]> rtime.felk.cvut.cz Git - lisovros/linux_canprio.git/blob - drivers/net/wireless/ath/ath9k/hw.c
2adc7e78cebfe38d3ba7ba7a09248a0a1d792460
[lisovros/linux_canprio.git] / drivers / net / wireless / ath / ath9k / hw.c
1 /*
2  * Copyright (c) 2008-2010 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <asm/unaligned.h>
20
21 #include "hw.h"
22 #include "hw-ops.h"
23 #include "rc.h"
24 #include "ar9003_mac.h"
25
26 #define ATH9K_CLOCK_RATE_CCK            22
27 #define ATH9K_CLOCK_RATE_5GHZ_OFDM      40
28 #define ATH9K_CLOCK_RATE_2GHZ_OFDM      44
29 #define ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM 44
30
31 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
32
33 MODULE_AUTHOR("Atheros Communications");
34 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
35 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
36 MODULE_LICENSE("Dual BSD/GPL");
37
38 static int __init ath9k_init(void)
39 {
40         return 0;
41 }
42 module_init(ath9k_init);
43
44 static void __exit ath9k_exit(void)
45 {
46         return;
47 }
48 module_exit(ath9k_exit);
49
50 /* Private hardware callbacks */
51
52 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
53 {
54         ath9k_hw_private_ops(ah)->init_cal_settings(ah);
55 }
56
57 static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
58 {
59         ath9k_hw_private_ops(ah)->init_mode_regs(ah);
60 }
61
62 static bool ath9k_hw_macversion_supported(struct ath_hw *ah)
63 {
64         struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
65
66         return priv_ops->macversion_supported(ah->hw_version.macVersion);
67 }
68
69 static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
70                                         struct ath9k_channel *chan)
71 {
72         return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
73 }
74
75 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
76 {
77         if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
78                 return;
79
80         ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
81 }
82
83 /********************/
84 /* Helper Functions */
85 /********************/
86
87 static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
88 {
89         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
90
91         if (!ah->curchan) /* should really check for CCK instead */
92                 return usecs *ATH9K_CLOCK_RATE_CCK;
93         if (conf->channel->band == IEEE80211_BAND_2GHZ)
94                 return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
95
96         if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
97                 return usecs * ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
98         else
99                 return usecs * ATH9K_CLOCK_RATE_5GHZ_OFDM;
100 }
101
102 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
103 {
104         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
105
106         if (conf_is_ht40(conf))
107                 return ath9k_hw_mac_clks(ah, usecs) * 2;
108         else
109                 return ath9k_hw_mac_clks(ah, usecs);
110 }
111
112 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
113 {
114         int i;
115
116         BUG_ON(timeout < AH_TIME_QUANTUM);
117
118         for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
119                 if ((REG_READ(ah, reg) & mask) == val)
120                         return true;
121
122                 udelay(AH_TIME_QUANTUM);
123         }
124
125         ath_print(ath9k_hw_common(ah), ATH_DBG_ANY,
126                   "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
127                   timeout, reg, REG_READ(ah, reg), mask, val);
128
129         return false;
130 }
131 EXPORT_SYMBOL(ath9k_hw_wait);
132
133 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
134 {
135         u32 retval;
136         int i;
137
138         for (i = 0, retval = 0; i < n; i++) {
139                 retval = (retval << 1) | (val & 1);
140                 val >>= 1;
141         }
142         return retval;
143 }
144
145 bool ath9k_get_channel_edges(struct ath_hw *ah,
146                              u16 flags, u16 *low,
147                              u16 *high)
148 {
149         struct ath9k_hw_capabilities *pCap = &ah->caps;
150
151         if (flags & CHANNEL_5GHZ) {
152                 *low = pCap->low_5ghz_chan;
153                 *high = pCap->high_5ghz_chan;
154                 return true;
155         }
156         if ((flags & CHANNEL_2GHZ)) {
157                 *low = pCap->low_2ghz_chan;
158                 *high = pCap->high_2ghz_chan;
159                 return true;
160         }
161         return false;
162 }
163
164 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
165                            u8 phy, int kbps,
166                            u32 frameLen, u16 rateix,
167                            bool shortPreamble)
168 {
169         u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
170
171         if (kbps == 0)
172                 return 0;
173
174         switch (phy) {
175         case WLAN_RC_PHY_CCK:
176                 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
177                 if (shortPreamble)
178                         phyTime >>= 1;
179                 numBits = frameLen << 3;
180                 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
181                 break;
182         case WLAN_RC_PHY_OFDM:
183                 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
184                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
185                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
186                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
187                         txTime = OFDM_SIFS_TIME_QUARTER
188                                 + OFDM_PREAMBLE_TIME_QUARTER
189                                 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
190                 } else if (ah->curchan &&
191                            IS_CHAN_HALF_RATE(ah->curchan)) {
192                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
193                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
194                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
195                         txTime = OFDM_SIFS_TIME_HALF +
196                                 OFDM_PREAMBLE_TIME_HALF
197                                 + (numSymbols * OFDM_SYMBOL_TIME_HALF);
198                 } else {
199                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
200                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
201                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
202                         txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
203                                 + (numSymbols * OFDM_SYMBOL_TIME);
204                 }
205                 break;
206         default:
207                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
208                           "Unknown phy %u (rate ix %u)\n", phy, rateix);
209                 txTime = 0;
210                 break;
211         }
212
213         return txTime;
214 }
215 EXPORT_SYMBOL(ath9k_hw_computetxtime);
216
217 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
218                                   struct ath9k_channel *chan,
219                                   struct chan_centers *centers)
220 {
221         int8_t extoff;
222
223         if (!IS_CHAN_HT40(chan)) {
224                 centers->ctl_center = centers->ext_center =
225                         centers->synth_center = chan->channel;
226                 return;
227         }
228
229         if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
230             (chan->chanmode == CHANNEL_G_HT40PLUS)) {
231                 centers->synth_center =
232                         chan->channel + HT40_CHANNEL_CENTER_SHIFT;
233                 extoff = 1;
234         } else {
235                 centers->synth_center =
236                         chan->channel - HT40_CHANNEL_CENTER_SHIFT;
237                 extoff = -1;
238         }
239
240         centers->ctl_center =
241                 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
242         /* 25 MHz spacing is supported by hw but not on upper layers */
243         centers->ext_center =
244                 centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
245 }
246
247 /******************/
248 /* Chip Revisions */
249 /******************/
250
251 static void ath9k_hw_read_revisions(struct ath_hw *ah)
252 {
253         u32 val;
254
255         val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
256
257         if (val == 0xFF) {
258                 val = REG_READ(ah, AR_SREV);
259                 ah->hw_version.macVersion =
260                         (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
261                 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
262                 ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
263         } else {
264                 if (!AR_SREV_9100(ah))
265                         ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
266
267                 ah->hw_version.macRev = val & AR_SREV_REVISION;
268
269                 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
270                         ah->is_pciexpress = true;
271         }
272 }
273
274 /************************************/
275 /* HW Attach, Detach, Init Routines */
276 /************************************/
277
278 static void ath9k_hw_disablepcie(struct ath_hw *ah)
279 {
280         if (AR_SREV_9100(ah))
281                 return;
282
283         ENABLE_REGWRITE_BUFFER(ah);
284
285         REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
286         REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
287         REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
288         REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
289         REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
290         REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
291         REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
292         REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
293         REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
294
295         REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
296
297         REGWRITE_BUFFER_FLUSH(ah);
298         DISABLE_REGWRITE_BUFFER(ah);
299 }
300
301 /* This should work for all families including legacy */
302 static bool ath9k_hw_chip_test(struct ath_hw *ah)
303 {
304         struct ath_common *common = ath9k_hw_common(ah);
305         u32 regAddr[2] = { AR_STA_ID0 };
306         u32 regHold[2];
307         u32 patternData[4] = { 0x55555555,
308                                0xaaaaaaaa,
309                                0x66666666,
310                                0x99999999 };
311         int i, j, loop_max;
312
313         if (!AR_SREV_9300_20_OR_LATER(ah)) {
314                 loop_max = 2;
315                 regAddr[1] = AR_PHY_BASE + (8 << 2);
316         } else
317                 loop_max = 1;
318
319         for (i = 0; i < loop_max; i++) {
320                 u32 addr = regAddr[i];
321                 u32 wrData, rdData;
322
323                 regHold[i] = REG_READ(ah, addr);
324                 for (j = 0; j < 0x100; j++) {
325                         wrData = (j << 16) | j;
326                         REG_WRITE(ah, addr, wrData);
327                         rdData = REG_READ(ah, addr);
328                         if (rdData != wrData) {
329                                 ath_print(common, ATH_DBG_FATAL,
330                                           "address test failed "
331                                           "addr: 0x%08x - wr:0x%08x != "
332                                           "rd:0x%08x\n",
333                                           addr, wrData, rdData);
334                                 return false;
335                         }
336                 }
337                 for (j = 0; j < 4; j++) {
338                         wrData = patternData[j];
339                         REG_WRITE(ah, addr, wrData);
340                         rdData = REG_READ(ah, addr);
341                         if (wrData != rdData) {
342                                 ath_print(common, ATH_DBG_FATAL,
343                                           "address test failed "
344                                           "addr: 0x%08x - wr:0x%08x != "
345                                           "rd:0x%08x\n",
346                                           addr, wrData, rdData);
347                                 return false;
348                         }
349                 }
350                 REG_WRITE(ah, regAddr[i], regHold[i]);
351         }
352         udelay(100);
353
354         return true;
355 }
356
357 static void ath9k_hw_init_config(struct ath_hw *ah)
358 {
359         int i;
360
361         ah->config.dma_beacon_response_time = 2;
362         ah->config.sw_beacon_response_time = 10;
363         ah->config.additional_swba_backoff = 0;
364         ah->config.ack_6mb = 0x0;
365         ah->config.cwm_ignore_extcca = 0;
366         ah->config.pcie_powersave_enable = 0;
367         ah->config.pcie_clock_req = 0;
368         ah->config.pcie_waen = 0;
369         ah->config.analog_shiftreg = 1;
370         ah->config.ofdm_trig_low = 200;
371         ah->config.ofdm_trig_high = 500;
372         ah->config.cck_trig_high = 200;
373         ah->config.cck_trig_low = 100;
374
375         /*
376          * For now ANI is disabled for AR9003, it is still
377          * being tested.
378          */
379         if (!AR_SREV_9300_20_OR_LATER(ah))
380                 ah->config.enable_ani = 1;
381
382         for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
383                 ah->config.spurchans[i][0] = AR_NO_SPUR;
384                 ah->config.spurchans[i][1] = AR_NO_SPUR;
385         }
386
387         if (ah->hw_version.devid != AR2427_DEVID_PCIE)
388                 ah->config.ht_enable = 1;
389         else
390                 ah->config.ht_enable = 0;
391
392         ah->config.rx_intr_mitigation = true;
393
394         /*
395          * We need this for PCI devices only (Cardbus, PCI, miniPCI)
396          * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
397          * This means we use it for all AR5416 devices, and the few
398          * minor PCI AR9280 devices out there.
399          *
400          * Serialization is required because these devices do not handle
401          * well the case of two concurrent reads/writes due to the latency
402          * involved. During one read/write another read/write can be issued
403          * on another CPU while the previous read/write may still be working
404          * on our hardware, if we hit this case the hardware poops in a loop.
405          * We prevent this by serializing reads and writes.
406          *
407          * This issue is not present on PCI-Express devices or pre-AR5416
408          * devices (legacy, 802.11abg).
409          */
410         if (num_possible_cpus() > 1)
411                 ah->config.serialize_regmode = SER_REG_MODE_AUTO;
412 }
413
414 static void ath9k_hw_init_defaults(struct ath_hw *ah)
415 {
416         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
417
418         regulatory->country_code = CTRY_DEFAULT;
419         regulatory->power_limit = MAX_RATE_POWER;
420         regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
421
422         ah->hw_version.magic = AR5416_MAGIC;
423         ah->hw_version.subvendorid = 0;
424
425         ah->ah_flags = 0;
426         if (!AR_SREV_9100(ah))
427                 ah->ah_flags = AH_USE_EEPROM;
428
429         ah->atim_window = 0;
430         ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
431         ah->beacon_interval = 100;
432         ah->enable_32kHz_clock = DONT_USE_32KHZ;
433         ah->slottime = (u32) -1;
434         ah->globaltxtimeout = (u32) -1;
435         ah->power_mode = ATH9K_PM_UNDEFINED;
436 }
437
438 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
439 {
440         struct ath_common *common = ath9k_hw_common(ah);
441         u32 sum;
442         int i;
443         u16 eeval;
444         u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
445
446         sum = 0;
447         for (i = 0; i < 3; i++) {
448                 eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
449                 sum += eeval;
450                 common->macaddr[2 * i] = eeval >> 8;
451                 common->macaddr[2 * i + 1] = eeval & 0xff;
452         }
453         if (sum == 0 || sum == 0xffff * 3)
454                 return -EADDRNOTAVAIL;
455
456         return 0;
457 }
458
459 static int ath9k_hw_post_init(struct ath_hw *ah)
460 {
461         int ecode;
462
463         if (!AR_SREV_9271(ah)) {
464                 if (!ath9k_hw_chip_test(ah))
465                         return -ENODEV;
466         }
467
468         if (!AR_SREV_9300_20_OR_LATER(ah)) {
469                 ecode = ar9002_hw_rf_claim(ah);
470                 if (ecode != 0)
471                         return ecode;
472         }
473
474         ecode = ath9k_hw_eeprom_init(ah);
475         if (ecode != 0)
476                 return ecode;
477
478         ath_print(ath9k_hw_common(ah), ATH_DBG_CONFIG,
479                   "Eeprom VER: %d, REV: %d\n",
480                   ah->eep_ops->get_eeprom_ver(ah),
481                   ah->eep_ops->get_eeprom_rev(ah));
482
483         ecode = ath9k_hw_rf_alloc_ext_banks(ah);
484         if (ecode) {
485                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
486                           "Failed allocating banks for "
487                           "external radio\n");
488                 return ecode;
489         }
490
491         if (!AR_SREV_9100(ah)) {
492                 ath9k_hw_ani_setup(ah);
493                 ath9k_hw_ani_init(ah);
494         }
495
496         return 0;
497 }
498
499 static void ath9k_hw_attach_ops(struct ath_hw *ah)
500 {
501         if (AR_SREV_9300_20_OR_LATER(ah))
502                 ar9003_hw_attach_ops(ah);
503         else
504                 ar9002_hw_attach_ops(ah);
505 }
506
507 /* Called for all hardware families */
508 static int __ath9k_hw_init(struct ath_hw *ah)
509 {
510         struct ath_common *common = ath9k_hw_common(ah);
511         int r = 0;
512
513         if (ah->hw_version.devid == AR5416_AR9100_DEVID)
514                 ah->hw_version.macVersion = AR_SREV_VERSION_9100;
515
516         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
517                 ath_print(common, ATH_DBG_FATAL,
518                           "Couldn't reset chip\n");
519                 return -EIO;
520         }
521
522         ath9k_hw_init_defaults(ah);
523         ath9k_hw_init_config(ah);
524
525         ath9k_hw_attach_ops(ah);
526
527         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
528                 ath_print(common, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
529                 return -EIO;
530         }
531
532         if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
533                 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
534                     (AR_SREV_9280(ah) && !ah->is_pciexpress)) {
535                         ah->config.serialize_regmode =
536                                 SER_REG_MODE_ON;
537                 } else {
538                         ah->config.serialize_regmode =
539                                 SER_REG_MODE_OFF;
540                 }
541         }
542
543         ath_print(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
544                 ah->config.serialize_regmode);
545
546         if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
547                 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
548         else
549                 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
550
551         if (!ath9k_hw_macversion_supported(ah)) {
552                 ath_print(common, ATH_DBG_FATAL,
553                           "Mac Chip Rev 0x%02x.%x is not supported by "
554                           "this driver\n", ah->hw_version.macVersion,
555                           ah->hw_version.macRev);
556                 return -EOPNOTSUPP;
557         }
558
559         if (AR_SREV_9271(ah) || AR_SREV_9100(ah))
560                 ah->is_pciexpress = false;
561
562         ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
563         ath9k_hw_init_cal_settings(ah);
564
565         ah->ani_function = ATH9K_ANI_ALL;
566         if (AR_SREV_9280_10_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
567                 ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
568
569         ath9k_hw_init_mode_regs(ah);
570
571         /*
572          * Configire PCIE after Ini init. SERDES values now come from ini file
573          * This enables PCIe low power mode.
574          */
575         if (AR_SREV_9300_20_OR_LATER(ah)) {
576                 u32 regval;
577                 unsigned int i;
578
579                 /* Set Bits 16 and 17 in the AR_WA register. */
580                 regval = REG_READ(ah, AR_WA);
581                 regval |= 0x00030000;
582                 REG_WRITE(ah, AR_WA, regval);
583
584                 for (i = 0; i < ah->iniPcieSerdesLowPower.ia_rows; i++) {
585                         REG_WRITE(ah,
586                                   INI_RA(&ah->iniPcieSerdesLowPower, i, 0),
587                                   INI_RA(&ah->iniPcieSerdesLowPower, i, 1));
588                 }
589         }
590
591         if (ah->is_pciexpress)
592                 ath9k_hw_configpcipowersave(ah, 0, 0);
593         else
594                 ath9k_hw_disablepcie(ah);
595
596         if (!AR_SREV_9300_20_OR_LATER(ah))
597                 ar9002_hw_cck_chan14_spread(ah);
598
599         r = ath9k_hw_post_init(ah);
600         if (r)
601                 return r;
602
603         ath9k_hw_init_mode_gain_regs(ah);
604         r = ath9k_hw_fill_cap_info(ah);
605         if (r)
606                 return r;
607
608         r = ath9k_hw_init_macaddr(ah);
609         if (r) {
610                 ath_print(common, ATH_DBG_FATAL,
611                           "Failed to initialize MAC address\n");
612                 return r;
613         }
614
615         if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
616                 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
617         else
618                 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
619
620         if (AR_SREV_9300_20_OR_LATER(ah))
621                 ar9003_hw_set_nf_limits(ah);
622
623         ath9k_init_nfcal_hist_buffer(ah);
624         ah->bb_watchdog_timeout_ms = 25;
625
626         common->state = ATH_HW_INITIALIZED;
627
628         return 0;
629 }
630
631 int ath9k_hw_init(struct ath_hw *ah)
632 {
633         int ret;
634         struct ath_common *common = ath9k_hw_common(ah);
635
636         /* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
637         switch (ah->hw_version.devid) {
638         case AR5416_DEVID_PCI:
639         case AR5416_DEVID_PCIE:
640         case AR5416_AR9100_DEVID:
641         case AR9160_DEVID_PCI:
642         case AR9280_DEVID_PCI:
643         case AR9280_DEVID_PCIE:
644         case AR9285_DEVID_PCIE:
645         case AR9287_DEVID_PCI:
646         case AR9287_DEVID_PCIE:
647         case AR2427_DEVID_PCIE:
648         case AR9300_DEVID_PCIE:
649                 break;
650         default:
651                 if (common->bus_ops->ath_bus_type == ATH_USB)
652                         break;
653                 ath_print(common, ATH_DBG_FATAL,
654                           "Hardware device ID 0x%04x not supported\n",
655                           ah->hw_version.devid);
656                 return -EOPNOTSUPP;
657         }
658
659         ret = __ath9k_hw_init(ah);
660         if (ret) {
661                 ath_print(common, ATH_DBG_FATAL,
662                           "Unable to initialize hardware; "
663                           "initialization status: %d\n", ret);
664                 return ret;
665         }
666
667         return 0;
668 }
669 EXPORT_SYMBOL(ath9k_hw_init);
670
671 static void ath9k_hw_init_qos(struct ath_hw *ah)
672 {
673         ENABLE_REGWRITE_BUFFER(ah);
674
675         REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
676         REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
677
678         REG_WRITE(ah, AR_QOS_NO_ACK,
679                   SM(2, AR_QOS_NO_ACK_TWO_BIT) |
680                   SM(5, AR_QOS_NO_ACK_BIT_OFF) |
681                   SM(0, AR_QOS_NO_ACK_BYTE_OFF));
682
683         REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
684         REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
685         REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
686         REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
687         REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
688
689         REGWRITE_BUFFER_FLUSH(ah);
690         DISABLE_REGWRITE_BUFFER(ah);
691 }
692
693 static void ath9k_hw_init_pll(struct ath_hw *ah,
694                               struct ath9k_channel *chan)
695 {
696         u32 pll = ath9k_hw_compute_pll_control(ah, chan);
697
698         REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
699
700         /* Switch the core clock for ar9271 to 117Mhz */
701         if (AR_SREV_9271(ah)) {
702                 udelay(500);
703                 REG_WRITE(ah, 0x50040, 0x304);
704         }
705
706         udelay(RTC_PLL_SETTLE_DELAY);
707
708         REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
709 }
710
711 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
712                                           enum nl80211_iftype opmode)
713 {
714         u32 imr_reg = AR_IMR_TXERR |
715                 AR_IMR_TXURN |
716                 AR_IMR_RXERR |
717                 AR_IMR_RXORN |
718                 AR_IMR_BCNMISC;
719
720         if (AR_SREV_9300_20_OR_LATER(ah)) {
721                 imr_reg |= AR_IMR_RXOK_HP;
722                 if (ah->config.rx_intr_mitigation)
723                         imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
724                 else
725                         imr_reg |= AR_IMR_RXOK_LP;
726
727         } else {
728                 if (ah->config.rx_intr_mitigation)
729                         imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
730                 else
731                         imr_reg |= AR_IMR_RXOK;
732         }
733
734         if (ah->config.tx_intr_mitigation)
735                 imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
736         else
737                 imr_reg |= AR_IMR_TXOK;
738
739         if (opmode == NL80211_IFTYPE_AP)
740                 imr_reg |= AR_IMR_MIB;
741
742         ENABLE_REGWRITE_BUFFER(ah);
743
744         REG_WRITE(ah, AR_IMR, imr_reg);
745         ah->imrs2_reg |= AR_IMR_S2_GTT;
746         REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
747
748         if (!AR_SREV_9100(ah)) {
749                 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
750                 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
751                 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
752         }
753
754         REGWRITE_BUFFER_FLUSH(ah);
755         DISABLE_REGWRITE_BUFFER(ah);
756
757         if (AR_SREV_9300_20_OR_LATER(ah)) {
758                 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
759                 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
760                 REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
761                 REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
762         }
763 }
764
765 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
766 {
767         u32 val = ath9k_hw_mac_to_clks(ah, us);
768         val = min(val, (u32) 0xFFFF);
769         REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
770 }
771
772 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
773 {
774         u32 val = ath9k_hw_mac_to_clks(ah, us);
775         val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
776         REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
777 }
778
779 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
780 {
781         u32 val = ath9k_hw_mac_to_clks(ah, us);
782         val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
783         REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
784 }
785
786 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
787 {
788         if (tu > 0xFFFF) {
789                 ath_print(ath9k_hw_common(ah), ATH_DBG_XMIT,
790                           "bad global tx timeout %u\n", tu);
791                 ah->globaltxtimeout = (u32) -1;
792                 return false;
793         } else {
794                 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
795                 ah->globaltxtimeout = tu;
796                 return true;
797         }
798 }
799
800 void ath9k_hw_init_global_settings(struct ath_hw *ah)
801 {
802         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
803         int acktimeout;
804         int slottime;
805         int sifstime;
806
807         ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
808                   ah->misc_mode);
809
810         if (ah->misc_mode != 0)
811                 REG_WRITE(ah, AR_PCU_MISC,
812                           REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
813
814         if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
815                 sifstime = 16;
816         else
817                 sifstime = 10;
818
819         /* As defined by IEEE 802.11-2007 17.3.8.6 */
820         slottime = ah->slottime + 3 * ah->coverage_class;
821         acktimeout = slottime + sifstime;
822
823         /*
824          * Workaround for early ACK timeouts, add an offset to match the
825          * initval's 64us ack timeout value.
826          * This was initially only meant to work around an issue with delayed
827          * BA frames in some implementations, but it has been found to fix ACK
828          * timeout issues in other cases as well.
829          */
830         if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
831                 acktimeout += 64 - sifstime - ah->slottime;
832
833         ath9k_hw_setslottime(ah, slottime);
834         ath9k_hw_set_ack_timeout(ah, acktimeout);
835         ath9k_hw_set_cts_timeout(ah, acktimeout);
836         if (ah->globaltxtimeout != (u32) -1)
837                 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
838 }
839 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
840
841 void ath9k_hw_deinit(struct ath_hw *ah)
842 {
843         struct ath_common *common = ath9k_hw_common(ah);
844
845         if (common->state < ATH_HW_INITIALIZED)
846                 goto free_hw;
847
848         ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
849
850 free_hw:
851         ath9k_hw_rf_free_ext_banks(ah);
852 }
853 EXPORT_SYMBOL(ath9k_hw_deinit);
854
855 /*******/
856 /* INI */
857 /*******/
858
859 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
860 {
861         u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
862
863         if (IS_CHAN_B(chan))
864                 ctl |= CTL_11B;
865         else if (IS_CHAN_G(chan))
866                 ctl |= CTL_11G;
867         else
868                 ctl |= CTL_11A;
869
870         return ctl;
871 }
872
873 /****************************************/
874 /* Reset and Channel Switching Routines */
875 /****************************************/
876
877 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
878 {
879         struct ath_common *common = ath9k_hw_common(ah);
880         u32 regval;
881
882         ENABLE_REGWRITE_BUFFER(ah);
883
884         /*
885          * set AHB_MODE not to do cacheline prefetches
886         */
887         if (!AR_SREV_9300_20_OR_LATER(ah)) {
888                 regval = REG_READ(ah, AR_AHB_MODE);
889                 REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
890         }
891
892         /*
893          * let mac dma reads be in 128 byte chunks
894          */
895         regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
896         REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
897
898         REGWRITE_BUFFER_FLUSH(ah);
899         DISABLE_REGWRITE_BUFFER(ah);
900
901         /*
902          * Restore TX Trigger Level to its pre-reset value.
903          * The initial value depends on whether aggregation is enabled, and is
904          * adjusted whenever underruns are detected.
905          */
906         if (!AR_SREV_9300_20_OR_LATER(ah))
907                 REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
908
909         ENABLE_REGWRITE_BUFFER(ah);
910
911         /*
912          * let mac dma writes be in 128 byte chunks
913          */
914         regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
915         REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
916
917         /*
918          * Setup receive FIFO threshold to hold off TX activities
919          */
920         REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
921
922         if (AR_SREV_9300_20_OR_LATER(ah)) {
923                 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
924                 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
925
926                 ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
927                         ah->caps.rx_status_len);
928         }
929
930         /*
931          * reduce the number of usable entries in PCU TXBUF to avoid
932          * wrap around issues.
933          */
934         if (AR_SREV_9285(ah)) {
935                 /* For AR9285 the number of Fifos are reduced to half.
936                  * So set the usable tx buf size also to half to
937                  * avoid data/delimiter underruns
938                  */
939                 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
940                           AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
941         } else if (!AR_SREV_9271(ah)) {
942                 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
943                           AR_PCU_TXBUF_CTRL_USABLE_SIZE);
944         }
945
946         REGWRITE_BUFFER_FLUSH(ah);
947         DISABLE_REGWRITE_BUFFER(ah);
948
949         if (AR_SREV_9300_20_OR_LATER(ah))
950                 ath9k_hw_reset_txstatus_ring(ah);
951 }
952
953 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
954 {
955         u32 val;
956
957         val = REG_READ(ah, AR_STA_ID1);
958         val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
959         switch (opmode) {
960         case NL80211_IFTYPE_AP:
961                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
962                           | AR_STA_ID1_KSRCH_MODE);
963                 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
964                 break;
965         case NL80211_IFTYPE_ADHOC:
966         case NL80211_IFTYPE_MESH_POINT:
967                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
968                           | AR_STA_ID1_KSRCH_MODE);
969                 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
970                 break;
971         case NL80211_IFTYPE_STATION:
972         case NL80211_IFTYPE_MONITOR:
973                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
974                 break;
975         }
976 }
977
978 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
979                                    u32 *coef_mantissa, u32 *coef_exponent)
980 {
981         u32 coef_exp, coef_man;
982
983         for (coef_exp = 31; coef_exp > 0; coef_exp--)
984                 if ((coef_scaled >> coef_exp) & 0x1)
985                         break;
986
987         coef_exp = 14 - (coef_exp - COEF_SCALE_S);
988
989         coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
990
991         *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
992         *coef_exponent = coef_exp - 16;
993 }
994
995 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
996 {
997         u32 rst_flags;
998         u32 tmpReg;
999
1000         if (AR_SREV_9100(ah)) {
1001                 u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
1002                 val &= ~AR_RTC_DERIVED_CLK_PERIOD;
1003                 val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
1004                 REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
1005                 (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1006         }
1007
1008         ENABLE_REGWRITE_BUFFER(ah);
1009
1010         REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1011                   AR_RTC_FORCE_WAKE_ON_INT);
1012
1013         if (AR_SREV_9100(ah)) {
1014                 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1015                         AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1016         } else {
1017                 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1018                 if (tmpReg &
1019                     (AR_INTR_SYNC_LOCAL_TIMEOUT |
1020                      AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1021                         u32 val;
1022                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1023
1024                         val = AR_RC_HOSTIF;
1025                         if (!AR_SREV_9300_20_OR_LATER(ah))
1026                                 val |= AR_RC_AHB;
1027                         REG_WRITE(ah, AR_RC, val);
1028
1029                 } else if (!AR_SREV_9300_20_OR_LATER(ah))
1030                         REG_WRITE(ah, AR_RC, AR_RC_AHB);
1031
1032                 rst_flags = AR_RTC_RC_MAC_WARM;
1033                 if (type == ATH9K_RESET_COLD)
1034                         rst_flags |= AR_RTC_RC_MAC_COLD;
1035         }
1036
1037         REG_WRITE(ah, AR_RTC_RC, rst_flags);
1038
1039         REGWRITE_BUFFER_FLUSH(ah);
1040         DISABLE_REGWRITE_BUFFER(ah);
1041
1042         udelay(50);
1043
1044         REG_WRITE(ah, AR_RTC_RC, 0);
1045         if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1046                 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1047                           "RTC stuck in MAC reset\n");
1048                 return false;
1049         }
1050
1051         if (!AR_SREV_9100(ah))
1052                 REG_WRITE(ah, AR_RC, 0);
1053
1054         if (AR_SREV_9100(ah))
1055                 udelay(50);
1056
1057         return true;
1058 }
1059
1060 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1061 {
1062         ENABLE_REGWRITE_BUFFER(ah);
1063
1064         REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1065                   AR_RTC_FORCE_WAKE_ON_INT);
1066
1067         if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1068                 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1069
1070         REG_WRITE(ah, AR_RTC_RESET, 0);
1071
1072         REGWRITE_BUFFER_FLUSH(ah);
1073         DISABLE_REGWRITE_BUFFER(ah);
1074
1075         if (!AR_SREV_9300_20_OR_LATER(ah))
1076                 udelay(2);
1077
1078         if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1079                 REG_WRITE(ah, AR_RC, 0);
1080
1081         REG_WRITE(ah, AR_RTC_RESET, 1);
1082
1083         if (!ath9k_hw_wait(ah,
1084                            AR_RTC_STATUS,
1085                            AR_RTC_STATUS_M,
1086                            AR_RTC_STATUS_ON,
1087                            AH_WAIT_TIMEOUT)) {
1088                 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1089                           "RTC not waking up\n");
1090                 return false;
1091         }
1092
1093         ath9k_hw_read_revisions(ah);
1094
1095         return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1096 }
1097
1098 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1099 {
1100         REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1101                   AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1102
1103         switch (type) {
1104         case ATH9K_RESET_POWER_ON:
1105                 return ath9k_hw_set_reset_power_on(ah);
1106         case ATH9K_RESET_WARM:
1107         case ATH9K_RESET_COLD:
1108                 return ath9k_hw_set_reset(ah, type);
1109         default:
1110                 return false;
1111         }
1112 }
1113
1114 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1115                                 struct ath9k_channel *chan)
1116 {
1117         if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1118                 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1119                         return false;
1120         } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1121                 return false;
1122
1123         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1124                 return false;
1125
1126         ah->chip_fullsleep = false;
1127         ath9k_hw_init_pll(ah, chan);
1128         ath9k_hw_set_rfmode(ah, chan);
1129
1130         return true;
1131 }
1132
1133 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1134                                     struct ath9k_channel *chan)
1135 {
1136         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1137         struct ath_common *common = ath9k_hw_common(ah);
1138         struct ieee80211_channel *channel = chan->chan;
1139         u32 qnum;
1140         int r;
1141
1142         for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1143                 if (ath9k_hw_numtxpending(ah, qnum)) {
1144                         ath_print(common, ATH_DBG_QUEUE,
1145                                   "Transmit frames pending on "
1146                                   "queue %d\n", qnum);
1147                         return false;
1148                 }
1149         }
1150
1151         if (!ath9k_hw_rfbus_req(ah)) {
1152                 ath_print(common, ATH_DBG_FATAL,
1153                           "Could not kill baseband RX\n");
1154                 return false;
1155         }
1156
1157         ath9k_hw_set_channel_regs(ah, chan);
1158
1159         r = ath9k_hw_rf_set_freq(ah, chan);
1160         if (r) {
1161                 ath_print(common, ATH_DBG_FATAL,
1162                           "Failed to set channel\n");
1163                 return false;
1164         }
1165
1166         ah->eep_ops->set_txpower(ah, chan,
1167                              ath9k_regd_get_ctl(regulatory, chan),
1168                              channel->max_antenna_gain * 2,
1169                              channel->max_power * 2,
1170                              min((u32) MAX_RATE_POWER,
1171                              (u32) regulatory->power_limit));
1172
1173         ath9k_hw_rfbus_done(ah);
1174
1175         if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1176                 ath9k_hw_set_delta_slope(ah, chan);
1177
1178         ath9k_hw_spur_mitigate_freq(ah, chan);
1179
1180         if (!chan->oneTimeCalsDone)
1181                 chan->oneTimeCalsDone = true;
1182
1183         return true;
1184 }
1185
1186 bool ath9k_hw_check_alive(struct ath_hw *ah)
1187 {
1188         int count = 50;
1189         u32 reg;
1190
1191         if (AR_SREV_9285_10_OR_LATER(ah))
1192                 return true;
1193
1194         do {
1195                 reg = REG_READ(ah, AR_OBS_BUS_1);
1196
1197                 if ((reg & 0x7E7FFFEF) == 0x00702400)
1198                         continue;
1199
1200                 switch (reg & 0x7E000B00) {
1201                 case 0x1E000000:
1202                 case 0x52000B00:
1203                 case 0x18000B00:
1204                         continue;
1205                 default:
1206                         return true;
1207                 }
1208         } while (count-- > 0);
1209
1210         return false;
1211 }
1212 EXPORT_SYMBOL(ath9k_hw_check_alive);
1213
1214 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1215                     bool bChannelChange)
1216 {
1217         struct ath_common *common = ath9k_hw_common(ah);
1218         u32 saveLedState;
1219         struct ath9k_channel *curchan = ah->curchan;
1220         u32 saveDefAntenna;
1221         u32 macStaId1;
1222         u64 tsf = 0;
1223         int i, r;
1224
1225         ah->txchainmask = common->tx_chainmask;
1226         ah->rxchainmask = common->rx_chainmask;
1227
1228         if (!ah->chip_fullsleep) {
1229                 ath9k_hw_abortpcurecv(ah);
1230                 if (!ath9k_hw_stopdmarecv(ah))
1231                         ath_print(common, ATH_DBG_XMIT,
1232                                 "Failed to stop receive dma\n");
1233         }
1234
1235         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1236                 return -EIO;
1237
1238         if (curchan && !ah->chip_fullsleep)
1239                 ath9k_hw_getnf(ah, curchan);
1240
1241         if (bChannelChange &&
1242             (ah->chip_fullsleep != true) &&
1243             (ah->curchan != NULL) &&
1244             (chan->channel != ah->curchan->channel) &&
1245             ((chan->channelFlags & CHANNEL_ALL) ==
1246              (ah->curchan->channelFlags & CHANNEL_ALL)) &&
1247             !AR_SREV_9280(ah)) {
1248
1249                 if (ath9k_hw_channel_change(ah, chan)) {
1250                         ath9k_hw_loadnf(ah, ah->curchan);
1251                         ath9k_hw_start_nfcal(ah);
1252                         return 0;
1253                 }
1254         }
1255
1256         saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1257         if (saveDefAntenna == 0)
1258                 saveDefAntenna = 1;
1259
1260         macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1261
1262         /* For chips on which RTC reset is done, save TSF before it gets cleared */
1263         if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1264                 tsf = ath9k_hw_gettsf64(ah);
1265
1266         saveLedState = REG_READ(ah, AR_CFG_LED) &
1267                 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1268                  AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1269
1270         ath9k_hw_mark_phy_inactive(ah);
1271
1272         /* Only required on the first reset */
1273         if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1274                 REG_WRITE(ah,
1275                           AR9271_RESET_POWER_DOWN_CONTROL,
1276                           AR9271_RADIO_RF_RST);
1277                 udelay(50);
1278         }
1279
1280         if (!ath9k_hw_chip_reset(ah, chan)) {
1281                 ath_print(common, ATH_DBG_FATAL, "Chip reset failed\n");
1282                 return -EINVAL;
1283         }
1284
1285         /* Only required on the first reset */
1286         if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1287                 ah->htc_reset_init = false;
1288                 REG_WRITE(ah,
1289                           AR9271_RESET_POWER_DOWN_CONTROL,
1290                           AR9271_GATE_MAC_CTL);
1291                 udelay(50);
1292         }
1293
1294         /* Restore TSF */
1295         if (tsf && AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1296                 ath9k_hw_settsf64(ah, tsf);
1297
1298         if (AR_SREV_9280_10_OR_LATER(ah))
1299                 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1300
1301         if (!AR_SREV_9300_20_OR_LATER(ah))
1302                 ar9002_hw_enable_async_fifo(ah);
1303
1304         r = ath9k_hw_process_ini(ah, chan);
1305         if (r)
1306                 return r;
1307
1308         /* Setup MFP options for CCMP */
1309         if (AR_SREV_9280_20_OR_LATER(ah)) {
1310                 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1311                  * frames when constructing CCMP AAD. */
1312                 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1313                               0xc7ff);
1314                 ah->sw_mgmt_crypto = false;
1315         } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1316                 /* Disable hardware crypto for management frames */
1317                 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1318                             AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1319                 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1320                             AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1321                 ah->sw_mgmt_crypto = true;
1322         } else
1323                 ah->sw_mgmt_crypto = true;
1324
1325         if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1326                 ath9k_hw_set_delta_slope(ah, chan);
1327
1328         ath9k_hw_spur_mitigate_freq(ah, chan);
1329         ah->eep_ops->set_board_values(ah, chan);
1330
1331         ath9k_hw_set_operating_mode(ah, ah->opmode);
1332
1333         ENABLE_REGWRITE_BUFFER(ah);
1334
1335         REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
1336         REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
1337                   | macStaId1
1338                   | AR_STA_ID1_RTS_USE_DEF
1339                   | (ah->config.
1340                      ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1341                   | ah->sta_id1_defaults);
1342         ath_hw_setbssidmask(common);
1343         REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1344         ath9k_hw_write_associd(ah);
1345         REG_WRITE(ah, AR_ISR, ~0);
1346         REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1347
1348         REGWRITE_BUFFER_FLUSH(ah);
1349         DISABLE_REGWRITE_BUFFER(ah);
1350
1351         r = ath9k_hw_rf_set_freq(ah, chan);
1352         if (r)
1353                 return r;
1354
1355         ENABLE_REGWRITE_BUFFER(ah);
1356
1357         for (i = 0; i < AR_NUM_DCU; i++)
1358                 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1359
1360         REGWRITE_BUFFER_FLUSH(ah);
1361         DISABLE_REGWRITE_BUFFER(ah);
1362
1363         ah->intr_txqs = 0;
1364         for (i = 0; i < ah->caps.total_queues; i++)
1365                 ath9k_hw_resettxqueue(ah, i);
1366
1367         ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1368         ath9k_hw_init_qos(ah);
1369
1370         if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1371                 ath9k_enable_rfkill(ah);
1372
1373         ath9k_hw_init_global_settings(ah);
1374
1375         if (!AR_SREV_9300_20_OR_LATER(ah)) {
1376                 ar9002_hw_update_async_fifo(ah);
1377                 ar9002_hw_enable_wep_aggregation(ah);
1378         }
1379
1380         REG_WRITE(ah, AR_STA_ID1,
1381                   REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
1382
1383         ath9k_hw_set_dma(ah);
1384
1385         REG_WRITE(ah, AR_OBS, 8);
1386
1387         if (ah->config.rx_intr_mitigation) {
1388                 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1389                 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1390         }
1391
1392         if (ah->config.tx_intr_mitigation) {
1393                 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1394                 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1395         }
1396
1397         ath9k_hw_init_bb(ah, chan);
1398
1399         if (!ath9k_hw_init_cal(ah, chan))
1400                 return -EIO;
1401
1402         ENABLE_REGWRITE_BUFFER(ah);
1403
1404         ath9k_hw_restore_chainmask(ah);
1405         REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1406
1407         REGWRITE_BUFFER_FLUSH(ah);
1408         DISABLE_REGWRITE_BUFFER(ah);
1409
1410         /*
1411          * For big endian systems turn on swapping for descriptors
1412          */
1413         if (AR_SREV_9100(ah)) {
1414                 u32 mask;
1415                 mask = REG_READ(ah, AR_CFG);
1416                 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1417                         ath_print(common, ATH_DBG_RESET,
1418                                 "CFG Byte Swap Set 0x%x\n", mask);
1419                 } else {
1420                         mask =
1421                                 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1422                         REG_WRITE(ah, AR_CFG, mask);
1423                         ath_print(common, ATH_DBG_RESET,
1424                                 "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
1425                 }
1426         } else {
1427                 if (common->bus_ops->ath_bus_type == ATH_USB) {
1428                         /* Configure AR9271 target WLAN */
1429                         if (AR_SREV_9271(ah))
1430                                 REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1431                         else
1432                                 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1433                 }
1434 #ifdef __BIG_ENDIAN
1435                 else
1436                         REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1437 #endif
1438         }
1439
1440         if (ah->btcoex_hw.enabled)
1441                 ath9k_hw_btcoex_enable(ah);
1442
1443         if (AR_SREV_9300_20_OR_LATER(ah)) {
1444                 ath9k_hw_loadnf(ah, curchan);
1445                 ath9k_hw_start_nfcal(ah);
1446                 ar9003_hw_bb_watchdog_config(ah);
1447         }
1448
1449         return 0;
1450 }
1451 EXPORT_SYMBOL(ath9k_hw_reset);
1452
1453 /************************/
1454 /* Key Cache Management */
1455 /************************/
1456
1457 bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
1458 {
1459         u32 keyType;
1460
1461         if (entry >= ah->caps.keycache_size) {
1462                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1463                           "keychache entry %u out of range\n", entry);
1464                 return false;
1465         }
1466
1467         keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
1468
1469         REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
1470         REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
1471         REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
1472         REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
1473         REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
1474         REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
1475         REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
1476         REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
1477
1478         if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
1479                 u16 micentry = entry + 64;
1480
1481                 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
1482                 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
1483                 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
1484                 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
1485
1486         }
1487
1488         return true;
1489 }
1490 EXPORT_SYMBOL(ath9k_hw_keyreset);
1491
1492 bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
1493 {
1494         u32 macHi, macLo;
1495         u32 unicast_flag = AR_KEYTABLE_VALID;
1496
1497         if (entry >= ah->caps.keycache_size) {
1498                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1499                           "keychache entry %u out of range\n", entry);
1500                 return false;
1501         }
1502
1503         if (mac != NULL) {
1504                 /*
1505                  * AR_KEYTABLE_VALID indicates that the address is a unicast
1506                  * address, which must match the transmitter address for
1507                  * decrypting frames.
1508                  * Not setting this bit allows the hardware to use the key
1509                  * for multicast frame decryption.
1510                  */
1511                 if (mac[0] & 0x01)
1512                         unicast_flag = 0;
1513
1514                 macHi = (mac[5] << 8) | mac[4];
1515                 macLo = (mac[3] << 24) |
1516                         (mac[2] << 16) |
1517                         (mac[1] << 8) |
1518                         mac[0];
1519                 macLo >>= 1;
1520                 macLo |= (macHi & 1) << 31;
1521                 macHi >>= 1;
1522         } else {
1523                 macLo = macHi = 0;
1524         }
1525         REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
1526         REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | unicast_flag);
1527
1528         return true;
1529 }
1530 EXPORT_SYMBOL(ath9k_hw_keysetmac);
1531
1532 bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
1533                                  const struct ath9k_keyval *k,
1534                                  const u8 *mac)
1535 {
1536         const struct ath9k_hw_capabilities *pCap = &ah->caps;
1537         struct ath_common *common = ath9k_hw_common(ah);
1538         u32 key0, key1, key2, key3, key4;
1539         u32 keyType;
1540
1541         if (entry >= pCap->keycache_size) {
1542                 ath_print(common, ATH_DBG_FATAL,
1543                           "keycache entry %u out of range\n", entry);
1544                 return false;
1545         }
1546
1547         switch (k->kv_type) {
1548         case ATH9K_CIPHER_AES_OCB:
1549                 keyType = AR_KEYTABLE_TYPE_AES;
1550                 break;
1551         case ATH9K_CIPHER_AES_CCM:
1552                 if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
1553                         ath_print(common, ATH_DBG_ANY,
1554                                   "AES-CCM not supported by mac rev 0x%x\n",
1555                                   ah->hw_version.macRev);
1556                         return false;
1557                 }
1558                 keyType = AR_KEYTABLE_TYPE_CCM;
1559                 break;
1560         case ATH9K_CIPHER_TKIP:
1561                 keyType = AR_KEYTABLE_TYPE_TKIP;
1562                 if (ATH9K_IS_MIC_ENABLED(ah)
1563                     && entry + 64 >= pCap->keycache_size) {
1564                         ath_print(common, ATH_DBG_ANY,
1565                                   "entry %u inappropriate for TKIP\n", entry);
1566                         return false;
1567                 }
1568                 break;
1569         case ATH9K_CIPHER_WEP:
1570                 if (k->kv_len < WLAN_KEY_LEN_WEP40) {
1571                         ath_print(common, ATH_DBG_ANY,
1572                                   "WEP key length %u too small\n", k->kv_len);
1573                         return false;
1574                 }
1575                 if (k->kv_len <= WLAN_KEY_LEN_WEP40)
1576                         keyType = AR_KEYTABLE_TYPE_40;
1577                 else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
1578                         keyType = AR_KEYTABLE_TYPE_104;
1579                 else
1580                         keyType = AR_KEYTABLE_TYPE_128;
1581                 break;
1582         case ATH9K_CIPHER_CLR:
1583                 keyType = AR_KEYTABLE_TYPE_CLR;
1584                 break;
1585         default:
1586                 ath_print(common, ATH_DBG_FATAL,
1587                           "cipher %u not supported\n", k->kv_type);
1588                 return false;
1589         }
1590
1591         key0 = get_unaligned_le32(k->kv_val + 0);
1592         key1 = get_unaligned_le16(k->kv_val + 4);
1593         key2 = get_unaligned_le32(k->kv_val + 6);
1594         key3 = get_unaligned_le16(k->kv_val + 10);
1595         key4 = get_unaligned_le32(k->kv_val + 12);
1596         if (k->kv_len <= WLAN_KEY_LEN_WEP104)
1597                 key4 &= 0xff;
1598
1599         /*
1600          * Note: Key cache registers access special memory area that requires
1601          * two 32-bit writes to actually update the values in the internal
1602          * memory. Consequently, the exact order and pairs used here must be
1603          * maintained.
1604          */
1605
1606         if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
1607                 u16 micentry = entry + 64;
1608
1609                 /*
1610                  * Write inverted key[47:0] first to avoid Michael MIC errors
1611                  * on frames that could be sent or received at the same time.
1612                  * The correct key will be written in the end once everything
1613                  * else is ready.
1614                  */
1615                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
1616                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
1617
1618                 /* Write key[95:48] */
1619                 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
1620                 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
1621
1622                 /* Write key[127:96] and key type */
1623                 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
1624                 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
1625
1626                 /* Write MAC address for the entry */
1627                 (void) ath9k_hw_keysetmac(ah, entry, mac);
1628
1629                 if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
1630                         /*
1631                          * TKIP uses two key cache entries:
1632                          * Michael MIC TX/RX keys in the same key cache entry
1633                          * (idx = main index + 64):
1634                          * key0 [31:0] = RX key [31:0]
1635                          * key1 [15:0] = TX key [31:16]
1636                          * key1 [31:16] = reserved
1637                          * key2 [31:0] = RX key [63:32]
1638                          * key3 [15:0] = TX key [15:0]
1639                          * key3 [31:16] = reserved
1640                          * key4 [31:0] = TX key [63:32]
1641                          */
1642                         u32 mic0, mic1, mic2, mic3, mic4;
1643
1644                         mic0 = get_unaligned_le32(k->kv_mic + 0);
1645                         mic2 = get_unaligned_le32(k->kv_mic + 4);
1646                         mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
1647                         mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
1648                         mic4 = get_unaligned_le32(k->kv_txmic + 4);
1649
1650                         /* Write RX[31:0] and TX[31:16] */
1651                         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
1652                         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
1653
1654                         /* Write RX[63:32] and TX[15:0] */
1655                         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
1656                         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
1657
1658                         /* Write TX[63:32] and keyType(reserved) */
1659                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
1660                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
1661                                   AR_KEYTABLE_TYPE_CLR);
1662
1663                 } else {
1664                         /*
1665                          * TKIP uses four key cache entries (two for group
1666                          * keys):
1667                          * Michael MIC TX/RX keys are in different key cache
1668                          * entries (idx = main index + 64 for TX and
1669                          * main index + 32 + 96 for RX):
1670                          * key0 [31:0] = TX/RX MIC key [31:0]
1671                          * key1 [31:0] = reserved
1672                          * key2 [31:0] = TX/RX MIC key [63:32]
1673                          * key3 [31:0] = reserved
1674                          * key4 [31:0] = reserved
1675                          *
1676                          * Upper layer code will call this function separately
1677                          * for TX and RX keys when these registers offsets are
1678                          * used.
1679                          */
1680                         u32 mic0, mic2;
1681
1682                         mic0 = get_unaligned_le32(k->kv_mic + 0);
1683                         mic2 = get_unaligned_le32(k->kv_mic + 4);
1684
1685                         /* Write MIC key[31:0] */
1686                         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
1687                         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
1688
1689                         /* Write MIC key[63:32] */
1690                         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
1691                         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
1692
1693                         /* Write TX[63:32] and keyType(reserved) */
1694                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
1695                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
1696                                   AR_KEYTABLE_TYPE_CLR);
1697                 }
1698
1699                 /* MAC address registers are reserved for the MIC entry */
1700                 REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
1701                 REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
1702
1703                 /*
1704                  * Write the correct (un-inverted) key[47:0] last to enable
1705                  * TKIP now that all other registers are set with correct
1706                  * values.
1707                  */
1708                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
1709                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
1710         } else {
1711                 /* Write key[47:0] */
1712                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
1713                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
1714
1715                 /* Write key[95:48] */
1716                 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
1717                 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
1718
1719                 /* Write key[127:96] and key type */
1720                 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
1721                 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
1722
1723                 /* Write MAC address for the entry */
1724                 (void) ath9k_hw_keysetmac(ah, entry, mac);
1725         }
1726
1727         return true;
1728 }
1729 EXPORT_SYMBOL(ath9k_hw_set_keycache_entry);
1730
1731 bool ath9k_hw_keyisvalid(struct ath_hw *ah, u16 entry)
1732 {
1733         if (entry < ah->caps.keycache_size) {
1734                 u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
1735                 if (val & AR_KEYTABLE_VALID)
1736                         return true;
1737         }
1738         return false;
1739 }
1740 EXPORT_SYMBOL(ath9k_hw_keyisvalid);
1741
1742 /******************************/
1743 /* Power Management (Chipset) */
1744 /******************************/
1745
1746 /*
1747  * Notify Power Mgt is disabled in self-generated frames.
1748  * If requested, force chip to sleep.
1749  */
1750 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
1751 {
1752         REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1753         if (setChip) {
1754                 /*
1755                  * Clear the RTC force wake bit to allow the
1756                  * mac to go to sleep.
1757                  */
1758                 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1759                             AR_RTC_FORCE_WAKE_EN);
1760                 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1761                         REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1762
1763                 /* Shutdown chip. Active low */
1764                 if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
1765                         REG_CLR_BIT(ah, (AR_RTC_RESET),
1766                                     AR_RTC_RESET_EN);
1767         }
1768 }
1769
1770 /*
1771  * Notify Power Management is enabled in self-generating
1772  * frames. If request, set power mode of chip to
1773  * auto/normal.  Duration in units of 128us (1/8 TU).
1774  */
1775 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
1776 {
1777         REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1778         if (setChip) {
1779                 struct ath9k_hw_capabilities *pCap = &ah->caps;
1780
1781                 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
1782                         /* Set WakeOnInterrupt bit; clear ForceWake bit */
1783                         REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1784                                   AR_RTC_FORCE_WAKE_ON_INT);
1785                 } else {
1786                         /*
1787                          * Clear the RTC force wake bit to allow the
1788                          * mac to go to sleep.
1789                          */
1790                         REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1791                                     AR_RTC_FORCE_WAKE_EN);
1792                 }
1793         }
1794 }
1795
1796 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
1797 {
1798         u32 val;
1799         int i;
1800
1801         if (setChip) {
1802                 if ((REG_READ(ah, AR_RTC_STATUS) &
1803                      AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
1804                         if (ath9k_hw_set_reset_reg(ah,
1805                                            ATH9K_RESET_POWER_ON) != true) {
1806                                 return false;
1807                         }
1808                         if (!AR_SREV_9300_20_OR_LATER(ah))
1809                                 ath9k_hw_init_pll(ah, NULL);
1810                 }
1811                 if (AR_SREV_9100(ah))
1812                         REG_SET_BIT(ah, AR_RTC_RESET,
1813                                     AR_RTC_RESET_EN);
1814
1815                 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1816                             AR_RTC_FORCE_WAKE_EN);
1817                 udelay(50);
1818
1819                 for (i = POWER_UP_TIME / 50; i > 0; i--) {
1820                         val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
1821                         if (val == AR_RTC_STATUS_ON)
1822                                 break;
1823                         udelay(50);
1824                         REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1825                                     AR_RTC_FORCE_WAKE_EN);
1826                 }
1827                 if (i == 0) {
1828                         ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1829                                   "Failed to wakeup in %uus\n",
1830                                   POWER_UP_TIME / 20);
1831                         return false;
1832                 }
1833         }
1834
1835         REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1836
1837         return true;
1838 }
1839
1840 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
1841 {
1842         struct ath_common *common = ath9k_hw_common(ah);
1843         int status = true, setChip = true;
1844         static const char *modes[] = {
1845                 "AWAKE",
1846                 "FULL-SLEEP",
1847                 "NETWORK SLEEP",
1848                 "UNDEFINED"
1849         };
1850
1851         if (ah->power_mode == mode)
1852                 return status;
1853
1854         ath_print(common, ATH_DBG_RESET, "%s -> %s\n",
1855                   modes[ah->power_mode], modes[mode]);
1856
1857         switch (mode) {
1858         case ATH9K_PM_AWAKE:
1859                 status = ath9k_hw_set_power_awake(ah, setChip);
1860                 break;
1861         case ATH9K_PM_FULL_SLEEP:
1862                 ath9k_set_power_sleep(ah, setChip);
1863                 ah->chip_fullsleep = true;
1864                 break;
1865         case ATH9K_PM_NETWORK_SLEEP:
1866                 ath9k_set_power_network_sleep(ah, setChip);
1867                 break;
1868         default:
1869                 ath_print(common, ATH_DBG_FATAL,
1870                           "Unknown power mode %u\n", mode);
1871                 return false;
1872         }
1873         ah->power_mode = mode;
1874
1875         return status;
1876 }
1877 EXPORT_SYMBOL(ath9k_hw_setpower);
1878
1879 /*******************/
1880 /* Beacon Handling */
1881 /*******************/
1882
1883 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
1884 {
1885         int flags = 0;
1886
1887         ah->beacon_interval = beacon_period;
1888
1889         ENABLE_REGWRITE_BUFFER(ah);
1890
1891         switch (ah->opmode) {
1892         case NL80211_IFTYPE_STATION:
1893         case NL80211_IFTYPE_MONITOR:
1894                 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
1895                 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
1896                 REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
1897                 flags |= AR_TBTT_TIMER_EN;
1898                 break;
1899         case NL80211_IFTYPE_ADHOC:
1900         case NL80211_IFTYPE_MESH_POINT:
1901                 REG_SET_BIT(ah, AR_TXCFG,
1902                             AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
1903                 REG_WRITE(ah, AR_NEXT_NDP_TIMER,
1904                           TU_TO_USEC(next_beacon +
1905                                      (ah->atim_window ? ah->
1906                                       atim_window : 1)));
1907                 flags |= AR_NDP_TIMER_EN;
1908         case NL80211_IFTYPE_AP:
1909                 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
1910                 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
1911                           TU_TO_USEC(next_beacon -
1912                                      ah->config.
1913                                      dma_beacon_response_time));
1914                 REG_WRITE(ah, AR_NEXT_SWBA,
1915                           TU_TO_USEC(next_beacon -
1916                                      ah->config.
1917                                      sw_beacon_response_time));
1918                 flags |=
1919                         AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
1920                 break;
1921         default:
1922                 ath_print(ath9k_hw_common(ah), ATH_DBG_BEACON,
1923                           "%s: unsupported opmode: %d\n",
1924                           __func__, ah->opmode);
1925                 return;
1926                 break;
1927         }
1928
1929         REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
1930         REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
1931         REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
1932         REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
1933
1934         REGWRITE_BUFFER_FLUSH(ah);
1935         DISABLE_REGWRITE_BUFFER(ah);
1936
1937         beacon_period &= ~ATH9K_BEACON_ENA;
1938         if (beacon_period & ATH9K_BEACON_RESET_TSF) {
1939                 ath9k_hw_reset_tsf(ah);
1940         }
1941
1942         REG_SET_BIT(ah, AR_TIMER_MODE, flags);
1943 }
1944 EXPORT_SYMBOL(ath9k_hw_beaconinit);
1945
1946 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
1947                                     const struct ath9k_beacon_state *bs)
1948 {
1949         u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
1950         struct ath9k_hw_capabilities *pCap = &ah->caps;
1951         struct ath_common *common = ath9k_hw_common(ah);
1952
1953         ENABLE_REGWRITE_BUFFER(ah);
1954
1955         REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
1956
1957         REG_WRITE(ah, AR_BEACON_PERIOD,
1958                   TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
1959         REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
1960                   TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
1961
1962         REGWRITE_BUFFER_FLUSH(ah);
1963         DISABLE_REGWRITE_BUFFER(ah);
1964
1965         REG_RMW_FIELD(ah, AR_RSSI_THR,
1966                       AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
1967
1968         beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
1969
1970         if (bs->bs_sleepduration > beaconintval)
1971                 beaconintval = bs->bs_sleepduration;
1972
1973         dtimperiod = bs->bs_dtimperiod;
1974         if (bs->bs_sleepduration > dtimperiod)
1975                 dtimperiod = bs->bs_sleepduration;
1976
1977         if (beaconintval == dtimperiod)
1978                 nextTbtt = bs->bs_nextdtim;
1979         else
1980                 nextTbtt = bs->bs_nexttbtt;
1981
1982         ath_print(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
1983         ath_print(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
1984         ath_print(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
1985         ath_print(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
1986
1987         ENABLE_REGWRITE_BUFFER(ah);
1988
1989         REG_WRITE(ah, AR_NEXT_DTIM,
1990                   TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
1991         REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
1992
1993         REG_WRITE(ah, AR_SLEEP1,
1994                   SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
1995                   | AR_SLEEP1_ASSUME_DTIM);
1996
1997         if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
1998                 beacontimeout = (BEACON_TIMEOUT_VAL << 3);
1999         else
2000                 beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2001
2002         REG_WRITE(ah, AR_SLEEP2,
2003                   SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2004
2005         REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
2006         REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
2007
2008         REGWRITE_BUFFER_FLUSH(ah);
2009         DISABLE_REGWRITE_BUFFER(ah);
2010
2011         REG_SET_BIT(ah, AR_TIMER_MODE,
2012                     AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2013                     AR_DTIM_TIMER_EN);
2014
2015         /* TSF Out of Range Threshold */
2016         REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2017 }
2018 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2019
2020 /*******************/
2021 /* HW Capabilities */
2022 /*******************/
2023
2024 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2025 {
2026         struct ath9k_hw_capabilities *pCap = &ah->caps;
2027         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2028         struct ath_common *common = ath9k_hw_common(ah);
2029         struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
2030
2031         u16 capField = 0, eeval;
2032
2033         eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2034         regulatory->current_rd = eeval;
2035
2036         eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
2037         if (AR_SREV_9285_10_OR_LATER(ah))
2038                 eeval |= AR9285_RDEXT_DEFAULT;
2039         regulatory->current_rd_ext = eeval;
2040
2041         capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
2042
2043         if (ah->opmode != NL80211_IFTYPE_AP &&
2044             ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2045                 if (regulatory->current_rd == 0x64 ||
2046                     regulatory->current_rd == 0x65)
2047                         regulatory->current_rd += 5;
2048                 else if (regulatory->current_rd == 0x41)
2049                         regulatory->current_rd = 0x43;
2050                 ath_print(common, ATH_DBG_REGULATORY,
2051                           "regdomain mapped to 0x%x\n", regulatory->current_rd);
2052         }
2053
2054         eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2055         if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2056                 ath_print(common, ATH_DBG_FATAL,
2057                           "no band has been marked as supported in EEPROM.\n");
2058                 return -EINVAL;
2059         }
2060
2061         bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
2062
2063         if (eeval & AR5416_OPFLAGS_11A) {
2064                 set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
2065                 if (ah->config.ht_enable) {
2066                         if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
2067                                 set_bit(ATH9K_MODE_11NA_HT20,
2068                                         pCap->wireless_modes);
2069                         if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
2070                                 set_bit(ATH9K_MODE_11NA_HT40PLUS,
2071                                         pCap->wireless_modes);
2072                                 set_bit(ATH9K_MODE_11NA_HT40MINUS,
2073                                         pCap->wireless_modes);
2074                         }
2075                 }
2076         }
2077
2078         if (eeval & AR5416_OPFLAGS_11G) {
2079                 set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
2080                 if (ah->config.ht_enable) {
2081                         if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
2082                                 set_bit(ATH9K_MODE_11NG_HT20,
2083                                         pCap->wireless_modes);
2084                         if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
2085                                 set_bit(ATH9K_MODE_11NG_HT40PLUS,
2086                                         pCap->wireless_modes);
2087                                 set_bit(ATH9K_MODE_11NG_HT40MINUS,
2088                                         pCap->wireless_modes);
2089                         }
2090                 }
2091         }
2092
2093         pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2094         /*
2095          * For AR9271 we will temporarilly uses the rx chainmax as read from
2096          * the EEPROM.
2097          */
2098         if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2099             !(eeval & AR5416_OPFLAGS_11A) &&
2100             !(AR_SREV_9271(ah)))
2101                 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2102                 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2103         else
2104                 /* Use rx_chainmask from EEPROM. */
2105                 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2106
2107         if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
2108                 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2109
2110         pCap->low_2ghz_chan = 2312;
2111         pCap->high_2ghz_chan = 2732;
2112
2113         pCap->low_5ghz_chan = 4920;
2114         pCap->high_5ghz_chan = 6100;
2115
2116         pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
2117         pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
2118         pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
2119
2120         pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
2121         pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
2122         pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
2123
2124         if (ah->config.ht_enable)
2125                 pCap->hw_caps |= ATH9K_HW_CAP_HT;
2126         else
2127                 pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2128
2129         pCap->hw_caps |= ATH9K_HW_CAP_GTT;
2130         pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
2131         pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
2132         pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
2133
2134         if (capField & AR_EEPROM_EEPCAP_MAXQCU)
2135                 pCap->total_queues =
2136                         MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
2137         else
2138                 pCap->total_queues = ATH9K_NUM_TX_QUEUES;
2139
2140         if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
2141                 pCap->keycache_size =
2142                         1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
2143         else
2144                 pCap->keycache_size = AR_KEYTABLE_SIZE;
2145
2146         pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
2147
2148         if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
2149                 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1;
2150         else
2151                 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
2152
2153         if (AR_SREV_9271(ah))
2154                 pCap->num_gpio_pins = AR9271_NUM_GPIO;
2155         else if (AR_SREV_9285_10_OR_LATER(ah))
2156                 pCap->num_gpio_pins = AR9285_NUM_GPIO;
2157         else if (AR_SREV_9280_10_OR_LATER(ah))
2158                 pCap->num_gpio_pins = AR928X_NUM_GPIO;
2159         else
2160                 pCap->num_gpio_pins = AR_NUM_GPIO;
2161
2162         if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
2163                 pCap->hw_caps |= ATH9K_HW_CAP_CST;
2164                 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2165         } else {
2166                 pCap->rts_aggr_limit = (8 * 1024);
2167         }
2168
2169         pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
2170
2171 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2172         ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2173         if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2174                 ah->rfkill_gpio =
2175                         MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2176                 ah->rfkill_polarity =
2177                         MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2178
2179                 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2180         }
2181 #endif
2182         if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2183                 pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2184         else
2185                 pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2186
2187         if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2188                 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2189         else
2190                 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2191
2192         if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
2193                 pCap->reg_cap =
2194                         AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
2195                         AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
2196                         AR_EEPROM_EEREGCAP_EN_KK_U2 |
2197                         AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
2198         } else {
2199                 pCap->reg_cap =
2200                         AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
2201                         AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
2202         }
2203
2204         /* Advertise midband for AR5416 with FCC midband set in eeprom */
2205         if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
2206             AR_SREV_5416(ah))
2207                 pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
2208
2209         pCap->num_antcfg_5ghz =
2210                 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
2211         pCap->num_antcfg_2ghz =
2212                 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
2213
2214         if (AR_SREV_9280_10_OR_LATER(ah) &&
2215             ath9k_hw_btcoex_supported(ah)) {
2216                 btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
2217                 btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
2218
2219                 if (AR_SREV_9285(ah)) {
2220                         btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
2221                         btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
2222                 } else {
2223                         btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
2224                 }
2225         } else {
2226                 btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
2227         }
2228
2229         if (AR_SREV_9300_20_OR_LATER(ah)) {
2230                 pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_LDPC |
2231                                  ATH9K_HW_CAP_FASTCLOCK;
2232                 pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2233                 pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2234                 pCap->rx_status_len = sizeof(struct ar9003_rxs);
2235                 pCap->tx_desc_len = sizeof(struct ar9003_txc);
2236                 pCap->txs_len = sizeof(struct ar9003_txs);
2237         } else {
2238                 pCap->tx_desc_len = sizeof(struct ath_desc);
2239                 if (AR_SREV_9280_20(ah) &&
2240                     ((ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) <=
2241                       AR5416_EEP_MINOR_VER_16) ||
2242                      ah->eep_ops->get_eeprom(ah, EEP_FSTCLK_5G)))
2243                         pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2244         }
2245
2246         if (AR_SREV_9300_20_OR_LATER(ah))
2247                 pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2248
2249         if (AR_SREV_9287_10_OR_LATER(ah) || AR_SREV_9271(ah))
2250                 pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2251
2252         return 0;
2253 }
2254
2255 bool ath9k_hw_getcapability(struct ath_hw *ah, enum ath9k_capability_type type,
2256                             u32 capability, u32 *result)
2257 {
2258         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2259         switch (type) {
2260         case ATH9K_CAP_CIPHER:
2261                 switch (capability) {
2262                 case ATH9K_CIPHER_AES_CCM:
2263                 case ATH9K_CIPHER_AES_OCB:
2264                 case ATH9K_CIPHER_TKIP:
2265                 case ATH9K_CIPHER_WEP:
2266                 case ATH9K_CIPHER_MIC:
2267                 case ATH9K_CIPHER_CLR:
2268                         return true;
2269                 default:
2270                         return false;
2271                 }
2272         case ATH9K_CAP_TKIP_MIC:
2273                 switch (capability) {
2274                 case 0:
2275                         return true;
2276                 case 1:
2277                         return (ah->sta_id1_defaults &
2278                                 AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
2279                         false;
2280                 }
2281         case ATH9K_CAP_TKIP_SPLIT:
2282                 return (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
2283                         false : true;
2284         case ATH9K_CAP_MCAST_KEYSRCH:
2285                 switch (capability) {
2286                 case 0:
2287                         return true;
2288                 case 1:
2289                         if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
2290                                 return false;
2291                         } else {
2292                                 return (ah->sta_id1_defaults &
2293                                         AR_STA_ID1_MCAST_KSRCH) ? true :
2294                                         false;
2295                         }
2296                 }
2297                 return false;
2298         case ATH9K_CAP_TXPOW:
2299                 switch (capability) {
2300                 case 0:
2301                         return 0;
2302                 case 1:
2303                         *result = regulatory->power_limit;
2304                         return 0;
2305                 case 2:
2306                         *result = regulatory->max_power_level;
2307                         return 0;
2308                 case 3:
2309                         *result = regulatory->tp_scale;
2310                         return 0;
2311                 }
2312                 return false;
2313         case ATH9K_CAP_DS:
2314                 return (AR_SREV_9280_20_OR_LATER(ah) &&
2315                         (ah->eep_ops->get_eeprom(ah, EEP_RC_CHAIN_MASK) == 1))
2316                         ? false : true;
2317         default:
2318                 return false;
2319         }
2320 }
2321 EXPORT_SYMBOL(ath9k_hw_getcapability);
2322
2323 bool ath9k_hw_setcapability(struct ath_hw *ah, enum ath9k_capability_type type,
2324                             u32 capability, u32 setting, int *status)
2325 {
2326         switch (type) {
2327         case ATH9K_CAP_TKIP_MIC:
2328                 if (setting)
2329                         ah->sta_id1_defaults |=
2330                                 AR_STA_ID1_CRPT_MIC_ENABLE;
2331                 else
2332                         ah->sta_id1_defaults &=
2333                                 ~AR_STA_ID1_CRPT_MIC_ENABLE;
2334                 return true;
2335         case ATH9K_CAP_MCAST_KEYSRCH:
2336                 if (setting)
2337                         ah->sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
2338                 else
2339                         ah->sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
2340                 return true;
2341         default:
2342                 return false;
2343         }
2344 }
2345 EXPORT_SYMBOL(ath9k_hw_setcapability);
2346
2347 /****************************/
2348 /* GPIO / RFKILL / Antennae */
2349 /****************************/
2350
2351 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2352                                          u32 gpio, u32 type)
2353 {
2354         int addr;
2355         u32 gpio_shift, tmp;
2356
2357         if (gpio > 11)
2358                 addr = AR_GPIO_OUTPUT_MUX3;
2359         else if (gpio > 5)
2360                 addr = AR_GPIO_OUTPUT_MUX2;
2361         else
2362                 addr = AR_GPIO_OUTPUT_MUX1;
2363
2364         gpio_shift = (gpio % 6) * 5;
2365
2366         if (AR_SREV_9280_20_OR_LATER(ah)
2367             || (addr != AR_GPIO_OUTPUT_MUX1)) {
2368                 REG_RMW(ah, addr, (type << gpio_shift),
2369                         (0x1f << gpio_shift));
2370         } else {
2371                 tmp = REG_READ(ah, addr);
2372                 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2373                 tmp &= ~(0x1f << gpio_shift);
2374                 tmp |= (type << gpio_shift);
2375                 REG_WRITE(ah, addr, tmp);
2376         }
2377 }
2378
2379 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2380 {
2381         u32 gpio_shift;
2382
2383         BUG_ON(gpio >= ah->caps.num_gpio_pins);
2384
2385         gpio_shift = gpio << 1;
2386
2387         REG_RMW(ah,
2388                 AR_GPIO_OE_OUT,
2389                 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2390                 (AR_GPIO_OE_OUT_DRV << gpio_shift));
2391 }
2392 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2393
2394 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2395 {
2396 #define MS_REG_READ(x, y) \
2397         (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2398
2399         if (gpio >= ah->caps.num_gpio_pins)
2400                 return 0xffffffff;
2401
2402         if (AR_SREV_9300_20_OR_LATER(ah))
2403                 return MS_REG_READ(AR9300, gpio) != 0;
2404         else if (AR_SREV_9271(ah))
2405                 return MS_REG_READ(AR9271, gpio) != 0;
2406         else if (AR_SREV_9287_10_OR_LATER(ah))
2407                 return MS_REG_READ(AR9287, gpio) != 0;
2408         else if (AR_SREV_9285_10_OR_LATER(ah))
2409                 return MS_REG_READ(AR9285, gpio) != 0;
2410         else if (AR_SREV_9280_10_OR_LATER(ah))
2411                 return MS_REG_READ(AR928X, gpio) != 0;
2412         else
2413                 return MS_REG_READ(AR, gpio) != 0;
2414 }
2415 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2416
2417 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2418                          u32 ah_signal_type)
2419 {
2420         u32 gpio_shift;
2421
2422         ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2423
2424         gpio_shift = 2 * gpio;
2425
2426         REG_RMW(ah,
2427                 AR_GPIO_OE_OUT,
2428                 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2429                 (AR_GPIO_OE_OUT_DRV << gpio_shift));
2430 }
2431 EXPORT_SYMBOL(ath9k_hw_cfg_output);
2432
2433 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2434 {
2435         if (AR_SREV_9271(ah))
2436                 val = ~val;
2437
2438         REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2439                 AR_GPIO_BIT(gpio));
2440 }
2441 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2442
2443 u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
2444 {
2445         return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
2446 }
2447 EXPORT_SYMBOL(ath9k_hw_getdefantenna);
2448
2449 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2450 {
2451         REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2452 }
2453 EXPORT_SYMBOL(ath9k_hw_setantenna);
2454
2455 /*********************/
2456 /* General Operation */
2457 /*********************/
2458
2459 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2460 {
2461         u32 bits = REG_READ(ah, AR_RX_FILTER);
2462         u32 phybits = REG_READ(ah, AR_PHY_ERR);
2463
2464         if (phybits & AR_PHY_ERR_RADAR)
2465                 bits |= ATH9K_RX_FILTER_PHYRADAR;
2466         if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2467                 bits |= ATH9K_RX_FILTER_PHYERR;
2468
2469         return bits;
2470 }
2471 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2472
2473 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2474 {
2475         u32 phybits;
2476
2477         ENABLE_REGWRITE_BUFFER(ah);
2478
2479         REG_WRITE(ah, AR_RX_FILTER, bits);
2480
2481         phybits = 0;
2482         if (bits & ATH9K_RX_FILTER_PHYRADAR)
2483                 phybits |= AR_PHY_ERR_RADAR;
2484         if (bits & ATH9K_RX_FILTER_PHYERR)
2485                 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2486         REG_WRITE(ah, AR_PHY_ERR, phybits);
2487
2488         if (phybits)
2489                 REG_WRITE(ah, AR_RXCFG,
2490                           REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
2491         else
2492                 REG_WRITE(ah, AR_RXCFG,
2493                           REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
2494
2495         REGWRITE_BUFFER_FLUSH(ah);
2496         DISABLE_REGWRITE_BUFFER(ah);
2497 }
2498 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2499
2500 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2501 {
2502         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2503                 return false;
2504
2505         ath9k_hw_init_pll(ah, NULL);
2506         return true;
2507 }
2508 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2509
2510 bool ath9k_hw_disable(struct ath_hw *ah)
2511 {
2512         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2513                 return false;
2514
2515         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2516                 return false;
2517
2518         ath9k_hw_init_pll(ah, NULL);
2519         return true;
2520 }
2521 EXPORT_SYMBOL(ath9k_hw_disable);
2522
2523 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
2524 {
2525         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2526         struct ath9k_channel *chan = ah->curchan;
2527         struct ieee80211_channel *channel = chan->chan;
2528
2529         regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
2530
2531         ah->eep_ops->set_txpower(ah, chan,
2532                                  ath9k_regd_get_ctl(regulatory, chan),
2533                                  channel->max_antenna_gain * 2,
2534                                  channel->max_power * 2,
2535                                  min((u32) MAX_RATE_POWER,
2536                                  (u32) regulatory->power_limit));
2537 }
2538 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2539
2540 void ath9k_hw_setmac(struct ath_hw *ah, const u8 *mac)
2541 {
2542         memcpy(ath9k_hw_common(ah)->macaddr, mac, ETH_ALEN);
2543 }
2544 EXPORT_SYMBOL(ath9k_hw_setmac);
2545
2546 void ath9k_hw_setopmode(struct ath_hw *ah)
2547 {
2548         ath9k_hw_set_operating_mode(ah, ah->opmode);
2549 }
2550 EXPORT_SYMBOL(ath9k_hw_setopmode);
2551
2552 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2553 {
2554         REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2555         REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2556 }
2557 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2558
2559 void ath9k_hw_write_associd(struct ath_hw *ah)
2560 {
2561         struct ath_common *common = ath9k_hw_common(ah);
2562
2563         REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2564         REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2565                   ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2566 }
2567 EXPORT_SYMBOL(ath9k_hw_write_associd);
2568
2569 #define ATH9K_MAX_TSF_READ 10
2570
2571 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2572 {
2573         u32 tsf_lower, tsf_upper1, tsf_upper2;
2574         int i;
2575
2576         tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2577         for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2578                 tsf_lower = REG_READ(ah, AR_TSF_L32);
2579                 tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2580                 if (tsf_upper2 == tsf_upper1)
2581                         break;
2582                 tsf_upper1 = tsf_upper2;
2583         }
2584
2585         WARN_ON( i == ATH9K_MAX_TSF_READ );
2586
2587         return (((u64)tsf_upper1 << 32) | tsf_lower);
2588 }
2589 EXPORT_SYMBOL(ath9k_hw_gettsf64);
2590
2591 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2592 {
2593         REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2594         REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2595 }
2596 EXPORT_SYMBOL(ath9k_hw_settsf64);
2597
2598 void ath9k_hw_reset_tsf(struct ath_hw *ah)
2599 {
2600         if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2601                            AH_TSF_WRITE_TIMEOUT))
2602                 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
2603                           "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2604
2605         REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2606 }
2607 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2608
2609 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
2610 {
2611         if (setting)
2612                 ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2613         else
2614                 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2615 }
2616 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2617
2618 /*
2619  *  Extend 15-bit time stamp from rx descriptor to
2620  *  a full 64-bit TSF using the current h/w TSF.
2621 */
2622 u64 ath9k_hw_extend_tsf(struct ath_hw *ah, u32 rstamp)
2623 {
2624         u64 tsf;
2625
2626         tsf = ath9k_hw_gettsf64(ah);
2627         if ((tsf & 0x7fff) < rstamp)
2628                 tsf -= 0x8000;
2629         return (tsf & ~0x7fff) | rstamp;
2630 }
2631 EXPORT_SYMBOL(ath9k_hw_extend_tsf);
2632
2633 void ath9k_hw_set11nmac2040(struct ath_hw *ah)
2634 {
2635         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
2636         u32 macmode;
2637
2638         if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
2639                 macmode = AR_2040_JOINED_RX_CLEAR;
2640         else
2641                 macmode = 0;
2642
2643         REG_WRITE(ah, AR_2040_MODE, macmode);
2644 }
2645
2646 /* HW Generic timers configuration */
2647
2648 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2649 {
2650         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2651         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2652         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2653         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2654         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2655         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2656         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2657         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2658         {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2659         {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2660                                 AR_NDP2_TIMER_MODE, 0x0002},
2661         {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2662                                 AR_NDP2_TIMER_MODE, 0x0004},
2663         {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2664                                 AR_NDP2_TIMER_MODE, 0x0008},
2665         {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2666                                 AR_NDP2_TIMER_MODE, 0x0010},
2667         {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2668                                 AR_NDP2_TIMER_MODE, 0x0020},
2669         {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2670                                 AR_NDP2_TIMER_MODE, 0x0040},
2671         {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2672                                 AR_NDP2_TIMER_MODE, 0x0080}
2673 };
2674
2675 /* HW generic timer primitives */
2676
2677 /* compute and clear index of rightmost 1 */
2678 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2679 {
2680         u32 b;
2681
2682         b = *mask;
2683         b &= (0-b);
2684         *mask &= ~b;
2685         b *= debruijn32;
2686         b >>= 27;
2687
2688         return timer_table->gen_timer_index[b];
2689 }
2690
2691 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2692 {
2693         return REG_READ(ah, AR_TSF_L32);
2694 }
2695 EXPORT_SYMBOL(ath9k_hw_gettsf32);
2696
2697 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2698                                           void (*trigger)(void *),
2699                                           void (*overflow)(void *),
2700                                           void *arg,
2701                                           u8 timer_index)
2702 {
2703         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2704         struct ath_gen_timer *timer;
2705
2706         timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2707
2708         if (timer == NULL) {
2709                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2710                           "Failed to allocate memory"
2711                           "for hw timer[%d]\n", timer_index);
2712                 return NULL;
2713         }
2714
2715         /* allocate a hardware generic timer slot */
2716         timer_table->timers[timer_index] = timer;
2717         timer->index = timer_index;
2718         timer->trigger = trigger;
2719         timer->overflow = overflow;
2720         timer->arg = arg;
2721
2722         return timer;
2723 }
2724 EXPORT_SYMBOL(ath_gen_timer_alloc);
2725
2726 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2727                               struct ath_gen_timer *timer,
2728                               u32 timer_next,
2729                               u32 timer_period)
2730 {
2731         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2732         u32 tsf;
2733
2734         BUG_ON(!timer_period);
2735
2736         set_bit(timer->index, &timer_table->timer_mask.timer_bits);
2737
2738         tsf = ath9k_hw_gettsf32(ah);
2739
2740         ath_print(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
2741                   "curent tsf %x period %x"
2742                   "timer_next %x\n", tsf, timer_period, timer_next);
2743
2744         /*
2745          * Pull timer_next forward if the current TSF already passed it
2746          * because of software latency
2747          */
2748         if (timer_next < tsf)
2749                 timer_next = tsf + timer_period;
2750
2751         /*
2752          * Program generic timer registers
2753          */
2754         REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2755                  timer_next);
2756         REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2757                   timer_period);
2758         REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2759                     gen_tmr_configuration[timer->index].mode_mask);
2760
2761         /* Enable both trigger and thresh interrupt masks */
2762         REG_SET_BIT(ah, AR_IMR_S5,
2763                 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2764                 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2765 }
2766 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
2767
2768 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
2769 {
2770         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2771
2772         if ((timer->index < AR_FIRST_NDP_TIMER) ||
2773                 (timer->index >= ATH_MAX_GEN_TIMER)) {
2774                 return;
2775         }
2776
2777         /* Clear generic timer enable bits. */
2778         REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2779                         gen_tmr_configuration[timer->index].mode_mask);
2780
2781         /* Disable both trigger and thresh interrupt masks */
2782         REG_CLR_BIT(ah, AR_IMR_S5,
2783                 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2784                 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2785
2786         clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
2787 }
2788 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
2789
2790 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
2791 {
2792         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2793
2794         /* free the hardware generic timer slot */
2795         timer_table->timers[timer->index] = NULL;
2796         kfree(timer);
2797 }
2798 EXPORT_SYMBOL(ath_gen_timer_free);
2799
2800 /*
2801  * Generic Timer Interrupts handling
2802  */
2803 void ath_gen_timer_isr(struct ath_hw *ah)
2804 {
2805         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2806         struct ath_gen_timer *timer;
2807         struct ath_common *common = ath9k_hw_common(ah);
2808         u32 trigger_mask, thresh_mask, index;
2809
2810         /* get hardware generic timer interrupt status */
2811         trigger_mask = ah->intr_gen_timer_trigger;
2812         thresh_mask = ah->intr_gen_timer_thresh;
2813         trigger_mask &= timer_table->timer_mask.val;
2814         thresh_mask &= timer_table->timer_mask.val;
2815
2816         trigger_mask &= ~thresh_mask;
2817
2818         while (thresh_mask) {
2819                 index = rightmost_index(timer_table, &thresh_mask);
2820                 timer = timer_table->timers[index];
2821                 BUG_ON(!timer);
2822                 ath_print(common, ATH_DBG_HWTIMER,
2823                           "TSF overflow for Gen timer %d\n", index);
2824                 timer->overflow(timer->arg);
2825         }
2826
2827         while (trigger_mask) {
2828                 index = rightmost_index(timer_table, &trigger_mask);
2829                 timer = timer_table->timers[index];
2830                 BUG_ON(!timer);
2831                 ath_print(common, ATH_DBG_HWTIMER,
2832                           "Gen timer[%d] trigger\n", index);
2833                 timer->trigger(timer->arg);
2834         }
2835 }
2836 EXPORT_SYMBOL(ath_gen_timer_isr);
2837
2838 /********/
2839 /* HTC  */
2840 /********/
2841
2842 void ath9k_hw_htc_resetinit(struct ath_hw *ah)
2843 {
2844         ah->htc_reset_init = true;
2845 }
2846 EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
2847
2848 static struct {
2849         u32 version;
2850         const char * name;
2851 } ath_mac_bb_names[] = {
2852         /* Devices with external radios */
2853         { AR_SREV_VERSION_5416_PCI,     "5416" },
2854         { AR_SREV_VERSION_5416_PCIE,    "5418" },
2855         { AR_SREV_VERSION_9100,         "9100" },
2856         { AR_SREV_VERSION_9160,         "9160" },
2857         /* Single-chip solutions */
2858         { AR_SREV_VERSION_9280,         "9280" },
2859         { AR_SREV_VERSION_9285,         "9285" },
2860         { AR_SREV_VERSION_9287,         "9287" },
2861         { AR_SREV_VERSION_9271,         "9271" },
2862         { AR_SREV_VERSION_9300,         "9300" },
2863 };
2864
2865 /* For devices with external radios */
2866 static struct {
2867         u16 version;
2868         const char * name;
2869 } ath_rf_names[] = {
2870         { 0,                            "5133" },
2871         { AR_RAD5133_SREV_MAJOR,        "5133" },
2872         { AR_RAD5122_SREV_MAJOR,        "5122" },
2873         { AR_RAD2133_SREV_MAJOR,        "2133" },
2874         { AR_RAD2122_SREV_MAJOR,        "2122" }
2875 };
2876
2877 /*
2878  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2879  */
2880 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
2881 {
2882         int i;
2883
2884         for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2885                 if (ath_mac_bb_names[i].version == mac_bb_version) {
2886                         return ath_mac_bb_names[i].name;
2887                 }
2888         }
2889
2890         return "????";
2891 }
2892
2893 /*
2894  * Return the RF name. "????" is returned if the RF is unknown.
2895  * Used for devices with external radios.
2896  */
2897 static const char *ath9k_hw_rf_name(u16 rf_version)
2898 {
2899         int i;
2900
2901         for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2902                 if (ath_rf_names[i].version == rf_version) {
2903                         return ath_rf_names[i].name;
2904                 }
2905         }
2906
2907         return "????";
2908 }
2909
2910 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
2911 {
2912         int used;
2913
2914         /* chipsets >= AR9280 are single-chip */
2915         if (AR_SREV_9280_10_OR_LATER(ah)) {
2916                 used = snprintf(hw_name, len,
2917                                "Atheros AR%s Rev:%x",
2918                                ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2919                                ah->hw_version.macRev);
2920         }
2921         else {
2922                 used = snprintf(hw_name, len,
2923                                "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
2924                                ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2925                                ah->hw_version.macRev,
2926                                ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
2927                                                 AR_RADIO_SREV_MAJOR)),
2928                                ah->hw_version.phyRev);
2929         }
2930
2931         hw_name[used] = '\0';
2932 }
2933 EXPORT_SYMBOL(ath9k_hw_name);