ORTE - Open Real-Time Ethernet

Petr Smolik
CTU

Pavel Pisa
CTU

Michal Sojka
CTU

Zdenek Sebek
CTU

Zdenek Hanzalek
CTU

ORTE - Open Real-Time Ethernet
by Petr Smolik, Pavel Pisa, Michal Sojka, Zdenek Sebek, and Zdenek Hanzalek

Published August 2012
Copyright © 2005 — 2012 Czech Technival University

You can (in fact you must!) use, modify, copy and distribute this document, of course free of charge, and think about the appropriate license we

will use for the documentation.

Table of Contents

1. ORTE Description 1
O O 65T (o T L ot o) O USRS 1

1.2. The Publish-Subscribe ATCRIECTUIEcccueruieiiiriiiieriiitieiee ettt 1

1.2.1. The Publish-Subscribe Modelccoeriiriniiiiiiiiiit ettt 2

1.2.2. Publish-Subscribe in Real Timeccccooveeriiriiiiniiniiiieeceteeieee et 3

1.3. The Real-Time Publish-Subscribe Modelcoccoieririeiiiniiniiniiiencnieeneeteie et 4

1.3.1. Publication Parameterscc.cecuererieniiiiniinieieiietec ettt ettt 4

1.3.2. SUbSCIIPiON PAramIerseecuieiuieriieiieiiesieeieesieesteeteeieesresaeebeesaaesbessbeessnessesnseenns 5

1.3.3. Reliability and Time-DeterminiSimccueevveerueerieriieeiieesieesieeieesieesreesreesseesnesssessseenne 6

2. ORTE Internals 8
3. ORTE Examples 12
3.1. BestEffort COMMUNICAtIONccuevuieiiriieiiniiiieieeicte ettt ettt sae e saeenees 12

3.2. Reliable COMMUNICAIONcoveriiriieiiniieienieetenieeieete sttt sttt e s esne e sae s saeennesaeennes 15

3.3. Serialization/DeserialiZationcocveruieriierienie ettt ettt st e sbeesaeesaee s 16

4. ORTE Tests 17
5. ORTE Usage Information 18
5.1. Installation and SELUPccoueriiriiiiieeeeeee ettt sttt sttt st 18
5.1.1. DOWNIOAAING ...eeuveiteiietieieeieete sttt ettt sttt et et st e eesae et e bees e et e eseeneesaeenean 18

5.1.2. COMPIIALION ..ttt ettt et sttt e bt st esbeesaee e 18

5130 TNSTALIIINE ottt sttt st e 19

5.1.4. Testing the INStallationccooeiieiirieiiii e 19

5.2. The ORTE MANAEETecuteiiiiiiieiieieeteeteeete ettt ettt ettt et be et ettt beeseenteeaeeeesbeenean 20
5.2.1. Example of USage OIteMANAZET.......c..ceueeteruirierierieeientieiienteeeteneeseeetesiesetentesseeneeseeennes 21

5.3, SIMPIE ULIEIES ..eeuveeieniiitieiieieeiterie ettt ettt ettt b ettt st et bt esae bt eetetesbeeneesbeeneen 23
OTLEPIIE e vvenve ettt et ente st e et et et e e st e este s b e eb e e s e eb e eatesbees e e bt sbeem b e bt eb e et ebeembesbeem b e beeb s et e ebeeneesbeennen 23

OTLESPY .vevvemrerueententtententeettete et tentesteestesbeebtesteebeeatenbeeat e bt sbeem b e bt eb e et e ebtentesbeemb e beebtenbeebeenaenbeeneen 25

6. ORTE API 27
6.1, DA LYPES..uveeurieitieeieeieette st et et e st e ettt et esttesatesabe e beesstesabeebee bt e eabeeabeebeesbaeenbeenbeebaeeabeenbeentes 27
enUM SUDSCIPHONMOME.......coiuiieiieiieiie ettt ettt et st e s be e beesaesateenseesanesnseen 27

eNUM SUDSCIIPHONTYPE c..veeuvieiiieieeitecite ettt ettt st e e e s atesabeebeesaeesaseen 27

enUM ORTERECVSTALUSooueriiiiiiiiiiiirteierieetet ettt ettt sttt ettt st sae e 28

enuM ORTESENASIALUScceoiiiiriiiiiniiieienectecetec ettt s 29

SITUCT ORTEIFPIODceiiiiiieiieiieeteetteste ettt sttt ettt ettt e st st eebe e et e saneenbaenaee e 29

StrUCt ORTEMUILICASIPTOP ..cuviiiiieiiieiieiteeieeie ettt ettt sttt st 30

struct ORTEGetMaxSizeParami..........c..cocueouevieiiniiiininieienieeeieetee e 31

SITUCt ORTETYPEREZISIETcuvieiiieiiieiiesite ettt ettt sttt st sbeenaee e 32

struct ORTEDOMAINBASEPTOPevviiiiiiiiieieeieeiteeteee ettt ettt 33

struct ORTEDOMAINWITePIOP........cccoiiiiiiiiiiiiiiiiceccce et 35

StrUCt ORTEPUDIPIOP ..ottt 35

StrUCt ORTESUDSPIOP....c..ooiiiiiiiiiiiee et 37

StruCt ORTEAPPINTO ..o 38

SrUCt ORTEPUDINTOoeiiiiieiiiiccee et et e et eeeae e snaeeennaeeas 40

StrUCt ORTESUDINTOc.vviiiiiiiiciecieeee ettt ettt e e e et e s b e et e ebeesaeeeeseenbaesee e 40

SIUCt ORTEPUDISTAUSvviieiiiieeiee ettt et e et e et eesnaeeenseeeas 41

iii

StIUCEt ORTESUDSSEATUSvvviiiieiiiiee ettt eetae e e e ete e e e eetrreeeeenreee s 42

struct ORTERECVINTOcc.oiiiiiiiiiicccce e 42
struct ORTESendINfocoooviiiiiiiiiiiiiiiiiccee e 43
struct ORTEPublicationSendParam..............ccccooiiiiiiiiiiiiiniiiiicce 44
struct ORTEDOMAINAPPEVENLSooiuiiiiiiiiiiieiteeteeeesitest ettt ettt 45
StrUCt ORTETASKSPIOD «..ceiieiiiiiieeeeteee ettt sttt st 47
struct ORTEDOMAINPIOP.......cc.cooiiiiiiiiiiiciiie et 48
6.2, FUNCHONS ..ottt ettt ettt a e st e b e e bt e sat e e bt e bt e sbeesabeenbe e beesabeeaseenbes 50
TPAAAIESSTOSIIING ..ottt ettt s s s 50
StrNGTOIPAAAIESS ..ot st s 50
NEPTIMETOSIINZIMS ... et e s 51
INEPTIMETOSIINGUS ..ottt ettt sttt ea et s be et e beenee e s s 52
ORTEDOMAINSEATT «....eeetieiieeiieniteeieeieesit ettt et eite sttt e set e st e bt e sbeesatesabeesbeesneesaneenseenneenas 52
ORTEDOMAaIiNPropDefatltGet.c.ocueruieiiiriieiirieeierie ettt sttt s 53
ORTEDOMAININITEVENLS. ..ottt ettt sttt ebe e e 54
ORTEDOMAINAPPCTEALEceeeeueeieeiieieeiteieettete st eite sttt e te st eatenteestetesae et enbesatetesseeneesaeeneas 54
ORTEDOMAINAPPDESIIOY ...ttt sttt sttt sttt et e st st et e b eb et sbeeneeseeenees 55
ORTEDomainAppSubscriptionPatternAdd.........cccoociereriiienieiinieee e 56
ORTEDomainAppSubscriptionPatternREmMOVec.ccoeevierieiiniinieneneeieeeeeeceee e 57
ORTEDomainAppSubscriptionPatternDestroycoceveerieririenienienieneeienienteiesieeee e 58
ORTEDOMAINMEICTEALEc.veeuveiieiieienitenieeteeite sttt st ettt ettt et bt et e besbsebesbeeneesbeenees 59
ORTEDOMAINMEIDESIIOY ...cevieuiiiiiiiiiiniieienieetesteeit ettt sttt 60
ORTEPUDIICAtIONCTEALEc.euveiiiiiiiiriiieieieteteetee ettt s 60
ORTEPUDICAONDESIIOY ...veeuvieiiieiieiieiieeieeieesiteste sttt e setesete e beesaeesanessbaeseesseesaseensaenseeses 62
ORTEPUDICAtiONPIOPETtIESGEL. ... ccuveetieriieeiieeiieiteeie et erieestesteebeesaeesatessbeesseesaeesseenseenseenns 62
ORTEPUDICAtiONPIOPETTIESSELcuveeiiieriieeiieeiierite ettt ettt sateste st e et e saeesebeesaeesaee e 63
ORTEPUDIICatiONGELSIALUSceeeuiiiiiiiiiiiiiieicieire et 64
ORTEPUDIICAtiONSENd........couiiiiiiiiiiiiiiiiicicicice e 64
ORTEPublicationSendEXcccociiiiiiiiiiiiiiiiiiiiiccciseeeceeeee e 65
ORTEPublicationGEtINSTANCE.c.eriiiiiiiiiiiiiiiiiecectee e 66
ORTESUDSCIIPLONCTEALEc..veeviieiieeiieniieeieeieeniteste et e stee st e st e ebeesaeesatesabeesseesaeesaseenseenseenas 66
ORTESUDSCIIPLIONDESITOYeeiiieiieriieniieeieeieenite sttt ettt sit et e st e satesabeesbeesaeesaneenseenaeenas 68
ORTESubSCriptionPrOperti€SGeL......c.c.eevuiirieriieiierieeeesite sttt ettt ettt saeesiee e 69
ORTESubsCriptioNPrOPEItIESSELcooviruieiiiniieiiiieieiereetentteeete ettt 69
ORTESubscriptionWaitForPublicationscoccecveririeiieniniiniiiieeneerceeeereeeeeee e 70
ORTESUbSCIIPHONGELSTALUSoovieiieiiriieiiiietenie ettt et eae e sae e 71
ORTESUbSCIIPHONPULLooiiiiiiiiiiieeee e e s 71
ORTESubscriptionGetINSANCE.c..ooviriiiiiiiiieriieeeiese ettt et s 72
ORTETYPEREZISIETAAA.........oouiiiiiiiiiiiiiiciece e e s 73
ORTETypeRegiSterDestrOy AlL.........cociiiiiiiiiiieiieeieeieesit ettt s 74
ORTE VerboSitySEtOPLIONSceviruieieiteeiieieetieie et te st stte et eite st eseeseeseeentesbeeseeteeseeneesseeneas 75
ORTE VerbositySetLOZFIIEcccuoiiiieiieiieieeiee ettt 76
ORTEINIE ..ottt sttt st sttt b et be b e e et euesaea 76
ORTESIEEPMS ...ttt sttt ettt ettt et e st s h et e e bt e st e bt eat e besbeembe b e eatenteeneeneesbeenean 77
0.3, IMLACTOS ...ttt ettt ettt ettt h et e bt e h et e ae et b e e bt et bt e a e bt e h e et bt et e bt ehe et e ebe et e nbeenean 77
SEGNUMDEICINP -ttt b bt e bt at et sbe et e b eb et e sbeeneesbeeneen 78
SENUMDEITNC ...ttt et st besb et ebe e e e sbeenees 78
SEGNUMDEIAGA ...ttt ettt ettt eb et ebe e b eaaes 79

SEANUMDETDIEC.eiiiiiiiieiieieee ettt ettt et s e sttt e bt e st e st e eseesaeesaseenbaenseenas 80

SEGNUMDETISUD ...ttt ettt s bttt e st e st e sabe e bt e saeesaneenbaenbeenas 80
INEPTIMECINP ..ottt ettt ettt et e e et e s it e s it e sabe e beesatesateenbeesaeesaseen 81
INEPTIMEAAA ...ttt et e st st st e bt e s atesateenbeesaeesaneen 82
INEPTIMESUD ..ottt ettt st e be et st e nbeesaeesate s 82
NtpTIimeASSEMBETOMMScoueiiiiiiiiiiiieieeetee ettt s 83
NtpTimeDiSASSEMBTOMSc..coiiriiiiiiiiieieeeeeeee ettt s 84
NtpTimeAsSEMBETOMUS....c..co.iiiiiiiiiiiiiceeeece e e 84
NtpTimeDiSASSEMBTOUS......c.cooiiiiiiiiiic e e e 85
DOMAINZPOTL. ...cueiiiieiiieeieeeet ettt ettt sttt st e bt e eaee st s 86
Domain2PortMulticastUSerdatac..eeeveeueeriienienieeieenieete ettt 86
Domain2PortMulticastMetatraffic............cereruierieriieiereeee e 87

List of Figures

1-1.
1-2.
1-3.
1-4.
2-1.
2-2.
2-3.
3-1.
5-1.

Publish-Subscribe ATCHITECIUIEc..couiiuieiiriieiieie ettt ettt st sae et enaesaeas 1
Generic Publish-Subscribe ArChiteCtUrec.uevuieiiiiiiiiiirieieee ettt 3
PUDLiCAtion ATDITIATIONeeuvitiiiieiiitieteet ettt ettt ettt et e et st e st sbe et e b e et e et eaeeaesaean 5
Subscription ISSUE SEPArAtiONcoruiiiiiiriieieiiecete sttt sttt et et e b st ae b eae 5
ORTE ATCRITECTUIE ...c..etieitetieitete ettt sttt ettt bt h ettt b et sbe e bt e s be s bt et e s bt eatesbeemeenbesbeenbenbeens 8
ORTE INternal AIIIDULESco.eeriiriiriiniiniieienieetet ettt ettt et st b e et b et e sbeeaees 10
RTPS Communication among NetWork ObJECtS........c..cevueruiriiririenenieienieeteieeeenee et 11
Periodic Snapshots of a BestEffort Publisher.........c..cccooiiiiiiniiiininiicecceecee 12
Position of Managers in RTPS cOMMUNICAtIONc..covevieriiriiniiiinienieienieeicieeeeie e 20

Vi

Chapter 1. ORTE Description

1.1. Introduction

The Open Real-Time Ethernet (ORTE) is open source implementation of RTPS communication protocol.
RTPS is new application layer protocol targeted to real-time communication area, which is build on the
top of standard UDP stack. Since there are many TCP/IP stack implementations under many operating
systems and RTPS protocol does not have any other special HW/SW requirements, it should be easily
ported to many HW/SW target platforms. Because it uses only UDP protocol, it retains control of timing
and reliability.

RTPS protocol is being to submit to IETF as an informational RFC and has been adopted by the IDA
group.

1.2. The Publish-Subscribe Architecture

The publish-subscribe architecture is designed to simplify one-to-many data-distribution requirements.
In this model, an application “publishes” data and “subscribes” to data. Publishers and subscribers are
decoupled from each other too. That is:

+ Publishers simply send data anonymously, they do not need any knowledge of the number or network
location of subscribers.

« Subscribers simply receive data anonymously, they do not need any knowledge of the number or
network location of the publisher.

An application can be a publisher, subscriber, or both a publisher and a subscriber.

Chapter 1. ORTE Description

Figure 1-1. Publish-Subscribe Architecture

Subscriber "Y"
_ Subscriber "X"
@

=

Subscriber "X"

=

Publisher "X" -
= Publisher "Y"
- Publisher "Z" ©

Publish-subscribe supports anonymous, event-driven transfer between many nodes. The developer
simply writes the application to send or receive the data.

Publish-subscribe architectures are best-suited to distributed applications with complex data flows. The
primary advantages of publish-subscribe to applications developers are:

« Publish-subscribe applications are modular and scalable. The data flow is easy to manage regardless of
the number of publishers and subscribers.

+ The application subscribes to the data by name rather than to a specific publisher or publisher location.
It can thus accommodate configuration changes without disrupting the data flow.

« Redundant publishers and subscribers can be supported, allowing programs to be replicated (e.g.
multiple control stations) and moved transparently.

- Publish-subscribe is much more efficient, especially over client-server, with bandwidth utilization.

Publish-subscribe architectures are not good at sporadic request/response traffic, such as file transfers.
However, this architecture offers practical advantages for applications with repetitive, time-critical data
flows.

1.2.1. The Publish-Subscribe Model

Publish-subscribe (PS) data distribution is gaining popularity in many distributed applications, such as
financial communications, command and control systems. PS popularity can be attributed to the
dramatically reduced system development, deployment and maintenance effort and the performance
advantages for applications with one-to-many and many-to-many data flows.

Chapter 1. ORTE Description

Several main features characterize all publish-subscribe architectures:

Distinct declaration and delivery. Communications occur in three simple steps:

« Publisher declares intent to publish a publication.
« Subscriber declares interest in a publication.

+ Publisher sends a publication issue.

The publish-subscribe services are typically made available to applications through middleware that sits
on top of the operating system s network interface and presents an application programming interface.

Figure 1-2. Generic Publish-Subscribe Architecture

Application

Operating System
Network Interface

Publish-subscribe is typically implemented through middleware that sits on top of the operating system s
network interface. The middleware presents a publishsubscribe API so that applications make just a few
simple calls to send and receive publications. The middleware performs the many and complex network
functions that physically distribute the data.

The middleware handles three basic programming chores:

+ Maintain the database that maps publishers to subscribers resulting in logical data channels for each
publication between publishers and subscribers.

« Serialize (also called marshal) and deserialize (demarshal) the data on its way to and from the network
to reconcile publisher and subscriber platform differences.

+ Deliver the data when it is published.

Chapter 1. ORTE Description

1.2.2. Publish-Subscribe in Real Time

Publish-subscribe offers some clear advantages for real-time applications:

» Because it is very efficient in both bandwidth and latency for periodic data exchange, PS offers the
best transport for distributing data quickly.

+ Because it provides many-to-many connectivity, PS is ideal for applications in which publishers and
subscribers are added and removed dynamically.

Real-time applications require more functionality than what is provided by desktop and Internet
publish-subscribe semantics. For instance, real-time applications often require:

+ Delivery timing control: Real-time subscribers are concerned with timing; for example, when the
data is delivered and how long it remains valid.

+ Reliability control: Reliable delivery conflicts with deterministic timing. Each subscriber typically
requires the ability to specify its own reliability characteristics.

+ Request-reply semantics: Complex real-time applications often have one-time requests for actions or
data. These do not fit well into the PS semantics.

+ Flexible delivery bandwidth: Typical real-time applications include both real-time and non-realtime
subscribers. Each subscriber s bandwidth requirements - even for the same publication - can be
different.

« Fault tolerance: Real-time applications often require “hot standby” publishers and/or subscribers.

+ Thread priority awareness: Real-time communications often must work without affecting publisher
or subscriber threads.

+ Robustness: The communications layer should not introduce any single-node points-of-failure to the
application.

- Efficiency: Real-time systems require efficient data collection and delivery. Only minimal delays
should be introduced into the critical data-transfer path.

1.3. The Real-Time Publish-Subscribe Model

The Real-Time Publish-Subscribe (RTPS) communications model was developed to address these
limitations of PS. RTPS adds publication and subscription timing parameters and properties so the
developer can control the different types of data flows and achieve their application s performance and
reliability goals.

1.3.1. Publication Parameters

Each publication is characterized by four parameters: topic, type, strength and persistence. The topic is
the label that identifies each data flow. The type describes the data format. The strength indicates a

Chapter 1. ORTE Description
publisher s weight relative to other publishers of the same topic. The persistence indicates how long each
publication issue is valid. Next figure illustrates how a subscriber arbitrates among publications using the

strength and persistence properties.

Figure 1-3. Publication Arbitration

Accept issues of equal Accept any issue
or higher strength
Time
i
Last issue
received ¢ Persistence

Fault tolerant applications use redundant publishers sending publications with the same topic to ensure
continuous operation. Subscribers arbitrate among the publications on an issue-by-issue basis based on
the strength and persistence of each issue.

When there are multiple publishers sending the same publication, the subscriber accepts the issue if its
strength is greater than the last-received issue or if the last issue s persistence has expired. Typically, a
publisher that sends issues with a period of length T will set its persistence to some time Tp where Tp >
T. Thus, while the strongest publisher is functional, its issues will take precedence over publication
issues of lesser strength. Should the strongest publisher stop sending issues (willingly or due to a failure),
other publisher(s) sending issues for the same publication will take over after Tp elapses. This
mechanism establishes an inherently robust, quasi-stateless communications channel between the
then-strongest publisher of a publication and all its subscribers.

1.3.2. Subscription Paramters

Subscriptions are identified by four parameters: topic, type, minimum separation and deadline. The topic
the label that identifies the data flow, and type describes the data format (same as the publication
properties). Minimum separation defines a period during which no new issues are accepted for that
subscription. The deadline specifies how long the subscriber is willing to wait for the next issue. Next
figure illustrates the use of these parameters.

Chapter 1. ORTE Description

Figure 1-4. Subscription Issue Separation

Subscriber receives Subscriber gets Error, deadline
Nno new issues new issues exceeded

Time

e
Minimum separation
. Deadline
Last issue 1
received 7

Once the subscriber has received an issue, it will not receive another issue for at least the minimum
separation time. If a new issue does not arrive by the deadline, the application is notified.

The minimum separation protects a slow subscriber against publishers that are publishing too fast. The
deadline provides a guaranteed wait time that can be used to take appropriate action in case of
communication delays.

1.3.3. Reliability and Time-Determinism

Publish-subscribe can support a variety of message delivery reliability models, not all of which are
suitable to real-time applications. The RTPS reliability model recognizes that the optimal balance
between time determinism and data-delivery reliability varies between real-time applications, and often
among different subscriptions within the same application. For example, signal subscribers will want
only the most up-to-date issues and will not care about missed issues. Command subscribers, on the
other hand, must get every issue in sequence. Therefore, RTPS provides a mechanism for the application
to customize the determinism versus reliability trade-off on a per subscription basis.

The RTPS determinism vs. reliability model is subscriber-driven. Publishers simply send publication
issues. However, to provide message delivery reliability, publishers must be prepared to resend missed
issues to subscriptions that require reliable delivery.

The RTPS reliability model uses publication buffers publisher and subscriber and retries to ensure that
subscribers who need each issue receive them in the proper sequence. In addition, the publisher applies
sequence number to each publication issue.

The publisher uses the publication buffer to store history of the most recently sent issues. The subscriber
uses its publication buffer to cache the most recently received issues. The subscriber acknowledges
issues received in order and sends a request for the missing issue when the most recent issue s sequence
number out of order. The publisher responds by sending the missed update again.

Chapter 1. ORTE Description

Publishers remove an issue from their history buffers in two cases: the issue has been acknowledged by
all reliable subscribers or the publisher overflows the history buffer space. Flow control can be
implemented by setting high and low watermarks for the buffer. These publication-specific parameters
let the publisher balance the subscribers need for issues against its need to maintain a set publication rate.

Chapter 2. ORTE Internals

ORTE is network middleware for distributed, real-time application development that uses the real-time,
publish-subscribe model. The middleware is available for a variety of platforms including RTAI,
RTLinux, Windows, and a several versions of Unix. The compilation system is mainly based on autoconf.

ORTE is middleware composed of a database, and tasks. On the top of ORTE architecture is application
interface (API). By using API users should write self application. The tasks perform all of the message
addressing serialization/deserialization, and transporting. The ORTE components are shown in Figure
2-1

Figure 2-1. ORTE Architecture

Application

ORTE - RTPS midleware

Tasks Database — domain

Sending task, event system

Receive metatraffic task

Receive userdata task

Network Interface, UDP Stack

The RTPS protocol defines two kinds of Applications:

« Manager: The manager is a special Application that helps applications automatically discover each
other on the Network.

+ ManagedApplication: A ManagedApplication is an Application that is managed by one or more
Managers. Every ManagedApplication is managed by at least one Manager.

The manager is mostly designed like separate application. In RTPS architecture is able to create
application which contains manager and managedapplication, but for easy managing is better split both.
The ORTE contains a separate instance of manager located in directory orte/manager.

The manager is composed from five kinds of objects:

Chapter 2. ORTE Internals

« WriterApplicationSelf: through which the Manager provides information about its own parameters
to Managers on other nodes.

« ReaderManagers: CSTReader through which the Manager obtains information on the state of all
other Managers on the Network.

+ ReaderApplications: CSTReader which is used for the registration of local and remote
managedApplications.

+ WriterManagers: CSTWriter through which the Manager will send the state of all Managers in the
Network to all its managees.

+ WriterApplications: CSTWriter through which the Manager will send information about its
managees to other Managers in the Network.

A Manager that discovers a new ManagedApplication through its readerApplications must decide
whether it must manage this Managed Application or not. For this purpose, the attribute managerKeyList
of the Application is used. If one of the ManagedApplication’s keys (in the attribute managerKeyList) is
equal to one of the Manager’s keys, the Manager accepts the Application as a managee. If none of the
keys are equal, the managed application is ignored. At the end of this process all Managers have
discovered their managees and the ManagedApplications know all Managers in the Network.

The managedApplication is composed from seven kinds of objects:

+ WriterApplicationSelf: a CSTWriter through which the ManagedApplication registers itself with the
local Manager.

+ ReaderApplications: a CSTReader through which the ManagedApplication receives information
about another ManagedApplications in the network.

« ReaderManagers: a CSTReader through which the ManagedApplication receives information about
Managers.

+ WriterPublications: CSTWriter through which the Manager will send the state of all Managers in the
Network to all its managees.

+ ReaderPublications: a Reader through which the Publication receives information about
Subscriptions.

« WriterSubscriptions: a Writer that provides information about Subscription to Publications.

+ ReaderSubscriptions: a Reader that receives issues from one or more instances of Publication, using
the publish-subscribe service.

The ManagedApplication has a special CSTWriter writerApplicationSelf. The Composite State (CS) of
the ManagedApplication’s writerApplicationSelf object contains only one NetworkObject - the
application itself. The writerApplicationSelf of the ManagedApplication must be configured to announce
its presence repeatedly and does not request nor expect acknowledgments.

The ManagedApplications now use the CST Protocol between the writerApplications of the Managers
and the readerApplications of the ManagedApplications in order to discover other ManagedApplications

Chapter 2. ORTE Internals

in the Network. Every ManagedApplication has two special CSTWriters, writerPublications and
writerSubscriptions, and two special CSTReaders, readerPublications and readerSubscriptions.

Once ManagedApplications have discovered each other, they use the standard CST protocol through
these special CSTReaders and CSTWriter to transfer the attributes of all Publications and Subscriptions
in the Network.

The ORTE stores all data in local database per application. There isn’t central store where are data saved.
If an application comes into communication, than will be created local mirror of all applications
parameters. Parts of internal structures are shown in Figure 2-2.

Figure 2-2. ORTE Internal Attributes

ORTEDomain 4,—* CSTWriter I CSTRemoteReader
‘WriterApplicationSelf +CSTRemoteReaders +CSChangeForReaders
‘WriterApplications +CSChanges LastIssueTime
‘WriterManagers RefreshPeriodTime
ReaderApplications TypeRegister
ReaderManagers o
‘WriterPublications
‘WriterSubscriptions
ReaderPubhcz?.u(?ns CSChange CSChangeForReader
ReaderSubscriptions
+Publications GUID SSChange
+Subscriptions CIDRSiigi

Atributes
objectEntry
+typeEntry
+pattenEntry — CSTReader I CSTRemoteWriter
iy +CSTRemoteWriters +CSChangeFromWriters
+CSChanges DelayResponceTimer
PersistenceTimer
TypeRegister
- ObjectEntryHID
1 +ObjectEntryAID
CSChange CSChangeFromWriter
GUID CSChange
ObjectEntryAID R cany
Atributes
+ObjectEntryOID .
TimerQueues
ObjectEntryOID TypeR
CallBackFunctions Topic/Type
ExpirationTimer SubscriptionCallBack
ObjectAttributes Note:
+ means list entry

Following example shows communication between two nodes (N1, N2). There are applications running
on each node - MA1.2 on node N1 and MA2.1, MA2.2 on node N2. Each node has it own manager (M1,
M?2). The example shows, what’s happen when a new application comes into communication (MA1.1).

1. MAL1.1 introduces itself to local manager M1
2. M1 sends back list of remote managers Mx and other local applications MA1.x

3. MAI1.1 is introduced to all Mx by M1

10

Chapter 2. ORTE Internals

4. All remote MAs are reported now to M1.1
5. MA1.1 is queried for self services (publishers and subscriberes) from others MAx.
6. MAL1.1 asks for services to others MAX.

7. All MAs know information about others.

The corresponding publishers and subscribers with matching Topic and Type are connected and starts
their data communication.

Figure 2-3. RTPS Communication among Network Objects

Node NI ' Node N2
IP/UDP 7400 IP/UDP 7400
Manager M1 3 Manager M2
ORTE/RTI —? ORTE/RTI
MA2,2
pub
sub
sub 1 MA2,1
5 | MA1,2| pub
\\\\ pub”| | sub
6 sub !

11

Chapter 3. ORTE Examples

This chapter expect that you are familiar with RTPS communication architecture described in Chapter 1.

Publications can offer multiple reliability policies ranging from best-efforts to strict (blocking)
reliability. Subscription can request multiple policies of desired reliability and specify the relative
precedence of each policy. Publications will automatically select among the highest precedence
requested policy that is offered by the publication.

+ BestEffort: This reliability policy is suitable for data that are sending with a period. There are no
message resending when a message is lost. On other hand, this policy offer maximal predictable
behaviour. For instance, consider a publication which send data from a sensor (pressure, temperature,

)

Figure 3-1. Periodic Snapshots of a BestEffort Publisher

\ Temperature

IC IC

Time

« StrictReliable: The ORTE supports the reliable delivery of issues. This kind of communication is
used where a publication want to be sure that all data will be delivered to subscriptions. For instance,
consider a publication which send commands.

Command data flow requires that each instruction in the sequence is delivered reliably once and only
once. Commands are often not time critical.

3.1. BestEffort Communication

Before creating a Publication or Subscription is necessary to create a domain by using function
ORTEDomainAppCreate. The code should looks like:

12

Chapter 3. ORTE Examples

int main(int argc, char =*argvl[])
{
ORTEDomain xd = NULL;
ORTEBoolean suspended= ORTE_FALSE;

ORTEInit ();

d = ORTEDomainAppCreate (ORTE_DEFAUL_DOMAIN, NULL, NULL, suspended);
if (!d)

printf ("ORTEDomainAppCreate failed\n");
return -1;

The ORTEDomainAppCreate allocates and initializes resources that are needed for communication. The
parameter suspended says if ORTEDomain takes suspend communicating threads. In positive case you
have to start threads manually by using ORTEDomainStart.

Next step in creation of a application is registration serialization and deserialization routines for the
specific type. You can’t specify this functions, but the incoming data will be only copied to output buffer.

ORTETypeRegisterAdd(d, "HelloMsg", NULL, NULL, 64);

To create a publication in specific domain use the function ORTEPublicationCreate.

char instance2send[64];
NtpTime persistence, delay;

NTPTIME_BUILD (persistence, 3); /* this issue is valid for 3 seconds x/
NTPTIME_DELAY (delay, 1); /* a callback function will be called every 1 second =*/
p = ORTEPublicationCreate(d,

"Example HelloMsg",

"HelloMsg",

&instance2Send,

&persistence,

1,

sendCallBack,

NULL,

&delay) ;

The callback function will be then called when a new issue from publisher has to be sent. It’s the case
when you specify callback routine in ORTEPublicationCreate. When there isn’t a routine you have to
send data manually by call function ORTEPublicationSend. This option is useful for sending periodic
data.

13

Chapter 3. ORTE Examples

void sendCallBack (const ORTESendInfo *xinfo, void xvinstance, void *sendCallBackParam)
{
char xinstance = (char x) vinstance;
switch (info->status)
{
case NEED_DATA:
printf ("Sending publication, count %d\n", counter);
sprintf (instance, "Hello world (%d)", counter++);
break;

case CQL: //criticalQueueLevel has been reached
break;

Subscribing application needs to create a subscription with publication’s Topic and TypeName. A
callback function will be then called when a new issue from publisher will be received.

ORTESubscription =*s;
NtpTime deadline, minimumSeparation;

NTPTIME_BUILD (deadline, 20);

NTPTIME_BUILD (minimumSeparation, 0);

p = ORTESubscriptionCreate(d,
IMMEDIATE,
BEST_EFFORTS,
"Example HelloMsg",
"HelloMsg",
&instance2Recv,
&deadline,
&minimumSeparation,
recvCallBack,
NULL) ;

The callback function is shown in the following example:

void recvCallBack (const ORTERecvInfo *info, void *vinstance, void *recvCallBackParam)

{
char *instance = (char *) vinstance;

switch (info->status)
{
case NEW_DATA:
printf ("$s\n", instance);
break;

case DEADLINE: //deadline occurred
break;

14

Chapter 3. ORTE Examples

Similarly examples are located in ORTE subdirectory orte/examples/hello. There are
demonstrating programs how to create an application which will publish some data and another
application, which will subscribe to this publication.

3.2. Reliable communication

The reliable communication is used especially in situations where we need guarantee data delivery. The
ORTE supports the inorder delivery of issues with built-in retry mechanism

The creation of reliable communication starts like besteffort communication. Difference is in creation a
subscription. Third parameter is just only changed to STRICT_RELIABLE.

ORTESubscription =*s;
NtpTime deadline, minimumSeparation;

NTPTIME_BUILD (deadline, 20);

NTPTIME_BUILD (minimumSeparation, 0);

p = ORTESubscriptionCreate(d,
IMMEDIATE,
STRICT_RELIABLE,
"Example HelloMsg",
"HelloMsg",
&instance2Recv,
&deadline,
&minimumSeparation,
recvCallBack,
NULL) ;

Note:

Strict reliable subscription must set minimumSeparation to zero! The middleware can’t guarantee that
the data will be delivered on first attempt (retry mechanism).

Sending of a data is blocking operation. It’s strongly recommended to setup sending queue to higher
value. Default value is 1.

ORTEPublProp =xpp;

ORTEPublicationPropertiesGet (publisher, pp);
pp—>sendQueueSize=10;
pp—->criticalQueuelevel=8;
ORTEPublicationPropertiesSet (publisher, pp);

15

Chapter 3. ORTE Examples

An example of reliable communication is in ORTE subdirectory orte/examples/reliable. There are

located a strictreliable subscription and publication.

3.3. Serialization/Deserialization

Actually the ORTE doesn’t support any automatic creation of serialization/deserializaction routines. This

routines have to be designed manually by the user. In next is shown, how should looks both for the
structure BoxType.

typedef struct BoxType {
int32_t color;
int32_t shape;

} BoxType;

void
BoxTypeSerialize (CDR_Codec xcdrCodec, void =xinstance) {
BoxType *boxType=(BoxTypex)instance;

CDR_put_long(cdrCodec,boxType—->color) ;
CDR_put_long (cdrCodec, boxType—>shape) ;

void
BoxTypeDeserialize (CDR_Codec *cdrCodec, void =xinstance) {
BoxType *boxType=(BoxTypex)instance;

CDR_get_long (cdrCodec, &boxType—->color) ;
CDR_get_long (cdrCodec, &boxType—>shape) ;

When we have written a serialization/deserialization routine we need to register this routines to
midleware by function ORTETypeRegisterAdd

ORTETypeRegisterAdd (
domain,
"BoxType",
BoxTypeSerialize,
BoxTypeDeserialize,
sizeof (BoxType));

The registration must be called before creation a publication or subscription. Normally is
ORTETypeRegisterAdd called immediately after creation of a domain (ORTEDomainCreate).

All of codes are part of the Shapedemo located in subdirectory orte/contrib/shape.

16

Chapter 4. ORTE Tests

There were not any serious tests performed yet. Current version has been intensively tested against
reference implementation of the protocol. Results of these test indicate that ORTE is fully interoperable
with implementation provided by another vendor.

17

Chapter 5. ORTE Usage Information

5.1. Installation and Setup

In this chapter is described basic steps how to makes installation and setup process of the ORTE. The
process includes next steps:

1. Downloading the ORTE distribution
2. Compilation
3. Installing the ORTE library and utilities

4. Testing the installation

Note:

On windows systems we are recommend to use Mingw or Cygwin systems. The ORTE support also
MSVC compilation, but this kind of installation is not described here.

5.1.1. Downloading
ORTE can be obtained from its web site (http://orte.sf.net/).

The development version of ORTE can be cloned from a Git repository with the following command.

git clone git://orte.git.sourceforge.net/gitroot/orte/orte

Attention, this is developing version and may not be stable!

5.1.2. Compilation

Before the compilation process is necessary to prepare the source. Create a new directory for ORTE
distribution. We will assume name of this directory /orte for Linux case. Copy or move downloaded
ORTE sources to /orte (assume the name of sources orte-0.2.3.tar.gz). Untar and unzip this files
by using next commands:

gunzip orte-0.2.3.tar.gz
tar xvf orte-0.2.3.tar

18

Chapter 5. ORTE Usage Information

Now is the source prepared for compilation. Infrastructure of the ORTE is designed to support GNU
make (needs version 3.81) as well as autoconf compilation. In next we will continue with description of
autoconf compilation, which is more general. The compilation can follows with commands:

mkdir build
cd build
../configure
make

This is the case of outside autoconf compilation. In directory build are all changes made over ORTE
project. The source can be easy move to original state be removing of directory build.

5.1.3. Installing
The result of compilation process are binary programs and ORTE library. For the next developing is

necessary to install this result. It can be easy done be typing:

make install

All developing support is transferred into directories with direct access of design tools.

name target path
ortemanager, orteping, ortespy /usr/local/bin
library /usr/local/lib
include /usr/local/include

The installation prefix /usr/local/ can be changed during configuration. Use command ../configure
--help for check more autoconf options.

5.1.4. Testing the Installation

To check of correct installation of ORTE open three shells.

1. In first shell type
ortemanager
2. In second shell type

orteping -s

This command will invoked creation of a subscription. You should see:

19

Chapter 5. ORTE Usage Information

deadline occurred
deadline occurred

3. In third shell type

orteping -p

This command will invoked creation of a publication. You should see:

sent issue
sent issue
sent issue

Sw NN

sent issue

If the ORTE installation is properly, you will see incoming messages in second shell (orteping -s).

received fresh issue 1
received fresh issue 2
received fresh issue 3
received fresh issue 4

It’s sign, that communication is working correctly.

5.2. The ORTE Manager

A manager is special application that helps applications automatically discover each other on the
Network. Each time an object is created or destroyed, the manager propagate new information to the
objects that are internally registered.

Every application precipitate in communication is managed by least one manager. The manager should
be designed like separated application as well as part of designed application.

20

Chapter 5. ORTE Usage Information

Figure 5-1. Position of Managers in RTPS communication

Applications II Applications II

The ORTE provides one instance of a manager. Name of this utility is ortemanager and is located in
directory orte/ortemanager. Normally is necessary to start ort emanager manually or use a script on
UNIX systems. For Mandrake and Red-hat distribution is this script created in subdirectory rc. Windows
users can install ortemanager like service by using option /install_service.

Note:

Don’t forget to run a manager (ortemanager) on each RTPS participate node. During live of applications
is necessary to be running this manager.

5.2.1. Example of Usage ortemanager

Each manager has to know where are other managers in the network. Their IP addresses are therefore
specified as IPAddressX parameters of ortemanager. All managers participate in one kind of
communication use the same domain number. The domain number is transferred to port number by
equation defined in RTPS specification (normally domain O is transferred to 7400 port).

Let’s want to distribute the RTPS communication of nodes with IP addresses 192.168.0.2 and
192.168.0.3. Private IP address is 192.168.0.1. The ortemanager can be execute with parameters:

ortemanager -p 192.168.0.2:192.168.0.3

To communicate in different domain use (parameter -d):

ortemanager -d 1 -p 192.168.0.2:192.168.0.3

21

Chapter 5. ORTE Usage Information

Very nice feature of ortemanager is use event system to inform of creation/destruction objects (parameter
-e).

ortemanager -e -p 192.168.0.2:192.168.0.3

NOW, you can see€ messages:

[smolik@localhost smolik]$ortemanager -e -p 192.168.0.2:192.168.0.3
manager 0xc0a80001-0x123402 was accepted

application 0xc0a80002-0x800301 was accepted

application 0xc0a80002-0x800501 was accepted

application 0xc0a80002-0x800501 was deleted

manager 0xc0a80001-0x123402 was deleted

ortemanager

Name

ortemanager — the utility for discovery others applications and managers on the network

Synopsis

ortemanager [-d domain] [-p ip addresses]|[-k ip addresses||[-R refresh]|[-P purge] [-D
| [-E expiration][-e]|[-v verbosity][-1 filename] [-V][-h]

Description

Main purpose of the utility ortemanager is debug and test ORTE communication.

OPTIONS

—d ——domain

The number of working ORTE domain. Default is 0.

-p ——peers

The IP addresses parsipiates in RTPS communication. See Section 5.2 for example of usage.

-R ——refresh

The refresh time in manager. Default 60 seconds.

22

Chapter 5. ORTE Usage Information

-P ——purge

The searching time in local database for finding expired application. Default 60 seconds.

-E ——expiration

Expiration time in other applications.

-m —-minimumSeparation

The minimum time between two issues.

-v ——verbosity

Set verbosity level.

-1 -—-logfile

All debug messages can be redirect into specific file.

-V ——-version

Print the version of ortemanager.

—-h —-help

Print usage screen.

5.3. Simple Utilities

The simple utilities can be found in the orte/examples subdirectory of the ORTE source subtree.
These utilities are useful for testing and monitoring RTPS communication.

The utilities provided directly by ORTE are:

orteping

the utility for easy creating of publications and subscriptions.

ortespy

monitors issues produced by other application in specific domain.

23

Chapter 5. ORTE Usage Information

orteping

Name
orteping — the utility for debugging and testing of ORTE communication

Synopsis

orteping [-d domain] [-p][-S strength] [-D delay][-s][-R refresh] [-P purge] [-E
expiration] [-m minimumSeparation][-v verbosity][-q][-1 filename] [-V][-h]

Description

Main purpose of the utility orteping is debug and test ORTE communication.

OPTIONS

—d ——domain

The number of working ORTE domain. Default is 0.

-p ——publisher

Create a publisher with Topic - Ping and Type - PingData. The publisher will publish a issue with
period by parameter delay.

-s ——strength

Setups relative weight against other publishers. Default is 1.

-D ——delay

The time between two issues. Default 1 second.

-s ——subscriber

Create a subscriber with Topic - Ping and Type - PingData.

-R ——refresh

The refresh time in manager. Default 60 seconds.

-P ——purge

The searching time in local database for finding expired application. Default 60 seconds.

-E ——expiration

Expiration time in other applications.

24

Chapter 5. ORTE Usage Information

-m ——minimumSeparation

The minimum time between two issues.

-v ——verbosity

Set verbosity level.

-gq -—quite

Nothing messages will be printed on screen. It can be useful for testing maximal throughput.

-1 --logfile

All debug messages can be redirect into specific file.

-V ——version

Print the version of orteping.

—-h —-help

Print usage screen.

ortespy

Name
ortespy — the utility for monitoring of ORTE issues

Synopsis

orteping [-d domain] [-v verbosity][-R refresh]|[-P purge||[-e expiration][-1
filename] [-V] [-h]

Description

Main purpose of the utility ortespy is monitoring data traffic between publications and subscriptions.

OPTIONS

—d ——domain

The number of working ORTE domain. Default is 0.

25

Chapter 5. ORTE Usage Information

-v ——verbosity

Set verbosity level.

-R ——refresh

The refresh time in manager. Default 60 seconds.

—-P ——purge

Create publisher

—-e ——expiration

Expiration time in other applications.

-1 -—-logfile

All debug messages can be redirect into specific file.

-V ——-version

Print the version of orteping.

—-h —-help

Print usage screen.

26

Chapter 6. ORTE API

6.1. Data types

enum SubscriptionMode

Name

enum SubscriptionMode — mode of subscription

Synopsis
enum SubscriptionMode {

PULLED,
IMMEDIATE

bi

Constants

PULLED
polled

IMMEDIATE

using callback function

Description

Specifies whether user application will poll for data or whether a callback function will be called by
ORTE middleware when new data will be available.

enum SubscriptionType

Name

enum SubscriptionType — type of subcsription

Synopsis

enum SubscriptionType {
BEST_EFFORTS,
STRICT_RELIABLE

bi

Constants

BEST_EFFORTS

best effort subscription

STRICT_RELIABLE

strict reliable subscription.

Description

Specifies which mode will be used for this subscription.

enum ORTERecvStatus

Name

enum ORTERecvStatus — status of a subscription

Synopsis

enum ORTERecvStatus {
NEW_DATA,
DEADLINE

bi

Constants

NEW_DATA

new data has arrived

Chapter 6. ORTE API

28

Chapter 6. ORTE API

DEADLINE

deadline has occurred

Description

Specifies which event has occurred in the subscription object.

enum ORTESendStatus

Name

enum ORTESendStatus — status of a publication

Synopsis

enum ORTESendStatus {
NEED_DATA,
CQL

}i

Constants

NEED_DATA

need new data (set when callback function specified for publciation is beeing called)

CQL

transmit queue has been filled up to critical level.

Description

Specifies which event has occurred in the publication object. Critical level of transmit queue is specified

as one of publication properties (ORTEPublProp.criticalQueueLevel).

29

Chapter 6. ORTE API

struct ORTEIFProp

Name
struct ORTEIFProp — interface flags

Synopsis
struct ORTEIFProp {
int32_t ifFlags;

IPAddress ipAddress;
}i

Members

ifFlags
flags

ipAddress
IP address

Description

Flags for network interface.

struct ORTEMulticastProp

Name
struct ORTEMulticastProp — properties for ORTE multicast (not supported yet)

Synopsis

struct ORTEMulticastProp {
Boolean enabled;
unsigned char ttl;
Boolean loopBackEnabled;
IPAddress ipAddress;

30

Chapter 6. ORTE API

bi

Members

enabled
ORTE_TRUE if multicast enabled otherwise ORTE_FALSE

ttl

time-to-live (TTL) for sent datagrams

loopBackEnabled
ORTE_TRUE if data should be received by sender itself otherwise ORTE_FALSE

ipAddress

desired multicast IP address

Description

Properties for ORTE multicast subsystem which is not fully supported yet. Multicast IP address is
assigned by the ORTE middleware itself.

struct ORTEGetMaxSizeParam

Name

struct ORTEGetMaxSizeParam— parameters for function ORTETypeGetMaxSize

Synopsis

struct ORTEGetMaxSizeParam ({
CDR_Endianness host_endian;
CDR_Endianness data_endian;
CORBA_octet * data;
unsigned int max_size;
int recv_size;
int csize;

bi

31

Chapter 6. ORTE API

Members

host_endian
data_endian
data
max_size
recv_size

csize

Description

It used to determine maximal size of intermal buffer for incomming data

struct ORTETypeRegister

Name
struct ORTETypeRegister — registered data type

Synopsis

struct ORTETypeRegister ({
const char * typeName;
ORTETypeSerialize serialize;
ORTETypeDeserialize deserialize;
ORTETypeGetMaxSize getMaxSize;
unsigned int maxSize;

by

32

Chapter 6. ORTE API

Members
typeName
name of data type

serialize

pointer to serialization function

deserialize

pointer to deserialization function

getMaxSize

pointer to function given maximal data length

maxSize

maximal size of ser./deser. data

Description

Contains description of registered data type. See ORTETypeRegisterAdd function for details.

struct ORTEDomainBaseProp

Name

struct ORTEDomainBaseProp — base properties of a domain

Synopsis

struct ORTEDomainBaseProp {
unsigned int registrationMgrRetries;
NtpTime registrationMgrPeriod;
unsigned int registrationAppRetries;
NtpTime registrationAppPeriod;
NtpTime expirationTime;
NtpTime refreshPeriod;
NtpTime purgeTime;
NtpTime repeatAnnounceTime;
NtpTime repeatActiveQueryTime;
NtpTime delayResponceTimeACKMin;
NtpTime delayResponceTimeACKMax;

33

Chapter 6. ORTE API

unsigned int HBMaxRetries;
unsigned int ACKMaxRetries;
NtpTime maxBlockTime;

bi

Members

registrationMgrRetries
a manager which want to start communication have to register to other manager. This parametr is
used for specify maximal repetition retries of registration process when it fail.
registrationMgrPeriod
an application which want to start communication have to register to a manager. This parametr is
used for specify maximal repetition retries of registration process when it fail.
registrationAppRetries

same like registrationMgrRetries parameter, but is used for an application

registrationAppPeriod

repetition time for registration process

expirationTime

specifies how long is this application taken as alive in other applications/managers (default 180s)

refreshPeriod

how often an application refresh itself to its manager or manager to other managers (default 60s)
purgeTime
how often the local database should be cleaned from invalid (expired) objects (default 60s)

repeatAnnounceTime

This is the period with which the CSTWriter will announce its existence and/or the availability of
new CSChanges to the CSTReader. This period determines how quickly the protocol recovers when
an announcement of data is lost.

repeatActiveQueryTime

m

delayResponceTime ACKMin

minimum time the CSTWriter waits before responding to an incoming message.

delayResponceTime ACKMax

maximum time the CSTWriter waits before responding to an incoming message.

34

Chapter 6. ORTE API

HBMaxRetries

how many times a HB message is retransmitted if no response has been received until timeout

ACKMaxRetries

how many times an ACK message is retransmitted if no response has been received until timeout

maxBlockTime

timeout for send functions if sending queue is full (default 30s)

struct ORTEDomainWireProp

Name

struct ORTEDomainWireProp — wire properties of a message

Synopsis

struct ORTEDomainWireProp {

unsigned int metaBytesPerPacket;
unsigned int metaBytesPerFastPacket;
unsigned int metabitsPerACKBitmap;

}i

Members

metaBytesPerPacket

maximum number of bytes in single frame (default 1500B)

metaBytesPerFastPacket

maximum number of bytes in single frame if transmitting queue has reached
criticalQueueLevel level (see ORTEPublProp struct)

metabitsPerACKBitmap
not supported yet (default 32)

35

struct ORTEPubIProp

Name
struct ORTEPublProp — properties of a publication

Synopsis

struct ORTEPublProp {
PathName topic;
TypeName typeName;
TypeChecksum typeChecksum;
Boolean expectsAck;
NtpTime persistence;
uint32_t reliabilityOffered;
uint32_t sendQueueSize;
int32_t strength;
uint32_t criticalQueuelevel;
NtpTime HBNornalRate;
NtpTime HBCQLRate;
unsigned int HBMaxRetries;
NtpTime maxBlockTime;

bi

Members
topic
the name of the information in the Network that is published or subscribed to

typeName
the name of the type of this data

typeChecksum

a checksum that identifies the CDR-representation of the data

expectsAck

indicates wherther publication expects to receive ACKs to its messages

persistence

indicates how long the issue is valid

reliabilityOffered
reliability policy as offered by the publication

Chapter 6. ORTE API

36

Chapter 6. ORTE API

sendQueueSize

size of transmitting queue

strength

precedence of the issue sent by the publication

criticalQueueLevel

treshold for transmitting queue content length indicating the queue can became full immediately

HBNornalRate

how often send HBs to subscription objects

HBCQLRate

how often send HBs to subscription objects if transmittiong queue has reached

criticalQueuelLevel

HBMaxRetries

how many times retransmit HBs if no replay from target object has not been received

maxBlockTime

unsupported

struct ORTESubsProp

Name

struct ORTESubsProp — properties of a subscription

Synopsis

struct ORTESubsProp {
PathName topic;
TypeName typeName;
TypeChecksum typeChecksum;
NtpTime minimumSeparation;
uint32_t recvQueueSize;
uint32_t reliabilityRequested;
//additional parametersNtpTime deadline;
uint32_t mode;
IPAddress multicast;

}i

37

Chapter 6. ORTE API

Members
topic
the name of the information in the Network that is published or subscribed to

typeName

the name of the type of this data

typeChecksum

a checksum that identifies the CDR-representation of the data

minimumSeparation

minimum time between two consecutive issues received by the subscription

recvQueueSize

size of receiving queue

reliabilityRequested

reliability policy requested by the subscription

deadline

deadline for subscription, a callback function (see ORTESubscriptionCreate) will be called if
no data were received within this period of time

mode

mode of subscription (strict reliable/best effort), see SubscriptionType enum for values

multicast

registered multicast IP address(read only)

struct ORTEAppInfo

Name
struct ORTEAppInfo —

Synopsis
struct ORTEAppInfo {

HostId hostId;
Appld appld;

38

Chapter 6. ORTE API

IPAddress * unicastIPAddressList;

unsigned char unicastIPAddressCount;
IPAddress * metatrafficMulticastIPAddressList;
unsigned char metatrafficMulticastIPAddressCount;

Port metatrafficUnicastPort;
Port userdataUnicastPort;
VendorId vendorId;
ProtocolVersion protocolVersion;

bi

Members

hostld

hostld of application

appld
appld of application

unicastIPAddressList
unicast IP addresses of the host on which the application runs (there can be multiple addresses on a
multi-NIC host)

unicastIPAddressCount

number of IPaddresses in unicast IPAddressList

metatrafficMulticastIPAddressList
for the purposes of meta-traffic, an application can also accept Messages on this set of multicast
addresses

metatrafficMulticastIPAddressCount

number of IPaddresses in metatrafficMulticastIPAddressList

metatrafficUnicastPort

UDP port used for metatraffic communication

userdataUnicastPort

UDP port used for metatraffic communication

vendorld

identifies the vendor of the middleware implementing the RTPS protocol and allows this vendor to
add specific extensions to the protocol

protocol Version

describes the protocol version

39

Chapter 6. ORTE API

struct ORTEPubInfo

Name

struct ORTEPubInfo — information about publication

Synopsis

struct ORTEPubInfo {
const char * topic;
const char * type;
ObjectId objectId;

}i

Members

topic

the name of the information in the Network that is published or subscribed to

type
the name of the type of this data

objectld

object providing this publication

struct ORTESublnfo

Name

struct ORTESubInfo — information about subscription

Synopsis
struct ORTESubInfo {

const char * topic;
const char * type;

40

Chapter 6. ORTE API

ObjectId objectId;
}i

Members

topic

the name of the information in the Network that is published or subscribed to

type
the name of the type of this data

objectld

object with this subscription

struct ORTEPubIStatus

Name

struct ORTEPublStatus — status of a publication

Synopsis

struct ORTEPublStatus {

unsigned int strict;
unsigned int bestEffort;
unsigned int issues;

}i

Members

strict

count of unreliable subscription (strict) connected on responsible subscription

bestEffort

count of reliable subscription (best effort) connected on responsible subscription

41

Chapter 6. ORTE API

issues

number of messages in transmitting queue

struct ORTESubsStatus

Name

struct ORTESubsStatus — status of a subscription

Synopsis

struct ORTESubsStatus {

unsigned int strict;
unsigned int bestEffort;
unsigned int issues;

}i

Members

strict

count of unreliable publications (strict) connected to responsible subscription

bestEffort

count of reliable publications (best effort) connected to responsible subscription

issues

number of messages in receiving queue

struct ORTERecviInfo

Name

struct ORTERecvInfo — description of received data

42

Synopsis

struct ORTERecvInfo {
ORTERecvStatus status;
const char * topic;
const char * type;
GUID_RTPS senderGUID;
NtpTime localTimeReceived;
NtpTime remoteTimePublished;
SequenceNumber sn;

bi

Members
status
status of this event

topic

the name of the information

type
the name of the type of this data

senderGUID

GUID of object who sent this information

localTimeReceived

local timestamp when data were received

remoteTimePublished

remote timestam when data were published

sn

sequencial number of data

struct ORTESendinfo

Name

struct ORTESendInfo — description of sending data

Chapter 6. ORTE API

43

Chapter 6. ORTE API

Synopsis

struct ORTESendInfo {
ORTESendStatus status;
const char * topic;
const char * type;
GUID_RTPS senderGUID;
SequenceNumber sn;

bi

Members

status

status of this event
topic
the name of the information
type
the name of the type of this information

senderGUID

GUID of object who sent this information

sn

sequencial number of information

struct ORTEPublicationSendParam

Name

struct ORTEPublicationSendParam — description of sending data

Synopsis

struct ORTEPublicationSendParam {
void » instance;
int data_endian;

by

44

Members

instance

pointer to new data instance

data_endian

struct ORTEDomainAppEvents

endianing of sending data (BIG | LITTLE)

Name

struct ORTEDomainAppEvents — Domain event handlers of an application

Synopsis

struct ORTEDomainAppEvents {

bi

ORTEOnRegFail onRegFail;

void * onRegFailParam;
ORTEOnMgrNew onMgrNew;

void * onMgrNewParam;
ORTEOnMgrDelete onMgrDelete;

void » onMgrDeleteParam;
ORTEOnAppRemoteNew onAppRemoteNew;
void » onAppRemoteNewParam;
ORTEOnAppDelete onAppDelete;

void * onAppDeleteParam;
ORTEOnPubRemote onPubRemoteNew;
void * onPubRemoteNewParam;
ORTEOnPubRemote onPubRemoteChanged;
void » onPubRemoteChangedParam;
ORTEOnPubDelete onPubDelete;

void x onPubDeleteParam;
ORTEOnSubRemote onSubRemoteNew;
void » onSubRemoteNewParam;
ORTEOnSubRemote onSubRemoteChanged;
void » onSubRemoteChangedParam;
ORTEOnSubDelete onSubDelete;

void » onSubDeleteParam;

Chapter 6. ORTE API

45

Members

onRegFail

registration protocol has been failed

onRegFailParam

user parameters for onRegFail handler

onMgrNew

new manager has been created

onMgrNewParam

user parameters for onMgrNew handler

onMgrDelete

manager has been deleted

onMgrDeleteParam

user parameters for onMgrDelete handler

onAppRemoteNew

new remote application has been registered

onAppRemoteNewParam

user parameters for onAppRemoteNew handler

onAppDelete

an application has been removed

onAppDeleteParam

user parameters for onAppDelete handler

onPubRemoteNew

new remote publication has been registered

onPubRemoteNewParam

user parameters for onPubRemoteNew handler

onPubRemoteChanged

a remote publication’s parameters has been changed

onPubRemoteChangedParam

user parameters for onPubRemoteChanged handler

Chapter 6. ORTE API

46

Chapter 6. ORTE API

onPubDelete

a publication has been deleted

onPubDeleteParam

user parameters for onPubDelete handler

onSubRemoteNew

a new remote subscription has been registered

onSubRemoteNewParam

user parameters for onSubRemoteNew handler

onSubRemoteChanged

a remote subscription’s parameters has been changed

onSubRemoteChangedParam

user parameters for onSubRemoteChanged handler

onSubDelete

a publication has been deleted

onSubDeleteParam

user parameters for onSubDelete handler

Description

Prototypes of events handler fucntions can be found in file typedefs_api.h.

struct ORTETasksProp

Name
struct ORTETasksProp — ORTE task properties, not supported

Synopsis

struct ORTETasksProp {
Boolean realTimeEnabled;
int smtStackSize;
int smtPriority;

47

Chapter 6. ORTE API

int rmtStackSize;
int rmtPriority;

bi

Members

realTimeEnabled

not supported

smtStackSize

not supported

smtPriority

not supported

rmtStackSize

not supported

rmtPriority

not supported

struct ORTEDomainProp

Name

struct ORTEDomainProp — domain properties

Synopsis

struct ORTEDomainProp {
ORTETasksProp tasksProp;
ORTEIFProp * IFProp;
//interface propertiesunsigned char IFCount;
//count of interfacesORTEDomainBaseProp baseProp;
ORTEDomainWireProp wireProp;
ORTEMulticastProp multicast;
//multicast properiesORTEPublProp publPropDefault;
//default properties for a Publ/SubORTESubsProp subsPropDefault;
char x mgrs;
//managerschar x keys;
//keysIPAddress applocalManager;

48

//applicationsIPAddress listen;
char * version;

Chapter 6. ORTE API

//string product versionint recvBuffSize;

int sendBuffSize;
bi

Members

tasksProp

task properties

IFProp

properties of network interfaces

IFCount

number of network interfaces

baseProp

base properties (see ORTEDomainBaseProp for details)

wireProp

wire properties (see ORTEDomainWireProp for details)

multicast

multicast properties (see ORTEMulticastProp for details)

publPropDefault

default properties of publiciations (see ORTEPub1Prop for details)

subsPropDefault

default properties of subscriptions (see ORTESubsProp for details)
mgrs

list of known managers
keys

access keys for managers

appLocalManager

IP address of local manager (default localhost)

listen

IP address to listen on

49

Chapter 6. ORTE API

version

string product version

recvBuffSize

receiving queue length

sendBuffSize

transmitting queue length

6.2. Functions

IPAddressToString

Name

IPAddressToString — converts IP address [PAddress to its string representation

Synopsis

char+ IPAddressToString (IPAddress ipAddress, char * buff);

Arguments

ipAddress

source IP address

bufft

output buffer

50

Chapter 6. ORTE API

StringTolPAddress

Name

StringToIPAddress — converts IP address from string into IPAddress

Synopsis

IPAddress StringToIPAddress (const char % string);

Arguments

string

source string

NtpTimeToStringMs

Name
NtpTimeToStringMs — converts NtpTime to its text representation in miliseconds
Synopsis

char * NtpTimeToStringMs (NtpTime time, char x buff);

Arguments
time
time given in NtpTime structure

bufft

output buffer

51

Chapter 6. ORTE API

NtpTimeToStringUs

Name

NtpTimeToStringUs — converts NtpTime to its text representation in microseconds

Synopsis

char * NtpTimeToStringUs (NtpTime time, char x buff);

Arguments

time

time given in NtpTime structure

buff

output buffer

ORTEDomainStart

Name
ORTEDomainStart — start specific threads
Synopsis

void ORTEDomainStart (ORTEDomain % d, Boolean recvUnicastMetatrafficThread,
Boolean recvMulticastMetatrafficThread, Boolean recvUnicastUserdataThread,
Boolean recvMulticastUserdataThread, Boolean sendThread);

52

Chapter 6. ORTE API

Arguments

domain object handle

recvUnicastMetatrafficThread
specifies whether recvUnicastMetatrafficThread should be started (ORTE_TRUE) or remain
suspended (ORTE_FALSE).

recvMulticastMetatrafficThread
specifies whether recvMulticastMetatrafficThread should be started (ORTE_TRUE) or remain
suspended (ORTE_FALSE).

recvUnicastUserdataThread
specifies whether recvUnicastUserdataThread should be started (ORTE_TRUE) or remain
suspended (ORTE_FALSE).

recvMulticastUserdataThread
specifies whether recvMulticastUserdataThread should be started (ORTE_TRUE) or remain
suspended (ORTE_FALSE).

sendThread

specifies whether sendThread should be started (ORTE_TRUE) or remain suspended
(ORTE_FALSE).

Description

Functions ORTEDomainAppCreate and ORTEDomainMgrCreate provide facility to create an object
with its threads suspended. Use function ORTEDomainStart to resume those suspended threads.

ORTEDomainPropDefaultGet

Name

ORTEDomainPropDefaultGet — returns default properties of a domain

Synopsis

Boolean ORTEDomainPropDefaultGet (ORTEDomainProp x prop);

53

Chapter 6. ORTE API

Arguments

prop
pointer to struct ORTEDomainProp

Description

Structure ORTEDomainProp referenced by prop will be filled by its default values. Returns
ORTE_TRUE if successful or ORTE_FALSE in case of any error.

ORTEDomainlnitEvents

Name

ORTEDomainInitEvents — initializes list of events

Synopsis

Boolean ORTEDomainInitEvents (ORTEDomainAppEvents x events);

Arguments

events

pointer to struct ORTEDomainAppEvents

Description

Initializes structure pointed by events. Every member is set to NULL. Returns ORTE_TRUE if
successful or ORTE_FALSE in case of any error.

54

Chapter 6. ORTE API

ORTEDomainAppCreate

Name

ORTEDomainAppCreate — creates an application object within given domain

Synopsis

ORTEDomain » ORTEDomainAppCreate (int domain, ORTEDomainProp x prop,
ORTEDomainAppEvents x events, Boolean suspended);

Arguments

domain

given domain

prop

properties of application

events

events associated with application or NULL

suspended

specifies whether threads of this application should be started as well (ORTE_FALSE) or stay
suspended (ORTE_TRUE). See ORTEDomainStart for details how to resume suspended threads

Description

Creates new Application object and sets its properties and events. Return handle to created object or
NULL in case of any error.

ORTEDomainAppDestroy

Name
ORTEDomainAppDestroy — destroy Application object

55

Chapter 6. ORTE API
Synopsis

Boolean ORTEDomainAppDestroy (ORTEDomain * d);

Arguments
domain

Description

Destroys all application objects in specified domain. Returns ORTE_TRUE or ORTE_FALSE in case of
any error.

ORTEDomainAppSubscriptionPatternAdd

Name
ORTEDomainAppSubscriptionPatternAdd — create pattern-based subscription

Synopsis

Boolean ORTEDomainAppSubscriptionPatternAdd (ORTEDomain % d, const char x
topic, const char » type, ORTESubscriptionPatternCallBack
subscriptionCallBack, void x param);

Arguments

domain object

topic

pattern for topic

56

Chapter 6. ORTE API

type

pattern for type

subscriptionCallBack

pointer to callback function which will be called whenever any data are received through this
subscription

param

user params for callback function

Description

This function is intended to be used in application interesded in more published data from possibly more
remote applications, which should be received through single subscription. These different publications
are specified by pattern given to topic and type parameters.

For example suppose there are publications of topics like temperatureEnginel,
temperatureEngine2, temperatureEnginelBackup and temperatureEngine2Backup
somewhere on our network. We can subscribe to each of Enginel temperations by creating single
subscription with pattern for topic set to “temperatureEnginel*”. Or, if we are interested only in values
from backup measurements, we can use pattern “*Backup”.

Syntax for patterns is the same as syntax for fnmatch function, which is employed for pattern
recognition.

Returns ORTE_TRUE if successful or ORTE_FALSE in case of any error.

ORTEDomainAppSubscriptionPatternRemove

Name

ORTEDomainAppSubscriptionPatternRemove — remove subscription pattern

Synopsis

Boolean ORTEDomainAppSubscriptionPatternRemove (ORTEDomain * d, const char =
topic, const char * type);

57

Chapter 6. ORTE API

Arguments

domain handle

topic

pattern to be removed

type

pattern to be removed

Description

Removes subscritions created by ORTEDomainAppSubscriptionPatternAdd. Patterns for t ype and
topic must be exactly the same strings as when ORTEDomainAppSubscriptionPatternAdd
function was called.

Returns ORTE_TRUE if successful or ORTE_FALSE if none matching record was found

ORTEDomainAppSubscriptionPatternDestroy

Name

ORTEDomainAppSubscriptionPatternDestroy — destroys all subscription patterns

Synopsis

Boolean ORTEDomainAppSubscriptionPatternDestroy (ORTEDomain * d);

Arguments

domain handle

58

Chapter 6. ORTE API

Description

Destroys all subscription patterns which were specified previously by
ORTEDomainAppSubscriptionPatternAdd function.

Returns ORTE_TRUE if successful or ORTE_FALSE in case of any error.

ORTEDomainMgrCreate

Name

ORTEDomainMgrCreate — create manager object in given domain

Synopsis

ORTEDomain » ORTEDomainMgrCreate (int domain, ORTEDomainProp * prop,
ORTEDomainAppEvents % events, Boolean suspended);

Arguments
domain

given domain

prop

desired manager’s properties

events

manager’s event handlers or NULL

suspended

specifies whether threads of this manager should be started as well (ORTE_FALSE) or stay
suspended (ORTE_TRUE). See ORTEDomainStart for details how to resume suspended threads

59

Chapter 6. ORTE API

Description

Creates new manager object and sets its properties and events. Return handle to created object or NULL
in case of any error.

ORTEDomainMgrDestroy

Name

ORTEDomainMgrDestroy — destroy manager object

Synopsis

Boolean ORTEDomainMgrDestroy (ORTEDomain * d);

Arguments
manager object to be destroyed

Description

Returns ORTE_TRUE if successful or ORTE_FALSE in case of any error.

ORTEPublicationCreate

Name

ORTEPublicationCreate — creates new publication

60

Chapter 6. ORTE API
Synopsis

ORTEPublication * ORTEPublicationCreate (ORTEDomain x d, const char x topic,
const char * typeName, void * instance, NtpTime * persistence, int strength,
ORTESendCallBack sendCallBack, void % sendCallBackParam, NtpTime x*
sendCallBackDelay) ;

Arguments

pointer to application object

topic

name of topic

typeName

data type description

instance

output buffer where application stores data for publication

persistence

persistence of publication

strength

strength of publication

sendCallBack

pointer to callback function

sendCallBackParam

user parameters for callback function

sendCallBackDelay

periode for timer which issues callback function

Description

Creates new publication object with specified parameters. The sendCallBack function is called
periodically with sendCallBackDelay periode. In strict reliable mode the sendCallBack function
will be called only if there is enough room in transmitting queue in order to prevent any data loss. The

61

Chapter 6. ORTE API

sendCallBack function should prepare data to be published by this publication and place them into
instance buffer.

Returns handle to publication object.

ORTEPublicationDestroy

Name

ORTEPublicationDestroy — removes a publication

Synopsis

int ORTEPublicationDestroy (ORTEPublication x cstWriter);

Arguments

cstWriter

handle to publication to be removed

Description

Returns ORTE_OK if successful or ORTE_BAD_HANDLE if cstiwriter is not valid cstWriter handle.

ORTEPublicationPropertiesGet

Name

ORTEPublicationPropertiesGet — read properties of a publication

62

Chapter 6. ORTE API
Synopsis

ORTEPublicationPropertiesGet (ORTEPublication * cstWriter, ORTEPublProp =
pp);

Arguments

cstWriter

pointer to cstWriter object which provides this publication

pp

pointer to ORTEPublProp structure where values of publication’s properties will be stored

Description

Returns ORTE_OK if successful or ORTE_BAD_HANDLE if cstwriter is not valid cstWriter handle.

ORTEPublicationPropertiesSet

Name

ORTEPublicationPropertiesSet — set properties of a publication

Synopsis

int ORTEPublicationPropertiesSet (ORTEPublication % cstWriter, ORTEPublProp =
pp);

Arguments

cstWriter

pointer to cstWriter object which provides this publication

63

Chapter 6. ORTE API

PP

pointer to ORTEPublProp structure containing values of publication’s properties

Description

Returns ORTE_OK if successful or ORTE_BAD_HANDLE if cstWriter is not valid publication
handle.

ORTEPublicationGetStatus

Name

ORTEPublicationGetStatus — removes a publication

Synopsis

int ORTEPublicationGetStatus (ORTEPublication * cstWriter, ORTEPublStatus =*
status) ;

Arguments

cstWriter

pointer to cstWriter object which provides this publication

status

pointer to ORTEPublStatus structure

Description

Returns ORTE_OK if successful or ORTE_BAD_HANDLE if happ is not valid publication handle.

64

ORTEPublicationSend

Name

ORTEPublicationSend — force publication object to issue new data

Synopsis

int ORTEPublicationSend (ORTEPublication * cstWriter);

Arguments

cstWriter

publication object

Description

Returns ORTE_OK if successful.

ORTEPublicationSendEx

Name

Chapter 6. ORTE API

ORTEPublicationSendEx — force publication object to issue new data with additional parameters

Synopsis

int ORTEPublicationSendEx (ORTEPublication » cstWriter,
ORTEPublicationSendParam * psp);

65

Chapter 6. ORTE API

Arguments

cstWriter

publication object

psp

publication parameters

Description

Returns ORTE_OK if successful.

ORTEPublicationGetinstance

Name

ORTEPublicationGetInstance — return pointer to an instance

Synopsis

void x» ORTEPublicationGetInstance (ORTEPublication % cstWriter);

Arguments

cstWriter

publication object

Description

Returns handle

66

Chapter 6. ORTE API

ORTESubscriptionCreate

Name

ORTESubscriptionCreate — adds a new subscription

Synopsis

ORTESubscription x* ORTESubscriptionCreate (ORTEDomain x d, SubscriptionMode
mode, SubscriptionType sType, const char x topic, const char * typeName, void
* instance, NtpTime % deadline, NtpTime * minimumSeparation, ORTERecvCallBack
recvCallBack, void x recvCallBackParam, IPAddress multicastIPAddress);

Arguments

pointer to ORTEDomain object where this subscription will be created

mode

see enum SubscriptionMode

sType

see enum SubscriptionType
topic

name of topic

typeName

name of data type

instance

pointer to output buffer

deadline

deadline

minimumSeparation

minimum time interval between two publications sent by Publisher as requested by Subscriber
(strict - minumSep musi byt 0)

67

Chapter 6. ORTE API

recvCallBack

callback function called when new Subscription has been received or if any change of subscription’s

status occures

recvCallBackParam

user parameters for recvcallBack

multicastIPAddress

in case multicast subscripton specify multicast IP address or use IPADDRESS_INVALID to unicast

communication

Description

Returns handle to Subscription object.

ORTESubscriptionDestroy

Name

ORTESubscriptionDestroy — removes a subscription

Synopsis

int ORTESubscriptionDestroy (ORTESubscription * cstReader);

Arguments

cstReader

handle to subscriotion to be removed

Description

Returns ORTE_OK if successful or ORTE_BAD_HANDLE if cstReader is not valid subscription
handle.

68

Chapter 6. ORTE API

ORTESubscriptionPropertiesGet

Name

ORTESubscriptionPropertiesGet — get properties of a subscription

Synopsis

int ORTESubscriptionPropertiesGet (ORTESubscription x cstReader, ORTESubsProp
* Sp);

Arguments

cstReader

handle to publication

sp

pointer to ORTESubsProp structure where properties of subscrition will be stored

ORTESubscriptionPropertiesSet

Name

ORTESubscriptionPropertiesSet — set properties of a subscription

Synopsis

int ORTESubscriptionPropertiesSet (ORTESubscription x cstReader, ORTESubsProp
* Sp);

69

Chapter 6. ORTE API

Arguments

cstReader

handle to publication

sp

pointer to ORTESubsProp structure containing desired properties of the subscription

Description

Returns ORTE_OK if successful or ORTE_BAD_HANDLE if cstReader is not valid subscription
handle.

ORTESubscriptionWaitForPublications

Name

ORTESubscriptionWaitForPublications — waits for given number of publications

Synopsis

int ORTESubscriptionWaitForPublications (ORTESubscription * cstReader,
NtpTime wait, unsigned int retries, unsigned int noPublications);

Arguments
cstReader
handle to subscription

wait

time how long to wait

retries

number of retries if specified number of publications was not reached

70

Chapter 6. ORTE API

noPublications

desired number of publications

Description

Returns ORTE_OK if successful or ORTE_BAD_HANDLE if cstReader is not valid subscription
handle or ORTE_TIMEOUT if number of retries has been exhausted..

ORTESubscriptionGetStatus

Name
ORTESubscriptionGetStatus — get status of a subscription

Synopsis

int ORTESubscriptionGetStatus (ORTESubscription * cstReader, ORTESubsStatus =
status) ;

Arguments

cstReader

handle to subscription

status

pointer to ORTESubsStatus structure

Description

Returns ORTE_OK if successful or ORTE_BAD_HANDLE if cstReader is not valid subscription
handle.

71

Chapter 6. ORTE API

ORTESubscriptionPull

Name

ORTESubscriptionPull — read data from receiving buffer

Synopsis

int ORTESubscriptionPull (ORTESubscription * cstReader);

Arguments

cstReader

handle to subscription

Description

Returns ORTE_OK if successful or ORTE_BAD_HANDLE if cstReader is not valid subscription
handle.

ORTESubscriptionGetinstance

Name

ORTESubscriptionGetInstance — return pointer to an instance

Synopsis

void » ORTESubscriptionGetInstance (ORTESubscription x cstReader);

72

Chapter 6. ORTE API

Arguments

cstReader

publication object

Description

Returns handle

ORTETypeRegisterAdd

Name
ORTETypeRegisterAdd — register new data type

Synopsis

int ORTETypeRegisterAdd (ORTEDomain % d, const char * typeName,
ORTETypeSerialize ts, ORTETypeDeserialize ds, ORTETypeGetMaxSize gms,
unsigned int ms);

Arguments
d
domain object handle

typeName

name of data type

ts

pointer to serialization function. If NULL data will be copied without any processing.

ds

deserialization function. If NULL data will be copied without any processing.

73

Chapter 6. ORTE API

gms

pointer to a function given maximum length of data (in bytes)

ms

default maximal size

Description

Each data type has to be registered. Main purpose of this process is to define serialization and
deserialization functions for given data type. The same data type can be registered several times,
previous registrations of the same type will be overwritten.

Examples of serialization and deserialization functions can be found if contrib/shape/ortedemo_types.c
file.

Returns ORTE_OK if new data type has been succesfully registered.

ORTETypeRegisterDestroyAll

Name
ORTETypeRegisterDestroyAll — destroy all registered data types

Synopsis

int ORTETypeRegisterDestroyAll (ORTEDomain * d);

Arguments

domain object handle

74

Chapter 6. ORTE API

Description
Destroys all data types which were previously registered by function ORTETypeRegisterAdd.

Return ORTE_OK if all data types has been succesfully destroyed.

ORTEVerbositySetOptions

Name

ORTEVerbositySetOptions — set verbosity options

Synopsis

void ORTEVerbositySetOptions (const char % options);

Arguments

options

verbosity options

Description

There are 10 levels of verbosity ranging from 1 (lowest) to 10 (highest). It is possible to specify certain
level of verbosity for each module of ORTE library. List of all supported modules can be found in
linorte/usedSections.txt file. Every module has been aasigned with a number as can be seen in
usedSections.txt file.

For instance

options = “ALL,7” Verbosity will be set to level 7 for all modules.

options = “51,7:32,5” Modules 51 (RTPSCSTWrite.c) will use verbosity level 7 and module 32
(ORTEPublicationTimer.c) will use verbosity level 5.

75

Chapter 6. ORTE API

Maximum number of modules and verbosity levels can be changed in order to save some memory space
if small memory footprint is neccessary. These values are defined as macros
MAX_DEBUG_SECTIONS and MAX_DEBUG_LEVEL in file include/defines.h.

Return ORTE_OK if desired verbosity levels were successfuly set.

ORTEVerbositySetLogFile

Name
ORTEVerbositySetLogFile — set log file

Synopsis

void ORTEVerbositySetLogFile (const char % logfile);

Arguments

logfile

log file name

Description

Sets output file where debug messages will be writen to. By default these messages are written to stdout.

ORTEInit

Name

ORTEInit — initialization of ORTE layer (musi se zavolat)

76

Synopsis

void ORTEInit (void);

Arguments

void

no arguments

ORTESIleepMs

Name

ORTESleepMs — suspends calling thread for given time

Synopsis

void ORTESleepMs (unsigned int ms);

Arguments

ms

miliseconds to sleep

Chapter 6. ORTE API

77

Chapter 6. ORTE API

6.3. Macros

SeqNumberCmp

Name

SegNumbe rCmp — comparison of two sequence numbers

Synopsis

SegNumberCmp (snli, sn2) ;

Arguments

snl

source sequential number 1

sn2

source sequential number 2

Return

1if snl >sn2 -1 if snl <sn2 0 if snl1 = sn2

SeqNumberinc

Name

SegNumberInc — incrementation of a sequence number

Synopsis

SegNumberInc (res, sn);

78

Chapter 6. ORTE API

Arguments

res

result

sSn

sequential number to be incremented

Description

res=sn+ 1

SegqNumberAdd

Name

SegNumberAdd — addition of two sequential numbers

Synopsis

SegNumberAdd (res, snl, sn2) ;

Arguments
res
result

snl

source sequential number 1

sn2

source sequential number 2

79

Chapter 6. ORTE API

Description

res = snl + sn2

SegNumberDec

Name

SegNumberDec — decrementation of a sequence number

Synopsis

SegNumberDec (res, sn) ;

Arguments

res

result

sn

sequential number to be decremented

Description

res=sn- 1

SeqNumberSub

Name

SegNumbe r Sub — substraction of two sequential numbers

80

Chapter 6. ORTE API
Synopsis

SegNumberSub (res, snl, sn2);

Arguments

res

result

snl

source sequential number 1

sn2

source sequential number 2

Description

res = snl - sn2

NtpTimeCmp

Name

NtpTimeCmp — comparation of two NtpTimes

Synopsis

NtpTimeCmp (timel, timeZ2) ;

Arguments

timel

source time 1

81

Chapter 6. ORTE API

time2

source time 2

Return value

1 if time 1 > time 2 -1 if time 1 < time 2 O if time 1 = time 2

NtpTimeAdd

Name
NtpTimeAdd — addition of two NtpTimes

Synopsis

NtpTimeAdd (res, timel, time?2) ;

Arguments

res

result

timel

source time 1

time2

source time 2

Description

res = timel + time2

82

NtpTimeSub

Name

NtpTimeSub — substraction of two NtpTimes

Synopsis

NtpTimeSub (res,

Arguments
res
result

timel

source time 1

time2

source time 2

Description

res = timel - time2

timel,

time?2) ;

NtpTimeAssembFromMs

Name

NtpTimeAssembFromMs — converts seconds and miliseconds to NtpTime

Synopsis

NtpTimeAssembFromMs

(

time,

Sy

msec) ;

Chapter 6. ORTE API

83

Arguments

time

time given in NtpTime structure

seconds portion of given time

msec

miliseconds portion of given time

NtpTimeDisAssembToMs

Name

NtpTimeDisAssembToMs — converts NtpTime to seconds and miliseconds

Synopsis

NtpTimeDisAssembToMs (s, msec, time) ;

Arguments

seconds portion of given time

msec
miliseconds portion of given time
time

time given in NtpTime structure

Chapter 6. ORTE API

84

Chapter 6. ORTE API

NtpTimeAssembFromUs

Name

NtpTimeAssembFromUs — converts seconds and useconds to NtpTime

Synopsis

NtpTimeAssembFromUs (time, s, usec) ;

Arguments

time

time given in NtpTime structure
seconds portion of given time

usec

microseconds portion of given time

NtpTimeDisAssembToUs

Name

NtpTimeDisAssembToUs — converts NtpTime to seconds and useconds

Synopsis

NtpTimeDisAssembToUs (s, usec, time) ;

85

Chapter 6. ORTE API

Arguments

seconds portion of given time

usec

microseconds portion of given time

time

time given in NtpTime structure

Domain2Port

Name

Domain2Port — converts Domain value to IP Port value

Synopsis

Domain2Port (d, p);

Arguments
d

domain
P

port

Domain2PortMulticastUserdata

Name

Domain2PortMulticastUserdata — converts Domain value to userdata IP Port value

86

Chapter 6. ORTE API
Synopsis

Domain2PortMulticastUserdata (d, p);

Arguments
d

domain
P

port

Domain2PortMulticastMetatraffic

Name

Domain2PortMulticastMetatraffic — converts Domain value to metatraffic IP Port value

Synopsis

Domain2PortMulticastMetatraffic (d, p);

Arguments
d

domain
p

port

87

