signed integer right shift as
an arithmetic right shift, and clear the option otherwise. An arithmetic right
shift fills bits vacated by the right shift with the value of the most significant
bit, which indicates the sign of the number in twos complement notation.
The option is selected by default. If your compiler handles right shifts as
arithmetic shifts, this is the preferred setting.

® When the option is selected, the Simulink Coder software generates simple
efficient code whenever the Simulink model performs arithmetic shifts on
signed integers.

* When the option is cleared, the Simulink Coder software generates fully
portable but less efficient code to implement right arithmetic shifts.

The compiler’s implementation for arithmetic right shifts can be obtained
from the compiler documentation, or by experiment if documentation is not
available.
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Configure Embedded Hardware Characteristics

“Describing the Emulation and Embedded Targets” on page 9-45 documents
the options available on the Hardware Implementation subpanes. This
section describes considerations that apply only to the Embedded Hardware
subpane. When you use this subpane, keep the following in mind:

® Code generation targets can have word sizes and other hardware
characteristics that differ from the MATLAB host. Furthermore, code can
be prototyped on hardware that is different from either the deployment
target or the MATLAB host. The Simulink Coder code generator takes
these differences into account when generating code.

® The Simulink product uses some of the information in the Embedded
Hardware subpane so that simulation without code generation gives
the same results as executing generated code, including detecting error
conditions that could arise on the target hardware, such as hardware
overflow.

® The Simulink Coder software generates code that has bit-true agreement
with Simulink results for integer and fixed-point operations. Generated
code that emulates unavailable data lengths runs less efficiently than
1t would without emulation, but the emulation does not affect bit-true
agreement with Simulink for integer and fixed-point results.

e If you change targets during application development, you must reconfigure
the hardware implementation parameters for the new target before
generating or regenerating code. Bit-true agreement might not be achieved
for results of integer and fixed-point operations in simulation, production
code, and test code when code executes on hardware for which it was not
generated.

¢ Use the Integer rounding mode parameter on your model’s blocks to
simulate the rounding behavior of the C compiler that you intend to use
to compile code generated from the model. This setting appears on the
Signal Attributes pane of the parameter dialog boxes of blocks that can
perform signed integer arithmetic, such as the Product and n-D Lookup
Table blocks.

® For most blocks, the value of Integer rounding mode completely defines
rounding behavior. For blocks that support fixed-point data and the
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simplest rounding mode, the value of Signed integer division rounds to
also affects rounding. For details, see “Rounding”.

® When models contain Model blocks, models that they reference must be
configured to use identical hardware settings.
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Configure Emulation Hardware Characteristics

“Describing the Emulation and Embedded Targets” on page 9-45 documents
the options available on the Hardware Implementation subpanes. This
section describes considerations that apply only to the Emulation Hardware
subpane.

Note (If the Emulation Hardware subpane contains a button labeled
Configure current execution hardware device, see “Updating from
Earlier Versions” on page 9-57, then continue from this point.)

The default assumption is that the embedded target and emulation target are
the same, so the Emulation Hardware subpane by default does not need to
specify anything and contains only a selected check box labeled None. Code
generated under this configuration will be suitable for production use, or for
testing in an environment identical to the production environment.

To generate code that runs on an emulation target for test purposes, but
behaves as if it were running on an embedded target in a production
application, you must specify the properties of both targets in the Hardware
Implementation pane. The Embedded Hardware subpane specifies
embedded target hardware properties, as described previously. To specify
emulation target properties:

1 Clear the None option in the Emulation Hardware subpane.

By default, the Hardware Implementation pane now looks like this:
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Embedded hardware (simulation and code generation)

Device vendor: IGeneric 'I Device type: [Unspeciﬁed (assume 32-bit Generic) 'J
Number of bits Largest atomic size
har: 8 hort: 16 int: 32
char sne 2 n = integer: Ichar 'I
long: 32 float: 32 double: 64
. floating-point: INone 'I
native: 32 pointer: 32

fied Signed integer division rounds to: |Undefined -

Byte ordering: | Unspecifi

Shift right on a signed integer as arithmetic shift

Emulation hardware (code generation only)

[7] None
Device vendor: lGeneric VI Device type: {Unspeciﬁed (assume 32-bit Generic) 'J
Number of bits Largest atomic size
har: 8 hort: 16 t: 32
char sno = " = integer: lChar VI
long: 32 float: 32 double: 64
. floating-point: lNone VI
native: 32 pointer: 32

Signed integer division rounds to: |Undefined -

Byte ordering: |Unspecifi

Shift right on a signed integer as arithmetic shift

2 In the Emulation Hardware subpane, specify the properties of the
emulation target, using the instructions in “Describing the Emulation and
Embedded Targets” on page 9-45

If you have used the Code Generation pane to specify a System target
file, and the target file specifies a default microprocessor and its hardware
properties, the default and properties appear as initial values in both
subpanes of the Hardware Implementation pane.

Options with only one possible value cannot be changed. An option that has
more than one possible value provides a list of legal values. If you specify
any hardware properties manually, check carefully that their values are
consistent with the system target file. Otherwise, the generated code may fail
to compile or execute, or may execute but give incorrect results.

If you do not display the Emulation Hardware subpane, the Simulink and
Simulink Coder software defaults every Emulation Hardware option to
have the same value as the corresponding Embedded Hardware option.

If you hide the Emulation Hardware subpane after setting its values,

the values that you specified will be lost. The underlying configuration
parameters immediately revert to the values that they had when you exposed
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the subpane, and these values, rather than the values that you specified, will
appear if you re-expose the subpane.

Update Release 14 Hardware Configuration

If your model was created before Release 14 and has not been updated, by
default the Hardware Implementation pane initially looks like this:

Hardware Implementation

— Embedded hardware [zimulation and code generation)

Cevice vendar: IGeneric 'l
=l

Device type: IUnspecified [assume 32-hbit Genernic)

Mumber of bits: char: IB short: I‘I E ik |32
long: |32 native word size: |32

Byte ordering: IUnspecified LI

Signed integer divizion rounds to: IU ndefined LI
¥ | Shift right o a signed integer as arithmetic. shift

— Erulation hardware [code generation anly)

Configure current execution hardware device |

Click Configure current execution hardware device. The Configure
current execution hardware device button disappears. The subpane then
appears as shown in the first figure in this section. Save your model at this
point to avoid redoing Configure current execution hardware device
next time you access the Hardware Implementation pane.
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Control the Location for Generated Files

By default, the files generated by Simulink diagram updates and model
builds are placed in a build folder, the root of which is the current working
folder (pwd). If you are doing model builds, which potentially generate files
for simulation targets as well as code generation targets, artifacts used for
simulation and Simulink Coder code generation files coexist in subfolders
within that build folder. However, in some situations, you might want the
generated files to go to a root folder outside the current working folder. For
example,

® You need to keep generated files separate from the models and other source
materials used to generate them.
® You want to reuse or share previously-built simulation targets without

having to set the current working folder back to a previous working folder.

You might also want to separate generated simulation artifacts from
generated production code.

To allow you to control the output locations for the files generated by diagram
updates and model builds, the software allows you to separately specify the
following build folders:

* Simulation cache folder — root folder in which to place build artifacts
used for simulation

® Code generation folder — root folder in which to place Simulink Coder
code generation files

For specifying the folder locations, the software provides

e MATLAB session parameters CacheFolder and CodeGenFolder

® Simulink preferences Simulation cache folder and Code generation
folder, which, if specified, provide the initial defaults for the MATLAB
session parameters

® Function Simulink.fileGenControl for directly manipulating the
MATLAB session parameters, for example, overriding or restoring the
initial default values for the current session
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For more information about setting up a simulation cache folder, see “Control
Generated Files Location Used for Simulation” on page 5-20.

For more information about setting up a code generation folder, see “Control
the Location for Code Generation Files” on page 5-22.

For more information about directly manipulating the MATLAB session

parameters CacheFolder and CodeGenFolder, see “Override Build Folder
Settings for Current Session” on page 5-24.
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Control Generated Files Location Used for Simulation

By default, the files generated by Simulink diagram updates are placed in a
build folder, the root of which is the current working folder (pwd). However,
In some situations, you might want the generated files to go to a root folder
outside the current working folder. For example,

® You need to keep generated files separate from the models and other source
materials used to generate them.

® You want to reuse or share previously-built simulation targets without
having to set the current working folder back to a previous working folder.

The Simulink preference Simulation cache folder provides control over
the output location for files generated by Simulink diagram updates. The
preference appears in the Simulink Preferences Window, Main Pane, in the
File generation control group. To specify the root folder location for files
generated by Simulink diagram updates, set the preference value by entering
or browsing to a folder path, for example:

Simulation cache folder: IC: YWorkmymodelsimcache |

The folder path that you specify provides the initial default for the MATLAB
session parameter CacheFolder. When you initiate a Simulink diagram
update, files generated are placed in a build folder at the root location specified
by CacheFolder (if any), rather than in the current working folder (pwd).

For example, using a 32-bit Windows host platform, if you set the Simulation
cache folder to 'C: \Work\mymodelsimcache' and then simulate the example
model rtwdemo_capi, files are generated into the specified folder as follows:
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(< v Work » mymodelsimcache » - O [E %

Mame £

_sharedutils
rtwdemo_capi_bot
| sl_proj. tmw

ﬂ rtwdemo_capi_bot_msf.mexw32

As an alternative to using the Simulink preferences GUI to set Simulation
cache folder, you also can get and set the preference value from the
command line using get_param and set_param. For example,

>> get_param(0, 'CacheFolder')

>> set_param(0, 'CacheFolder', fullfile('C:','Work', 'mymodelsimcache'))
>> get_param(0, 'CacheFolder')

ans =
C:\Work\mymodelsimcache

Also, you can choose to override the Simulation cache folder preference
value for the current MATLAB session.
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Control the Location for Code Generation Files

By default, the files generated by Simulink model builds are placed in a
build folder, the root of which is the current working folder (pwd). Model
builds potentially generate files for simulation targets as well as code
generation targets, and the resulting build folder contains both artifacts used
for simulation and Simulink Coder code generation files. However, in some
situations, you might want the generated files to go to one or more root folders
outside the current working folder. For example,

® You need to keep generated files separate from the models and other source
materials used to generate them.

® You want to separate generated production code from generated simulation
artifacts.

The Simulink preference Code generation folder provides control over the
output location for files generated by model builds for code generation targets.
The preference appears in the Simulink Preferences Window, Main Pane, in
the File generation control group. To specify the root folder location for
code generation files generated by model builds, set the preference value by
entering or browsing to a folder path, for example:

Code generation folder: IC: ftestimymodelgencode |

The folder path that you specify provides the initial default for the MATLAB
session parameter CodeGenFolder. When you initiate a Simulink model
build, code generation files generated are placed in a build folder at the root
location specified by CodeGenFolder (if any), rather than in the current
working folder (pwd).

For example, using a 32-bit Windows host platform, if you set the Code
generation folder to 'C:\test\mymodelgencode' and then build the
example model rtwdemo_capi, files are generated into the specified folder as
follows:
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I C: » test » mymodelgencode » | o E #-

MName £ I

rtwdemo_capi_art_rtw

_sharedutils

rtwdemo_capi

rtwdemo_capi_bot
| sl_prog. trw

E rtwdemo_capi.exe

As an alternative to using the Simulink preferences GUI to set Code
generation folder, you also can get and set the preference value from the
command line using get_param and set_param. For example,

>> get_param(0, 'CodeGenFolder')

>> set_param(0, 'CodeGenFolder', fullfile('C:','test', 'mymodelgencode'))
>> get_param(0, 'CodeGenFolder')

ans =
C:\test\mymodelgencode

Also, you can choose to override the Code generation folder preference
value for the current MATLAB session. For more information, see “Override
Build Folder Settings for Current Session” on page 5-24.
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Override Build Folder Settings for Current Session

The Simulink preferences Simulation cache folder and Code generation
folder provide the initial defaults for the MATLAB session parameters
CacheFolder and CodeGenFolder, which determine where files generated
by Simulink diagram updates and model builds are placed. However,
you can override these build folder settings during the current MATLAB
session, using the Simulink.fileGenControl function. This function
allows you to directly manipulate the MATLAB session parameters, for
example, overriding or restoring the initial default values. The values
you set using Simulink.fileGenControl expire at the end of the current
MATLAB session. For more information and detailed examples, see the
Simulink.fileGenControl function reference page.
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* “Protect a Referenced Model” on page 6-2

¢ “Harness Model” on page 6-4

® “Protected Model Report” on page 6-5

® “Code Generation Support in a Protected Model” on page 6-6
® “Protected Model File” on page 6-8

® “Create a Protected Model” on page 6-9

e “Settings Configured by Package Contents” on page 6-13

e “Test the Protected Model” on page 6-14

* “Save Base Workspace Definitions” on page 6-16

e “Package a Protected Model” on page 6-17
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Protect a Referenced Model

Protect a model when you want to share a model with a third party without
revealing intellectual property. Protecting a model does not use encryption
technology.

When you create a protected model:

® By default, Simulink creates and stores a protected version of the
referenced model in the current working folder. The protected model has
the same name as the source model, with a .slxp extension.

® The original Model block does not change. However, if the Model block
parameter Model name does not specify an extension, a protected model,
.s1lxp, takes precedence over a model file, .slx.

® You can optionally create a harness model which includes the protected
model. A shield icon appears in the lower-left corner of the protected model
block in the harness model. For more information, see “Harness Model”
on page 6-4.

® You can optionally include generated code with the protected model so that
a third party can generate code for a model that contains the protected
model. Including code generation support with a protected model also
allows the third party to simulate a model that references the protected
model in Accelerator mode. For more information, see “Code Generation
Support in a Protected Model” on page 6-6.

e If the Model block uses variants, only the active variant is protected. For
more information, see “Set Up Model Variants”.

e If you rename a protected model, or change its suffix, the model is
unusable until you restore its original name and suffix. You cannot
change a protected model file internally because such changes make the
file unusable.

Create a protected model using one of the following options.

® The Model block context menu. For more information, see “Create a
Protected Model” on page 6-9

® The Simulink.ModelReference.protect function.
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Requirements for Protecting a Model

When you create a protected model from a referenced model, the referenced
model must meet all requirements listed in “Model Referencing Limitations”,
as well as these requirements:

® You must have a Simulink Coder license to create a protected model.

* A model that you protect must be available on the MATLAB path and not
have unsaved changes.

® A model that you protect cannot reference a protected model directly or
indirectly.

¢ A model that you protect cannot use a non-inlined S-function directly or
indirectly.

® Model protection is not supported for SIL/PIL simulations.

Model protection has certain limitations, as listed in “Limitations on All Model
Referencing” and “Limitations on Accelerator Mode Referenced Models”.
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Harness Model

You can create a harness model for the generated protected model. The
harness model opens as a new, untitled model that contains only a Model
block that references the protected model. This Model block:

® Specifies the Model block parameter, Model name, as the name of the
protected model.

e Has a shield icon in the lower-left corner.
® Has the same number of input and output ports as the protected model.

¢ Defines model reference arguments that the protected model uses, but
does not provide values.

To create a harness model, see “Create a Protected Model” on page 6-9. You
can use a harness model to test your protected model. For more information,
see “Test the Protected Model” on page 6-14. You can also copy the Model
block in your harness model to another model, where it is an interface to
the protected model.
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Protected Model Report

You can generate a report for a protected model to include with the protected
model. The report provides information to the receiver to determine if the
protected model can be used. The report has:

¢ A Summary, including the Simulink version and platform used to create
the protected model.

¢ An Interface Report, including model interface information, such as,
input and output specifications, exported function information, and
whether code generation support is included.

A protected model report is generated while the protected model is created. In
the Create Protected Model dialog box, select the Create protected model

report parameter. For an example, see “Create a Protected Model” on page
6-9.

After you create the protected model, to view the protected model report,
double-click the protected model block.
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Code Generation Support in a Protected Model

You can create a protected model that supports code generation. When a
protected model includes generated code, a third party can generate code for a
model that includes the protected model. If you choose to obfuscate the code,
the code is obfuscated before compilation. The protected model file contains
only obfuscated headers and binaries. Source code, such as .c and .cpp, is
not present in the protected model file, although the headers are documented
in the protected model report. For more information, see “Protected Model
File” on page 6-8 and “Protected Model Report” on page 6-5.

In the Create Protected Model dialog box, set Package Contents to
Simulation and Code Generation. This setting enables the Obfuscate
code parameter. For an example on including code generation support, see
“Create a Protected Model” on page 6-9.

Protected Model Requirements to Support Code
Generation

Contents and configuration of a model might prevent code generation support
of the protected model. Interaction between the parent model and the
protected model might also prevent code generation.

¢ Code generation for the protected model is only supported for Accelerator
mode and a single target. Both GRT and ERT targets cannot be supported
by the same protected model.

¢ Source code comments in the Code Generation > Comments pane are
ignored. Obfuscation of the generated code removes comments because
comments might reveal intellectual property.

¢ Custom code specified in the Code Generation > Custom Code pane is
obfuscated, but identifiers are not.

¢ Code generation of a model that includes a protected model produces an
error, if:

= Their interfaces do not match.

= There are incompatible parameters.
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= A protected model and another model share the same name in the same
model reference hierarchy.
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Protected Model File

A protected model file (.s1xp) consists of the model itself and supporting files,

depending on the options that you selected when you created the protected
model.

If you created a protected model for simulation only, after simulation, the
model.mexext file is placed in the build folder.

For simulation with a report, these additional files are unpacked:

slprj/sim/model/html/*
slprj/sim/model/buildinfo.mat

If you opted to include code generation support when you created the
protected model, after building your model the following files are unpacked
(in addition to the preceding files):

slprj/sim/model/*.h
slprj/sim/model/modellib.a (or modellib.1lib)
slprj/sim/model/tmwinternal/*
slprj/sim/_sharedutils/*

slprj/target/model/*.h
slprj/target/model/model rtwlib.a (or model rtwlib.lib)
slprj/target/model/buildinfo.mat
slprj/target/_sharedutils/*
slprj/target/model/tmwinternal/*

For code generation with a report, after building your model these files are
unpacked (in addition to the preceding files):

slprj/target/model/html/*
slprj/target/model/buildinfo.mat
slprj/target/_sharedutils/html/*
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Create a Protected Model

This example shows how to create a protected model to be used for simulation
and code generation.

Open the model rtwdemo_roll.

In the Simulink Editor, right-click the Model block that references the model
for which you want to generate protected model code. In this example,
right-click HeadingMode.

From the context menu, select Block Parameters (ModelReference).

In the Block Parameters dialog box, in the Model name field, specify the
extension for the model, .s1x. When both the model and the protected model
exist in the same folder, .slxp takes precedence over .slx. In the Model
name field, if you do not specify an extension, when you create the protected
model, the original Model block in the model becomes protected.

Click Apply and OK.

Right-click the Model block. From the context menu, select Subsystem &
Model Reference > Create Protected Model for Selected Model Block.

In the Create Protected Model dialog box, set Package Contents to
Simulation and Code Generation. This setting enables and selects the
Obfuscate code parameter. For more information about the generated code,
see “Code Generation Support in a Protected Model” on page 6-6.

Note To learn about the parameters that are configured when you select
different options for Package Contents, see “Settings Configured by Package
Contents” on page 6-13.

In the Package path field, specify the folder path for the protected model.
The default value is the current working folder.

To create a harness model for the protected model, select Create harness
model for protected model.
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P o)

Create Protected Model: mydemo_heading @
Description

Create a protected model (.skp) based on the options
specified below

Package contents: [Simulatinn and Code Generation *]

Fackage path C:\Work Browse...

Create harness model for protected model

[ Create H Cancel H Help ]

10 Click Create. An untitled harness model opens and contains a Model block,
which refers to the protected model rtwdemo_heading.slxp. The Simulation
mode for the Model block is set to Accelerator. You cannot change the mode.
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untitled b

rtwdemeo_heading
Psi_Ref

11 To view the protected model report, double-click the HeadingMode block.
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Protected Model report =R
Protected Model Report for i
Contents rtwdemo_heading
Summary Summary

Interface Report

m

Environment information for protected model "rtwdemo_heading”

ERT Generated Code

Model version 1.19
[-1 Model files
) Simulink version 8.0
rtwdemo_heading.h Simulink Coder version 8.3 (R2012b) 26-May-2012
[+] Shared Utility files (1) Protected model generated on Wed Jun 13 10:34:07 2012
[+] Other files (1) Platform gt
Code generation support On
Target ert
Obfuscation On

Configuration settings at the time of protected model creation:click to open ~
4 mn 2

To test the protected model before packaging, see “Test the Protected Model”
on page 6-14. To package the protected model for a third party, see “Package
a Protected Model” on page 6-17.
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Settings Configured by Package Contents

In the Create Protected Model dialog box, your selection for Package

Contents determines which settings are configured during model protection.

-

Create Protected Model: mydermno_heading @

Description

Create a protected model (.skp) based on the options

specified below

-

Fackage contents: |Simu|atinn and Code Generation T|

Package path C:\Work

¥| Create harness model for protected model

Browse...

| Create || Cancel || Help |

Selection for Package Contents

Settings

Simulation

® Report generation is enabled
e Mode is set to Accelerator

¢ Only binaries and headers are
visible to users

® (Code obfuscation is enabled

Simulation and Code Generation

® Report generation is enabled

® Mode is set to enable code
generation

e All code in the build directory is
visible to users

® (Code obfuscation is enabled

Customize Protected Model

Customize any or all settings.
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Test the Protected Model

6-14

To test a protected model that you created, you use the generated harness
model and the procedure described in “Use Protected Model in Simulation”.

You can also compare the output of the protected model to the output of

the original model. Because you are the supplier, both the original and the
protected model might exist on the MATLAB path. In the original model, if
the Model block Model name parameter names the model without providing
a suffix, the protected model takes precedence over the unprotected model.
If you need to override this default when testing the output, in the Model
block Model name parameter, specify the file name with the extension of
the unprotected model, .slx.

To compare the unprotected and protected versions of a Model block, use
the Simulation Data Inspector. This example uses rtwdemo_roll and the
protected model, rtwdemo_heading.slxp, which is created in “Create a
Protected Model” on page 6-9.

1 If it is not already open, open rtwdemo_roll.

2 Enable logging for the output signal of the Model block, HeadingMode. In
the Configuration Parameters dialog box, on the Data Import/Export
pane, select the Signal logging parameter and set Signal logging
format to Dataset. Click Apply and OK.

3 Right-click the output signal. From the context menu, select Properties.
In the Signal Properties dialog box, select Log signal data. Click Apply
and OK. For more information, see “Export Signal Data Using Signal
Logging”.

4 Right-click the HeadingMode block. From the context menu, select Block
Parameters (ModelReference). In the Block Parameters dialog box,
specify the Model name parameter with the name of the unprotected
model and the extension, rtwdemo_heading.slx. Click Apply and OK.

5 In the Simulink Editor, click the Record button on. Simulate the model.
When the simulation is complete, the Simulation Data Inspector opens.



Test the Protected Model

6 In the Simulation Data Inspector, rename the run to indicate that it is
for the unprotected model.

7 In the Simulink Editor, right-click the HeadingMode block. From the
context menu, select Block Parameters (ModelReference). In the Block
Parameters dialog box, specify the Model name parameter with the name
of the protected model, rtwdemo_heading.slxp. A shield icon appears
on the Model block.

8 In the Simulink Editor, the Record button is still on. Simulate the model,
which now refers to the protected model. When the simulation is complete,
the Simulation Data Inspector opens.

9 In the Simulation Data Inspector, rename the new run to indicate that it
1s for the protected model.

10 In the Simulation Data Inspector, select the Compare Runs tab to
compare the runs for the unprotected and the protected model. For more
information about comparing runs, see “Compare All Logged Signal Data
From Multiple Simulations”.
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Save Base Workspace Definitions

Referenced models might use object definitions or tunable parameters that
are defined in the MATLAB base workspace. These variables are not saved
with the model. When you protect a model, you must obtain the definitions of
required base workspace entities and ship them with the model.

The following base workspace variables must be saved to a MAT-file:

® Global tunable parameter
® Global data store

® The following objects used by a signal that connects to a root-level model
Inport or Outport:

= Simulink.Signal
= Simulink.Bus
= Simulink.Alias

Simulink.NumericType that is an alias
For more information, see “Workspace Variables in Model Explorer”.

Before executing the protected model as a part of a third-party model, the
receiver of the protected model must load the MAT-file.
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Package a Protected Model

In addition to the protected model file (. s1xp), you might need to include
additional files in the protected model package:
e Harness model file.

® Any required definitions saved in a MAT-file. For more information, see
“Save Base Workspace Definitions” on page 6-16.

¢ Instructions on how to retrieve the files.
Some ways to deliver the protected model package are:

¢ Provide the .slxp file and other supporting files as separate files.
e Combine the files into a ZIP or other container file.

¢ Combine the files using a manifest. For more information, see “Export
Files in a Manifest”.

¢ Provide the files in some other standard or proprietary format specified

by the receiver.

Whichever approach you use to deliver a protected model, include information
on how to retrieve the original files. One approach to consider is to use the
Simulink Manifest Tools, as described in “Analyze Model Dependencies”.
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¢ Chapter 7, “Data Representation”
¢ Chapter 8, “Entry Point Functions and Scheduling”






Data Representation

¢ “Enumerations” on page 7-2

e “Structure Parameters and Generated Code” on page 7-49
e “Parameters” on page 7-10

® “Signals” on page 7-52

e “States” on page 7-83

e “Data Stores” on page 7-93
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Enumerations

In this section...

“About Enumerated Data Types” on page 7-2
“Default Code for an Enumerated Data Type” on page 7-2
“Type Casting for Enumerations” on page 7-3

“Override Default Methods (Optional)” on page 7-4

“Enumerated Type Limitations” on page 7-7

About Enumerated Data Types

Enumerated data is data that is restricted to a finite set of values. An
enumerated data type is a MATLAB class that defines a set of enumerated
values. Each enumerated value consists of an enumerated name and an
underlying integer which the software uses internally and in generated code.
The following is a MATLAB class definition for an enumerated data type
named BasicColors, which is used in the examples in this section.

classdef (Enumeration) BasicColors < Simulink.IntEnumType
enumeration
Red(0)
Yellow(1)
Blue(2)
end
end

For information about enumerated data types and their use in Simulink
models, see “Use Enumerated Data in Simulink Models”. For information
about enumerated data types in Stateflow charts, see “Define Enumerated
Data in a Chart”.

Default Code for an Enumerated Data Type

By default, enumerated data types in generated code are defined in the
generated header file model types.h for the model. For example, the default
code for BasicColors, which is defined in the previous section, appears as
follows:



Enumerations

#ifndef _DEFINED_TYPEDEF_FOR_BasicColors_
#define _DEFINED_TYPEDEF_FOR_BasicColors_

typedef enum {
Red = 0, /* Default value */
Yellow = 1,
Blue = 2,

} BasicColors;

#endif

Type Casting for Enumerations

How Safe Casting Works

A Simulink Data Type Conversion block can accept a signal of integer type
and convert the input to one of the underlying values of an enumerated type.

If the input value does not match any of the underlying values of the
enumerated type’s values, Simulink can insert a safe cast to replace the input
value with the enumerated type’s default value.

Enable and Disable Safe Casting

You can enable or disable safe casting for enumerations during code
generation for a Simulink Data Type Conversion block or a Stateflow block.

To control safe casting, enable or disable the block’s Saturate on integer
overflow parameter. The parameter works as follows:

¢ Enabled: Simulink replaces a non-matching input value with the default
value of the enumerated values during simulation and generates a safe
cast function during code generation.

¢ Disabled: For a non-matching input value, Simulink generates an error
during simulation and omits the safe cast function during code generation.
While the code 1s more efficient in this case, it may be more vulnerable to
runtime errors.
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Safe Cast Function in Generated Code
This example shows how the safe cast function int32_T

ET08 safe _cast_to BasicColors for the enumeration BasicColors appears
in generated code.

static int32_T ET08_ safe_cast_to_BasicColors(int32_T input)
{

int32_T output;

/* Initialize output value to default value for BasicColors (Red) */
output = 0;

if ((input >= 0) && (input <= 2)) {

/* Set output value to input value if it is a member of BasicColors */

output = input;

}

return output;

}

Through this function, the enumerated type’s default value is used if the
input value does not match one of underlying values of the enumerated type’s
values.

If the block’s Saturate on integer overflow parameter is disabled, this
function does not appear in generated code.

Override Default Methods (Optional)

Every enumerated class has four associated static methods, which it inherits
from Simulink.IntEnumType. You can optionally override these static
methods to customize the behavior of an enumerated type. The methods are:

e getDefaultValue — Returns the default value of the enumerated data
type.

® getDescription — Returns a description of the enumerated data type.

® getHeaderFile — Specifies a file where the type is defined for generated
code.

® addClassNameToEnumNames — Specifies whether the class name becomes
a prefix in code.



Enumerations

The first of these methods, getDefaultValue, is relevant to both simulation
and code generation, and is described in “Specifying a Default Enumerated
Value” in the Simulink documentation. The other three methods are relevant
only to code generation, and are described in this section. To override the
methods, include a customized version of the method in the enumerated
class definition’s methods section. If you do not want to override the default
methods, omit the methods section entirely. The following table summarizes
the four methods and the data to supply for each one:

Method Purpose Default Return Custom Return
getDefaultValue Returns the default | The lexically An enumerated
value for the class, first value in the value in the class.
which must be an enumeration. See “Instantiate
instance of the class. Enumerations”.
getDescription Returns a string t A string that
containing a MATLAB accepts.
description of the
enumerated class.
getHeaderFile Returns a string Y The name of the file
containing the name that contains the
of the header file enumerated type
definition.
addClassNameToEnumNames | Returns a boolean false true or false
value indicating
whether to prefix
the class name in
generated code

Specifying a Description

To specify a description for an enumerated data type, include the following

method in the enumerated class’s methods section:

function retvVal = getDescription()
% GETDESCRIPTION Optional string to describe the data type.

retval

end

= 'description';
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Substitute a legal MATLAB string for description. The generated code that
defines the enumerated type will include the specified description.

Specify a Header File

To prevent the declaration of an enumerated type from being embedded in the
generated code, allowing you to provide the declaration in an external file,
include the following method in the enumerated class’s methods section:

function retVal = getHeaderFile()

% GETHEADERFILE File where type is defined for generated code.
% If specified, this file is #included in the code.

% Otherwise, the type is written out in the generated code.
retvVal = 'filename';

end

Substitute a legal filename for filename. Be sure to provide a filename
suffix, typically .h. Providing the method replaces the declaration that would
otherwise have appeared in model_types.h with a #include statement like:

#include "imported_enum_type.h"

The getHeaderFile method does not create the declaration file itself. You
must provide a file of the specified name that declares the enumerated data

type.

Add Prefixes To Class Names

By default, enumerated values in generated code have the same names that
they have in the enumerated class definition. Alternatively, the code can
prefix every enumerated value in an enumerated class with the name of

the class. This technique can be useful for preventing identifier conflicts or
improving the clarity of the code. To specify class name prefixing, include the
following method in an enumerated class’s methods section:

function retvVal = addClassNameToEnumNames()

% ADDCLASSNAMETOENUMNAMES Control whether class name is added as
% a prefix to enumerated names in the generated code.

% By default the code does not use the class name as a prefix.
retvVal = boolean;

end



Enumerations

Replace boolean with true to enable class name prefixing, or false to
suppress prefixing without having to delete the method itself. If boolean
1s true, each enumerated value in the class appears in generated code as
EnumTypeName _EnumName. For BasicColors, which was defined in “About
Enumerated Data Types” on page 7-2, the data type definition with class
name prefixing looks like this:

#ifndef _DEFINED_TYPEDEF_FOR_BasicColors_
#define _DEFINED_TYPEDEF_FOR_BasicColors_

typedef enum {
BasicColors_Red = 0,
BasicColors_Yellow = 1,
BasicColors_Blue = 2,

} BasicColors;

/* Default value */

#endif

In this example, the enumerated class name BasicColors appears as a prefix
for each of the enumerated names. The definition is otherwise the same as
it would be without name prefixing.

Enumerated Type Limitations

® Generated code does not support logging enumerated data.
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Structure Parameters and Generated Code

In this section...

“About Structure Parameters and Generated Code” on page 7-49

“Include Structure Parameters in Generated Code” on page 7-50

“Control Naming of Structure Parameter Types” on page 7-50

About Structure Parameters and Generated Code

Structure parameters provide a way to improve generated code to use
structures rather multiple separate variables. You also have the option of
configuring the appearance of a structure parameter in generated code.

For more information about structure parameters, see“Structure Parameters”
in the Simulink documentation. For an example of how to convert a model
that uses unstructured workspace variables to a model that uses structure
parameters, see sldemo_applyVarStruct.

Configure Structure Parameters for Generated Code

By default, structure parameters do not appear in generated code. Structure
parameters include numeric variables and the code generator inlines numeric
values.

To make structure type definition appear in generated code for a structure
parameter,

1 Create a Simulink.Parameter object.
2 Define the object value to be the parameter structure.

3 Define the object storage class to be a value other than Auto.

The code generator places a structure type definition or the tunable parameter
structure in model_ types.h. By default, the code generator identifies

the type with a nondescriptive, automatically generated name, such as
struct_z98c0D2qc4btL.
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For information on how to control the naming of the type, see “Control
Naming of Structure Parameter Types” on page 7-50. For an example, see
sldemo_applyVarStruct

Control Name of Structure Parameter Type

To control the naming of a structure parameter type, use a Simulink.Bus
object to specify the data type of the Simulink.Parameter object.

1 Use Simulink.Bus.createObject to create a bus object with the same shape
as the parameter structure. For example:

busInfo=Simulink.Bus.createObject(ControlParam.Value);

2 Assign the bus object name to the data type property of the parameter
object.

ParamType=eval(busInfo.busName);
ControlParam.DataType='Bus: ParamType';

Only Simulink.Parameter can accept the bus object name as a data type.

For an example, see sldemo_applyVarStruct
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Parameters

In this section...

“About Parameters” on page 7-10

“Nontunable Parameter Storage” on page 7-11

“Tunable Parameter Storage” on page 15-114

“Tunable Parameter Storage Classes” on page 15-116

“Declare Tunable Parameters” on page 15-119

“Tunable Expressions” on page 15-123

“Linear Block Parameter Tunability” on page 15-127
“Configuration Parameter Quick Reference Diagram” on page 7-27
“Generated Code for Parameter Data Types” on page 7-28
“Tunable Workspace Parameter Data Type Considerations” on page 15-128
“Tune Parameters” on page 7-36

“Parameter Objects” on page 7-38

“Structure Parameters and Generated Code” on page 7-49

About Parameters

This section discusses how the Simulink Coder product generates parameter
storage declarations, and how you can generate the storage declarations
you need to interface block parameters to your code. For information about
defining block parameters in Simulink models, see “Set Block Parameters”.

If you are using S-functions in your model and intend to tune their run-time
parameters in the generated code, see “T'uning Run-Time Parameters” in the
Simulink documentation. Note that

® Parameters must be numeric, logical, or character arrays.

® Parameters may not be sparse.

® Parameter arrays must not be greater than 2 dimensions.
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For guidance on implementing a parameter tuning interface using a C API,
see “Data Interchange Using the C API” on page 15-132.

Simulink external mode offers a way to monitor signals and modify parameter
values while generated model code executes. However, external mode might
not be the optimal solution for your application. For example, the S-function
target does not support external mode. For other targets, you might want
your existing code to access parameters and signals of a model directly, rather
than using the external mode communications mechanism. For information
on external mode, see “Host/Target Communication” on page 15-49.

Nontunable Parameter Storage

By default, block parameters are not tunable in the generated code. When
Inline Parameters is off (the default), the Simulink Coder product has
control of parameter storage declarations and the symbolic naming of
parameters in the generated code.

Nontunable parameters are stored as fields within model P (formerly rtP), a
model-specific global parameter data structure. The Simulink Coder product
initializes each field of model P to the value of the corresponding block
parameter at code generation time.

When the Inline parameters option is on, block parameters are evaluated at
code generation time, and their values appear as constants in the generated
code, if possible (in certain circumstances, parameters cannot be inlined, and
are then included in a constant parameter or model parameter structure.)

As an example of nontunable parameter storage, consider the following model.

N\ »icn

Sine Wave Zain

Out1

The workspace variable Kp sets the gain of the Gain block.
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Function Block Parameters: Gain @

Gain

Element-wise gain (y = K.*u) or matrix gain (y = K*u or y = u®K).

Main | Signal Attributes | Parameterhttributes|
Gain:

kp

Multiplication: ’EIement—wise[K.*u) -

Sample time (-1 for inherited):
-1

J [ ok || cancel || Help || apply

Assume that Kp is nontunable and has a value of 5.0. The next table shows
the variable declarations and the code generated for Kp in the noninlined
and inlined cases.

The generated code does not preserve the symbolic name Kp. The noninlined
code represents the gain of the Gain block as model P.Gain_Gain. When Kp is
noninlined, the parameter is tunable.

Inline Generated Variable Declaration and Code
Parameters

Off

struct Parameters_non_tunable_sin { real T SineWave_Amp;
real T SineWave_Bias;
real T SineWave_Freq;
real T SineWave_Phase;
real T Gain_Gain;
s

Parameters_non_tunable_sin non_tunable_sin P = {
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Inline Generated Variable Declaration and Code
Parameters
1.0 , /* SineWave_Amp : '<Root>/Sine Wave' */
0.0 , /* SineWave_Bias : '<Root>/Sine Wave' */
1.0 , /* SineWave_Freq : '<Root>/Sine Wave' */
0.0 , /* SineWave_Phase : '<Root>/Sine Wave' */
5.0 /* Gain_Gain : '<Root>/Gain' */
}s
non_tunable_sin_Y.Out1 = rtb_u *
non_tunable_sin_P.Gain_Gain;
On

non_tunable_sin_Y.Out1 = rtb_u * 5.0;

Tunable Parameter Storage

A tunable parameter is a block parameter whose value can be changed at
run-time. A tunable parameter is inherently noninlined. Consequently, when
Inlined parameters is off, parameters are members of model P, and thus
are tunable. A tunable expression is an expression that contains one or more
tunable parameters.

When you declare a parameter tunable, you control whether or not the
parameter is stored within model P. You also control the symbolic name of
the parameter in the generated code.

When you declare a parameter tunable, you specify

¢ The storage class of the parameter.

The storage class property of a parameter specifies how the Simulink Coder
product declares the parameter in generated code.

The term “storage class,” as used in the Simulink Coder product, is not
synonymous with the term storage class specifier, as used in the C language.
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® A storage type qualifier, such as const or volatile. This is simply a string
that is included in the variable declaration.

¢ (Implicitly) the symbolic name of the variable or field in which the
parameter is stored. The Simulink Coder product derives variable and field
names from the names of tunable parameters.

The Simulink Coder product generates a variable or struct storage
declaration for each tunable parameter. Your choice of storage class controls
whether the parameter is declared as a member of model P or as a separate
global variable.

You can use the generated storage declaration to make the variable visible
to external legacy code. You can also make variables declared in your code
visible to the generated code. You are responsible for linking your code to
generated code modules.

You can use tunable parameters or expressions in your root model and
in masked or unmasked subsystems, subject to certain restrictions. (See
“Tunable Expressions” on page 15-123.)

Override Inlined Parameters for Tuning

When the Inline parameters option is selected, you can use the Model
Parameter Configuration dialog box to remove individual parameters from
inlining and declare them to be tunable. This allows you to improve overall
efficiency by inlining most parameters, while at the same time retaining the
flexibility of run-time tuning for selected parameters. Another way you can
achieve the same result is by using Simulink data objects; see “Parameters”
on page 7-10 for specific details.

The mechanics of declaring tunable parameters are discussed in “Declare
Tunable Parameters” on page 15-119.

Tunable Parameter Storage Classes

The Simulink Coder product defines four storage classes for tunable
parameters. You must declare a tunable parameter to have one of the
following storage classes:
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® SimulinkGlobal (Auto): This is the default storage class. The Simulink
Coder product stores the parameter as a member of model P. Each member
of model P is initialized to the value of the corresponding workspace
variable at code generation time.

® ExportedGlobal: The generated code instantiates and initializes the
parameter and model .h exports it as a global variable. An exported global
variable is independent of the model P data structure. Each exported
global variable is initialized to the value of the corresponding workspace
variable at code generation time.

® ImportedExtern: model private.h declares the parameter as an extern
variable. Your code must supply the variable definition and initializer.

® ImportedExternPointer: model private.h declares the variable as an
extern pointer. Your code must supply the pointer variable definition
and initializer.

The generated code for model.h includes model private.h to make the
extern declarations available to subsystem files.

As an example of how the storage class declaration affects the code generated
for a parameter, consider the next figure.

Function Block Parameters: Gainl @
Gain

Element-wise gain (y = K.*u) or matrix gain (y = K¥u or y = u™K).

Main Signal Attributes | Parameter Attributes |

Gain:

Kp

Multiplication: ’EIement—wise[K.*u) -

Sample time (-1 for inherited):
-1

J ok || cancel || Help Apply
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The workspace variable Kp sets the gain of the Gain block. Assume that
the value of Kp is 3.14. The following table shows the variable declarations
and the code generated for the gain block when Kp is declared as a tunable
parameter. An example is shown for each storage class.

Note The Simulink Coder product uses column-major ordering for
two-dimensional signal and parameter data. When interfacing your
hand-written code to such signals or parameters by using ExportedGlobal,
ImportedExtern, or ImportedExternPointer declarations, make sure that
your code observes this ordering convention.

The symbolic name Kp is preserved in the variable and field names in the
generated code.

Storage Class Generated Variable Declaration and Code
SimulinkGlobal
(Auto) typedef struct _Parameters_tunable_sin

Parameters_tunable_sin;

struct _Parameters_tunable_sin {
real T Kp;

b

Parameters_tunable_sin tunable_sin P = {
3.14

b

tunable_sin_Y.Out1
tunable_sin_P.Kp;

rtb_u *

ExportedGlobal
real T Kp = 3.14;

tunable_sin_Y.Out1 rtb_u * Kp;
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Storage Class

Generated Variable Declaration and Code

ImportedExtern
extern real T Kp;
tunable_sin_Y.Out1 = rtb_u * Kp;
ImportedExtern
Pointer extern real T *Kp;

tunable_sin_Y.Out1 rtb_u * (*Kp);

Declare Tunable Parameters

® “Declare Workspace Variables as Tunable Parameters” on page 15-119

¢ “Declare New Tunable Parameters” on page 15-119

¢ “Declare Tunable Parameters Using Configuration Dialog” on page 15-120

o “Select Workspace Variables” on page 15-121

¢ “Create New Tunable Parameters” on page 15-122

e “Set Tunable Parameter Properties” on page 15-122

¢ “Remove Unused Tunable Parameters” on page 15-123

Declare Workspace Variables as Tunable Parameters
To declare tunable parameters,

1 Open the Model Parameter Configuration dialog box.

2 In the Source list pane, select one or more variables.

3 Click Add to table . The variables then appear as tunable parameters in
the Global (tunable) parameters pane.

4 Select a parameter in the Global (tunable) parameters pane.
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5 Select a storage class from the Storage class menu.

6 Optionally, select (or enter) a storage type qualifier, such as const or
volatile for the parameter.

7 Click Apply, or click OK to apply changes and close the dialog box.

Declare New Tunable Parameters
To declare tunable parameters,

1 Open the Model Parameter Configuration dialog box.

2 In the Global (tunable) parameters pane, click New.
3 Specify a name for the parameter.

4 Select a storage class from the Storage class menu.

5 Optionally, select (or enter) a storage type qualifier, such as const or
volatile for the parameter.

6 Click Apply, or click OK to apply changes and close the dialog box.

Declare Tunable Parameters Using Configuration Parameters

The Model Configuration Parameters dialog box lets you select base
workspace variables and declare them to be tunable parameters in the current
model. Using controls in the dialog box, you move variables from a source list
to a global (tunable) parameter list for a model.

To open the dialog box,

1 Select the Inline parameters check box on the Optimization > Signals
and Parameters pane of the Configuration Parameters dialog box. This
activates a Configure button, as shown below.

Simulation and code generation

| Inline parameters |Configure ... /| Signal storage reuse

2 Click Configure to open the Model Configuration Parameters dialog box.
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ﬂ Model Parameter Configuration: twdemo_paramdt EI@
Description
Define the global (tunable) parameters for your model. These parameters affect:
1. the simulation by providing the ability to tune parameters during execution, and
2. the ted sode by enabling access to p ters by other modules.
Source list Global {tunahle) parameters
MATLAB workspace hd Mame Storage class Starage type qualifier
1 aGlobal ExportedGlohal v w
Mame
7 anExtern |IMportedExtem w w
1 aGiohal -
3 anExternP ImpontedExdemPoint.. < w
2 anExtern —
4 kP SimulinkGlohal (Auta) |« w
3 anExternP
4 kP
Refresh list New
Ready Ok ] [ Cancel ] [ Help ]

Note The Model Configuration Parameters dialog box cannot tune
parameters within referenced models. See “Parameterize Model References”
for tuning techniques that work with referenced models.

Select Workspace Variables

The Source list pane displays a menu and a scrolling table of numerical
workspace variables. To select workspace variables,

1 From the menu, select the source of variables you want listed.

To List... Choose...

Variables in the MATLAB MATLAB workspace
workspace that have numeric

values

Only variables in the MATLAB Referenced workspace
workspace that have numeric variables

values and are referenced by the

model
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A list of workspace variables appear in the Source List pane.

2 Select one or more variables from the source list. This enables the Add
to table button.

3 Click Add to table to add the selected variables to the tunable parameters
list in the Global (tunable) parameters pane. In the Source list, the
names of variables added to the tunable parameters list are displayed in
bold type (see the preceding figure).

Note If you selected a variable with a name that matches a block
parameter that is not tunable and you click Add to table , a warning
appears during simulation and code generation.

To update the list of variables to reflect the current state of the workspace,
click Refresh list . For example, you might use Refresh list if you define or
remove variables in the workspace while the Model Parameter Configuration
dialog box is open.

Create New Tunable Parameters
To create a new tunable parameter,

1 In the Global (tunable) parameters pane, click New.
2 In the Name field, enter a name for the parameter.

If you enter a name that matches the name of a workspace variable in
the Source list pane, that variable is declared tunable and appears in
italics in the Source list.

3 Click Apply.

The model does not need to be using a parameter before you create it. You can
add references to the parameter later.
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Note If you edit the name of an existing variable in the list, you actually
create a new tunable variable with the new name. The previous variable is
removed from the list and loses its tunability (that is, it is inlined).

Set Tunable Parameter Properties

To set the properties of tunable parameters listed in the Global (tunable)
parameters pane, select a parameter and then specify a storage class and,
optionally, a storage type qualifier.

Property

Description

Storage class

Select one of the following to be used for code
generation:

SimulinkGlobal (Auto)
® ExportedGlobal
® ImportedExtern
® ImportedExternPointer

See “Tunable Parameter Storage Classes” on
page 15-116 for definitions.

Storage type qualifier

For variables with a storage class other
than SimulinkGlobal (Auto), you can add
a qualifier (such as const or volatile) to
the generated storage declaration. To do so,
you can select a predefined qualifier from
the list or add qualifiers not in the list. The
code generator does not check the storage
type qualifier for validity, and includes the
qualifier string in the generated code without
checking syntax .
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Remove Unused Tunable Parameters

To remove unused tunable parameters from the table in the Global (tunable)
parameters pane, click Remove. Removed variables are inlined if the
Inlined parameters option is enabled.

Tunable Expressions

® “Tunable Expressions in Masked Subsystems” on page 15-123

® “Tunable Expression Limitations” on page 15-125

The Simulink Coder product supports the use of tunable variables in
expressions. An expression that contains one or more tunable parameters is
called a tunable expression.

Tunable Expressions in Masked Subsystems

Tunable expressions are allowed in masked subsystems. You can use tunable
parameter names or tunable expressions in a masked subsystem dialog box.
When referenced in lower-level subsystems, such parameters remain tunable.

As an example, consider the masked subsystem in the next figure. The
masked variable k sets the gain parameter of theGain.

In1 [ %j

theGain

Suppose that the base workspace variable b is declared tunable with
SimulinkGlobal (Auto) storage class. The next figure shows the tunable
expression b*3 in the subsystem’s mask dialog box.
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Function Block Parameters: theGain @
Gain (mask) -
FParameters |
‘ £
b*3

[ 0K ] | Cancel | | Help | | Apply |

Tunable Expression in Subsystem Mask Dialog Box

The Simulink Coder product produces the following output computation for
theGain. The variable b is represented as a member of the global parameters
structure, model P. (For clarity in showing the individual Gain block
computation, expression folding is off in this example.)

/* Gain: '<S1>/theGain' */
rtb_theGain_C = rtb_SineWave_n * ((subsys_mask_P.b * 3.0));

/* Outport: '<Root>/Outl' */
subsys_mask_Y.Out1 = rtb_theGain_C;

As this example shows, for GRT targets, the parameter structure is mangled
to create the structure identifier model P (subject to the identifier length
constraint). This is done to avoid namespace clashes in combining code from
multiple models using model reference. ERT-based targets provide ways to
customize identifier names.

When expression folding is on, the above code condenses to

/* Outport: '<Root>/Outi1' incorporates:
* Gain: '<S1>/theGain'
*/
subsys_mask_Y.Out1 = rtb_SineWave_n * ((subsys_mask_P.b * 3.0));

Expressions that include variables that were declared or modified in mask
initialization code are not tunable.

As an example, consider the subsystem above, modified as follows:
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¢ The mask initialization code is
t =3 * kj

¢ The parameter k of the myGain block is 4 + t.

® Workspace variable b = 2. The expression b * 3 is plugged into the mask
dialog box as in the preceding figure.

Since the mask initialization code can run only once, k is evaluated at code
generation time as

4+ (3 * (2*3))

The Simulink Coder product inlines the result. Therefore, despite the fact
that b was declared tunable, the code generator produces the following output
computation for theGain. (For clarity in showing the individual Gain block
computation, expression folding is off in this example.)

/* Gain Block: <S1>/theGain */
rtb_temp0 *= (22.0);

Tunable Expression Limitations

Currently, there are certain limitations on the use of tunable variables in
expressions. When an unsupported expression is encountered during code
generation a warning is issued and the equivalent numeric value is generated
in the code. The limitations on tunable expressions are

¢ (Complex expressions are not supported, except where the expression is
simply the name of a complex variable.

® The use of certain operators or functions in expressions containing tunable
operands is restricted. Restrictions are applied to four categories of
operators or functions, classified in the following table:

Category | Operators or Functions

1 + - F ] <> <= >= == ~-= & |

2 *
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Category | Operators or Functions

3 abs, acos, asin, atan, atan2, boolean, ceil, cos, cosh,
exp, floor, log, 1og10, sign, sin, sinh, sqrt, tan, tanh,
4 single, int8, int16, int32, uint8, uint16, uint32

B I T S o

The rules applying to each category are as follows:

= Category 1 is unrestricted. These operators can be used in tunable
expressions with a combination of scalar or vector operands.

= Category 2 operators can be used in tunable expressions where at least
one operand is a scalar. That is, scalar/scalar and scalar/matrix operand
combinations are supported, but not matrix/matrix.

= Category 3 lists functions that support tunable arguments. Tunable
arguments passed to these functions retain their tunability. Tunable
arguments passed to other functions lose their tunability.

= Category 4 lists the casting functions that do not support tunable
arguments. Tunable arguments passed to these functions lose their
tunability.

Note The Simulink Coder product casts values using MATLAB
typecasting rules. The MATLAB typecasting rules are different from C
code typecasting rules. For example, using the MATLAB typecasting
rules, int8(3.7) returns the result 4, while in C code int8(3.7) returns
the result 3.

= Category 5 operators are not supported.

® Expressions that include variables that were declared or modified in mask
initialization code are not tunable.

¢ The Fen block does not support tunable expressions in code generation.

¢ Model workspace parameters can take on only the Auto storage class, and
thus are not tunable. See “Parameterize Model References” for tuning
techniques that work with referenced models.
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* Non-double expressions are not supported.

® Blocks that access parameters only by address support the use of tunable
parameters, if the parameter expression is a simple variable reference.
When an operation such as a data type conversion or a math operation
1s applied, the Simulink Coder product creates a nontrivial expression
that cannot be accessed by address, resulting in an error during the build
process.

Linear Block Parameter Tunability
The following blocks have a Realization parameter that affects the

tunability of their parameters:
e Transfer Fcn

® State-Space

® Discrete State-Space

The Realization parameter must be set by using the MATLAB set_param
function, as in the following example.

set_param(gcb, 'Realization', 'auto')

The following values are defined for the Realization parameter:

e general: The block’s parameters are preserved in the generated code,
permitting parameters to be tuned.

e sparse: The block’s parameters are represented in the code by transformed
values that increase the computational efficiency. Because of the
transformation, the block’s parameters are not tunable.

e auto: This setting is the default. A general realization is used if one or
more of the block’s parameters are tunable. Otherwise sparse is used.

Note To tune the parameter values of a block of one of the above types
without restriction during an external mode simulation, you must set
Realization to general.
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Code Reuse for Subsystems with Mask Parameters

The Simulink Coder product can generate reusable (reentrant) code for

a model containing identical atomic subsystems. Selecting the Reusable
function option for Function packaging enables such code reuse, and
causes a single function with arguments to be generated that is called when
an identical atomic subsystem executes. See “Subsystems” for details and
restrictions on the use of this option.

Mask parameters become arguments to reusable functions. However, for

reuse to occur, each instance of a reusable subsystem must declare the same
set of mask parameters. If, for example subsystem A has mask parameters b
and K, and subsystem B has mask parameters ¢ and K, then code reuse is not

possible, and the Simulink Coder product will generate separate functions
for A and B.

Configuration Parameter Quick Reference Diagram

The next figure shows the code generation and storage class options that
control the representation of parameters in generated code.
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Kp =5.0;

T ey

SIMULINK CODER CONTROLS SYMBOL USED IN CODE

e

.

Include parameters as fields
[OFF] y = U* (PtP.<?27>); in a global structure
(field names based on block names)

J

SIMULINK CODER CONTROLS SYMBOL USED IN CODE

_/ y=u* (5.0); Use numeric value of )
[Auto] < o parameter (if possible)
(implicit) \ const *p <???> = &rtP.<2??>[0];
for (i=0; i<N; i++){ Otherwise, include in a
Inline y[i] = u * (p_<???>[1i]); constant global structure
Parameters }
\ N J
INCLUDED IN LIST OF GLOBAL (TUNABLE) PARAMETERS
oNn 3/ _ . Includeina ] N\
[SimulinkGlobal(Auto)] l§ v = u* (rtP.Kp); O RSN S
ExportedGlobal y = u* (Kp);
Symbol preserved
ImportedExtern E y =u* (Kp); Unstructured (must be unique)

storage

ImportedExternPointer y = u* (*Kp);

.

J

KEY:
[option] : default for code generation option
<??7?>: Generated symbol for parameter storage field

Generated Code for Parameter Data Types

For an example of the code generated from Simulink parameters with
different data types, run the model rtwdemo_paramdt. This model shows
options that are available for controlling the data type of tunable parameters
in the generated code. The model’s subsystem includes several instances of
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Gain blocks feeding Saturation blocks. Each pair of blocks uses a workspace
variable of a particular data type, as shown in the next figure.
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Inlined parameters (InLineParameters ON + Auto storage class)
==> numeric value inlined

single Kinline single R single :

Upper: Kinline
Lower: O

Double-precision (context-sensitive) parameters
==> tunable parameter inherits data type from run-time parameter

single single single

Kcs

N
>

v
a

Upper: Kcs
Lower: O

Tunable parameters with explicit data type specification
==> parameter is cast to run-time parameter data type in generated code

- single Ksingle single R single

Upper: Ksingle

v
a

Lower: 0
- single Kints single R single R
Upper: Kint8
Lower: 0

- single Kfixpt single R single

Upper: Kfixpt

v
a

Lower: 0
@ single Kalias single R single R @
Upper: Kalias
Lower: 0

single single single
Kuser 9 > g

Upper: Kuser
Lower: O

v
a
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The Simulink engine initializes the parameters in the model by executing
the script rtwdemo_paramdt_data.m. You can view the initialization script
and inspect the workspace variables in Model Explorer by double-clicking
the yellow boxes in the model.

In the model, note that the Inline parameters option on the
Optimization > Signals and Parameters pane of the Configuration
Parameters dialog box is selected. The Model Parameter Configuration
dialog box reveals that base workspace variables (with the exception of
Kinline) have their Storage class property set to ExportedGlobal.
Consequently, Kinline is a nontunable parameter while the remaining
variables are tunable parameters.

To generate code for the model, double-click the blue boxes. The following
table shows both the MATLAB code used to initialize parameters and the code
generated for each parameter in the rtwdemo_paramdt model.

Parameter & MATLAB Code Generated Variable Declaration and Code

Kinline
rtb_Gain1 = rtwdemo_paramdt_U.In1 * 2.0F;
Kinline = 2;

rtwdemo_paramdt_Y.Out1 = rt_SATURATE(rtb_Gain1, 0.0F, 2.0F);

Kes

real32_T Kcs = 3.0F;
Kcs = 3;

rtb_Gain1 = rtwdemo_paramdt_U.In2 * Kcs;

rtwdemo_paramdt_Y.Out2 = rt_SATURATE(rtb_Gaini, 0.0F, Kcs);
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Parameter & MATLAB Code Generated Variable Declaration and Code

Ksingle
real32_T Ksingle = 4.0F;
Ksingle = single(4);

rtb_Gain1 = rtwdemo_paramdt_U.In3 * Ksingle;

rtwdemo_paramdt_Y.Out3 = rt_SATURATE(rtb_Gaini, 0.0F, Ksingle);

Kint8
int8_T Kint8 = 5;
Kint8 = int8(5);

rtb_Gain1 = rtwdemo_paramdt_U.In4 * ((real32_T)( Kint8 ));

rtwdemo_paramdt_Y.Out4 = rt_SATURATE(rtb_Gain1, 0.0F,
((real32_T)( Kint8 )));

Kfixpt
int16_T Kfixpt = 192;
Kfixpt = Simulink.Parameter;

Kfixpt.value = 6;

[SFEBEREYED S ooo rtb_Gain1 = rtwdemo_paramdt_U.In5 *

'fixdt(true, 16, 2°-5, 0)'; (((real32_T)ldexp((real_T)Kfixpt, -5)));

Kfixpt.CoderInfo.StorageClass = ...
'ExportedGlobal’;

rtwdemo_paramdt_Y.Out5 = rt_SATURATE(rtb_Gaint, 0.0F,
(((real32_T)ldexp((real_T)Kfixpt, -5))));
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Parameter & MATLAB Code

Generated Variable Declaration and Code

Kalias

aliasType = ...
Simulink.AliasType('single');

Kalias = Simulink.Parameter;

Kalias.Value = 7;

Kalias.DataType = 'aliasType';

Kalias.CoderInfo.StorageClass = ...
'ExportedGlobal’;

typedef real32_ T aliasType;

aliasType Kalias = 7.0F;

rtb_Gain1 = rtwdemo_paramdt_U.In6é * Kalias;

rtwdemo_paramdt_Y.Out6 = rt_SATURATE(rtb_Gaint1, 0.0F, Kalias);

Kuser

userType = Simulink.NumericType;

userType.DataTypeMode = ...
'Fixed-point: slope and bias scaling';

userType.Slope = 2"-3;

userType.isAlias = true;

Kuser = Simulink.Parameter;

Kuser.Value = 8;

Kuser.DataType = 'userType';

Kuser.CoderInfo.StorageClass = ...
'ExportedGlobal’;

typedef int16_T userType;

userType Kuser = 64;

rtb_Gain1 = rtwdemo_paramdt_U.In7 *
(((real32_T)ldexp((real_T)Kuser, -3)));

rtwdemo_paramdt_Y.Out7 = rt_SATURATE(rtb_Gaint, 0.0F,
(((real32_T)ldexp((real_T)Kuser, -3))));

The salient features of the code generated for this model are as follows:

® The Simulink Coder product inlines nontunable parameters, for example,
Kinline. However, the product does not inline tunable parameters, such
as Kcs, Ksingle, and Kint8.

e The Simulink engine treats tunable parameters of data type double in a
context-sensitive manner, such that the parameter inherits its data type
from the context in which the block uses it. For example, Kcs inherits a
single data type from the Gain block’s input signal.
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e If a parameter’s data type matches that of the block’s run-time parameter,
the block can use the tunable parameter without transformation.
Consequently, the Simulink Coder product need not cast the parameter
from one data type to another, as illustrated by Ksingle and Kalias.
However, if a parameter’s data type does not match that of the block’s
run-time parameter, the block cannot readily compute its output. In
this case, the product casts parameters to the relevant data type. For
example, Kint8, Kfixpt, and Kuser require casts to a single data type for
compatibility with the input signals to the Gain and Saturation blocks.

e If you are using an ERT target and a parameter specifies a data type alias,
for example, created by an instance of the Simulink.AliasType class, its
variable definition in the generated code uses the alias data type. For
example, the Simulink Coder product declares Kalias and Kuser to be of
data types aliasType and userType, respectively.

e [f a parameter specifies a fixed-point data type, the Simulink Coder product
Initializes its value in the generated code to the value of Q computed from
the expression V = SQ + B (see the Fixed-Point Designer documentation for
more information about fixed-point semantics and notation), where

= V is a real-world value

= @Q is an integer that encodes V
= S is the slope

= B is the bias

For example, Kfixpt has a real-world value of 6, slope of 25, and bias of 0.
Consequently, the product declares the value of Kfixpt to be 192.

Tunable Workspace Parameter Data Type
Considerations

If you are using tunable workspace parameters, you need to be aware of
potential issues regarding data types. A workspace parameter is tunable
when the following conditions exist:

® You select the Inline parameters option on the Optimization > Signals
and Parameters pane of the Configuration Parameters dialog box

® The parameter has a storage class other than Auto
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When generating code for tunable workspace parameters, the Simulink Coder
product checks and compares the data types used for a particular parameter
in the workspace and in Block Parameter dialog boxes.

If... The Simulink Coder Product...

The data types match Uses that data type for the parameter in the
generated code.

You do not explicitly Uses the data type specified by the block in

specify a data type the generated code. If multiple blocks share a
other than double in parameter, they must specify the same data type.
the workspace If the data type varies between blocks, the product

generates an error similar to the following:

Variable 'K' is used in incompatible ways
in the dialog fields of the following:
cs_params/Gain, cs_params/Gaini. The
variable'value is being used both directly
and after a transformation. Only one of
these usages is permitted for any given
variable.

You explicitly specify Uses the data type from the workspace for the

a data type other parameter. The block typecasts the parameter to
than double in the the block specific data type before using it.
workspace

Guidelines for Specifying Data Types

The following table provides guidelines on specifying data types for tunable
workspace parameters.

If You Want to... Then Specify Data Types in...

Minimize memory usage (int8 The workspace explicitly
instead of single)

Avoid typecasting Blocks only
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If You Want to... Then Specify Data Types in...
Interface to legacy or custom code The workspace explicitly
Use the same parameter for The workspace explicitly

multiple blocks that specify
different data types

The Simulink Coder product enforces limitations on the use of data types
other than double in the workspace, as explained in “Limitations on
Specifying Workspace Data Types Explicitly” on page 15-130.

Limitations on Data Type Specifications in Workspace

When you explicitly specify a data type other than double in the workspace,
blocks typecast the parameter to a corresponding data type. This is an
issue for blocks that use pointer access for their parameters. Blocks cannot
use pointer access if they need to typecast the parameter before using it
(because of a data type mismatch). Another case in which this occurs is for
workspace variables with bias or fractional slope. Two possible solutions

to these problems are

* Remove the explicit data type specification in the workspace for parameters
used in such blocks.

® Modify the block so that it uses the parameter with the same data type
as specified in the workspace. For example, the Lookup Table block uses
the data types of its input signal to determine the data type that it uses
to access the X-breakpoint parameter. You can prevent the block from
typecasting the run-time parameter by converting the input signal to the
data type used for X-breakpoints in the workspace. (Similarly, the output
signal is used to determine the data types used to access the lookup table
Y data.)

Tune Parameters

e “Tune Parameters from the Command Line” on page 15-130

e “Interfaces for Tuning Parameters” on page 15-131
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Tune Parameters from the Command Line

When parameters are MATLAB workspace variables, the Model Parameter
Configuration dialog box is the recommended way to see or set the properties
of tunable parameters. In addition to that dialog box, you can also use
MATLAB get_param and set_param commands.

Note You can also use Simulink.Parameter objects for tunable parameters.
See “Configure Parameter Objects for Code Generation” on page 7-39 for
details.

The following commands return the tunable parameters and corresponding
properties:

® get_param(gcs, 'TunableVars')

® get_param(gcs, 'TunableVarsStorageClass')

® get_param(gcs, 'TunableVarsTypeQualifier')

The following commands declare tunable parameters or set corresponding
properties:
® set_param(gcs, 'TunableVars', str)

The argument str (string) is a comma-separated list of variable names.
® set_param(gcs, 'TunableVarsStorageClass', str)

The argument str (string) is a comma-separated list of storage class
settings.

The valid storage class settings are
= Auto

= ExportedGlobal

= ImportedExtern

= ImportedExternPointer

® set_param(gcs, 'TunableVarsTypeQualifier', str)
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The argument str (string) is a comma-separated list of storage type
qualifiers.

The following example declares the variable k1 to be tunable, with storage
class ExportedGlobal and type qualifier const. The number of variables and
number of specified storage class settings must match. If you specify multiple
variables and storage class settings, separate them with a comma.

set_param(gcs, 'Tunablevars', 'ki1')
set_param(gcs, 'TunableVarsStorageClass','ExportedGlobal')
set_param(gcs, 'TunableVarsTypeQualifier', 'const')

Interfaces for Tuning Parameters
The Simulink Coder product includes

¢ Support for developing a Target Language Compiler API for tuning
parameters independent of external mode. See “Parameter Functions” in
the Target Language Compiler documentation for information.

e A C application program interface (API) for tuning parameters independent
of external mode. See “Data Interchange Using the C API” on page 15-132
for information.

® An interface for exporting ASAP2 files, which you customize to use
parameter objects. For details, see “ASAP2 Data Measurement and
Calibration” on page 15-172.

Parameter Objects

® “About Parameter Objects for Code Generation” on page 7-39

e “Use Parameter Objects for Code Generation” on page 7-39

¢ “Configure Parameter Objects for Code Generation” on page 7-39

e “Storage Classes and Code Generation for Parameter Objects” on page 7-40
® “Generate Code for Parameter Objects from Command Line” on page 7-41
® “Generate Code for Parameter Objects Using Model Explorer” on page 7-42
¢ “Parameter Object Configuration Quick Reference Diagram” on page 7-46

¢ “Resolve Conflicts in Parameter Object Configurations” on page 7-47
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About Parameter Objects for Code Generation

Within the class hierarchy of Simulink data objects, the Simulink product
provides a class that is designed as base class for parameter storage. This
topic explains how to use parameter objects in code generation.

The CoderInfo properties of parameter objects are used by the Simulink
Coder product during code generation. These properties let you assign storage
classes to the objects, thereby controlling how the generated code stores and
represents parameters.

The Simulink Coder build process also writes information about the properties
of parameter objects to the model.rtw file. This information, formatted as
Object records, is accessible to Target Language Compiler programs. For
general information on Object records, see “Data Object Information in
model.rtw’.

Before using Simulink parameter objects with the Simulink Coder product,
read the discussion of Simulink data objects in the Simulink documentation.

Use Parameter Objects for Code Generation

The general procedure for using parameter objects in code generation is as
follows:

1 Define a subclass of Simulink.Parameter.

2 Instantiate parameter objects from your subclass and set their properties
from the command line or by using Model Explorer.

3 Use the objects as parameters within your model.
4 Generate code and build your target executable.

Configure Parameter Objects for Code Generation

In configuring parameter objects for code generation, you use the following
code generation and parameter object properties:

¢ The Inline parameters option (see “Parameters” on page 7-10).

® Parameter object properties:
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= Value. The numeric value of the object, used as an initial (or inlined)
parameter value in generated code.

= DataType. The data type of the object. This can be a Simulink numeric
data type, including a fixed-point, user-defined, or alias data type.

= CoderInfo.StorageClass. Controls the generated storage declaration
and code for the parameter object.

Other parameter object properties (such as user-defined properties of
classes derived from Simulink.Parameter) do not affect code generation.

Note If Inline parameters is off (the default), the
CoderInfo.StorageClass parameter object property is ignored
in code generation.

Storage Classes and Code Generation for Parameter Objects
The Simulink Coder product generates code and storage declarations based

on the CoderInfo.StorageClass property of the parameter object. The logic
is as follows:

o [f the storage class is 'Auto’' (the default), the parameter object is inlined
(if possible), using the Value property.

* For storage classes other than 'Auto', the parameter object is handled as a
tunable parameter.

= A global storage declaration is generated. You can use the generated
storage declaration to make the variable visible to your hand-written
code. You can also make variables declared in your hand-written code
visible to the generated code.

= The symbolic name of the parameter object is generally preserved in

the generated code.

See the table in “Generate Code for Parameter Objects Using Model
Explorer” on page 7-42 for examples of code generated for possible settings of
CoderInfo.StorageClass.
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Generate Code for Parameter Objects from Command Line

In this section, the Gain block computations of the model shown in the next
figure are used as an example of how the Simulink Coder build process
generates code for a parameter object.

Function Block Parameters: Gain @
Gain

Element-wise gain (y = K.*u) or matrix gain (y = K¥u or y = u™K).

Main | Signal Attributes | Parameterhttributes|

Gain:
kpl

Multiplication: IEIement—wise[K.*u) -

Sample time (-1 for inherited):
-1

J [ OK H Cancel H Help J Apply

Model Using Parameter Object Kp As Block Parameter

In this model, Kp sets the gain of the Gain block.

To configure a parameter object such as Kp for code generation:
1 Instantiate a Simulink.Parameter object called Kp. In this

example, the parameter object is an instance of the example class
SimulinkDemos.Parameter, which is provided with the Simulink product.

Kp = Simulink.Parameter

Kp =
Simulink.Parameter
Value: 5
CoderInfo: [1x1 Simulink.ParamCoderInfo]
Description: ''

DataType: 'auto'’
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Min: []

Max: []

DocUnits: "'
Complexity: 'real’
Dimensions: '[1x1]'

Make sure that the name of the parameter object matches the desired block
parameter in your model. This enables the Simulink engine to associate
the parameter name with the corresponding object. In the preceding model,
the Gain block parameter Kp resolves to the parameter object Kp.

2 Set the object properties you need. You can do this by using the Model
Explorer, or you can assign properties by using MATLAB commands, as
follows:

® To specify the Value property, type

Kp.Value = 5.0;

® To specify the storage class of for the parameter, set the
CoderInfo.StorageClass property, for example:

Kp.CoderInfo.StorageClass = 'ExportedGlobal';

The CoderInfo parameters are now

Kp.CoderInfo
Simulink.ParamCoderInfo
StorageClass: 'ExportedGlobal'
Alias: "'
CustomStorageClass: 'Default'’
CustomAttributes: [1x1
SimulinkCSC.AttribClass_Simulink_Default]

Generate Code for Parameter Objects Using Model Explorer

If you prefer, you can create and modify attributes of parameter objects using
the Model Explorer. This lets you see the attributes of a parameter in a
dialog box, and alleviates the need to remember and type field names. Do the
following to instantiate Kp and set its attributes from Model Explorer:
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1 Choose Model Explorer from the View menu.
Model Explorer opens or activates if it already was open.
2 Select Base Workspace in the Model Hierarchy pane.

3 Select Simulink Parameter from the Add menu.

A new parameter named Param appears in the Contents pane.

Model Explorer
File Edit WView Tools Add

O 4B
Search: by Name

Model Hierarchy

K HENDS

* MName:

Igl E Contents of: ..rkspace (only)  Filter Contents

Help
@ &8
G4, Search

Simulink.Parameter: Param

[F=5 Eol 5

Complexity: | re

Maximurm: [1

m

4 Simulink Root — .
b} Column View: |Data Obje v | Show Detalls  1object(s) “f~ Value: I
E Base Workspace
o " i -
“%s Configuration Preferences MName Value Datalype Min Max D Data type: auto
4 ex_nonTunablesin [m] e 1 B 1 1
a1s, i s
E Model Workspace Dimensions: | [0 0]
E Code for ex_nonTunabl M §
\) Advice for ex_nonTunab
|Z%| simulink Design Verifie Units:
& Configuration [Active
= g ¢ ! Code generation options
Storage dass: | SimulinkGlobal
Alias:
Alignment: -1
Description:
4| i
4 [l 3
Revert
4 LI} 3 Contents Search Results

Apply

4

To set Kp.Name in the Model Explorer:
a Click the word Param in the Name column to select it.
b Rename it by typing Kp in place of Param.

¢ Press Enter or Return.

7-43



7 Data Representation

5

To set Kp.Value in Model Explorer:

a Select the Value field at the top of the Dialog pane.
b Type 5.0.

¢ Click the Apply button.

6 To set the Kp.CoderInfo.StorageClass in Model Explorer:

a Click the Storage class menu and select ExportedG
the next figure.

lobal, as shown in

Model Explorer

File Edit View Tools Add Help
BMO 4 &R BENES
Search: by Name - Name:

Model Hierarchy

2 [=]

4 P simulink Root
E Base Warkspace
E',u\, Configuration Preferences

’ ex_nonTunableSin

=N el =

- >
real

Complexity:

Mandimum:

11

n

@ =z
O =z
&Y, Search
E Contents of: ... Workspace (only)  Filter Contents Simulink.Parameter: Kp
Column View: |Data Objects ~ | Show Details 1 object(s f(' Value: 3
Mame Value DataType Min Max Dimen Data type:  auto
[ ke 3 auto o Dimensions: | [1 1]
Minimum: [1
Units:
Code generation options
Storage dass: |SimulinkGlobal
Alias:
Alignment: ImportedExtern )
ImportedExternPointer
Default (Custom)
BitField {Custom)
Description: Const (Custom)
volatile (Custom)
Constvolatile (Custom)
Define (Custom)
ImportedDefine {Custom)
< | ExportToFile {Custom)
. m v ImportFromFile (Custom)
FileScope (Custom)
Contents | Search Resdlts Struct (Custom)
GetSet (Custom)
CnmewIErFIaE Custom)

Auto
SimulinkGlobal
ExportedGlobal

b Click Apply.

The following table shows the variable declarations for Kp and the code
generated for the Gain block in the model shown in the preceding model,
with the Inline parameters and Eliminate superfluous local variables
(Expression folding) check boxes selected (which includes the gain
computation in the output computation). An example is shown for each
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possible setting of CoderInfo.StorageClass. Global structures include the
model name (symbolized as model or _model).

StorageClass Generated Variable Declaration
Property and Code
Auto
model Y.Out1 = rtb_u * 5.0;
SimulinkGlobal
struct _Parameters_model {
real T Kp;
}
Parameters_model model P = {
5.0
b
model_Y.Out1 = rtb_u * model P.Kp;
ExportedGlobal

extern real_T Kp;
real T Kp = 5.0;

model Y.Out1 = rtb_u * Kp;
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StorageClass Generated Variable Declaration
Property and Code
ImportedExtern

extern real_T Kp;

model_Y.Out1 = rtb_u * Kp;
ImportedExtern-
Pointer extern real T *Kp;

model Y.Out1 = rtb_u * (*Kp);

Parameter Object Configuration Quick Reference Diagram

The next figure shows the code generation and storage class options that
control the representation of parameter objects in generated code.
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Kp = Simulink.Parameter; Kp.Value = 5.0;

T ey

SIMULINK CODER CONTROLS SYMBOL USED IN CODE

Include parameters as fields
[OFF] y = U* (PtP.<?27>); in a global structure
(field names based on block names)
SIMULINK CODER CONTROLS SYMBOL USED IN CODE
_/ y=u* (5.0); Use numeric value of )
[Auto] < o parameter (if possible)
\ const *p _<?7?> = &rtP.<??2?>[0];
for (i=0; i<N; i++){ Otherwise, include in a
Inline y[i] = u * (p_<???>[1i]); constant global structure
Parameters }
\ N J
INCLUDED IN LIST OF GLOBAL (TUNABLE) PARAMETERS
oNn 3/ _ . Includeina ] N\
SimulinkGlobal y = u (FtPKp);  JOMAS Meture
ExportedGlobal y = u* (Kp);
Symbol preserved
ImportedExtern E y = u* (Kp); Unstructured (must be unique)

storage

ImportedExternPointer y = u* (*Kp);
N J/
KEY:

[option] : default for code generation option
<??7?>: Generated symbol for parameter storage field

Resolve Conflicts in Parameter Object Configurations

Two methods are available for controlling the tunability of parameters. You
can

® Define them as Simulink.Parameter objects in the MATLAB workspace
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® Use the Model Parameter Configuration dialog box

The next figures show how you can use each of these methods to control

the tunability of parameter Kp. The first figure shows Kp defined as
Simulink.Parameter in the Model Explorer. You control the tunability of Kp
by specifying the parameter’s storage class.

| Model Explorer [E=8 EoRF5
File Edit View Tools Add Help
MO 40X BHHNEHS @ = a2
Search: by Name ~ Name: G4, Search
Model Hierarchy %= == Contentsof: ..Workspace (only)  Fiter Contents Simulink Parameter: Kp
4 Simulink Root = . -
-ba Column View: |Data Objects | Show Detals 1 object(s’ T Value: 3
E Base Workspace
e :
S=y Configuration Preferences Name Value Datalype Min Max Dimen Data type: auto A >
» ex_nonTunableSin [m.]
ol Kp 3 auto n o Dimensions: | [1 1] Complexity: | real
Minimum: [] Maximum: [1
Units: i

Code generation options

Storage class: |ExportedGlobal

Alias:

Alignment: -1

Description:

] 1 r

Revert H Help ][ Apply

Cantents Search Results

Parameter Object Kp with Auto Storage Class in Model Explorer
The next figure shows how you can use the Model Parameter Configuration

dialog box to specify a storage class for numeric variables in the MATLAB
workspace.
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«,): Model Parameter Configuration: signals_examp =] 4]
~Description

Define the global (tunable) parameters for wour model. Theze parameters affect:

1. the simulation by providing the ability to tune parameters during execution, and

2.the generated code by enabling accessto parameters by other modulas.
Source list Global {unahle) parameters

MATLAE workspace ﬂ Mame Storage class Storage type qualifier

1|kp ExportedGlobal hd -
Marme
1|1Kp

Refresh list | Add to table >>| [ B | Remove |

Ready |T| Cancel | Help | Apply |

Parameter Kp Defined with SimulinkGlobal Storage Class

Note Do not use both methods for controlling the tunability of a given
parameter. If you use both methods and the storage class settings for the
parameter do not match, an error results.

Structure Parameters and Generated Code

® “About Structure Parameters and Generated Code” on page 7-49
® “Include Structure Parameters in Generated Code” on page 7-50

e “Control Naming of Structure Parameter Types” on page 7-50

About Structure Parameters and Generated Code

Structure parameters provide a way to improve generated code to use
structures rather multiple separate variables. You also have the option of
configuring the appearance of a structure parameter in generated code.

For more information about structure parameters, see“Structure Parameters”
in the Simulink documentation. For an example of how to convert a model
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that uses unstructured workspace variables to a model that uses structure
parameters, see sldemo_applyVarStruct.

Include Structure Parameters in Generated Code

By default, structure parameters do not appear in generated code. Structure
parameters include numeric variables and the code generator inlines numeric
values.

To make structure type definition appear in generated code for a structure
parameter,

1 Create a Simulink.Parameter object.
2 Define the object value to be the parameter structure.

3 Define the object storage class to be a value other than Auto.

The code generator places a structure type definition or the tunable parameter
structure in model types.h. By default, the code generator identifies

the type with a nondescriptive, automatically generated name, such as
struct_z98c0D2qc4btL

For information on how to control the naming of the type, see “Control
Naming of Structure Parameter Types” on page 7-50. For an example, see
sldemo_applyVarStruct

Control Naming of Structure Parameter Types

To control the naming of a structure parameter type, by using a Simulink.Bus
object to specify the data type of the Simulink.Parameter object.

1 Use Simulink.Bus.createObject to create a bus object with the same shape
as the parameter structure. For example:

busInfo=Simulink.Bus.createObject(ControlParam.Value);

2 Assign the bus object name to the data type property of the parameter
object.

ParamType=eval(busInfo.busName);
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ControlParam.DataType='Bus: ParamType';

Only Simulink.Parameter can accept the bus object name as a data type.

For an example, see sldemo_applyVarStruct
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Signals

In this section...

“About Signals” on page 7-52

“Signal Storage Concepts” on page 7-53

“Signals with Auto Storage Class” on page 7-55

“Signals with Test Points” on page 7-59

“Interface Signals to External Code” on page 7-60

“Symbolic Naming Conventions for Signals” on page 7-62
“Summary of Signal Storage Class Options” on page 7-63
“Interfaces for Monitoring Signals” on page 7-64

“Signal Objects” on page 7-65

“Initialize Signals and States Using Signal Objects” on page 7-74

About Signals

The Simulink Coder product offers a number of options that let you control
how signals in your model are stored and represented in the generated code.
This section discusses how you can use these options to

¢ Control whether signal storage is declared in global memory space or
locally in functions (that is, in stack variables).

¢ Control the allocation of stack space when using local storage.

® Delcare signals as test points to store them in unique memory locations

¢ Reduce memory usage by instructing the Simulink Coder product to store
signals in reusable buffers.

¢ Control whether or not signals declared in generated code are interfaceable
(visible) to externally written code. You can also specify that signals are to
be stored in locations declared by externally written code.

¢ Preserve the symbolic names of signals in generated code by using signal
labels.
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The discussion in the following sections refers to code generated from
signal_examp, the model shown in the next figure.

SumSig gainSig @
. Out1
A Zain
0.818

Constant

Signal_examp Model

Signal Storage Concepts

This section discusses structures and concepts you must understand to choose
the best signal storage options for your application:
® The global block I/O data structure model B

® The concept of signal storage classes as used in the Simulink Coder product

Global Block 1/0 Structure

By default, the Simulink Coder product attempts to optimize memory usage
by sharing signal memory and using local variables.

However, under a number of circumstances you should place signals in global
memory. For example,

* You might want a signal to be stored in a structure that is visible to
externally written code.
¢ The number and/or size of signals in your model might exceed the stack

space available for local variables.

In such cases, it is possible to override the default behavior and store selected
signals in a model-specific global block 1/0 data structure. The global block
I/O structure is called model B (in earlier versions this was called rtB).
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The following code shows how model B is defined and declared in code
generated (with signal storage optimizations off) from the signal examp
model shown in the Signal_examp Model on page 7-53 figure.

(in signal_examp.h)
/* Block signals (auto storage) */
extern BlockIO_signal_examp signal_examp_B;

(in signal_examp.c)
/* Block signals (auto storage) */
BlockIO_signal_examp signal_examp_B;

Field names for signals stored in model B are generated according to the rules
described in “Symbolic Naming Conventions for Signals” on page 7-62.

Signals Storage Classes

In the Simulink Coder product, the storage class property of a signal
specifies how the product declares and stores the signal. In some cases this
specification is qualified by more options.

In the context of the Simulink Coder product, the term “storage class” is not
synonymous with the term storage class specifier, as used in the C language.

Default Storage Class. Auto is the default storage class and is the storage
class you should use for signals that you do not need to interface to external
code. Signals with Auto storage class can be stored in local and/or shared
variables or in a global data structure. The form of storage depends on

the Signal storage reuse, Reuse block outputs, Enable local block
outputs, and Minimize data copies between local and global variables
options, and on available stack space. See “Signals with Auto Storage Class”
on page 7-55 for a full description of code generation options for signals with
Auto storage class.

Explicitly Assigned Storage Classes. Signals with storage classes other
than Auto are stored either as members of model B, or in unstructured global
variables, independent of model B. These storage classes are for signals that
you want to monitor and/or interface to external code.
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The Signal storage reuse, Enable local block outputs, Reuse block
outputs, Eliminate superfluous local variables (expression folding),
and Minimize data copies between local and global variables
optimizations do not apply to signals with storage classes other than Auto.

Use the Signal Properties dialog box to assign these storage classes to signals:

® SimulinkGlobal(Test Point): Test points are stored as fields of the
model B structure that are not shared or reused by another signal. See
“Signals with Test Points” on page 7-59 for more information.

® ExportedGlobal: The signal is stored in a global variable, independent
of the model B data structure. model.h exports the variable. Signals
with ExportedGlobal storage class must have unique signal names. See
“Interface Signals to External Code” on page 7-60 for more information.

® ImportedExtern: model private.h declares the signal as an extern
variable. Your code must supply the variable definition. Signals with
ImportedExtern storage class must have unique signal names. See
“Interface Signals to External Code” on page 7-60 for more information.

® ImportedExternPointer: model private.h declares the signal as an
extern pointer. Your code must define a valid pointer variable. Signals
with ImportedExtern storage class must have unique signal names. See
“Interface Signals to External Code” on page 7-60 for more information.

Signals with Auto Storage Class

Options are available for signals with Auto storage class:

Signal storage reuse

Enable local block outputs

Reuse block outputs

Eliminate superfluous local variables (expression folding)

* Minimize data copies between local and global variables

Use these options to control signal memory reuse and choose local or global
(model B) storage for signals. The Signal storage reuse option is on

the Optimization > Signals and Parameters pane of the Configuration
Parameters dialog box, as shown in the next figure.
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Simulation and code generation

/| Inline parameters |Configure ... /| Signal storage reuse

Code generation
7| Enable local block outputs V| Reuse block outputs
7| Eliminate superfluous local variables (expression folding) [¥] Inline invariant signals

Minimize data copies between local and global variables

/| Use memcpy for vector assignment Memcpy threshold (bytes): &4

Loop unrolling threshold: 5 Maximum stack size (bytes): Inherit from target -

These options interact. When the Signal storage reuse option is selected,

* The Reuse block outputs option is enabled and selected, and signal
memory is reused.

¢ The Enable local block outputs option is enabled and selected. This
lets you choose whether reusable signal variables are declared as local
variables in functions or as members of model_B.

¢ The Eliminate superfluous local variables (expression folding)
is enabled and selected, and block computations collapse into single
expressions.

* The Minimize data copies between local and global variables is
enabled and cleared, and global memory is not reused.

The following code examples illustrate the effects of the Signal storage
reuse, Enable local block outputs, Reuse block outputs, Eliminate
superfluous local variables (expression folding) and Minimize data
copies between local and global variables options. The examples were
generated from the signal_examp model (see figure Signal_examp Model
on page 7-53).

The first example illustrates signal storage optimization, with Signal
storage reuse, Enable local block outputs, Reuse block outputs, and
Minimize data copies between local and global variables selected. (For
clarity in showing the individual Gain and Sum block computation, expression
folding is off in this example.) The output signal from the Sum block reuses
signal_examp_Y.Out1, a variable local to the model output function.



Signals

/* Model output function */
static void signal_examp_output(int_T tid)
{
/* Sum: '<Root>Sum' incorporates:
* Constant: '<Root>/Constant'
* Inport: '<Root>>/Int'
*/
signal_examp_Y.Out1 = signal_examp_U.In1 + signal_examp_P.Constant_Value;

/* Gain: '<Root>/Gain' */
signal_examp_Y.Out1 = signal_examp_P.Gain_Gain * signal_examp_Y.Out1;

/* tid is required for a uniform function interface.
* Argument tid is not used in the function. */
UNUSED_PARAMETER (tid);

If you are constrained by limited stack space, you can turn Enable local
block outputs off and still benefit from memory reuse. The following
example was generated with Enable local block outputs cleared and
Signal storage reuse, Reuse block outputs, and Minimize data copies
between local and global variables selected. The output signals from
the Sum and Gain blocks use global structure signal_examp_B rather than
declaring local variables and in both cases the signal name is gainSig.

/* Model output function */
static void signal_examp_output(int_T tid)
{
/* Sum: '<Root>/Add' incorporates:
* Constant: '<Root>/Constant'
* Inport: '<Root>/In1'
*/
signal_examp_B.gainSig = signal_examp_U.In1 +
signal_examp_P.Constant_Value;

/* Gain: '<Root>/Gain' */
signal_examp_B.gainSig = signal_examp_P.Gain_Gain *

signal examp_B.gainSig;

/* Outport: '<Root>/Outl' */
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signal_examp_Y.Out1 = signal_examp_B.gainSig;

/* tid is required for a uniform function interface.
* Argument tid is not used in the function. */
UNUSED_PARAMETER (tid);

When the Signal storage reuse option is cleared, Reuse block outputs,
Enable local block outputs, and Minimize data copies between local
and global variables are disabled. This makes the block output signals
global and unique, signal examp B.sumSig and signal examp_B.gainSig,
as shown in the following code.

/* Model output function */
static void signal_examp_output(int_T tid)
{
/* Sum: '<Root>/Add' incorporates:
* Constant: '<Root>/Constant'
* Inport: '<Root>/Int'
*/
signal_examp_B.sumSig = signal_examp_U.In1 +
signal_examp_P.Constant_Value;

/* Gain: '<Root>/Gain' */
signal_examp_B.gainSig = signal_examp_P.Gain_Gain *
signal_examp_B.sumSig;

/* Outport: '<Root>/Out1' */
signal_examp_Y.Out1 = signal_examp_B.gainSig;

/* tid is required for a uniform function interface.
* Argument tid is not used in the function. */
UNUSED_PARAMETER (tid);

In large models, disabling Signal storage reuse can significantly increase
RAM and ROM usage. Therefore, this approach is not recommended for code
deployment; however it can be useful in rapid prototyping environments.
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The following table summarizes the possible combinations of the Signal
storage reuse / Reuse block outputs and Enable local block outputs

options.

Signal storage reuse
and Reuse block
outputs ON

Signal storage reuse
OFF

(Reuse block outputs
disabled)

Enable local block
outputs ON

Reuse signals in
local memory (fully
optimized)

N/A

Enable local block
outputs OFF

Reuse signals in
model B structure

Individual signal
storage in model B
structure

Control Stack Space Allocation
The value of the “Maximum stack size (bytes)” parameter, on the
Optimization > Signals and Parameters pane of the Configuration
Parameters dialog box constrains the use of stack space used by local
block output variables. The command-line equivalent for this parameter
is MaxStackSize. If the accumulated size of variables in local memory
exceeds MaxStackSize, the product places subsequent local variables in

global memory space.

If it 1s important that you maximize potential for signal storage optimization,
then set MaxStackSize to accommodate the size and number of signals in your
model. This minimizes overflow into global memory space and maximizes use

of local memory. Local variables offer more optimization potential through
mechanisms such as expression folding and buffer reuse. See “Customize
Stack Space Allocation” on page 20-6 for more information.

Signals with Test Points

A test point is a signal that is stored in a unique location that other signals
cannot share or reuse. See “Test Points” in the Simulink documentation for
information about including test points in your model.
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When you generate code for models that include test points, the Simulink
Coder build process allocates a separate memory buffer for each test point.
Test points are stored as members of the model B structure.

Declaring a signal as a test point disables the following options for that signal.
This can lead to increased code and data size. You do not lose the benefits of
optimized storage for other signals in your model.

Signal storage reuse

Enable local block outputs

Reuse block outputs

Eliminate superfluous local variables (expression folding)

* Minimize data copies between local and global variables

For an example of storage declarations and code generated for a test point,
see “Summary of Signal Storage Class Options” on page 7-63.

If you have an Embedded Coder license, you can specify that the Simulink
Coder build process ignore test points in the model, allowing optimal buffer
allocation, using the “Ignore test point signals” parameter. Ignoring test
points facilitates transitioning from prototyping to deployment and avoids
accidental degradation of generated code due to workflow artifacts. For more
information, see “Ignore test point signals”.

Interface Signals to External Code

The Simulink Signal Properties dialog box lets you interface selected signals
to externally written code. In this way, your hand-written code has access
to such signals for monitoring or other purposes. To interface a signal to
external code, use the Code Generation tab of the Signal Properties dialog
box to assign one of the following storage classes to the signal:

® ExportedGlobal

® ImportedExtern

® ImportedExternPointer

Set the storage class as follows:
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1 In your Simulink block diagram, select the line that carries the signal.
Then select Signal Properties from the Edit menu of your model. This
opens the Signal Properties dialog box. Alternatively, right-click the line
that carries the signal, and select Signal properties from the menu.

2 Select the Code Generation tab of the Signal Properties dialog box.

3 Select the desired storage class (Auto, ExportedGlobal, ImportedExtern,
or ImportedExternPointer) from the Storage class menu. The next
figure shows ExportedGlobal selected.

E'Signal Properties: 5in5ig @

Signal name: | SinSig|

[7] signal name must resolve to Simulink signal object

| Loegging and accessibility | Code Generation | Documentation |

Package: ’——— None -— v] [ Refresh ]

Storage class: ’ExportedGIobaI vl

Storage type qualifier:

0K H Cancel ” Help H Apply

4 Optional: For storage classes other than Auto, you can enter a storage type
qualifier such as const or volatile in the Storage type qualifier field.
The Simulink Coder product does not check this string for errors; whatever
you enter is included in the variable declaration.

5 Click Apply.
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Note You can also interface test points and other signals that are stored
as members of model B to your code. To do this, your code must know

the address of the model B structure where the data is stored, and other
information. This information is not automatically exported. The Simulink
Coder product provides C/C++ and Target Language Compiler APIs that
give your code access to model B and other data structures. See “Interfaces
for Monitoring Signals” on page 7-64 for more information.

Symbolic Naming Conventions for Signals

When signals have a storage class other than Auto, the Simulink Coder
product preserves symbolic information about the signals or their originating
blocks in the generated code.

For labeled signals, field names in model_B derive from the signal names. In
the following example, the field names model B.sumSig and model B.gainSig
are derived from the corresponding labeled signals in the signal examp
model (shown in figure Signal_examp Model on page 7-53).

/* Block signals (auto storage) */
typedef struct _BlockIO_signal_examp {
real_T sumSig; /* '<Root>/Add' */
real T gainSig; /* '<Root>/Gain' */
} BlockIO_signal_examp;

When you clear the Signal storage reuse optimization, sumSig is not
part of model B, and a local variable is used for it instead. For unlabeled
signals, model B field names are derived from the name of the source block
or subsystem.

The components of a generated signal label are

¢ The root model name, followed by
¢ The name of the generating signal object, followed by
® A unique name mangling string (if required)

The number of characters that a signal label can have is limited by the
Maximum identifier length parameter specified on the Symbols pane of
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the Configuration Parameters dialog box. See “Construction of Generated
Identifiers” on page 9-76 for more detail.

When a signal has Auto storage class, the Simulink Coder build process
controls generation of variable or field names without regard to signal labels.

Summary of Signal Storage Class Options

The next table shows, for each signal storage class option, the variable
declaration and the code generated for Sum (sumSig) and Gain (gainSig)
block outputs of the model shown in figure Signal_examp Model on page 7-53.

Storage Class

Declaration Code

Auto

(with Signal
storage reuse
optimizations on)

In model.c or model.cpp
rtb_sumSig = signal_examp_U.In1 +

real_T rtb_sumSig; signal_examp_P.Constant_Value;

rtb_sumSig *=
signal_examp_P.Gain_Gain;

signal_examp_Y.Out1 = rtb_sumSig;

Test point (for
sumSig only)

In model.h
signal_examp_B.sumSig =
typedef struct signal_examp_U.In1 +
_BlockIO_signal_examp signal_examp_P.Constant_Value;
{ rtb_gainSig =
real_T sumSig; signal_examp_B.sumSig *
} signal_examp_P.Gain_Gain;
BlockIO_signal_examp; signal_examp_Y.Out1 = rtb_gainSig;

In model.c or model.cpp

BlockIO_signal_examp
signal_examp_B;
real_T rtb_gainSig;
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Storage Class

Declaration

Code

ExportedGlobal
(for sumSig only)

In model.h

extern real_T sumSig;

In model.c or model.cpp

real_T sumSig;
real_T rtb_gainSig;

sumSig = signal_examp_U.In1 +
signal_examp_P.Constant_Value;
rtb_gainSig = sumSig *
signal_examp_P.Gain_Gain;
signal_examp_Y.Out1 = rtb_gainSig;

ImportedExtern

In model_private.h

extern real_T sumSig;

In model.c or model.cpp

real_T rtb_gainSig;

sumSig = signal_examp_U.In1 +
signal_examp_P.Constant_Value;
rtb_gainSig = sumSig *
signal_examp_P.Gain_Gain;
signal_examp_Y.Out1 = rtb_gainSig;

ImportedExternPointeém model private.h

extern real T *sumSig;

In model.c or model.cpp

real T rtb_gainSig;

(*sumSig) = signal_examp_U.In1 +
signal_examp_P.Constant_Value;

rtb_gainSig = (*sumSig) *
signal_examp_P.Gain_Gain;

signal_examp_Y.Out1 = rtb_gainSig;

Interfaces for Monitoring Signals
The Simulink Coder product includes

e Support for developing a Target Language Compiler API for monitoring
signals and states independent of external mode. See “Input Signal
Functions” and “Output Signal Functions” in the Target Language
Compiler documentation for information.

¢ A C application program interface (API) for monitoring signals and states
independent of external mode. See “Data Interchange Using the C API” on
page 15-132 for information.
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® An interface for exporting ASAP2 files, which you customize to use signal
objects. For details, see “ASAP2 Data Measurement and Calibration” on
page 15-172.

Signal Objects

“About Signal Objects for Code Generation” on page 7-65

¢ “Use Signal Objects for Code Generation” on page 7-66

® “Configure Signal Objects for Code Generation” on page 7-66

o “Storage Classes and Code Generation for Signal Objects” on page 7-66
® “Generate Code for Signal Objects from Command Line” on page 7-67
® “Generate Code for Signal Objects Using Model Explorer” on page 7-69
e “Resolve Conflicts in Configuration of Signals Objects” on page 7-72

This section discusses how to use signal objects in code generation. Signal
objects can be used to represent both signal and state data, and behave
similarly to parameter objects, described in “Parameter Objects” on page 7-38.

About Signal Objects for Code Generation

Within the class hierarchy of Simulink data objects, the Simulink product
provides a class that is designed as base class for signal storage. This topic
explains how to use signal objects in code generation.

The CoderInfo properties of signal objects are used by the Simulink Coder
product during code generation. These properties let you assign storage
classes to the objects, thereby controlling how the generated code stores and
represents signals.

The Simulink Coder build process also writes information about the properties
of signal objects to the model.rtw file. This information, formatted as Object
records, 1s accessible to Target Language Compiler programs. For general
information on Object records, see “Data Object Information in model.rtw”.

Before using Simulink signal objects with the Simulink Coder product, read
the discussion of Simulink data objects in the Simulink documentation.
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Use Signal Objects for Code Generation
The general procedure for using signal objects in code generation is as follows:

1 Define a subclass of Simulink.Signal.

2 Instantiate signal objects from your subclass and set their properties from
the command line or by using Model Explorer.

3 Use the objects as signals within your model.

4 Generate code and build your target executable.

Configure Signal Objects for Code Generation

In configuring signal objects for code generation, you use the following code
generation options and signal object properties:

* The Signal storage reuse code generation option (see “Signals” on page
7-52).

¢ The Enable local block outputs code generation option (see “Signals” on
page 7-52).

¢ The Minimize data copies between local and global variables code
generation option (see “Signals” on page 7-52).

® The CoderInfo.StorageClass signal object property: The storage classes
defined for signal objects, and their effect on code generation, are the same
for model signals and signal objects (see “Signals Storage Classes” on
page 7-54).

Other signal object properties (such as user-defined properties of classes
derived from Simulink.Signal) do not affect code generation.

Storage Classes and Code Generation for Signal Objects

The way in which the Simulink Coder product uses storage classes to
determine how signals are stored is the same with and without signal
objects. However, if a signal’s label resolves to a signal object, the object’s
CoderInfo.StorageClass property is used in place of the port configuration
of the signal.
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The default storage class is Auto. If the storage type is Auto, the Simulink
Coder product follows the Signal storage reuse, Reuse block outputs,
Enable local block outputs, Eliminate superfluous local variables
(expression folding), and Minimize data copies between local and
global variables code generation options to determine whether signal objects
are stored in reusable and/or local variables. Make sure that these options
are set for your application.

To generate a test point or signal storage declaration that can interface
externally, use an explicit CoderInfo.StorageClass assignment. For
example, setting the storage class to SimulinkGlobal, as in the following
command, is equivalent to declaring a signal as a test point.

SinSig.CoderInfo.StorageClass = 'SimulinkGlobal';

Generate Code for Signal Objects from Command Line

The discussion and code examples in this section refer to the model shown in
the next figure.

: inSig ; GainiSig @
In1 Out1

Zain

To configure a signal object, you must first create it and associate it with a
labeled signal in your model. To do this,

1 Define a subclass of Simulink.Signal. In this example, the signal object
is an instance of the class Simulink.Signal, which is provided with the
Simulink product.

2 Instantiate a signal object from your subclass. The following example
instantiates inSig, a signal object of class Simulink.Signal.

inSig
inSig

Simulink.Signal
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Simulink.Signal
CoderInfo: [1x1 Simulink.SignalCoderInfo]

Description: ''
DataType: 'auto'’

Min: []

Max: []

DocUnits: ''

Dimensions: -1

Complexity: 'auto’

SampleTime: -1
SamplingMode: 'auto'’
InitialvValue: ''

Make sure that the name of the signal object matches the label of the
desired signal in your model. This enables the Simulink engine to resolve
the signal label to the corresponding object. For example, in the model
shown in the above figure, the signal label inSig would resolve to the
signal object inSig.

3 You can require signals in a model to resolve to Simulink.Signal objects.
To do this for the signal inSig, in the model window right-click the signal
line labeled inSig and choose Signal Properties from the context menu.
A Signal Properties dialog appears.
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Eﬁignal Properties: inSig @

Signal name: inSig

Signal name must resolve to Simulink signal object

Logging and accessibility | Code Generation Documentation

[7] Log signal data [] Test point

Logging name
Use signal name
inSig

Data

Limit data points to last: | 5000

Decimation: 2

OK H Cancel ” Help ] Apply

4 In the Signal Properties dialog box that appears, select the check box

labelled Signal name must resolve to Simulink signal object, and
click OK or Apply.

5 Set the object properties as required. You can do this by using the
Simulink Model Explorer. Alternatively, you can assign properties by using
MATLAB commands. For example, assign the signal object’s storage class
by setting the CoderInfo.StorageClass property as follows.

inSig.CoderInfo.StorageClass = 'ExportedGlobal';

Generate Code for Signal Objects Using Model Explorer

If you prefer, you can create signal objects and modify their attributes using
Model Explorer. This lets you see and set attributes of a signal in a dialog
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box pane, and alleviates the need to remember and type field names. Do the
following to instantiate inSig and set its attributes from Model Explorer:

1 Choose Model Explorer from the View menu.

Model Explorer opens or activates if it already was open.
2 Select Base Workspace in the Model Hierarchy pane.
3 Select Simulink Signal from the Add menu.

A new signal named Sig appears in the Contents pane.

5| Model Explorer = feE=s
File Edit View Tools Add Help
= X v = oE
BO 4B BHNOS O = it
Search: by Name + Name: &4, search
Model Hierarchy P} @ == Contentsof: .. Workspace (only)  Fiter Contents Simulink.Signal: Sig
4 Simulink Root - . b
% Column View: |Data Objects ~ | Show Details 1 object(s T Data type: auto - >
E Base Workspace
=) i T
Coﬂflgurat\on Preferences Name Value DataType Min Max Dimen Complexity:
» ex_sigObjCmadLine
[l sig auta n_n 1 Dimensions: -1 Dimensions mode: | auto
Sample time: -1 Sample mode: auto
Minimum: [1 Madimum: [1 1
Initial value: Units:
Code generation options
Storage dass: [Aum
Alignment: -1
Description:
] m +
] T + .
Cantents Search Results

4 To set the signal name in Model Explorer, click the word Sig in the Name
column to select it, and rename it by typing inSig followed by Return

in place of Sig.
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5 To set the inSig.CoderInfo.StorageClass in Model Explorer, click the
Storage class menu and select ExportedGlobal, as shown in the next

figure.
Maodel Explorer [E=8 EoRF5
File Edit View Tools Add Help
B v ul}
MO ¢ e EHES CH
Search: by Name ~ Name: G, Search
Model Hierarchy == Contentsof: .. Workspace (only)  Fiter Contents Simulink Signal: Sig
4 Simulink Root = . it
-bi Column View: |Data Objects ~ | Show Details  1object(s Niad Data type:  auto h 2
E Base Workspace
‘f-}r Configuration Preferences Name Value Datalype Min Max Dimen Complexity:
> ex_sigObjCmdLine
sig aute no 1 Dimensions: -1 Dimensions mode: | auto
Sample time: -1 Sample mode: auto
Minimum: [1 Maximum: [1 1
Initial value: Units:
Code generation options
Storage dass: |Auto
Auto
Alignment: SimulinkGlobal
ExportedGlobal
ImportedExtern
o tion: ImportedExternPointer
=2 Default (Custom)
BitField {Custom)
Yolatile (Custom)
ExportToFile (Custom)
q ImportFromFile (Custom)
FileScope (Custom)
4 m | 3 Struct (Custom)
GetSet (Custol
Contents Search Resdlts ‘ etSet (Custom)

6 Click Apply.

The following table shows, for each setting of CoderInfo.StorageClass, the

variable declaration and the code generated for the inport signal (inSig)

of the current model:
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Storage Class | Declaration Code
Auto (with In model.h
storage rtb_Gain1Sig =
optimizations typedef struct signal_objs_examp_U.inSig *
on) _Externallnputs_signal_ objs_examp_tag signal_objs_examp_P.Gain_Gain;
{
real_T inSig;
}

ExternalInputs_signal_ objs_examp;

SimulinkGlobal | In model.h
rtb_Gaini1Sig =

typedef struct signal_objs_examp_U.inSig *
_ExternalInputs_signal_objs_examp_tag signal_objs_examp_P.Gain_Gain;
{

real T inSig;

}

Externallnputs_signal_objs_examp;

ExportedGlobal | In model.c or model.cpp
rtb_Gain1Sig = inSig *
real_T inSig; signal_objs_examp_P.Gain_Gain;

In model.h

extern real T inSig;

ImportedExtern | In model private.h
rtb_Gain1Sig = inSig *
extern real_T inSig; signal_objs_examp_P.Gain_Gain;

ImportedExternPointeodel private.h
rtb_Gaini1Sig = (*inSig) *
extern real_T *inSig; signal_objs_examp_P.Gain_Gain;

Resolve Conflicts in Configuration of Signals Objects

If a signal is defined in the Signal Properties dialog box and a signal object
of the same name is defined by using the command line or in the Model
Explorer, the potential exists for ambiguity when the Simulink engine
attempts to resolve the symbol representing the signal name. One way to
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resolve the ambiguity is to specify that a signal must resolve to a Simulink
data object. To do this, select the Signal name must resolve to Simulink
signal object option in the Signal Properties dialog box. When you do this,
you cannot specify the Storage class property in the Code Generation tab
of the Signal Properties dialog box, as the next figure shows.

ﬂﬁignal Properties: 5in5ig @
Signal name: SinSig
Signal name must resolve to Simulink signal object
| Logging and accessibility | Code Generation Documentation
Package: -—- None -—- Refresh
Storage class: |Auto
OK ] ’ Cancel l [ Help l [ Apply ]

As the preceding figure shows, the Storage class menu is disabled because it
is up to the SinSig Simulink.Signal object to specify its own storage class.

The signal and signal objects SinSig both have SimulinkGlobal storage
class. Therefore, SinSig resolves to the signal object SinSig.

Note The rules for compatibility between block states/signal objects are
identical to those given for signals/signal objects.
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Initialize Signals and States Using Signal Objects

You can use Simulink signal objects to initialize signals and discrete
states with user-defined values for simulation and code generation. Data
initialization increases application reliability and is a requirement of safety
critical applications. Initializing signals for both simulation and code
generation can expedite transitions between phases of Model-Based Design.

For details on simulation behavior, see “Initialization Behavior Summary for
Signal Objects” in the Simulink documentation.

Specify Initial Value for Signal Object

You can use signal objects that have a storage class other than 'auto’ or
'SimulinkGlobal' to initialize

® Discrete states with an initial condition parameter

® Signalsin a model except bus signals and signals with constant sample time

The initial value is the signal or state value before a simulation takes its
first time step.
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Note Some initial value settings may depend on the initialization mode. For
more information, see “Underspecified initialization detection”.

Classic initialization mode: In this mode, initial value settings for
signal objects that represent the following signals and states override the
corresponding block parameter initial values if undefined (specified as [ ]):

® Qutput signals of conditionally executed subsystems and Merge blocks
® Block states

Simplified initialization mode: In this mode, initial values of signal
objects associated with the output of the following blocks are ignored. The

initial values of the corresponding blocks (which cannot be specified as [ 1)
are used instead.

® Qutput signals of conditionally executed subsystems

® Merge blocks

To specify an initial value, use the Model Explorer or MATLAB commands to
do the following:

1 Create the signal object.

Model Explorer
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& Model Explorer

File Edit View Tools Help

BO 4
Search: by Name

Mode! Hierarchy

4 P simulink Root

E Base Workspace
% Configuration Pr

g ex_sigObjCmdLin

Add a Simulink signal object

[E=3 HoR =
% | OO MATLAB Variable Ctrl=M
|oe]  Simulink Parameter Ctrl=P Search
[T Simulink Signal Ctri+5
B simulink Numericlype Filter Contents Simulink.Signal: Sig
-
B Simulink AliasType etals  1object(s) ﬂ,iv Data type: auto A =
= Simulink Bus
L1_I_| Simulink Variant atalype Min Max Dimen Complexity:
Configuration pto no 1 Dimensions: -1 Dimensions mode: | auto
Configuration Reference Sample time: -1 Sample mode: auto
Configuration for Concurrent Execution =
AR Minimum: [1 Maximum: [1
ustom...
Initial value: Units:
Event Ctrl+E
Data Ctri+D Code generation options
Input Trigger Storage dass: |Auto
ion Call O
Fundtion Call Output Alignment: 1
Stateflow Target Ctrl=T
Description:
L m L3
‘ T 3
Cantents Search Results

MATLAB Command

S1=Simulink.Signal;

The name of the signal object must be the same as the name of the signal
that the object is initializing. Although not required, consider setting the
Signal name must resolve to Simulink signal object option in the
Signal Properties dialog box. This setting makes signal objects in the
MATLAB workspace consistent with signals that appear in your model.

Consider using the Data Object Wizard to create signal objects. The Data
Object Wizard searches a model for signals for which signal objects do not
exist. You can then selectively create signal objects for multiple signals
listed in the search results with a single operation. For more information
about the Data Object Wizard, see “Data Object Wizard” in the Simulink
documentation.

Set the signal object’s storage class to a value other than 'auto’ or
"SimulinkGlobal’.
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Model Explorer

Model Explorer

File Edit View Tools Add Help
EO L0 K HNES
Search: by Name ~ Name:

2
G, Search

Model Hierarchy || == Contentsof: .. Workspace (only)  Fiter Contents Simulink.Signal: Sig1
4 Simulink Root = . -
-bi Column View: |Data Objects v | Show Detalls 2 object(s Niad Data type: auto - =
E Base Workspace
Configuration Preferences Name Value Datalype Min Max Dimen Complexity:
» ex_sigObjCmadLine
S} auto nmo 1 Dimensions: -1 Dimensions mode: | auto
sigl auto non o4
Sample time: -1 Sample mode: auto
Minimum: [1 Maximum: [1 1
Initial value: Units:
Code generation options
Storage dass: |Auto
Auto
Alignment: SimulinkGlobal
ExportedGlobal
ImportedExtern
o tion: ImportedExternPointer
=2 Default (Custom)
BitField {Custom)
Yolatile (Custom)
ExportToFile (Custom)
« [ |ImportFromFile (Custom)
FileScope (Custom)
4 [ 3 Struct (Custom)
GetSet (Custol
Contents Search Resdlts etSet (Custom)

MATLAB Command

S1.CoderInfo.StorageClass='ExportedGlobal';

3 Set the initial value. You can specify a MATLAB string expression that
evaluates to a double numeric scalar value or array.

Model Explorer

MATLAB Command

Valid | 1.5 foo = 1.5;
[1 2 3] si1.InitialvValue = 'foo';
1+0.5
Invalid| uint (1) foo = '1.5"';
si1.InitialvValue = 'foo';

The Simulink engine converts the initial value so the type, complexity, and
dimension are consistent with the corresponding block parameter value.
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If you specify an invalid value or expression, an error message appears
when you update the model.

Model Explorer

Model Explorer = feE=s
File Edit View Tools Add Help
B v -]
BO 4B BHNOS O =z
Search: by Name + Name: &Y, Search
Model Hierarchy == Contentsof: .. Workspace (only)  Fiter Contents Simulink.Signal: Sig1
4 Simulink Root = . -
%E Column View: |Data Objects ~ | Show Details 2 object(s ihd Data type: auto - > —
E Base Workspace
[ . —_
Coﬂflgurat\on Preferences Name Value DataType Min Max Dimen Complexity:
» ex_sigObjCmadLine
He auta n.n 1 Dimensions: -1 Dimensions mode: | auto
Sigl auto n n 4
Sample time: -1 Sample mode: auto
Minimum: [1 Madimum: [1
Initial value: [ Units:
Code generation options
Storage dass: [ExporbedGIobaI L4
Alias:
Alignment: -1
Description:
4 1 | 3
] T +
‘ Revert H Help H Apply ]
Cantents Search Results

MATLAB Command

S1.InitialValue='0.5"

The following example shows a signal object specifying the initial output of
an enabled subsystem.
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+H+

o
Enable

Ts=0.1
Phase Delay = 10 samples

Enable

Outl
Initial Output =[]

’
.

A 4
[+ n
' p|in1 outl
++
Sine Wave
Amplitude = 1 Enabled
Period = 10 samples Subsystem
Ts=0.1

Maodel predoad function:

g = Simulink.Signal;

g RTWinfo.StorageClass ="ExportedGlobal’;

s InttialValue="4.5"

Signal s is initialized to 4.5. Note that to avoid a consistency error, the initial

value of the enabled subsystem’s Outport block must be [ ] or 4.5.

Signal Object Initialization in Generated Code

The initialization behavior for code generation is the same as that for model

simulation with the following exceptions:

® RSim executables can use the Data Import/Export pane of the
Configuration Parameters dialog box to load input values from MAT-files.
GRT and ERT executables cannot load input values from MAT-files.
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® The initial value for a block output signal or root level input or output
signal can be overwritten by an external (calling) program.

e Setting the initial value for persistent signals is relevant if the value 1s
used or viewed by an external application.

For details on initialization behavior for different types of signals and discrete
states, see “Initialization Behavior Summary for Signal Objects” in the
Simulink documentation.

When you initialize Simulink signal objects in a model during code generation,
the corresponding initialization statements are placed in model.c or
model.cpp in the model’s initialize code.

For example, consider the model rtwdemo_sigobj iv.

M1 ol BN
Pulse ! J
Generator T Vector Scope
- - Cgncatenate
(A )——>im  outt » X2 X2 —»
I £51 £52 I I £53
V=45 IV=-20) Data Store Data Store 5o~ |IN=3.0
Enabled Wit )
e Read C orwersion
Subsystem
(state X1 inside) 2 l—h
IV=-3.5
Data Store
Memory

If you create and initialize signal objects in the base workspace, the
Simulink Coder product places initialization code for the signals in the file
rtwdemo_sigobj iv.c under the rtwdemo_sigobj iv_initialize function,
as shown below.

/* Model initialize function */

void rtwdemo_sigobj_iv_initialize(void)
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/* exported global signals */
S3 = -3.0;

S2 = -2.0;

/* exported global states */
X1 = 0.0;
X2 = 0.0;

/* external inputs */
S1 = -4.5;

The following code shows the initialization code for the enabled subsystem’s
Unit Delay block state X1 and output signal S2.

void MdlStart(void) {

/* InitializeConditions for UnitDelay: '<S2>/Unit Delay' */
X1 = aat;

/* Start for enable system: '<Root>/Enabled Subsystem (state X1 inside)' */
/* virtual outports code */
/* (Virtual) Outport Block: '<S82>/0utt1' */

S2 = aa2;

Also note that for an enabled subsystem, such as the one shown in the
preceding model, the initial value is also used as a reset value if the
subsystem’s Outport block parameter Output when disabled is set
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to reset. The following code from rtwdemo_sigobj_iv.c shows the
assignment statement for S3 as it appears in the model output function
rtwdeni_sigobj_iv_output.

/* Model output function */

static void rtwdemo_sigobj_iv_output(void)
{

/* Disable for enable system: '<Root>/Enabled Subsystem (state X1 inside)' */
/* (Virtual) Outport Block: '<S2>/0utl' */

82 = aa2;

Tunable Initial Values

If you specify a tunable parameter in the initial value for a signal object, the
parameter expression is preserved in the initialization code in model.c.

For example, if you configure parameter df to be tunable for model signal iv
and you initialize the signal object for discrete state X1 with the expression
df*2, the following initialization code appears for signal object X1 in
signal_iv.c.

void MdlInitialize(void) {

/* InitializeConditions for UnitDelay: '<Root>/Unit Delay X1=2' */
X1 = (tunable_param_P.df * 2.0);
}

For more information about the treatment of tunable parameters in generated
code, see “Parameters” on page 7-10.
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In this section...
“About States” on page 7-83

“State Storage” on page 7-83

“State Storage Classes” on page 7-84

“Interface States to External Code” on page 7-85
“Symbolic Names for States” on page 7-87

“Control Code Generation for Block States” on page 7-90

“Summary of State Storage Class Options” on page 7-91

About States

For certain block types, the Simulink Coder product lets you control how block
states in your model are stored and represented in the generated code. Using
the State Attributes tab of a block dialog box, you can:

¢ Control whether or not states declared in generated code are interfaceable
(visible) to externally written code. You can also specify that states be
stored in locations declared by externally written code.

e Assign symbolic names to block states in generated code.

State Storage

The discussion of block state storage in this section applies to the following
blocks:

® Discrete Filter

® Discrete PID Controller

® Discrete PID Controller (2DOF)

® Discrete State-Space

¢ Discrete-Time Integrator

e Discrete Transfer Function
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® Discrete Zero-Pole
® Memory

¢ Unit Delay

These blocks require persistent memory to store values representing the
state of the block between consecutive time intervals. By default, such values
are stored in a data type work vector. This vector is usually referred to as
the DWork vector. It is represented in generated code as model DWork, a
global data structure.

If you want to interface a block state to your hand-written code, you can
specify that the state is to be stored in a location other than the DWork vector.
You do this by assigning a storage class to the block state.

You can also define a symbolic name, to be used in code generation, for a
block state.

State Storage Classes

The storage class property of a block state specifies how the Simulink Coder
product declares and stores the state in a variable. Storage class options for
block states are similar to those for signals. The available storage classes are

® Auto
® ExportedGlobal

® ImportedExtern

® ImportedExternPointer

Default Storage Class

Auto is the default storage class and is the storage class you should use for
states that you do not need to interface to external code. States with Auto
storage class are stored as members of the Dwork vector.

You can assign a symbolic name to states with Auto storage class. If you do
not supply a name, the Simulink Coder product generates one, as described in
“Symbolic Names for States” on page 7-87.
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Explicitly Assigned Storage Classes

Block states with storage classes other than Auto are stored in unstructured
global variables, independent of the Dwork vector. These storage classes are
for states that you want to interface to external code. The following storage

classes are available for states:

® ExportedGlobal: The state is stored in a global variable. model .h exports
the variable. States with ExportedGlobal storage class must have unique
names.

® ImportedExtern: model private.h declares the state as an extern
variable. Your code must supply the variable definition. States with
ImportedExtern storage class must have unique names.

® ImportedExternPointer: model private.h declares the state as an
extern pointer. Your code must supply the pointer variable definition.
States with ImportedExternPointer storage class must have unique
names.

The table in “Summary of Signal Storage Class Options” on page 7-63 gives
examples of variable declarations and the code generated for block states
with each type of storage class.

Note Assign a symbolic name to states to specify a storage class other than
auto. If you do not supply a name for auto states, the Simulink Coder product
generates one, as described in “Symbolic Names for States” on page 7-87.

The next section explains how to use the State Attributes tab of the block
dialog box to assign storage classes to block states.

Interface States to External Code

In the State Attributes tab of a block parameter dialog box, you can
interface a block’s state to external code by assigning the state a storage
class other than Auto (that is, ExportedGlobal, ImportedExtern, or
ImportedExternPointer).

Set the storage class as follows:
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1 In your block diagram, double-click the desired block. This action opens the
block dialog box with two or more tabs, which includes State Attributes.

2 Click the State Attributes tab.

P o)

Function Block Parameters: Unit Delay @
UnitDelay

Sample and hold with one sample period delay.

Main State Attributes

State name:

State name must resolve to Simulink signal objec
Fackage: --- Mone --- Fefresh

Code generation storage class: |Auto

\} oK ][ Cancel H Help Apply

3 Enter a name for the variable to be used to store block state in the State
name field.

The State name field turns yellow to indicate that you changed it.
4 Click Apply to register the variable name.

The first two fields beneath the State name, State name must resolve
to Simulink signal object and Code generation storage class, become
enabled.

5 If the state is to be stored in a Simulink signal object in the base or model
workspace, select State name must resolve to Simulink signal object.

If you choose this option, you cannot declare a storage class for the state in
the block, and the fields below become disabled.
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6 Select the desired storage class (ExportedGlobal, ImportedExtern, or
ImportedExternPointer) from the Code generation storage class
menu.

7 Optional: For storage classes other than Auto, you can enter a storage type
qualifier such as const or volatile in the Code generation storage
type qualifier field. The Simulink Coder product does not check this
string for errors; what you enter is included in the variable declaration.

8 Click OK or Apply and close the dialog box.

Symbolic Names for States
To determine the variable or field name generated for a block’s state, you can:

¢ Use a default name generated by the Simulink Coder product

¢ Define a symbolic name by using the State name field of the State
Attributes tab in a block dialog box

Default Block State Naming Convention

If you do not define a symbolic name for a block state, the Simulink Coder
product uses the following default naming convention:

BlockType# DSTATE
where

® BlockType is the name of the block type (for example, Discrete_Filter).

® #is a unique ID number (#) assigned by the Simulink Coder product if
multiple instances of the same block type appear in the model. The ID
number is appended to BlockType.

® DSTATE is a string that is appended to the block type and ID number.

For example, consider the model shown in the next figure.
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Ancther Filt

Model with Two Discrete Filter Block States

Examine the code generated for the states of the two Discrete Filter blocks.
Assume that:

e Neither block’s state has a user-defined name.

¢ The upper Discrete Filter block has Auto storage class (and is therefore
stored in the DWork vector).

® The lower Discrete Filter block has ExportedGlobal storage class.

The states of the two Discrete Filter blocks are stored in DWork vectors,
initialized as shown in the code below:

/* data type work */
disc_filt_states_M->Work.dwork = ((void *)
&disc_filt_states_DWork);
(void)memset((char_T *) &disc_filt_states_DWork, O,
sizeof (D_Work_disc_filt_states));
{
int T i
real_T *dwork_ptr = (real_T *)
&disc_filt_states_DWork.DiscFilt_ DSTATE;

for (1 =0; 1 < 2; i++) {
dwork_ptr[i] = 0.0;
}
}
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Define User Block State Names

Using the State Attributes tab of a block dialog box, you can define your
own symbolic name for a block state:

1 In your block diagram, double-click the desired block. This action opens
the block dialog box, containing two or more tabs, which includes State
Attributes.

2 Click the State Attributes tab.

3 Enter the symbolic name in the State name field. For example, enter
the state name Top_filter.

4 Click Apply. The dialog box now looks like this:

Function Block Parameters: Unit Delay @
UnitDelay

Sample and hold with one sample period delay.

Main State Attributes

State name: Top_filter

["] state name must resolve to Simulink signal object

Fackage: [--- Mone --- *] [ Refresh ]

Code generation storage class: [Auto *]

J [ oK ] [ Cancel ] [ Help ] [ Apply ]
5 Click OK.

The following state initialization code was generated from the example model
shown in “Generate Code for Signal Objects from Command Line” on page
7-67, under the following conditions:
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® The upper Discrete Filter block has the state name Top_filter, and Auto
storage class (and is therefore stored in the DWork vector).

® The lower Discrete Filter block has the state name Lower_ filter, and
storage class ExportedGlobal.

Top_filter is placed in the Dwork vector.

/* data type work */
disc_filt_states_M->Work.dwork = ((void *)
&disc_filt states_DWork);
(void)memset((char_T *) &disc_filt_states_DWork, O,
sizeof (D_Work_disc_filt_states));
disc_filt_states_DWork.Top_filter = 0.0;

/* exported global states */
Lower_filter = 0.0;

Control Code Generation for Block States

If you are not familiar with Simulink data objects and signal objects, you
should read “Signals” on page 7-52 before reading this section.

You can associate a block state with a signal object and control code
generation for the block state through the signal object:

1 Instantiate the desired signal object, and set its CoderInfo.StorageClass
property.

2 Open the dialog box for the block whose state you want to associate with
the signal object.

3 Click the State Attributes tab.
4 Enter the name of the signal object in the State name field.
5 Select State name must resolve to Simulink signal object.

This step disables the Code generation storage class and Code
generation storage type qualifier options in the State Attributes tab,
because the signal object specifies these settings.
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6 Click Apply and close the dialog box.

Note When a block state is associated with a signal object, the mapping
between the block state and the signal object must be one-to-one. If two or
more identically named entities, such as a block state and a signal, map
to the same signal object, the name conflict is flagged as an error at code
generation time.

Summary of State Storage Class Options
Here is a simple model, unit_delay, which contains a Unit Delay block:

1

D

I

.
"

z
Unit Drelay

— ()

The following table shows, for each state storage class option, the variable
declaration and initialization code generated for a Unit Delay block state. The
block state has the user-defined state name udx.

Storage Class

Declaration

Initialization Code

Auto

In model.h

typedef struct
D Work_unit_delay_tag
{

real T udx;

}
D_Work_unit_delay;

unit_delay_DWork.udx = 0.0;

Exported Global

In model.c or model.cpp

real T udx;

In model.h

extern real_T udx;

In model.c or model.cpp

udx = 0.0;

7-91



7 Data Representation

Storage Class Declaration Initialization Code
ImportedExtern In model private.h In model.c or model.cpp
extern real_T udx; udx =

unit_delay_P.UnitDelay_XO;

ImportedExternPointer In model private.h In model.c or model.cpp

extern real_T *udx; (*udx) =
unit_delay_ P.UnitDelay_XO;
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Data Stores

In this section...

“About Data Stores” on page 7-93
“Storage Classes for Data Store Memory Blocks” on page 7-93
“Generate Code for Data Store Memory Blocks” on page 7-96

“Nonscalar Data Stores in Generated Code” on page 7-97

“Data Store Buffering in Generated Code” on page 7-99

About Data Stores

A data store contains data that is accessible in a model hierarchy at or below
the level in which the data store is defined. Data stores can allow subsystems
and referenced models to share data without having to use I/O ports to pass
the data from level to level. See “Data Stores with Data Store Memory
Blocks” for information about data stores in Simulink. This section provides
additional information about data store code generation.

Storage Classes for Data Store Memory Blocks

You can control how Data Store Memory blocks in your model are stored
and represented in the generated code by assigning storage classes and type
qualifiers. You do this in almost exactly the same way you assign storage
classes and type qualifiers for block states.

Data Store Memory blocks, like block states, have Auto storage class by
default, and their memory is stored within the DWork vector. The symbolic
name of the storage location is based on the data store name.

You can generate code from multiple Data Store Memory blocks that have the
same data store name, subject to the following restriction: at most one of the
identically named blocks can have a storage class other than Auto. An error is
reported if this condition is not met.

For blocks with Auto storage class, the Simulink Coder product generates a
unique symbolic name for each block to avoid name clashes. For Data Store
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Memory blocks with storage classes other than Auto, the generated code uses
the data store name as the symbol.

In the following model, a Data Store Write block writes to memory declared
by the Data Store Memory block myData:

ﬁu | myData myata
Sine Wawe Data Siore Data Siore
Write Memory

To control the storage declaration for a Data Store Memory block, use the
Code Generation > Storage class and Code Generation > Storage type
qualifier fields of the Data Store Memory block dialog box. The next figure
shows the Data Store Memory block dialog box for the preceding model.
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Block Parameters: Data Store Memaory @
DataStoreMemory

Define @ memory region for use by the Data Store Read and Data Store
Write blocks. All Read and Write blocks that are in the current
(sub)system level or below and have the same data store name will be
able to read from or write to this block.

Main Signal Attributes | Diagnostics | Logging |

Initial value: 0

Minimum: [] Maximum: []

Data type: Inherit: auto -
[7] Lock output data type setting against changes by the fixed-point tools
Dimensions (-1 to infer from Initial value): -1

Interpret vector parameters as 1-D

Signal type: [auto

Code Generation

[] Data store name must resolve to Simulink signal object

Package: [——— None --- '] ’ Refresh ]

Storage class: [Auto v]

[ OK ” Cancel ” Help ] Apply

Data Store Memory blocks are nonvirtual because code is generated for
their initialization in .c and .cpp files and their declarations in header
files. The following table shows how the code generated for the Data Store
Memory block in the preceding model differs for different settings of Code
Generation > Storage class. The table gives the variable declarations and
Md1lOutputs code generated for the myData block.
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Storage Class

Declaration

Code

Auto

In model.h

typedef struct
D_Work_tag
{

real_T myData;

}
D_Work;

In model.c or model.cpp

/* Block states (auto storage) */
D_Work model_DWork;

model_DWork.myData =
rtb_SineWave;

ExportedGlobal

In model.c or model.cpp

/* Exported block states */
real_T myData;

In model.h

extern real_T myData;

myData = rtb_SineWave;

ImportedExtern

In model private.h

extern real_T myData;

myData = rtb_SineWave;

ImportedExternPointer

In model private.h

extern real_T *myData;

(*myData) = rtb_SineWave;

Generate Code for Data Store Memory Blocks

If you are not familiar with Simulink data objects and signal objects, you
should read “Signals” on page 7-52 before reading this section.
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You can associate a Data Store Memory block with a signal object, and control
code generation for the block through the signal object. To do this:

1 Instantiate the desired signal object.

2 Set the object’s CoderInfo.StorageClass property to indicate the desired
storage class.

3 Open the block dialog box for the Data Store Memory block that you want
to associate with the signal object.

4 Enter the name of the signal object in the Data store name field.
5 Select Data store name must resolve to Simulink signal object.
6 Do not set the storage class field to a value other than Auto (the default).

7 Click OK or Apply.

Note When a Data Store Memory block is associated with a signal object,
the mapping between the Data store name and the signal object name
must be one-to-one. If two or more identically named entities map to

the same signal object, the name conflict is flagged as an error at code
generation time. See “Resolve Conflicts in Configuration of Signals Objects”
on page 7-72 for more information.

Nonscalar Data Stores in Generated Code

Stateflow generates efficient code for accessing individual elements of
nonscalar data stores. For example, the next figure shows a data store named
A that has seven elements. The Stateflow chart assigns the fourth element of
the data store from a value computed from the third element. The generated
code does not require access of the other elements of A.
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A[3] = ul + A[2]:

In contrast, modeling and code generation for data store element selection
and assignment in Simulink is more explicit. The next figure shows the same
algorithm modeled without using a Stateflow chart. The assignment block
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copies each element of the data store back to itself, in addition to updating
the element.
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Data Store Buffering in Generated Code

A Data Store Read block is a nonvirtual block that copies the value of the
data store to its output buffer when it executes. Since the value is buffered,

downstream blocks connected to the output of the data store read utilize

the same value, even if a Data Store Write block updates the data store in
between execution of two of the downstream blocks.

The next figure shows a model that uses blocks whose priorities have been
modified to achieve a particular order of execution:

Data Store
Read

Data Siore
Memory
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i/o variables *

* Iogal block

real_T rtb_DataStoreRead;

* DatadtoreRead: '<Root>/Data Jtore Read

¢Eth DataStorsRead = A7 |Buffer the value of A

lncorporates:

1" TR Use A (whose value equals
¥ S8 the buffered value at this paint

ot/ Data Store Write' incorpordtes:

e Data:t@ Consistently use the same buffered
— value as before the update to A

The following execution order applies:

1 The block Data Store Read buffers the current value of the data store
A at its output.

2 The block Abs1 uses the buffered output of Data Store Read.
3 The block Data Store Write updates the data store.
4 The block Abs uses the buffered output of Data Store Read.

Because the output of Data Store Read is a buffer, both Abs and Abs1 use the
same value: the value of the data store at the time that Data Store Read

executes.

The next figure shows another example:
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Constant Data Store Data Store
Wite: Memory
Out1
Data Store
Read

ALY

Ini Cuti

Atomic Subsystem

real T rtb DataStorsResad;

incorporates:

A= DoBufferDSHReadZ_P.Constant_‘falua;

* DataStoreRsad: '<Poot>/Data Stors Read!'
CIth_DataStoreRead = A;D |Buffer the value of A

* Qutpyts for asromic SphSgstem: '<Root>fAtomic Subsystem'
DDBufferDSHREad_AtDmiCSubE@ We don't do a global analysis to
detect if this function writes to A

Avomic Subsystem' *

* end of Outputs for SubSystem:

f* Dutport:

*

Sum: '<Fo

|Use the buffered value of A

DoBufferDSHReadz_'r‘. Cutcl rtb_DataStDraRead + DoBuffarDSHReadz_B .ibhs;

In this example, the following execution order applies:

1 The block Data Store Read buffers the current value of the data store
A at its output.

2 Atomic Subsystem executes.

3 The Sum block adds the output of Atomic Subsystem to the output of Data
Store Read.

Simulink assumes that Atomic Subsystem might update the data store, so
Simulink buffers the data store. Atomic Subsystem executes after Data Store
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Read buffers its output, and the buffer provides a way for the Sum block to
use the value of the data store as it was when Data Store Read executed.

In some cases, theSimulink Coder code generator determines that it can
optimize away the output buffer for a Data Store Read block, and the
generated code will refer to the data store directly, rather than a buffered
value of it. The next figure shows an example:

Im1
Data Store
Write
—ar oz
Out2
Data Store Abs
Read
—
A
Data Store
Memony

* Model step function *
woid DONThufferDSMRead step (void)

* DataStorellrite: '<PFoot>/Data Store llrite' incorporates:
*  Inport: '<Peot>

.
A= ul

In the generated code, the argument of the fabs () function is the data store A
rather than a buffered value.
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e “Entry Point Functions and Scheduling” on page 8-2

* “About Model Execution” on page 8-4

¢ “Non-Real-Time Single-Tasking Systems” on page 8-6

¢ “Non-Real-Time Multitasking Systems” on page 8-7

e “Real-Time Single-Tasking Systems” on page 8-9

® “Real-Time Multitasking Systems” on page 8-11

e “Multitasking Systems Using Real-Time Tasking Primitives” on page 8-14
® “Program Timing” on page 8-16

® “Program Execution” on page 8-18

e “External Mode Communication” on page 8-19

® “Data Logging in Single-Tasking and Multitasking Model Execution” on
page 8-20

¢ “Rapid Prototyping and Embedded Model Execution Differences” on page
8-22

* “Rapid Prototyping Model Functions” on page 8-23
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Entry Point Functions and Scheduling

The following functions represent entry points in the generated code for a

Simulink model.

Function

Description

model_initialize

Initialization entry point in
generated code for Simulink model.
The model _initialize function
performs model initialization and
should be called once before you
start executing your model.

model_SetEventsForThisBaseStep

Set event flags for multirate,
multitasking operation before calling
model_step for Simulink model —
not generated as of R2008a.

model_step

Step routine entry point in
generated code for Simulink model.
The model_step function contains
the output and update code for
blocks in your model.

model_terminate

Termination entry point in
generated code for Simulink model.
The model_terminate function
contains model shutdown code and
should be called as part of system
shutdown.

For ERT-based models, the calling interface generated for each of these
functions differs significantly depending on how you set the model option
Generate reusable code. By default, Generate reusable code is cleared,
and the model entry point functions access model data with statically
allocated global data structures. When Generate reusable code is selected,
model data structures are passed in (by reference) as arguments to the
model entry point functions. For efficiency, only those data structures that
are actually used in the model are passed in. Therefore when Generate
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reusable code is selected, the argument lists generated for the entry point
functions vary according to the requirements of the model.

The entry points are exported with model.h. To call the entry-point functions
from your hand-written code, add an #include model.h directive to your
code. For ERT-based models, if Generate reusable code is selected, you
must examine the generated code to determine the calling interface required
for these functions.

For ERT-based models, if the model option Single output/update function
(selected by default) is cleared, instead of model step, the following functions

are generated:

® model output: Contains the output code for all blocks in your model.

® model update: Contains the update code for all blocks in your model.

For ERT-based models, if the model option Terminate function required
(selected by default) is cleared, model terminate is not generated.

For more information, see the reference pages for the listed functions.

Note The function reference pages document the default (GRT, or ERT with
Generate reusable code cleared) calling interface generated for these
functions.
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About Model Execution

Before looking at the two styles of generated code, you need to have a
high-level understanding of how the generated model code is executed. The
Simulink Coder software generates algorithmic code as defined by your
model. You can include your own code in your model by using S-functions.
S-functions can range from high-level signal manipulation algorithms to
low-level device drivers.

The Simulink Coder product also provides a run-time interface that executes
the generated model code. The run-time interface and model code are
compiled together to create the model executable. The next figure shows a
high-level object-oriented view of the executable.

Execution driver for model code,
operating system interface routines,
I/0 dependent routines,

solver and data logging routines.

Model code
and S-functions

Run-Time Interface

The Object-Oriented View of a Real-Time Program

In general, the conceptual design of the model execution driver does not
change between the rapid prototyping and embedded style of generated
code. The following sections describe model execution for single-tasking and
multitasking environments both for simulation (non-real-time) and for real
time. For most models, the multitasking environment will provide the most
efficient model execution (that is, fastest sample rate).

The following concepts are useful in describing how models execute.

¢ Initialization: model_initialize initializes the run-time interface code
and the model code.

® ModelOutputs: Calls blocks in your model that have a sample hit at
the current time and has them produce their output. model output can
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be done in major or minor time steps. In major time steps, the output is
a given simulation time step. In minor time steps, the run-time interface
integrates the derivatives to update the continuous states.

® ModelUpdate: model update calls blocks in your model that have a
sample hit at the current point in time and has them update their discrete
states or similar type objects.

® ModelDerivatives: Calls blocks in your model that have continuous
states and havs them update their derivatives. model_derivatives is only
called in minor time steps.

® ModelTerminate: model terminate terminates the program if it is
designed to run for a finite time. It destroys the real-time model data
structure, deallocates memory, and can write data to a file.

The identifying names in the preceding list (ModelOutputs, and so on) identify
functions in pseudocode examples shown in the following sections.

e “Non-Real-Time Single-Tasking Systems” on page 8-6

e “Non-Real-Time Multitasking Systems” on page 8-7

e “Real-Time Single-Tasking Systems” on page 8-9

e “Real-Time Multitasking Systems” on page 8-11

o “Multitasking Systems Using Real-Time Tasking Primitives” on page 8-14
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Non-Real-Time Single-Tasking Systems

The pseudocode below shows the execution of a model for a non-real-time
single-tasking system.

main()
{
Initialization
While (time < final time)
ModelOutputs -- Major time step.
LogTXY -- Log time, states and root outports.
ModelUpdate -- Major time step.
Integrate -- Integration in minor time step for
-- models with continuous states.
ModelDerivatives
Do O or more
ModelOutputs
ModelDerivatives
EndDo -- Number of iterations depends upon the solver
Integrate derivatives to update continuous states.
EndIntegrate
EndWhile
Termination
}

The initialization phase begins first. This consists of initializing model states
and setting up the execution engine. The model then executes, one step at

a time. First ModelOutputs executes at time ¢, then the workspace I/0O data
1s logged, and then ModelUpdate updates the discrete states. Next, if your
model has continuous states, ModelDerivatives integrates the continuous

states’ derivatives to generate the states for time ¢,,,, =¢+h, where A is the
step size. Time then moves forward to ¢,,,, and the process repeats.

During the ModelOutputs and ModelUpdate phases of model execution, only
blocks that reach the current point in time execute.
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Non-Real-Time Multitasking Systems

The pseudocode below shows the execution of a model for a non-real-time
multitasking system.

main()
{
Initialization
While (time < final time)
ModelOutputs(tid=0) -- Major time step.
LogTXY -- Log time, states, and root
-- outports.
ModelUpdate (tid=0) -- Major time step.
Integrate -- Integration in minor time step for
-- models with continuous states.
ModelDerivatives

Do O or more
ModelOutputs(tid=0)
ModelDerivatives
EndDo (Number of iterations depends upon the solver.)
Integrate derivatives to update continuous states.
EndIntegrate
For i=1:NumTids
ModelOutputs(tid=i) -- Major time step.
ModelUpdate(tid=i) -- Major time step.
EndFor
EndWhile
Termination

}

Multitasking operation is more complex than single-tasking execution because
the output and update functions are subdivided by the task identifier (tid)
that is passed into these functions. This allows for multiple invocations of
these functions with different task identifiers using overlapped interrupts, or
for multiple tasks when using a real-time operating system. In simulation,
multiple tasks are emulated by executing the code in the order that would
occur if no preemption existed in a real-time system.

Multitasking execution assumes that all task rates are multiples of the
base rate. The Simulink product enforces this when you create a fixed-step
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multitasking model. The multitasking execution loop is very similar to that
of single-tasking, except for the use of the task identifier (tid) argument
to ModelOutputs and ModelUpdate.
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Real-Time Single-Tasking Systems

The pseudocode below shows the execution of a model in a real-time
single-tasking system where the model is run at interrupt level.

rtOneStep()

{

}

Check for interrupt overflow
Enable "rtOneStep" interrupt

ModelOutputs -- Major time step.
LogTXY -- Log time, states and root outports.
ModelUpdate -- Major time step.
Integrate -- Integration in minor time step for models
-- with continuous states.
ModelDerivatives
Do O or more
ModelOutputs
ModelDerivatives

EndDo (Number of iterations depends upon the solver.)
Integrate derivatives to update continuous states.
EndIntegrate

main()

{

}

Initialization (including installation of rtOneStep as an
interrupt service routine, ISR, for a real-time clock).
While(time < final time)

Background task.
EndWhile
Mask interrupts (Disable rtOneStep from executing.)
Complete any background tasks.
Shutdown

Real-time single-tasking execution is very similar to non-real-time
single-tasking execution, except that instead of free-running the code, the
rt_OneStep function is driven by a periodic timer interrupt.
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At the interval specified by the program’s base sample rate, the interrupt
service routine (ISR) preempts the background task to execute the model code.
The base sample rate is the fastest in the model. If the model has continuous
blocks, then the integration step size determines the base sample rate.

For example, if the model code is a controller operating at 100 Hz, then
every 0.01 seconds the background task is interrupted. During this
interrupt, the controller reads its inputs from the analog-to-digital converter
(ADC), calculates its outputs, writes these outputs to the digital-to-analog
converter (DAC), and updates its states. Program control then returns to the
background task. All of these steps must occur before the next interrupt.
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Real-Time Multitasking Systems

The following pseudocode shows how a model executes in a real-time
multitasking system where the model is run at interrupt level.

rtOneStep()

{

Check for interrupt overflow
Enable "rtOneStep" interrupt

ModelOutputs(tid=0) -- Major time step.
LogTXY -- Log time, states and root outports.
ModelUpdate (tid=0) -- Major time step.
Integrate -- Integration in minor time step for

-- models with continuous states.
ModelDerivatives
Do O or more
ModelOutputs(tid=0)
ModelDerivatives
EndDo (Number of iterations depends upon the solver.)
Integrate derivatives and update continuous states.
EndIntegrate
For i=1:NumTasks
If (hit in task 1)
ModelOutputs(tid=1i)
ModelUpdate (tid=1i)

EndIf
EndFor
}
main()
{
Initialization (including installation of rtOneStep as an
interrupt service routine, ISR, for a real-time clock).
While(time < final time)
Background task.
EndWhile
Mask interrupts (Disable rtOneStep from executing.)
Complete any background tasks.
Shutdown
}
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Running models at interrupt level in a real-time multitasking environment
is very similar to the previous single-tasking environment, except that
overlapped interrupts are employed for concurrent execution of the tasks.

The execution of a model in a single-tasking or multitasking environment
when using real-time operating system tasking primitives is very similar to
the interrupt-level examples discussed above. The pseudocode below is for a
single-tasking model using real-time tasking primitives.

tSingleRate()
{
MainLoop:
If clockSem already "given", then error out due to overflow.
Wait on clockSem

ModelOutputs -- Major time step.
LogTXY -- Log time, states and root
-- outports
ModelUpdate -- Major time step
Integrate -- Integration in minor time step
-- for models with continuous
-- states.
ModelDeriviatives
Do O or more
ModelOutputs
ModelDerivatives

EndDo (Number of iterations depends upon the solver.)
Integrate derivatives to update continuous states.
EndIntegrate
EndMainLoop
}

main()
{
Initialization
Start/spawn task "tSingleRate".
Start clock that does a "semGive" on a clockSem semaphore.
Wait on "model-running" semaphore.
Shutdown
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In this single-tasking environment, the model executes as real-time operating
system tasking primitives. In this environment, create a single task
(tSingleRate) to run the model code. This task is invoked when a clock tick
occurs. The clock tick gives a clockSem (clock semaphore) to the model task
(tSingleRate). The model task waits for the semaphore before executing.
The clock ticks occur at the fundamental step size (base rate) for your model.
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Multitasking Systems Using Real-Time Tasking Primitives

The pseudocode below is for a multitasking model using real-time tasking
primitives.

tSubRate (subTaskSem,1i)
{
Loop:
Wait on semaphore subTaskSem.
ModelOutputs(tid=1i)
ModelUpdate (tid=1i)
EndLoop
}
tBaseRate()
{
MainLoop:
If clockSem already "given", then error out due to overflow.
Wait on clockSem
For i=1:NumTasks
If (hit in task 1)
If task i is currently executing, then error out due to
overflow.
Do a "semGive" on subTaskSem for task 1i.
EndIf
EndFor
ModelOutputs(tid=0) -- major time step.
LogTXY -- Log time, states and root outports.
ModelUpdate (tid=0) -- major time step.
Loop: -- Integration in minor time step for
-- models with continuous states.
ModelDeriviatives
Do 0 or more
ModelOutputs(tid=0)
ModelDerivatives
EndDo (number of iterations depends upon the solver).
Integrate derivatives to update continuous states.
EndLoop
EndMainLoop
}

main()
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{
Initialization
Start/spawn task "tSubRate".
Start/spawn task "tBaseRate".
Start clock that does a "semGive" on a clockSem semaphore.
Wait on "model-running" semaphore.
Shutdown
}

In this multitasking environment, the model is executed using real-time
operating system tasking primitives. Such environments require several
model tasks (tBaseRate and several tSubRate tasks) to run the model code
The base rate task (tBaseRate) has a higher priority than the subrate tasks.
The subrate task for tid=1 has a higher priority than the subrate task for
tid=2, and so on. The base rate task is invoked when a clock tick occurs. The
clock tick gives a clockSem to tBaseRate. The first thing tBaseRate does is
give semaphores to the subtasks that have a hit at the current point in time.
Because the base rate task has a higher priority, it continues to execute. Next
it executes the fastest task (tid=0), consisting of blocks in your model that
have the fastest sample time. After this execution, it resumes waiting for the
clock semaphore. The clock ticks are configured to occur at the fundamental
step size for your model.
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Program Timing

Real-time programs require careful timing of the task invocations (either by
using an interrupt or a real-time operating system tasking primitive) so that
the model code executes to completion before another task invocation occurs.
This includes time to read and write data to and from external hardware.

The next figure illustrates interrupt timing.

Sample interval is appropriate for this model code execution.

A

A A A

» time
' Time to execute ! 1 , ,
' the model code ' Time available to process background tasks
Sample interval is too short for this model code execution.

» time

' Time to execute the model code

Task Timing

The sample interval must be long enough to allow model code execution
between task invocations.

In the figure above, the time between two adjacent vertical arrows is the
sample interval. The empty boxes in the upper diagram show an example of a
program that can complete one step within the interval and still allow time
for the background task. The gray box in the lower diagram indicates what
happens if the sample interval is too short. Another task invocation occurs
before the task is complete. Such timing results in an execution error.

Note also that, if the real-time program is designed to run forever (that is,

the final time is O or infinite so that the while loop never exits), then the
shutdown code does not execute.
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For more information on how the timing engine works, see “Timers” on page
1-78.
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Program Execution

As the previous section indicates, a real-time program cannot require 100%
of the CPU’s time. This provides an opportunity to run background tasks
during the free time.

Background tasks include operations such as writing data to a buffer or file,
allowing access to program data by third-party data monitoring tools, or using

Simulink external mode to update program parameters.

It is important, however, that the program be able to preempt the background
task so the model code can execute in real time.

The way the program manages tasks depends on capabilities of the
environment in which it operates.
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External Mode Communication

External mode allows communication between the Simulink block diagram
and the standalone program that is built from the generated code. In this
mode, the real-time program functions as an interprocess communication
server, responding to requests from the Simulink engine.
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Data Logging in Single-Tasking and Multitasking Model

Execution

The Simulink Coder data-logging features, described in “Debug” on page

9-84, enable you to save system states, outputs, and time to a MAT-file at the
completion of the model execution. The LogTXY function, which performs data
logging, operates differently in single-tasking and multitasking environments.

If you examine how LogTXY is called in the single-tasking and multitasking
environments, you will notice that for single-tasking LogTXY is called

after ModelOutputs. During this ModelOutputs call, blocks that have

a hit at time ¢ execute, whereas in multitasking, LogTXY is called after
ModelOutputs(tid=0), which executes only the blocks that have a hit at
time ¢ and that have a task identifier of 0. This results in differences in the
logged values between single-tasking and multitasking logging. Specifically,
consider a model with two sample times, the faster sample time having a
period of 1.0 second and the slower sample time having a period of 10.0
seconds. At time t = k*10, k=0,1,2... both the fast (tid=0) and slow (tid=1)
blocks execute. When executing in multitasking mode, when LogTXY is
called, the slow blocks execute, but the previous value is logged, whereas in
single-tasking the current value is logged.

Another difference occurs when logging data in an enabled subsystem.
Consider an enabled subsystem that has a slow signal driving the enable port
and fast blocks within the enabled subsystem. In this case, the evaluation of
the enable signal occurs in a slow task, and the fast blocks see a delay of one
sample period; thus the logged values will show these differences.

To summarize differences in logged data between single-tasking and
multitasking, differences will be seen when

® Any root outport block has a sample time that is slower than the fastest
sample time

® Any block with states has a sample time that is slower than the fastest
sample time

¢ Any block in an enabled subsystem where the signal driving the enable
port is slower than the rate of the blocks in the enabled subsystem
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For the first two cases, even though the logged values are different between
single-tasking and multitasking, the model results are not different. The only
real difference is where (at what point in time) the logging is done. The third
(enabled subsystem) case results in a delay that can be seen in a real-time
environment.
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Rapid Prototyping and Embedded Model Execution
Differences

The rapid prototyping program framework provides a common application
programming interface (API) that does not change between model definitions.

The Embedded Coder product provides a different framework called the
embedded program framework. The embedded program framework provides
an optimized API that is tailored to your model. When you use the embedded
style of generated code, you are modeling how you would like your code to
execute in your embedded system. Therefore, the definitions defined in your
model should be specific to your embedded targets. Items such as the model
name, parameter, and signal storage class are included as part of the API for
the embedded style of code.

One major difference between the rapid prototyping and embedded style of
generated code is that the latter contains fewer entry-point functions. The
embedded style of code can be configured to have only one run-time function,
model_step.

Thus, when you look again at the model execution pseudocode presented
earlier in this chapter, you can eliminate the Loop...EndLoop statements,
and group ModelOutputs, LogTXY, and ModelUpdate into a single statement,
model_step.

For more information about how generated embedded code executes, see
“Entry Point Functions and Scheduling” on page 8-2.
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Rapid Prototyping Model Functions

The rapid prototyping code defines the following functions that interface with
the run-time interface:

® Model(): The model registration function. This function initializes the
work areas (for example, allocating and setting pointers to various data
structures) used by the model. The model registration function calls the
MdlInitializeSizes and MdlInitializeSampleTimes functions. These
two functions are very similar to the S-function md1InitializeSizes and
mdlInitializeSampleTimes methods.

e MdlStart(void): After the model registration functions
MdlInitializeSizes and MdlInitializeSampleTimes execute, the
run-time interface starts execution by calling Md1Start. This routine is
called once at startup.

The function Md1Start has four basic sections:

= Code to initialize the states for each block in the root model that has
states. A subroutine call is made to the “initialize states” routines of
conditionally executed subsystems.

= Code generated by the one-time initialization (start) function for each
block in the model.

= Code to enable the blocks in the root model that have enable methods,
and the blocks inside triggered or function-call subsystems residing in
the root model. Simulink blocks can have enable and disable methods.
An enable method is called just before a block starts executing, and the
disable method is called just after the block stops executing.

= Code for each block in the model that has a constant sample time.

® MdlOutputs(int_T tid): MdlOutputs updates the output of blocks. The
tid (task identifier) parameter identifies the task that in turn maps when
to execute blocks based upon their sample time. This routine is invoked by
the run-time interface during major and minor time steps. The major time
steps are when the run-time interface is taking an actual time step (that
1s, it is time to execute a specific task). If your model contains continuous
states, the minor time steps will be taken. The minor time steps are when
the solver is generating integration stages, which are points between major
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outputs. These integration stages are used to compute the derivatives used
in advancing the continuous states. The solver is called to updates

® MdlUpdate(int_T tid): MdlUpdate updates the states and work vector
state information (that is, states that are neither continuous nor discrete)
saved in work vectors. The tid (task identifier) parameter identifies the
task that in turn indicates which sample times are active, allowing you to
conditionally update only states of active blocks. This routine is invoked
by the run-time interface after the major Md1Outputs has been executed.
The solver is also called, and model Derivatives is called in minor steps
by the solver during its integration stages. All blocks that have continuous
states have an identical number of derivatives. These blocks are required
to compute the derivatives so that the solvers can integrate the states.

® MdlTerminate(void): MdlTerminate contains any block shutdown code.
MdlTerminate is called by the run-time interface, as part of the termination
of the real-time program.

The contents of the above functions are directly related to the blocks in your
model. A Simulink block can be generalized to the following set of equations.

y= fO(t)xc’xd’u)

Output y is a function of continuous state x_, discrete state x;, and input u.
Each block writes its specific equation in a section of Md10utputs.

Xd+1 = fu(t’xd’u)

The discrete states x, are a function of the current state and input. Each block
that has a discrete state updates its state in Md1lUpdate.

x =[x,

The derivatives x are a function of the current input. Each block that has
continuous states provides its derivatives to the solver (for example, ode5) in
model Derivatives. The derivatives are used by the solver to integrate the
continuous state to produce the next value.

The output, y, is generally written to the block I/O structure. Root-level
Outport blocks write to the external outputs structure. The continuous and
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discrete states are stored in the states structure. The input, u, can originate
from another block’s output, which is located in the block I/O structure, an
external input (located in the external inputs structure), or a state. These
structures are defined in the model.h file that the Simulink Coder software
generates.

The next example shows the general contents of the rapid prototyping style of
C code written to the model.c file.
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Illﬂ'
* Version, Model options, TLC options,
* and code generation information are placed here.

*
<includes=
vold WMd1lStart{void)
{
I'I*
* State initialization code.
* Wodel start-up code - one time initialization code.
* Execute any block enable methods.
* Initialize output of any blocks with constant sample times.
*
}
vold MdlOutputs iint T tid)
{
/* Compute: y = fO0it,xc,xd,u) for each block as needed. */
}
void WMdlUpdate(int_T tid)
{
/* Compute: xd+1 = fuit,xd,u) for each block as needed. */

/* Compute: dxc = fd(t,xc,u) for each block in model derivatives
as needed. */

void Md1lTerminate(void)

/* Perform shutdown code for any blocks that
have a termination action */

The next figure shows a flow chart describing the execution of the rapid
prototyping generated code.
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Start Execution

MdIStart
MdIOutputs
]
& | MdUpdate
2 |
C
2 model_Derivatives
3
(0]
x
M

MdIOutputs

model_Derivatives

Integration in [ Minor Time Steps

MdITerminate

Rapid Prototyping Execution Flow Chart

Each block places code in specific Md1 routines according to the algorithm that
it is implementing. Blocks have input, output, parameters, and states, as well
as other general items. For example, in general, block inputs and outputs are
written to a block I/O structure (model B). Block inputs can also come from
the external input structure (model U) or the state structure when connected
to a state port of an integrator (model X), or ground (rtGround) if unconnected
or grounded. Block outputs can also go to the external output structure
(model Y). The next figure shows the general mapping between these items.
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External External
inputs SB,:&%‘; o P | outputs
struct model B h ?|  struct
model_U - model Y
rtGround > Block < b
. < Work
4 structs
rtRWork,
- ¥ rtIWork,
rtPWork,
States Parameter .
struct struct
model X model P

Data View of the Generated Code
The following list defines the structures shown in the preceding figure:

¢ Block I/O structure (model B): This structure consists of persistent block
output signals. The number of block output signals is the sum of the
widths of the data output ports of all nonvirtual blocks in your model. If
you activate block I/O optimizations, the Simulink and Simulink Coder
products reduce the size of the model B structure by

= Reusing the entries in the model B structure
= Making other entries local variables
See “Signals” on page 7-52 for more information on these optimizations.

Structure field names are determined either by the block’s output signal
name (when present) or by the block name and port number when the
output signal is left unlabeled.

® Block states structures: The continuous states structure (model X)
contains the continuous state information for blocks in your model that

have continuous states. Discrete states are stored in a data structure called

the DWork vector (model DWork).
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Block parameters structure (model P): The parameters structure contains
block parameters that can be changed during execution (for example, the
parameter of a Gain block).

External inputs structure (model U): The external inputs structure consists
of all root-level Inport block signals. Field names are determined by either
the block’s output signal name, when present, or by the Inport block’s name
when the output signal is left unlabeled.

External outputs structure (model Y): The external outputs structure
consists of all root-level Outport blocks. Field names are determined by the
root-level Outport block names in your model.

Real work, integer work, and pointer work structures (model RWork,
model IWork, model PWork): Blocks might have a need for real, integer,
or pointer work areas. For example, the Memory block uses a real work
element for each signal. These areas are used to save internal states or
similar information.
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Code Generation

¢ Chapter 9, “Configuration”
¢ Chapter 10, “Source Code Generation”

¢ Chapter 11, “Report Generation”






Configuration

® “Code Generation Configuration” on page 9-2

® “Open the Model Configuration for Code Generation” on page 9-3
¢ “Configure a Model Programmatically” on page 9-4

® “Application Objectives” on page 9-6

e “Target” on page 9-11

e “Select the Target Language” on page 9-73

¢ “Configure Code Comments” on page 9-74

¢ “Construction of Generated Identifiers” on page 9-76

¢ “Identifier Name Collisions and Mangling” on page 9-77

o “Specify Identifier Length to Avoid Naming Collisions” on page 9-78
o “Specify Reserved Names for Generated Identifiers” on page 9-79
¢ “Reserved Keywords” on page 9-80

® “Debug” on page 9-84
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When you are ready to generate code for a model, you can modify the model
configuration parameters specific to code generation. The code generation
parameters determine how the Simulink Coder software generates code and
builds an executable from your model.

Your application objectives might include a combination of the following code
generation objectives: debugging, traceability, execution efficiency, and safety
precaution. There are tradeoffs associated with these configuration choices,
such as execution speed and memory usage. You can use the Model Advisor
and the Code Generation Advisor to help configure a model to achieve your
application objectives. For more information, see “Advice About Optimizing
Models for Code Generation” on page 16-4 and “Check and Configure Model
for Code Generation Objectives Using Configuration Parameters Dialog Box”
on page 9-9.

You modify the model configuration parameters for code generation in the
Code Generation and Optimization panes of the Configuration Parameters
dialog box. The content of the Code Generation pane and its subpanes

can change depending on the target that you specify. To open the Code
Generation pane, see “Open the Model Configuration for Code Generation”
on page 9-3. Some configuration options are available only with the Embedded
Coder product. The Optimization pane includes code generation parameters
that help to improve the performance of the generated code.

To automate the configuration of models, you can use the set_param
function from the MATLAB command line to adjust the model configuration
parameters. For more information, see “Parameter Command-Line
Information Summary” in the Simulink Coder documentation. For an
example of automating the configuration of a model, see “Configure a Model
Programmatically” on page 9-4.
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Open the Model Configuration for Code Generation

To modify the model configuration parameters for code generation, open the
Code Generation pane. There are four ways to open the Code Generation
pane from the Simulink editor:

® To open the Configuration Parameters dialog box, click the model
configuration parameters icon:

and select Code Generation.

¢ From the Simulation menu, select Model Configuration Parameters.
When the Configuration Parameters dialog box opens, click Code
Generation in the Select (left) pane.

¢ From the Code menu, select C/C++ Code > Code Generation Options.

®* From the View menu in the model window, select Model Explorer, or

from the MATLAB command line, type daexplr and press Enter. In the
Model Explorer, expand the node for the current model in the left pane and
click Configuration (active). The configuration elements are listed in
the middle pane. Clicking one of these elements displays the corresponding
parameters in the right pane. Alternatively, right-clicking the Code
Generation element in the middle pane and choosing Properties from
the context menu opens the Code Generation pane in a separate window.

Note In a Configuration Parameters dialog box, when you change a check
box, menu selection, or edit field, the white background of the element turns
to light yellow to indicate that you made an unsaved change. When you click
OK, Cancel, or Apply, the background resets to white.

For more information on model configurations, see “Configuration Sets”.



9 Configuration

Configure a Model Programmatically

This example shows you how to modify code generation parameters for the
active configuration set from the MATLAB command line. Use this approach
for creating a script that automates setting parameters for an established
model configuration. The configuration parameters that you can get and

set are listed in “Parameter Command-Line Information Summary” in the
Simulink Coder reference.

In this example, you modify the configuration parameters to support the Code
Generation Advisor application objective, Execution efficiency.

Step 1. Open a model.

slexAircraftExample

Step 2. Get the active configuration set.

cs = getActiveConfigSet(model);

Step 3. Select the Generic Real-Time (GRT) target.

switchTarget(cs, 'grt.tlc',[]);
Step 4. Modify parameters to optimize execution speed.

If your application objective is Execution efficiency, use set_param to
modify the following parameters:

set_param(cs, 'MatFilelLogging', 'off');
set_param(cs, 'SupportNonFinite', 'off');
set_param(cs, 'RTWCompilerOptimization', 'on');
set_param(cs, 'OptimizeBlockIOStorage', 'on');
set_param(cs, 'EnhancedBackFolding', 'on');
set_param(cs, 'ConditionallyExecutelInputs',‘'on')
set_param(cs, 'InlineParams', 'on');
set_param(cs, 'BooleanDataType','on');
set_param(cs, 'BlockReduction','on');
set_param(cs, 'ExpressionFolding', 'on');
set_param(cs, 'LocalBlockOutputs', 'on');
set_param(cs, 'EfficientFloat2IntCast', 'on');
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set_param(cs, 'BufferReuse','on');
Step 5. Save the model configuration to a file.

Save the model configuration to a file, "Exec_efficiency _cs.m', and view
the parameter settings.

saveAs(cs, 'Exec_Efficiency_cs');
dbtype Exec_Efficiency_cs 1:50

Using this technique, you can create a script to configure multiple models.
An alternative method for configuring multiple models is to save the
configuration set to the base workspace. Then, create a configuration
reference to point to that configuration set. For more information, see “About
Configuration References”.
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Application Objectives

In this section...

“High-Level Code Generation Objectives” on page 9-6
“Check and Configure Model for Code Generation Objectives” on page 9-7

“Check and Configure Model for Code Generation Objectives Using
Configuration Parameters Dialog Box” on page 9-9

High-Level Code Generation Obijectives

Depending on the type of application that your model represents, you are
likely to have specific code generation objectives. For example, execution
efficiency might be more critical than debugging. If you have specific
objectives, you can quickly configure your model to meet those objectives by
selecting and prioritizing from these code generation objectives:

e Execution efficiency (all targets) — Configure code generation settings to
achieve fast execution time.

® ROM efficiency (ERT-based targets) — Configure code generation settings
to reduce ROM usage.

e RAM efficiency (ERT-based targets) — Configure code generation settings
to reduce RAM usage.

® Traceability (ERT-based targets) — Configure code generation settings to
provide mapping between model elements and code.

e Safety precaution (ERT-based targets) — Configure code generation
settings to increase clarity, determinism, robustness, and verifiability of
the code.

® Debugging (all targets) — Configure code generation settings to debug
the code generation build process.

e MISRA-C:2004 guidelines (ERT-based targets) — Configure code
generation settings to increase compliance with MISRA-C:2004 guidelines.

Based on your objective selections and prioritization, the Code Generation
Advisor checks your model and suggests changes that you can make to
achieve your code generation objectives.
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Note If you select the MISRA-C:2004 guidelines code generation objective,
the Code Generation Advisor checks:

® The model configuration settings for compliance with the MISRA-C:2004
configuration setting recommendations.

® For blocks that are not supported or recommended for MISRA-C:2004
compliant code generation.

Setting code generation objectives and running the Code Generation Advisor
provides information on how to meet code generation objectives for your
model. The Code Generation Advisor does not alter the generated code.

You can use the Code Generation Advisor to make the suggested changes

to your model. The generated code is changed only after you modify your
model and regenerate code. If you use the Code Generation Advisor to set
code generation objectives and check your model, the generated code includes
comments identifying which objectives you specified, the checks the Code
Generation Advisor ran on the model, and the results of running the checks.

For detailed information, see “Application Objectives” in the Embedded Coder
documentation.

Check and Configure Model for Code Generation
Obijectives

This example shows how to configure and check your model to meet code
generation objectives:

1 On the menu bar, select Code > C/C++ Code > Code Generation
Advisor. Alternatively:

® On the toolbar & drop-down list, select Code Generation Advisor.
¢ Right-click a subsystem, and then select C/C++ Code > Code
Generation Advisor. Go to step 3.

2 In the System Selector window, select the model or subsystem that you
want to review, and then click OK.
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3 In the Code Generation Advisor, on the Code Generation Objectives

pane, select the code generation objectives from the drop-down list
(GRT-based targets). As you select objectives, on the left pane, the Code
Generation Advisor updates the list of checks it will run on your model. If
your model is configured with an ERT-based target, more objectives are
available.

Click Run Selected Checks to run the checks listed in the left pane of the
Code Generation Advisor.

In the Code Generation Advisor window, review the results for Check
model configuration settings against code generation objectives by
selecting it from the left pane. The results for that check are displayed in
the right pane.

Check model configuration settings against code generation
objectives triggers a warning for either of these reasons:

® Parameters are set to values other than the value recommended for the
specified code generation objectives.

® Selected code generation objectives differ from the objectives set in the
model.
Click Modify Parameters to set:

® Parameter to the value recommended for the specified code generation
objectives.

® (Code generation objectives in the model to the objectives specified in the
Code Generation Advisor.

In the Code Generation Advisor window, review the results for the
remaining checks by selecting them from the left pane. The results for that
check are displayed in the right pane.

7 After reviewing the check results, you can choose to fix warnings and

failures, as described in “Fix a Warning or Failure”.
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Note When you specify an efficiency or safety precaution objective, the Code
Generation Advisor includes additional checks.

When you make changes to one check, the other check results are not valid.
You must run the checks again.

Check and Configure Model for Code Generation
Objectives Using Configuration Parameters Dialog
Box

This example shows how to check and configure the code generation objectives
in the Configuration Parameters dialog box:

1 Open the Configuration Parameters dialog box and select Code
Generation.

2 Select or confirm selection of a System target file.

3 Specify the objectives using the Select objectives drop down list
(GRT-based targets) or clicking Set objectives button (ERT-based targets).
Clicking Set objectives opens the “Set Objectives — Code Generation
Advisor Dialog Box” dialog box.

4 Click Check model to run the model checks. The Code Generation Advisor
dialog box opens. The Code Generation Advisor uses the code generation
objectives to determine which model checks to run.

5 On the left pane, the Code Generation Advisor lists the checks run on
the model and the results. Click each warning to see the suggestions for
changes that you can make to your model to pass the check.

6 Determine which changes to make to your model. On the right pane of
the Code Generation Advisor, follow the instructions listed for each check
to modify the model.

To run the Code Generation Advisor during code generation, on the
Code Generation pane, set the Check model before generating code
parameter to either:
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® On (stop for warnings) - Code generation stops with a check warning.
The Code Generation Advisor dialog box opens as described in step 5.

® On (proceed with warnings) - Code generation proceeds with check
warnings. The Code Generation Advisor interface opens with a list of the
checks it ran on the model, along with the results.

For more information, see “Set Objectives — Code Generation Advisor Dialog
Box”
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In this section...

“Hardware Targets” on page 9-11

“Available Targets” on page 9-12

“About Targets and Code Formats” on page 9-16

“Types of Target Code Formats” on page 9-18

“Targets and Code Formats” on page 9-29

“Targets and Code Styles” on page 9-30

“Backwards Compatibility of Code Formats” on page 9-31
“Selecting a Target” on page 9-35

“Template Makefiles and Make Options” on page 9-38

“Custom Targets” on page 9-45

“Describing the Emulation and Embedded Targets” on page 9-45
“Describing Embedded Hardware Characteristics” on page 9-55
“Describing Emulation Hardware Characteristics” on page 9-56

“Specifying Target Interfaces” on page 9-58

“Selecting and Viewing Code Replacement Libraries” on page 9-62

Hardware Targets

When you use Simulink software to create and execute a model, and Simulink
Coder software to generate code, you may need to consider up to three
platforms, often called hardware targets:

e MATLAB Host — The platform that runs MathWorks software during
application development

¢ Embedded Target — The platform on which an application will be deployed
when it is put into production

¢ Emulation Target — The platform on which an application under
development is tested before deployment
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The same platform might serve in two or possibly all three capacities, but they
remain conceptually distinct. Often the MATLAB host and the emulation
target are the same. The embedded target is usually different from, and less
powerful than, the MATLAB host or the emulation target; often it can do little
more than run a downloaded executable file.

When you use Simulink software to execute a model for which you will

later generate code, or use Simulink Coder software to generate code for
deployment on an embedded target, you must provide information about the
embedded target hardware and the compiler that you will use with it. The
Simulink software uses this information to produce bit-true agreement for the
results of integer and fixed-point operations performed in simulation and in
code generated for the embedded target. The Simulink Coder code generator
uses the information to create code that executes with maximum efficiency.

When you generate code for testing on an emulation target, you must
additionally provide information about the emulation target hardware

and the compiler that you will use with it. The code generator uses this
information to create code that provides bit-true agreement for the results of
integer and fixed-point operations performed in simulation, in code generated
for the embedded target, and in code generated for the emulation target.

The agreement is possible even though the embedded target and emulation
target may use very different hardware, and the compilers for the two targets
may use different defaults where the C standard does not completely define
behavior.

Available Targets

The following table lists supported system target files and their associated
code formats. The table also gives references to relevant manuals or chapters
in this book. These targets are built using the make rtw make command.

Note You can select from a range of targets of using the System Target File
Browser. This allows you to experiment with configuration options and save
your model with different configurations. However, you cannot build or
generate code for non-GRT targets unless you have the required license on
your system (Embedded Coder license for ERT, Real-Time Windows Target
license for RTWIN, and so on).




Target

Each system target file invokes one or more template makefiles. The template
makefile that is invoked activates a particular compiler (for example, Lcc,
gee, or Watcom compilers). This is specified for you by MEXOPTS, which 1s
determined when you run mex -setup to select a compiler for mex. One
exception is the Microsoft Visual C++® project target, which has separate
System Target File Browser entries.
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Targets Available from the System Target File Browser

Target/Code
Format

System Target
File

Template Makefile
and Comments

Reference

Embedded Coder
(for PC or UNIX?
platforms)

ert.tlc
ert_shrlib.tlc

ert_default_ tmf

Use mex -setup to
configure for Lcc,
Watcom, ve, gee, and
other compilers

“Target” (Embedded
Coder topic)

Embedded Coder
for Visual C++*
Solution File

ert.tlc

RTW.MSVCBuild

Creates and builds
Visual C++ Solution
(.sln) file

“Target” (Embedded
Coder topic)

Embedded Coder for
AUTOSAR

autosar.tlc

ert_default_ tmf

“Target” (Embedded
Coder topic)

Generic Real-Time | grt.tlc grt_default tmf “Targets and Code
for PC or UNIX Formats” on page 9-29
latf Use mex -setup to
platiorms configure for Lce,
Watcom, ve, gee, and
other compilers
Generic Real-Time | grt.tlc RTW.MSVCBuild “Targets and Code
féorl \?sua%‘.?++ Creates and builds Formats” on page 9-29
orution tiie Visual C++ Solution
(.sln) file
Rapid Simulation rsim.tlc rsim_default tmf “Rapid Simulations” on

Target (default
for PC or UNIX
platforms)

Use mex -setup to
configure

page 12-2

3. UNIX® is a registered trademark of The Open Group in the United States and other
countries.

4. Visual C++® is a registered trademark of Microsoft® Corporation.
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Targets Available from the System Target File Browser (Continued)

Target/Code System Target | Template Makefile

Format File and Comments Reference

Rapid Simulation rsim.tlc rsim_lcc.tmf “Rapid Simulations” on
Target for LCC page 12-2

compiler

Rapid Simulation rsim.tlc rsim_unix.tmf “Rapid Simulations” on
Target for UNIX page 12-2

platforms

Rapid Simulation rsim.tlc rsim_vc.tmf “Rapid Simulations” on
Target for Visual page 12-2

C++ compiler

Rapid Simulation rsim.tlc rsim_watc.tmf “Rapid Simulations” on

Target for Watcom
compiler

page 12-2

S-Function Target
for PC or UNIX
platforms

rtwsfcn.tlc

rtwsfcn_default_tmf

Use mex -setup to
configure

“Generated S-Function
Block” on page 12-33

S-Function Target
for LCC

rtwsfcn.tlc

rtwsfcn_lcc.tmf

“Generated S-Function
Block” on page 12-33

S-Function Target
for UNIX platforms

rtwsfcn.tlc

rtwsfcn_unix.tmf

“Generated S-Function
Block” on page 12-33

S-Function Target
for Visual C++
compiler

rtwsfcn.tlc

rtwsfcn_vc.tmf

“Generated S-Function
Block” on page 12-33

S-Function Target
for Watcom

rtwsfcn.tlc

rtwsfcn_watc.tmf

“Generated S-Function
Block” on page 12-33

Tornado (VxWorks)
Real-Time Target

tornado.tlc

tornado. tmf

“Asynchronous Support”
on page 1-35

ASAM-ASAP2 Data
Definition Target

asap2.tlc

asap2_default_tmf

“ASAP2 Data
Measurement and
Calibration” on page
15-172
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Targets Available from the System Target File Browser (Continued)

Target/Code System Target | Template Makefile

Format File and Comments Reference

Real-Time Windows | rtwin.tlc rtwin.tmf “Use Simulink Models”

Target for Open rtwinert.tlc rtwinert.tmf (Real-Time Windows

Watcom Target topic)

xPC Target for xpctarget.tlc xpc_default tmf “xPC Target Options

Visual C++ or xpctargetert.tlc| xpc_ert_tmf Configuration

Watcom C/C++ Xpc_vc.tmf Parameters” (xPC Target

compilers xpc_watc.tmf topic)

IDE Link capability | idelink_grt.tlc | N/A Desktop IDE/target topics

idelink_ert.tlc such as “Model Setup”

on page 25-2; Embedded
IDE/target topics such as
“Model Setup” (Embedded
Coder topic)

Targets Supporting Nonzero Start Time

When you try to build models with a nonzero start time, if the selected target
does not support a nonzero start time, the Simulink Coder software does not
generate code and displays an error message. The Rapid Simulation (RSim)
target supports a nonzero start time when the RSim Target > Solver
selection parameter in the Configuration Parameters dialog box is set to
Use Simulink solver module. The other listed targets do not support a
nonzero start time.

About Targets and Code Formats

A target (such as the GRT target) is an environment for generating and
building code intended for execution on a certain hardware or operating
system platform. A target is defined at the top level by a system target file,
which in turn invokes other target-specific files.

A code format (such as embedded or real-time) is one property of a target.
The code format controls decisions made at several points in the code
generation process. These include whether and how certain data structures
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are generated (for example, SimStruct or rtModel), whether or not static

or dynamic memory allocation code is generated, and the calling interface
used for generated model functions. In general, the Embedded-C code format
is more efficient than the RealTime code format. Embedded-C code format
provides more compact data structures, a simpler calling interface, and static
memory allocation. These characteristics make the Embedded-C code format
the preferred choice for production code generation.

Before Release 14, only the ERT target and targets derived from the ERT
target used the Embedded-C code format. Non-ERT targets used other code
formats (for example, RealTime).

Beginning in R14, the GRT target uses the Embedded-C code format for back
end code generation. This includes generation of both algorithmic model code
and supervisory timing and task scheduling code. Between R14 and R2012a,
the GRT target (and derived targets) generated a RealTime code format
wrapper around the Embedded-C code. This wrapper provided a calling
interface that was backward compatible with existing GRT-based custom
targets. The wrapper calls were compatible with the main program module
of the GRT target (grt_main.c or grt_main.cpp). This use of wrapper calls
incurred some calling overhead; the pure Embedded-C calling interface
generated by the ERT target was more highly optimized.

Beginning in R2012a, GRT targets generate code with the same optimized
Embedded-C call interface as ERT targets. This simplifies the task of
interacting with the generated code. Target authors can author simpler
main.c or .cpp programs for GRT targets. Also, it is not required to author
different main programs for GRT and ERT targets.

For a description of the optimized call interface generated by default for
both the GRT and ERT targets, see “Entry Point Functions and Scheduling”
on page 8-2.

Code format unification has simplified the conversion of pre-R2012a
GRT-based custom targets to ERT-based targets. See “Making Pre-R2012a
Custom GRT-Based Targets ERT-Compatible” on page 9-26 for a discussion
of target conversion issues.
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Types of Target Code Formats

e “Real-Time Code Format” on page 9-21
e “S.Function Code Format” on page 9-23
e “Embedded Code Format” on page 9-24

Your choice of code format is the most important code generation option.
The code format specifies the overall framework of the generated code and
determines its style.

When you choose a target, you implicitly choose a code format. Typically, the
system target file will specify the code format by assigning the TLC variable
CodeFormat. The following example is from ert.tlc.

%sassign CodeFormat = "Embedded-C"

If the system target file does not assign CodeFormat, the default is RealTime
(as in grt.tlc).

If you are developing a custom target, you must consider which code format is
best for your application and assign CodeFormat accordingly.

Choose the RealTime code format for rapid prototyping. If your application
does not have significant restrictions in code size, memory usage, or stack
usage, you might want to continue using the generic real-time (GRT) target
throughout development.

For production deployment, and when your application demands that you
limit source code size, memory usage, or maintain a simple call structure, you
should use the Embedded-C code format. Consider using the Embedded Coder
product, if you need added flexibility to configure and optimize code.

Finally, you should choose the Model Reference or the S-function formats if
you are not concerned about RAM and ROM usage and want to

¢ Use a model as a component, for scalability

® Create a proprietary S-function MEX-file object

¢ Interface the generated code using the S-function C API
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® Speed up your simulation

The following table summarizes how different targets support applications:

Application

Targets

Fixed- or variable-step

acceleration

RSIM, S-Function, Model Reference

Fixed-step real-time

deployment

GRT, ERT, xPC Target, Wind River
Systems Tornado, Real-Time Windows
Target, Texas Instruments™ DSP, ...

The following table summarizes the various options available for each

Simulink Coder code format/target, with the exceptions noted.

Features Supported by Simulink Coder Targets and Code Formats

Wind River
ERT Systems Other
Shared | VxWorks | S- RT Supported
Feature GRT| ERT | Library | /Tornado | Func | RSIM | Win | xPC | Targets!
Static X X X X X X
memory
allocation
Dynamic X4 X X X X
memory
allocation
Continuous X X X X X X X
time
C/C++ MEX | X X X X X X X
S-functions
(noninlined)
S-function X X X X X X X X
(inlined)
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Features Supported by Simulink Coder Targets and Code Formats (Continued)

Wind River
ERT Systems Other
Shared | VxWorks | S- RT Supported
Feature GRT| ERT | Library | /Tornado | Func | RSIM | Win | xPC | Targets'

Minimize X X2 X2 X
RAM/ROM
usage

Supports X X X X X X
external
mode

Rapid X X X X X
prototyping

Production X X2 X2 X3
code

Batch X X
parameter
tuning and
Monte Carlo
methods

System-level X
Simulator

Executes in X3 | X3 X X X X5
hard real
time

Non-real-time | X X X
executable
included

Multiple X45 | X45 X4 X5 X4 5
instances of
model
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Features Supported by Simulink Coder Targets and Code Formats (Continued)

Wind River

ERT Systems Other
Shared | VxWorks | S- RT Supported
Feature GRT| ERT | Library | /Tornado | Func | RSIM | Win | xPC | Targets'
Supports X X
variable-step
solvers
Supports X X
SIL/PIL

IThe Embedded Targets capabilities in Simulink Coder support other targets.

2Does not apply to GRT based targets. Applies only to an ERT based target.

3The default GRT and ERT rt_main files emulate execution of hard real time,
and when explicitly connected to a real-time clock execute in hard real time.

“You can generate code for multiple instances of a Stateflow chart or
subsystem containing a chart, except when the chart contains exported
graphical functions or the Stateflow model contains machine parented events.

5You must enable Generate reusable code in the Code
Generation > Interface pane of the Configuration Parameters dialog box.

Real-Time Code Format

® “About Real-Time Code Format” on page 9-22

¢ “Unsupported Blocks” on page 9-23

® “System Target Files” on page 9-23

* “Template Makefiles” on page 9-23
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About Real-Time Code Format. The real-time code format (corresponding
to the generic real-time target) is useful for rapid prototyping applications. If
you want to generate real-time code while iterating model parameters rapidly,
you should begin the design process with the generic real-time target. The
real-time code format supports:

¢ Continuous time
® Continuous states

e C/C++ MEX S-functions (inlined and noninlined)

For more information on inlining S-functions, see “Insert S-Function Code” on
page 14-45 and “Inlining S-Functions”.

By default, the real-time code format declares memory statically, that is, at
compile time. However, if you select the model configuration option Generate
reusable code, the real-time code format supports the following additional
capabilities:

® Declare memory dynamically.

For MathWorks blocks, malloc calls are limited to the model initialization
code. Generated code is designed to be free from memory leaks, provided
that the model termination function is called.

® Deploy multiple instances of the same model with each instance
maintaining its own unique data.

¢ Combine multiple models together in one executable. For example, to
integrate two models into one larger executable, the real-time code format
maintains a unique instance of each of the two models. If you do not use
Generate reusable code, the code generator will not necessarily create
uniquely named data structures for each model, potentially resulting in
name clashes.

rt_malloc_main.c, the main routine for the generic real-time (GRT)
target with Generate reusable code selected, supports one model by
default. See “Use GRT with Generate Reusable Code Option to Combine
Models” on page 4-4 for information on modifying rt_malloc_main.c

to support multiple models. rt_malloc_main.c is located in the folder
matlabroot/rtw/c/src/common.
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Unsupported Blocks. The real-time format does not support the following
built-in user-defined blocks:
¢ Interpreted MATLAB Function block (note that Fen blocks are supported)

e S-Function block — MATLAB language S-functions, Fortran S-functions,
or C/C++ MEX S-functions that call into the MATLAB environment (Fcn
block calls are supported)

System Target Files.

® grt.tlc - Generic Real-Time Target
® rsim.tlc - Rapid Simulation Target

® tornado.tlc - Tornado (VxWorks) Real-Time Target
Template Makefiles.

* grt
= grt_lcc.tmf — Lcc compiler
= grt_unix.tmf — The Open Group UNIX host
= grt_vc.tmf — Microsoft Visual C++
= grt_watc.tmf — Watcom C
® rsim
= rsim_lcc.tmf — Lcc compiler
= rsim_unix.tmf — UNIX host
= rsim_vc.tmf — Visual C++
= rsim_watc.tmf — Watcom C
® tornado.tmf

e win_watc.tmf

S-Function Code Format

The S-function code format (corresponding to the S-function target) generates
code that conforms to the Simulink MEX S-function API. Using the S-function
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target, you can build an S-function component and use it as an S-Function
block in another model.

The S-function code format is also used by the accelerated simulation target
to create the Accelerator MEX-file.

In general, you should not use the S-function code format in a system target
file. However, you might need to do special handling in your inlined TLC
files to account for this format. You can check the TLC variable CodeFormat
to see if the current target is a MEX-file. If CodeFormat = "S-Function"
and the TLC variable Accelerator is set to 1, the target is an accelerated
simulation MEX-file.

See “Generated S-Function Block” on page 12-33, for more information.

Embedded Code Format

¢ “About Embedded Code Format” on page 9-24
¢ “Using the Real-Time Model Data Structure” on page 9-24

¢ “Making Pre-R2012a Custom GRT-Based Targets ERT-Compatible” on
page 9-26

e “Converting Your Target to Use rtModel” on page 9-27
® “Generating Pre-R2012a GRT Wrapper Code” on page 9-29

About Embedded Code Format. The Embedded-C code format corresponds
to the Embedded Coder target (ERT), and targets derived from ERT. This code
format includes a number of memory-saving and performance optimizations.
See the Embedded Coder “Product Description” and configuration topics such
as “Application Objectives”, “Target”, and “Code Appearance” for details.

Using the Real-Time Model Data Structure. The Embedded-C format
uses the real-time model (RT_MODEL) data structure. This structure is also
referred to as the rtModel data structure. You can access rtModel data by
using a set of macros analogous to the ssSetxxx and ssGetxxx macros that
S-functions use to access SimStruct data, including noninlined S-functions
compiled by the Simulink Coder code generator.
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You need to use the set of macros rtmGetxxx and rtmSetxxx to access the
real-time model data structure, which is specific to the Simulink Coder
product. The rtModel is an optimized data structure that replaces SimStruct
as the top level data structure for a model. The rtmGetxxx and rtmSetxxx
macros are used in the generated code as well as from the main.c or main.cpp
module. If you are customizing main.c or main.cpp (either a static file or a
generated file), you need to use rtmGetxxx and rtmSetxxx instead of the
ssSetxxx and ssGetxxx macros.

Usage of rtmGetxxx and rtmSetxxx macros is the same as for the ssSetxxx
and ssGetxxx versions, except that you replace SimStruct S by real-time
model data structure rtM. The following table lists rtmGetxxx and rtmSetxxx
macros that are used in grt_main.c and grt_main.cpp.

Macros for Accessing the Real-Time Model Data Structure

rtm Macro Syntax

Description

rtmGetdX(rtm)

Get the derivatives of a block’s continuous
states

rtmGetOffsetTimePtr (RT_MDL rtM)

Return the pointer of vector that stores sample
time offsets of the model associated with rtM

rtmGetNumSampleTimes (RT_MDL rtM)

Get the number of sample times that a block
has

rtmGetPerTaskSampleHitsPtr (RT_MDL)

Return a pointer of NumSampleTime X
NumSampleTime matrix

rtmGetRTWExtModeInfo (RT_MDL rtM)

Return an external mode information data
structure of the model. This data structure is
used internally for external mode.

rtmGetRTWLogInfo (RT_MDL)

Return a data structure used by Simulink
Coder logging. Internal use.

rtmGetRTWRTModelMethodsInfo (RT_MDL)

Return a data structure of Simulink Coder
real-time model methods information. Internal
use.

rtmGetRTWSolverInfo(RT_MDL)

Return data structure containing solver
information of the model. Internal use.
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Macros for Accessing the Real-Time Model Data Structure (Continued)

rtm Macro Syntax

Description

rtmGetSampleHitPtr (RT_MDL)

Return a pointer of Sample Hit flag vector

rtmGetSampleTime (RT_MDL rtM, int TID)

Get a task’s sample time

rtmGetSampleTimePtr (RT_MDL rtM)

Get pointer to a task’s sample time

rtmGetSampleTimeTaskIDPtr (RT_MDL rtM)

Get pointer to a task’s ID

rtmGetSimTimeStep (RT_MDL)

Return simulation step type ID
(MINOR_TIME_STEP, MAJOR_TIME_STEP)

rtmGetStepSize (RT_MDL)

Return the fundamental step size of the model

rtmGetT (RT_MDL,t)

Get the current simulation time

rtmSetT (RT_MDL, t)

Set the time of the next sample hit

rtmGetTaskTime (RT_MDL,tid)

Get the current time for the current task

rtmGetTFinal (RT_MDL)

Get the simulation stop time

rtmSetTFinal (RT_MDL,finalT)

Set the simulation stop time

rtmGetTimingData (RT_MDL)

Return a data structure used by timing engine
of the model. Internal use.

rtmGetTPtr (RT_MDL)

Return a pointer of the current time

rtmGetTStart (RT_MDL)

Get the simulation start time

rtmIsContinuousTask (rtm)

Determine whether a task is continuous

rtmIsMajorTimeStep (rtm)

Determine whether the simulation is in a
major step

rtmIsSampleHit (RT_MDL,tid)

Determine whether the sample time is hit

For additional details on usage, see “SimStruct Macros and Functions Listed

by Usage”.

Making Pre-R2012a Custom GRT-Based Targets ERT-Compatible. If
you developed a GRT-based custom target in a release before R2012a, it

1s simple to make your target ERT compatible. By doing so, you can take
advantage of many efficiencies.
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There are several approaches to ERT compatibility:

¢ If your installation does not include an Embedded Coder license, you can
convert a GRT-based target as described in “Converting Your Target to Use
rtModel” on page 9-27. This enables your custom target to support current
GRT features, including back end Embedded-C code generation.

e [f your installation includes an Embedded Coder license, you can do either
of the following:

= Create an ERT-based target, but continue to use your customized version
of grt_main.c or grt_main.cpp module. To do this, you can configure
the ERT target to generate a pre-R2012a GRT calling interface, as
described in “Generating Pre-R2012a GRT Wrapper Code” on page 9-29.
This lets your target support the full ERT feature set, without changing
your GRT-based run-time interface.

= Reimplement your custom target as a completely ERT-based target,
including use of an ERT generated main program. This approach lets
your target support the full ERT feature set, without the overhead
caused by wrapper calls.

Note If you intend to use custom storage classes (CSCs) with a custom
target, you must use an ERT-based target. See “Custom Storage Classes”
in the Embedded Coder documentation for detailed information on CSCs.

For details on how GRT targets are made call-compatible with previous
Simulink Coder product versions, see “Using the Real-Time Model Data
Structure” on page 9-24.

Converting Your Target to Use rtModel. The real-time model data
structure (rtModel) encapsulates model-specific information in a much more
compact form than the SimStruct. Many ERT-related efficiencies depend on
generation of rtModel rather than SimStruct, including

® Integer absolute and elapsed timing services

¢ Independent timers for asynchronous tasks
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® Generation of improved C API code for signal, state, and parameter
monitoring

® Pruning the data structure to minimize its size (ERT-derived targets only)
To take advantage of such efficiencies, you must update your GRT-based
target to use the rtModel (unless you already did so for Release 13). The

conversion requires changes to your system target file, template makefile,
and main program module.

The following changes to the sy