]> rtime.felk.cvut.cz Git - lisovros/linux_canprio.git/blob - arch/s390/kernel/smp.c
b39f596d71bdf942fbb9daacee7aa89be306072c
[lisovros/linux_canprio.git] / arch / s390 / kernel / smp.c
1 /*
2  *  arch/s390/kernel/smp.c
3  *
4  *    Copyright IBM Corp. 1999, 2009
5  *    Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com),
6  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
7  *               Heiko Carstens (heiko.carstens@de.ibm.com)
8  *
9  *  based on other smp stuff by
10  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
11  *    (c) 1998 Ingo Molnar
12  *
13  * We work with logical cpu numbering everywhere we can. The only
14  * functions using the real cpu address (got from STAP) are the sigp
15  * functions. For all other functions we use the identity mapping.
16  * That means that cpu_number_map[i] == i for every cpu. cpu_number_map is
17  * used e.g. to find the idle task belonging to a logical cpu. Every array
18  * in the kernel is sorted by the logical cpu number and not by the physical
19  * one which is causing all the confusion with __cpu_logical_map and
20  * cpu_number_map in other architectures.
21  */
22
23 #define KMSG_COMPONENT "cpu"
24 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
25
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/mm.h>
29 #include <linux/err.h>
30 #include <linux/spinlock.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/delay.h>
33 #include <linux/cache.h>
34 #include <linux/interrupt.h>
35 #include <linux/irqflags.h>
36 #include <linux/cpu.h>
37 #include <linux/timex.h>
38 #include <linux/bootmem.h>
39 #include <asm/ipl.h>
40 #include <asm/setup.h>
41 #include <asm/sigp.h>
42 #include <asm/pgalloc.h>
43 #include <asm/irq.h>
44 #include <asm/s390_ext.h>
45 #include <asm/cpcmd.h>
46 #include <asm/tlbflush.h>
47 #include <asm/timer.h>
48 #include <asm/lowcore.h>
49 #include <asm/sclp.h>
50 #include <asm/cputime.h>
51 #include <asm/vdso.h>
52 #include <asm/cpu.h>
53 #include "entry.h"
54
55 /* logical cpu to cpu address */
56 int __cpu_logical_map[NR_CPUS];
57
58 static struct task_struct *current_set[NR_CPUS];
59
60 static u8 smp_cpu_type;
61 static int smp_use_sigp_detection;
62
63 enum s390_cpu_state {
64         CPU_STATE_STANDBY,
65         CPU_STATE_CONFIGURED,
66 };
67
68 DEFINE_MUTEX(smp_cpu_state_mutex);
69 int smp_cpu_polarization[NR_CPUS];
70 static int smp_cpu_state[NR_CPUS];
71 static int cpu_management;
72
73 static DEFINE_PER_CPU(struct cpu, cpu_devices);
74
75 static void smp_ext_bitcall(int, ec_bit_sig);
76
77 static int cpu_stopped(int cpu)
78 {
79         __u32 status;
80
81         switch (signal_processor_ps(&status, 0, cpu, sigp_sense)) {
82         case sigp_status_stored:
83                 /* Check for stopped and check stop state */
84                 if (status & 0x50)
85                         return 1;
86                 break;
87         default:
88                 break;
89         }
90         return 0;
91 }
92
93 void smp_switch_to_ipl_cpu(void (*func)(void *), void *data)
94 {
95         struct _lowcore *lc, *current_lc;
96         struct stack_frame *sf;
97         struct pt_regs *regs;
98         unsigned long sp;
99
100         if (smp_processor_id() == 0)
101                 func(data);
102         __load_psw_mask(PSW_BASE_BITS | PSW_DEFAULT_KEY);
103         /* Disable lowcore protection */
104         __ctl_clear_bit(0, 28);
105         current_lc = lowcore_ptr[smp_processor_id()];
106         lc = lowcore_ptr[0];
107         if (!lc)
108                 lc = current_lc;
109         lc->restart_psw.mask = PSW_BASE_BITS | PSW_DEFAULT_KEY;
110         lc->restart_psw.addr = PSW_ADDR_AMODE | (unsigned long) smp_restart_cpu;
111         if (!cpu_online(0))
112                 smp_switch_to_cpu(func, data, 0, stap(), __cpu_logical_map[0]);
113         while (signal_processor(0, sigp_stop_and_store_status) == sigp_busy)
114                 cpu_relax();
115         sp = lc->panic_stack;
116         sp -= sizeof(struct pt_regs);
117         regs = (struct pt_regs *) sp;
118         memcpy(&regs->gprs, &current_lc->gpregs_save_area, sizeof(regs->gprs));
119         memcpy(&regs->psw, &current_lc->st_status_fixed_logout, sizeof(psw_t));
120         sp -= STACK_FRAME_OVERHEAD;
121         sf = (struct stack_frame *) sp;
122         sf->back_chain = regs->gprs[15];
123         smp_switch_to_cpu(func, data, sp, stap(), __cpu_logical_map[0]);
124 }
125
126 void smp_send_stop(void)
127 {
128         int cpu, rc;
129
130         /* Disable all interrupts/machine checks */
131         __load_psw_mask(psw_kernel_bits & ~PSW_MASK_MCHECK);
132         trace_hardirqs_off();
133
134         /* stop all processors */
135         for_each_online_cpu(cpu) {
136                 if (cpu == smp_processor_id())
137                         continue;
138                 do {
139                         rc = signal_processor(cpu, sigp_stop);
140                 } while (rc == sigp_busy);
141
142                 while (!cpu_stopped(cpu))
143                         cpu_relax();
144         }
145 }
146
147 /*
148  * This is the main routine where commands issued by other
149  * cpus are handled.
150  */
151
152 static void do_ext_call_interrupt(__u16 code)
153 {
154         unsigned long bits;
155
156         /*
157          * handle bit signal external calls
158          *
159          * For the ec_schedule signal we have to do nothing. All the work
160          * is done automatically when we return from the interrupt.
161          */
162         bits = xchg(&S390_lowcore.ext_call_fast, 0);
163
164         if (test_bit(ec_call_function, &bits))
165                 generic_smp_call_function_interrupt();
166
167         if (test_bit(ec_call_function_single, &bits))
168                 generic_smp_call_function_single_interrupt();
169 }
170
171 /*
172  * Send an external call sigp to another cpu and return without waiting
173  * for its completion.
174  */
175 static void smp_ext_bitcall(int cpu, ec_bit_sig sig)
176 {
177         /*
178          * Set signaling bit in lowcore of target cpu and kick it
179          */
180         set_bit(sig, (unsigned long *) &lowcore_ptr[cpu]->ext_call_fast);
181         while (signal_processor(cpu, sigp_emergency_signal) == sigp_busy)
182                 udelay(10);
183 }
184
185 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
186 {
187         int cpu;
188
189         for_each_cpu(cpu, mask)
190                 smp_ext_bitcall(cpu, ec_call_function);
191 }
192
193 void arch_send_call_function_single_ipi(int cpu)
194 {
195         smp_ext_bitcall(cpu, ec_call_function_single);
196 }
197
198 #ifndef CONFIG_64BIT
199 /*
200  * this function sends a 'purge tlb' signal to another CPU.
201  */
202 static void smp_ptlb_callback(void *info)
203 {
204         __tlb_flush_local();
205 }
206
207 void smp_ptlb_all(void)
208 {
209         on_each_cpu(smp_ptlb_callback, NULL, 1);
210 }
211 EXPORT_SYMBOL(smp_ptlb_all);
212 #endif /* ! CONFIG_64BIT */
213
214 /*
215  * this function sends a 'reschedule' IPI to another CPU.
216  * it goes straight through and wastes no time serializing
217  * anything. Worst case is that we lose a reschedule ...
218  */
219 void smp_send_reschedule(int cpu)
220 {
221         smp_ext_bitcall(cpu, ec_schedule);
222 }
223
224 /*
225  * parameter area for the set/clear control bit callbacks
226  */
227 struct ec_creg_mask_parms {
228         unsigned long orvals[16];
229         unsigned long andvals[16];
230 };
231
232 /*
233  * callback for setting/clearing control bits
234  */
235 static void smp_ctl_bit_callback(void *info)
236 {
237         struct ec_creg_mask_parms *pp = info;
238         unsigned long cregs[16];
239         int i;
240
241         __ctl_store(cregs, 0, 15);
242         for (i = 0; i <= 15; i++)
243                 cregs[i] = (cregs[i] & pp->andvals[i]) | pp->orvals[i];
244         __ctl_load(cregs, 0, 15);
245 }
246
247 /*
248  * Set a bit in a control register of all cpus
249  */
250 void smp_ctl_set_bit(int cr, int bit)
251 {
252         struct ec_creg_mask_parms parms;
253
254         memset(&parms.orvals, 0, sizeof(parms.orvals));
255         memset(&parms.andvals, 0xff, sizeof(parms.andvals));
256         parms.orvals[cr] = 1 << bit;
257         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
258 }
259 EXPORT_SYMBOL(smp_ctl_set_bit);
260
261 /*
262  * Clear a bit in a control register of all cpus
263  */
264 void smp_ctl_clear_bit(int cr, int bit)
265 {
266         struct ec_creg_mask_parms parms;
267
268         memset(&parms.orvals, 0, sizeof(parms.orvals));
269         memset(&parms.andvals, 0xff, sizeof(parms.andvals));
270         parms.andvals[cr] = ~(1L << bit);
271         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
272 }
273 EXPORT_SYMBOL(smp_ctl_clear_bit);
274
275 /*
276  * In early ipl state a temp. logically cpu number is needed, so the sigp
277  * functions can be used to sense other cpus. Since NR_CPUS is >= 2 on
278  * CONFIG_SMP and the ipl cpu is logical cpu 0, it must be 1.
279  */
280 #define CPU_INIT_NO     1
281
282 #ifdef CONFIG_ZFCPDUMP
283
284 static void __init smp_get_save_area(unsigned int cpu, unsigned int phy_cpu)
285 {
286         if (ipl_info.type != IPL_TYPE_FCP_DUMP)
287                 return;
288         if (cpu >= NR_CPUS) {
289                 pr_warning("CPU %i exceeds the maximum %i and is excluded from "
290                            "the dump\n", cpu, NR_CPUS - 1);
291                 return;
292         }
293         zfcpdump_save_areas[cpu] = kmalloc(sizeof(struct save_area), GFP_KERNEL);
294         __cpu_logical_map[CPU_INIT_NO] = (__u16) phy_cpu;
295         while (signal_processor(CPU_INIT_NO, sigp_stop_and_store_status) ==
296                sigp_busy)
297                 cpu_relax();
298         memcpy(zfcpdump_save_areas[cpu],
299                (void *)(unsigned long) store_prefix() + SAVE_AREA_BASE,
300                sizeof(struct save_area));
301 }
302
303 struct save_area *zfcpdump_save_areas[NR_CPUS + 1];
304 EXPORT_SYMBOL_GPL(zfcpdump_save_areas);
305
306 #else
307
308 static inline void smp_get_save_area(unsigned int cpu, unsigned int phy_cpu) { }
309
310 #endif /* CONFIG_ZFCPDUMP */
311
312 static int cpu_known(int cpu_id)
313 {
314         int cpu;
315
316         for_each_present_cpu(cpu) {
317                 if (__cpu_logical_map[cpu] == cpu_id)
318                         return 1;
319         }
320         return 0;
321 }
322
323 static int smp_rescan_cpus_sigp(cpumask_t avail)
324 {
325         int cpu_id, logical_cpu;
326
327         logical_cpu = cpumask_first(&avail);
328         if (logical_cpu >= nr_cpu_ids)
329                 return 0;
330         for (cpu_id = 0; cpu_id <= MAX_CPU_ADDRESS; cpu_id++) {
331                 if (cpu_known(cpu_id))
332                         continue;
333                 __cpu_logical_map[logical_cpu] = cpu_id;
334                 smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
335                 if (!cpu_stopped(logical_cpu))
336                         continue;
337                 cpu_set(logical_cpu, cpu_present_map);
338                 smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
339                 logical_cpu = cpumask_next(logical_cpu, &avail);
340                 if (logical_cpu >= nr_cpu_ids)
341                         break;
342         }
343         return 0;
344 }
345
346 static int smp_rescan_cpus_sclp(cpumask_t avail)
347 {
348         struct sclp_cpu_info *info;
349         int cpu_id, logical_cpu, cpu;
350         int rc;
351
352         logical_cpu = cpumask_first(&avail);
353         if (logical_cpu >= nr_cpu_ids)
354                 return 0;
355         info = kmalloc(sizeof(*info), GFP_KERNEL);
356         if (!info)
357                 return -ENOMEM;
358         rc = sclp_get_cpu_info(info);
359         if (rc)
360                 goto out;
361         for (cpu = 0; cpu < info->combined; cpu++) {
362                 if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
363                         continue;
364                 cpu_id = info->cpu[cpu].address;
365                 if (cpu_known(cpu_id))
366                         continue;
367                 __cpu_logical_map[logical_cpu] = cpu_id;
368                 smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
369                 cpu_set(logical_cpu, cpu_present_map);
370                 if (cpu >= info->configured)
371                         smp_cpu_state[logical_cpu] = CPU_STATE_STANDBY;
372                 else
373                         smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
374                 logical_cpu = cpumask_next(logical_cpu, &avail);
375                 if (logical_cpu >= nr_cpu_ids)
376                         break;
377         }
378 out:
379         kfree(info);
380         return rc;
381 }
382
383 static int __smp_rescan_cpus(void)
384 {
385         cpumask_t avail;
386
387         cpus_xor(avail, cpu_possible_map, cpu_present_map);
388         if (smp_use_sigp_detection)
389                 return smp_rescan_cpus_sigp(avail);
390         else
391                 return smp_rescan_cpus_sclp(avail);
392 }
393
394 static void __init smp_detect_cpus(void)
395 {
396         unsigned int cpu, c_cpus, s_cpus;
397         struct sclp_cpu_info *info;
398         u16 boot_cpu_addr, cpu_addr;
399
400         c_cpus = 1;
401         s_cpus = 0;
402         boot_cpu_addr = __cpu_logical_map[0];
403         info = kmalloc(sizeof(*info), GFP_KERNEL);
404         if (!info)
405                 panic("smp_detect_cpus failed to allocate memory\n");
406         /* Use sigp detection algorithm if sclp doesn't work. */
407         if (sclp_get_cpu_info(info)) {
408                 smp_use_sigp_detection = 1;
409                 for (cpu = 0; cpu <= MAX_CPU_ADDRESS; cpu++) {
410                         if (cpu == boot_cpu_addr)
411                                 continue;
412                         __cpu_logical_map[CPU_INIT_NO] = cpu;
413                         if (!cpu_stopped(CPU_INIT_NO))
414                                 continue;
415                         smp_get_save_area(c_cpus, cpu);
416                         c_cpus++;
417                 }
418                 goto out;
419         }
420
421         if (info->has_cpu_type) {
422                 for (cpu = 0; cpu < info->combined; cpu++) {
423                         if (info->cpu[cpu].address == boot_cpu_addr) {
424                                 smp_cpu_type = info->cpu[cpu].type;
425                                 break;
426                         }
427                 }
428         }
429
430         for (cpu = 0; cpu < info->combined; cpu++) {
431                 if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
432                         continue;
433                 cpu_addr = info->cpu[cpu].address;
434                 if (cpu_addr == boot_cpu_addr)
435                         continue;
436                 __cpu_logical_map[CPU_INIT_NO] = cpu_addr;
437                 if (!cpu_stopped(CPU_INIT_NO)) {
438                         s_cpus++;
439                         continue;
440                 }
441                 smp_get_save_area(c_cpus, cpu_addr);
442                 c_cpus++;
443         }
444 out:
445         kfree(info);
446         pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
447         get_online_cpus();
448         __smp_rescan_cpus();
449         put_online_cpus();
450 }
451
452 /*
453  *      Activate a secondary processor.
454  */
455 int __cpuinit start_secondary(void *cpuvoid)
456 {
457         /* Setup the cpu */
458         cpu_init();
459         preempt_disable();
460         /* Enable TOD clock interrupts on the secondary cpu. */
461         init_cpu_timer();
462         /* Enable cpu timer interrupts on the secondary cpu. */
463         init_cpu_vtimer();
464         /* Enable pfault pseudo page faults on this cpu. */
465         pfault_init();
466
467         /* call cpu notifiers */
468         notify_cpu_starting(smp_processor_id());
469         /* Mark this cpu as online */
470         ipi_call_lock();
471         cpu_set(smp_processor_id(), cpu_online_map);
472         ipi_call_unlock();
473         /* Switch on interrupts */
474         local_irq_enable();
475         /* Print info about this processor */
476         print_cpu_info();
477         /* cpu_idle will call schedule for us */
478         cpu_idle();
479         return 0;
480 }
481
482 static void __init smp_create_idle(unsigned int cpu)
483 {
484         struct task_struct *p;
485
486         /*
487          *  don't care about the psw and regs settings since we'll never
488          *  reschedule the forked task.
489          */
490         p = fork_idle(cpu);
491         if (IS_ERR(p))
492                 panic("failed fork for CPU %u: %li", cpu, PTR_ERR(p));
493         current_set[cpu] = p;
494 }
495
496 static int __cpuinit smp_alloc_lowcore(int cpu)
497 {
498         unsigned long async_stack, panic_stack;
499         struct _lowcore *lowcore;
500
501         lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
502         if (!lowcore)
503                 return -ENOMEM;
504         async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
505         panic_stack = __get_free_page(GFP_KERNEL);
506         if (!panic_stack || !async_stack)
507                 goto out;
508         memcpy(lowcore, &S390_lowcore, 512);
509         memset((char *)lowcore + 512, 0, sizeof(*lowcore) - 512);
510         lowcore->async_stack = async_stack + ASYNC_SIZE;
511         lowcore->panic_stack = panic_stack + PAGE_SIZE;
512
513 #ifndef CONFIG_64BIT
514         if (MACHINE_HAS_IEEE) {
515                 unsigned long save_area;
516
517                 save_area = get_zeroed_page(GFP_KERNEL);
518                 if (!save_area)
519                         goto out;
520                 lowcore->extended_save_area_addr = (u32) save_area;
521         }
522 #else
523         if (vdso_alloc_per_cpu(cpu, lowcore))
524                 goto out;
525 #endif
526         lowcore_ptr[cpu] = lowcore;
527         return 0;
528
529 out:
530         free_page(panic_stack);
531         free_pages(async_stack, ASYNC_ORDER);
532         free_pages((unsigned long) lowcore, LC_ORDER);
533         return -ENOMEM;
534 }
535
536 static void smp_free_lowcore(int cpu)
537 {
538         struct _lowcore *lowcore;
539
540         lowcore = lowcore_ptr[cpu];
541 #ifndef CONFIG_64BIT
542         if (MACHINE_HAS_IEEE)
543                 free_page((unsigned long) lowcore->extended_save_area_addr);
544 #else
545         vdso_free_per_cpu(cpu, lowcore);
546 #endif
547         free_page(lowcore->panic_stack - PAGE_SIZE);
548         free_pages(lowcore->async_stack - ASYNC_SIZE, ASYNC_ORDER);
549         free_pages((unsigned long) lowcore, LC_ORDER);
550         lowcore_ptr[cpu] = NULL;
551 }
552
553 /* Upping and downing of CPUs */
554 int __cpuinit __cpu_up(unsigned int cpu)
555 {
556         struct task_struct *idle;
557         struct _lowcore *cpu_lowcore;
558         struct stack_frame *sf;
559         sigp_ccode ccode;
560         u32 lowcore;
561
562         if (smp_cpu_state[cpu] != CPU_STATE_CONFIGURED)
563                 return -EIO;
564         if (smp_alloc_lowcore(cpu))
565                 return -ENOMEM;
566         do {
567                 ccode = signal_processor(cpu, sigp_initial_cpu_reset);
568                 if (ccode == sigp_busy)
569                         udelay(10);
570                 if (ccode == sigp_not_operational)
571                         goto err_out;
572         } while (ccode == sigp_busy);
573
574         lowcore = (u32)(unsigned long)lowcore_ptr[cpu];
575         while (signal_processor_p(lowcore, cpu, sigp_set_prefix) == sigp_busy)
576                 udelay(10);
577
578         idle = current_set[cpu];
579         cpu_lowcore = lowcore_ptr[cpu];
580         cpu_lowcore->kernel_stack = (unsigned long)
581                 task_stack_page(idle) + THREAD_SIZE;
582         cpu_lowcore->thread_info = (unsigned long) task_thread_info(idle);
583         sf = (struct stack_frame *) (cpu_lowcore->kernel_stack
584                                      - sizeof(struct pt_regs)
585                                      - sizeof(struct stack_frame));
586         memset(sf, 0, sizeof(struct stack_frame));
587         sf->gprs[9] = (unsigned long) sf;
588         cpu_lowcore->save_area[15] = (unsigned long) sf;
589         __ctl_store(cpu_lowcore->cregs_save_area, 0, 15);
590         asm volatile(
591                 "       stam    0,15,0(%0)"
592                 : : "a" (&cpu_lowcore->access_regs_save_area) : "memory");
593         cpu_lowcore->percpu_offset = __per_cpu_offset[cpu];
594         cpu_lowcore->current_task = (unsigned long) idle;
595         cpu_lowcore->cpu_nr = cpu;
596         cpu_lowcore->kernel_asce = S390_lowcore.kernel_asce;
597         cpu_lowcore->machine_flags = S390_lowcore.machine_flags;
598         cpu_lowcore->ftrace_func = S390_lowcore.ftrace_func;
599         eieio();
600
601         while (signal_processor(cpu, sigp_restart) == sigp_busy)
602                 udelay(10);
603
604         while (!cpu_online(cpu))
605                 cpu_relax();
606         return 0;
607
608 err_out:
609         smp_free_lowcore(cpu);
610         return -EIO;
611 }
612
613 static int __init setup_possible_cpus(char *s)
614 {
615         int pcpus, cpu;
616
617         pcpus = simple_strtoul(s, NULL, 0);
618         init_cpu_possible(cpumask_of(0));
619         for (cpu = 1; cpu < pcpus && cpu < nr_cpu_ids; cpu++)
620                 set_cpu_possible(cpu, true);
621         return 0;
622 }
623 early_param("possible_cpus", setup_possible_cpus);
624
625 #ifdef CONFIG_HOTPLUG_CPU
626
627 int __cpu_disable(void)
628 {
629         struct ec_creg_mask_parms cr_parms;
630         int cpu = smp_processor_id();
631
632         cpu_clear(cpu, cpu_online_map);
633
634         /* Disable pfault pseudo page faults on this cpu. */
635         pfault_fini();
636
637         memset(&cr_parms.orvals, 0, sizeof(cr_parms.orvals));
638         memset(&cr_parms.andvals, 0xff, sizeof(cr_parms.andvals));
639
640         /* disable all external interrupts */
641         cr_parms.orvals[0] = 0;
642         cr_parms.andvals[0] = ~(1 << 15 | 1 << 14 | 1 << 13 | 1 << 12 |
643                                 1 << 11 | 1 << 10 | 1 <<  6 | 1 <<  4);
644         /* disable all I/O interrupts */
645         cr_parms.orvals[6] = 0;
646         cr_parms.andvals[6] = ~(1 << 31 | 1 << 30 | 1 << 29 | 1 << 28 |
647                                 1 << 27 | 1 << 26 | 1 << 25 | 1 << 24);
648         /* disable most machine checks */
649         cr_parms.orvals[14] = 0;
650         cr_parms.andvals[14] = ~(1 << 28 | 1 << 27 | 1 << 26 |
651                                  1 << 25 | 1 << 24);
652
653         smp_ctl_bit_callback(&cr_parms);
654
655         return 0;
656 }
657
658 void __cpu_die(unsigned int cpu)
659 {
660         /* Wait until target cpu is down */
661         while (!cpu_stopped(cpu))
662                 cpu_relax();
663         while (signal_processor_p(0, cpu, sigp_set_prefix) == sigp_busy)
664                 udelay(10);
665         smp_free_lowcore(cpu);
666         pr_info("Processor %d stopped\n", cpu);
667 }
668
669 void cpu_die(void)
670 {
671         idle_task_exit();
672         while (signal_processor(smp_processor_id(), sigp_stop) == sigp_busy)
673                 cpu_relax();
674         for (;;);
675 }
676
677 #endif /* CONFIG_HOTPLUG_CPU */
678
679 void __init smp_prepare_cpus(unsigned int max_cpus)
680 {
681 #ifndef CONFIG_64BIT
682         unsigned long save_area = 0;
683 #endif
684         unsigned long async_stack, panic_stack;
685         struct _lowcore *lowcore;
686         unsigned int cpu;
687
688         smp_detect_cpus();
689
690         /* request the 0x1201 emergency signal external interrupt */
691         if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0)
692                 panic("Couldn't request external interrupt 0x1201");
693         print_cpu_info();
694
695         /* Reallocate current lowcore, but keep its contents. */
696         lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
697         panic_stack = __get_free_page(GFP_KERNEL);
698         async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
699         BUG_ON(!lowcore || !panic_stack || !async_stack);
700 #ifndef CONFIG_64BIT
701         if (MACHINE_HAS_IEEE)
702                 save_area = get_zeroed_page(GFP_KERNEL);
703 #endif
704         local_irq_disable();
705         local_mcck_disable();
706         lowcore_ptr[smp_processor_id()] = lowcore;
707         *lowcore = S390_lowcore;
708         lowcore->panic_stack = panic_stack + PAGE_SIZE;
709         lowcore->async_stack = async_stack + ASYNC_SIZE;
710 #ifndef CONFIG_64BIT
711         if (MACHINE_HAS_IEEE)
712                 lowcore->extended_save_area_addr = (u32) save_area;
713 #endif
714         set_prefix((u32)(unsigned long) lowcore);
715         local_mcck_enable();
716         local_irq_enable();
717 #ifdef CONFIG_64BIT
718         if (vdso_alloc_per_cpu(smp_processor_id(), &S390_lowcore))
719                 BUG();
720 #endif
721         for_each_possible_cpu(cpu)
722                 if (cpu != smp_processor_id())
723                         smp_create_idle(cpu);
724 }
725
726 void __init smp_prepare_boot_cpu(void)
727 {
728         BUG_ON(smp_processor_id() != 0);
729
730         current_thread_info()->cpu = 0;
731         cpu_set(0, cpu_present_map);
732         cpu_set(0, cpu_online_map);
733         S390_lowcore.percpu_offset = __per_cpu_offset[0];
734         current_set[0] = current;
735         smp_cpu_state[0] = CPU_STATE_CONFIGURED;
736         smp_cpu_polarization[0] = POLARIZATION_UNKNWN;
737 }
738
739 void __init smp_cpus_done(unsigned int max_cpus)
740 {
741 }
742
743 void __init smp_setup_processor_id(void)
744 {
745         S390_lowcore.cpu_nr = 0;
746         __cpu_logical_map[0] = stap();
747 }
748
749 /*
750  * the frequency of the profiling timer can be changed
751  * by writing a multiplier value into /proc/profile.
752  *
753  * usually you want to run this on all CPUs ;)
754  */
755 int setup_profiling_timer(unsigned int multiplier)
756 {
757         return 0;
758 }
759
760 #ifdef CONFIG_HOTPLUG_CPU
761 static ssize_t cpu_configure_show(struct sys_device *dev,
762                                 struct sysdev_attribute *attr, char *buf)
763 {
764         ssize_t count;
765
766         mutex_lock(&smp_cpu_state_mutex);
767         count = sprintf(buf, "%d\n", smp_cpu_state[dev->id]);
768         mutex_unlock(&smp_cpu_state_mutex);
769         return count;
770 }
771
772 static ssize_t cpu_configure_store(struct sys_device *dev,
773                                   struct sysdev_attribute *attr,
774                                   const char *buf, size_t count)
775 {
776         int cpu = dev->id;
777         int val, rc;
778         char delim;
779
780         if (sscanf(buf, "%d %c", &val, &delim) != 1)
781                 return -EINVAL;
782         if (val != 0 && val != 1)
783                 return -EINVAL;
784
785         get_online_cpus();
786         mutex_lock(&smp_cpu_state_mutex);
787         rc = -EBUSY;
788         /* disallow configuration changes of online cpus and cpu 0 */
789         if (cpu_online(cpu) || cpu == 0)
790                 goto out;
791         rc = 0;
792         switch (val) {
793         case 0:
794                 if (smp_cpu_state[cpu] == CPU_STATE_CONFIGURED) {
795                         rc = sclp_cpu_deconfigure(__cpu_logical_map[cpu]);
796                         if (!rc) {
797                                 smp_cpu_state[cpu] = CPU_STATE_STANDBY;
798                                 smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
799                         }
800                 }
801                 break;
802         case 1:
803                 if (smp_cpu_state[cpu] == CPU_STATE_STANDBY) {
804                         rc = sclp_cpu_configure(__cpu_logical_map[cpu]);
805                         if (!rc) {
806                                 smp_cpu_state[cpu] = CPU_STATE_CONFIGURED;
807                                 smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
808                         }
809                 }
810                 break;
811         default:
812                 break;
813         }
814 out:
815         mutex_unlock(&smp_cpu_state_mutex);
816         put_online_cpus();
817         return rc ? rc : count;
818 }
819 static SYSDEV_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
820 #endif /* CONFIG_HOTPLUG_CPU */
821
822 static ssize_t cpu_polarization_show(struct sys_device *dev,
823                                      struct sysdev_attribute *attr, char *buf)
824 {
825         int cpu = dev->id;
826         ssize_t count;
827
828         mutex_lock(&smp_cpu_state_mutex);
829         switch (smp_cpu_polarization[cpu]) {
830         case POLARIZATION_HRZ:
831                 count = sprintf(buf, "horizontal\n");
832                 break;
833         case POLARIZATION_VL:
834                 count = sprintf(buf, "vertical:low\n");
835                 break;
836         case POLARIZATION_VM:
837                 count = sprintf(buf, "vertical:medium\n");
838                 break;
839         case POLARIZATION_VH:
840                 count = sprintf(buf, "vertical:high\n");
841                 break;
842         default:
843                 count = sprintf(buf, "unknown\n");
844                 break;
845         }
846         mutex_unlock(&smp_cpu_state_mutex);
847         return count;
848 }
849 static SYSDEV_ATTR(polarization, 0444, cpu_polarization_show, NULL);
850
851 static ssize_t show_cpu_address(struct sys_device *dev,
852                                 struct sysdev_attribute *attr, char *buf)
853 {
854         return sprintf(buf, "%d\n", __cpu_logical_map[dev->id]);
855 }
856 static SYSDEV_ATTR(address, 0444, show_cpu_address, NULL);
857
858
859 static struct attribute *cpu_common_attrs[] = {
860 #ifdef CONFIG_HOTPLUG_CPU
861         &attr_configure.attr,
862 #endif
863         &attr_address.attr,
864         &attr_polarization.attr,
865         NULL,
866 };
867
868 static struct attribute_group cpu_common_attr_group = {
869         .attrs = cpu_common_attrs,
870 };
871
872 static ssize_t show_capability(struct sys_device *dev,
873                                 struct sysdev_attribute *attr, char *buf)
874 {
875         unsigned int capability;
876         int rc;
877
878         rc = get_cpu_capability(&capability);
879         if (rc)
880                 return rc;
881         return sprintf(buf, "%u\n", capability);
882 }
883 static SYSDEV_ATTR(capability, 0444, show_capability, NULL);
884
885 static ssize_t show_idle_count(struct sys_device *dev,
886                                 struct sysdev_attribute *attr, char *buf)
887 {
888         struct s390_idle_data *idle;
889         unsigned long long idle_count;
890         unsigned int sequence;
891
892         idle = &per_cpu(s390_idle, dev->id);
893 repeat:
894         sequence = idle->sequence;
895         smp_rmb();
896         if (sequence & 1)
897                 goto repeat;
898         idle_count = idle->idle_count;
899         if (idle->idle_enter)
900                 idle_count++;
901         smp_rmb();
902         if (idle->sequence != sequence)
903                 goto repeat;
904         return sprintf(buf, "%llu\n", idle_count);
905 }
906 static SYSDEV_ATTR(idle_count, 0444, show_idle_count, NULL);
907
908 static ssize_t show_idle_time(struct sys_device *dev,
909                                 struct sysdev_attribute *attr, char *buf)
910 {
911         struct s390_idle_data *idle;
912         unsigned long long now, idle_time, idle_enter;
913         unsigned int sequence;
914
915         idle = &per_cpu(s390_idle, dev->id);
916         now = get_clock();
917 repeat:
918         sequence = idle->sequence;
919         smp_rmb();
920         if (sequence & 1)
921                 goto repeat;
922         idle_time = idle->idle_time;
923         idle_enter = idle->idle_enter;
924         if (idle_enter != 0ULL && idle_enter < now)
925                 idle_time += now - idle_enter;
926         smp_rmb();
927         if (idle->sequence != sequence)
928                 goto repeat;
929         return sprintf(buf, "%llu\n", idle_time >> 12);
930 }
931 static SYSDEV_ATTR(idle_time_us, 0444, show_idle_time, NULL);
932
933 static struct attribute *cpu_online_attrs[] = {
934         &attr_capability.attr,
935         &attr_idle_count.attr,
936         &attr_idle_time_us.attr,
937         NULL,
938 };
939
940 static struct attribute_group cpu_online_attr_group = {
941         .attrs = cpu_online_attrs,
942 };
943
944 static int __cpuinit smp_cpu_notify(struct notifier_block *self,
945                                     unsigned long action, void *hcpu)
946 {
947         unsigned int cpu = (unsigned int)(long)hcpu;
948         struct cpu *c = &per_cpu(cpu_devices, cpu);
949         struct sys_device *s = &c->sysdev;
950         struct s390_idle_data *idle;
951
952         switch (action) {
953         case CPU_ONLINE:
954         case CPU_ONLINE_FROZEN:
955                 idle = &per_cpu(s390_idle, cpu);
956                 memset(idle, 0, sizeof(struct s390_idle_data));
957                 if (sysfs_create_group(&s->kobj, &cpu_online_attr_group))
958                         return NOTIFY_BAD;
959                 break;
960         case CPU_DEAD:
961         case CPU_DEAD_FROZEN:
962                 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
963                 break;
964         }
965         return NOTIFY_OK;
966 }
967
968 static struct notifier_block __cpuinitdata smp_cpu_nb = {
969         .notifier_call = smp_cpu_notify,
970 };
971
972 static int __devinit smp_add_present_cpu(int cpu)
973 {
974         struct cpu *c = &per_cpu(cpu_devices, cpu);
975         struct sys_device *s = &c->sysdev;
976         int rc;
977
978         c->hotpluggable = 1;
979         rc = register_cpu(c, cpu);
980         if (rc)
981                 goto out;
982         rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
983         if (rc)
984                 goto out_cpu;
985         if (!cpu_online(cpu))
986                 goto out;
987         rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
988         if (!rc)
989                 return 0;
990         sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
991 out_cpu:
992 #ifdef CONFIG_HOTPLUG_CPU
993         unregister_cpu(c);
994 #endif
995 out:
996         return rc;
997 }
998
999 #ifdef CONFIG_HOTPLUG_CPU
1000
1001 int __ref smp_rescan_cpus(void)
1002 {
1003         cpumask_t newcpus;
1004         int cpu;
1005         int rc;
1006
1007         get_online_cpus();
1008         mutex_lock(&smp_cpu_state_mutex);
1009         newcpus = cpu_present_map;
1010         rc = __smp_rescan_cpus();
1011         if (rc)
1012                 goto out;
1013         cpus_andnot(newcpus, cpu_present_map, newcpus);
1014         for_each_cpu_mask(cpu, newcpus) {
1015                 rc = smp_add_present_cpu(cpu);
1016                 if (rc)
1017                         cpu_clear(cpu, cpu_present_map);
1018         }
1019         rc = 0;
1020 out:
1021         mutex_unlock(&smp_cpu_state_mutex);
1022         put_online_cpus();
1023         if (!cpus_empty(newcpus))
1024                 topology_schedule_update();
1025         return rc;
1026 }
1027
1028 static ssize_t __ref rescan_store(struct sysdev_class *class, const char *buf,
1029                                   size_t count)
1030 {
1031         int rc;
1032
1033         rc = smp_rescan_cpus();
1034         return rc ? rc : count;
1035 }
1036 static SYSDEV_CLASS_ATTR(rescan, 0200, NULL, rescan_store);
1037 #endif /* CONFIG_HOTPLUG_CPU */
1038
1039 static ssize_t dispatching_show(struct sysdev_class *class, char *buf)
1040 {
1041         ssize_t count;
1042
1043         mutex_lock(&smp_cpu_state_mutex);
1044         count = sprintf(buf, "%d\n", cpu_management);
1045         mutex_unlock(&smp_cpu_state_mutex);
1046         return count;
1047 }
1048
1049 static ssize_t dispatching_store(struct sysdev_class *dev, const char *buf,
1050                                  size_t count)
1051 {
1052         int val, rc;
1053         char delim;
1054
1055         if (sscanf(buf, "%d %c", &val, &delim) != 1)
1056                 return -EINVAL;
1057         if (val != 0 && val != 1)
1058                 return -EINVAL;
1059         rc = 0;
1060         get_online_cpus();
1061         mutex_lock(&smp_cpu_state_mutex);
1062         if (cpu_management == val)
1063                 goto out;
1064         rc = topology_set_cpu_management(val);
1065         if (!rc)
1066                 cpu_management = val;
1067 out:
1068         mutex_unlock(&smp_cpu_state_mutex);
1069         put_online_cpus();
1070         return rc ? rc : count;
1071 }
1072 static SYSDEV_CLASS_ATTR(dispatching, 0644, dispatching_show,
1073                          dispatching_store);
1074
1075 static int __init topology_init(void)
1076 {
1077         int cpu;
1078         int rc;
1079
1080         register_cpu_notifier(&smp_cpu_nb);
1081
1082 #ifdef CONFIG_HOTPLUG_CPU
1083         rc = sysdev_class_create_file(&cpu_sysdev_class, &attr_rescan);
1084         if (rc)
1085                 return rc;
1086 #endif
1087         rc = sysdev_class_create_file(&cpu_sysdev_class, &attr_dispatching);
1088         if (rc)
1089                 return rc;
1090         for_each_present_cpu(cpu) {
1091                 rc = smp_add_present_cpu(cpu);
1092                 if (rc)
1093                         return rc;
1094         }
1095         return 0;
1096 }
1097 subsys_initcall(topology_init);