]> rtime.felk.cvut.cz Git - linux-imx.git/blob - fs/btrfs/tree-log.c
f50137a98fb1ac524f9c4bbdbd16011e99515f5e
[linux-imx.git] / fs / btrfs / tree-log.c
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/list_sort.h>
22 #include "ctree.h"
23 #include "transaction.h"
24 #include "disk-io.h"
25 #include "locking.h"
26 #include "print-tree.h"
27 #include "backref.h"
28 #include "compat.h"
29 #include "tree-log.h"
30 #include "hash.h"
31
32 /* magic values for the inode_only field in btrfs_log_inode:
33  *
34  * LOG_INODE_ALL means to log everything
35  * LOG_INODE_EXISTS means to log just enough to recreate the inode
36  * during log replay
37  */
38 #define LOG_INODE_ALL 0
39 #define LOG_INODE_EXISTS 1
40
41 /*
42  * directory trouble cases
43  *
44  * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
45  * log, we must force a full commit before doing an fsync of the directory
46  * where the unlink was done.
47  * ---> record transid of last unlink/rename per directory
48  *
49  * mkdir foo/some_dir
50  * normal commit
51  * rename foo/some_dir foo2/some_dir
52  * mkdir foo/some_dir
53  * fsync foo/some_dir/some_file
54  *
55  * The fsync above will unlink the original some_dir without recording
56  * it in its new location (foo2).  After a crash, some_dir will be gone
57  * unless the fsync of some_file forces a full commit
58  *
59  * 2) we must log any new names for any file or dir that is in the fsync
60  * log. ---> check inode while renaming/linking.
61  *
62  * 2a) we must log any new names for any file or dir during rename
63  * when the directory they are being removed from was logged.
64  * ---> check inode and old parent dir during rename
65  *
66  *  2a is actually the more important variant.  With the extra logging
67  *  a crash might unlink the old name without recreating the new one
68  *
69  * 3) after a crash, we must go through any directories with a link count
70  * of zero and redo the rm -rf
71  *
72  * mkdir f1/foo
73  * normal commit
74  * rm -rf f1/foo
75  * fsync(f1)
76  *
77  * The directory f1 was fully removed from the FS, but fsync was never
78  * called on f1, only its parent dir.  After a crash the rm -rf must
79  * be replayed.  This must be able to recurse down the entire
80  * directory tree.  The inode link count fixup code takes care of the
81  * ugly details.
82  */
83
84 /*
85  * stages for the tree walking.  The first
86  * stage (0) is to only pin down the blocks we find
87  * the second stage (1) is to make sure that all the inodes
88  * we find in the log are created in the subvolume.
89  *
90  * The last stage is to deal with directories and links and extents
91  * and all the other fun semantics
92  */
93 #define LOG_WALK_PIN_ONLY 0
94 #define LOG_WALK_REPLAY_INODES 1
95 #define LOG_WALK_REPLAY_ALL 2
96
97 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
98                              struct btrfs_root *root, struct inode *inode,
99                              int inode_only);
100 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
101                              struct btrfs_root *root,
102                              struct btrfs_path *path, u64 objectid);
103 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
104                                        struct btrfs_root *root,
105                                        struct btrfs_root *log,
106                                        struct btrfs_path *path,
107                                        u64 dirid, int del_all);
108
109 /*
110  * tree logging is a special write ahead log used to make sure that
111  * fsyncs and O_SYNCs can happen without doing full tree commits.
112  *
113  * Full tree commits are expensive because they require commonly
114  * modified blocks to be recowed, creating many dirty pages in the
115  * extent tree an 4x-6x higher write load than ext3.
116  *
117  * Instead of doing a tree commit on every fsync, we use the
118  * key ranges and transaction ids to find items for a given file or directory
119  * that have changed in this transaction.  Those items are copied into
120  * a special tree (one per subvolume root), that tree is written to disk
121  * and then the fsync is considered complete.
122  *
123  * After a crash, items are copied out of the log-tree back into the
124  * subvolume tree.  Any file data extents found are recorded in the extent
125  * allocation tree, and the log-tree freed.
126  *
127  * The log tree is read three times, once to pin down all the extents it is
128  * using in ram and once, once to create all the inodes logged in the tree
129  * and once to do all the other items.
130  */
131
132 /*
133  * start a sub transaction and setup the log tree
134  * this increments the log tree writer count to make the people
135  * syncing the tree wait for us to finish
136  */
137 static int start_log_trans(struct btrfs_trans_handle *trans,
138                            struct btrfs_root *root)
139 {
140         int ret;
141         int err = 0;
142
143         mutex_lock(&root->log_mutex);
144         if (root->log_root) {
145                 if (!root->log_start_pid) {
146                         root->log_start_pid = current->pid;
147                         root->log_multiple_pids = false;
148                 } else if (root->log_start_pid != current->pid) {
149                         root->log_multiple_pids = true;
150                 }
151
152                 atomic_inc(&root->log_batch);
153                 atomic_inc(&root->log_writers);
154                 mutex_unlock(&root->log_mutex);
155                 return 0;
156         }
157         root->log_multiple_pids = false;
158         root->log_start_pid = current->pid;
159         mutex_lock(&root->fs_info->tree_log_mutex);
160         if (!root->fs_info->log_root_tree) {
161                 ret = btrfs_init_log_root_tree(trans, root->fs_info);
162                 if (ret)
163                         err = ret;
164         }
165         if (err == 0 && !root->log_root) {
166                 ret = btrfs_add_log_tree(trans, root);
167                 if (ret)
168                         err = ret;
169         }
170         mutex_unlock(&root->fs_info->tree_log_mutex);
171         atomic_inc(&root->log_batch);
172         atomic_inc(&root->log_writers);
173         mutex_unlock(&root->log_mutex);
174         return err;
175 }
176
177 /*
178  * returns 0 if there was a log transaction running and we were able
179  * to join, or returns -ENOENT if there were not transactions
180  * in progress
181  */
182 static int join_running_log_trans(struct btrfs_root *root)
183 {
184         int ret = -ENOENT;
185
186         smp_mb();
187         if (!root->log_root)
188                 return -ENOENT;
189
190         mutex_lock(&root->log_mutex);
191         if (root->log_root) {
192                 ret = 0;
193                 atomic_inc(&root->log_writers);
194         }
195         mutex_unlock(&root->log_mutex);
196         return ret;
197 }
198
199 /*
200  * This either makes the current running log transaction wait
201  * until you call btrfs_end_log_trans() or it makes any future
202  * log transactions wait until you call btrfs_end_log_trans()
203  */
204 int btrfs_pin_log_trans(struct btrfs_root *root)
205 {
206         int ret = -ENOENT;
207
208         mutex_lock(&root->log_mutex);
209         atomic_inc(&root->log_writers);
210         mutex_unlock(&root->log_mutex);
211         return ret;
212 }
213
214 /*
215  * indicate we're done making changes to the log tree
216  * and wake up anyone waiting to do a sync
217  */
218 void btrfs_end_log_trans(struct btrfs_root *root)
219 {
220         if (atomic_dec_and_test(&root->log_writers)) {
221                 smp_mb();
222                 if (waitqueue_active(&root->log_writer_wait))
223                         wake_up(&root->log_writer_wait);
224         }
225 }
226
227
228 /*
229  * the walk control struct is used to pass state down the chain when
230  * processing the log tree.  The stage field tells us which part
231  * of the log tree processing we are currently doing.  The others
232  * are state fields used for that specific part
233  */
234 struct walk_control {
235         /* should we free the extent on disk when done?  This is used
236          * at transaction commit time while freeing a log tree
237          */
238         int free;
239
240         /* should we write out the extent buffer?  This is used
241          * while flushing the log tree to disk during a sync
242          */
243         int write;
244
245         /* should we wait for the extent buffer io to finish?  Also used
246          * while flushing the log tree to disk for a sync
247          */
248         int wait;
249
250         /* pin only walk, we record which extents on disk belong to the
251          * log trees
252          */
253         int pin;
254
255         /* what stage of the replay code we're currently in */
256         int stage;
257
258         /* the root we are currently replaying */
259         struct btrfs_root *replay_dest;
260
261         /* the trans handle for the current replay */
262         struct btrfs_trans_handle *trans;
263
264         /* the function that gets used to process blocks we find in the
265          * tree.  Note the extent_buffer might not be up to date when it is
266          * passed in, and it must be checked or read if you need the data
267          * inside it
268          */
269         int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
270                             struct walk_control *wc, u64 gen);
271 };
272
273 /*
274  * process_func used to pin down extents, write them or wait on them
275  */
276 static int process_one_buffer(struct btrfs_root *log,
277                               struct extent_buffer *eb,
278                               struct walk_control *wc, u64 gen)
279 {
280         if (wc->pin)
281                 btrfs_pin_extent_for_log_replay(log->fs_info->extent_root,
282                                                 eb->start, eb->len);
283
284         if (btrfs_buffer_uptodate(eb, gen, 0)) {
285                 if (wc->write)
286                         btrfs_write_tree_block(eb);
287                 if (wc->wait)
288                         btrfs_wait_tree_block_writeback(eb);
289         }
290         return 0;
291 }
292
293 /*
294  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
295  * to the src data we are copying out.
296  *
297  * root is the tree we are copying into, and path is a scratch
298  * path for use in this function (it should be released on entry and
299  * will be released on exit).
300  *
301  * If the key is already in the destination tree the existing item is
302  * overwritten.  If the existing item isn't big enough, it is extended.
303  * If it is too large, it is truncated.
304  *
305  * If the key isn't in the destination yet, a new item is inserted.
306  */
307 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
308                                    struct btrfs_root *root,
309                                    struct btrfs_path *path,
310                                    struct extent_buffer *eb, int slot,
311                                    struct btrfs_key *key)
312 {
313         int ret;
314         u32 item_size;
315         u64 saved_i_size = 0;
316         int save_old_i_size = 0;
317         unsigned long src_ptr;
318         unsigned long dst_ptr;
319         int overwrite_root = 0;
320         bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
321
322         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
323                 overwrite_root = 1;
324
325         item_size = btrfs_item_size_nr(eb, slot);
326         src_ptr = btrfs_item_ptr_offset(eb, slot);
327
328         /* look for the key in the destination tree */
329         ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
330         if (ret < 0)
331                 return ret;
332
333         if (ret == 0) {
334                 char *src_copy;
335                 char *dst_copy;
336                 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
337                                                   path->slots[0]);
338                 if (dst_size != item_size)
339                         goto insert;
340
341                 if (item_size == 0) {
342                         btrfs_release_path(path);
343                         return 0;
344                 }
345                 dst_copy = kmalloc(item_size, GFP_NOFS);
346                 src_copy = kmalloc(item_size, GFP_NOFS);
347                 if (!dst_copy || !src_copy) {
348                         btrfs_release_path(path);
349                         kfree(dst_copy);
350                         kfree(src_copy);
351                         return -ENOMEM;
352                 }
353
354                 read_extent_buffer(eb, src_copy, src_ptr, item_size);
355
356                 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
357                 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
358                                    item_size);
359                 ret = memcmp(dst_copy, src_copy, item_size);
360
361                 kfree(dst_copy);
362                 kfree(src_copy);
363                 /*
364                  * they have the same contents, just return, this saves
365                  * us from cowing blocks in the destination tree and doing
366                  * extra writes that may not have been done by a previous
367                  * sync
368                  */
369                 if (ret == 0) {
370                         btrfs_release_path(path);
371                         return 0;
372                 }
373
374                 /*
375                  * We need to load the old nbytes into the inode so when we
376                  * replay the extents we've logged we get the right nbytes.
377                  */
378                 if (inode_item) {
379                         struct btrfs_inode_item *item;
380                         u64 nbytes;
381
382                         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
383                                               struct btrfs_inode_item);
384                         nbytes = btrfs_inode_nbytes(path->nodes[0], item);
385                         item = btrfs_item_ptr(eb, slot,
386                                               struct btrfs_inode_item);
387                         btrfs_set_inode_nbytes(eb, item, nbytes);
388                 }
389         } else if (inode_item) {
390                 struct btrfs_inode_item *item;
391
392                 /*
393                  * New inode, set nbytes to 0 so that the nbytes comes out
394                  * properly when we replay the extents.
395                  */
396                 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
397                 btrfs_set_inode_nbytes(eb, item, 0);
398         }
399 insert:
400         btrfs_release_path(path);
401         /* try to insert the key into the destination tree */
402         ret = btrfs_insert_empty_item(trans, root, path,
403                                       key, item_size);
404
405         /* make sure any existing item is the correct size */
406         if (ret == -EEXIST) {
407                 u32 found_size;
408                 found_size = btrfs_item_size_nr(path->nodes[0],
409                                                 path->slots[0]);
410                 if (found_size > item_size)
411                         btrfs_truncate_item(root, path, item_size, 1);
412                 else if (found_size < item_size)
413                         btrfs_extend_item(root, path,
414                                           item_size - found_size);
415         } else if (ret) {
416                 return ret;
417         }
418         dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
419                                         path->slots[0]);
420
421         /* don't overwrite an existing inode if the generation number
422          * was logged as zero.  This is done when the tree logging code
423          * is just logging an inode to make sure it exists after recovery.
424          *
425          * Also, don't overwrite i_size on directories during replay.
426          * log replay inserts and removes directory items based on the
427          * state of the tree found in the subvolume, and i_size is modified
428          * as it goes
429          */
430         if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
431                 struct btrfs_inode_item *src_item;
432                 struct btrfs_inode_item *dst_item;
433
434                 src_item = (struct btrfs_inode_item *)src_ptr;
435                 dst_item = (struct btrfs_inode_item *)dst_ptr;
436
437                 if (btrfs_inode_generation(eb, src_item) == 0)
438                         goto no_copy;
439
440                 if (overwrite_root &&
441                     S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
442                     S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
443                         save_old_i_size = 1;
444                         saved_i_size = btrfs_inode_size(path->nodes[0],
445                                                         dst_item);
446                 }
447         }
448
449         copy_extent_buffer(path->nodes[0], eb, dst_ptr,
450                            src_ptr, item_size);
451
452         if (save_old_i_size) {
453                 struct btrfs_inode_item *dst_item;
454                 dst_item = (struct btrfs_inode_item *)dst_ptr;
455                 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
456         }
457
458         /* make sure the generation is filled in */
459         if (key->type == BTRFS_INODE_ITEM_KEY) {
460                 struct btrfs_inode_item *dst_item;
461                 dst_item = (struct btrfs_inode_item *)dst_ptr;
462                 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
463                         btrfs_set_inode_generation(path->nodes[0], dst_item,
464                                                    trans->transid);
465                 }
466         }
467 no_copy:
468         btrfs_mark_buffer_dirty(path->nodes[0]);
469         btrfs_release_path(path);
470         return 0;
471 }
472
473 /*
474  * simple helper to read an inode off the disk from a given root
475  * This can only be called for subvolume roots and not for the log
476  */
477 static noinline struct inode *read_one_inode(struct btrfs_root *root,
478                                              u64 objectid)
479 {
480         struct btrfs_key key;
481         struct inode *inode;
482
483         key.objectid = objectid;
484         key.type = BTRFS_INODE_ITEM_KEY;
485         key.offset = 0;
486         inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
487         if (IS_ERR(inode)) {
488                 inode = NULL;
489         } else if (is_bad_inode(inode)) {
490                 iput(inode);
491                 inode = NULL;
492         }
493         return inode;
494 }
495
496 /* replays a single extent in 'eb' at 'slot' with 'key' into the
497  * subvolume 'root'.  path is released on entry and should be released
498  * on exit.
499  *
500  * extents in the log tree have not been allocated out of the extent
501  * tree yet.  So, this completes the allocation, taking a reference
502  * as required if the extent already exists or creating a new extent
503  * if it isn't in the extent allocation tree yet.
504  *
505  * The extent is inserted into the file, dropping any existing extents
506  * from the file that overlap the new one.
507  */
508 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
509                                       struct btrfs_root *root,
510                                       struct btrfs_path *path,
511                                       struct extent_buffer *eb, int slot,
512                                       struct btrfs_key *key)
513 {
514         int found_type;
515         u64 extent_end;
516         u64 start = key->offset;
517         u64 nbytes = 0;
518         struct btrfs_file_extent_item *item;
519         struct inode *inode = NULL;
520         unsigned long size;
521         int ret = 0;
522
523         item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
524         found_type = btrfs_file_extent_type(eb, item);
525
526         if (found_type == BTRFS_FILE_EXTENT_REG ||
527             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
528                 nbytes = btrfs_file_extent_num_bytes(eb, item);
529                 extent_end = start + nbytes;
530
531                 /*
532                  * We don't add to the inodes nbytes if we are prealloc or a
533                  * hole.
534                  */
535                 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
536                         nbytes = 0;
537         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
538                 size = btrfs_file_extent_inline_len(eb, item);
539                 nbytes = btrfs_file_extent_ram_bytes(eb, item);
540                 extent_end = ALIGN(start + size, root->sectorsize);
541         } else {
542                 ret = 0;
543                 goto out;
544         }
545
546         inode = read_one_inode(root, key->objectid);
547         if (!inode) {
548                 ret = -EIO;
549                 goto out;
550         }
551
552         /*
553          * first check to see if we already have this extent in the
554          * file.  This must be done before the btrfs_drop_extents run
555          * so we don't try to drop this extent.
556          */
557         ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
558                                        start, 0);
559
560         if (ret == 0 &&
561             (found_type == BTRFS_FILE_EXTENT_REG ||
562              found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
563                 struct btrfs_file_extent_item cmp1;
564                 struct btrfs_file_extent_item cmp2;
565                 struct btrfs_file_extent_item *existing;
566                 struct extent_buffer *leaf;
567
568                 leaf = path->nodes[0];
569                 existing = btrfs_item_ptr(leaf, path->slots[0],
570                                           struct btrfs_file_extent_item);
571
572                 read_extent_buffer(eb, &cmp1, (unsigned long)item,
573                                    sizeof(cmp1));
574                 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
575                                    sizeof(cmp2));
576
577                 /*
578                  * we already have a pointer to this exact extent,
579                  * we don't have to do anything
580                  */
581                 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
582                         btrfs_release_path(path);
583                         goto out;
584                 }
585         }
586         btrfs_release_path(path);
587
588         /* drop any overlapping extents */
589         ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
590         BUG_ON(ret);
591
592         if (found_type == BTRFS_FILE_EXTENT_REG ||
593             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
594                 u64 offset;
595                 unsigned long dest_offset;
596                 struct btrfs_key ins;
597
598                 ret = btrfs_insert_empty_item(trans, root, path, key,
599                                               sizeof(*item));
600                 BUG_ON(ret);
601                 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
602                                                     path->slots[0]);
603                 copy_extent_buffer(path->nodes[0], eb, dest_offset,
604                                 (unsigned long)item,  sizeof(*item));
605
606                 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
607                 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
608                 ins.type = BTRFS_EXTENT_ITEM_KEY;
609                 offset = key->offset - btrfs_file_extent_offset(eb, item);
610
611                 if (ins.objectid > 0) {
612                         u64 csum_start;
613                         u64 csum_end;
614                         LIST_HEAD(ordered_sums);
615                         /*
616                          * is this extent already allocated in the extent
617                          * allocation tree?  If so, just add a reference
618                          */
619                         ret = btrfs_lookup_extent(root, ins.objectid,
620                                                 ins.offset);
621                         if (ret == 0) {
622                                 ret = btrfs_inc_extent_ref(trans, root,
623                                                 ins.objectid, ins.offset,
624                                                 0, root->root_key.objectid,
625                                                 key->objectid, offset, 0);
626                                 BUG_ON(ret);
627                         } else {
628                                 /*
629                                  * insert the extent pointer in the extent
630                                  * allocation tree
631                                  */
632                                 ret = btrfs_alloc_logged_file_extent(trans,
633                                                 root, root->root_key.objectid,
634                                                 key->objectid, offset, &ins);
635                                 BUG_ON(ret);
636                         }
637                         btrfs_release_path(path);
638
639                         if (btrfs_file_extent_compression(eb, item)) {
640                                 csum_start = ins.objectid;
641                                 csum_end = csum_start + ins.offset;
642                         } else {
643                                 csum_start = ins.objectid +
644                                         btrfs_file_extent_offset(eb, item);
645                                 csum_end = csum_start +
646                                         btrfs_file_extent_num_bytes(eb, item);
647                         }
648
649                         ret = btrfs_lookup_csums_range(root->log_root,
650                                                 csum_start, csum_end - 1,
651                                                 &ordered_sums, 0);
652                         BUG_ON(ret);
653                         while (!list_empty(&ordered_sums)) {
654                                 struct btrfs_ordered_sum *sums;
655                                 sums = list_entry(ordered_sums.next,
656                                                 struct btrfs_ordered_sum,
657                                                 list);
658                                 ret = btrfs_csum_file_blocks(trans,
659                                                 root->fs_info->csum_root,
660                                                 sums);
661                                 BUG_ON(ret);
662                                 list_del(&sums->list);
663                                 kfree(sums);
664                         }
665                 } else {
666                         btrfs_release_path(path);
667                 }
668         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
669                 /* inline extents are easy, we just overwrite them */
670                 ret = overwrite_item(trans, root, path, eb, slot, key);
671                 BUG_ON(ret);
672         }
673
674         inode_add_bytes(inode, nbytes);
675         ret = btrfs_update_inode(trans, root, inode);
676 out:
677         if (inode)
678                 iput(inode);
679         return ret;
680 }
681
682 /*
683  * when cleaning up conflicts between the directory names in the
684  * subvolume, directory names in the log and directory names in the
685  * inode back references, we may have to unlink inodes from directories.
686  *
687  * This is a helper function to do the unlink of a specific directory
688  * item
689  */
690 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
691                                       struct btrfs_root *root,
692                                       struct btrfs_path *path,
693                                       struct inode *dir,
694                                       struct btrfs_dir_item *di)
695 {
696         struct inode *inode;
697         char *name;
698         int name_len;
699         struct extent_buffer *leaf;
700         struct btrfs_key location;
701         int ret;
702
703         leaf = path->nodes[0];
704
705         btrfs_dir_item_key_to_cpu(leaf, di, &location);
706         name_len = btrfs_dir_name_len(leaf, di);
707         name = kmalloc(name_len, GFP_NOFS);
708         if (!name)
709                 return -ENOMEM;
710
711         read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
712         btrfs_release_path(path);
713
714         inode = read_one_inode(root, location.objectid);
715         if (!inode) {
716                 kfree(name);
717                 return -EIO;
718         }
719
720         ret = link_to_fixup_dir(trans, root, path, location.objectid);
721         BUG_ON(ret);
722
723         ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
724         BUG_ON(ret);
725         kfree(name);
726
727         iput(inode);
728
729         btrfs_run_delayed_items(trans, root);
730         return ret;
731 }
732
733 /*
734  * helper function to see if a given name and sequence number found
735  * in an inode back reference are already in a directory and correctly
736  * point to this inode
737  */
738 static noinline int inode_in_dir(struct btrfs_root *root,
739                                  struct btrfs_path *path,
740                                  u64 dirid, u64 objectid, u64 index,
741                                  const char *name, int name_len)
742 {
743         struct btrfs_dir_item *di;
744         struct btrfs_key location;
745         int match = 0;
746
747         di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
748                                          index, name, name_len, 0);
749         if (di && !IS_ERR(di)) {
750                 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
751                 if (location.objectid != objectid)
752                         goto out;
753         } else
754                 goto out;
755         btrfs_release_path(path);
756
757         di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
758         if (di && !IS_ERR(di)) {
759                 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
760                 if (location.objectid != objectid)
761                         goto out;
762         } else
763                 goto out;
764         match = 1;
765 out:
766         btrfs_release_path(path);
767         return match;
768 }
769
770 /*
771  * helper function to check a log tree for a named back reference in
772  * an inode.  This is used to decide if a back reference that is
773  * found in the subvolume conflicts with what we find in the log.
774  *
775  * inode backreferences may have multiple refs in a single item,
776  * during replay we process one reference at a time, and we don't
777  * want to delete valid links to a file from the subvolume if that
778  * link is also in the log.
779  */
780 static noinline int backref_in_log(struct btrfs_root *log,
781                                    struct btrfs_key *key,
782                                    u64 ref_objectid,
783                                    char *name, int namelen)
784 {
785         struct btrfs_path *path;
786         struct btrfs_inode_ref *ref;
787         unsigned long ptr;
788         unsigned long ptr_end;
789         unsigned long name_ptr;
790         int found_name_len;
791         int item_size;
792         int ret;
793         int match = 0;
794
795         path = btrfs_alloc_path();
796         if (!path)
797                 return -ENOMEM;
798
799         ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
800         if (ret != 0)
801                 goto out;
802
803         ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
804
805         if (key->type == BTRFS_INODE_EXTREF_KEY) {
806                 if (btrfs_find_name_in_ext_backref(path, ref_objectid,
807                                                    name, namelen, NULL))
808                         match = 1;
809
810                 goto out;
811         }
812
813         item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
814         ptr_end = ptr + item_size;
815         while (ptr < ptr_end) {
816                 ref = (struct btrfs_inode_ref *)ptr;
817                 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
818                 if (found_name_len == namelen) {
819                         name_ptr = (unsigned long)(ref + 1);
820                         ret = memcmp_extent_buffer(path->nodes[0], name,
821                                                    name_ptr, namelen);
822                         if (ret == 0) {
823                                 match = 1;
824                                 goto out;
825                         }
826                 }
827                 ptr = (unsigned long)(ref + 1) + found_name_len;
828         }
829 out:
830         btrfs_free_path(path);
831         return match;
832 }
833
834 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
835                                   struct btrfs_root *root,
836                                   struct btrfs_path *path,
837                                   struct btrfs_root *log_root,
838                                   struct inode *dir, struct inode *inode,
839                                   struct extent_buffer *eb,
840                                   u64 inode_objectid, u64 parent_objectid,
841                                   u64 ref_index, char *name, int namelen,
842                                   int *search_done)
843 {
844         int ret;
845         char *victim_name;
846         int victim_name_len;
847         struct extent_buffer *leaf;
848         struct btrfs_dir_item *di;
849         struct btrfs_key search_key;
850         struct btrfs_inode_extref *extref;
851
852 again:
853         /* Search old style refs */
854         search_key.objectid = inode_objectid;
855         search_key.type = BTRFS_INODE_REF_KEY;
856         search_key.offset = parent_objectid;
857         ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
858         if (ret == 0) {
859                 struct btrfs_inode_ref *victim_ref;
860                 unsigned long ptr;
861                 unsigned long ptr_end;
862
863                 leaf = path->nodes[0];
864
865                 /* are we trying to overwrite a back ref for the root directory
866                  * if so, just jump out, we're done
867                  */
868                 if (search_key.objectid == search_key.offset)
869                         return 1;
870
871                 /* check all the names in this back reference to see
872                  * if they are in the log.  if so, we allow them to stay
873                  * otherwise they must be unlinked as a conflict
874                  */
875                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
876                 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
877                 while (ptr < ptr_end) {
878                         victim_ref = (struct btrfs_inode_ref *)ptr;
879                         victim_name_len = btrfs_inode_ref_name_len(leaf,
880                                                                    victim_ref);
881                         victim_name = kmalloc(victim_name_len, GFP_NOFS);
882                         BUG_ON(!victim_name);
883
884                         read_extent_buffer(leaf, victim_name,
885                                            (unsigned long)(victim_ref + 1),
886                                            victim_name_len);
887
888                         if (!backref_in_log(log_root, &search_key,
889                                             parent_objectid,
890                                             victim_name,
891                                             victim_name_len)) {
892                                 btrfs_inc_nlink(inode);
893                                 btrfs_release_path(path);
894
895                                 ret = btrfs_unlink_inode(trans, root, dir,
896                                                          inode, victim_name,
897                                                          victim_name_len);
898                                 BUG_ON(ret);
899                                 btrfs_run_delayed_items(trans, root);
900                                 kfree(victim_name);
901                                 *search_done = 1;
902                                 goto again;
903                         }
904                         kfree(victim_name);
905
906                         ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
907                 }
908                 BUG_ON(ret);
909
910                 /*
911                  * NOTE: we have searched root tree and checked the
912                  * coresponding ref, it does not need to check again.
913                  */
914                 *search_done = 1;
915         }
916         btrfs_release_path(path);
917
918         /* Same search but for extended refs */
919         extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
920                                            inode_objectid, parent_objectid, 0,
921                                            0);
922         if (!IS_ERR_OR_NULL(extref)) {
923                 u32 item_size;
924                 u32 cur_offset = 0;
925                 unsigned long base;
926                 struct inode *victim_parent;
927
928                 leaf = path->nodes[0];
929
930                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
931                 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
932
933                 while (cur_offset < item_size) {
934                         extref = (struct btrfs_inode_extref *)base + cur_offset;
935
936                         victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
937
938                         if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
939                                 goto next;
940
941                         victim_name = kmalloc(victim_name_len, GFP_NOFS);
942                         read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
943                                            victim_name_len);
944
945                         search_key.objectid = inode_objectid;
946                         search_key.type = BTRFS_INODE_EXTREF_KEY;
947                         search_key.offset = btrfs_extref_hash(parent_objectid,
948                                                               victim_name,
949                                                               victim_name_len);
950                         ret = 0;
951                         if (!backref_in_log(log_root, &search_key,
952                                             parent_objectid, victim_name,
953                                             victim_name_len)) {
954                                 ret = -ENOENT;
955                                 victim_parent = read_one_inode(root,
956                                                                parent_objectid);
957                                 if (victim_parent) {
958                                         btrfs_inc_nlink(inode);
959                                         btrfs_release_path(path);
960
961                                         ret = btrfs_unlink_inode(trans, root,
962                                                                  victim_parent,
963                                                                  inode,
964                                                                  victim_name,
965                                                                  victim_name_len);
966                                         btrfs_run_delayed_items(trans, root);
967                                 }
968                                 BUG_ON(ret);
969                                 iput(victim_parent);
970                                 kfree(victim_name);
971                                 *search_done = 1;
972                                 goto again;
973                         }
974                         kfree(victim_name);
975                         BUG_ON(ret);
976 next:
977                         cur_offset += victim_name_len + sizeof(*extref);
978                 }
979                 *search_done = 1;
980         }
981         btrfs_release_path(path);
982
983         /* look for a conflicting sequence number */
984         di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
985                                          ref_index, name, namelen, 0);
986         if (di && !IS_ERR(di)) {
987                 ret = drop_one_dir_item(trans, root, path, dir, di);
988                 BUG_ON(ret);
989         }
990         btrfs_release_path(path);
991
992         /* look for a conflicing name */
993         di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
994                                    name, namelen, 0);
995         if (di && !IS_ERR(di)) {
996                 ret = drop_one_dir_item(trans, root, path, dir, di);
997                 BUG_ON(ret);
998         }
999         btrfs_release_path(path);
1000
1001         return 0;
1002 }
1003
1004 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1005                              u32 *namelen, char **name, u64 *index,
1006                              u64 *parent_objectid)
1007 {
1008         struct btrfs_inode_extref *extref;
1009
1010         extref = (struct btrfs_inode_extref *)ref_ptr;
1011
1012         *namelen = btrfs_inode_extref_name_len(eb, extref);
1013         *name = kmalloc(*namelen, GFP_NOFS);
1014         if (*name == NULL)
1015                 return -ENOMEM;
1016
1017         read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1018                            *namelen);
1019
1020         *index = btrfs_inode_extref_index(eb, extref);
1021         if (parent_objectid)
1022                 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1023
1024         return 0;
1025 }
1026
1027 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1028                           u32 *namelen, char **name, u64 *index)
1029 {
1030         struct btrfs_inode_ref *ref;
1031
1032         ref = (struct btrfs_inode_ref *)ref_ptr;
1033
1034         *namelen = btrfs_inode_ref_name_len(eb, ref);
1035         *name = kmalloc(*namelen, GFP_NOFS);
1036         if (*name == NULL)
1037                 return -ENOMEM;
1038
1039         read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1040
1041         *index = btrfs_inode_ref_index(eb, ref);
1042
1043         return 0;
1044 }
1045
1046 /*
1047  * replay one inode back reference item found in the log tree.
1048  * eb, slot and key refer to the buffer and key found in the log tree.
1049  * root is the destination we are replaying into, and path is for temp
1050  * use by this function.  (it should be released on return).
1051  */
1052 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1053                                   struct btrfs_root *root,
1054                                   struct btrfs_root *log,
1055                                   struct btrfs_path *path,
1056                                   struct extent_buffer *eb, int slot,
1057                                   struct btrfs_key *key)
1058 {
1059         struct inode *dir;
1060         struct inode *inode;
1061         unsigned long ref_ptr;
1062         unsigned long ref_end;
1063         char *name;
1064         int namelen;
1065         int ret;
1066         int search_done = 0;
1067         int log_ref_ver = 0;
1068         u64 parent_objectid;
1069         u64 inode_objectid;
1070         u64 ref_index = 0;
1071         int ref_struct_size;
1072
1073         ref_ptr = btrfs_item_ptr_offset(eb, slot);
1074         ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1075
1076         if (key->type == BTRFS_INODE_EXTREF_KEY) {
1077                 struct btrfs_inode_extref *r;
1078
1079                 ref_struct_size = sizeof(struct btrfs_inode_extref);
1080                 log_ref_ver = 1;
1081                 r = (struct btrfs_inode_extref *)ref_ptr;
1082                 parent_objectid = btrfs_inode_extref_parent(eb, r);
1083         } else {
1084                 ref_struct_size = sizeof(struct btrfs_inode_ref);
1085                 parent_objectid = key->offset;
1086         }
1087         inode_objectid = key->objectid;
1088
1089         /*
1090          * it is possible that we didn't log all the parent directories
1091          * for a given inode.  If we don't find the dir, just don't
1092          * copy the back ref in.  The link count fixup code will take
1093          * care of the rest
1094          */
1095         dir = read_one_inode(root, parent_objectid);
1096         if (!dir)
1097                 return -ENOENT;
1098
1099         inode = read_one_inode(root, inode_objectid);
1100         if (!inode) {
1101                 iput(dir);
1102                 return -EIO;
1103         }
1104
1105         while (ref_ptr < ref_end) {
1106                 if (log_ref_ver) {
1107                         ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1108                                                 &ref_index, &parent_objectid);
1109                         /*
1110                          * parent object can change from one array
1111                          * item to another.
1112                          */
1113                         if (!dir)
1114                                 dir = read_one_inode(root, parent_objectid);
1115                         if (!dir)
1116                                 return -ENOENT;
1117                 } else {
1118                         ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1119                                              &ref_index);
1120                 }
1121                 if (ret)
1122                         return ret;
1123
1124                 /* if we already have a perfect match, we're done */
1125                 if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
1126                                   ref_index, name, namelen)) {
1127                         /*
1128                          * look for a conflicting back reference in the
1129                          * metadata. if we find one we have to unlink that name
1130                          * of the file before we add our new link.  Later on, we
1131                          * overwrite any existing back reference, and we don't
1132                          * want to create dangling pointers in the directory.
1133                          */
1134
1135                         if (!search_done) {
1136                                 ret = __add_inode_ref(trans, root, path, log,
1137                                                       dir, inode, eb,
1138                                                       inode_objectid,
1139                                                       parent_objectid,
1140                                                       ref_index, name, namelen,
1141                                                       &search_done);
1142                                 if (ret == 1)
1143                                         goto out;
1144                                 BUG_ON(ret);
1145                         }
1146
1147                         /* insert our name */
1148                         ret = btrfs_add_link(trans, dir, inode, name, namelen,
1149                                              0, ref_index);
1150                         BUG_ON(ret);
1151
1152                         btrfs_update_inode(trans, root, inode);
1153                 }
1154
1155                 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1156                 kfree(name);
1157                 if (log_ref_ver) {
1158                         iput(dir);
1159                         dir = NULL;
1160                 }
1161         }
1162
1163         /* finally write the back reference in the inode */
1164         ret = overwrite_item(trans, root, path, eb, slot, key);
1165         BUG_ON(ret);
1166
1167 out:
1168         btrfs_release_path(path);
1169         iput(dir);
1170         iput(inode);
1171         return 0;
1172 }
1173
1174 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1175                               struct btrfs_root *root, u64 offset)
1176 {
1177         int ret;
1178         ret = btrfs_find_orphan_item(root, offset);
1179         if (ret > 0)
1180                 ret = btrfs_insert_orphan_item(trans, root, offset);
1181         return ret;
1182 }
1183
1184 static int count_inode_extrefs(struct btrfs_root *root,
1185                                struct inode *inode, struct btrfs_path *path)
1186 {
1187         int ret = 0;
1188         int name_len;
1189         unsigned int nlink = 0;
1190         u32 item_size;
1191         u32 cur_offset = 0;
1192         u64 inode_objectid = btrfs_ino(inode);
1193         u64 offset = 0;
1194         unsigned long ptr;
1195         struct btrfs_inode_extref *extref;
1196         struct extent_buffer *leaf;
1197
1198         while (1) {
1199                 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1200                                             &extref, &offset);
1201                 if (ret)
1202                         break;
1203
1204                 leaf = path->nodes[0];
1205                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1206                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1207
1208                 while (cur_offset < item_size) {
1209                         extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1210                         name_len = btrfs_inode_extref_name_len(leaf, extref);
1211
1212                         nlink++;
1213
1214                         cur_offset += name_len + sizeof(*extref);
1215                 }
1216
1217                 offset++;
1218                 btrfs_release_path(path);
1219         }
1220         btrfs_release_path(path);
1221
1222         if (ret < 0)
1223                 return ret;
1224         return nlink;
1225 }
1226
1227 static int count_inode_refs(struct btrfs_root *root,
1228                                struct inode *inode, struct btrfs_path *path)
1229 {
1230         int ret;
1231         struct btrfs_key key;
1232         unsigned int nlink = 0;
1233         unsigned long ptr;
1234         unsigned long ptr_end;
1235         int name_len;
1236         u64 ino = btrfs_ino(inode);
1237
1238         key.objectid = ino;
1239         key.type = BTRFS_INODE_REF_KEY;
1240         key.offset = (u64)-1;
1241
1242         while (1) {
1243                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1244                 if (ret < 0)
1245                         break;
1246                 if (ret > 0) {
1247                         if (path->slots[0] == 0)
1248                                 break;
1249                         path->slots[0]--;
1250                 }
1251                 btrfs_item_key_to_cpu(path->nodes[0], &key,
1252                                       path->slots[0]);
1253                 if (key.objectid != ino ||
1254                     key.type != BTRFS_INODE_REF_KEY)
1255                         break;
1256                 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1257                 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1258                                                    path->slots[0]);
1259                 while (ptr < ptr_end) {
1260                         struct btrfs_inode_ref *ref;
1261
1262                         ref = (struct btrfs_inode_ref *)ptr;
1263                         name_len = btrfs_inode_ref_name_len(path->nodes[0],
1264                                                             ref);
1265                         ptr = (unsigned long)(ref + 1) + name_len;
1266                         nlink++;
1267                 }
1268
1269                 if (key.offset == 0)
1270                         break;
1271                 key.offset--;
1272                 btrfs_release_path(path);
1273         }
1274         btrfs_release_path(path);
1275
1276         return nlink;
1277 }
1278
1279 /*
1280  * There are a few corners where the link count of the file can't
1281  * be properly maintained during replay.  So, instead of adding
1282  * lots of complexity to the log code, we just scan the backrefs
1283  * for any file that has been through replay.
1284  *
1285  * The scan will update the link count on the inode to reflect the
1286  * number of back refs found.  If it goes down to zero, the iput
1287  * will free the inode.
1288  */
1289 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1290                                            struct btrfs_root *root,
1291                                            struct inode *inode)
1292 {
1293         struct btrfs_path *path;
1294         int ret;
1295         u64 nlink = 0;
1296         u64 ino = btrfs_ino(inode);
1297
1298         path = btrfs_alloc_path();
1299         if (!path)
1300                 return -ENOMEM;
1301
1302         ret = count_inode_refs(root, inode, path);
1303         if (ret < 0)
1304                 goto out;
1305
1306         nlink = ret;
1307
1308         ret = count_inode_extrefs(root, inode, path);
1309         if (ret == -ENOENT)
1310                 ret = 0;
1311
1312         if (ret < 0)
1313                 goto out;
1314
1315         nlink += ret;
1316
1317         ret = 0;
1318
1319         if (nlink != inode->i_nlink) {
1320                 set_nlink(inode, nlink);
1321                 btrfs_update_inode(trans, root, inode);
1322         }
1323         BTRFS_I(inode)->index_cnt = (u64)-1;
1324
1325         if (inode->i_nlink == 0) {
1326                 if (S_ISDIR(inode->i_mode)) {
1327                         ret = replay_dir_deletes(trans, root, NULL, path,
1328                                                  ino, 1);
1329                         BUG_ON(ret);
1330                 }
1331                 ret = insert_orphan_item(trans, root, ino);
1332                 BUG_ON(ret);
1333         }
1334
1335 out:
1336         btrfs_free_path(path);
1337         return ret;
1338 }
1339
1340 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1341                                             struct btrfs_root *root,
1342                                             struct btrfs_path *path)
1343 {
1344         int ret;
1345         struct btrfs_key key;
1346         struct inode *inode;
1347
1348         key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1349         key.type = BTRFS_ORPHAN_ITEM_KEY;
1350         key.offset = (u64)-1;
1351         while (1) {
1352                 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1353                 if (ret < 0)
1354                         break;
1355
1356                 if (ret == 1) {
1357                         if (path->slots[0] == 0)
1358                                 break;
1359                         path->slots[0]--;
1360                 }
1361
1362                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1363                 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1364                     key.type != BTRFS_ORPHAN_ITEM_KEY)
1365                         break;
1366
1367                 ret = btrfs_del_item(trans, root, path);
1368                 if (ret)
1369                         goto out;
1370
1371                 btrfs_release_path(path);
1372                 inode = read_one_inode(root, key.offset);
1373                 if (!inode)
1374                         return -EIO;
1375
1376                 ret = fixup_inode_link_count(trans, root, inode);
1377                 BUG_ON(ret);
1378
1379                 iput(inode);
1380
1381                 /*
1382                  * fixup on a directory may create new entries,
1383                  * make sure we always look for the highset possible
1384                  * offset
1385                  */
1386                 key.offset = (u64)-1;
1387         }
1388         ret = 0;
1389 out:
1390         btrfs_release_path(path);
1391         return ret;
1392 }
1393
1394
1395 /*
1396  * record a given inode in the fixup dir so we can check its link
1397  * count when replay is done.  The link count is incremented here
1398  * so the inode won't go away until we check it
1399  */
1400 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1401                                       struct btrfs_root *root,
1402                                       struct btrfs_path *path,
1403                                       u64 objectid)
1404 {
1405         struct btrfs_key key;
1406         int ret = 0;
1407         struct inode *inode;
1408
1409         inode = read_one_inode(root, objectid);
1410         if (!inode)
1411                 return -EIO;
1412
1413         key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1414         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1415         key.offset = objectid;
1416
1417         ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1418
1419         btrfs_release_path(path);
1420         if (ret == 0) {
1421                 if (!inode->i_nlink)
1422                         set_nlink(inode, 1);
1423                 else
1424                         btrfs_inc_nlink(inode);
1425                 ret = btrfs_update_inode(trans, root, inode);
1426         } else if (ret == -EEXIST) {
1427                 ret = 0;
1428         } else {
1429                 BUG();
1430         }
1431         iput(inode);
1432
1433         return ret;
1434 }
1435
1436 /*
1437  * when replaying the log for a directory, we only insert names
1438  * for inodes that actually exist.  This means an fsync on a directory
1439  * does not implicitly fsync all the new files in it
1440  */
1441 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1442                                     struct btrfs_root *root,
1443                                     struct btrfs_path *path,
1444                                     u64 dirid, u64 index,
1445                                     char *name, int name_len, u8 type,
1446                                     struct btrfs_key *location)
1447 {
1448         struct inode *inode;
1449         struct inode *dir;
1450         int ret;
1451
1452         inode = read_one_inode(root, location->objectid);
1453         if (!inode)
1454                 return -ENOENT;
1455
1456         dir = read_one_inode(root, dirid);
1457         if (!dir) {
1458                 iput(inode);
1459                 return -EIO;
1460         }
1461         ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1462
1463         /* FIXME, put inode into FIXUP list */
1464
1465         iput(inode);
1466         iput(dir);
1467         return ret;
1468 }
1469
1470 /*
1471  * take a single entry in a log directory item and replay it into
1472  * the subvolume.
1473  *
1474  * if a conflicting item exists in the subdirectory already,
1475  * the inode it points to is unlinked and put into the link count
1476  * fix up tree.
1477  *
1478  * If a name from the log points to a file or directory that does
1479  * not exist in the FS, it is skipped.  fsyncs on directories
1480  * do not force down inodes inside that directory, just changes to the
1481  * names or unlinks in a directory.
1482  */
1483 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1484                                     struct btrfs_root *root,
1485                                     struct btrfs_path *path,
1486                                     struct extent_buffer *eb,
1487                                     struct btrfs_dir_item *di,
1488                                     struct btrfs_key *key)
1489 {
1490         char *name;
1491         int name_len;
1492         struct btrfs_dir_item *dst_di;
1493         struct btrfs_key found_key;
1494         struct btrfs_key log_key;
1495         struct inode *dir;
1496         u8 log_type;
1497         int exists;
1498         int ret;
1499
1500         dir = read_one_inode(root, key->objectid);
1501         if (!dir)
1502                 return -EIO;
1503
1504         name_len = btrfs_dir_name_len(eb, di);
1505         name = kmalloc(name_len, GFP_NOFS);
1506         if (!name)
1507                 return -ENOMEM;
1508
1509         log_type = btrfs_dir_type(eb, di);
1510         read_extent_buffer(eb, name, (unsigned long)(di + 1),
1511                    name_len);
1512
1513         btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1514         exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1515         if (exists == 0)
1516                 exists = 1;
1517         else
1518                 exists = 0;
1519         btrfs_release_path(path);
1520
1521         if (key->type == BTRFS_DIR_ITEM_KEY) {
1522                 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1523                                        name, name_len, 1);
1524         } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1525                 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1526                                                      key->objectid,
1527                                                      key->offset, name,
1528                                                      name_len, 1);
1529         } else {
1530                 BUG();
1531         }
1532         if (IS_ERR_OR_NULL(dst_di)) {
1533                 /* we need a sequence number to insert, so we only
1534                  * do inserts for the BTRFS_DIR_INDEX_KEY types
1535                  */
1536                 if (key->type != BTRFS_DIR_INDEX_KEY)
1537                         goto out;
1538                 goto insert;
1539         }
1540
1541         btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1542         /* the existing item matches the logged item */
1543         if (found_key.objectid == log_key.objectid &&
1544             found_key.type == log_key.type &&
1545             found_key.offset == log_key.offset &&
1546             btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1547                 goto out;
1548         }
1549
1550         /*
1551          * don't drop the conflicting directory entry if the inode
1552          * for the new entry doesn't exist
1553          */
1554         if (!exists)
1555                 goto out;
1556
1557         ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1558         BUG_ON(ret);
1559
1560         if (key->type == BTRFS_DIR_INDEX_KEY)
1561                 goto insert;
1562 out:
1563         btrfs_release_path(path);
1564         kfree(name);
1565         iput(dir);
1566         return 0;
1567
1568 insert:
1569         btrfs_release_path(path);
1570         ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1571                               name, name_len, log_type, &log_key);
1572
1573         BUG_ON(ret && ret != -ENOENT);
1574         goto out;
1575 }
1576
1577 /*
1578  * find all the names in a directory item and reconcile them into
1579  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1580  * one name in a directory item, but the same code gets used for
1581  * both directory index types
1582  */
1583 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1584                                         struct btrfs_root *root,
1585                                         struct btrfs_path *path,
1586                                         struct extent_buffer *eb, int slot,
1587                                         struct btrfs_key *key)
1588 {
1589         int ret;
1590         u32 item_size = btrfs_item_size_nr(eb, slot);
1591         struct btrfs_dir_item *di;
1592         int name_len;
1593         unsigned long ptr;
1594         unsigned long ptr_end;
1595
1596         ptr = btrfs_item_ptr_offset(eb, slot);
1597         ptr_end = ptr + item_size;
1598         while (ptr < ptr_end) {
1599                 di = (struct btrfs_dir_item *)ptr;
1600                 if (verify_dir_item(root, eb, di))
1601                         return -EIO;
1602                 name_len = btrfs_dir_name_len(eb, di);
1603                 ret = replay_one_name(trans, root, path, eb, di, key);
1604                 BUG_ON(ret);
1605                 ptr = (unsigned long)(di + 1);
1606                 ptr += name_len;
1607         }
1608         return 0;
1609 }
1610
1611 /*
1612  * directory replay has two parts.  There are the standard directory
1613  * items in the log copied from the subvolume, and range items
1614  * created in the log while the subvolume was logged.
1615  *
1616  * The range items tell us which parts of the key space the log
1617  * is authoritative for.  During replay, if a key in the subvolume
1618  * directory is in a logged range item, but not actually in the log
1619  * that means it was deleted from the directory before the fsync
1620  * and should be removed.
1621  */
1622 static noinline int find_dir_range(struct btrfs_root *root,
1623                                    struct btrfs_path *path,
1624                                    u64 dirid, int key_type,
1625                                    u64 *start_ret, u64 *end_ret)
1626 {
1627         struct btrfs_key key;
1628         u64 found_end;
1629         struct btrfs_dir_log_item *item;
1630         int ret;
1631         int nritems;
1632
1633         if (*start_ret == (u64)-1)
1634                 return 1;
1635
1636         key.objectid = dirid;
1637         key.type = key_type;
1638         key.offset = *start_ret;
1639
1640         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1641         if (ret < 0)
1642                 goto out;
1643         if (ret > 0) {
1644                 if (path->slots[0] == 0)
1645                         goto out;
1646                 path->slots[0]--;
1647         }
1648         if (ret != 0)
1649                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1650
1651         if (key.type != key_type || key.objectid != dirid) {
1652                 ret = 1;
1653                 goto next;
1654         }
1655         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1656                               struct btrfs_dir_log_item);
1657         found_end = btrfs_dir_log_end(path->nodes[0], item);
1658
1659         if (*start_ret >= key.offset && *start_ret <= found_end) {
1660                 ret = 0;
1661                 *start_ret = key.offset;
1662                 *end_ret = found_end;
1663                 goto out;
1664         }
1665         ret = 1;
1666 next:
1667         /* check the next slot in the tree to see if it is a valid item */
1668         nritems = btrfs_header_nritems(path->nodes[0]);
1669         if (path->slots[0] >= nritems) {
1670                 ret = btrfs_next_leaf(root, path);
1671                 if (ret)
1672                         goto out;
1673         } else {
1674                 path->slots[0]++;
1675         }
1676
1677         btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1678
1679         if (key.type != key_type || key.objectid != dirid) {
1680                 ret = 1;
1681                 goto out;
1682         }
1683         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1684                               struct btrfs_dir_log_item);
1685         found_end = btrfs_dir_log_end(path->nodes[0], item);
1686         *start_ret = key.offset;
1687         *end_ret = found_end;
1688         ret = 0;
1689 out:
1690         btrfs_release_path(path);
1691         return ret;
1692 }
1693
1694 /*
1695  * this looks for a given directory item in the log.  If the directory
1696  * item is not in the log, the item is removed and the inode it points
1697  * to is unlinked
1698  */
1699 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1700                                       struct btrfs_root *root,
1701                                       struct btrfs_root *log,
1702                                       struct btrfs_path *path,
1703                                       struct btrfs_path *log_path,
1704                                       struct inode *dir,
1705                                       struct btrfs_key *dir_key)
1706 {
1707         int ret;
1708         struct extent_buffer *eb;
1709         int slot;
1710         u32 item_size;
1711         struct btrfs_dir_item *di;
1712         struct btrfs_dir_item *log_di;
1713         int name_len;
1714         unsigned long ptr;
1715         unsigned long ptr_end;
1716         char *name;
1717         struct inode *inode;
1718         struct btrfs_key location;
1719
1720 again:
1721         eb = path->nodes[0];
1722         slot = path->slots[0];
1723         item_size = btrfs_item_size_nr(eb, slot);
1724         ptr = btrfs_item_ptr_offset(eb, slot);
1725         ptr_end = ptr + item_size;
1726         while (ptr < ptr_end) {
1727                 di = (struct btrfs_dir_item *)ptr;
1728                 if (verify_dir_item(root, eb, di)) {
1729                         ret = -EIO;
1730                         goto out;
1731                 }
1732
1733                 name_len = btrfs_dir_name_len(eb, di);
1734                 name = kmalloc(name_len, GFP_NOFS);
1735                 if (!name) {
1736                         ret = -ENOMEM;
1737                         goto out;
1738                 }
1739                 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1740                                   name_len);
1741                 log_di = NULL;
1742                 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1743                         log_di = btrfs_lookup_dir_item(trans, log, log_path,
1744                                                        dir_key->objectid,
1745                                                        name, name_len, 0);
1746                 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
1747                         log_di = btrfs_lookup_dir_index_item(trans, log,
1748                                                      log_path,
1749                                                      dir_key->objectid,
1750                                                      dir_key->offset,
1751                                                      name, name_len, 0);
1752                 }
1753                 if (IS_ERR_OR_NULL(log_di)) {
1754                         btrfs_dir_item_key_to_cpu(eb, di, &location);
1755                         btrfs_release_path(path);
1756                         btrfs_release_path(log_path);
1757                         inode = read_one_inode(root, location.objectid);
1758                         if (!inode) {
1759                                 kfree(name);
1760                                 return -EIO;
1761                         }
1762
1763                         ret = link_to_fixup_dir(trans, root,
1764                                                 path, location.objectid);
1765                         BUG_ON(ret);
1766                         btrfs_inc_nlink(inode);
1767                         ret = btrfs_unlink_inode(trans, root, dir, inode,
1768                                                  name, name_len);
1769                         BUG_ON(ret);
1770
1771                         btrfs_run_delayed_items(trans, root);
1772
1773                         kfree(name);
1774                         iput(inode);
1775
1776                         /* there might still be more names under this key
1777                          * check and repeat if required
1778                          */
1779                         ret = btrfs_search_slot(NULL, root, dir_key, path,
1780                                                 0, 0);
1781                         if (ret == 0)
1782                                 goto again;
1783                         ret = 0;
1784                         goto out;
1785                 }
1786                 btrfs_release_path(log_path);
1787                 kfree(name);
1788
1789                 ptr = (unsigned long)(di + 1);
1790                 ptr += name_len;
1791         }
1792         ret = 0;
1793 out:
1794         btrfs_release_path(path);
1795         btrfs_release_path(log_path);
1796         return ret;
1797 }
1798
1799 /*
1800  * deletion replay happens before we copy any new directory items
1801  * out of the log or out of backreferences from inodes.  It
1802  * scans the log to find ranges of keys that log is authoritative for,
1803  * and then scans the directory to find items in those ranges that are
1804  * not present in the log.
1805  *
1806  * Anything we don't find in the log is unlinked and removed from the
1807  * directory.
1808  */
1809 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1810                                        struct btrfs_root *root,
1811                                        struct btrfs_root *log,
1812                                        struct btrfs_path *path,
1813                                        u64 dirid, int del_all)
1814 {
1815         u64 range_start;
1816         u64 range_end;
1817         int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1818         int ret = 0;
1819         struct btrfs_key dir_key;
1820         struct btrfs_key found_key;
1821         struct btrfs_path *log_path;
1822         struct inode *dir;
1823
1824         dir_key.objectid = dirid;
1825         dir_key.type = BTRFS_DIR_ITEM_KEY;
1826         log_path = btrfs_alloc_path();
1827         if (!log_path)
1828                 return -ENOMEM;
1829
1830         dir = read_one_inode(root, dirid);
1831         /* it isn't an error if the inode isn't there, that can happen
1832          * because we replay the deletes before we copy in the inode item
1833          * from the log
1834          */
1835         if (!dir) {
1836                 btrfs_free_path(log_path);
1837                 return 0;
1838         }
1839 again:
1840         range_start = 0;
1841         range_end = 0;
1842         while (1) {
1843                 if (del_all)
1844                         range_end = (u64)-1;
1845                 else {
1846                         ret = find_dir_range(log, path, dirid, key_type,
1847                                              &range_start, &range_end);
1848                         if (ret != 0)
1849                                 break;
1850                 }
1851
1852                 dir_key.offset = range_start;
1853                 while (1) {
1854                         int nritems;
1855                         ret = btrfs_search_slot(NULL, root, &dir_key, path,
1856                                                 0, 0);
1857                         if (ret < 0)
1858                                 goto out;
1859
1860                         nritems = btrfs_header_nritems(path->nodes[0]);
1861                         if (path->slots[0] >= nritems) {
1862                                 ret = btrfs_next_leaf(root, path);
1863                                 if (ret)
1864                                         break;
1865                         }
1866                         btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1867                                               path->slots[0]);
1868                         if (found_key.objectid != dirid ||
1869                             found_key.type != dir_key.type)
1870                                 goto next_type;
1871
1872                         if (found_key.offset > range_end)
1873                                 break;
1874
1875                         ret = check_item_in_log(trans, root, log, path,
1876                                                 log_path, dir,
1877                                                 &found_key);
1878                         BUG_ON(ret);
1879                         if (found_key.offset == (u64)-1)
1880                                 break;
1881                         dir_key.offset = found_key.offset + 1;
1882                 }
1883                 btrfs_release_path(path);
1884                 if (range_end == (u64)-1)
1885                         break;
1886                 range_start = range_end + 1;
1887         }
1888
1889 next_type:
1890         ret = 0;
1891         if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1892                 key_type = BTRFS_DIR_LOG_INDEX_KEY;
1893                 dir_key.type = BTRFS_DIR_INDEX_KEY;
1894                 btrfs_release_path(path);
1895                 goto again;
1896         }
1897 out:
1898         btrfs_release_path(path);
1899         btrfs_free_path(log_path);
1900         iput(dir);
1901         return ret;
1902 }
1903
1904 /*
1905  * the process_func used to replay items from the log tree.  This
1906  * gets called in two different stages.  The first stage just looks
1907  * for inodes and makes sure they are all copied into the subvolume.
1908  *
1909  * The second stage copies all the other item types from the log into
1910  * the subvolume.  The two stage approach is slower, but gets rid of
1911  * lots of complexity around inodes referencing other inodes that exist
1912  * only in the log (references come from either directory items or inode
1913  * back refs).
1914  */
1915 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1916                              struct walk_control *wc, u64 gen)
1917 {
1918         int nritems;
1919         struct btrfs_path *path;
1920         struct btrfs_root *root = wc->replay_dest;
1921         struct btrfs_key key;
1922         int level;
1923         int i;
1924         int ret;
1925
1926         ret = btrfs_read_buffer(eb, gen);
1927         if (ret)
1928                 return ret;
1929
1930         level = btrfs_header_level(eb);
1931
1932         if (level != 0)
1933                 return 0;
1934
1935         path = btrfs_alloc_path();
1936         if (!path)
1937                 return -ENOMEM;
1938
1939         nritems = btrfs_header_nritems(eb);
1940         for (i = 0; i < nritems; i++) {
1941                 btrfs_item_key_to_cpu(eb, &key, i);
1942
1943                 /* inode keys are done during the first stage */
1944                 if (key.type == BTRFS_INODE_ITEM_KEY &&
1945                     wc->stage == LOG_WALK_REPLAY_INODES) {
1946                         struct btrfs_inode_item *inode_item;
1947                         u32 mode;
1948
1949                         inode_item = btrfs_item_ptr(eb, i,
1950                                             struct btrfs_inode_item);
1951                         mode = btrfs_inode_mode(eb, inode_item);
1952                         if (S_ISDIR(mode)) {
1953                                 ret = replay_dir_deletes(wc->trans,
1954                                          root, log, path, key.objectid, 0);
1955                                 BUG_ON(ret);
1956                         }
1957                         ret = overwrite_item(wc->trans, root, path,
1958                                              eb, i, &key);
1959                         BUG_ON(ret);
1960
1961                         /* for regular files, make sure corresponding
1962                          * orhpan item exist. extents past the new EOF
1963                          * will be truncated later by orphan cleanup.
1964                          */
1965                         if (S_ISREG(mode)) {
1966                                 ret = insert_orphan_item(wc->trans, root,
1967                                                          key.objectid);
1968                                 BUG_ON(ret);
1969                         }
1970
1971                         ret = link_to_fixup_dir(wc->trans, root,
1972                                                 path, key.objectid);
1973                         BUG_ON(ret);
1974                 }
1975                 if (wc->stage < LOG_WALK_REPLAY_ALL)
1976                         continue;
1977
1978                 /* these keys are simply copied */
1979                 if (key.type == BTRFS_XATTR_ITEM_KEY) {
1980                         ret = overwrite_item(wc->trans, root, path,
1981                                              eb, i, &key);
1982                         BUG_ON(ret);
1983                 } else if (key.type == BTRFS_INODE_REF_KEY) {
1984                         ret = add_inode_ref(wc->trans, root, log, path,
1985                                             eb, i, &key);
1986                         BUG_ON(ret && ret != -ENOENT);
1987                 } else if (key.type == BTRFS_INODE_EXTREF_KEY) {
1988                         ret = add_inode_ref(wc->trans, root, log, path,
1989                                             eb, i, &key);
1990                         BUG_ON(ret && ret != -ENOENT);
1991                 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1992                         ret = replay_one_extent(wc->trans, root, path,
1993                                                 eb, i, &key);
1994                         BUG_ON(ret);
1995                 } else if (key.type == BTRFS_DIR_ITEM_KEY ||
1996                            key.type == BTRFS_DIR_INDEX_KEY) {
1997                         ret = replay_one_dir_item(wc->trans, root, path,
1998                                                   eb, i, &key);
1999                         BUG_ON(ret);
2000                 }
2001         }
2002         btrfs_free_path(path);
2003         return 0;
2004 }
2005
2006 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2007                                    struct btrfs_root *root,
2008                                    struct btrfs_path *path, int *level,
2009                                    struct walk_control *wc)
2010 {
2011         u64 root_owner;
2012         u64 bytenr;
2013         u64 ptr_gen;
2014         struct extent_buffer *next;
2015         struct extent_buffer *cur;
2016         struct extent_buffer *parent;
2017         u32 blocksize;
2018         int ret = 0;
2019
2020         WARN_ON(*level < 0);
2021         WARN_ON(*level >= BTRFS_MAX_LEVEL);
2022
2023         while (*level > 0) {
2024                 WARN_ON(*level < 0);
2025                 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2026                 cur = path->nodes[*level];
2027
2028                 if (btrfs_header_level(cur) != *level)
2029                         WARN_ON(1);
2030
2031                 if (path->slots[*level] >=
2032                     btrfs_header_nritems(cur))
2033                         break;
2034
2035                 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2036                 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2037                 blocksize = btrfs_level_size(root, *level - 1);
2038
2039                 parent = path->nodes[*level];
2040                 root_owner = btrfs_header_owner(parent);
2041
2042                 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
2043                 if (!next)
2044                         return -ENOMEM;
2045
2046                 if (*level == 1) {
2047                         ret = wc->process_func(root, next, wc, ptr_gen);
2048                         if (ret)
2049                                 return ret;
2050
2051                         path->slots[*level]++;
2052                         if (wc->free) {
2053                                 ret = btrfs_read_buffer(next, ptr_gen);
2054                                 if (ret) {
2055                                         free_extent_buffer(next);
2056                                         return ret;
2057                                 }
2058
2059                                 btrfs_tree_lock(next);
2060                                 btrfs_set_lock_blocking(next);
2061                                 clean_tree_block(trans, root, next);
2062                                 btrfs_wait_tree_block_writeback(next);
2063                                 btrfs_tree_unlock(next);
2064
2065                                 WARN_ON(root_owner !=
2066                                         BTRFS_TREE_LOG_OBJECTID);
2067                                 ret = btrfs_free_and_pin_reserved_extent(root,
2068                                                          bytenr, blocksize);
2069                                 BUG_ON(ret); /* -ENOMEM or logic errors */
2070                         }
2071                         free_extent_buffer(next);
2072                         continue;
2073                 }
2074                 ret = btrfs_read_buffer(next, ptr_gen);
2075                 if (ret) {
2076                         free_extent_buffer(next);
2077                         return ret;
2078                 }
2079
2080                 WARN_ON(*level <= 0);
2081                 if (path->nodes[*level-1])
2082                         free_extent_buffer(path->nodes[*level-1]);
2083                 path->nodes[*level-1] = next;
2084                 *level = btrfs_header_level(next);
2085                 path->slots[*level] = 0;
2086                 cond_resched();
2087         }
2088         WARN_ON(*level < 0);
2089         WARN_ON(*level >= BTRFS_MAX_LEVEL);
2090
2091         path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2092
2093         cond_resched();
2094         return 0;
2095 }
2096
2097 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2098                                  struct btrfs_root *root,
2099                                  struct btrfs_path *path, int *level,
2100                                  struct walk_control *wc)
2101 {
2102         u64 root_owner;
2103         int i;
2104         int slot;
2105         int ret;
2106
2107         for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2108                 slot = path->slots[i];
2109                 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2110                         path->slots[i]++;
2111                         *level = i;
2112                         WARN_ON(*level == 0);
2113                         return 0;
2114                 } else {
2115                         struct extent_buffer *parent;
2116                         if (path->nodes[*level] == root->node)
2117                                 parent = path->nodes[*level];
2118                         else
2119                                 parent = path->nodes[*level + 1];
2120
2121                         root_owner = btrfs_header_owner(parent);
2122                         ret = wc->process_func(root, path->nodes[*level], wc,
2123                                  btrfs_header_generation(path->nodes[*level]));
2124                         if (ret)
2125                                 return ret;
2126
2127                         if (wc->free) {
2128                                 struct extent_buffer *next;
2129
2130                                 next = path->nodes[*level];
2131
2132                                 btrfs_tree_lock(next);
2133                                 btrfs_set_lock_blocking(next);
2134                                 clean_tree_block(trans, root, next);
2135                                 btrfs_wait_tree_block_writeback(next);
2136                                 btrfs_tree_unlock(next);
2137
2138                                 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2139                                 ret = btrfs_free_and_pin_reserved_extent(root,
2140                                                 path->nodes[*level]->start,
2141                                                 path->nodes[*level]->len);
2142                                 BUG_ON(ret);
2143                         }
2144                         free_extent_buffer(path->nodes[*level]);
2145                         path->nodes[*level] = NULL;
2146                         *level = i + 1;
2147                 }
2148         }
2149         return 1;
2150 }
2151
2152 /*
2153  * drop the reference count on the tree rooted at 'snap'.  This traverses
2154  * the tree freeing any blocks that have a ref count of zero after being
2155  * decremented.
2156  */
2157 static int walk_log_tree(struct btrfs_trans_handle *trans,
2158                          struct btrfs_root *log, struct walk_control *wc)
2159 {
2160         int ret = 0;
2161         int wret;
2162         int level;
2163         struct btrfs_path *path;
2164         int orig_level;
2165
2166         path = btrfs_alloc_path();
2167         if (!path)
2168                 return -ENOMEM;
2169
2170         level = btrfs_header_level(log->node);
2171         orig_level = level;
2172         path->nodes[level] = log->node;
2173         extent_buffer_get(log->node);
2174         path->slots[level] = 0;
2175
2176         while (1) {
2177                 wret = walk_down_log_tree(trans, log, path, &level, wc);
2178                 if (wret > 0)
2179                         break;
2180                 if (wret < 0) {
2181                         ret = wret;
2182                         goto out;
2183                 }
2184
2185                 wret = walk_up_log_tree(trans, log, path, &level, wc);
2186                 if (wret > 0)
2187                         break;
2188                 if (wret < 0) {
2189                         ret = wret;
2190                         goto out;
2191                 }
2192         }
2193
2194         /* was the root node processed? if not, catch it here */
2195         if (path->nodes[orig_level]) {
2196                 ret = wc->process_func(log, path->nodes[orig_level], wc,
2197                          btrfs_header_generation(path->nodes[orig_level]));
2198                 if (ret)
2199                         goto out;
2200                 if (wc->free) {
2201                         struct extent_buffer *next;
2202
2203                         next = path->nodes[orig_level];
2204
2205                         btrfs_tree_lock(next);
2206                         btrfs_set_lock_blocking(next);
2207                         clean_tree_block(trans, log, next);
2208                         btrfs_wait_tree_block_writeback(next);
2209                         btrfs_tree_unlock(next);
2210
2211                         WARN_ON(log->root_key.objectid !=
2212                                 BTRFS_TREE_LOG_OBJECTID);
2213                         ret = btrfs_free_and_pin_reserved_extent(log, next->start,
2214                                                          next->len);
2215                         BUG_ON(ret); /* -ENOMEM or logic errors */
2216                 }
2217         }
2218
2219 out:
2220         btrfs_free_path(path);
2221         return ret;
2222 }
2223
2224 /*
2225  * helper function to update the item for a given subvolumes log root
2226  * in the tree of log roots
2227  */
2228 static int update_log_root(struct btrfs_trans_handle *trans,
2229                            struct btrfs_root *log)
2230 {
2231         int ret;
2232
2233         if (log->log_transid == 1) {
2234                 /* insert root item on the first sync */
2235                 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
2236                                 &log->root_key, &log->root_item);
2237         } else {
2238                 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2239                                 &log->root_key, &log->root_item);
2240         }
2241         return ret;
2242 }
2243
2244 static int wait_log_commit(struct btrfs_trans_handle *trans,
2245                            struct btrfs_root *root, unsigned long transid)
2246 {
2247         DEFINE_WAIT(wait);
2248         int index = transid % 2;
2249
2250         /*
2251          * we only allow two pending log transactions at a time,
2252          * so we know that if ours is more than 2 older than the
2253          * current transaction, we're done
2254          */
2255         do {
2256                 prepare_to_wait(&root->log_commit_wait[index],
2257                                 &wait, TASK_UNINTERRUPTIBLE);
2258                 mutex_unlock(&root->log_mutex);
2259
2260                 if (root->fs_info->last_trans_log_full_commit !=
2261                     trans->transid && root->log_transid < transid + 2 &&
2262                     atomic_read(&root->log_commit[index]))
2263                         schedule();
2264
2265                 finish_wait(&root->log_commit_wait[index], &wait);
2266                 mutex_lock(&root->log_mutex);
2267         } while (root->fs_info->last_trans_log_full_commit !=
2268                  trans->transid && root->log_transid < transid + 2 &&
2269                  atomic_read(&root->log_commit[index]));
2270         return 0;
2271 }
2272
2273 static void wait_for_writer(struct btrfs_trans_handle *trans,
2274                             struct btrfs_root *root)
2275 {
2276         DEFINE_WAIT(wait);
2277         while (root->fs_info->last_trans_log_full_commit !=
2278                trans->transid && atomic_read(&root->log_writers)) {
2279                 prepare_to_wait(&root->log_writer_wait,
2280                                 &wait, TASK_UNINTERRUPTIBLE);
2281                 mutex_unlock(&root->log_mutex);
2282                 if (root->fs_info->last_trans_log_full_commit !=
2283                     trans->transid && atomic_read(&root->log_writers))
2284                         schedule();
2285                 mutex_lock(&root->log_mutex);
2286                 finish_wait(&root->log_writer_wait, &wait);
2287         }
2288 }
2289
2290 /*
2291  * btrfs_sync_log does sends a given tree log down to the disk and
2292  * updates the super blocks to record it.  When this call is done,
2293  * you know that any inodes previously logged are safely on disk only
2294  * if it returns 0.
2295  *
2296  * Any other return value means you need to call btrfs_commit_transaction.
2297  * Some of the edge cases for fsyncing directories that have had unlinks
2298  * or renames done in the past mean that sometimes the only safe
2299  * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2300  * that has happened.
2301  */
2302 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2303                    struct btrfs_root *root)
2304 {
2305         int index1;
2306         int index2;
2307         int mark;
2308         int ret;
2309         struct btrfs_root *log = root->log_root;
2310         struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2311         unsigned long log_transid = 0;
2312
2313         mutex_lock(&root->log_mutex);
2314         log_transid = root->log_transid;
2315         index1 = root->log_transid % 2;
2316         if (atomic_read(&root->log_commit[index1])) {
2317                 wait_log_commit(trans, root, root->log_transid);
2318                 mutex_unlock(&root->log_mutex);
2319                 return 0;
2320         }
2321         atomic_set(&root->log_commit[index1], 1);
2322
2323         /* wait for previous tree log sync to complete */
2324         if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2325                 wait_log_commit(trans, root, root->log_transid - 1);
2326         while (1) {
2327                 int batch = atomic_read(&root->log_batch);
2328                 /* when we're on an ssd, just kick the log commit out */
2329                 if (!btrfs_test_opt(root, SSD) && root->log_multiple_pids) {
2330                         mutex_unlock(&root->log_mutex);
2331                         schedule_timeout_uninterruptible(1);
2332                         mutex_lock(&root->log_mutex);
2333                 }
2334                 wait_for_writer(trans, root);
2335                 if (batch == atomic_read(&root->log_batch))
2336                         break;
2337         }
2338
2339         /* bail out if we need to do a full commit */
2340         if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2341                 ret = -EAGAIN;
2342                 btrfs_free_logged_extents(log, log_transid);
2343                 mutex_unlock(&root->log_mutex);
2344                 goto out;
2345         }
2346
2347         if (log_transid % 2 == 0)
2348                 mark = EXTENT_DIRTY;
2349         else
2350                 mark = EXTENT_NEW;
2351
2352         /* we start IO on  all the marked extents here, but we don't actually
2353          * wait for them until later.
2354          */
2355         ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2356         if (ret) {
2357                 btrfs_abort_transaction(trans, root, ret);
2358                 btrfs_free_logged_extents(log, log_transid);
2359                 mutex_unlock(&root->log_mutex);
2360                 goto out;
2361         }
2362
2363         btrfs_set_root_node(&log->root_item, log->node);
2364
2365         root->log_transid++;
2366         log->log_transid = root->log_transid;
2367         root->log_start_pid = 0;
2368         smp_mb();
2369         /*
2370          * IO has been started, blocks of the log tree have WRITTEN flag set
2371          * in their headers. new modifications of the log will be written to
2372          * new positions. so it's safe to allow log writers to go in.
2373          */
2374         mutex_unlock(&root->log_mutex);
2375
2376         mutex_lock(&log_root_tree->log_mutex);
2377         atomic_inc(&log_root_tree->log_batch);
2378         atomic_inc(&log_root_tree->log_writers);
2379         mutex_unlock(&log_root_tree->log_mutex);
2380
2381         ret = update_log_root(trans, log);
2382
2383         mutex_lock(&log_root_tree->log_mutex);
2384         if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2385                 smp_mb();
2386                 if (waitqueue_active(&log_root_tree->log_writer_wait))
2387                         wake_up(&log_root_tree->log_writer_wait);
2388         }
2389
2390         if (ret) {
2391                 if (ret != -ENOSPC) {
2392                         btrfs_abort_transaction(trans, root, ret);
2393                         mutex_unlock(&log_root_tree->log_mutex);
2394                         goto out;
2395                 }
2396                 root->fs_info->last_trans_log_full_commit = trans->transid;
2397                 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2398                 btrfs_free_logged_extents(log, log_transid);
2399                 mutex_unlock(&log_root_tree->log_mutex);
2400                 ret = -EAGAIN;
2401                 goto out;
2402         }
2403
2404         index2 = log_root_tree->log_transid % 2;
2405         if (atomic_read(&log_root_tree->log_commit[index2])) {
2406                 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2407                 wait_log_commit(trans, log_root_tree,
2408                                 log_root_tree->log_transid);
2409                 btrfs_free_logged_extents(log, log_transid);
2410                 mutex_unlock(&log_root_tree->log_mutex);
2411                 ret = 0;
2412                 goto out;
2413         }
2414         atomic_set(&log_root_tree->log_commit[index2], 1);
2415
2416         if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2417                 wait_log_commit(trans, log_root_tree,
2418                                 log_root_tree->log_transid - 1);
2419         }
2420
2421         wait_for_writer(trans, log_root_tree);
2422
2423         /*
2424          * now that we've moved on to the tree of log tree roots,
2425          * check the full commit flag again
2426          */
2427         if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2428                 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2429                 btrfs_free_logged_extents(log, log_transid);
2430                 mutex_unlock(&log_root_tree->log_mutex);
2431                 ret = -EAGAIN;
2432                 goto out_wake_log_root;
2433         }
2434
2435         ret = btrfs_write_and_wait_marked_extents(log_root_tree,
2436                                 &log_root_tree->dirty_log_pages,
2437                                 EXTENT_DIRTY | EXTENT_NEW);
2438         if (ret) {
2439                 btrfs_abort_transaction(trans, root, ret);
2440                 btrfs_free_logged_extents(log, log_transid);
2441                 mutex_unlock(&log_root_tree->log_mutex);
2442                 goto out_wake_log_root;
2443         }
2444         btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2445         btrfs_wait_logged_extents(log, log_transid);
2446
2447         btrfs_set_super_log_root(root->fs_info->super_for_commit,
2448                                 log_root_tree->node->start);
2449         btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
2450                                 btrfs_header_level(log_root_tree->node));
2451
2452         log_root_tree->log_transid++;
2453         smp_mb();
2454
2455         mutex_unlock(&log_root_tree->log_mutex);
2456
2457         /*
2458          * nobody else is going to jump in and write the the ctree
2459          * super here because the log_commit atomic below is protecting
2460          * us.  We must be called with a transaction handle pinning
2461          * the running transaction open, so a full commit can't hop
2462          * in and cause problems either.
2463          */
2464         btrfs_scrub_pause_super(root);
2465         ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
2466         btrfs_scrub_continue_super(root);
2467         if (ret) {
2468                 btrfs_abort_transaction(trans, root, ret);
2469                 goto out_wake_log_root;
2470         }
2471
2472         mutex_lock(&root->log_mutex);
2473         if (root->last_log_commit < log_transid)
2474                 root->last_log_commit = log_transid;
2475         mutex_unlock(&root->log_mutex);
2476
2477 out_wake_log_root:
2478         atomic_set(&log_root_tree->log_commit[index2], 0);
2479         smp_mb();
2480         if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2481                 wake_up(&log_root_tree->log_commit_wait[index2]);
2482 out:
2483         atomic_set(&root->log_commit[index1], 0);
2484         smp_mb();
2485         if (waitqueue_active(&root->log_commit_wait[index1]))
2486                 wake_up(&root->log_commit_wait[index1]);
2487         return ret;
2488 }
2489
2490 static void free_log_tree(struct btrfs_trans_handle *trans,
2491                           struct btrfs_root *log)
2492 {
2493         int ret;
2494         u64 start;
2495         u64 end;
2496         struct walk_control wc = {
2497                 .free = 1,
2498                 .process_func = process_one_buffer
2499         };
2500
2501         if (trans) {
2502                 ret = walk_log_tree(trans, log, &wc);
2503                 BUG_ON(ret);
2504         }
2505
2506         while (1) {
2507                 ret = find_first_extent_bit(&log->dirty_log_pages,
2508                                 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
2509                                 NULL);
2510                 if (ret)
2511                         break;
2512
2513                 clear_extent_bits(&log->dirty_log_pages, start, end,
2514                                   EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2515         }
2516
2517         /*
2518          * We may have short-circuited the log tree with the full commit logic
2519          * and left ordered extents on our list, so clear these out to keep us
2520          * from leaking inodes and memory.
2521          */
2522         btrfs_free_logged_extents(log, 0);
2523         btrfs_free_logged_extents(log, 1);
2524
2525         free_extent_buffer(log->node);
2526         kfree(log);
2527 }
2528
2529 /*
2530  * free all the extents used by the tree log.  This should be called
2531  * at commit time of the full transaction
2532  */
2533 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2534 {
2535         if (root->log_root) {
2536                 free_log_tree(trans, root->log_root);
2537                 root->log_root = NULL;
2538         }
2539         return 0;
2540 }
2541
2542 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2543                              struct btrfs_fs_info *fs_info)
2544 {
2545         if (fs_info->log_root_tree) {
2546                 free_log_tree(trans, fs_info->log_root_tree);
2547                 fs_info->log_root_tree = NULL;
2548         }
2549         return 0;
2550 }
2551
2552 /*
2553  * If both a file and directory are logged, and unlinks or renames are
2554  * mixed in, we have a few interesting corners:
2555  *
2556  * create file X in dir Y
2557  * link file X to X.link in dir Y
2558  * fsync file X
2559  * unlink file X but leave X.link
2560  * fsync dir Y
2561  *
2562  * After a crash we would expect only X.link to exist.  But file X
2563  * didn't get fsync'd again so the log has back refs for X and X.link.
2564  *
2565  * We solve this by removing directory entries and inode backrefs from the
2566  * log when a file that was logged in the current transaction is
2567  * unlinked.  Any later fsync will include the updated log entries, and
2568  * we'll be able to reconstruct the proper directory items from backrefs.
2569  *
2570  * This optimizations allows us to avoid relogging the entire inode
2571  * or the entire directory.
2572  */
2573 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2574                                  struct btrfs_root *root,
2575                                  const char *name, int name_len,
2576                                  struct inode *dir, u64 index)
2577 {
2578         struct btrfs_root *log;
2579         struct btrfs_dir_item *di;
2580         struct btrfs_path *path;
2581         int ret;
2582         int err = 0;
2583         int bytes_del = 0;
2584         u64 dir_ino = btrfs_ino(dir);
2585
2586         if (BTRFS_I(dir)->logged_trans < trans->transid)
2587                 return 0;
2588
2589         ret = join_running_log_trans(root);
2590         if (ret)
2591                 return 0;
2592
2593         mutex_lock(&BTRFS_I(dir)->log_mutex);
2594
2595         log = root->log_root;
2596         path = btrfs_alloc_path();
2597         if (!path) {
2598                 err = -ENOMEM;
2599                 goto out_unlock;
2600         }
2601
2602         di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
2603                                    name, name_len, -1);
2604         if (IS_ERR(di)) {
2605                 err = PTR_ERR(di);
2606                 goto fail;
2607         }
2608         if (di) {
2609                 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2610                 bytes_del += name_len;
2611                 BUG_ON(ret);
2612         }
2613         btrfs_release_path(path);
2614         di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
2615                                          index, name, name_len, -1);
2616         if (IS_ERR(di)) {
2617                 err = PTR_ERR(di);
2618                 goto fail;
2619         }
2620         if (di) {
2621                 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2622                 bytes_del += name_len;
2623                 BUG_ON(ret);
2624         }
2625
2626         /* update the directory size in the log to reflect the names
2627          * we have removed
2628          */
2629         if (bytes_del) {
2630                 struct btrfs_key key;
2631
2632                 key.objectid = dir_ino;
2633                 key.offset = 0;
2634                 key.type = BTRFS_INODE_ITEM_KEY;
2635                 btrfs_release_path(path);
2636
2637                 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2638                 if (ret < 0) {
2639                         err = ret;
2640                         goto fail;
2641                 }
2642                 if (ret == 0) {
2643                         struct btrfs_inode_item *item;
2644                         u64 i_size;
2645
2646                         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2647                                               struct btrfs_inode_item);
2648                         i_size = btrfs_inode_size(path->nodes[0], item);
2649                         if (i_size > bytes_del)
2650                                 i_size -= bytes_del;
2651                         else
2652                                 i_size = 0;
2653                         btrfs_set_inode_size(path->nodes[0], item, i_size);
2654                         btrfs_mark_buffer_dirty(path->nodes[0]);
2655                 } else
2656                         ret = 0;
2657                 btrfs_release_path(path);
2658         }
2659 fail:
2660         btrfs_free_path(path);
2661 out_unlock:
2662         mutex_unlock(&BTRFS_I(dir)->log_mutex);
2663         if (ret == -ENOSPC) {
2664                 root->fs_info->last_trans_log_full_commit = trans->transid;
2665                 ret = 0;
2666         } else if (ret < 0)
2667                 btrfs_abort_transaction(trans, root, ret);
2668
2669         btrfs_end_log_trans(root);
2670
2671         return err;
2672 }
2673
2674 /* see comments for btrfs_del_dir_entries_in_log */
2675 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2676                                struct btrfs_root *root,
2677                                const char *name, int name_len,
2678                                struct inode *inode, u64 dirid)
2679 {
2680         struct btrfs_root *log;
2681         u64 index;
2682         int ret;
2683
2684         if (BTRFS_I(inode)->logged_trans < trans->transid)
2685                 return 0;
2686
2687         ret = join_running_log_trans(root);
2688         if (ret)
2689                 return 0;
2690         log = root->log_root;
2691         mutex_lock(&BTRFS_I(inode)->log_mutex);
2692
2693         ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
2694                                   dirid, &index);
2695         mutex_unlock(&BTRFS_I(inode)->log_mutex);
2696         if (ret == -ENOSPC) {
2697                 root->fs_info->last_trans_log_full_commit = trans->transid;
2698                 ret = 0;
2699         } else if (ret < 0 && ret != -ENOENT)
2700                 btrfs_abort_transaction(trans, root, ret);
2701         btrfs_end_log_trans(root);
2702
2703         return ret;
2704 }
2705
2706 /*
2707  * creates a range item in the log for 'dirid'.  first_offset and
2708  * last_offset tell us which parts of the key space the log should
2709  * be considered authoritative for.
2710  */
2711 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2712                                        struct btrfs_root *log,
2713                                        struct btrfs_path *path,
2714                                        int key_type, u64 dirid,
2715                                        u64 first_offset, u64 last_offset)
2716 {
2717         int ret;
2718         struct btrfs_key key;
2719         struct btrfs_dir_log_item *item;
2720
2721         key.objectid = dirid;
2722         key.offset = first_offset;
2723         if (key_type == BTRFS_DIR_ITEM_KEY)
2724                 key.type = BTRFS_DIR_LOG_ITEM_KEY;
2725         else
2726                 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2727         ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2728         if (ret)
2729                 return ret;
2730
2731         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2732                               struct btrfs_dir_log_item);
2733         btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2734         btrfs_mark_buffer_dirty(path->nodes[0]);
2735         btrfs_release_path(path);
2736         return 0;
2737 }
2738
2739 /*
2740  * log all the items included in the current transaction for a given
2741  * directory.  This also creates the range items in the log tree required
2742  * to replay anything deleted before the fsync
2743  */
2744 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2745                           struct btrfs_root *root, struct inode *inode,
2746                           struct btrfs_path *path,
2747                           struct btrfs_path *dst_path, int key_type,
2748                           u64 min_offset, u64 *last_offset_ret)
2749 {
2750         struct btrfs_key min_key;
2751         struct btrfs_key max_key;
2752         struct btrfs_root *log = root->log_root;
2753         struct extent_buffer *src;
2754         int err = 0;
2755         int ret;
2756         int i;
2757         int nritems;
2758         u64 first_offset = min_offset;
2759         u64 last_offset = (u64)-1;
2760         u64 ino = btrfs_ino(inode);
2761
2762         log = root->log_root;
2763         max_key.objectid = ino;
2764         max_key.offset = (u64)-1;
2765         max_key.type = key_type;
2766
2767         min_key.objectid = ino;
2768         min_key.type = key_type;
2769         min_key.offset = min_offset;
2770
2771         path->keep_locks = 1;
2772
2773         ret = btrfs_search_forward(root, &min_key, &max_key,
2774                                    path, trans->transid);
2775
2776         /*
2777          * we didn't find anything from this transaction, see if there
2778          * is anything at all
2779          */
2780         if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
2781                 min_key.objectid = ino;
2782                 min_key.type = key_type;
2783                 min_key.offset = (u64)-1;
2784                 btrfs_release_path(path);
2785                 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2786                 if (ret < 0) {
2787                         btrfs_release_path(path);
2788                         return ret;
2789                 }
2790                 ret = btrfs_previous_item(root, path, ino, key_type);
2791
2792                 /* if ret == 0 there are items for this type,
2793                  * create a range to tell us the last key of this type.
2794                  * otherwise, there are no items in this directory after
2795                  * *min_offset, and we create a range to indicate that.
2796                  */
2797                 if (ret == 0) {
2798                         struct btrfs_key tmp;
2799                         btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2800                                               path->slots[0]);
2801                         if (key_type == tmp.type)
2802                                 first_offset = max(min_offset, tmp.offset) + 1;
2803                 }
2804                 goto done;
2805         }
2806
2807         /* go backward to find any previous key */
2808         ret = btrfs_previous_item(root, path, ino, key_type);
2809         if (ret == 0) {
2810                 struct btrfs_key tmp;
2811                 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2812                 if (key_type == tmp.type) {
2813                         first_offset = tmp.offset;
2814                         ret = overwrite_item(trans, log, dst_path,
2815                                              path->nodes[0], path->slots[0],
2816                                              &tmp);
2817                         if (ret) {
2818                                 err = ret;
2819                                 goto done;
2820                         }
2821                 }
2822         }
2823         btrfs_release_path(path);
2824
2825         /* find the first key from this transaction again */
2826         ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2827         if (ret != 0) {
2828                 WARN_ON(1);
2829                 goto done;
2830         }
2831
2832         /*
2833          * we have a block from this transaction, log every item in it
2834          * from our directory
2835          */
2836         while (1) {
2837                 struct btrfs_key tmp;
2838                 src = path->nodes[0];
2839                 nritems = btrfs_header_nritems(src);
2840                 for (i = path->slots[0]; i < nritems; i++) {
2841                         btrfs_item_key_to_cpu(src, &min_key, i);
2842
2843                         if (min_key.objectid != ino || min_key.type != key_type)
2844                                 goto done;
2845                         ret = overwrite_item(trans, log, dst_path, src, i,
2846                                              &min_key);
2847                         if (ret) {
2848                                 err = ret;
2849                                 goto done;
2850                         }
2851                 }
2852                 path->slots[0] = nritems;
2853
2854                 /*
2855                  * look ahead to the next item and see if it is also
2856                  * from this directory and from this transaction
2857                  */
2858                 ret = btrfs_next_leaf(root, path);
2859                 if (ret == 1) {
2860                         last_offset = (u64)-1;
2861                         goto done;
2862                 }
2863                 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2864                 if (tmp.objectid != ino || tmp.type != key_type) {
2865                         last_offset = (u64)-1;
2866                         goto done;
2867                 }
2868                 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2869                         ret = overwrite_item(trans, log, dst_path,
2870                                              path->nodes[0], path->slots[0],
2871                                              &tmp);
2872                         if (ret)
2873                                 err = ret;
2874                         else
2875                                 last_offset = tmp.offset;
2876                         goto done;
2877                 }
2878         }
2879 done:
2880         btrfs_release_path(path);
2881         btrfs_release_path(dst_path);
2882
2883         if (err == 0) {
2884                 *last_offset_ret = last_offset;
2885                 /*
2886                  * insert the log range keys to indicate where the log
2887                  * is valid
2888                  */
2889                 ret = insert_dir_log_key(trans, log, path, key_type,
2890                                          ino, first_offset, last_offset);
2891                 if (ret)
2892                         err = ret;
2893         }
2894         return err;
2895 }
2896
2897 /*
2898  * logging directories is very similar to logging inodes, We find all the items
2899  * from the current transaction and write them to the log.
2900  *
2901  * The recovery code scans the directory in the subvolume, and if it finds a
2902  * key in the range logged that is not present in the log tree, then it means
2903  * that dir entry was unlinked during the transaction.
2904  *
2905  * In order for that scan to work, we must include one key smaller than
2906  * the smallest logged by this transaction and one key larger than the largest
2907  * key logged by this transaction.
2908  */
2909 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2910                           struct btrfs_root *root, struct inode *inode,
2911                           struct btrfs_path *path,
2912                           struct btrfs_path *dst_path)
2913 {
2914         u64 min_key;
2915         u64 max_key;
2916         int ret;
2917         int key_type = BTRFS_DIR_ITEM_KEY;
2918
2919 again:
2920         min_key = 0;
2921         max_key = 0;
2922         while (1) {
2923                 ret = log_dir_items(trans, root, inode, path,
2924                                     dst_path, key_type, min_key,
2925                                     &max_key);
2926                 if (ret)
2927                         return ret;
2928                 if (max_key == (u64)-1)
2929                         break;
2930                 min_key = max_key + 1;
2931         }
2932
2933         if (key_type == BTRFS_DIR_ITEM_KEY) {
2934                 key_type = BTRFS_DIR_INDEX_KEY;
2935                 goto again;
2936         }
2937         return 0;
2938 }
2939
2940 /*
2941  * a helper function to drop items from the log before we relog an
2942  * inode.  max_key_type indicates the highest item type to remove.
2943  * This cannot be run for file data extents because it does not
2944  * free the extents they point to.
2945  */
2946 static int drop_objectid_items(struct btrfs_trans_handle *trans,
2947                                   struct btrfs_root *log,
2948                                   struct btrfs_path *path,
2949                                   u64 objectid, int max_key_type)
2950 {
2951         int ret;
2952         struct btrfs_key key;
2953         struct btrfs_key found_key;
2954         int start_slot;
2955
2956         key.objectid = objectid;
2957         key.type = max_key_type;
2958         key.offset = (u64)-1;
2959
2960         while (1) {
2961                 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
2962                 BUG_ON(ret == 0);
2963                 if (ret < 0)
2964                         break;
2965
2966                 if (path->slots[0] == 0)
2967                         break;
2968
2969                 path->slots[0]--;
2970                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2971                                       path->slots[0]);
2972
2973                 if (found_key.objectid != objectid)
2974                         break;
2975
2976                 found_key.offset = 0;
2977                 found_key.type = 0;
2978                 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
2979                                        &start_slot);
2980
2981                 ret = btrfs_del_items(trans, log, path, start_slot,
2982                                       path->slots[0] - start_slot + 1);
2983                 /*
2984                  * If start slot isn't 0 then we don't need to re-search, we've
2985                  * found the last guy with the objectid in this tree.
2986                  */
2987                 if (ret || start_slot != 0)
2988                         break;
2989                 btrfs_release_path(path);
2990         }
2991         btrfs_release_path(path);
2992         if (ret > 0)
2993                 ret = 0;
2994         return ret;
2995 }
2996
2997 static void fill_inode_item(struct btrfs_trans_handle *trans,
2998                             struct extent_buffer *leaf,
2999                             struct btrfs_inode_item *item,
3000                             struct inode *inode, int log_inode_only)
3001 {
3002         struct btrfs_map_token token;
3003
3004         btrfs_init_map_token(&token);
3005
3006         if (log_inode_only) {
3007                 /* set the generation to zero so the recover code
3008                  * can tell the difference between an logging
3009                  * just to say 'this inode exists' and a logging
3010                  * to say 'update this inode with these values'
3011                  */
3012                 btrfs_set_token_inode_generation(leaf, item, 0, &token);
3013                 btrfs_set_token_inode_size(leaf, item, 0, &token);
3014         } else {
3015                 btrfs_set_token_inode_generation(leaf, item,
3016                                                  BTRFS_I(inode)->generation,
3017                                                  &token);
3018                 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3019         }
3020
3021         btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3022         btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3023         btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3024         btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3025
3026         btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3027                                      inode->i_atime.tv_sec, &token);
3028         btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3029                                       inode->i_atime.tv_nsec, &token);
3030
3031         btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3032                                      inode->i_mtime.tv_sec, &token);
3033         btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3034                                       inode->i_mtime.tv_nsec, &token);
3035
3036         btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3037                                      inode->i_ctime.tv_sec, &token);
3038         btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3039                                       inode->i_ctime.tv_nsec, &token);
3040
3041         btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3042                                      &token);
3043
3044         btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3045         btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3046         btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3047         btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3048         btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3049 }
3050
3051 static int log_inode_item(struct btrfs_trans_handle *trans,
3052                           struct btrfs_root *log, struct btrfs_path *path,
3053                           struct inode *inode)
3054 {
3055         struct btrfs_inode_item *inode_item;
3056         struct btrfs_key key;
3057         int ret;
3058
3059         memcpy(&key, &BTRFS_I(inode)->location, sizeof(key));
3060         ret = btrfs_insert_empty_item(trans, log, path, &key,
3061                                       sizeof(*inode_item));
3062         if (ret && ret != -EEXIST)
3063                 return ret;
3064         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3065                                     struct btrfs_inode_item);
3066         fill_inode_item(trans, path->nodes[0], inode_item, inode, 0);
3067         btrfs_release_path(path);
3068         return 0;
3069 }
3070
3071 static noinline int copy_items(struct btrfs_trans_handle *trans,
3072                                struct inode *inode,
3073                                struct btrfs_path *dst_path,
3074                                struct extent_buffer *src,
3075                                int start_slot, int nr, int inode_only)
3076 {
3077         unsigned long src_offset;
3078         unsigned long dst_offset;
3079         struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
3080         struct btrfs_file_extent_item *extent;
3081         struct btrfs_inode_item *inode_item;
3082         int ret;
3083         struct btrfs_key *ins_keys;
3084         u32 *ins_sizes;
3085         char *ins_data;
3086         int i;
3087         struct list_head ordered_sums;
3088         int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3089
3090         INIT_LIST_HEAD(&ordered_sums);
3091
3092         ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3093                            nr * sizeof(u32), GFP_NOFS);
3094         if (!ins_data)
3095                 return -ENOMEM;
3096
3097         ins_sizes = (u32 *)ins_data;
3098         ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3099
3100         for (i = 0; i < nr; i++) {
3101                 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3102                 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3103         }
3104         ret = btrfs_insert_empty_items(trans, log, dst_path,
3105                                        ins_keys, ins_sizes, nr);
3106         if (ret) {
3107                 kfree(ins_data);
3108                 return ret;
3109         }
3110
3111         for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3112                 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3113                                                    dst_path->slots[0]);
3114
3115                 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3116
3117                 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3118                         inode_item = btrfs_item_ptr(dst_path->nodes[0],
3119                                                     dst_path->slots[0],
3120                                                     struct btrfs_inode_item);
3121                         fill_inode_item(trans, dst_path->nodes[0], inode_item,
3122                                         inode, inode_only == LOG_INODE_EXISTS);
3123                 } else {
3124                         copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3125                                            src_offset, ins_sizes[i]);
3126                 }
3127
3128                 /* take a reference on file data extents so that truncates
3129                  * or deletes of this inode don't have to relog the inode
3130                  * again
3131                  */
3132                 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY &&
3133                     !skip_csum) {
3134                         int found_type;
3135                         extent = btrfs_item_ptr(src, start_slot + i,
3136                                                 struct btrfs_file_extent_item);
3137
3138                         if (btrfs_file_extent_generation(src, extent) < trans->transid)
3139                                 continue;
3140
3141                         found_type = btrfs_file_extent_type(src, extent);
3142                         if (found_type == BTRFS_FILE_EXTENT_REG) {
3143                                 u64 ds, dl, cs, cl;
3144                                 ds = btrfs_file_extent_disk_bytenr(src,
3145                                                                 extent);
3146                                 /* ds == 0 is a hole */
3147                                 if (ds == 0)
3148                                         continue;
3149
3150                                 dl = btrfs_file_extent_disk_num_bytes(src,
3151                                                                 extent);
3152                                 cs = btrfs_file_extent_offset(src, extent);
3153                                 cl = btrfs_file_extent_num_bytes(src,
3154                                                                 extent);
3155                                 if (btrfs_file_extent_compression(src,
3156                                                                   extent)) {
3157                                         cs = 0;
3158                                         cl = dl;
3159                                 }
3160
3161                                 ret = btrfs_lookup_csums_range(
3162                                                 log->fs_info->csum_root,
3163                                                 ds + cs, ds + cs + cl - 1,
3164                                                 &ordered_sums, 0);
3165                                 BUG_ON(ret);
3166                         }
3167                 }
3168         }
3169
3170         btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3171         btrfs_release_path(dst_path);
3172         kfree(ins_data);
3173
3174         /*
3175          * we have to do this after the loop above to avoid changing the
3176          * log tree while trying to change the log tree.
3177          */
3178         ret = 0;
3179         while (!list_empty(&ordered_sums)) {
3180                 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3181                                                    struct btrfs_ordered_sum,
3182                                                    list);
3183                 if (!ret)
3184                         ret = btrfs_csum_file_blocks(trans, log, sums);
3185                 list_del(&sums->list);
3186                 kfree(sums);
3187         }
3188         return ret;
3189 }
3190
3191 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3192 {
3193         struct extent_map *em1, *em2;
3194
3195         em1 = list_entry(a, struct extent_map, list);
3196         em2 = list_entry(b, struct extent_map, list);
3197
3198         if (em1->start < em2->start)
3199                 return -1;
3200         else if (em1->start > em2->start)
3201                 return 1;
3202         return 0;
3203 }
3204
3205 static int log_one_extent(struct btrfs_trans_handle *trans,
3206                           struct inode *inode, struct btrfs_root *root,
3207                           struct extent_map *em, struct btrfs_path *path)
3208 {
3209         struct btrfs_root *log = root->log_root;
3210         struct btrfs_file_extent_item *fi;
3211         struct extent_buffer *leaf;
3212         struct btrfs_ordered_extent *ordered;
3213         struct list_head ordered_sums;
3214         struct btrfs_map_token token;
3215         struct btrfs_key key;
3216         u64 mod_start = em->mod_start;
3217         u64 mod_len = em->mod_len;
3218         u64 csum_offset;
3219         u64 csum_len;
3220         u64 extent_offset = em->start - em->orig_start;
3221         u64 block_len;
3222         int ret;
3223         int index = log->log_transid % 2;
3224         bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3225
3226         ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
3227                                    em->start + em->len, NULL, 0);
3228         if (ret)
3229                 return ret;
3230
3231         INIT_LIST_HEAD(&ordered_sums);
3232         btrfs_init_map_token(&token);
3233         key.objectid = btrfs_ino(inode);
3234         key.type = BTRFS_EXTENT_DATA_KEY;
3235         key.offset = em->start;
3236
3237         ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*fi));
3238         if (ret)
3239                 return ret;
3240         leaf = path->nodes[0];
3241         fi = btrfs_item_ptr(leaf, path->slots[0],
3242                             struct btrfs_file_extent_item);
3243
3244         btrfs_set_token_file_extent_generation(leaf, fi, em->generation,
3245                                                &token);
3246         if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3247                 skip_csum = true;
3248                 btrfs_set_token_file_extent_type(leaf, fi,
3249                                                  BTRFS_FILE_EXTENT_PREALLOC,
3250                                                  &token);
3251         } else {
3252                 btrfs_set_token_file_extent_type(leaf, fi,
3253                                                  BTRFS_FILE_EXTENT_REG,
3254                                                  &token);
3255                 if (em->block_start == 0)
3256                         skip_csum = true;
3257         }
3258
3259         block_len = max(em->block_len, em->orig_block_len);
3260         if (em->compress_type != BTRFS_COMPRESS_NONE) {
3261                 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3262                                                         em->block_start,
3263                                                         &token);
3264                 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3265                                                            &token);
3266         } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
3267                 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3268                                                         em->block_start -
3269                                                         extent_offset, &token);
3270                 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3271                                                            &token);
3272         } else {
3273                 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
3274                 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
3275                                                            &token);
3276         }
3277
3278         btrfs_set_token_file_extent_offset(leaf, fi,
3279                                            em->start - em->orig_start,
3280                                            &token);
3281         btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
3282         btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
3283         btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
3284                                                 &token);
3285         btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
3286         btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
3287         btrfs_mark_buffer_dirty(leaf);
3288
3289         btrfs_release_path(path);
3290         if (ret) {
3291                 return ret;
3292         }
3293
3294         if (skip_csum)
3295                 return 0;
3296
3297         if (em->compress_type) {
3298                 csum_offset = 0;
3299                 csum_len = block_len;
3300         }
3301
3302         /*
3303          * First check and see if our csums are on our outstanding ordered
3304          * extents.
3305          */
3306 again:
3307         spin_lock_irq(&log->log_extents_lock[index]);
3308         list_for_each_entry(ordered, &log->logged_list[index], log_list) {
3309                 struct btrfs_ordered_sum *sum;
3310
3311                 if (!mod_len)
3312                         break;
3313
3314                 if (ordered->inode != inode)
3315                         continue;
3316
3317                 if (ordered->file_offset + ordered->len <= mod_start ||
3318                     mod_start + mod_len <= ordered->file_offset)
3319                         continue;
3320
3321                 /*
3322                  * We are going to copy all the csums on this ordered extent, so
3323                  * go ahead and adjust mod_start and mod_len in case this
3324                  * ordered extent has already been logged.
3325                  */
3326                 if (ordered->file_offset > mod_start) {
3327                         if (ordered->file_offset + ordered->len >=
3328                             mod_start + mod_len)
3329                                 mod_len = ordered->file_offset - mod_start;
3330                         /*
3331                          * If we have this case
3332                          *
3333                          * |--------- logged extent ---------|
3334                          *       |----- ordered extent ----|
3335                          *
3336                          * Just don't mess with mod_start and mod_len, we'll
3337                          * just end up logging more csums than we need and it
3338                          * will be ok.
3339                          */
3340                 } else {
3341                         if (ordered->file_offset + ordered->len <
3342                             mod_start + mod_len) {
3343                                 mod_len = (mod_start + mod_len) -
3344                                         (ordered->file_offset + ordered->len);
3345                                 mod_start = ordered->file_offset +
3346                                         ordered->len;
3347                         } else {
3348                                 mod_len = 0;
3349                         }
3350                 }
3351
3352                 /*
3353                  * To keep us from looping for the above case of an ordered
3354                  * extent that falls inside of the logged extent.
3355                  */
3356                 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
3357                                      &ordered->flags))
3358                         continue;
3359                 atomic_inc(&ordered->refs);
3360                 spin_unlock_irq(&log->log_extents_lock[index]);
3361                 /*
3362                  * we've dropped the lock, we must either break or
3363                  * start over after this.
3364                  */
3365
3366                 wait_event(ordered->wait, ordered->csum_bytes_left == 0);
3367
3368                 list_for_each_entry(sum, &ordered->list, list) {
3369                         ret = btrfs_csum_file_blocks(trans, log, sum);
3370                         if (ret) {
3371                                 btrfs_put_ordered_extent(ordered);
3372                                 goto unlocked;
3373                         }
3374                 }
3375                 btrfs_put_ordered_extent(ordered);
3376                 goto again;
3377
3378         }
3379         spin_unlock_irq(&log->log_extents_lock[index]);
3380 unlocked:
3381
3382         if (!mod_len || ret)
3383                 return ret;
3384
3385         csum_offset = mod_start - em->start;
3386         csum_len = mod_len;
3387
3388         /* block start is already adjusted for the file extent offset. */
3389         ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
3390                                        em->block_start + csum_offset,
3391                                        em->block_start + csum_offset +
3392                                        csum_len - 1, &ordered_sums, 0);
3393         if (ret)
3394                 return ret;
3395
3396         while (!list_empty(&ordered_sums)) {
3397                 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3398                                                    struct btrfs_ordered_sum,
3399                                                    list);
3400                 if (!ret)
3401                         ret = btrfs_csum_file_blocks(trans, log, sums);
3402                 list_del(&sums->list);
3403                 kfree(sums);
3404         }
3405
3406         return ret;
3407 }
3408
3409 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
3410                                      struct btrfs_root *root,
3411                                      struct inode *inode,
3412                                      struct btrfs_path *path)
3413 {
3414         struct extent_map *em, *n;
3415         struct list_head extents;
3416         struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3417         u64 test_gen;
3418         int ret = 0;
3419         int num = 0;
3420
3421         INIT_LIST_HEAD(&extents);
3422
3423         write_lock(&tree->lock);
3424         test_gen = root->fs_info->last_trans_committed;
3425
3426         list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
3427                 list_del_init(&em->list);
3428
3429                 /*
3430                  * Just an arbitrary number, this can be really CPU intensive
3431                  * once we start getting a lot of extents, and really once we
3432                  * have a bunch of extents we just want to commit since it will
3433                  * be faster.
3434                  */
3435                 if (++num > 32768) {
3436                         list_del_init(&tree->modified_extents);
3437                         ret = -EFBIG;
3438                         goto process;
3439                 }
3440
3441                 if (em->generation <= test_gen)
3442                         continue;
3443                 /* Need a ref to keep it from getting evicted from cache */
3444                 atomic_inc(&em->refs);
3445                 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
3446                 list_add_tail(&em->list, &extents);
3447                 num++;
3448         }
3449
3450         list_sort(NULL, &extents, extent_cmp);
3451
3452 process:
3453         while (!list_empty(&extents)) {
3454                 em = list_entry(extents.next, struct extent_map, list);
3455
3456                 list_del_init(&em->list);
3457
3458                 /*
3459                  * If we had an error we just need to delete everybody from our
3460                  * private list.
3461                  */
3462                 if (ret) {
3463                         clear_em_logging(tree, em);
3464                         free_extent_map(em);
3465                         continue;
3466                 }
3467
3468                 write_unlock(&tree->lock);
3469
3470                 ret = log_one_extent(trans, inode, root, em, path);
3471                 write_lock(&tree->lock);
3472                 clear_em_logging(tree, em);
3473                 free_extent_map(em);
3474         }
3475         WARN_ON(!list_empty(&extents));
3476         write_unlock(&tree->lock);
3477
3478         btrfs_release_path(path);
3479         return ret;
3480 }
3481
3482 /* log a single inode in the tree log.
3483  * At least one parent directory for this inode must exist in the tree
3484  * or be logged already.
3485  *
3486  * Any items from this inode changed by the current transaction are copied
3487  * to the log tree.  An extra reference is taken on any extents in this
3488  * file, allowing us to avoid a whole pile of corner cases around logging
3489  * blocks that have been removed from the tree.
3490  *
3491  * See LOG_INODE_ALL and related defines for a description of what inode_only
3492  * does.
3493  *
3494  * This handles both files and directories.
3495  */
3496 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
3497                              struct btrfs_root *root, struct inode *inode,
3498                              int inode_only)
3499 {
3500         struct btrfs_path *path;
3501         struct btrfs_path *dst_path;
3502         struct btrfs_key min_key;
3503         struct btrfs_key max_key;
3504         struct btrfs_root *log = root->log_root;
3505         struct extent_buffer *src = NULL;
3506         int err = 0;
3507         int ret;
3508         int nritems;
3509         int ins_start_slot = 0;
3510         int ins_nr;
3511         bool fast_search = false;
3512         u64 ino = btrfs_ino(inode);
3513
3514         path = btrfs_alloc_path();
3515         if (!path)
3516                 return -ENOMEM;
3517         dst_path = btrfs_alloc_path();
3518         if (!dst_path) {
3519                 btrfs_free_path(path);
3520                 return -ENOMEM;
3521         }
3522
3523         min_key.objectid = ino;
3524         min_key.type = BTRFS_INODE_ITEM_KEY;
3525         min_key.offset = 0;
3526
3527         max_key.objectid = ino;
3528
3529
3530         /* today the code can only do partial logging of directories */
3531         if (S_ISDIR(inode->i_mode) ||
3532             (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3533                        &BTRFS_I(inode)->runtime_flags) &&
3534              inode_only == LOG_INODE_EXISTS))
3535                 max_key.type = BTRFS_XATTR_ITEM_KEY;
3536         else
3537                 max_key.type = (u8)-1;
3538         max_key.offset = (u64)-1;
3539
3540         /* Only run delayed items if we are a dir or a new file */
3541         if (S_ISDIR(inode->i_mode) ||
3542             BTRFS_I(inode)->generation > root->fs_info->last_trans_committed) {
3543                 ret = btrfs_commit_inode_delayed_items(trans, inode);
3544                 if (ret) {
3545                         btrfs_free_path(path);
3546                         btrfs_free_path(dst_path);
3547                         return ret;
3548                 }
3549         }
3550
3551         mutex_lock(&BTRFS_I(inode)->log_mutex);
3552
3553         btrfs_get_logged_extents(log, inode);
3554
3555         /*
3556          * a brute force approach to making sure we get the most uptodate
3557          * copies of everything.
3558          */
3559         if (S_ISDIR(inode->i_mode)) {
3560                 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
3561
3562                 if (inode_only == LOG_INODE_EXISTS)
3563                         max_key_type = BTRFS_XATTR_ITEM_KEY;
3564                 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
3565         } else {
3566                 if (test_and_clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3567                                        &BTRFS_I(inode)->runtime_flags)) {
3568                         clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3569                                   &BTRFS_I(inode)->runtime_flags);
3570                         ret = btrfs_truncate_inode_items(trans, log,
3571                                                          inode, 0, 0);
3572                 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3573                                               &BTRFS_I(inode)->runtime_flags)) {
3574                         if (inode_only == LOG_INODE_ALL)
3575                                 fast_search = true;
3576                         max_key.type = BTRFS_XATTR_ITEM_KEY;
3577                         ret = drop_objectid_items(trans, log, path, ino,
3578                                                   max_key.type);
3579                 } else {
3580                         if (inode_only == LOG_INODE_ALL)
3581                                 fast_search = true;
3582                         ret = log_inode_item(trans, log, dst_path, inode);
3583                         if (ret) {
3584                                 err = ret;
3585                                 goto out_unlock;
3586                         }
3587                         goto log_extents;
3588                 }
3589
3590         }
3591         if (ret) {
3592                 err = ret;
3593                 goto out_unlock;
3594         }
3595         path->keep_locks = 1;
3596
3597         while (1) {
3598                 ins_nr = 0;
3599                 ret = btrfs_search_forward(root, &min_key, &max_key,
3600                                            path, trans->transid);
3601                 if (ret != 0)
3602                         break;
3603 again:
3604                 /* note, ins_nr might be > 0 here, cleanup outside the loop */
3605                 if (min_key.objectid != ino)
3606                         break;
3607                 if (min_key.type > max_key.type)
3608                         break;
3609
3610                 src = path->nodes[0];
3611                 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
3612                         ins_nr++;
3613                         goto next_slot;
3614                 } else if (!ins_nr) {
3615                         ins_start_slot = path->slots[0];
3616                         ins_nr = 1;
3617                         goto next_slot;
3618                 }
3619
3620                 ret = copy_items(trans, inode, dst_path, src, ins_start_slot,
3621                                  ins_nr, inode_only);
3622                 if (ret) {
3623                         err = ret;
3624                         goto out_unlock;
3625                 }
3626                 ins_nr = 1;
3627                 ins_start_slot = path->slots[0];
3628 next_slot:
3629
3630                 nritems = btrfs_header_nritems(path->nodes[0]);
3631                 path->slots[0]++;
3632                 if (path->slots[0] < nritems) {
3633                         btrfs_item_key_to_cpu(path->nodes[0], &min_key,
3634                                               path->slots[0]);
3635                         goto again;
3636                 }
3637                 if (ins_nr) {
3638                         ret = copy_items(trans, inode, dst_path, src,
3639                                          ins_start_slot,
3640                                          ins_nr, inode_only);
3641                         if (ret) {
3642                                 err = ret;
3643                                 goto out_unlock;
3644                         }
3645                         ins_nr = 0;
3646                 }
3647                 btrfs_release_path(path);
3648
3649                 if (min_key.offset < (u64)-1)
3650                         min_key.offset++;
3651                 else if (min_key.type < (u8)-1)
3652                         min_key.type++;
3653                 else if (min_key.objectid < (u64)-1)
3654                         min_key.objectid++;
3655                 else
3656                         break;
3657         }
3658         if (ins_nr) {
3659                 ret = copy_items(trans, inode, dst_path, src, ins_start_slot,
3660                                  ins_nr, inode_only);
3661                 if (ret) {
3662                         err = ret;
3663                         goto out_unlock;
3664                 }
3665                 ins_nr = 0;
3666         }
3667
3668 log_extents:
3669         if (fast_search) {
3670                 btrfs_release_path(dst_path);
3671                 ret = btrfs_log_changed_extents(trans, root, inode, dst_path);
3672                 if (ret) {
3673                         err = ret;
3674                         goto out_unlock;
3675                 }
3676         } else {
3677                 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3678                 struct extent_map *em, *n;
3679
3680                 write_lock(&tree->lock);
3681                 list_for_each_entry_safe(em, n, &tree->modified_extents, list)
3682                         list_del_init(&em->list);
3683                 write_unlock(&tree->lock);
3684         }
3685
3686         if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
3687                 btrfs_release_path(path);
3688                 btrfs_release_path(dst_path);
3689                 ret = log_directory_changes(trans, root, inode, path, dst_path);
3690                 if (ret) {
3691                         err = ret;
3692                         goto out_unlock;
3693                 }
3694         }
3695         BTRFS_I(inode)->logged_trans = trans->transid;
3696         BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
3697 out_unlock:
3698         if (err)
3699                 btrfs_free_logged_extents(log, log->log_transid);
3700         mutex_unlock(&BTRFS_I(inode)->log_mutex);
3701
3702         btrfs_free_path(path);
3703         btrfs_free_path(dst_path);
3704         return err;
3705 }
3706
3707 /*
3708  * follow the dentry parent pointers up the chain and see if any
3709  * of the directories in it require a full commit before they can
3710  * be logged.  Returns zero if nothing special needs to be done or 1 if
3711  * a full commit is required.
3712  */
3713 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
3714                                                struct inode *inode,
3715                                                struct dentry *parent,
3716                                                struct super_block *sb,
3717                                                u64 last_committed)
3718 {
3719         int ret = 0;
3720         struct btrfs_root *root;
3721         struct dentry *old_parent = NULL;
3722
3723         /*
3724          * for regular files, if its inode is already on disk, we don't
3725          * have to worry about the parents at all.  This is because
3726          * we can use the last_unlink_trans field to record renames
3727          * and other fun in this file.
3728          */
3729         if (S_ISREG(inode->i_mode) &&
3730             BTRFS_I(inode)->generation <= last_committed &&
3731             BTRFS_I(inode)->last_unlink_trans <= last_committed)
3732                         goto out;
3733
3734         if (!S_ISDIR(inode->i_mode)) {
3735                 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3736                         goto out;
3737                 inode = parent->d_inode;
3738         }
3739
3740         while (1) {
3741                 BTRFS_I(inode)->logged_trans = trans->transid;
3742                 smp_mb();
3743
3744                 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
3745                         root = BTRFS_I(inode)->root;
3746
3747                         /*
3748                          * make sure any commits to the log are forced
3749                          * to be full commits
3750                          */
3751                         root->fs_info->last_trans_log_full_commit =
3752                                 trans->transid;
3753                         ret = 1;
3754                         break;
3755                 }
3756
3757                 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3758                         break;
3759
3760                 if (IS_ROOT(parent))
3761                         break;
3762
3763                 parent = dget_parent(parent);
3764                 dput(old_parent);
3765                 old_parent = parent;
3766                 inode = parent->d_inode;
3767
3768         }
3769         dput(old_parent);
3770 out:
3771         return ret;
3772 }
3773
3774 /*
3775  * helper function around btrfs_log_inode to make sure newly created
3776  * parent directories also end up in the log.  A minimal inode and backref
3777  * only logging is done of any parent directories that are older than
3778  * the last committed transaction
3779  */
3780 int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
3781                     struct btrfs_root *root, struct inode *inode,
3782                     struct dentry *parent, int exists_only)
3783 {
3784         int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
3785         struct super_block *sb;
3786         struct dentry *old_parent = NULL;
3787         int ret = 0;
3788         u64 last_committed = root->fs_info->last_trans_committed;
3789
3790         sb = inode->i_sb;
3791
3792         if (btrfs_test_opt(root, NOTREELOG)) {
3793                 ret = 1;
3794                 goto end_no_trans;
3795         }
3796
3797         if (root->fs_info->last_trans_log_full_commit >
3798             root->fs_info->last_trans_committed) {
3799                 ret = 1;
3800                 goto end_no_trans;
3801         }
3802
3803         if (root != BTRFS_I(inode)->root ||
3804             btrfs_root_refs(&root->root_item) == 0) {
3805                 ret = 1;
3806                 goto end_no_trans;
3807         }
3808
3809         ret = check_parent_dirs_for_sync(trans, inode, parent,
3810                                          sb, last_committed);
3811         if (ret)
3812                 goto end_no_trans;
3813
3814         if (btrfs_inode_in_log(inode, trans->transid)) {
3815                 ret = BTRFS_NO_LOG_SYNC;
3816                 goto end_no_trans;
3817         }
3818
3819         ret = start_log_trans(trans, root);
3820         if (ret)
3821                 goto end_trans;
3822
3823         ret = btrfs_log_inode(trans, root, inode, inode_only);
3824         if (ret)
3825                 goto end_trans;
3826
3827         /*
3828          * for regular files, if its inode is already on disk, we don't
3829          * have to worry about the parents at all.  This is because
3830          * we can use the last_unlink_trans field to record renames
3831          * and other fun in this file.
3832          */
3833         if (S_ISREG(inode->i_mode) &&
3834             BTRFS_I(inode)->generation <= last_committed &&
3835             BTRFS_I(inode)->last_unlink_trans <= last_committed) {
3836                 ret = 0;
3837                 goto end_trans;
3838         }
3839
3840         inode_only = LOG_INODE_EXISTS;
3841         while (1) {
3842                 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3843                         break;
3844
3845                 inode = parent->d_inode;
3846                 if (root != BTRFS_I(inode)->root)
3847                         break;
3848
3849                 if (BTRFS_I(inode)->generation >
3850                     root->fs_info->last_trans_committed) {
3851                         ret = btrfs_log_inode(trans, root, inode, inode_only);
3852                         if (ret)
3853                                 goto end_trans;
3854                 }
3855                 if (IS_ROOT(parent))
3856                         break;
3857
3858                 parent = dget_parent(parent);
3859                 dput(old_parent);
3860                 old_parent = parent;
3861         }
3862         ret = 0;
3863 end_trans:
3864         dput(old_parent);
3865         if (ret < 0) {
3866                 root->fs_info->last_trans_log_full_commit = trans->transid;
3867                 ret = 1;
3868         }
3869         btrfs_end_log_trans(root);
3870 end_no_trans:
3871         return ret;
3872 }
3873
3874 /*
3875  * it is not safe to log dentry if the chunk root has added new
3876  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
3877  * If this returns 1, you must commit the transaction to safely get your
3878  * data on disk.
3879  */
3880 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
3881                           struct btrfs_root *root, struct dentry *dentry)
3882 {
3883         struct dentry *parent = dget_parent(dentry);
3884         int ret;
3885
3886         ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0);
3887         dput(parent);
3888
3889         return ret;
3890 }
3891
3892 /*
3893  * should be called during mount to recover any replay any log trees
3894  * from the FS
3895  */
3896 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
3897 {
3898         int ret;
3899         struct btrfs_path *path;
3900         struct btrfs_trans_handle *trans;
3901         struct btrfs_key key;
3902         struct btrfs_key found_key;
3903         struct btrfs_key tmp_key;
3904         struct btrfs_root *log;
3905         struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
3906         struct walk_control wc = {
3907                 .process_func = process_one_buffer,
3908                 .stage = 0,
3909         };
3910
3911         path = btrfs_alloc_path();
3912         if (!path)
3913                 return -ENOMEM;
3914
3915         fs_info->log_root_recovering = 1;
3916
3917         trans = btrfs_start_transaction(fs_info->tree_root, 0);
3918         if (IS_ERR(trans)) {
3919                 ret = PTR_ERR(trans);
3920                 goto error;
3921         }
3922
3923         wc.trans = trans;
3924         wc.pin = 1;
3925
3926         ret = walk_log_tree(trans, log_root_tree, &wc);
3927         if (ret) {
3928                 btrfs_error(fs_info, ret, "Failed to pin buffers while "
3929                             "recovering log root tree.");
3930                 goto error;
3931         }
3932
3933 again:
3934         key.objectid = BTRFS_TREE_LOG_OBJECTID;
3935         key.offset = (u64)-1;
3936         btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
3937
3938         while (1) {
3939                 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
3940
3941                 if (ret < 0) {
3942                         btrfs_error(fs_info, ret,
3943                                     "Couldn't find tree log root.");
3944                         goto error;
3945                 }
3946                 if (ret > 0) {
3947                         if (path->slots[0] == 0)
3948                                 break;
3949                         path->slots[0]--;
3950                 }
3951                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3952                                       path->slots[0]);
3953                 btrfs_release_path(path);
3954                 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
3955                         break;
3956
3957                 log = btrfs_read_fs_root_no_radix(log_root_tree,
3958                                                   &found_key);
3959                 if (IS_ERR(log)) {
3960                         ret = PTR_ERR(log);
3961                         btrfs_error(fs_info, ret,
3962                                     "Couldn't read tree log root.");
3963                         goto error;
3964                 }
3965
3966                 tmp_key.objectid = found_key.offset;
3967                 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
3968                 tmp_key.offset = (u64)-1;
3969
3970                 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
3971                 if (IS_ERR(wc.replay_dest)) {
3972                         ret = PTR_ERR(wc.replay_dest);
3973                         btrfs_error(fs_info, ret, "Couldn't read target root "
3974                                     "for tree log recovery.");
3975                         goto error;
3976                 }
3977
3978                 wc.replay_dest->log_root = log;
3979                 btrfs_record_root_in_trans(trans, wc.replay_dest);
3980                 ret = walk_log_tree(trans, log, &wc);
3981                 BUG_ON(ret);
3982
3983                 if (wc.stage == LOG_WALK_REPLAY_ALL) {
3984                         ret = fixup_inode_link_counts(trans, wc.replay_dest,
3985                                                       path);
3986                         BUG_ON(ret);
3987                 }
3988
3989                 key.offset = found_key.offset - 1;
3990                 wc.replay_dest->log_root = NULL;
3991                 free_extent_buffer(log->node);
3992                 free_extent_buffer(log->commit_root);
3993                 kfree(log);
3994
3995                 if (found_key.offset == 0)
3996                         break;
3997         }
3998         btrfs_release_path(path);
3999
4000         /* step one is to pin it all, step two is to replay just inodes */
4001         if (wc.pin) {
4002                 wc.pin = 0;
4003                 wc.process_func = replay_one_buffer;
4004                 wc.stage = LOG_WALK_REPLAY_INODES;
4005                 goto again;
4006         }
4007         /* step three is to replay everything */
4008         if (wc.stage < LOG_WALK_REPLAY_ALL) {
4009                 wc.stage++;
4010                 goto again;
4011         }
4012
4013         btrfs_free_path(path);
4014
4015         /* step 4: commit the transaction, which also unpins the blocks */
4016         ret = btrfs_commit_transaction(trans, fs_info->tree_root);
4017         if (ret)
4018                 return ret;
4019
4020         free_extent_buffer(log_root_tree->node);
4021         log_root_tree->log_root = NULL;
4022         fs_info->log_root_recovering = 0;
4023         kfree(log_root_tree);
4024
4025         return 0;
4026 error:
4027         btrfs_free_path(path);
4028         return ret;
4029 }
4030
4031 /*
4032  * there are some corner cases where we want to force a full
4033  * commit instead of allowing a directory to be logged.
4034  *
4035  * They revolve around files there were unlinked from the directory, and
4036  * this function updates the parent directory so that a full commit is
4037  * properly done if it is fsync'd later after the unlinks are done.
4038  */
4039 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4040                              struct inode *dir, struct inode *inode,
4041                              int for_rename)
4042 {
4043         /*
4044          * when we're logging a file, if it hasn't been renamed
4045          * or unlinked, and its inode is fully committed on disk,
4046          * we don't have to worry about walking up the directory chain
4047          * to log its parents.
4048          *
4049          * So, we use the last_unlink_trans field to put this transid
4050          * into the file.  When the file is logged we check it and
4051          * don't log the parents if the file is fully on disk.
4052          */
4053         if (S_ISREG(inode->i_mode))
4054                 BTRFS_I(inode)->last_unlink_trans = trans->transid;
4055
4056         /*
4057          * if this directory was already logged any new
4058          * names for this file/dir will get recorded
4059          */
4060         smp_mb();
4061         if (BTRFS_I(dir)->logged_trans == trans->transid)
4062                 return;
4063
4064         /*
4065          * if the inode we're about to unlink was logged,
4066          * the log will be properly updated for any new names
4067          */
4068         if (BTRFS_I(inode)->logged_trans == trans->transid)
4069                 return;
4070
4071         /*
4072          * when renaming files across directories, if the directory
4073          * there we're unlinking from gets fsync'd later on, there's
4074          * no way to find the destination directory later and fsync it
4075          * properly.  So, we have to be conservative and force commits
4076          * so the new name gets discovered.
4077          */
4078         if (for_rename)
4079                 goto record;
4080
4081         /* we can safely do the unlink without any special recording */
4082         return;
4083
4084 record:
4085         BTRFS_I(dir)->last_unlink_trans = trans->transid;
4086 }
4087
4088 /*
4089  * Call this after adding a new name for a file and it will properly
4090  * update the log to reflect the new name.
4091  *
4092  * It will return zero if all goes well, and it will return 1 if a
4093  * full transaction commit is required.
4094  */
4095 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
4096                         struct inode *inode, struct inode *old_dir,
4097                         struct dentry *parent)
4098 {
4099         struct btrfs_root * root = BTRFS_I(inode)->root;
4100
4101         /*
4102          * this will force the logging code to walk the dentry chain
4103          * up for the file
4104          */
4105         if (S_ISREG(inode->i_mode))
4106                 BTRFS_I(inode)->last_unlink_trans = trans->transid;
4107
4108         /*
4109          * if this inode hasn't been logged and directory we're renaming it
4110          * from hasn't been logged, we don't need to log it
4111          */
4112         if (BTRFS_I(inode)->logged_trans <=
4113             root->fs_info->last_trans_committed &&
4114             (!old_dir || BTRFS_I(old_dir)->logged_trans <=
4115                     root->fs_info->last_trans_committed))
4116                 return 0;
4117
4118         return btrfs_log_inode_parent(trans, root, inode, parent, 1);
4119 }
4120