
Porting of Real-Time Publish-Subscribe Middleware to Android

Martin Vajnar, Michal Sojka, Pavel Ṕı̌sa
Czech Technical University in Prague

Technická 2, 121 35 Praha 6, Czech Republic
{vajnamar,sojkam1,pisa}@fel.cvut.cz

Abstract

Real-Time Publish-Subscribe (RTPS) is a protocol, based on UDP/IP, that allows easy and efficient
implementation of data-driven distributed real-time applications. The protocol was adopted as an OMG
specification and it is intended as an interoperability protocol for applications based on the Data Distribution
Service (DDS) API. RTPS is widely used in many industrial applications and it has both commercial and
open source implementations. One open-source implementation is called Open Real-Time Ethernet (ORTE)
and it is known to work on many platforms including GNU/Linux, Windows, FreeBSD and MacOS. In this
paper we describe a new addition to the supported platforms, which is an Android operating system for
mobile devices.

We provide an overview of the steps that were needed to port the protocol to the Android platform. We
ported the existing native library and added a Java wrapper around it. We comment on the troubles we
had and their solutions. We compare the performance of ORTE on Android with other platforms and we
present our Android phone application for controlling and monitoring a mobile robot.

1 Introduction

Real-Time applications often need to be distributed
over multiple computing nodes. Reasons for that in-
clude the distribution of the computing power to the
places where it is needed or simplification of the de-
sign, management or maintenance of the application.
The vital part of all distributed applications is the
communication between the application components
running on different nodes. In case of real-time ap-
plications, the communication is subject to tempo-
ral constraints such as deadlines. Applications of-
ten need to be fault-tolerant and as such, they must
support redundancy in their architecture. Another
common requirement is dynamic nature of the ap-
plication where nodes/components are joined to or
removed from the application at run-time. These,
often contradicting, requirements make the commu-
nication part hard to design and implement. For
this reason, people often build their application on
top of various communication middleware platforms
that handle the communication for them.

Traditional middleware platforms such as
CORBA [1] provide transparent access to remote
objects by means of remote method calls. When an
application invokes a method on a remote object,

the middleware automatically serializes the method
parameters and sends the request to destination
process where the object is located. The compu-
tation happens remotely and then the results are
sent back. While this simplifies the development
of distributed applications a lot, there are many
applications that cannot be efficiently implemented
on top of this request-response model.

Applications, whose operation is mainly data-
driven, meaning that some action/computation is
performed when data is ready, would be better served
by middleware platforms that seamlessly manage dis-
tribution of data from producers to consumers. Such
applications are often designed according to Data-
Centric Publish-Subscribe (DCPS) model [2], where
the middleware creates a notion of a “global data
space” that is accessible to all interested applica-
tions (see Figure 1). Writing application under such
a model brings many advantages. The biggest one
being perhaps that the communication requirements
are specified by applications in a declarative way and
the middleware handles the data exchange automat-
ically based on the declarations.

In this paper we describe recent advances in an
implementation of a small DCPS middleware called
ORTE [3]. This middleware was ported to the An-

1



Global data space

Publisher
"Presure"

Publisher
"Speed"

Publisher
"Presure"

Subscriber
"Voltage"

Subscriber
"Speed"

Subscriber
"Presure"

Publisher
"Voltage"

Figure 1: Data-Centric Publish-Subscriber applica-
tion model.

droid platform, which brings possibility of many in-
teresting applications.

This paper is structured as follows. In Section 2
we describe the DDS API, the Real-Time Publish-
Subscribe protocol and the ORTE middleware. De-
scription of how we ported the ORTE to Android
follows in Section 3. We evaluate the performance of
the Android port in Section 4. Section 5 describes
what needs to be done for ORTE to be compliant
with the RTPS specification and we conclude in Sec-
tion 6.

2 DDS, RTPS and ORTE

The popularity of DCPS model resulted in several
standardization activities. Data Distribution Service
(DDS) for Real-time Systems [2] is an Object Man-
agement Group (OMG) standard that specifies an
API for applications based on the DCPS model. Ap-
plications using this API are portable between dif-
ferent middleware platforms offering this API. The
interfaces are specified in OMG Interface Definition
Language (IDL) [1, Chapter 7]. This means that the
API is defined for many commonly used languages
such as C, C++, Python and others1.

The DDS API allows an application to declare
that it produces certain data (identified with a so
called topic) or that it wants to receive (subscribe to)
such a data. The underlying middleware ensures that
the stream of data is properly communicated from
one or more producers to one or more subscribers.
Besides the basic data exchange between publishers
and subscribers, the middleware allows the applica-
tions to specify many additional Quality-of-Service
(QoS) parameters such as deadlines, reliability level,
data durability, etc. This not only simplifies the ap-
plication design but also allows the middleware to op-
timize the communication in many ways. The DDS

1See http://www.omg.org/spec/#Map

standard specifies only the API, not the underlying
mechanisms that implement the data exchange.

The communication protocol that can be used
to implement the functionality required by the DDS
API is called the Real-Time Publish-Subscribed
(RTPS) protocol [4]. The primary goal of RTPS
is to provide interoperability between different DDS
middleware platforms. This is achieved by defining a
minimal set of requirements that all implementations
have to satisfy. Besides that, the standard defines
many optional advanced features as well as a way for
implementing vendor specific extensions of the pro-
tocol. The standard defines the protocol in a plat-
form (transport) independent way and then it defines
the mapping onto the UDP/IP protocol. The pro-
tocol takes advantage of multicast communication
when available, but works also in environments with-
out multicast support. Implementations can decide
about trade-offs in resource needs. Simple implemen-
tations can have a small memory footprint but will
need higher network bandwidth. Other implemen-
tation can use local memory to highly optimize the
communication and thus save network bandwidth.

The RTPS protocol has the following features
that make it an interesting option for using in dis-
tributed real-time applications.

No single point of failure. Every application has
a complete picture of the whole network. Crash
of a single application influences only the appli-
cations that need data from it.

Redundancy. Multiple publishers can publish the
same “topic”. If one publisher fails, subscribers
will be automatically switched to another one.
This is illustrated in Figure 1 where “Presure”
information is published by two applications.

Application discovery. Built-in discovery proto-
col ensures that applications can discover each
other as well as the topics they publish or are
subscribed to.

Besides several commercial implementations of
RTPS protocol, at least two open source implementa-
tions exist: OpenDDS [5] and ORTE [3]. OpenDDS
seems to be more mature. It implements both the
DDS API and the underlying RTPS protocol. It
is implemented in C++ and provides bindings for
Java. OpenDDS is built on top of the ACE2 abstrac-
tion layer to provide platform portability. OpenDDS
also leverages capabilities of CORBA implementa-
tion called TAO3.

2http://www.theaceorb.com/product/aboutace.html
3http://www.theaceorb.com/

2

http://www.omg.org/spec/#Map
http://www.theaceorb.com/product/aboutace.html
http://www.theaceorb.com/


ORTE, another open source RTPS implementa-
tion, provides its own API instead of the DDS API.
The reason is that ORTE development started be-
fore the DDS standard was finished. ORTE is imple-
mented in C and includes a small portability layer
that allows it to run on many popular platforms in-
cluding Linux, Windows, MacOS and FreeBSD. Un-
fortunately, ORTE implements the RTPS protocol
according to the draft of the RTPS specification [6]
and it would need some changes (see Section 5) in
order to be compliant with the current specification.
More detailed description of ORTE can be found in
[7]. Despite ORTE lack some features of OpenDDS,
we deal with it in this paper because we use it in
several applications.

3 Porting to Android

Android is one of the most popular and proliferated
mobile operating systems. It is running on wide
variety of devices ranging from mobile phones and
tablets to home media centers and digital cameras.
This makes it interesting for soft real-time applica-
tion developers.

To develop applications for Android, Google of-
fers Android Software Development Kit (SDK) and
Android Native Development Kit (NDK). SDK is
used for applications written in Java whereas NDK
allows to use native C/C++ code in the applications.
Android uses Google’s implementation of Java Vir-
tual Machine (VM) called Dalvik VM.

Having an RTPS implementation running on An-
droid brings interesting possibilities of using Android
devices to control and/or monitor applications that
already use RTPS protocol. This was, in fact, our
motivation for the porting effort. We have several
mobile robots [8] that are built on top of RTPS and
we wanted to be able to control the robots via a mo-
bile phone. One such robot is depicted in Figure 2.

3.1 Overview

We considered two possible approaches. One in-
volved writing a pure Java implementation of the
RTPS protocol from scratch (as chosen by the
PrismTech company [9]), the other was to use a pre-
existing Java wrapper, which makes use of the orig-
inal native ORTE library through the Java Native
Interface (JNI) and make it Android-compatible. Af-
ter thorough consideration we decided to go the Java
wrapper way. Mostly because the C code has been
in use for quite some time and could be viewed as

Figure 2: Controling the robot with an Android
phone.

stable. On the other hand, if we had chosen to write
a new implementation of the protocol, it would re-
quire extensive testing and would significantly slow
our progress.

In a nutshell, the process of porting was the fol-
lowing.

1. Update Java wrapper that uses Java Native In-
terface (JNI) and make it Android compatible.

2. Fix bugs that have not demostrated themselves
under the Oracle’s VM.

3. Add support for Android build system.

4. Make Java version of ORTE Manager applica-
tion (see Section 5) to overcome problems with
execution and termination of native processes.

3.2 Technical Details

In this section we take a closer look at some problems
we faced in the process of porting the ORTE library.

3.2.1 64-bit Support

In the Java wrapper pointers to C structures are
stored in Java fields for later use. For example each
publisher is assigned an instance of ORTEPublica-
tion structure upon its creation for future manipu-
lation, the most important being the possibility to
send new data.

Java implementations does not have a data type
specifically intended for storing pointers like the C

3



types intptr t, ptrdiff t or size t, so initially we
stored pointers in the Java’s int type, which is 32-
bit wide. This works well on current versions of An-
droid, because most devices use 32-bit ARM based
CPU, but does not work if used with Oracle’s VM
on a 64-bit OS. In order to overcome this we con-
sidered a possibility of creating long fields (64-bit)
along with int fields and switch between them based
on the word length of the system being used on, but
it turned out that Java doesn’t have a reliable way
to determine the native word length. On the Sun/O-
racle implementation, there is sun.arch.data.model
system property used for this purpose, but it is not
standardized and Dalvik VM implementation does
not support this. Another possibility was to call a C
function through JNI to determine the word length
at the time of creation of Java objects that need to
store native pointers. Calling the JNI function would
add an overhead that would not be compensated by
performance gain from using shorter fields to store
pointers. Based on this we decided to store point-
ers unconditionally in long fields. This is also the
recommended way by Google [10].

3.2.2 Use of WifiLock and MulticastLock

Android makes extensive use of power-saving fea-
tures. One of them is the Wi-Fi Power Save Polling
(PSP) mode [11]. When this mode is entered, the de-
vice asks Wi-Fi Access Point to cache all the down-
link frames intended for that device. Cached frames
could be delivered during a wake-up mode, that is
enetered either in order to transmit data or to re-
trieve cached data, or by sending a PS-Poll frame.
After the last cached packet is received, the device
enters the PSP mode again. We found out that the
PSP mode affects packet delay as well as packet delay
variation. This is of particular importance in case of
data being sent by ORTE at higher frequencies. The
Android allows a program to switch to Continuously
Aware Mode (CAM) by acquiring WifiLock in the
WIFI MODE FULL HIGH PERF mode, that is available
since Android 3.1.x. After an application acquires
this lock the Wi-Fi module will be kept in CAM even
when the device enters sleep mode.

We measured the ping responses with the
WifiLock both acquired and released. We used 1000
packets, each sent at the interval of 200 milliseconds.
The results can be seen in Table 1.

Furthermore the PSP mode could cause issues
with some Wi-Fi Access Points, that do not support
it. According to [12] this could lead to Wi-Fi con-
nection being lost.

WifiLock taken Yes No

Packet loss 0.9% 0.2%
Min. RTT [ms] 1.2 1.9
Avg. RTT [ms] 3.3 59.6
Max. RTT [ms] 177.2 351.7

Table 1: Comparison Wi-Fi ping latencies with and
without WifiLock.

Another way Android conserves power is that,
by default, the incoming multicast traffic is ignored.
In order to receive it, the program has to acquire the
MulticastLock.

Both mentioned locks require specific Android
permission to be granted to an application us-
ing them. Specifically the WifiLock requires the
WAKE LOCK permission and the MulticastLock

requires the CHANGE WIFI MULTICAST STATE
permission.

4 Evaluation

We evaluated our implementation by writing a sim-
ple application (Section 4.1) and we also compared
the performance of the native and Java implementa-
tions (Section 4.2).

4.1 Example Android Application

In order to demonstrate functionality of the ported
library an application for remote control of a small
robot has been written in Java. The example appli-
cation is capable of displaying information received
from an on-board Laser Range Finder, monitoring
battery voltage and controlling robot’s motion.

The motion is controlled by an accelerometer em-
bedded in the Android device. To suppress the noise,
accelerometer output is filtered by a low-pass filter.
We used standard sensor API of Android in order to
interface with the accelerometer.

Figure 5 shows a screenshot of the developed
application. Figures 3 and 4 then show code of a
simple publisher and subscriber. First an applica-
tion creates a DomainApp object, then registers the
data type that it uses and finally registers a pub-
lisher or subscriber. Publisher can publish new data
by calling send method, subscribers receive data in
the callback method.

4



public class ExamplePublisher {

public static void main(String[] args) {
NtpTime persistence = new NtpTime(3);
int strength = 100;
DomainApp appDomain = new DomainApp(

0, DomainProp.defaultPropsCreate(),
null, false);

ExampleData datamsg = new ExampleData(
appDomain, ”example topic”);

PublProp publProp = new PublProp(
datamsg.getTopic(),
”example type”, persistence, strength);

Publication pub = appDomain.
createPublication(publProp, datamsg);

pub.send(datamsg);
}
}

Figure 3: Code of a simple Java publisher

public class ExampleSubscriber
extends SubscriptionCallback {

public static void main(String[] args) {
NtpTime deadline = new NtpTime(10);
NtpTime minSeparation = new NtpTime(0);
DomainApp appDomain = new DomainApp(

0, DomainProp.defaultPropsCreate(),
null, false);

ExampleData datamsg = new ExampleData(
appDomain, ”example topic”);

SubsProp subProps = new SubsProp(
datamsg.getTopic(), ”example type”,
minSeparation, deadline,
ORTEConstant.IMMEDIATE,
ORTEConstant.BEST EFFORTS, 0);

Subscription sub = appDomain.
createSubscription(subProps, datamsg, this);

}

public void callback(RecvInfo info,
MessageData msg) {

// do something with the data ...
}
}

Figure 4: Code of a simple Java subscriber

Figure 5: Screenshot of the robot control application.
Data measured by the Laser range finder are at the
bottom, the speed vector of the robot is at top left.

4.2 Performance Comparison

To have a basic understanding about the overhead
of the Java wrapper used for writing Android ap-
plications, we conducted a set of experiments. We
created a publisher and a subscriber as applications
in both C (native) and in Java. The publisher tries
to publish data as fast as possible. Because both
the publisher and the subscriber were configured as
“reliable”, ORTE ensures that no publication gets
lost and the subscriber receives all the published
data. Both the publisher and the subscriber were
run on the same device to measure the performance
of the middleware itself rather than the performance
of the underlying network. We measured how long
does it take to publish ten thousands integer val-
ues. The experiments were run on three different de-
vices Sony Ericsson Xperia Ray with Android 4.0.4,
Google Nexus 7 with Android 4.3 and a PC witch
Intel Core i7-3520M CPU running at 2.90 GHz with
OpenJDK 7. The results can be seen in Table 2.

Pub → Sub Xperia Nexus 7 PC

C → C 2.2 s 2.3 s 0.31 s
Java → Java 10.3 s 6.8 s 0.78 s

C → Java 10.1 s 6.3 s 0.78 s
Java → C 2.6 s 2.5 s 0.31 s

Table 2: Performance comparison of native code and
Java wrapper. Time needed for publication of 10000
integer values.

The relative slowdown of the Java implementa-
tion compared to the native one is depicted in Fig-
ure 6. It can be seen that Dalvik VM performance
has improved between version 4.0.4 and 4.3 (or that
it runs better on Nexus 7 hardware). OpenJDK per-
forms even better than Dalvik VM. There is no slow-
down in Java → C case and in both cases with the

5



Figure 6: Relative slowdown of Java implementa-
tions compared to native (C → C) benchmark.

subscriber in Java, the performance is the same.

The reason for Java subscriber being slow is
mostly because of the way Java receive callback is
called from the native code. There is a native receive
thread, that handles received packets as they arrive.
If new data were received, a native callback func-
tion is called from within this thread. The callback
is passed a buffer containing the received data as
well as an instance of ORTERecvInfo structure con-
taining information about the data (e.g. endianess,
topic, sequence number). In case of Java subscribers
this callback is implemented as a JNI function that
first attaches itself to the Java VM to have access
to Java classes and existing objects. It then creates
a new Java object, that is essentially a Java version
of the ORTERecvInfo structure. After this, it sets
byte order of Java’s direct ByteBuffer according to
ORTERecvInfo and calls a method of an Java object,
which represents the received data, to deserialize the
data stored in the ByteBuffer. When this is done an
application callback function is called with the dese-
rialized Java object as a parameter. After the Java
callback returns the native receive thread detaches
itself from the Java VM.

As could be seen from the above description the
main bottleneck lays in the fact that the native re-
ceive thread, from which the Java wrapper’s receive
callback function is called, has to be attached to the
Java VM and has to call many JNI functions that
copy a lot of data internally. As could be seen from
our measurements the drop in throughput is signifi-
cant.

A better way to call Java’s receive callback func-
tion would be to create a dedicated Java thread read-
ing from a custom message queue to which messages
could be written directly from the native receive call-
back function without the need to attach to the Java
VM. This is considered for future development.

5 Compatibility with the Lat-
est RTPS standard

ORTE was developed according to the RTPS draft
document [6]. For this reason, ORTE is compliant
neither with the first adopted RTPS standard [13]
nor with its latest revision [4]. In this section we try
to summarize the changes that need to be done in
order for ORTE to be compliant with the standard-
ized versions. This information might be useful for
future ORTE development.

Data with key. RTPS 1.2 introduced a new type
of data objects – data with key. This allows to dis-
tribute a set of data instances (as opposed to a sin-
gle data instance) under a single topic. A part of
the data instance, called a key, is used to distinguish
between different instances.

Discovery protocol. RTPS draft uses a special
application called Manager that runs on every node
and manages automatic discovery of applications
both on the same node and on remote nodes. Newer
RTPS version replaces this with the Simple Partic-
ipant Discovery Protocol and the Simple Endpoint
Discovery Protocol that do not need the manager.
These protocols use data with key.

Data fragmentation. RTPS 1.2 allows big data
instances to be fragmented and sent as multiple mes-
sages. Receivers re-assemble the data from the frag-
ments. A new “submessage” type DataFrag is de-
fined for that purpose.

6 Conclusion

We have successfully ported a Real-Time Publish-
Subscribe middleware called ORTE to the Android
platform. Now, it is possible to easily write Android
applications that communicate over RTPS protocol.
The performance of Java publishers is comparable
to the native ones, but the performance of Java sub-
scribers is worse due to a bad design decision. This,
however, does not limit practical usability, because
Android devices like mobile phones usually commu-
nicate over a wireless network, which represent the
bottleneck.

As for our future work, we plan to make ORTE
compliant with the adopted RTPS standard [13].

6



References

[1] Object Management Group, Common Object
Request Broker Architecture (CORBA) Specifi-
cation, Version 3.1, Part 1: CORBA Interfaces.
[Online], 2008, no. formal/2008-01-04.

[2] ——, “Data distribution service for real-time
systems, version 1.2,” Online: http://www.
omg.org/cgi-bin/doc?formal/07-01-01.pdf, Jan
2007.

[3] M. Sojka, “ORTE web site,” Online: http://
orte.sf.net/.

[4] Object Management Group, “The real-time
publish-subscribe wire protocol, DDS inter-
operability wire protocol specification (DDS-
RTPS),” Online: http://www.omg.org/spec/
DDS-RTPS/2.1, Nov 2010.

[5] OpenDDS, “OpenDDS web site,” Online: http:
//www.opendds.org/.

[6] Real-Time Innovations, Inc., “RTPS wire pro-
tocol specification, version 1.0,” Online: http:
//orte.sf.net/rtps1.2.pdf, Feb 2002, Draft Doc-
ument Version: 1.17.

[7] P. Smoĺık and P. Ṕı̌sa, “ORTE: The Open Real-
Time Ethernet,” Czech Technical University in
Prague, Tech. Rep., 2008, Online: http://orte.
sf.net/rtn08 orte.pdf.

[8] K. Tran Duy, M. Ž́ıdek, J. Benda, J. Kubias,
and M. Sojka, “Autonomous Robot Running
Linux for the Eurobot 2007 Competition,” in
Ninth Real-Time Linux Workshop. Real-Time
Linux Foundation, 2007, pp. 9–13.

[9] PrismTech Ltd., “Opensplice mobile brings
dds to android mobile devices,” Online:
http://www.prismtech.com/opensplice/
products/opensplice-cloud/opensplice-mobile,
visited 10/2013.

[10] Google Inc., “JNI tips,” Online: http:
//developer.android.com/training/articles/
perf-jni.html, visited 10/2013.

[11] Laird Technologies, Inc., “Power save polling,”
Online: http://www.summitdata.com/
Documents/Glossary/knowledge center p.
html#psp, visited 10/2013.

[12] Intel Corporation, “Power save polling (PSP)
causes connection issues with access points,”
Online: http://www.intel.com/support/
wireless/wlan/sb/cs-006205.htm, visited
10/2013.

[13] Object Management Group, “The real-time
publish-subscribe wire protocol, DDS interop-
erability wire protocol specification,” Aug 2006,
ptc/06-08-02.

7

http://www.omg.org/cgi-bin/doc?formal/07-01-01.pdf
http://www.omg.org/cgi-bin/doc?formal/07-01-01.pdf
http://orte.sf.net/
http://orte.sf.net/
http://www.omg.org/spec/DDS-RTPS/2.1
http://www.omg.org/spec/DDS-RTPS/2.1
http://www.opendds.org/
http://www.opendds.org/
http://orte.sf.net/rtps1.2.pdf
http://orte.sf.net/rtps1.2.pdf
http://orte.sf.net/rtn08_orte.pdf
http://orte.sf.net/rtn08_orte.pdf
http://www.prismtech.com/opensplice/products/opensplice-cloud/opensplice-mobile
http://www.prismtech.com/opensplice/products/opensplice-cloud/opensplice-mobile
http://developer.android.com/training/articles/perf-jni.html
http://developer.android.com/training/articles/perf-jni.html
http://developer.android.com/training/articles/perf-jni.html
http://www.summitdata.com/Documents/Glossary/knowledge_center_p.html#psp
http://www.summitdata.com/Documents/Glossary/knowledge_center_p.html#psp
http://www.summitdata.com/Documents/Glossary/knowledge_center_p.html#psp
http://www.intel.com/support/wireless/wlan/sb/cs-006205.htm
http://www.intel.com/support/wireless/wlan/sb/cs-006205.htm

	Introduction
	DDS, RTPS and ORTE
	Porting to Android
	Overview
	Technical Details
	64-bit Support
	Use of WifiLock and MulticastLock


	Evaluation
	Example Android Application
	Performance Comparison

	Compatibility with the Latest RTPS standard
	Conclusion

