
ORTE: The Open Real Time Ethernet

Petr Smolik, Pavel Pisa

Czech Technical University in Prague

Department of Control Engineering – petr.smolik @ wo.cz , pisa@cmp.felk.cvut.cz

Abstract: This paper describes the development process of the ORTE, a publish/subscribe communication
middleware. The ORTE implements RTPS (Real Time Publish Subscribe) communication architecture
conforming OMG specification. RTPS architecture makes design, development and deployment of
distributed applications much easier than traditional architectures. It removes one-to-many
communications challenges at the core of data-centric applications and distributes messages with low
latency without any single point of failure. The RTPS architecture is the ideal communication middleware
for distributed systems.

Keywords: middleware, publish-subscribe, DDS, RTPS

 1 INTRODUCTION

In the ORTE project we are developing communication
middleware confirming the OMG Data Distribution
Service (DDS) for Real-Time Systems specification [9]
(OMG Document formal/07-01-01). The specification
defines a service for efficiently distributing application
data between participants in a distributed application.

The recently-adopted DDS specification is divided into
two components. The first defines an Application Level
Interface (API) and behavior of the DDS that supports
Data-Centric Publish-Subscribe (DCPS) in real-time
systems. Second optional Data Local Reconstruction Layer
(DLRL) allows distributed data to be shared by local
objects located remotely from each other as if the data
were local. The DLRL is built on the top of the DCPS
layer.

The DDS specification also includes a platform specific
mapping to IDL and therefore an application using DDS is
able to switch among DDS implementations with only a
re-compilation. Therefore DDS addresses the 'application
portability.'

The specification does not address a protocol used by the
implementation to exchange messages over transport layer
such as TCP/UDP/IP, so different implementations of DDS
will not interoperate with each other unless vendor-specific
“bridges” are provided.

One of the transport protocol suitable for DDS
communication is Real-Time Publish Subscribe (RTPS)
wire protocol defined by OMG [10] (OMG document
formal/06-08-02). The RTPS was specifically developed to
support the unique requirements of data-distributions
systems. It is a field proven technology that is deployed in
thousands of industrial devices.

The rest of this paper is structured as follows. Section 2
provides background informations of the RTPS
communication architecture and related works. Section 3
and 4 describe our implementation of the ORTE in terms
of core, internal implementation and shows some code
examples. Last section presents concluding remarks.

 2 BACKGROUND AND RELATED WORKS

 2.1 Publish-subscribe

The publish-subscribe (PS) architecture is designed to
simplify one-to-many data-distribution requirements. In
this model, an application “publishes” data and
“subscribes” for data reception. Publishers simply send
data anonymously, they do not need any knowledge of
the number or network location of subscribers.
Similarly subscribers simply receive data anonymously,
they do not need to have any knowledge of the number
or network location of the publisher.

Fig.1 Publish-subscribe messaging

Each message in a publish/subscribe environment has
an associated topic, message type or any filtered
criteria, which is used to couple data publishers and
subscribers. Each participant dynamically registers
itself in the environment, where other peer modules are
active. By specifying the topics it wishes to publish and
subscribe, the connection is automatically created and
data transfer can begin. This coupling is illustrated in
Figure 1, where publish/subscribe peers are connected
through a middleware “cloud”, which provides an
abstraction for the network environment and
communication.

Publish/subscribe architecture can easily emulate
traditional forms of the communication such as point-

mailto:xsmolik@rtime.felk.cvut.cz
mailto:xsmolik@rtime.felk.cvut.cz
mailto:xsmolik@rtime.felk.cvut.cz
mailto:xsmolik@rtime.felk.cvut.cz

to-point (1 publisher, 1 subscriber), broadcast (1xN, MxN)
or client/server (Nx1). For example scenario MxN,
different publishers can declare the same publication so
that multiple subscribers can get the same issues from
multiple sources.

The basic communication model of PS is unidirectional
data exchange. For bi directional communication is
necessary to create two pairs of publishers and subscribers.
PS is much more efficient than client-server design like
CORBA, because of no request traffic and the direct data
transfers makes. The architecture is naturally event-
driven.

On other hand, publish/subscribe architectures are not
good at sporadic request/response traffic, such as is for
example file transfer. For this purpose, protocols like FTP
or HTTP are more efficient.

 2.2 Real Time Publish Subscribe

Publish/subscribe distribution is gaining popularity in
many distributed applications, such as robotics, industrial
automation and embedded systems. Notably leading to
industry standard as the Real-Time Publish-Subscribe
(RTPS) network protocol [13] (IDA 2001) and Data
Distribution Services (OMG 2006). Implementations of
RTPS can be found in industrial commercial products such
as Network Data Delivery Serves (NDDS) from Real Time
Innovations (RTI) and Thales SPLICE DDS from Thales
Naval Netherlands and Prism Technologies. NDDS
implements the DCPS fully and the DLRL partially. The
RTPS protocol is also available in the Programmable
Logic Controllers (PLC) from Schneider Electronic.

Publish/subscribe offers clear advantages for real-time
applications. RTPS adds publication and subscription
timing parameters and properties so the developer can
control the different types of data flow and achieve their
application's performance and reliability goals.

RTPS has low bandwidth and lightweight process
requirements. Was specifically designed to work on top of
unreliable and connection-less network transport such as
UDP/IP.

Fig.2 Publisher and Subscriber timing and arbitration QOS
in message delivery

Each publication is mainly characterized by four
parameters: topic, type, strength and persistence. The topic
is the label that identifies each data flow. The type
describes the data format. The strength indicates a
publisher’s weight relative to other publishers of the same
topic. The persistence indicates how long each publication
issue is valid. Figure 2 illustrates how a subscriber
arbitrates among publications using the strength and
persistence properties.

When there are multiple publishers sending the same
publication, the subscriber accepts the issue if its
strength is greater than the last-received issue or if the
last issue’s persistence has expired.

Similarly subscriptions are identified by four
parameters: topic, type, minimum separation and
deadline. The topic is the label that identifies the data
flow, and type describes the data format (same as the
publication properties). The relationship between a
publication is created under this definition: topic, type.
Minimum separation defines a period during which no
new issues are accepted for that subscription. The
deadline specifies how long the subscriber is willing to
wait for the next issue. Figure 2 illustrates the use of
these parameters. The minimum separation protects a
slow subscriber against publishers that are publishing
too fast. The deadline provides a guaranteed wait time
that can be used to take appropriate action in case of
communication delays.

There are sever ways, how to optimize communication
data throughput in an implementation. One of the
usable method is multicast. This method dramatically
reduce the number of the messages exchanged in the
network. Another way, how to increase throughput is
tunneling local data traffic for instance through shared
memory. The RTPS specification keep all this
possibilities.

In the open source world, exists tool for analysis and
capturing RTPS (IDA 2001) data traffic on the network.
In standard distribution of Wireshark have been
designed a interpreter of RTPS messages [11].
Wireshark is the world's foremost network protocol
analyzer, and is the de facto (and often de jure) standard
across many industries and educational institutions.

 2.3 DDS

DDS and RTPS share same origin and are
complementary from application interface. Difference is
only at the definition of wire protocol. DDS keeps open
wire protocol to allow different vendors specific
implementations. RTPS (OMG, 06-08-02) is one
possible standard implementation of DDS wire
protocol.

DDS introduces a virtual Global Data Space (Figure 3)
where applications can share information by simply
reading and writing data-objects addressed by means of
an application-defined name (Topic) and a key. DDS
provides fine and extensive control of QoS parameters,
including reliability, bandwidth, delivery deadlines, and
resource limits. DDS also supports the construction of
local object models on top of the Global Data Space.
This reconstruction is done by optional Data Local
Reconstruction Layer (DLRL).

DLRL is not only a possible extension of DCPS. For
instance exists project SQLbusRT which implements
distributed database over DCPS. The objectives of
SQLbus/RT is to create Real Time Publish Subscribe
SQL. Data storage of SQLBusRT is provided by
MySQL database engine.

All interfaces (DCPS and DLRL) are described in the
specification by using Independent Definition Language

(IDL). IDL helps create platform and system
independence.

Fig. 3 DCPS concept

The DDS relation with the CORBA is that it only specifies
CORBA IDL interfaces for the setup, control, and
configuration of the application and assumes that the data
transmission occurs via mechanisms other than CORBA.
This enables DDS implementations to achieve higher
performance and better quality of service than the
CORBA-based alternatives.

 2.4 Related works

Except commercial versions of DDS, there exists another
open source implementations. Object Computing, Inc
(OCI) supports one of them. Their implementation is
called OpenDDS [5]. OpenDDS supports the capabilities
defined in the DDS 1.0 Specification and implements
“Minimum profile” from them. The middleware is written
in C++ language.

The architecture of the OpenDDS takes advantages from
he Adaptive Communication Environment (ACE) to
provide a cross platform portability. OpenDDS also
leverages capabilities of TAO (The ACE Orb), such as its
IDL compiler and as the basis of the OpenDDS DCPS
Information Repository.

Transport protocol is separated from the higher level
protocols by means of an extensible transport framework
(ETF). The Figure 4 below shows the ETF aspects of the
architecture.

Fig.4 OpenDDS architecture

OpenDDS ETF is not standardized. Data are usually
sending through TCP/IP communication protocol, UDP or
user can write a self implementation. A similar approach is

used within TAO and is called “Pluggable Protocols”.

Although ETF is well designed to be scalable, not all
kind of communication protocol can be solved by this
model. We discussed about possibility of integration
RTPS like a new ETF at the beginning . Unfortunately,
the implementation of RTPS protocol needs more than
just self implementation ETF. Communication
messages are marshaled/demarshalled directly in
OpenDDS by specific way. RTPS implementation based
on OpenDDS can not be done without the change of
architecture and changing many parts of code in upper
layers of middleware. Also this kind of transportable
adapter is not suitable for a RTPS implementation.

Globally, OpenDDS offers to developers standardized
application interface with a proprietary version of
communication protocol.

Another an open source version of DDS is JacORB
DDS [2]. The distribution provides an open-source
Java-based DDS-DCPS implementation. The purpose of
this implementation is only pedagogical and
demonstrations. The communication is working over
CORBA. The last version has be released in October
2005 and from this date was not updated.

 3 ORTE – THE WORKING IMPLENTATION

The open source implementation of the RTPS protocol
has been developed at the Czech Technical University
in Prague as one of the results of the OCERA project.
At the beginning of OCERA project was accessible only
IDA RTPS specification. It is reason why we designed
to develop ORTE under this specification. First version
of the DDS specification have been introduced at the
end of project OCERA. In that time it was not possible
to change API to DDS and the ORTE remained with
proprietary API version. The IDA RTPS specification
does not cover all OMG RTPS (document/06-08-02)
messages. New specification extends protocol with the
partial backward compatibility.

Although the object concept of RTPS would be ideal for
an object oriented programming language such as C++,
the final ORTE implementation is done in C language,
since it allows simple porting of ORTE to different
operating systems, mainly those with the real-time
behavior. Figure 5 and Figure 6 show how simply
ORTE can be used.

ORTEPublication *p;
NtpTime persistence, delay;
ORTEInit();
d = ORTEDomainAppCreate(ORTE_DEFAUL_DOMAIN,

NULL, NULL, ORTE_FALSE);
ORTETypeRegisterAdd(d,"HelloMsg",NULL,NULL,64);
NTPTIME_BUILD(persistence, 3);//is valid for 3s
NTPTIME_DELAY(delay, 1);
p = ORTEPublicationCreate(
 d, // pointer to application object
 "Example HelloMsg", // name of topic

"HelloMsg", // data type description
 &instance2Send, // output buffer
 &persistence, // persistence of publication

1, // strength of publication
sendCallBack, //pointer to callback

function
NULL, //user parameters for callback
&delay);// period for timer, callback

Fig.5 The skeleton of the ORTE publisher

The subscribing application needs to create a

subscription with publication’s Topic and Type. A callback
function is called whenever a new publication from the
publisher is received.

ORTESubscription *s;
NtpTime deadline, minimumSeparation;
ORTEInit();
d=ORTEDomainAppCreate(ORTE_DEFAUL_DOMAIN,

 NULL, NULL, ORTE_FALSE);
ORTETypeRegisterAdd(d,"HelloMsg",NULL,NULL,64);
NTPTIME_BUILD(deadline, 20);
NTPTIME_DELAY(minimumSeparation, 0);
p = ORTESubscriptionCreate(
 d, // pointer to application object
 IMMEDIATE, // mode of subscription
 BEST_EFFORTS, // type of subcsription
 "Example HelloMsg",// name of topic
 "HelloMsg", // name of data type
 &instance2Recv, // pointer to output buffer
 &deadline, // deadline
 &minimumSeparation,// minimum separation
 recvCallBack, // callback function
 NULL); //user parameters

Fig.5 The skeleton of the ORTE subscriber

The ORTE was tested across different platform such as
Linux, Windows, MacOS and FreeBSD running on
littleendian as well as bigendian architectures. Serialization
and deserialization support is done by IDL compiler, which
is based on ORBIT IDL compiler from the GNOME
project. Java programming interface is accessible through
Java Native Interface (JNI). The RTPSEye (Pokorny,
2005) is Java based program used for online browsing of
RTPS communication object's parameters.

ORTE source package contains a graphical demonstration
program. This demonstration application is a self-
contained introduction to the elegance and power of
publish-subscribe networking implemented in the ORTE.

Fig. 6 ORTE demo application

The finial ORTE version (0.3.2) is fully complaint with
IDA RTPS standard. The communication interoperability
was successfully tested with NDDS version 3 from RTI
and Schneider Unity Premium PLC – TXSP571634M.
Although the PLC supports RTPS communication, the
possibilities of data exchanges are limited. In the tested
configuration were transmitted variables with fixed length
4 bytes (unsigned long).

The ORTE have been used like basic communication
network in some real projects. Imtech ICT TS in the
Netherlands have adopted the ORTE implementation, in

large and interesting projects. One of them is
aerodynamic wind tunnel, where the ORTE is used like
core message exchange mechanism. The project
Seaware [4] implements a PS middleware for
networked vehicle systems with the ORTE. Next one is
the Eurobot2008 (Sojka, CTU), which also takes
advantages of RTPS architecture.

 4 ORTE – DEVELOPMENT VERSION

In the next phase we develop the ORTE according
OMG RTPS specification (OMG document
formal/06-08-02) with the respect of DDS API. The
ORTE version 0.3 implements most of things from this
specification. To be complaint with the DDS RTPS, the
ORTE needs totally revise API and extends internal
message sending mechanism and add new telegrams.
The revision needs to change some of the architecture
concept. Responses from projects using ORTE are
indicated to native support of object interface for API.
Currently was done by making a wrapper class. Big
projects are usually written in C++. DCPS API is also
naturally mapped into C++, thought the fact of object
inheritance. With the future point of view, we decided
totally rewrite ORTE by using C++ language. We would
like to provide a new ORTE version in the project
FRESCOR.

The inspiration for new development have been taken
from project OpenDDS. Platform independence was
solved same way by using ACE components. ACE
provides a rich set of reusable C++ wrappers and
framework components, that perform common
communication tasks across a range of O/S platforms.
Such communication tasks provided by ACE include
event demultiplexing, and event handler dispatching,
signal handling, service initialization, interprocess
communication, shared memory management, message
routing, dynamic reconfiguration of distributed
services, concurrent execution, synchronization and
support for Common Data Representation (CDR),
which was introduced in CORBA and is adapted by
DDS. Including TAO dependency like in OpenDDS
takes very huge footprint for small target platforms and
the benefits from this dependency are not so significant.

First step in the ORTE development which has to be
solve is concerning serialization/deserialization
communications objects. The object description is
written in IDL files. Parsing IDL files is done by library
libIDL originally created for the GNOME project.
LibIDL is a small library creating parse trees of
CORBA v2.2 compliant IDL files. The skeleton for
writing ORTE IDL compiler (orte-idl) was used IDL
compiler from the ORBIT project. Both compilers take
advantages from libIDL.

Basic data types (short, long, float, double, char,
boolean,octet) in IDL statements are mapped on basic
C++ types. Complex data types are mapped on types
defined in Table 1.

OMG IDL C++

struct C++ struct

enum C++ enum

string char *

wstring DDS::StringManager *

sequence C++ class

array C++ array

Tab. 1 Mapping complex IDL types on C++ types

If in the IDL are used types with unbounded size, the
mapping problem is dramatically increased. The ORTE
IDL version 0.3 have limitation on using bounded types. In
new version of ORTE this limitation has been solved. For
example, if a unbounded type (sequence, string, array) is
used in a struct, than different mapping have to be used
for serialization/deserialization. The compiler has to
understand all basic and complex types and has to know
correct handling with this types on different compilation
level.

The result of the orte-idl is set of files. The IDL
development process is illustrated by Figure 7.

Fig. 7 ORTE IDL development process

The orte-idl currently generates from the file Type.h files
Type.h/cpp and TypePluggin.h/cpp and correct maps
bounded/unbounded data type to DDS types.

IDL interfaces are directly mapped into C++ function
definitions. DDS specification is defined in IDL file. The
orte-idl compiler is used for compilation of the DDS IDL
file to produce skeleton for writing ORTE DDS
implementation.

The ORTE architecture is splited on server parts. Ortecore
contains definition of basic and complex DDS types. There
is also support for correct handling with
serialization/deserialization this types. Ortecore is almost
done. Next layers of the ORTE architecture (PIM, PSM,
Transport) needs to be implemented. Many inspiration for
this development could be gain from the OpenDDS.

 5 CONCLUSION

This paper has described the ORTE (Open Real-Time
Ethernet), an open-source implementation of the RTPS
standard. The authors see RTPS based implementation as
promising middleware for real-time network
communications.

Although there exists open source implementation of the
DDS specification called OpenDDS, the wire protocol of
this implementation is not confirming to RTPS
specification. Can be integrated a new transport protocol
by using extensible transport framework (ETF), but not a
whole new communication protocol.

The ORTE version 0.3 implements RTPS under IDA
specification (2001) and is full ready to be used in serious

projects. The interoperability was successfully tested
against the commercial product from Real Time
Innovations' NDDS3.

Ongoing ORTE implementation will includes RTPS
specifications under OMG document (formal/06-08-02)
written in C++. The platform independence will be
solved by ACE components. In the recent version is
implemented IDL compiler and core function for
serialization and deserialization IDL basic and complex
types.

 6 ACKNOWLEDGEMENT

This work was supported by the project IST 35102 –
OCERA and IST 5-034026 – FRESCOR. Finally,
thanks are also to all people who helps with the ORTE
development.

 7 REFERENCES

[1] ACE Adaptive Communication Environment,
http://www.cs.wustl.edu/~schmidt/ACE.html

[2] DDS JacORB, open source DDS in Java
http://www.dele.imag.fr/users/Didier.Donsez/dev/
dds/ readme.html

[3] Dolejš, O., Smolík, P., Hanzálek, Z.: On the
Ethernet Use for Real-TIme Applications, 5th IEEE
International Workshop on Factory Communication
Systems, WFCS, Vienna, September 22-24, 2004.

[4] Marques, E. R. B., G. M. Gonçalves, J. B. Sousa
(2006). Seaware: A Publish/Subscribe Middleware
for Networked Vehicle Systems. Robotica 2006.

[5] OpenDDS, open source DDS over ACE
http://www.opendds.org

[6] ORTE open-source code - CVS,
http://cvs.sourceforge.net/viewcvs.py/ocera/ocera/co
mponents/comm/eth/orte/

[7] ORTE documentation,
http://www.ocera.org/archive/ctu/public/components
/ethdev/ethdev-0.1.tgz

[8] OCI, Object Computing Inc (n.d.). TAO DDS.
http://www.ociweb.com/products/dds

[9] OMG, Object Management Group. Data
Distribution Service for Real-time Systems
Specification, v1.2, 2007
http://www.omg.org/technology/documents/
formal/data_distribution.htm

[10] OMG, Object Management Group (2006). The
Real-time Publish-Subscribe Wire Protocol
http://www.omg.org/cgi-bin/doc?ptc/2006-08-02

[11] Pokorný, L. Support tools for RTPS
communication ČVUT 2005

[12] RTI, Real Time Innovation Inc, RTI DDS
http://www.rti.com/products/data_distribution/
index.html

[13] RTI, Real Time Innovation Inc, Real-Time Publish-
Subscribe Wire Protocol Specification, Protocol
Version 1.0, Draft doc, version 1.17.
http://www.rti.com/products/ndds/literature.html,

 2001
[14] TAO, CORBA implementation

http://www.cs.wustl.edu/~schmidt/TAO.html

http://www.cs.wustl.edu/~schmidt/TAO.html
http://www.rti.com/products/ndds/literature.html
http://www.rti.com/products_ndds.html
http://www.rti.com/products_ndds.html
http://www.rti.com/products/data_distribution/
http://www.omg.org/cgi-bin/doc?ptc/2006-08-02
http://www.omg.org/technology/documents/formal/data_distribution.htm
http://www.omg.org/technology/documents/
http://www.ociweb.com/products/dds
http://www.ocera.org/archive/ctu/public/components/ethdev/ethdev-0.1.tgz
http://www.ocera.org/archive/ctu/public/components/ethdev/ethdev-0.1.tgz
http://cvs.sourceforge.net/viewcvs.py/ocera/ocera/components/comm/eth/orte/
http://cvs.sourceforge.net/viewcvs.py/ocera/ocera/components/comm/eth/orte/
http://www.opendds.org/
http://www-dele.imag.fr/users/Didier.Donsez/dev/dds/readme.html
http://www-dele.imag.fr/users/Didier.Donsez/dev/dds/
http://www.dele.imag.fr/users/Didier.Donsez/dev/
http://www.cs.wustl.edu/~schmidt/ACE.html

