
ORTE - OCERA Real-Time Ethernet

ORTE - OCERA Real-Time Ethernet

Table of Contents
1. OCERA Real-Time Ethernet..1

1.1. ORTE Summary..1
1.1.1. Summary...1

1.2. ORTE Description...2
1.2.1. Introduction..2
1.2.2. The Publish-Subscribe Architecture...2
1.2.3. The Real-Time Publish-Subscribe Model..5

1.3. ORTE API...7
1.3.1. Data types...8
1.3.2. Functions..31
1.3.3. Macros..58

1.4. ORTE Implementation Issues...68
1.5. ORTE Examples..72

1.5.1. BestEffort Communication...73
1.5.2. Reliable communication...75
1.5.3. Serialization/Deserialization...76

1.6. ORTE Tests...77
1.7. ORTE Usage Information...77

1.7.1. Installation and Setup...77
1.7.2. The ORTE Manager...80
1.7.3. Simple Utilities...82

iii

List of Figures
1-1. Publish-Subscribe Architecture..3
1-2. Generic Publish-Subscribe Architecture..4
1-3. Publication Arbitration...6
1-4. Subscription Issue Separation..6
1-5. ORTE Architecture...69
1-6. ORTE Internal Attributes...71
1-7. RTPS Communication among Network Objects..71
1-8. Periodic Snapshots of a BestEffort Publisher...72
1-9. Position of Managers in RTPS communication...80

iv

Chapter 1. OCERA Real-Time Ethernet

The Ocera Real-Time Ethernet (ORTE) is open source implementation of RTPS communication
protocol. RTPS is new application layer protocol targeted to real-time communication area, which is
build on the top of standard UDP stack. Since there are many TCP/IP stack implementations under many
operating systems and RTPS protocol does not have any other special HW/SW requirements, it should be
easily ported to many HW/SW target platforms. Because it uses only UDP protocol, it retains control of
timing and reliability.

1.1. ORTE Summary

1.1.1. Summary

Name of the component

OCERA Real-Time Ethernet (ORTE)

Author

Petr Smolik

ORTE Internet resources

http://www.ocera.org OCERA project home page

http://sourceforge.net/projects/ocera OCERA SourceForge project page. The OCERA CVS relative
path to ORTE driver sources is

ocera/components/comm/eth/orte

(http://cvs.sourceforge.net/viewcvs.py/ocera/ocera/components/comm/eth/orte/).

http://www.rti.com Real-Time Innovation home page

Reviewer

not validated

Layer

High-level

Version

orte-0.3.1

1

Chapter 1. OCERA Real-Time Ethernet

Status

Beta

Dependencies

Ethernet adapter with a UDP stack.

Multi-threaded operating system OS

Memory allocator (functions malloc, free)

Supported OS

• Unix - Linux, FreeBSD, Solaris, MacOS, PharLap

• Windows

• RTAI with RTNet

Release date

September 2004

1.2. ORTE Description

1.2.1. Introduction

The Ocera Real-Time Ethernet (ORTE) is open source implementation of RTPS communication
protocol. This protocol is being to submit to IETF as an informational RFC and has been adopted by the
IDA group.

1.2.2. The Publish-Subscribe Architecture

The publish-subscribe architecture is designed to simplify one-to-many data-distribution requirements.
In this model, an application “publishes” data and “subscribes” to data. Publishers and subscribers are
decoupled from each other too. That is:

• Publishers simply send data anonymously, they do not need any knowledge of the number or network
location of subscribers.

2

Chapter 1. OCERA Real-Time Ethernet

• Subscribers simply receive data anonymously, they do not need any knowledge of the number or
network location of the publisher.

An application can be a publisher, subscriber, or both a publisher and a subscriber.

Figure 1-1. Publish-Subscribe Architecture

Publish-subscribe supports anonymous, event-driven transfer between many nodes. The developer
simply writes the application to send or receive the data.

Publish-subscribe architectures are best-suited to distributed applications with complex data flows. The
primary advantages of publish-subscribe to applications developers are:

• Publish-subscribe applications are modular and scalable. The data flow is easy to manage regardless of
the number of publishers and subscribers.

• The application subscribes to the data by name rather than to a specific publisher or publisher location.
It can thus accommodate configuration changes without disrupting the data flow.

• Redundant publishers and subscribers can be supported, allowing programs to be replicated (e.g.
multiple control stations) and moved transparently.

• Publish-subscribe is much more efficient, especially over client-server, with bandwidth utilization.

Publish-subscribe architectures are not good at sporadic request/response traffic, such as file transfers.
However, this architecture offers practical advantages for applications with repetitive, time-critical data
flows.

1.2.2.1. The Publish-Subscribe Model

Publish-subscribe (PS) data distribution is gaining popularity in many distributed applications, such as
financial communications, command and control systems. PS popularity can be attributed to the
dramatically reduced system development, deployment and maintenance effort and the performance
advantages for applications with one-to-many and many-to-many data flows.

3

Chapter 1. OCERA Real-Time Ethernet

Several main features characterize all publish-subscribe architectures:

Distinct declaration and delivery. Communications occur in three simple steps:

• Publisher declares intent to publish a publication.

• Subscriber declares interest in a publication.

• Publisher sends a publication issue.

The publish-subscribe services are typically made available to applications through middleware that sits
on top of the operating system s network interface and presents an application programming interface.

Figure 1-2. Generic Publish-Subscribe Architecture

Application

Middleware
Publish Subscribe

Application
Programming

Operating System
Network Interface

Publish-subscribe is typically implemented through middleware that sits on top of the operating system s
network interface. The middleware presents a publishsubscribe API so that applications make just a few
simple calls to send and receive publications. The middleware performs the many and complex network
functions that physically distribute the data.

The middleware handles three basic programming chores:

• Maintain the database that maps publishers to subscribers resulting in logical data channels for each
publication between publishers and subscribers.

• Serialize (also called marshal) and deserialize (demarshal) the data on its way to and from the network
to reconcile publisher and subscriber platform differences.

• Deliver the data when it is published.

4

Chapter 1. OCERA Real-Time Ethernet

1.2.2.2. Publish-Subscribe in Real Time

Publish-subscribe offers some clear advantages for real-time applications:

• Because it is very efficient in both bandwidth and latency for periodic data exchange, PS offers the
best transport for distributing data quickly.

• Because it provides many-to-many connectivity, PS is ideal for applications in which publishers and
subscribers are added and removed dynamically.

Real-time applications require more functionality than what is provided by desktop and Internet
publish-subscribe semantics. For instance, real-time applications often require:

• Delivery timing control: Real-time subscribers are concerned with timing; for example, when the
data is delivered and how long it remains valid.

• Reliability control: Reliable delivery conflicts with deterministic timing. Each subscriber typically
requires the ability to specify its own reliability characteristics.

• Request-reply semantics:Complex real-time applications often have one-time requests for actions or
data. These do not fit well into the PS semantics.

• Flexible delivery bandwidth: Typical real-time applications include both real-time and non-realtime
subscribers. Each subscriber s bandwidth requirements - even for the same publication - can be
different.

• Fault tolerance: Real-time applications often require “hot standby” publishers and/or subscribers.

• Thread priority awareness: Real-time communications often must work without affecting publisher
or subscriber threads.

• Robustness:The communications layer should not introduce any single-node points-of-failure to the
application.

• Efficiency: Real-time systems require efficient data collection and delivery. Only minimal delays
should be introduced into the critical data-transfer path.

1.2.3. The Real-Time Publish-Subscribe Model

The Real-Time Publish-Subscribe (RTPS) communications model was developed to address these
limitations of PS. RTPS adds publication and subscription timing parameters and properties so the
developer can control the different types of data flows and achieve their application s performance and
reliability goals.

1.2.3.1. Publication Parameters

Each publication is characterized by four parameters: topic, type, strength and persistence. The topic is
the label that identifies each data flow. The type describes the data format. The strength indicates a

5

Chapter 1. OCERA Real-Time Ethernet

publisher s weight relative to other publishers of the same topic. The persistence indicates how long each
publication issue is valid. Next figure illustrates how a subscriber arbitrates among publications using the
strength and persistence properties.

Figure 1-3. Publication Arbitration

Fault tolerant applications use redundant publishers sending publications with the same topic to ensure
continuous operation. Subscribers arbitrate among the publications on an issue-by-issue basis based on
the strength and persistence of each issue.

When there are multiple publishers sending the same publication, the subscriber accepts the issue if its
strength is greater than the last-received issue or if the last issue s persistence has expired. Typically, a
publisher that sends issues with a period of length T will set its persistence to some time Tp where Tp >
T. Thus, while the strongest publisher is functional, its issues will take precedence over publication
issues of lesser strength. Should the strongest publisher stop sending issues (willingly or due to a failure),
other publisher(s) sending issues for the same publication will take over after Tp elapses. This
mechanism establishes an inherently robust, quasi-stateless communications channel between the
then-strongest publisher of a publication and all its subscribers.

1.2.3.2. Subscription Paramters

Subscriptions are identified by four parameters: topic, type, minimum separation and deadline. The topic
the label that identifies the data flow, and type describes the data format (same as the publication
properties). Minimum separation defines a period during which no new issues are accepted for that
subscription. The deadline specifies how long the subscriber is willing to wait for the next issue. Next
figure illustrates the use of these parameters.

Figure 1-4. Subscription Issue Separation

Once the subscriber has received an issue, it will not receive another issue for at least the minimum
separation time. If a new issue does not arrive by the deadline, the application is notified.

6

Chapter 1. OCERA Real-Time Ethernet

The minimum separation protects a slow subscriber against publishers that are publishing too fast. The
deadline provides a guaranteed wait time that can be used to take appropriate action in case of
communication delays.

1.2.3.3. Reliability and Time-Determinism

Publish-subscribe can support a variety of message delivery reliability models, not all of which are
suitable to real-time applications. The RTPS reliability model recognizes that the optimal balance
between time determinism and data-delivery reliability varies between real-time applications, and often
among different subscriptions within the same application. For example, signal subscribers will want
only the most up-to-date issues and will not care about missed issues. Command subscribers, on the
other hand, must get every issue in sequence. Therefore, RTPS provides a mechanism for the application
to customize the determinism versus reliability trade-off on a per subscription basis.

The RTPS determinism vs. reliability model is subscriber-driven. Publishers simply send publication
issues. However, to provide message delivery reliability, publishers must be prepared to resend missed
issues to subscriptions that require reliable delivery.

The RTPS reliability model uses publication buffers publisher and subscriber and retries to ensure that
subscribers who need each issue receive them in the proper sequence. In addition, the publisher applies
sequence number to each publication issue.

The publisher uses the publication buffer to store history of the most recently sent issues. The subscriber
uses its publication buffer to cache the most recently received issues. The subscriber acknowledges
issues received in order and sends a request for the missing issue when the most recent issue s sequence
number out of order. The publisher responds by sending the missed update again.

Publishers remove an issue from their history buffers in two cases: the issue has been acknowledged by
all reliable subscribers or the publisher overflows the history buffer space. Flow control can be
implemented by setting high and low watermarks for the buffer. These publication-specific parameters
let the publisher balance the subscribers need for issues against its need to maintain a set publication rate.

7

Chapter 1. OCERA Real-Time Ethernet

1.3. ORTE API

1.3.1. Data types

enum SubscriptionMode

Name
enum SubscriptionMode — mode of subscription

Synopsis

enum SubscriptionMode {
PULLED,
IMMEDIATE

};

Constants

PULLED

polled

IMMEDIATE

using callback function

Description

Specifies whether user application will poll for data or whether a callback function will be called by
ORTE middleware when new data will be available.

enum SubscriptionType

Name
enum SubscriptionType — type of subcsription

8

Chapter 1. OCERA Real-Time Ethernet

Synopsis

enum SubscriptionType {
BEST_EFFORTS,
STRICT_RELIABLE

};

Constants

BEST_EFFORTS

best effort subscription

STRICT_RELIABLE

strict reliable subscription.

Description

Specifies which mode will be used for this subscription.

enum ORTERecvStatus

Name
enum ORTERecvStatus — status of a subscription

Synopsis

enum ORTERecvStatus {
NEW_DATA,
DEADLINE

};

Constants

NEW_DATA

new data has arrived

9

Chapter 1. OCERA Real-Time Ethernet

DEADLINE

deadline has occurred

Description

Specifies which event has occurred in the subscription object.

enum ORTESendStatus

Name
enum ORTESendStatus — status of a publication

Synopsis

enum ORTESendStatus {
NEED_DATA,
CQL

};

Constants

NEED_DATA

need new data (set when callback function specified for publciation is beeing called)

CQL

transmit queue has been filled up to critical level.

Description

Specifies which event has occurred in the publication object. Critical level of transmit queue is specified
as one of publication properties (ORTEPublProp.criticalQueueLevel).

10

Chapter 1. OCERA Real-Time Ethernet

struct ORTEIFProp

Name
struct ORTEIFProp — interface flags

Synopsis

struct ORTEIFProp {
int32_t ifFlags;
IPAddress ipAddress;

};

Members

ifFlags

flags

ipAddress

IP address

Description

Flags for network interface.

struct ORTEMulticastProp

Name
struct ORTEMulticastProp — properties for ORTE multicast (not supported yet)

Synopsis

struct ORTEMulticastProp {
Boolean enabled;
unsigned char ttl;
Boolean loopBackEnabled;
IPAddress ipAddress;

11

Chapter 1. OCERA Real-Time Ethernet

};

Members

enabled

ORTE_TRUE if multicast enabled otherwise ORTE_FALSE

ttl

time-to-live (TTL) for sent datagrams

loopBackEnabled

ORTE_TRUE if data should be received by sender itself otherwise ORTE_FALSE

ipAddress

desired multicast IP address

Description

Properties for ORTE multicast subsystem which is not fully supported yet. Multicast IP address is
assigned by the ORTE middleware itself.

struct ORTEGetMaxSizeParam

Name
struct ORTEGetMaxSizeParam — parameters for function ORTETypeGetMaxSize

Synopsis

struct ORTEGetMaxSizeParam {
CDR_Endianness host_endian;
CDR_Endianness data_endian;
CORBA_octet * data;
unsigned int max_size;
int recv_size;
int csize;

};

12

Chapter 1. OCERA Real-Time Ethernet

Members

host_endian

data_endian

data

max_size

recv_size

csize

Description

It used to determine maximal size of intermal buffer for incomming data

struct ORTETypeRegister

Name
struct ORTETypeRegister — registered data type

Synopsis

struct ORTETypeRegister {
const char * typeName;
ORTETypeSerialize serialize;
ORTETypeDeserialize deserialize;
ORTETypeGetMaxSize getMaxSize;
unsigned int maxSize;

};

13

Chapter 1. OCERA Real-Time Ethernet

Members

typeName

name of data type

serialize

pointer to serialization function

deserialize

pointer to deserialization function

getMaxSize

pointer to function given maximal data length

maxSize

maximal size of ser./deser. data

Description

Contains description of registered data type. SeeORTETypeRegisterAdd function for details.

struct ORTEDomainBaseProp

Name
struct ORTEDomainBaseProp — base properties of a domain

Synopsis

struct ORTEDomainBaseProp {
unsigned int registrationMgrRetries;
NtpTime registrationMgrPeriod;
unsigned int registrationAppRetries;
NtpTime registrationAppPeriod;
NtpTime expirationTime;
NtpTime refreshPeriod;
NtpTime purgeTime;
NtpTime repeatAnnounceTime;
NtpTime repeatActiveQueryTime;
NtpTime delayResponceTimeACKMin;
NtpTime delayResponceTimeACKMax;

14

Chapter 1. OCERA Real-Time Ethernet

unsigned int HBMaxRetries;
unsigned int ACKMaxRetries;
NtpTime maxBlockTime;

};

Members

registrationMgrRetries

a manager which want to start communication have to register to other manager. This parametr is
used for specify maximal repetition retries of registration process when it fail.

registrationMgrPeriod

an application which want to start communication have to register to a manager. This parametr is
used for specify maximal repetition retries of registration process when it fail.

registrationAppRetries

same like registrationMgrRetries parameter, but is used for an application

registrationAppPeriod

repetition time for registration process

expirationTime

specifies how long is this application taken as alive in other applications/managers (default 180s)

refreshPeriod

how often an application refresh itself to its manager or manager to other managers (default 60s)

purgeTime

how often the local database should be cleaned from invalid (expired) objects (default 60s)

repeatAnnounceTime

This is the period with which the CSTWriter will announce its existence and/or the availability of
new CSChanges to the CSTReader. This period determines how quickly the protocol recovers when
an announcement of data is lost.

repeatActiveQueryTime

???

delayResponceTimeACKMin

minimum time the CSTWriter waits before responding to an incoming message.

delayResponceTimeACKMax

maximum time the CSTWriter waits before responding to an incoming message.

15

Chapter 1. OCERA Real-Time Ethernet

HBMaxRetries

how many times a HB message is retransmitted if no response has been received until timeout

ACKMaxRetries

how many times an ACK message is retransmitted if no response has been received until timeout

maxBlockTime

timeout for send functions if sending queue is full (default 30s)

struct ORTEDomainWireProp

Name
struct ORTEDomainWireProp — wire properties of a message

Synopsis

struct ORTEDomainWireProp {
unsigned int metaBytesPerPacket;
unsigned int metaBytesPerFastPacket;
unsigned int metabitsPerACKBitmap;

};

Members

metaBytesPerPacket

maximum number of bytes in single frame (default 1500B)

metaBytesPerFastPacket

maximum number of bytes in single frame if transmitting queue has reached
criticalQueueLevel level (seeORTEPublProp struct)

metabitsPerACKBitmap

not supported yet (default 32)

16

Chapter 1. OCERA Real-Time Ethernet

struct ORTEPublProp

Name
struct ORTEPublProp — properties of a publication

Synopsis

struct ORTEPublProp {
PathName topic;
TypeName typeName;
TypeChecksum typeChecksum;
Boolean expectsAck;
NtpTime persistence;
uint32_t reliabilityOffered;
uint32_t sendQueueSize;
int32_t strength;
uint32_t criticalQueueLevel;
NtpTime HBNornalRate;
NtpTime HBCQLRate;
unsigned int HBMaxRetries;
NtpTime maxBlockTime;

};

Members

topic

the name of the information in the Network that is published or subscribed to

typeName

the name of the type of this data

typeChecksum

a checksum that identifies the CDR-representation of the data

expectsAck

indicates wherther publication expects to receive ACKs to its messages

persistence

indicates how long the issue is valid

reliabilityOffered

reliability policy as offered by the publication

17

Chapter 1. OCERA Real-Time Ethernet

sendQueueSize

size of transmitting queue

strength

precedence of the issue sent by the publication

criticalQueueLevel

treshold for transmitting queue content length indicating the queue can became full immediately

HBNornalRate

how often send HBs to subscription objects

HBCQLRate

how often send HBs to subscription objects if transmittiong queue has reached
criticalQueueLevel

HBMaxRetries

how many times retransmit HBs if no replay from target object has not been received

maxBlockTime

unsupported

struct ORTESubsProp

Name
struct ORTESubsProp — properties of a subscription

Synopsis

struct ORTESubsProp {
PathName topic;
TypeName typeName;
TypeChecksum typeChecksum;
NtpTime minimumSeparation;
uint32_t recvQueueSize;
uint32_t reliabilityRequested;
//additional parametersNtpTime deadline;
uint32_t mode;
IPAddress multicast;

};

18

Chapter 1. OCERA Real-Time Ethernet

Members

topic

the name of the information in the Network that is published or subscribed to

typeName

the name of the type of this data

typeChecksum

a checksum that identifies the CDR-representation of the data

minimumSeparation

minimum time between two consecutive issues received by the subscription

recvQueueSize

size of receiving queue

reliabilityRequested

reliability policy requested by the subscription

deadline

deadline for subscription, a callback function (seeORTESubscriptionCreate) will be called if
no data were received within this period of time

mode

mode of subscription (strict reliable/best effort), seeSubscriptionType enum for values

multicast

registered multicast IP address(read only)

struct ORTEAppInfo

Name
struct ORTEAppInfo —

Synopsis

struct ORTEAppInfo {
HostId hostId;
AppId appId;

19

Chapter 1. OCERA Real-Time Ethernet

IPAddress * unicastIPAddressList;
unsigned char unicastIPAddressCount;
IPAddress * metatrafficMulticastIPAddressList;
unsigned char metatrafficMulticastIPAddressCount;
Port metatrafficUnicastPort;
Port userdataUnicastPort;
VendorId vendorId;
ProtocolVersion protocolVersion;

};

Members

hostId

hostId of application

appId

appId of application

unicastIPAddressList

unicast IP addresses of the host on which the application runs (there can be multiple addresses on a
multi-NIC host)

unicastIPAddressCount

number of IPaddresses inunicastIPAddressList

metatrafficMulticastIPAddressList

for the purposes of meta-traffic, an application can also accept Messages on this set of multicast
addresses

metatrafficMulticastIPAddressCount

number of IPaddresses inmetatrafficMulticastIPAddressList

metatrafficUnicastPort

UDP port used for metatraffic communication

userdataUnicastPort

UDP port used for metatraffic communication

vendorId

identifies the vendor of the middleware implementing the RTPS protocol and allows this vendor to
add specific extensions to the protocol

protocolVersion

describes the protocol version

20

Chapter 1. OCERA Real-Time Ethernet

struct ORTEPubInfo

Name
struct ORTEPubInfo — information about publication

Synopsis

struct ORTEPubInfo {
const char * topic;
const char * type;
ObjectId objectId;

};

Members

topic

the name of the information in the Network that is published or subscribed to

type

the name of the type of this data

objectId

object providing this publication

struct ORTESubInfo

Name
struct ORTESubInfo — information about subscription

Synopsis

struct ORTESubInfo {
const char * topic;
const char * type;

21

Chapter 1. OCERA Real-Time Ethernet

ObjectId objectId;
};

Members

topic

the name of the information in the Network that is published or subscribed to

type

the name of the type of this data

objectId

object with this subscription

struct ORTEPublStatus

Name
struct ORTEPublStatus — status of a publication

Synopsis

struct ORTEPublStatus {
unsigned int strict;
unsigned int bestEffort;
unsigned int issues;

};

Members

strict

count of unreliable subscription (strict) connected on responsible subscription

bestEffort

count of reliable subscription (best effort) connected on responsible subscription

22

Chapter 1. OCERA Real-Time Ethernet

issues

number of messages in transmitting queue

struct ORTESubsStatus

Name
struct ORTESubsStatus — status of a subscription

Synopsis

struct ORTESubsStatus {
unsigned int strict;
unsigned int bestEffort;
unsigned int issues;

};

Members

strict

count of unreliable publications (strict) connected to responsible subscription

bestEffort

count of reliable publications (best effort) connected to responsible subscription

issues

number of messages in receiving queue

struct ORTERecvInfo

Name
struct ORTERecvInfo — description of received data

23

Chapter 1. OCERA Real-Time Ethernet

Synopsis

struct ORTERecvInfo {
ORTERecvStatus status;
const char * topic;
const char * type;
GUID_RTPS senderGUID;
NtpTime localTimeReceived;
NtpTime remoteTimePublished;
SequenceNumber sn;

};

Members

status

status of this event

topic

the name of the information

type

the name of the type of this data

senderGUID

GUID of object who sent this information

localTimeReceived

local timestamp when data were received

remoteTimePublished

remote timestam when data were published

sn

sequencial number of data

struct ORTESendInfo

Name
struct ORTESendInfo — description of sending data

24

Chapter 1. OCERA Real-Time Ethernet

Synopsis

struct ORTESendInfo {
ORTESendStatus status;
const char * topic;
const char * type;
GUID_RTPS senderGUID;
SequenceNumber sn;

};

Members

status

status of this event

topic

the name of the information

type

the name of the type of this information

senderGUID

GUID of object who sent this information

sn

sequencial number of information

struct ORTEPublicationSendParam

Name
struct ORTEPublicationSendParam — description of sending data

Synopsis

struct ORTEPublicationSendParam {
void * instance;
int data_endian;

};

25

Chapter 1. OCERA Real-Time Ethernet

Members

instance

pointer to new data instance

data_endian

endianing of sending data (BIG | LITTLE)

struct ORTEDomainAppEvents

Name
struct ORTEDomainAppEvents — Domain event handlers of an application

Synopsis

struct ORTEDomainAppEvents {
ORTEOnRegFail onRegFail;
void * onRegFailParam;
ORTEOnMgrNew onMgrNew;
void * onMgrNewParam;
ORTEOnMgrDelete onMgrDelete;
void * onMgrDeleteParam;
ORTEOnAppRemoteNew onAppRemoteNew;
void * onAppRemoteNewParam;
ORTEOnAppDelete onAppDelete;
void * onAppDeleteParam;
ORTEOnPubRemote onPubRemoteNew;
void * onPubRemoteNewParam;
ORTEOnPubRemote onPubRemoteChanged;
void * onPubRemoteChangedParam;
ORTEOnPubDelete onPubDelete;
void * onPubDeleteParam;
ORTEOnSubRemote onSubRemoteNew;
void * onSubRemoteNewParam;
ORTEOnSubRemote onSubRemoteChanged;
void * onSubRemoteChangedParam;
ORTEOnSubDelete onSubDelete;
void * onSubDeleteParam;

};

26

Chapter 1. OCERA Real-Time Ethernet

Members

onRegFail

registration protocol has been failed

onRegFailParam

user parameters foronRegFail handler

onMgrNew

new manager has been created

onMgrNewParam

user parameters foronMgrNew handler

onMgrDelete

manager has been deleted

onMgrDeleteParam

user parameters foronMgrDelete handler

onAppRemoteNew

new remote application has been registered

onAppRemoteNewParam

user parameters foronAppRemoteNew handler

onAppDelete

an application has been removed

onAppDeleteParam

user parameters foronAppDelete handler

onPubRemoteNew

new remote publication has been registered

onPubRemoteNewParam

user parameters foronPubRemoteNew handler

onPubRemoteChanged

a remote publication’s parameters has been changed

onPubRemoteChangedParam

user parameters foronPubRemoteChanged handler

27

Chapter 1. OCERA Real-Time Ethernet

onPubDelete

a publication has been deleted

onPubDeleteParam

user parameters foronPubDelete handler

onSubRemoteNew

a new remote subscription has been registered

onSubRemoteNewParam

user parameters foronSubRemoteNew handler

onSubRemoteChanged

a remote subscription’s parameters has been changed

onSubRemoteChangedParam

user parameters foronSubRemoteChanged handler

onSubDelete

a publication has been deleted

onSubDeleteParam

user parameters foronSubDelete handler

Description

Prototypes of events handler fucntions can be found in file typedefs_api.h.

struct ORTETasksProp

Name
struct ORTETasksProp — ORTE task properties, not supported

Synopsis

struct ORTETasksProp {
Boolean realTimeEnabled;
int smtStackSize;
int smtPriority;

28

Chapter 1. OCERA Real-Time Ethernet

int rmtStackSize;
int rmtPriority;

};

Members

realTimeEnabled

not supported

smtStackSize

not supported

smtPriority

not supported

rmtStackSize

not supported

rmtPriority

not supported

struct ORTEDomainProp

Name
struct ORTEDomainProp — domain properties

Synopsis

struct ORTEDomainProp {
ORTETasksProp tasksProp;
ORTEIFProp * IFProp;
//interface propertiesunsigned char IFCount;
//count of interfacesORTEDomainBaseProp baseProp;
ORTEDomainWireProp wireProp;
ORTEMulticastProp multicast;
//multicast properiesORTEPublProp publPropDefault;
//default properties for a Publ/SubORTESubsProp subsPropDefault;
char * mgrs;
//managerschar * keys;
//keysIPAddress appLocalManager;

29

Chapter 1. OCERA Real-Time Ethernet

//applicationschar * version;
//string product versionint recvBuffSize;
int sendBuffSize;

};

Members

tasksProp

task properties

IFProp

properties of network interfaces

IFCount

number of network interfaces

baseProp

base properties (seeORTEDomainBaseProp for details)

wireProp

wire properties (seeORTEDomainWireProp for details)

multicast

multicast properties (seeORTEMulticastProp for details)

publPropDefault

default properties of publiciations (seeORTEPublProp for details)

subsPropDefault

default properties of subscriptions (seeORTESubsProp for details)

mgrs

list of known managers

keys

access keys for managers

appLocalManager

IP address of local manager (default localhost)

version

string product version

30

Chapter 1. OCERA Real-Time Ethernet

recvBuffSize

receiving queue length

sendBuffSize

transmitting queue length

1.3.2. Functions

IPAddressToString

Name
IPAddressToString — converts IP address IPAddress to its string representation

Synopsis

char* IPAddressToString (IPAddress ipAddress , char * buff);

Arguments

ipAddress

source IP address

buff

output buffer

StringToIPAddress

Name
StringToIPAddress — converts IP address from string into IPAddress

31

Chapter 1. OCERA Real-Time Ethernet

Synopsis

IPAddress StringToIPAddress (const char * string);

Arguments

string

source string

NtpTimeToStringMs

Name
NtpTimeToStringMs — converts NtpTime to its text representation in miliseconds

Synopsis

char * NtpTimeToStringMs (NtpTime time , char * buff);

Arguments

time

time given in NtpTime structure

buff

output buffer

32

Chapter 1. OCERA Real-Time Ethernet

NtpTimeToStringUs

Name
NtpTimeToStringUs — converts NtpTime to its text representation in microseconds

Synopsis

char * NtpTimeToStringUs (NtpTime time , char * buff);

Arguments

time

time given in NtpTime structure

buff

output buffer

ORTEDomainStart

Name
ORTEDomainStart — start specific threads

Synopsis

void ORTEDomainStart (ORTEDomain * d , Boolean recvUnicastMetatrafficThread ,
Boolean recvMulticastMetatrafficThread , Boolean recvUnicastUserdataThread ,
Boolean recvMulticastUserdataThread , Boolean sendThread);

Arguments

d

domain object handle

33

Chapter 1. OCERA Real-Time Ethernet

recvUnicastMetatrafficThread

specifies whether recvUnicastMetatrafficThread should be started (ORTE_TRUE) or remain
suspended (ORTE_FALSE).

recvMulticastMetatrafficThread

specifies whether recvMulticastMetatrafficThread should be started (ORTE_TRUE) or remain
suspended (ORTE_FALSE).

recvUnicastUserdataThread

specifies whether recvUnicastUserdataThread should be started (ORTE_TRUE) or remain
suspended (ORTE_FALSE).

recvMulticastUserdataThread

specifies whether recvMulticastUserdataThread should be started (ORTE_TRUE) or remain
suspended (ORTE_FALSE).

sendThread

specifies whether sendThread should be started (ORTE_TRUE) or remain suspended
(ORTE_FALSE).

Description

FunctionsORTEDomainAppCreate andORTEDomainMgrCreate provide facility to create an object
with its threads suspended. Use functionORTEDomainStart to resume those suspended threads.

ORTEDomainPropDefaultGet

Name
ORTEDomainPropDefaultGet — returns default properties of a domain

Synopsis

Boolean ORTEDomainPropDefaultGet (ORTEDomainProp * prop);

34

Chapter 1. OCERA Real-Time Ethernet

Arguments

prop

pointer to struct ORTEDomainProp

Description

Structure ORTEDomainProp referenced byprop will be filled by its default values. Returns
ORTE_TRUE if successful or ORTE_FALSE in case of any error.

ORTEDomainInitEvents

Name
ORTEDomainInitEvents — initializes list of events

Synopsis

Boolean ORTEDomainInitEvents (ORTEDomainAppEvents * events);

Arguments

events

pointer to struct ORTEDomainAppEvents

Description

Initializes structure pointed byevents . Every member is set to NULL. Returns ORTE_TRUE if
successful or ORTE_FALSE in case of any error.

35

Chapter 1. OCERA Real-Time Ethernet

ORTEDomainAppCreate

Name
ORTEDomainAppCreate — creates an application object within given domain

Synopsis

ORTEDomain * ORTEDomainAppCreate (int domain , ORTEDomainProp * prop ,
ORTEDomainAppEvents * events , Boolean suspended);

Arguments

domain

given domain

prop

properties of application

events

events associated with application or NULL

suspended

specifies whether threads of this application should be started as well (ORTE_FALSE) or stay
suspended (ORTE_TRUE). SeeORTEDomainStart for details how to resume suspended threads

Description

Creates new Application object and sets its properties and events. Return handle to created object or
NULL in case of any error.

ORTEDomainAppDestroy

Name
ORTEDomainAppDestroy — destroy Application object

36

Chapter 1. OCERA Real-Time Ethernet

Synopsis

Boolean ORTEDomainAppDestroy (ORTEDomain * d);

Arguments

d

domain

Description

Destroys all application objects in specified domain. Returns ORTE_TRUE or ORTE_FALSE in case of
any error.

ORTEDomainAppSubscriptionPatternAdd

Name
ORTEDomainAppSubscriptionPatternAdd — create pattern-based subscription

Synopsis

Boolean ORTEDomainAppSubscriptionPatternAdd (ORTEDomain * d , const char *
topic , const char * type , ORTESubscriptionPatternCallBack
subscriptionCallBack , void * param);

Arguments

d

domain object

topic

pattern for topic

37

Chapter 1. OCERA Real-Time Ethernet

type

pattern for type

subscriptionCallBack

pointer to callback function which will be called whenever any data are received through this
subscription

param

user params for callback function

Description

This function is intended to be used in application interesded in more published data from possibly more
remote applications, which should be received through single subscription. These different publications
are specified by pattern given totopic andtype parameters.

For example suppose there are publications of topics liketemperatureEngine1 ,
temperatureEngine2 , temperatureEngine1Backup andtemperatureEngine2Backup

somewhere on our network. We can subscribe to each of Engine1 temperations by creating single
subscription with pattern for topic set to “temperatureEngine1*”. Or, if we are interested only in values
from backup measurements, we can use pattern “*Backup”.

Syntax for patterns is the same as syntax forfnmatch function, which is employed for pattern
recognition.

Returns ORTE_TRUE if successful or ORTE_FALSE in case of any error.

ORTEDomainAppSubscriptionPatternRemove

Name
ORTEDomainAppSubscriptionPatternRemove — remove subscription pattern

Synopsis

Boolean ORTEDomainAppSubscriptionPatternRemove (ORTEDomain * d , const char *
topic , const char * type);

38

Chapter 1. OCERA Real-Time Ethernet

Arguments

d

domain handle

topic

pattern to be removed

type

pattern to be removed

Description

Removes subscritions created byORTEDomainAppSubscriptionPatternAdd . Patterns fortype and
topic must be exactly the same strings as whenORTEDomainAppSubscriptionPatternAdd

function was called.

Returns ORTE_TRUE if successful or ORTE_FALSE if none matching record was found

ORTEDomainAppSubscriptionPatternDestroy

Name
ORTEDomainAppSubscriptionPatternDestroy — destroys all subscription patterns

Synopsis

Boolean ORTEDomainAppSubscriptionPatternDestroy (ORTEDomain * d);

Arguments

d

domain handle

39

Chapter 1. OCERA Real-Time Ethernet

Description

Destroys all subscription patterns which were specified previously by
ORTEDomainAppSubscriptionPatternAdd function.

Returns ORTE_TRUE if successful or ORTE_FALSE in case of any error.

ORTEDomainMgrCreate

Name
ORTEDomainMgrCreate — create manager object in given domain

Synopsis

ORTEDomain * ORTEDomainMgrCreate (int domain , ORTEDomainProp * prop ,
ORTEDomainAppEvents * events , Boolean suspended);

Arguments

domain

given domain

prop

desired manager’s properties

events

manager’s event handlers or NULL

suspended

specifies whether threads of this manager should be started as well (ORTE_FALSE) or stay
suspended (ORTE_TRUE). SeeORTEDomainStart for details how to resume suspended threads

40

Chapter 1. OCERA Real-Time Ethernet

Description

Creates new manager object and sets its properties and events. Return handle to created object or NULL
in case of any error.

ORTEDomainMgrDestroy

Name
ORTEDomainMgrDestroy — destroy manager object

Synopsis

Boolean ORTEDomainMgrDestroy (ORTEDomain * d);

Arguments

d

manager object to be destroyed

Description

Returns ORTE_TRUE if successful or ORTE_FALSE in case of any error.

ORTEPublicationCreate

Name
ORTEPublicationCreate — creates new publication

41

Chapter 1. OCERA Real-Time Ethernet

Synopsis

ORTEPublication * ORTEPublicationCreate (ORTEDomain * d , const char * topic ,
const char * typeName , void * instance , NtpTime * persistence , int strength ,
ORTESendCallBack sendCallBack , void * sendCallBackParam , NtpTime *
sendCallBackDelay);

Arguments

d

pointer to application object

topic

name of topic

typeName

data type description

instance

output buffer where application stores data for publication

persistence

persistence of publication

strength

strength of publication

sendCallBack

pointer to callback function

sendCallBackParam

user parameters for callback function

sendCallBackDelay

periode for timer which issues callback function

Description

Creates new publication object with specified parameters. ThesendCallBack function is called
periodically withsendCallBackDelay periode. In strict reliable mode thesendCallBack function
will be called only if there is enough room in transmitting queue in order to prevent any data loss. The

42

Chapter 1. OCERA Real-Time Ethernet

sendCallBack function should prepare data to be published by this publication and place them into
instance buffer.

Returns handle to publication object.

ORTEPublicationDestroy

Name
ORTEPublicationDestroy — removes a publication

Synopsis

int ORTEPublicationDestroy (ORTEPublication * cstWriter);

Arguments

cstWriter

handle to publication to be removed

Description

Returns ORTE_OK if successful or ORTE_BAD_HANDLE ifcstWriter is not valid cstWriter handle.

ORTEPublicationPropertiesGet

Name
ORTEPublicationPropertiesGet — read properties of a publication

43

Chapter 1. OCERA Real-Time Ethernet

Synopsis

ORTEPublicationPropertiesGet (ORTEPublication * cstWriter , ORTEPublProp *
pp);

Arguments

cstWriter

pointer to cstWriter object which provides this publication

pp

pointer to ORTEPublProp structure where values of publication’s properties will be stored

Description

Returns ORTE_OK if successful or ORTE_BAD_HANDLE ifcstWriter is not valid cstWriter handle.

ORTEPublicationPropertiesSet

Name
ORTEPublicationPropertiesSet — set properties of a publication

Synopsis

int ORTEPublicationPropertiesSet (ORTEPublication * cstWriter , ORTEPublProp *
pp);

Arguments

cstWriter

pointer to cstWriter object which provides this publication

44

Chapter 1. OCERA Real-Time Ethernet

pp

pointer to ORTEPublProp structure containing values of publication’s properties

Description

Returns ORTE_OK if successful or ORTE_BAD_HANDLE ifcstWriter is not valid publication
handle.

ORTEPublicationGetStatus

Name
ORTEPublicationGetStatus — removes a publication

Synopsis

int ORTEPublicationGetStatus (ORTEPublication * cstWriter , ORTEPublStatus *
status);

Arguments

cstWriter

pointer to cstWriter object which provides this publication

status

pointer to ORTEPublStatus structure

Description

Returns ORTE_OK if successful or ORTE_BAD_HANDLE ifhapp is not valid publication handle.

45

Chapter 1. OCERA Real-Time Ethernet

ORTEPublicationSend

Name
ORTEPublicationSend — force publication object to issue new data

Synopsis

int ORTEPublicationSend (ORTEPublication * cstWriter);

Arguments

cstWriter

publication object

Description

Returns ORTE_OK if successful.

ORTEPublicationSendEx

Name
ORTEPublicationSendEx — force publication object to issue new data with additional parameters

Synopsis

int ORTEPublicationSendEx (ORTEPublication * cstWriter ,
ORTEPublicationSendParam * psp);

46

Chapter 1. OCERA Real-Time Ethernet

Arguments

cstWriter

publication object

psp

publication parameters

Description

Returns ORTE_OK if successful.

ORTEPublicationGetInstance

Name
ORTEPublicationGetInstance — return pointer to an instance

Synopsis

void * ORTEPublicationGetInstance (ORTEPublication * cstWriter);

Arguments

cstWriter

publication object

Description

Returns handle

47

Chapter 1. OCERA Real-Time Ethernet

ORTESubscriptionCreate

Name
ORTESubscriptionCreate — adds a new subscription

Synopsis

ORTESubscription * ORTESubscriptionCreate (ORTEDomain * d , SubscriptionMode
mode, SubscriptionType sType , const char * topic , const char * typeName , void
* instance , NtpTime * deadline , NtpTime * minimumSeparation , ORTERecvCallBack
recvCallBack , void * recvCallBackParam , IPAddress multicastIPAddress);

Arguments

d

pointer to ORTEDomain object where this subscription will be created

mode

see enum SubscriptionMode

sType

see enum SubscriptionType

topic

name of topic

typeName

name of data type

instance

pointer to output buffer

deadline

deadline

minimumSeparation

minimum time interval between two publications sent by Publisher as requested by Subscriber
(strict - minumSep musi byt 0)

48

Chapter 1. OCERA Real-Time Ethernet

recvCallBack

callback function called when new Subscription has been received or if any change of subscription’s
status occures

recvCallBackParam

user parameters forrecvCallBack

multicastIPAddress

in case multicast subscripton specify multicast IP address or use IPADDRESS_INVALID to unicast
communication

Description

Returns handle to Subscription object.

ORTESubscriptionDestroy

Name
ORTESubscriptionDestroy — removes a subscription

Synopsis

int ORTESubscriptionDestroy (ORTESubscription * cstReader);

Arguments

cstReader

handle to subscriotion to be removed

Description

Returns ORTE_OK if successful or ORTE_BAD_HANDLE ifcstReader is not valid subscription
handle.

49

Chapter 1. OCERA Real-Time Ethernet

ORTESubscriptionPropertiesGet

Name
ORTESubscriptionPropertiesGet — get properties of a subscription

Synopsis

int ORTESubscriptionPropertiesGet (ORTESubscription * cstReader , ORTESubsProp
* sp);

Arguments

cstReader

handle to publication

sp

pointer to ORTESubsProp structure where properties of subscrition will be stored

ORTESubscriptionPropertiesSet

Name
ORTESubscriptionPropertiesSet — set properties of a subscription

Synopsis

int ORTESubscriptionPropertiesSet (ORTESubscription * cstReader , ORTESubsProp
* sp);

50

Chapter 1. OCERA Real-Time Ethernet

Arguments

cstReader

handle to publication

sp

pointer to ORTESubsProp structure containing desired properties of the subscription

Description

Returns ORTE_OK if successful or ORTE_BAD_HANDLE ifcstReader is not valid subscription
handle.

ORTESubscriptionWaitForPublications

Name
ORTESubscriptionWaitForPublications — waits for given number of publications

Synopsis

int ORTESubscriptionWaitForPublications (ORTESubscription * cstReader ,
NtpTime wait , unsigned int retries , unsigned int noPublications);

Arguments

cstReader

handle to subscription

wait

time how long to wait

retries

number of retries if specified number of publications was not reached

51

Chapter 1. OCERA Real-Time Ethernet

noPublications

desired number of publications

Description

Returns ORTE_OK if successful or ORTE_BAD_HANDLE ifcstReader is not valid subscription
handle or ORTE_TIMEOUT if number of retries has been exhausted..

ORTESubscriptionGetStatus

Name
ORTESubscriptionGetStatus — get status of a subscription

Synopsis

int ORTESubscriptionGetStatus (ORTESubscription * cstReader , ORTESubsStatus *
status);

Arguments

cstReader

handle to subscription

status

pointer to ORTESubsStatus structure

Description

Returns ORTE_OK if successful or ORTE_BAD_HANDLE ifcstReader is not valid subscription
handle.

52

Chapter 1. OCERA Real-Time Ethernet

ORTESubscriptionPull

Name
ORTESubscriptionPull — read data from receiving buffer

Synopsis

int ORTESubscriptionPull (ORTESubscription * cstReader);

Arguments

cstReader

handle to subscription

Description

Returns ORTE_OK if successful or ORTE_BAD_HANDLE ifcstReader is not valid subscription
handle.

ORTESubscriptionGetInstance

Name
ORTESubscriptionGetInstance — return pointer to an instance

Synopsis

void * ORTESubscriptionGetInstance (ORTESubscription * cstReader);

53

Chapter 1. OCERA Real-Time Ethernet

Arguments

cstReader

publication object

Description

Returns handle

ORTETypeRegisterAdd

Name
ORTETypeRegisterAdd — register new data type

Synopsis

int ORTETypeRegisterAdd (ORTEDomain * d , const char * typeName ,
ORTETypeSerialize ts , ORTETypeDeserialize ds , ORTETypeGetMaxSize gms,
unsigned int ms);

Arguments

d

domain object handle

typeName

name of data type

ts

pointer to serialization function. If NULL data will be copied without any processing.

ds

deserialization function. If NULL data will be copied without any processing.

54

Chapter 1. OCERA Real-Time Ethernet

gms

pointer to a function given maximum length of data (in bytes)

ms

default maximal size

Description

Each data type has to be registered. Main purpose of this process is to define serialization and
deserialization functions for given data type. The same data type can be registered several times,
previous registrations of the same type will be overwritten.

Examples of serialization and deserialization functions can be found if contrib/shape/ortedemo_types.c
file.

Returns ORTE_OK if new data type has been succesfully registered.

ORTETypeRegisterDestroyAll

Name
ORTETypeRegisterDestroyAll — destroy all registered data types

Synopsis

int ORTETypeRegisterDestroyAll (ORTEDomain * d);

Arguments

d

domain object handle

55

Chapter 1. OCERA Real-Time Ethernet

Description

Destroys all data types which were previously registered by functionORTETypeRegisterAdd .

Return ORTE_OK if all data types has been succesfully destroyed.

ORTEVerbositySetOptions

Name
ORTEVerbositySetOptions — set verbosity options

Synopsis

void ORTEVerbositySetOptions (const char * options);

Arguments

options

verbosity options

Description

There are 10 levels of verbosity ranging from 1 (lowest) to 10 (highest). It is possible to specify certain
level of verbosity for each module of ORTE library. List of all supported modules can be found in
linorte/usedSections.txt file. Every module has been aasigned with a number as can be seen in
usedSections.txt file.

For instance

options = “ALL,7” Verbosity will be set to level 7 for all modules.

options = “51,7:32,5” Modules 51 (RTPSCSTWrite.c) will use verbosity level 7 and module 32
(ORTEPublicationTimer.c) will use verbosity level 5.

56

Chapter 1. OCERA Real-Time Ethernet

Maximum number of modules and verbosity levels can be changed in order to save some memory space
if small memory footprint is neccessary. These values are defined as macros
MAX_DEBUG_SECTIONS and MAX_DEBUG_LEVEL in fileinclude /defines.h.

Return ORTE_OK if desired verbosity levels were successfuly set.

ORTEVerbositySetLogFile

Name
ORTEVerbositySetLogFile — set log file

Synopsis

void ORTEVerbositySetLogFile (const char * logfile);

Arguments

logfile

log file name

Description

Sets output file where debug messages will be writen to. By default these messages are written to stdout.

ORTEInit

Name
ORTEInit — initialization of ORTE layer (musi se zavolat)

57

Chapter 1. OCERA Real-Time Ethernet

Synopsis

void ORTEInit (void);

Arguments

void

no arguments

ORTESleepMs

Name
ORTESleepMs — suspends calling thread for given time

Synopsis

void ORTESleepMs (unsigned int ms);

Arguments

ms

miliseconds to sleep

58

Chapter 1. OCERA Real-Time Ethernet

1.3.3. Macros

SeqNumberCmp

Name
SeqNumberCmp— comparison of two sequence numbers

Synopsis

SeqNumberCmp (sn1 , sn2);

Arguments

sn1

source sequential number 1

sn2

source sequential number 2

Return

1 if sn1 > sn2 -1 if sn1 < sn2 0 if sn1 = sn2

SeqNumberInc

Name
SeqNumberInc — incrementation of a sequence number

Synopsis

SeqNumberInc (res , sn);

59

Chapter 1. OCERA Real-Time Ethernet

Arguments

res

result

sn

sequential number to be incremented

Description

res = sn + 1

SeqNumberAdd

Name
SeqNumberAdd — addition of two sequential numbers

Synopsis

SeqNumberAdd (res , sn1 , sn2);

Arguments

res

result

sn1

source sequential number 1

sn2

source sequential number 2

60

Chapter 1. OCERA Real-Time Ethernet

Description

res = sn1 + sn2

SeqNumberDec

Name
SeqNumberDec — decrementation of a sequence number

Synopsis

SeqNumberDec (res , sn);

Arguments

res

result

sn

sequential number to be decremented

Description

res = sn - 1

SeqNumberSub

Name
SeqNumberSub — substraction of two sequential numbers

61

Chapter 1. OCERA Real-Time Ethernet

Synopsis

SeqNumberSub (res , sn1 , sn2);

Arguments

res

result

sn1

source sequential number 1

sn2

source sequential number 2

Description

res = sn1 - sn2

NtpTimeCmp

Name
NtpTimeCmp — comparation of two NtpTimes

Synopsis

NtpTimeCmp (time1 , time2);

Arguments

time1

source time 1

62

Chapter 1. OCERA Real-Time Ethernet

time2

source time 2

Return value

1 if time 1 > time 2 -1 if time 1 < time 2 0 if time 1 = time 2

NtpTimeAdd

Name
NtpTimeAdd — addition of two NtpTimes

Synopsis

NtpTimeAdd (res , time1 , time2);

Arguments

res

result

time1

source time 1

time2

source time 2

Description

res = time1 + time2

63

Chapter 1. OCERA Real-Time Ethernet

NtpTimeSub

Name
NtpTimeSub — substraction of two NtpTimes

Synopsis

NtpTimeSub (res , time1 , time2);

Arguments

res

result

time1

source time 1

time2

source time 2

Description

res = time1 - time2

NtpTimeAssembFromMs

Name
NtpTimeAssembFromMs — converts seconds and miliseconds to NtpTime

Synopsis

NtpTimeAssembFromMs (time , s , msec);

64

Chapter 1. OCERA Real-Time Ethernet

Arguments

time

time given in NtpTime structure

s

seconds portion of given time

msec

miliseconds portion of given time

NtpTimeDisAssembToMs

Name
NtpTimeDisAssembToMs — converts NtpTime to seconds and miliseconds

Synopsis

NtpTimeDisAssembToMs (s , msec, time);

Arguments

s

seconds portion of given time

msec

miliseconds portion of given time

time

time given in NtpTime structure

65

Chapter 1. OCERA Real-Time Ethernet

NtpTimeAssembFromUs

Name
NtpTimeAssembFromUs — converts seconds and useconds to NtpTime

Synopsis

NtpTimeAssembFromUs (time , s , usec);

Arguments

time

time given in NtpTime structure

s

seconds portion of given time

usec

microseconds portion of given time

NtpTimeDisAssembToUs

Name
NtpTimeDisAssembToUs — converts NtpTime to seconds and useconds

Synopsis

NtpTimeDisAssembToUs (s , usec , time);

66

Chapter 1. OCERA Real-Time Ethernet

Arguments

s

seconds portion of given time

usec

microseconds portion of given time

time

time given in NtpTime structure

Domain2Port

Name
Domain2Port — converts Domain value to IP Port value

Synopsis

Domain2Port (d , p);

Arguments

d

domain

p

port

Domain2PortMulticastUserdata

Name
Domain2PortMulticastUserdata — converts Domain value to userdata IP Port value

67

Chapter 1. OCERA Real-Time Ethernet

Synopsis

Domain2PortMulticastUserdata (d , p);

Arguments

d

domain

p

port

Domain2PortMulticastMetatraffic

Name
Domain2PortMulticastMetatraffic — converts Domain value to metatraffic IP Port value

Synopsis

Domain2PortMulticastMetatraffic (d , p);

Arguments

d

domain

p

port

68

Chapter 1. OCERA Real-Time Ethernet

1.4. ORTE Implementation Issues

ORTE is network middleware for distributed, real-time application development that uses the real-time,
publish-subscribe model. The middleware is available for a variety of platforms including RTAI,
RTLinux, Windows, and a several versions of Unix. The compilation system is mainly based on autoconf.

ORTE is middleware composed of a database, and tasks. On the top of ORTE architecture is application
interface (API). By using API users should write self application. The tasks perform all of the message
addressing serialization/deserialization, and transporting. The ORTE components are shown inFigure
1-5

Figure 1-5. ORTE Architecture

The RTPS protocol defines two kinds of Applications:

• Manager: The manager is a special Application that helps applications automatically discover each
other on the Network.

• ManagedApplication: A ManagedApplication is an Application that is managed by one or more
Managers. Every ManagedApplication is managed by at least one Manager.

The manager is mostly designed like separate application. In RTPS architecture is able to create
application which contains manager and managedapplication, but for easy managing is better split both.
The ORTE contains a separate instance of manager located in directoryorte/manager .

The manager is composed from five kinds of objects:

• WriterApplicationSelf: through which the Manager provides information about its own parameters
to Managers on other nodes.

• ReaderManagers:CSTReader through which the Manager obtains information on the state of all
other Managers on the Network.

• ReaderApplications:CSTReader which is used for the registration of local and remote
managedApplications.

69

Chapter 1. OCERA Real-Time Ethernet

• WriterManagers: CSTWriter through which the Manager will send the state of all Managers in the
Network to all its managees.

• WriterApplications: CSTWriter through which the Manager will send information about its
managees to other Managers in the Network.

A Manager that discovers a new ManagedApplication through its readerApplications must decide
whether it must manage this ManagedApplication or not. For this purpose, the attribute managerKeyList
of the Application is used. If one of the ManagedApplication’s keys (in the attribute managerKeyList) is
equal to one of the Manager’s keys, the Manager accepts the Application as a managee. If none of the
keys are equal, the managed application is ignored. At the end of this process all Managers have
discovered their managees and the ManagedApplications know all Managers in the Network.

The managedApplication is composed from seven kinds of objects:

• WriterApplicationSelf: a CSTWriter through which the ManagedApplication registers itself with the
local Manager.

• ReaderApplications:a CSTReader through which the ManagedApplication receives information
about another ManagedApplications in the network.

• ReaderManagers:a CSTReader through which the ManagedApplication receives information about
Managers.

• WriterPublications: CSTWriter through which the Manager will send the state of all Managers in the
Network to all its managees.

• ReaderPublications:a Reader through which the Publication receives information about
Subscriptions.

• WriterSubscriptions: a Writer that provides information about Subscription to Publications.

• ReaderSubscriptions:a Reader that receives issues from one or more instances of Publication, using
the publish-subscribe service.

The ManagedApplication has a special CSTWriter writerApplicationSelf. The Composite State (CS) of
the ManagedApplication’s writerApplicationSelf object contains only one NetworkObject - the
application itself. The writerApplicationSelf of the ManagedApplication must be configured to announce
its presence repeatedly and does not request nor expect acknowledgments.

The ManagedApplications now use the CST Protocol between the writerApplications of the Managers
and the readerApplications of the ManagedApplications in order to discover other ManagedApplications
in the Network. Every ManagedApplication has two special CSTWriters, writerPublications and
writerSubscriptions, and two special CSTReaders, readerPublications and readerSubscriptions.

Once ManagedApplications have discovered each other, they use the standard CST protocol through
these special CSTReaders and CSTWriter to transfer the attributes of all Publications and Subscriptions
in the Network.

70

Chapter 1. OCERA Real-Time Ethernet

The ORTE stores all data in local database per application. There isn’t central store where are data saved.
If an application comes into communication, than will be created local mirror of all applications
parameters. Parts of internal structures are shown inFigure 1-6.

Figure 1-6. ORTE Internal Attributes

Note:
+ means list entry

CSChangeFromWriterCSChange

+CSChangeFromWriters

GUID
CDRStream
Atributes
...

TypeRegister

CSTReader CSTRemoteWriter
+CSTRemoteWriters

CSTWriter CSTRemoteReader
+CSTRemoteReaders
+CSChanges

CSChange
CSChangeGUID

CDRStream
Atributes
...

LastIssueTime
RefreshPeriodTime
TypeRegister

CSChangeForReader

+CSChangeForReaders

DelayResponceTimer

...

...

...

...

PersistenceTimer ...

...ObjectEntryHID

ObjectEntryAID

ObjectEntryOID

+ObjectEntryAID

+ObjectEntryOID

...

ExpirationTimer
ObjectAttributes

...
TimerQueues

...

CallBackFunctions
TypeRegister

...

Topic/Type
SubscriptionCallBack

WriterApplicationSelf
WriterApplications
WriterManagers
ReaderApplications
ReaderManagers

ReaderSubscriptions
ReaderPublications
WriterSubscriptions
WriterPublications

objectEntry

Tasks
...

ORTEDomain

+Publications
+Subscriptions

+typeEntry
+patternEntry

CSChange

+CSChanges

Following example shows communication between two nodes (N1, N2). There are applications running
on each node - MA1.2 on node N1 and MA2.1, MA2.2 on node N2. Each node has it own manager (M1,
M2). The example shows, what’s happen when a new application comes into communication (MA1.1).

1. MA1.1 introduces itself to local manager M1

2. M1 sends back list of remote managers Mx and other local applications MA1.x

3. MA1.1 is introduced to all Mx by M1

4. All remote MAs are reported now to M1.1

5. MA1.1 is queried for self services (publishers and subscriberes) from others MAx.

6. MA1.1 asks for services to others MAx.

7. All MAs know information about others.

The corresponding publishers and subscribers with matching Topic and Type are connected and starts
their data communication.

71

Chapter 1. OCERA Real-Time Ethernet

Figure 1-7. RTPS Communication among Network Objects

1.5. ORTE Examples

This chapter expect that you are familiar with RTPS communication architecture described inSection
1.2.

Publications can offer multiple reliability policies ranging from best-efforts to strict (blocking)
reliability. Subscription can request multiple policies of desired reliability and specify the relative
precedence of each policy. Publications will automatically select among the highest precedence
requested policy that is offered by the publication.

• BestEffort: This reliability policy is suitable for data that are sending with a period. There are no
message resending when a message is lost. On other hand, this policy offer maximal predictable
behaviour. For instance, consider a publication which send data from a sensor (pressure, temperature,
...).

Figure 1-8. Periodic Snapshots of a BestEffort Publisher

of a commercially sold software package is permitted. © 2001, Carlo Kopp
Distribution of this artwork as part of the xfig package, where xfig is part

Time

Te
m

pe
ra

tu
re

U.S. AIR FORCE
602

AMC

40602

72

Chapter 1. OCERA Real-Time Ethernet

• StrictReliable: The ORTE supports the reliable delivery of issues. This kind of communication is
used where a publication want to be sure that all data will be delivered to subscriptions. For instance,
consider a publication which send commands.

Command data flow requires that each instruction in the sequence is delivered reliably once and only
once. Commands are often not time critical.

1.5.1. BestEffort Communication

Before creating a Publication or Subscription is necessary to create a domain by using function
ORTEDomainAppCreate . The code should looks like:

int main(int argc, char *argv[])
{

ORTEDomain *d = NULL;
ORTEBoolean suspended= ORTE_FALSE;

ORTEInit();

d = ORTEDomainAppCreate(ORTE_DEFAUL_DOMAIN, NULL, NULL, suspended);
if (!d)
{

printf("ORTEDomainAppCreate failed\n");
return -1;

}
}

The ORTEDomainAppCreate allocates and initializes resources that are needed for communication. The
parametersuspended says if ORTEDomain takes suspend communicating threads. In positive case you
have to start threads manually by usingORTEDomainStart .

Next step in creation of a application is registration serialization and deserialization routines for the
specific type. You can’t specify this functions, but the incoming data will be only copied to output buffer.

ORTETypeRegisterAdd(d, "HelloMsg", NULL, NULL, 64);

To create a publication in specific domain use the function ORTEPublicationCreate.

char instance2send[64];
NtpTime persistence, delay;

NTPTIME_BUILD(persistence, 3); /* this issue is valid for 3 seconds */
NTPTIME_DELAY(delay, 1); /* a callback function will be called every 1 second */
p = ORTEPublicationCreate(d,

73

Chapter 1. OCERA Real-Time Ethernet

"Example HelloMsg",
"HelloMsg",
&instance2Send,
&persistence,
1,
sendCallBack,
NULL,
&delay);

The callback function will be then called when a new issue from publisher has to be sent. It’s the case
when you specify callback routine inORTEPublicationCreate . When there isn’t a routine you have to
send data manually by call functionORTEPublicationSend . This option is useful for sending periodic
data.

void sendCallBack(const ORTESendInfo *info, void *vinstance, void *sendCallBackParam)
{

char *instance = (char *) vinstance;
switch (info->status)
{

case NEED_DATA:
printf("Sending publication, count %d\n", counter);
sprintf(instance, "Hello world (%d)", counter++);
break;

case CQL: //criticalQueueLevel has been reached
break;

}
}

Subscribing application needs to create a subscription with publication’s Topic and TypeName. A
callback function will be then called when a new issue from publisher will be received.

ORTESubscription *s;
NtpTime deadline, minimumSeparation;

NTPTIME_BUILD(deadline, 20);
NTPTIME_BUILD(minimumSeparation, 0);
p = ORTESubscriptionCreate(d,

IMMEDIATE,
BEST_EFFORTS,
"Example HelloMsg",
"HelloMsg",
&instance2Recv,
&deadline,
&minimumSeparation,
recvCallBack,
NULL);

74

Chapter 1. OCERA Real-Time Ethernet

The callback function is shown in the following example:

void recvCallBack(const ORTERecvInfo *info, void *vinstance, void *recvCallBackParam)
{

char *instance = (char *) vinstance;
switch (info->status)
{

case NEW_DATA:
printf("%s\n", instance);
break;

case DEADLINE: //deadline occurred
break;

}
}

Similarly examples are located in ORTE subdirectoryorte/examples/hello . There are
demonstrating programs how to create an application which will publish some data and another
application, which will subscribe to this publication.

1.5.2. Reliable communication

The reliable communication is used especially in situations where we need guarantee data delivery. The
ORTE supports the inorder delivery of issues with built-in retry mechanism

The creation of reliable communication starts like besteffort communication. Difference is in creation a
subscription. Third parameter is just only changed to STRICT_RELIABLE.

ORTESubscription *s;
NtpTime deadline, minimumSeparation;

NTPTIME_BUILD(deadline, 20);
NTPTIME_BUILD(minimumSeparation, 0);
p = ORTESubscriptionCreate(d,

IMMEDIATE,
STRICT_RELIABLE,
"Example HelloMsg",
"HelloMsg",
&instance2Recv,
&deadline,
&minimumSeparation,
recvCallBack,
NULL);

75

Chapter 1. OCERA Real-Time Ethernet

Note:

Strict reliable subscription must set minimumSeparation to zero! The middleware can’t guarantee that
the data will be delivered on first attempt (retry mechanism).

Sending of a data is blocking operation. It’s strongly recommended to setup sending queue to higher
value. Default value is 1.

ORTEPublProp *pp;

ORTEPublicationPropertiesGet(publisher,pp);
pp->sendQueueSize=10;
pp->criticalQueueLevel=8;
ORTEPublicationPropertiesSet(publisher,pp);

An example of reliable communication is in ORTE subdirectoryorte/examples/reliable . There are
located a strictreliable subscription and publication.

1.5.3. Serialization/Deserialization

Actually the ORTE doesn’t support any automatic creation of serialization/deserializaction routines. This
routines have to be designed manually by the user. In next is shown, how should looks both for the
structure BoxType.

typedef struct BoxType {
int32_t color;
int32_t shape;

} BoxType;

void
BoxTypeSerialize(CDR_Codec *cdrCodec, void *instance) {

BoxType *boxType=(BoxType*)instance;

CDR_put_long(cdrCodec,boxType->color);
CDR_put_long(cdrCodec,boxType->shape);

}

void
BoxTypeDeserialize(CDR_Codec *cdrCodec, void *instance) {

BoxType *boxType=(BoxType*)instance;

CDR_get_long(cdrCodec,&boxType->color);
CDR_get_long(cdrCodec,&boxType->shape);

}

76

Chapter 1. OCERA Real-Time Ethernet

When we have written a serialization/deserialization routine we need to register this routines to
midleware by functionORTETypeRegisterAdd

ORTETypeRegisterAdd(
domain,
"BoxType",
BoxTypeSerialize,
BoxTypeDeserialize,
sizeof(BoxType));

The registration must be called before creation a publication or subscription. Normally is
ORTETypeRegisterAdd called immediately after creation of a domain (ORTEDomainCreate).

All of codes are part of the Shapedemo located in subdirectoryorte/contrib/shape .

1.6. ORTE Tests

There were not any serious tests performed yet. Current version has been intensively tested against
reference implementation of the protocol. Results of these test indicate that ORTE is fully interoperable
with implementation provided by another vendor.

1.7. ORTE Usage Information

1.7.1. Installation and Setup

In this chapter is described basic steps how to makes installation and setup process of the ORTE. The
process includes next steps:

1. Downloading the ORTE distribution

2. Compilation

3. Installing the ORTE library and utilities

4. Testing the installation

Note:

On windows systems we are recommend to use Mingw or Cygwin systems. The ORTE support also
MSVC compilation, but this kind of installation is not described here.

77

Chapter 1. OCERA Real-Time Ethernet

1.7.1.1. Downloading

The ORTE component can be obtained from OCERA SourceForge web page
(http://www.sf.net/projects/ocera/). Here is the component located also in self distribution branch as well
as in OCERA distribution. Before developing any application check if there is a new file release.

The CVS version of ORTE repository can be checked out be anonymous (pserver) CVS with the
following commands.

cvs -d:pserver:anonymous@cvs.ocera.sourceforge.net:/cvsroot/ocera login
cvs -z3 -d:pserver:anonymous@cvs.ocera.sourceforge.net:/cvsroot/ocera co ocera/components/comm/eth/orte/

Attention, there is developing version and can’t be stable!

1.7.1.2. Compilation

Before the compilation process is necessary to prepare the source. Create a new directory for ORTE
distribution. We will assume name of this directory/orte for Linux case. Copy or move downloaded
ORTE sources to/orte (assume the name of sourcesorte-0.2.3.tar.gz). Untar and unzip this files
by using next commands:

gunzip orte-0.2.3.tar.gz
tar xvf orte-0.2.3.tar

Now is the source prepared for compilation. Infrastructure of the ORTE is designed to support GNU
make (needs version 3.81) as well as autoconf compilation. In next we will continue with description of
autoconf compilation, which is more general. The compilation can follows with commands:

mkdir build
cd build
../configure
make

This is the case of outside autoconf compilation. In directorybuild are all changes made over ORTE
project. The source can be easy move to original state be removing of directorybuild .

1.7.1.3. Installing

The result of compilation process are binary programs and ORTE library. For the next developing is
necessary to install this result. It can be easy done be typing:

make install

78

Chapter 1. OCERA Real-Time Ethernet

All developing support is transferred into directories with direct access of design tools.

name target path

ortemanager, orteping, ortespy /usr/local/bin

library /usr/local/lib

include /usr/local/include

The installation prefix/usr/local/ can be changed during configuration. Use command../configure
--help for check more autoconf options.

1.7.1.4. Testing the Installation

To check of correct installation of ORTE open three shells.

1. In first shell type

ortemanager

2. In second shell type

orteping -s

This command will invoked creation of a subscription. You should see:

deadline occurred
deadline occurred
...

3. In third shell type

orteping -p

This command will invoked creation of a publication. You should see:

sent issue 1
sent issue 2
sent issue 3
sent issue 4
...

If the ORTE installation is properly, you will see incoming messages in second shell (orteping -s).

received fresh issue 1
received fresh issue 2
received fresh issue 3
received fresh issue 4
...

79

Chapter 1. OCERA Real-Time Ethernet

It’s sign, that communication is working correctly.

1.7.2. The ORTE Manager

A manager is special application that helps applications automatically discover each other on the
Network. Each time an object is created or destroyed, the manager propagate new information to the
objects that are internally registered.

Every application precipitate in communication is managed by least one manager. The manager should
be designed like separated application as well as part of designed application.

Figure 1-9. Position of Managers in RTPS communication

Applications

Manager 1

Applications

Manager 2

Internet

� ��

The ORTE provides one instance of a manager. Name of this utility isortemanager and is located in
directoryorte/ortemanager . Normally is necessary to startortemanager manually or use a script on
UNIX systems. For Mandrake and Red-hat distribution is this script created in subdirectoryrc . Windows
users can installortemanager like service by using option/install_service .

Note:

Don’t forget to run a manager (ortemanager) on each RTPS participate node. During live of applications
is necessary to be running this manager.

80

Chapter 1. OCERA Real-Time Ethernet

1.7.2.1. Example of Usage ortemanager

Each manager has to know where are other managers in the network. Their IP addresses are therefore
specified as IPAddressX parameters of ortemanager. All managers participate in one kind of
communication use the same domain number. The domain number is transferred to port number by
equation defined in RTPS specification (normally domain 0 is transferred to 7400 port).

Let’s want to distribute the RTPS communication of nodes with IP addresses 192.168.0.2 and
192.168.0.3. Private IP address is 192.168.0.1. The ortemanager can be execute with parameters:

ortemanager -p 192.168.0.2:192.168.0.3

To communicate in different domain use (parameter -d):

ortemanager -d 1 -p 192.168.0.2:192.168.0.3

Very nice feature of ortemanager is use event system to inform of creation/destruction objects (parameter
-e).

ortemanager -e -p 192.168.0.2:192.168.0.3

Now, you can see messages:

[smolik@localhost smolik]$ortemanager -e -p 192.168.0.2:192.168.0.3
manager 0xc0a80001-0x123402 was accepted
application 0xc0a80002-0x800301 was accepted
application 0xc0a80002-0x800501 was accepted
application 0xc0a80002-0x800501 was deleted
manager 0xc0a80001-0x123402 was deleted

ortemanager

Name
ortemanager — the utility for discovery others applications and managers on the network

Synopsis

ortemanager [-d domain] [-p ip addresses] [-k ip addresses] [-R refresh] [-P purge] [-D

] [-E expiration] [-e] [-v verbosity] [-l filename] [-V] [-h]

81

Chapter 1. OCERA Real-Time Ethernet

Description

Main purpose of the utilityortemanager is debug and test ORTE communication.

OPTIONS

-d --domain

The number of working ORTE domain. Default is 0.

-p --peers

The IP addresses parsipiates in RTPS communication. SeeSection 1.7.2for example of usage.

-R --refresh

The refresh time in manager. Default 60 seconds.

-P --purge

The searching time in local database for finding expired application. Default 60 seconds.

-E --expiration

Expiration time in other applications.

-m --minimumSeparation

The minimum time between two issues.

-v --verbosity

Set verbosity level.

-l --logfile

All debug messages can be redirect into specific file.

-V --version

Print the version ofortemanager.

-h --help

Print usage screen.

82

Chapter 1. OCERA Real-Time Ethernet

1.7.3. Simple Utilities

The simple utilities can be found in theorte/examples subdirectory of the ORTE source subtree.
These utilities are useful for testing and monitoring RTPS communication.

The utilities provided directly by ORTE are:

orteping

the utility for easy creating of publications and subscriptions.

ortespy

monitors issues produced by other application in specific domain.

orteping

Name
orteping — the utility for debugging and testing of ORTE communication

Synopsis

orteping [-d domain] [-p] [-S strength] [-D delay] [-s] [-R refresh] [-P purge] [-E

expiration] [-m minimumSeparation] [-v verbosity] [-q] [-l filename] [-V] [-h]

Description

Main purpose of the utilityorteping is debug and test ORTE communication.

OPTIONS

-d --domain

The number of working ORTE domain. Default is 0.

-p --publisher

Create a publisher with Topic - Ping and Type - PingData. The publisher will publish a issue with
period by parameter delay.

-s --strength

Setups relative weight against other publishers. Default is 1.

83

Chapter 1. OCERA Real-Time Ethernet

-D --delay

The time between two issues. Default 1 second.

-s --subscriber

Create a subscriber with Topic - Ping and Type - PingData.

-R --refresh

The refresh time in manager. Default 60 seconds.

-P --purge

The searching time in local database for finding expired application. Default 60 seconds.

-E --expiration

Expiration time in other applications.

-m --minimumSeparation

The minimum time between two issues.

-v --verbosity

Set verbosity level.

-q --quite

Nothing messages will be printed on screen. It can be useful for testing maximal throughput.

-l --logfile

All debug messages can be redirect into specific file.

-V --version

Print the version oforteping.

-h --help

Print usage screen.

ortespy

Name
ortespy — the utility for monitoring of ORTE issues

84

Chapter 1. OCERA Real-Time Ethernet

Synopsis

orteping [-d domain] [-v verbosity] [-R refresh] [-P purge] [-e expiration] [-l

filename] [-V] [-h]

Description

Main purpose of the utilityortespy is monitoring data traffic between publications and subscriptions.

OPTIONS

-d --domain

The number of working ORTE domain. Default is 0.

-v --verbosity

Set verbosity level.

-R --refresh

The refresh time in manager. Default 60 seconds.

-P --purge

Create publisher

-e --expiration

Expiration time in other applications.

-l --logfile

All debug messages can be redirect into specific file.

-V --version

Print the version oforteping.

-h --help

Print usage screen.

85

	ORTE OCERA RealTime Ethernet
	Table of Contents
	List of Figures
	Chapter 1. OCERA RealTime Ethernet
	1.1. ORTE Summary
	1.1.1. Summary

	1.2. ORTE Description
	1.2.1. Introduction
	1.2.2. The PublishSubscribe Architecture
	1.2.2.1. The PublishSubscribe Model
	1.2.2.2. PublishSubscribe in Real Time

	1.2.3. The RealTime PublishSubscribe Model
	1.2.3.1. Publication Parameters
	1.2.3.2. Subscription Paramters
	1.2.3.3. Reliability and TimeDeterminism

	1.3. ORTE API
	1.3.1. Data types

	enum SubscriptionMode
	Name
	Synopsis
	Constants
	Description

	enum SubscriptionType
	Name
	Synopsis
	Constants
	Description

	enum ORTERecvStatus
	Name
	Synopsis
	Constants
	Description

	enum ORTESendStatus
	Name
	Synopsis
	Constants
	Description

	struct ORTEIFProp
	Name
	Synopsis
	Members
	Description

	struct ORTEMulticastProp
	Name
	Synopsis
	Members
	Description

	struct ORTEGetMaxSizeParam
	Name
	Synopsis
	Members
	Description

	struct ORTETypeRegister
	Name
	Synopsis
	Members
	Description

	struct ORTEDomainBaseProp
	Name
	Synopsis
	Members

	struct ORTEDomainWireProp
	Name
	Synopsis
	Members

	struct ORTEPublProp
	Name
	Synopsis
	Members

	struct ORTESubsProp
	Name
	Synopsis
	Members

	struct ORTEAppInfo
	Name
	Synopsis
	Members

	struct ORTEPubInfo
	Name
	Synopsis
	Members

	struct ORTESubInfo
	Name
	Synopsis
	Members

	struct ORTEPublStatus
	Name
	Synopsis
	Members

	struct ORTESubsStatus
	Name
	Synopsis
	Members

	struct ORTERecvInfo
	Name
	Synopsis
	Members

	struct ORTESendInfo
	Name
	Synopsis
	Members

	struct ORTEPublicationSendParam
	Name
	Synopsis
	Members

	struct ORTEDomainAppEvents
	Name
	Synopsis
	Members
	Description

	struct ORTETasksProp
	Name
	Synopsis
	Members

	struct ORTEDomainProp
	Name
	Synopsis
	Members
	1.3.2. Functions

	IPAddressToString
	Name
	Synopsis
	Arguments

	StringToIPAddress
	Name
	Synopsis
	Arguments

	NtpTimeToStringMs
	Name
	Synopsis
	Arguments

	NtpTimeToStringUs
	Name
	Synopsis
	Arguments

	ORTEDomainStart
	Name
	Synopsis
	Arguments
	Description

	ORTEDomainPropDefaultGet
	Name
	Synopsis
	Arguments
	Description

	ORTEDomainInitEvents
	Name
	Synopsis
	Arguments
	Description

	ORTEDomainAppCreate
	Name
	Synopsis
	Arguments
	Description

	ORTEDomainAppDestroy
	Name
	Synopsis
	Arguments
	Description

	ORTEDomainAppSubscriptionPatternAdd
	Name
	Synopsis
	Arguments
	Description

	ORTEDomainAppSubscriptionPatternRemove
	Name
	Synopsis
	Arguments
	Description

	ORTEDomainAppSubscriptionPatternDestroy
	Name
	Synopsis
	Arguments
	Description

	ORTEDomainMgrCreate
	Name
	Synopsis
	Arguments
	Description

	ORTEDomainMgrDestroy
	Name
	Synopsis
	Arguments
	Description

	ORTEPublicationCreate
	Name
	Synopsis
	Arguments
	Description

	ORTEPublicationDestroy
	Name
	Synopsis
	Arguments
	Description

	ORTEPublicationPropertiesGet
	Name
	Synopsis
	Arguments
	Description

	ORTEPublicationPropertiesSet
	Name
	Synopsis
	Arguments
	Description

	ORTEPublicationGetStatus
	Name
	Synopsis
	Arguments
	Description

	ORTEPublicationSend
	Name
	Synopsis
	Arguments
	Description

	ORTEPublicationSendEx
	Name
	Synopsis
	Arguments
	Description

	ORTEPublicationGetInstance
	Name
	Synopsis
	Arguments
	Description

	ORTESubscriptionCreate
	Name
	Synopsis
	Arguments
	Description

	ORTESubscriptionDestroy
	Name
	Synopsis
	Arguments
	Description

	ORTESubscriptionPropertiesGet
	Name
	Synopsis
	Arguments

	ORTESubscriptionPropertiesSet
	Name
	Synopsis
	Arguments
	Description

	ORTESubscriptionWaitForPublications
	Name
	Synopsis
	Arguments
	Description

	ORTESubscriptionGetStatus
	Name
	Synopsis
	Arguments
	Description

	ORTESubscriptionPull
	Name
	Synopsis
	Arguments
	Description

	ORTESubscriptionGetInstance
	Name
	Synopsis
	Arguments
	Description

	ORTETypeRegisterAdd
	Name
	Synopsis
	Arguments
	Description

	ORTETypeRegisterDestroyAll
	Name
	Synopsis
	Arguments
	Description

	ORTEVerbositySetOptions
	Name
	Synopsis
	Arguments
	Description
	For instance

	ORTEVerbositySetLogFile
	Name
	Synopsis
	Arguments
	Description

	ORTEInit
	Name
	Synopsis
	Arguments

	ORTESleepMs
	Name
	Synopsis
	Arguments
	1.3.3. Macros

	SeqNumberCmp
	Name
	Synopsis
	Arguments
	Return

	SeqNumberInc
	Name
	Synopsis
	Arguments
	Description

	SeqNumberAdd
	Name
	Synopsis
	Arguments
	Description

	SeqNumberDec
	Name
	Synopsis
	Arguments
	Description

	SeqNumberSub
	Name
	Synopsis
	Arguments
	Description

	NtpTimeCmp
	Name
	Synopsis
	Arguments
	Return value

	NtpTimeAdd
	Name
	Synopsis
	Arguments
	Description

	NtpTimeSub
	Name
	Synopsis
	Arguments
	Description

	NtpTimeAssembFromMs
	Name
	Synopsis
	Arguments

	NtpTimeDisAssembToMs
	Name
	Synopsis
	Arguments

	NtpTimeAssembFromUs
	Name
	Synopsis
	Arguments

	NtpTimeDisAssembToUs
	Name
	Synopsis
	Arguments

	Domain2Port
	Name
	Synopsis
	Arguments

	Domain2PortMulticastUserdata
	Name
	Synopsis
	Arguments

	Domain2PortMulticastMetatraffic
	Name
	Synopsis
	Arguments

	1.4. ORTE Implementation Issues
	1.5. ORTE Examples
	1.5.1. BestEffort Communication
	1.5.2. Reliable communication
	1.5.3. Serialization/Deserialization

	1.6. ORTE Tests
	1.7. ORTE Usage Information
	1.7.1. Installation and Setup
	1.7.1.1. Downloading
	1.7.1.2. Compilation
	1.7.1.3. Installing
	1.7.1.4. Testing the Installation

	1.7.2. The ORTE Manager
	1.7.2.1. Example of Usage ortemanager

	ortemanager
	Name
	Synopsis
	Description
	OPTIONS
	1.7.3. Simple Utilities

	orteping
	Name
	Synopsis
	Description
	OPTIONS

	ortespy
	Name
	Synopsis
	Description
	OPTIONS

