ARM Assembly Language Tools
vo.1l

User's Guide

I3 TExXAS

INSTRUMENTS

Literature Number: SPNU118L
June 2013

I

TeEXAS
INSTRUMENTS

Contents

L =7 = To = PP 12
1 Introduction to the Software Development TOOIS ..ouiiiiiiiiiii e 15
11 Software Development TOOIS OVEIVIEWuuiiruseiiteiseersre et saterainssannsrnnes 16

1.2 B0 L0 3 I 7= o] (o] TN 17

2 Introduction t0 ODJECE MOAUIESnini et et e e e e e e e e e e 18
2.1 Object File FOrmat SPeCifiCatiONs ...uuiiiieeeeiiiiieissiineessesanneessaanteessaanneessaanneessassnnesssssnneesssnnnes 19

2.2 o1 U | =1 o] (=T @ 1= o) 19

2.3 Lo o (8 Tox 1T I (o TS =T ox 1] L 19

2.3.1 SpeCial SECHON NAMES . .uuriiiiiseeeiaaineeseaasnreessaanneessaanneessaaseesssssnnesssssnnnesssssnneesssnnnes 20

2.4 How the Assembler HandIes SECHONSuueieiiiii i e e e s s e e s saanr e s saann e e saannneeenn 20

P R U 1 a1 (=1 =To IS T= T ox 1T L 21

B2 1011 = =0 S 1= ox 1) o 22

2.4.3 USEr-Named SECHONS . .uueteiiiiteeiaaeeesaaaaneesssaanneessaannaessaannnessaannnessaaannnessaannnesssnnnnes 22

A S T U o 1= =Y o o 23

2.4.5 SecCtion Program COUNTEIS ..uiiueeesiesuseesssssnneessasnnesssaanneessesnneessssnssnesssssnnesssssnneessssnnnes 24

2.4.6 USING SECHONS DIrECHVES uvuiuseiseiieeiiteiaterstssar st taes s siar s san s s s sar e saneaaanns 24

25 How the LinKer HandIeS SECHONSuueiiiiiiiiiiiiitte it iae s sr e s ssan s s s sa i n e s ssaanna s s sannnnenss 26

2.5.1 Default Memory AllOCatiON ..uiiueeeiiiiieeseeieessesaneesssaaneeessaanneessannsnessssnnnesssssnneesssnnnnes 27

2.5.2 Placing Sections in the Memory Mapuveeiveeiiiseriiriririe st sanss e 27

2.6 153770101070 27

2.6.1 The SYMDOol Table .uuiiiiiiieiiiiii e i e s s st e s e s e s saann e e s s saannesssanneesaaannnesssannneesnnnnnes 28

2.6.2 EXIErnal SYMDOIS . .uuiuueiietiieiiit i 28

2.7 I3 V7] T] {o o= (o To%= 1[0 28

2.7.1 Expressions With Multiple Relocatable Symbols (COFF Only) ..oiiiiiiiiiiii i ssieeeennnnnees 29

2.8 0 T T g L= = [o= U1 [30

29 [= o 10T JIF= 0 = £ o | = o 30

3 Program Loading and RUNNMING c.iuiiiiiiiii e ettt e s s e et e e e e et s e s e e e e e aaaeaens 31
3.1 0 =T 1o 32

0 0 R I T= To =g o W AN o[£ 32

R 0 A = T T =3 1= o JN I Y= 1o [o 33

3.2 20 o 1 o 37

3.3 U T T L= L= 4 1T 37

1 0 700 o 100 37

3.3.2 RAM Model VS. ROM MOGEI . .uueiiiiiiiiieisaiieese s e ssaaanee s ssannne s ssannessaaannnessaannneesnnnnnes 38

0 R T @0)V I o] = 39

3.4 F N (0 814 T=T) T (o 0 T o 40

3.5 WX (o 1T F= LN T} {01 4= 4o o 40

4 F ST YT 0 0] oY =T 1= of g o} o o P 41
4.1 F ST =T a1 0] T G @Y= 1= 42

4.2 The Assembler's Role in the Software Development FIOWccveeiiiiiiiiiiiii i senneee s ssanneennaanns 43

4.3 INVOKING the ASSEMIDIET L uui ettt e e rsn e s s s r e anrras 44

4.4 Naming Alternate Directories for ASSembler INPULoieieiiiii i s rraan e e eas 45

4.4.1 Using the --include_path Assembler OPtiONc.eeeiiiiieeerresieeraainnressaannreersaanneessaannnessennns 46

4.4.2 Using the TI_ARM_C_DIR Environment Variableccoviiiiiiiiiiiiiiii s e 46

2 Contents SPNU118L—June 2013

Copyright © 2013, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

I3 TEXAS
INSTRUMENTS
www.ti.com
4.5 Yo 0 oIS ¥= 1= 0 =T [0] 1 T 48
0t = o< I T (o 48
4.5.2 MNEmMONIC FIEld .uiuuriiiiiiiiiii i e 49
TG T @ o =T = oo T [49
454 ComMMENT FIEI .uiuueiiineiiiii e 51
4.6 1T 72 L O 0] 11 = g £ 52
4.6.1 Binary INteger LItEralS ..uuuuiireeiiteiierite s st r st s r s s s s a et 52
2 @ Tox v= LN [g1 (=T =T 1 (= | 52
4.6.3 Decimal INteger LIitEralSuuueiiiiuseeiiiieeiisiir s ssaaaree s saasse s saaas e s ssaanssssaannressannes 52
4.6.4 Hexadecimal INteger LItEralSueuiseiieiriiiririte e rr s s s s s as e ranearnns 53
G ST @1 =T = o1 (= gl I (=T = 53
4.6.6 Character String LILEralSuuiiiuisiiiiiiiiii i st raiae s ss e asann s anannnes 53
4.6.7 Floating-PoiNt LItEralSuvuusireiiieeiiisisris s e r st s r s ss s s s s e rane s nns 54
4.7 3770101 010 54
R 0 R (o (=T 11T £ 54
7 - o1 L 55
e T 0T | - o= 55
Y 0] o T @] 7= g £ 57
4.7.5 Defining Symbolic Constants (--asm_define Option)cvvviiiiiiiiiiiiiiiiii e 57
4.7.6 Predefined SymboliC CONSIANTS .. .uiiiiiii i r e s s e s s anr s s saanra e s saannnesaanns 59
O A (=0 £ (T 60
4.7.8 SUDSHIULION SYMDOIS +.uueitii i e 61
4.8 o] (=577 T 1 62
4.8.1 Mathematical and LOQICal OPEIatOrSuueeeiiiiusssiirinnnssiriinnesssainresraanresssannrssssaannessnnnns 63
4.8.2 Relational Operators and Conditional EXPreSSiONS ...uvueivieririesiiieiierisisiriinssiaresansiainess 64
4.8.3 Well-Defined EXPrESSIONS . .uuiiieteeiiaeesaaaiatessaaanteessaantasssaanssessaansestaannnesssannneesssnnnes 64
4.8.4 Relocatable Symbols and Legal EXPreSSIONS .uuueeiiiiueeerrriinneerrinntssiranssesssaisnssssannnssssinnnes 64
4.8.5 EXPression EXAmPIES . ..uiuuiiieiiieiiiriiris st 65
4.9 Built-in FUNCLIONS N0 OPEIAtOIS .uuuueeeiieeessaaaattessaasse s saaansessaansessaaannesssaannnessaannnressannnnsssnn 66
4.9.1 Built-In Math and TrigoNOMEetriC FUNCLIONS ...u.uuusssiiiiieeiiiiiiee s ssire s rsanrnsssaanaaessanes 66
4.10 Unified Assembly Language SYNtax SUPPOIT «...ueiueeiiutessneineisieriasssars i s sanessannsrnns 67
5 ST T ot 1 T 68
4.12 Debugging ASSEMDIY SOUICE ..uuuiiiiiiiieeiiiie i r e s r e s st e st sasa e st saanse e s aaannnsssaannnes 71
e T O (0 T L= £ = ot £ g 72
5 ASS MBI EE DIFECIIVES ottt ettt et a s e et e s s e e e e s e s e e e aene e e e ananeenes 73
5.1 DIFECHVES SUMIMAIY s uattetiaeee s e e ss et e s s s e e s s st s st sa s e st saaaa s e st s aa s e st aann e s s sannnesssannnnnssn 74
5.2 Directives That Define SECHONS ...uuiueiisiiiisirsiiiis s rnens 79
5.3 Directives That Change the INStrUCtON TYPE ..uuuieiiueirietiririre s srs e aaanrrans 81
5.4 Directives That INitialiZe VAIUESiiueiiiiiiiiiiiiiii i e aaareras 81
5.5 Directives That Perform Alignment and RESEIVE SPACEuvvriiiirrerriiinneesrisneesssasnneesssannressennneessnn 84
5.6 Directives That Format the OUPUL LISHINGS +.uueeiueiiieiiiieiieiris s sse st asas s saasenas 85
5.7 Directives That Reference Other FileSuuiiiiiiiueiiiiiii i i nas 86
5.8 Directives That Enable Conditional ASSEMDIY ...oneiiiiiii i i r s e e s e aanre e s rannneess 87
5.9 Directives That Define Union Or STrUCIUrE TYPES .uuiuueiriutirisrirneiane i isissrasssanrsraessannsns 87
5.10 Directives That Define ENUMErAted TYPES . .uuueeiiinuieiiiitrssraaatsssiaanssessaansssssananessaannneessannnsessns 88
5.11 Directives That Define Symbols at ASSEMDBIY TiME ...uiiiiiiiiiii i i raiiee s ssaanr e saaanreesaannneenss 88
5.12 MiSCEllANEOUS DIFECHVES . uutiussiiusteiseiississsriate st e s r s s s s s s s e ta e e s s e s sn e s aneaanness 89
5.13 DireCliVES REIEIENCE vttt e et s st r e 90
6 = Vo] o T T =Y Y o]] o) 4o o PP PP 152
6.1 L]0 /= Lo (01 153
6.2 (7= 1 0T o 1Y = T o L= 153
6.3 Macro Parameters/Substitution SYMDOISeeiiiiiiiiiiii e 155
6.3.1 Directives That Define Substitution SYmbBOISoviuiiiiiiiiii i e 156
SPNU118L—-June 2013 Contents 3

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

I3 TEXAS

INSTRUMENTS
www.ti.com
6.3.2 Built-In Substitution Symbol FUNCHONSuiiieiiiiiii i e ee s 157
6.3.3 Recursive Substitution SYMDOISciiueiiiiiiiii i 158
LR J N o T o =T o IS 0] 41 111 F 0] 158
6.3.5 Accessing Individual Characters of Subscripted Substitution Symbolscccevviiiiiiiiiiinnnn. 159
6.3.6 Substitution Symbols as Local Variables in Macrosivvevviiiiiiiiiiiiiiiiiin e 160
6.4 Y=Yt IR o = g1 161
6.5 Using Conditional ASSEMDIY iN IMBCIOS +..uuiiuetiiteiite s saar s saar e aaneranns 162
6.6 {0 LS = T o T=] ST 1 T o L 164
6.7 Producing MeSSages iN MaACIOS +.uuuuuueeiiiseeesraiantesraastesssaatesssaassessaaassessasannnssssannnssssannnnesss 165
6.8 Using Directives to Format the OUtput LIStING ..vueeireeiiieiiiriiriis i iessies e s rineaaness 166
6.9 Using Recursive and NESIEA MACIOSueiiiiueeeiniineesaaantestaaantasssaantesssaannnessaannessaannnressannnes 167
6.10 MACIO DireCIVES SUMMEAIY tiuuuuuseeisinnnesssaeesssaansessaaassessaastesssasssestassssssssssnnnesssssnnnessannnns 168
Y ot a LAV T T Yod T o] (1o] o PP 169
7.1 (00T =T @ =T T 170
7.2 The Archiver's Role in the Software Development FIOWoovviiiiiiiiiiiiiii i rriaeeeeas 171
7.3 INVOKING the ANCNIVET .ttt it s s e e s e s s e e e s sa s e e s saannn e s saaannessannnneessannnnessannnnnsss 172
7.4 ATCRIVEN EXAMPIES 1 uuiitiiite it et e s e e 173
7.5 Library Information Archiver DeSCHPLIONeiiiiiiiii i r e s e e s anr e s s raannaenas 174
7.5.1 Invoking the Library Information ArChivercoiiiiiiiiiiiiii i e s r e ananees 174
7.5.2 Library Information Archiver EXamplec.eviieeiiieiiiii s s s i 175
7.5.3 Listing the Contents of an INdeX LIDraryc..eeeiiiiiieiiiiii i e s annees 175
AT S == To (U 11 =Y o 1= £ PP 176
[T 1 =T I TS o g o) 1 oY o PP 177
8.1 1T B O YT 178
8.2 The Linker's Role in the Software Development FIOWcviiiiiiiiiiiiiiiiii i niaeee e 179
8.3 INVOKING the LINKET . ueei et e e e e s s i r e e s a s s e e s n e e e nns 180
8.4 [T =T O 1T = 181
8.4.1 Wild Cards in File, Section, and Symbol Patternsooeieeeiiiiiieiiiiiiiiiiiiinsiinsines 183
8.4.2 Relocation Capabilities (--absolute_exe and --relocatable Options)cccvvvviiiieiiiiiienrinnneens 183
8.4.3 Allocate Memory for Use by the Loader to Pass Arguments (--arg_size Option)ccceevvvinnnns 184
8.4.4 Changing Encoding of Big-Endian INSIFUCLIONS ...uuueieiiiiiissiiiiseissiiesisiiinessssiinnsessanns 185
8.4.5 Compression (--cinit_compression and --copy_compression OPtion)ccevvverivieeiiirerineininnss 185
8.4.6 Compress DWARF Information (--compress_dwarf Option)ooeeeeeriiiiiesiiiieeaaiieeeananess 185
8.4.7 Control LINKer DIagNOSHICS +uuuuuuueeeissuunnssssnnnessasssessasssssssaasssssssasnnssssasnnrsssssnnnssssannns 185
8.4.8 Disable Automatic Library Selection (--disable_auto_rts Option)vovevvieiivieriiieiiiiinn.s 186
8.4.9 Controlling Unreferenced and UnuSed SECHONSuviiseiristiiiseiireiiseerissisissianseinneraneianes 186
8.4.10 Link Command File Preprocessing (--disable_pp, --define and --undefine Options) 187
8.4.11 Error Correcting Code Testing (--€CC OPLIONS) +uuuuueiuerrinnirinreriseiinneiasssinrsrissianneiaiearinns 188
8.4.12 Define an Entry Point (--entry_point OPtioN)iieeeeiiiieeiaianresisaanessaaansnesaaannrssaaannns 189
8.4.13 Set Default Fill Value (--fill_value OPLiON)ueeiiiiieieiiiiiesiiiesisaisesississsssainnssaainnnes 189
8.4.14 Generate List of Dead Functions (--generate_dead_funcs_list Option)ccevviiiiiiiniiinnnnnn, 189
8.4.15 Define Heap Size (--heap_Size OPtiON) ..i.eeiiiiiiii i raaae e saaansessaaanneeananns 189
8.4.16 HidiNg SYMDOIS ..uuuiiiiiii i s 190

8.4.17 Alter the Library Search Algorithm (--library Option, --search_path Option, and TI_ARM_C_DIR
ENVironment Variable)oooiiiiiii s aanes 190
8.4.18 Change Symbol LOCAliZAtIONueiiiiuueeiiiiiieisiiie s s s s s s as e aranns 193
8.4.19 Create a Map File (--map_file OPtioN) ...uuuirieiiiieiiii i s 194
8.4.20 Managing Map File Contents (--mapfile_contents Option)coeeeriiiiiiiiiiiii i 195
8.4.21 Disable Name Demangling (--n0_demangle)cceeeiiiiiiieiiiiiiiiiii i sraanns 196
8.4.22 Disable Merge of Symbolic Debugging Information (--no_sym_merge Option)ccvvvevvinnernnss 196
8.4.23 Strip Symbolic Information (--no_symtable Option)vvveeivieriiiseiiririn s 196
8.4.24 Name an Output Module (--output_file OPtiON) ...ceeieiiiirii i s arines 197
8.4.25 Prioritizing Function Placement (--preferred_order Option)c.vvveviiiiiriiriiiiiirieesaaes 197
Contents SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

I3 TEXAS
INSTRUMENTS
www.ti.com
8.4.26 C Language Options (--ram_model and --rom_model OPtioNS)evviiiiererireinneerrninnnernannnees 197
8.4.27 Retain Discarded Sections (--retain OPtioN)cuiiieeeriiiieriraaee s saaainnessaaannreaaannnes 197
8.4.28 Create an Absolute Listing File (--run_abs Option)evviiieiiiiiiiiiiiiniii i anaines 198
8.4.29 Scan All Libraries for Duplicate Symbol Definitions (--scan_libraries)ccocevviiiiiiiiiinnnnn, 198
8.4.30 Define Stack Size (--Stack_Size OPtiON)eiiiiiii i rr e rananeeraanns 198
8.4.31 Enforce Strict Compatibility (--strict_compatibility Option)evvvieeeeiiiiiiiiiii i, 198
8.4.32 Mapping of Symbols (--symbol_map OPtion)ieeeiveeiiiirieiiiine i 198
8.4.33 Generate Far Call Trampolines (--trampolines OPtioN)eeeeiiiiiiieiiiii i raanees 199
8.4.34 Introduce an Unresolved Symbol (--undef_sym Option)evviiiieiniiiiiiiiiiiiinniinsanes 201
8.4.35 Display a Message When an Undefined Output Section Is Created (--warn_sections) 201
8.4.36 Generate XML Link Information File (--xmI_link_info OPtion)cvviieiiiiiiiiiniiiiinines 201
8.4.37 Zero Initialization (--zero_init OPLiON) ...ueiivsieeeiiiierries i saie s aaiessssannnrsarannes 201
8.5 Linker Command FilES . .uuiueiiitiiit e st e e 202
8.5.1 Reserved Names in Linker Command FileSuviuiiiiiiiiiiiiiiiii e aes 203
8.5.2 Constants in Linker Command FileSccuiiiiiiiiiiiiiiiiiiiiiiiii i 203
8.5.3 The MEMORY DIFECHVE +uuueiuteistinintinsesite et ssassaats s ssaa s ssas st s sanessaneasnssanes 204
8.5.4 The SECTIONS DilCHVE .uuiuueutiueeruertiasruerassaatissasssansassaassatsasansiasssssnnaansinesanssns 206
8.5.5 Specifying a Section's RUN-TIME AQAIrESS ..uuuueiiiiiieteiiiiieeiriir s sasiisnssssannressaannes 218
8.5.6 Using UNION and GROUP StatemMENTS ...uuuuvuuriruseinesinnssriarerissianesiasssinsssissianneiannssanns 220
8.5.7 Special Section Types (DSECT, COPY, NOLOAD, and NOINIT) ...uviiiiiiiiiiiiiniinneenanees 224
8.5.8 Configuring Error Correcting Code (ECC) with the LINKercvviiiuieiiiiiiiiiii i nniiaes 225
8.5.9 Assigning Symbols at Link TiMe ...ueiieiiiiiiiiii i s s s e rnns 226
8.5.10 Creating and FilliNg HOIES ... uuuiiiiiiii i et r e s s e e s rraan e s annnn e e anannns 232
8.6 [o)1= S I o = 4T 235
8.7 Default Allocation AlGOITNM ... e s 236
8.7.1 How the Allocation Algorithm Creates OUtPUL SECHIONSeeiiiiiieieiiiiir i aanneees 236
8.7.2 Reducing Memory Fragmentationc..eeeussiesesssistssirainssssiaisssesssiisnssssannnssssaannrsssannnes 237
8.8 Linker-Generated CopY TableS . ..uiiuuiiiiiiiiiii i e r s 237
8.8.1 Using Copy Tables for BOOt LOAMING . .uueeeiieteiiiiiiteeiaaataessaanesssaansessaannsssaannneessannnes 237
8.8.2 Using Built-in Link Operators in Copy Tablesciieiiiiiiiiii i s iaees 238
8.8.3 Overlay Management EXampleoiiieiiiiiiiieiiiii i s s s s 239
8.8.4 Generating Copy Tables Automatically With the LinKercooiiiiiiiiiiiiiiiiiiiie e 239
SRS T I 0 1= = o] =T (T o =T = 0 240
8.8.6 BOOt-TiMe COPY TabBIES .uuiiieiiiit i e et nns 241
8.8.7 Using the table() Operator to Manage Object COMPONENTSuviiieirririieeiiaiinreraaaanneeaaannns 241
8.8.8 COMPIrESSION SUPPOIM tuuuusesirussnesissnnessssnresssassssssaastnsssaassnesssasnnesssasnnssssssnnnesssnnnns 242
ST IR B ©o T o)V 1= o L= @0 1 (= o] £ 245
8.8.10 General PUrpPOSE COPY ROULINE ...iuueieiiiiiieeiiaaetesssaantes s saasae e ssaannesssannessaanneessannnes 246
8.8.11 Linker-Generated Copy Table Sections and SYmbOoISccevviiiiiiiiiiiiiiiiiiii i rniaees 247
8.8.12 Splitting Object Components and Overlay Managementveeeeeeeieeineerrsmineerssannneraannnnes 248
8.9 Linker-Generated CRC TabIES ...uuiiuiiiisiiiiie i e e r s e rs s s s e annns 250
8.9.1 The Crc_table() OPEratOr ..uuuivuse e st issisreerraateessaasteesraasssssssaanssasannnrsssaannnsssannnes 250
ST T =1 1T 10 L 250
S TR T =T 20 =T 251
8.9.4 INEITACE vttt e 253
8.9.5 A Note on the TMS570_CRC64_ISO AlGOrithmueiiueiiiiiiiiiii s raneannes 255
8.10 Partial (INcremental) LINKINGeeeeiieeeisaiieeeresate e ssaase e s ssanse s ssaase s ssanne st aaannnssaaannesssannnes 256
8.11 LinNKING C/CHT COOE ..uuuuuteiiiutetisineeisaiate s e ssaaaste s saaastesssaasestassanessasannnssssaannnsssannnns 257
8.11.1 RUN-TIME INItIAlIZAON +.uuutiieeiitei it s s s a e n e rann e anns 257
8.11.2 Object Libraries and RUN-TIME SUPPOIT . .uuuiueeiiuteiiseirinririssiiteiiseerissisisssaasearaiainns 257
8.11.3 Setting the Size of the Stack and Heap SECHONScviiiiiiiiiiiiiiiiiiii i i inees 257
8.11.4 Autoinitializing Variables at Run Time (--rom_model)ccevviiiiiiiiiiiiiiii e 258
8.11.5 Initializing Variables at Load Time (--ram_mMOdel)ciiiiiiiiiiiiiiiiie i raninresanannees 258
SPNU118L—-June 2013 Contents 5

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

I3 TEXAS
INSTRUMENTS
www.ti.com
8.11.6 The --rom_model and --ram_model Linker OPtiONSvvieiiiieriiiieiiierinisiernine i raneaainnss 259
S0 2 IR o1 =T g e T o] = 260
9 ADSOIULE LiSTer DESCIIPTION ettt ettt et e et e et e e e e e e ea e e ee e e aneenees 263
9.1 Producing an ADSOIULE LiSTING . uuevieeesiisieeesesineeessaanneesssannnesssannnesssasnnesssssnnnessssnnnessssnnnnnsss 264
9.2 INVOKING the ADSOIULE LISTEI . uuissiitiiiii s e r s e s a s s s n e s e s nes 265
9.3 Y o110 0 (N 1S3 (Y g = 0] o] = 266
10 Cross-Reference LisSter DeSCIIPIION .iuiiiiiiiiiiiis e r e s e e e eaaas 269
10.1 Producing a Cross-Reference LiStING ...vueivierirseiiesiierieriseisiessass s anessiassssssannsransssanns 270
10.2 Invoking the CroSS-RefereNCe LSOl ...uii.ueieiiiiii it are s raa e s saaan e e saannr e s saannneeess 271
10.3 Cross-Reference LiSting EXAmMPIeueiiiieiiiiiiiiiiie s rr e s is e s rs s s s saanre e 272
11 (O] o] [=Tod S LT 4] L = PP 274
11.1 Invoking the Object File Display ULIlityuvieeiieeiiieiirir s s snes 275
11.2 INVOKING the DiSASSEMIDIET ...ttt et e s s e s s s s e s saaan e s s s aann s s ssann e s s sannnenss 276
11.3 INVOKING the NamME Uity .uiiieeeiiiii e ssii s e aeee s ssaaee s s sanne e s saanneesaaannnesssannneessannnnessannnnenss 278
11.4 InvoKiNg the Strip ULIIY . .ueuiueeieeiiri i e e e s e s nns 279
12 Hex Conversion Utility DeSCIIPLION ..viiiiiiiie et e e e e e e e arens 280
12.1 The Hex Conversion Utility's Role in the Software Development FIOWccceeviiiiiiiiiiiiiiiiiinnenn. 281
12.2 Invoking the Hex Conversion ULIIILYvieeirieeineiiiiri s r s s s e nn s raae e nes 282
12.2.1 Invoking the Hex Conversion Utility From the Command Linecccceiiiiiiiiiiiiiiiiiiinnenss 282
12.2.2 Invoking the Hex Conversion Utility With a Command Filecccoiiiiiiiiiiiiiiiiiiiieniieeens 284
12.3 Understanding Memory WiIdths ...cieeiiiiiiii i s s nes 285
2 700 = Vo = LY o 1 o 285
12.3.2 Specifying the Memory Widtheeiiiiii s e s 286
12.3.3 Partitioning Data INto OULPUL FIlES ..uuuiieeiiiieiis i e nes 287
12,4 THE ROMS DilECHVE .uuuuustirusttnseissssasssssse s tssssassssasn et sasssaaas st e rase s st s saasaannsrannssannes 290
12.4.1 When to Use the ROMS DiIr€CHVE .iiuuiiiuiiiisiiiisiiiisiiiiiiiiniase i 291
12.4.2 An Example of the ROMS DirECHVE ..uuiuueiiuesiineiniteiineisinsisss it aessisrssinssannssannesanns 291
12.5 The SECTIONS DilECHVE ..uuiutiusiutinseuestssertisesas st e sasssrsassaas s saassastasssassassassnnsnness 293
12.6 The Load Image Format (--load_image OPtiON)eeeiiiiuereiiriusnesiriisnesiaainrssrainsrsssaannrssssannnnesss 294
12.6.1 Load Image Section FOrMALIONuvueeiruseiiueerisnirarerse s s s rassssins s sanrsrannasannss 294
12.6.2 Load IMage CharaCteriStICS . ..eeerruureerranteesraaneessaaannessaannnessaaanneessaannsessaannnesssannnesss 295
12.7 EXcluding & SpecCified SECHON ..uuiiiuueiiiiiieiiis i r e r e ra st a s et a s s s s s s saaannrenas 295
12.8 ASSIGNING OULPUL FIlENAMES . uuiinuteiitiiitiit s r e s s e s r e s et s a s s s e s s e e rann e ranns 296
12.9 Image Mode and the --fill OPtioNeeiii e r e e e aaren s 297
12.9.1 Generating @ MemMOrY IMAGE ...uiiuuereiiintesiriteesraiaee s sasinrssssaaarrsssaansressaannnesss 297
12.9.2 Specifying @ Fill VAlUEviieiiiiii i e e ra e e nns 297
12.9.3 Steps to Follow in USiNg IMage MOOEviiuiiiiiiiiiiiiiiiii i raaeannns 297
12.10 Building a Table for an ON-Chip BOOt LOAAETueeiiiiiieiiiiiiiie it i s s asaiar s ssaanreaanas 298
12.10.1 Description of the BOOt Tableciiuiiiiiiiiii i 298
O T I T =TT 1= L 1= o o 298
12.10.3 How to Build the Boot Tableicieiiiiiiiiiiiiiiiiii i 298
12.10.4 Booting From a Device Peripheralciiieiiiiiiiiiiiiiiirie s saeesans 299
12.10.5 Setting the Entry Point for the Boot Table ..o e ee e 299
12.10.6 Using the ARM BOOt LOAAET ...iuuuueiiiiiiiieiiiies it isaiste s sssiae s ss s s s saaas s ssannnesss 300
12.11 Controlling the ROM DeViCe AJUIESS .uuuueeiiuteruttineiaiesraseriats e ssiss st rassrar s sanrssannens 304
12.12 Control Hex Conversion Utility DIagnOSHCSuuueesiiiiieeiiaieessaanressaansessaannnsssaaannsesaaannresannn 305
12.13 Description of the ODJECt FOIMALS ...uuiiiiieeiiiiiieii i r s ssaiar e aaanreaanas 306
12.13.1 ASCII-Hex Object Format (--ascCii OPLiON) «..ueeiseiruterneiiieiree i aessiarssias i raeesanns 306
12.13.2 Intel MCS-86 Object Format (--intel OPLioN) ..uvueivissiiseiiiiiri i 307
12.13.3 Motorola Exorciser Object Format (--motorola OPtion)uveieeeiiiiieeeiriiirriirerainnness 308
12.13.4 Extended Tektronix Object Format (--tektronix OPtioN)ccevvierivieiiriiiiiiiaaaeees 309
12.13.5 Texas Instruments SDSMAC (TI-Tagged) Object Format (--ti_tagged Option)ccvvviueennn. 310
6 Contents SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

I3 TEXAS
INSTRUMENTS
www.ti.com
12.13.6 TI-TXT Hex Format (--ti_tXt OPtiON) .uuuuueeiseenietireeiite e rses s raneannns 311
13 Sharing C/C++ Header Files With ASSembIly SOUICEcuieieieiiiiii e 312
13.1 Overview Of the .CHECIS DIFECHIVEuueiiiie it srra e s sa e e s s saanr e s ssann e e s sannress 313
13.2 NOES ON C/CH+ CONVEISIONS 4tuustnutiuseseruesassrasise sttt saerartaseraeraraarrrassanes 313
R 20t T o T3 3 T=T o 1 313
13.2.2 Conditional Compilation (#if/#else/Hifdef/etC.) ...ovvrriiii e 314
R 2 N o - o | 0 = L 314
13.2.4 The #error and #wWarning DIr€CHVESiuueiiieiiniiii s s rareaanes 314
13.2.5 Predefined symbol _ _ASM_HEADER _ _ ..eiiiiiiiiii i rrnis s s ies s s snann s s saannaeeas 314
13.2.6 Usage Within C/C++ asm() STatemMENLS ..uuvveiiiiieesiiiineessasinneesaaannressaannressaannressennnnenss 314
13.2.7 The #iNCIUAE DIFECHVE ..uuuiiseiiiteiiiise s e s s s sa s a e e eanes 314
13.2.8 Conversion of #AefiNe MaACIOSueiiiiiiiii i i s s s r s raaasa e s saannneess 314
13.2.9 The HUNAef DIFECHVE +1uuiseieiisirtie s r s s raranas 315
IR FZ20 0 T =1 04 T= = 1o T 315
R 20t R O 1T 1= 315
13.2.12 C/C++ BUIlt-IN FUNCHONS 4uuutiusiriisinsersinsriise s re s ss s sananas 316
13.2.13 Structures and UNIONS ..uuiuueerssiistirse i sasssssss s sasssaansasesss s ssasssasesannssanns 316
13.2.14 Function/Variable ProtOtyPeSeeiiiiiiiiiiiiie it rr s 316
13.2.15 C CoNStant SUIXES +1uuuueisersireiisi i eas 317
13.2.16 BASIC C/CH+ TYPES tutuutiiunterntinntirse it sast s sas e sas e r s aa e st saa s et e rannesanns 317
13.3 Notes 0N C++ SPECIfIC CONVEISIONS . .uuiuuueteeirateesraaane st s ssaissestaaaaneesaaantsssaaanrasssannnnesss 317
R 20 700 N =0 T= Y/ = U o | o 317
IR T 7 I 1= 1T 2 T 317
R 200 T T =01 0] o (N 318
13.3.4 Virtual FUNCHONS uuuutisisiisssnsertnse st st s e e s s r s e s e s s s n e s s n s eaarenas 318
13.4 Special ASSEMDIET SUPPOIT 1.uutiteiiteiaate s s r s s s e s as st s e a e e ran e ranees 318
13.4.1 Enumerations (.enum/.emember/.eNdENUM)ueieiiiiieieiiiiiie e rrai e rrairesaanrassrannraesss 318
13.4.2 The .define DIFECHVE ...uuiseisiiitiitiiise s rraaas 318
13.4.3 The .undefine/.unasg DIr€CHVES ...iuuiiiuteiiutirisir e rs s rar e raneaaanes 318
13.4.4 The $defined() BUilt-In FUNCHON .. .c.uiueiiieieieie ittt e s e e e e e asa s e e e 319
13.4.5 The $sizeof BUilt-IN FUNCHON ..iuviiuiisiisiiiiisri s e nanas 319
13.4.6 Structure/Union Alignment and $alignof() «..eveeeriiieiiiiiii i e 319
13.4.7 The .CStrNG DIFECHVE ..ttt e st e s s s e e s ss s s s s aannn e s saansne s saannnnnss 319
A Symbolic DebUQQING DIrECIIVES .uiuiiiiiiiiiiiiii e ettt r et r e e e aaaas 320
Al DWARF Debugging FOMMEL . ..uueiietinitiieeinte it ssas s sae s essaae s s s s e ss s s saa s sann s rannannns 321
A.2 (@10 = B T= o1 To To [To T o 1 - | A 321
A3 (D= 10T T 1 = ot Y} = G 322
B XML Link Information File DeSCriPtioN ...ciuiiiiiieiiieir e e s a s e e e e e 323
B.1 XML Information File EIEMENT TYPES t.uutiiuutiiteiteriseisiatisse st ssisnssiassanssass s sanseranes 324
B.2 [o oW] L= oL = =T 1=) 324
B.2.1 Header EIEMENTS 1.uuuiisiiseiinairiise s 324
22070 1] 0L =) 325
202G T @ o 1=t A @ o 0T o] 1= o | N 326
[22 A o T [Tox= LI € (o 11] o 0] 327
B.2.5 PlaCemMent M .uueiueeiteitersirs et 329
B.2.6 Far Call TrampoliNg LIStuuuetiiiiteiiiee s raise s iaee s sr s ss s s s s saansn e s saananessaanneess 330
[B2 A3 Y/ 441 o Yo IR = o] 331
C Hex Conversion Utility EXAmMPIES ... ettt e e e e e e e e e e e neeens 332
C.1 Scenario 1: Building a Hex Conversion Command File for a Single 8-Bit EPROMc.coviiiiiiinninnnn, 333
C.2 Scenario 2: Building a Hex Conversion Command File for 16-BIS Codeccvcvviiiiiiinniiiiineniiniiness 337
C.3 Scenario 3: Building a Hex Conversion Command File for Two 8-Bit EPROMSccvviiiviiiiininninnns, 340
D L[0T 7 PPN 344
SPNU118L—-June 2013 Contents 7

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

I3 TEXAS
INSTRUMENTS
www.ti.com
List of Figures

1-1. ARM Device Software Development FIOWoviuiiiieiiiiiiiiiiniri s enansenas 16
2-1. Partitioning Memory Into LOGICal BIOCKSuuueiiiiiiiieiiiiiies i s s s s e s s aan e s sannnenas 20
2-2. Using Sections DireCtiVeS EXAMPIE ... uuuiuiiie it r e r s 25
2-3. Object Code Generated by the File iN ... et r e e s e e nnne e 26
2-4. Combining Input Sections to Form an Executable Object Module.........c.vviiiiiiiiiiiiiiiiiin e 27
3-1. Bootloading Sequence (SIMPHfied) .uvuueieeiiiri i e 33
3-2. Bootloading Sequence with Secondary BOOtOAdEr.cvvieiiiuiiriiiiiiiiii i 34
3-3. Autoinitialization at RUN TiMIE .uuuuiuieiieiiiiii i aes 38
B [011 (= 2= o = L 0 Y= o R o 1T 39
4-1. The Assembler in the ARM Software Development FIOWouiiiiiiiiiiii e rn e e 43
4-2. Example ASSEMDIEr LISTING «uuuuuueeeiiiitetiiiesinanes s ssaiane s ssansssssasss st saaansssaaannssasannnes 69
5-1 LI L =3 (o 51 =T o 1)Y= 82
ST |01 (= 2= o g TN =T o 11T 83
LS F 8 1= 1 [o o I T =T o 1= 84
5-4. The .Space and DS DireCtVESuueiueiritii i st s 85
5-5. Double-Precision FIoating-Point FOIMALeiiiee i s s iare e sr e s ranen e s aaannneess 107
5-6. The .field DireCtVE «uvuuiiistiiistiiiiii i e s s e r e s s s s r e nanes 114
5-7. Single-Precision Floating-PoiNt FOMMALueiiueiiiiiiiriri i s s r e raaeaaes 115
5-8. The .USECE DIFECHIVE .uetiuuteiseiratisseiste st e s s s s et e e s s e s s s e s s e e ta e e saa s e s r e saneannns 150
7-1. The Archiver in the ARM Software Development FIOWeeeiiiiiiiiiiiiiii i saninaeeas 171
8-1. The Linker in the ARM Software Development FIOWvvveeiiiiiiiiirini i s snne s 179
8-2. Section Allocation Defined DY ...uuiiiiiiii i s 208
8-3. RUN-TIME EXECULION OF 1.uuiiiisiiiisiiitiiiite i aaanenanes 220
8-4. Memory Allocation SNOWN iN @NG .eeiuueiiiiirieiii e s e r s a e s s n s rns 221
8-5. Compressed CopY Table. e e 242
8-6. Handler Table ..uiueiiiiiiiii i e 243
8-7. CRC_TABLE CoNnceptual MOUEI .. .uuiueiiiteiiiiie i ae s s s s s s e e s s s sinr s raeanaes 253
8-8. Autoinitialization at RUN TiME .uuuuueiiseiiii i s s s r e raa e raaeanaes 258
S TR 1011 =1 2= i o g = L 0 Y= Lo N o 1= 259
9-1. Absolute Lister DevelopmMeNnt FIOWeiieeiieeiieiierie s s r s s s s s s sann s raaeanans 264
10-1. The Cross-Reference Lister Development FIOWcov it r e s s e e rannaeeas 270
12-1. The Hex Conversion Utility in the ARM Software Development FIOWooovvviiiiiiiiiiiiiiiniiieeeas 281
12-2. Hex Conversion Utility ProCeSS FIOWuuuuiieiiieiiiiiii s s s s s e esnes 285
12-3. Object File Data and Memory Widthseeeiiie i e e s s e s e e e rannaee s 287
12-4. Data, Memory, and ROM WidLhsueiiiiiiiiiii i i i s s s s s s s anne e 289
12-5. The infile.out File Partitioned INto FOUr OULPUL FIlESvvueiiiieiiiii i s aees 292
12-6. Sample Hex Converter Out File for Booting From 8-Bit SPI BOOt.......cuvviuiiiiuiiiiieiiiiiiraeanneas 302
12-7. Sample Hex Converter Out File for ARM 16-Bit Parallel Boot GP /Ouviiiiiiiiiiiiiiiiiiiiiaeennaeens 303
I T NSO | B 1= G @ o] =T ot o 3 - 306
12-9. Intel Hexadecimal ObJeCt FOMMALceiiiieiiiite st r e e s rr e e s rsaane s s saann e e s saanraessannnessn 307
I KO T Y o) o] 0] =T T o 1 T e 308
12-11. Extended Tektronix ObJECt FOIMAL .. .uueutiitiiteisie i rar e eranns 309
2 2 I B I Vo o T=To B @] [=Tod e 0 T 310
R I 15 I o)1= o o g o - 311
C-1. EPROM Memory System fOr SCENANO 1 ...vuuueieiiiniiiiterieisirirss st ssin s saresaessannsrnss 333
C-2. Contents of Hex Output File eXampleL.NeX s e s e srannee s sanneeess 336
C-3. EPROM Memory System fOr SCENAIIO 2 ...uuuueeiiiieeeiiiiintesssiiastessaastesisassestsasssessasainnssssannnses 337
List of Figures SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

I3 TEXAS

INSTRUMENTS

www.ti.com
C-4. Contents of Hex Output File eXample2.neXuuiieiiiiiiiiiii i e aaes 340
C-5. EPROM Memory System fOr SCENAIO 3uueiiiiiiiieiiiiiteraa e raanr e s ssanre s ssaanne s s saannnesaaannees 340
C-6. Contents of Hex Output File IoWerLe.Diteeeiiiieiiii i i anaeeeas 343
C-7. Contents of Hex Output File UPPerd.bit. s e s raeaaes 343

SPNU118L—-June 2013 List of Figures 9

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

I3 TEXAS
INSTRUMENTS
www.ti.com

List of Tables

O AN 2 Y ==Y =Y 41 0] [T @ oo g 1N 44
4-2. ARM Processor SYMDOlIC CONSIANTS . .uuuueiiiuueesininesissieesssaiasnessrassrssssaassssssaannssasasnssasannnnes 59
4-3. ARM Register SymboIs With AlIBSES ...uuueiteiintiiiri e s aaes 60
4-4. ARM Status RegiSters and AlIBSESuuieiiiiie it iaa i saaaanre st s et 60
4-5. Operators Used in EXPressions (PreCEAENCE) ..uuuiiiuuesiiriintriiriinntessaastesisassesisasssssissinnssssannnnes 63
4-6. Expressions With Absolute and Relocatable Symbolscceviiiiiiii s 64
4-7. Built-In MathematiCal FUNCHIONS +..uuutiisseiiserisisire s es s s sr s rs s st s s s aarenanes 66
4-8. SYMDOl AttIOUIES . et 72
5-1. Directives That DefiNne SECHONS .« .uuuiueiretiiie it r et sia s ra s s s raaeaanes 74
5-2. Directives That Affect Unused Section EliMINAtiONeevieiiiisiiiiiiiiirasi s aaesnnns 74
5-3. Directives That Initialize Values (Data and MEMOIY) ...euiiuuresiiiutesiraineeissiinrssssinsrresrannressaasnesss 74
5-4. Directives That Perform Alignment and RESEIVE SPaCEvvvieiiiiieiiiiiiiiiiriiri i raaeaanes 75
5-5. Directives That Change the INSIIUCHON TYPE ...ttt e s rr i e rr e asanne e s aaannreeans 75
5-6. Directives That Format the OULPUL LISTING +.uueeeirieneiiiiineiriinesriitss s ssiisnsssssinessssaannrsssannnnessas 75
5-7. Directives That Reference Other FileS....ouuuiiiuriiiieiiiiiri i rnns 76
5-8. Directives That Affect Symbol Linkage and VisSibilityovveeiiiiiiiiiiiiiii i 76
5-9. Directives That Enable Conditional ASSEMDIY ..ot i aaaa e 76
5-10. Directives That Define Union Or SIrUCIUIE TYPES .uuttuueiiuerirnterintsriseiaiasiasssansssanessassssiessannsinnens 76
5-11. Directives That Define SYMDOIS ...t e st e s ar i n e e s s n e e s ananneenns 77
5-12. Directives That Define Common Data SECHONS «.vuuviiistiiitiiiiriiiiisi i s, 77
5-13. Directives That Create Or AffECT MACIOS ...utiiuutiiteiieeiiiri s sa s aanns 77
5-14. Directives That CoNtrol DiagNOStiCS ... e eeieieiiiite e irate s taa e e saaane et aaaan s e s aaaanreesaannnressaannnesss 77
5-15. Directives That Perform Assembly SOUrCe DEDUQG ...ueeiiiieiiiiiiieiiii i s asiars s saaanneeenas 78
5-16. Directives That Are Used by the ADSOIULE LiSter....uuivueiiiiiiiiiiiii i raes 78
5-17. Directives That Perform Miscellaneous FUNCHONSivueiiiuiiiiiiiiiiiiii i naes 78
6-1. Substitution Symbol Functions and RetUrn ValUESvivuiiiiiiiiiseiiiii i rannnenss 157
Lo O3 = 1 1] o 1Y = Vo] L 168
6-3. Manipulating SUbSHItUtION SYMDOIS .u.uuseiseiir i 168
6-4. CoNditioNal ASSEMDIY L. uuuiiiii it 168
6-5. Producing ASSEmMDIY-TIME MESSATES 1. v uuteiutirnte ittt sttt sassiairs e saarsanneianns 168
L ST o 4 .4 F= L] o 1 L= I 1 o 168
8-1. BasSIiC OPLONS SUMIMAIY tuuuuuuutestsanssssaneessaanseessaanssessaasssestaassnestaaasnnsssaannnessasnnnesssssnnnss 181
8-2. File Search Path OptioNS SUMIMAIY . ..uueiuteiseirsnerne e saass s satssaeesaarssiassanssianes 181
8-3. Command File Preprocessing OptioNS SUMMAIY ...uuiuseirussisssesinsernsnerissirisssanneiaierasssinaeianns 181
o S B 1T To | [0 1 o3 @ o] 1o g KT g oT o 4= 181
8-5. Linker OUtput OPtiONS SUMIMEAIY .. uutuseiteiaueesstsssessssssisssasstaeesassssassssasstaanssasssannssansisnns 182
8-6. Symbol Management OPtioNS SUMIMAIY . .uueuseirusrsruseisunerassesiste s sasesaresasssassanreianes 182
8-7. Run-Time Environment OPtioNS SUMIMAIY .. .ueeiiuuureersunnnsssanssesssaisssesssiinnssssinnnsssmannnnsssansnness 182
8-8. Link-Time Optimization OPtiONS SUMIMAIY ...uuueiruuterueeineeiaseerinteranrsansstaisssansraeesasssirsanssianes 183
8-9. Miscellaneous OPLtiONS SUMIMAIY .. uuuuusetuteriseersterse et sasresarerassssarsaareianns 183
8-10. Groups of Operators Used in EXpressions (PreCeAENCE) ..uuuviiiiuueriiiiiuesiiiiinereisiintressanssessannnnesss 228
10-1. Symbol Attributes in Cross-Reference LiStiNg. .. ooeeiveeiiiiiiiiriiiii i e enns 273
12-1. Basic Hex Conversion ULty OPtONSeeeeiiiieeiaiaastsiaane s saanne s ssaannsessaannresssannasssannnnnssns 282
I = To Yo ol I T= T =T 0] 1] o 298
12-3. BOOt Table SOUICE FOIMALS . .uiuuteistirattrse et rra e e e s s a s s s n s s e s a s s aa e sanr e raneasnns 300
I S = 1o To 1= o N 0] 3= 300
12-5. Options for Specifying Hex ConVErsion FOIMALSuuiiiiueeeriiiusesiriisesisaisesissiinnssssinnnressannnesias 306
10 List of Tables SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com

A-1. Symbolic Debugging DIrECHVES . .uuuueiiinteiittiiiire e r s s r e aa e s aannens 322

SPNU118L—-June 2013 List of Tables 11

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Preface
l ¥IE)S($I§UMENTS SPNU118L—-June 2013

Read This First

About This Manual

The ARM Assembly Language Tools User's Guide explains how to use these assembly language tools:
» Assembler

e Archiver

« Linker

» Library information archiver
» Absolute lister

» Cross-reference lister

» Disassembler

* Obiject file display utility

* Name utility

e Strip utility

e Hex conversion utility

How to Use This Manual

This book helps you learn how to use the Texas Instruments assembly language tools designed
specifically for the ARM® 32-bit devices. This book consists of four parts:

» Introductory information, consisting of Chapter 1 through Chapter 3, gives you an overview of the
assembly language development tools. It also discusses object modules, which helps you to use the
ARM tools more effectively and program loading, initialization, and startup. In particular, read
Chapter 2 before using the assembler and linker.

» Assembler description, consisting of Chapter 4 through Chapter 6, contains detailed information
about using the assembler. This portion explains how to invoke the assembler and discusses source
statement format, valid constants and expressions, assembler output, and assembler directives. It also
describes the macro language.

* Additional assembly language tools description, consisting of Chapter 7 through Chapter 12,
describes in detail each of the tools provided with the assembler to help you create executable object
files. For example, Chapter 8 explains how to invoke the linker, how the linker operates, and how to
use linker directives; Chapter 12 explains how to use the hex conversion utility.

» Reference material, consisting of Appendix A through Appendix D, provides supplementary
information including symbolic debugging directives that the ARM C/C++ compiler uses. It also
provides hex utility examples, a description of the XML link information file and a glossary.

12 Read This First SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com

Notational Conventions

Notational Conventions

This document uses the following conventions:

Program listings, program examples, and interactive displays are shown in a speci al typeface.
Interactive displays use a bold version of the special typeface to distinguish commands that you enter
from items that the system displays (such as prompts, command output, error messages, etc.).

Here is a sample of C code:

#i ncl ude <stdio. h>

mai n()

{ printf("hello, cruel world\n");

}
In syntax descriptions, the instruction, command, or directive is in a bold typeface and parameters are
in an italic typeface. Portions of a syntax that are in bold should be entered as shown; portions of a
syntax that are in italics describe the type of information that should be entered.

Square brackets ([and]) identify an optional parameter. If you use an optional parameter, you specify
the information within the brackets. Unless the square brackets are in the bold typeface, do not enter
the brackets themselves. The following is an example of a command that has an optional parameter:

‘armcl [options] [filenames] [--run_linker [link_options] [object files]] ‘

Braces ({ and }) indicate that you must choose one of the parameters within the braces; you do not
enter the braces themselves. This is an example of a command with braces that are not included in the
actual syntax but indicate that you must specify either the --rom_model or --ram_model option:

armcl --run_linker {--rom_model | --ram_model} filenames [--output_file= name.out]

--library= libraryname

In assembler syntax statements, column 1 is reserved for the first character of a label or symbol. If the
label or symbol is optional, it is usually not shown. If it is a required parameter, it is shown starting
against the left margin of the box, as in the example below. No instruction, command, directive, or
parameter, other than a symbol or label, can begin in column 1.

symbol .usect "section name", size in bytes|, alignment]

Some directives can have a varying number of parameters. For example, the .byte directive can have
multiple parameters. This syntax is shown as [, ..., parameter].

The TMS470 and TMS570 devices are collectively referred to as ARM.

The ARM 16-bit instruction set is referred to as 16-BIS.

The ARM 32-bit instruction set is referred to as 32-BIS.

Following are other symbols and abbreviations used throughout this document:

Symbol Definition

B,b Suffix — binary integer

H, h Suffix — hexadecimal integer

LSB Least significant bit

MSB Most significant bit

0x Prefix — hexadecimal integer

Q,q Suffix — octal integer

SPNU118L—June 2013 Read This First 13

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Related Documentation From Texas Instruments www.ti.com

Related Documentation From Texas Instruments
You can use the following books to supplement this user's guide:
SPRAAO8 — Common Object File Format Application Report. Provides supplementary information on

the internal format of COFF object files. Much of this information pertains to the symbolic
debugging information that is produced by the C compiler.

SPNU134 —TMS470R1x User's Guide. Describes the TMS470R1x RISC microcontroller, its architecture
(including registers), ICEBreaker module, interfaces (memory, coprocessor, and debugger), 16-bit
and 32-bit instruction sets, and electrical specifications.

SPNU151 —ARM Optimizing C/C++ Compiler v4.6 User's Guide. Describes the ARM C/C++ compiler.
This C/C++ compiler accepts ANSI standard C/C++ source code and produces assembly language

source code for the ARM platform of devices.

ARM is a registered trademark of ARM Limited.
All other trademarks are the property of their respective owners.

14 Read This First SPNU118L—-June 2013
Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/spraaO8
http://www.ti.com/lit/pdf/spnu134
http://www.ti.com/lit/pdf/spnu151
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Chapter 1
l ¥IE)S($1§UMENTS SPNU118L—June 2013

Introduction to the Software Development Tools

The ARM® is supported by a set of software development tools, which includes an optimizing C/C++
compiler, an assembler, a linker, and assorted utilities. This chapter provides an overview of these tools.
The ARM device is supported by the following assembly language development tools:

» Assembler

» Archiver

* Linker

e Library information archiver

» Absolute lister

» Cross-reference lister

» Obiject file display utility

» Disassembler

* Name utility

e Strip utility

e Hex conversion utility

This chapter shows how these tools fit into the general software tools development flow and gives a brief
description of each tool. For convenience, it also summarizes the C/C++ compiler and debugging tools.

For detailed information on the compiler and debugger, and for complete descriptions of the ARM device,
refer to the books listed in Related Documentation From Texas Instruments.

Topic Page

1.1 Software Development TOOIS OVEIVIEWcuiuiuieieieiiiiiiiiaiiaiereeeeeeeessaraseaeenens 16

O o Yo KSR L= T of 1 o 1 0] g 17
SPNU118L—-June 2013 Introduction to the Software Development Tools 15

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Software Development Tools Overview

13 TEXAS
INSTRUMENTS

1.1 Software Development Tools Overview
Figure 1-1 shows the ARM device software development flow. The shaded portion highlights the most
common development path; the other portions are optional. The other portions are peripheral functions
that enhance the development process.
Figure 1-1. ARM Device Software Development Flow
C/C++
source
files
Macro
source C/C++
files compiler
C/C++ name
Asserlrjbler demangling
source utility
Macro
library Assembler
Object Librat_r)I/_-tbuiId Delt)uglging
files utility ools
- Run-time-
Library of L Support
object > library
files
Executable
object file
Hex-conversion
utility
EPROM Absolute lister Crossjreference Obj'e.c! file
programmer lister utilities
16 Introduction to the Software Development Tools SPNU118L—-June 2013

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

I

TEXAS
INSTRUMENTS

www.ti.com Tools Descriptions

1.2

Tools Descriptions

The following list describes the tools that are shown in Figure 1-1:

The C/C++ compiler accepts C/C++ source code and produces ARM machine code object modules. A
shell program, an optimizer, and an interlist utility are included in the installation:

— The shell program enables you to compile, assemble, and link source modules in one step.
— The optimizer modifies code to improve the efficiency of C/C++ programs.

— The interlist utility interlists C/C++ source statements with assembly language output to correlate
code produced by the compiler with your source code.

See the ARM Optimizing C/C++ Compiler User's Guide for more information.

The assembler translates assembly language source files into machine language object modules.
Source files can contain instructions, assembler directives, and macro directives. You can use
assembler directives to control various aspects of the assembly process, such as the source listing
format, data alignment, and section content. See Chapter 4 through Chapter 6. See the TMS470R1x
User's Guide for detailed information on the assembly language instruction set.

The linker combines object files into a single executable object module. It performs relocation and
resolves external references. The linker accepts relocatable object modules (created by the assembler)
as input. It also accepts archiver library members and output modules created by a previous linker run.
Link directives allow you to combine object file sections, bind sections or symbols to addresses or
within memory ranges, and define or redefine global symbols. See Chapter 8.

The archiver allows you to collect a group of files into a single archive file, called a library. You can
also use the archiver to collect a group of object files into an object library. You can collect several
macros into a macro library. The assembler searches the library and uses the members that are called
as macros by the source file. The linker includes in the library the members that resolve external
references during the link. The archiver allows you to modify a library by deleting, replacing, extracting,
or adding members. See Section 7.1.

The library information archiver allows you to create an index library of several object file library
variants, which is useful when several variants of a library with different options are available. Rather
than refer to a specific library, you can link against the index library, and the linker will choose the best
match from the indexed libraries. See Section 7.5.

You can use the library-build utility to build your own customized run-time-support library. See the
ARM Optimizing C/C++ Compiler User's Guide for more information.

The hex conversion utility converts object files to TI-Tagged, ASCII-Hex, Intel, Motorola-S, or
Tektronix object format. The converted file can be downloaded to an EPROM programmer. See
Chapter 12.

The absolute lister uses linked object files to create .abs files. These files can be assembled to
produce a listing of the absolute addresses of object code. See Chapter 9.

The cross-reference lister uses object files to produce a cross-reference listing showing symbols,
their definition, and their references in the linked source files. See Chapter 10.

The main product of this development process is a executable object file that can be executed in a
ARM device. You can use one of several debugging tools to refine and correct your code. Available
products include:

— An instruction-accurate and clock-accurate software simulator
— An XDS emulator

In addition, the following utilities are provided:

The object file display utility prints the contents of object files, executable files, and archive libraries
in either human readable or XML formats. See Section 11.1.

The disassembler decodes object modules to show the assembly instructions that it represents. See
Section 11.2.

The name utility prints a list of linknames of objects and functions defined or referenced in a object or
an executable file. See Section 11.3.

The strip utility removes symbol table and debugging information from object and executable files.
See Section 11.4.

SPNU118L—-June 2013 Introduction to the Software Development Tools 17
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

. Chapter 2
l TEXAS SPNU118L—June 2013

INSTRUMENTS

Introduction to Object Modules

The assembler creates object modules from assembly code, and the linker creates executable object files
from object modules. These executable object files can be executed by an ARM device.

Object modules make modular programming easier because they encourage you to think in terms of
blocks of code and data when you write an assembly language program. These blocks are known as
sections. Both the assembler and the linker provide directives that allow you to create and manipulate
sections.

This chapter focuses on the concept and use of sections in assembly language programs.

Topic Page
2.1 Object File Format SPeCifiCatiONSuiuiuiieiiiiei e e e eee e ans 19
2.2 Executable ODJECTE FileS ...ttt e et 19
P22 TN | 01 o Yo LU T f (o T (0 TS =T o 1 o] 1 1 PP 19
2.4 How the Assembler Handles SECHIONS ...c.iieiiiiiiiiitii i i et eaeaeeeaaraeeneaaaneas 20
2.5 How the Linker Handles SECHIONS ...uiiiiieiiiiiiiii ittt et e e et eeaaeaeaaenas 26
220G T 1Y 0 11 101 P 27
P22 A3 Y/ 111 o o] Tl =1 o o= Ui o] 1 1< T PP 28
2.8 RUN-TIME REIOCALION ittt ettt et et e e e e e e e et aa e eeneananans 30
228 B o T- Vo [T Lo = W = 0 o | = 0 PP 30

18 Introduction to Object Modules SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Object File Format Specifications

2.1 Object File Format Specifications

The object files created by the assembler and linker conform to either the ELF (Executable and Linking
Format) or COFF (Common Object File Format) binary formats, depending on the ABI selected when
building your program. When using the EABI mode, the ELF format is used. For the older TIABI and TI
ARM9 ABI modes, the legacy COFF format is used. The ELF format cannot be used with the TIABI or Tl
ARM9 ABI modes.

Some features of the assembler may apply only to the ELF or COFF object file format. In these cases, the
proper object file format is stated in the feature description.

See the ARM Optimizing C/C++ Compiler User's Guide for information on the different ABIs available.
See the Common Object File Format Application Note for information about the COFF object file format.

The ELF object files generated by the assembler and linker conform to the December 17, 2003 snapshot
of the System V generic ABI (or gABI). This specification is currently maintained by SCO.

NOTE: The TIABI mode has been deprecated; it is recommended that those still using this ABI
move to TI_ARM9_ABI.

2.2 Executable Object Files

The linker produces executable object modules. An executable object module has the same format as
object files that are used as linker input. The sections in an executable object module, however, have
been combined and allocated into target memory, and the relocations are all resolved.

To run a program, the data in the executable object module must be transferred, or loaded, into target
system memory.

2.3 Introduction to Sections

The smallest unit of an object file is a section. A section is a block of code or data that occupies
contiguous space in the memory map with other sections. Each section of an object file is separate and
distinct.

ELF format executable object files contain segments. COFF format executable object files contain
sections. This document uses the term "section" generally to also include ELF segments.

Object files usually contain three default sections:

.text section contains executable code @
.data section usually contains initialized data
.bss section usually reserves space for uninitialized variables

@ Some targets allow content other than text, such as constants, in .text sections.

The assembler and linker allow you to create, name, and link other kinds of sections. The .text, .data, and
.bss sections are archetypes for how sections are handled.

There are two basic types of sections:

Initialized sections contain data or code. The .text and .data sections are initialized; user-
named sections created with the .sect assembler directive are also
initialized.

Uninitialized sections reserve space in the memory map for uninitialized data. The .bss section is

uninitialized; user-named sections created with the .usect assembler
directive are also uninitialized.

SPNU118L—-June 2013 Introduction to Object Modules 19

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://sco.com/developers/gabi/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

How the Assembler Handles Sections www.ti.com

231

2.4

Several assembler directives allow you to associate various portions of code and data with the appropriate
sections. The assembler builds these sections during the assembly process, creating an object file
organized as shown in Figure 2-1.

One of the linker's functions is to relocate sections into the target system's memory map; this function is
called allocation. Because most systems contain several types of memory, using sections can help you
use target memory more efficiently. All sections are independently relocatable; you can place any section
into any allocated block of target memory. For example, you can define a section that contains an
initialization routine and then allocate the routine into a portion of the memory map that contains ROM.

Figure 2-1 shows the relationship between sections in an object file and a hypothetical target memory.

Figure 2-1. Partitioning Memory Into Logical Blocks

Object file Target memory
.bss RAM
.data EEPROM
text T T
ROM

Special Section Names

You can use the .sect and .usect directives to create any section hame you like, but certain sections are
treated in a special manner by the linker and the compiler's run-time support library. If you create a section
with the same name as a special section, you should take care to follow the rules for that special section.

A few common special sections are:

» .text -- Used for program code.

* .bss -- Used for uninitialized objects (global variables).

» .data -- Used for initialized non-const objects (global variables).

e .const -- Used for initialized const objects (string constants, variables declared const).
» .cinit -- Used to initialize C global variables at startup.

» .stack -- Used for the function call stack.

For more information on sections, see the "Specifying Where to Allocate Sections in Memory" section of
the ARM Optimizing C/C++ Compiler User's Guide.

How the Assembler Handles Sections

The assembler identifies the portions of an assembly language program that belong in a given section.
The assembler has the following directives that support this function:

e .bss

* .data
e .sect
o .text

e .usect

The .bss and .usect directives create uninitialized sections; the .text, .data, and .sect directives create
initialized sections.

You can create subsections of any section to give you tighter control of the memory map. Subsections are
created using the .sect and .usect directives. Subsections are identified with the base section name and a
subsection name separated by a colon; see Section 2.4.4.

20

Introduction to Object Modules SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com How the Assembler Handles Sections

Default Sections Directive

NOTE: If you do not use any of the sections directives, the assembler assembles everything into the
.text section.

2.4.1 Uninitialized Sections

Uninitialized sections reserve space in ARM memory; they are usually allocated into RAM. These sections
have no actual contents in the object file; they simply reserve memory. A program can use this space at
run time for creating and storing variables.

Uninitialized data areas are built by using the following assembler directives.

e The .bss directive reserves space in the .bss section.

e The .usect directive reserves space in a specific uninitialized user-named section.

Each time you invoke the .bss or .usect directive, the assembler reserves additional space in the .bss or
the user-named section. The syntaxes for these directives are:

.bss symbol, size in bytes][, alignment [, bank offset]]
symbol .usect "section name", size in bytes|, alignment[, bank offset]]

symbol points to the first byte reserved by this invocation of the .bss or .usect directive. The
symbol corresponds to the name of the variable that you are reserving space for. It can
be referenced by any other section and can also be declared as a global symbol (with
the .global directive).

size in bytes is an absolute expression (see Section 4.8). The .bss directive reserves size in bytes
bytes in the .bss section. The .usect directive reserves size in bytes bytes in section
name. For both directives, you must specify a size; there is no default value.

alignment is an optional parameter. It specifies the minimum alignment in bytes required by the
space allocated. The default value is byte aligned; this option is represented by the
value 1. The value must be a power of 2.

bank offset is an optional parameter. It ensures that the space allocated to the symbol occurs on a
specific memory bank boundary. The bank offset measures the number of bytes to
offset from the alignment specified before assigning the symbol to that location.

section name tells the assembler the user-named section in which to reserve space. See
Section 2.4.3.

The initialized section directives (.text, .data, and .sect) change which section is considered the current
section. (See Section 2.4.2). However, the .bss and .usect directives do not change which section is
considered the current section; they simply escape from the current section temporarily. Immediately after
a .bss or .usect directive, the assembler resumes assembling into whatever the current section was before
the directive. The .bss and .usect directives can appear anywhere in an initialized section without affecting
its contents. For an example, see Section 2.4.6.

The .usect directive can also be used to create uninitialized subsections. See Section 2.4.4, for more
information on creating subsections.

The .common directive is similar to directives that create uninitialized data sections, except that common
symbols are created, instead.

SPNU118L—-June 2013 Introduction to Object Modules 21

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

How the Assembler Handles Sections www.ti.com

24.2

243

Initialized Sections

Initialized sections contain executable code or initialized data. The contents of these sections are stored in
the object file and placed in ARM memory when the program is loaded. Each initialized section is
independently relocatable and may reference symbols that are defined in other sections. The linker
automatically resolves these references.

The following directives tell the assembler to place code or data into a section. The syntaxes for these
directives are:

text
.data

.sect "section name"

The assembler adds code or data to one section at a time. The section the assembler is currently filling is
the current section. The .text, .data, and .sect directives change which section is considered the current
section. When the assembler encounters one of these directives, it stops assembling into the current
section (acting as an implied end of current section command). The assembler sets the designated
section as the current section and assembles subsequent code into the designated section until it
encounters another .text, .data, or .sect directive.

If one of these directives sets the current section to a section that already has code or data in it from
earlier in the file, the assembler resumes adding to the end of that section. The assembler generates only
one contiguous section for each given section name. This section is formed by concatenating all of the
code or data which was placed in that section.

Initialized subsections are created with the .sect directive. The .sect directive can also be used to create
initialized subsections. See Section 2.4.4, for more information on creating subsections.

User-Named Sections

User-named sections are sections that you create. You can use them like the default .text, .data, and .bss
sections, but each section with a distinct name is kept distinct during assembly.

For example, repeated use of the .text directive builds up a single .text section in the object file. This .text
section is allocated into memory as a single unit. Suppose there is a portion of executable code (perhaps
an initialization routine) that you want the linker to place in a different location than the rest of .text. If you
assemble this segment of code into a user-named section, it is assembled separately from .text, and you
can use the linker to allocate it into memory separately. You can also assemble initialized data that is
separate from the .data section, and you can reserve space for uninitialized variables that is separate from
the .bss section.

These directives let you create user-named sections:

* The .usect directive creates uninitialized sections that are used like the .bss section. These sections
reserve space in RAM for variables.

» The .sect directive creates initialized sections, like the default .text and .data sections, that can contain
code or data. The .sect directive creates user-named sections with relocatable addresses.

The syntaxes for these directives are:

symbol .usect "section name", size in bytes][, alignment[, bank offset]]
.sect "section name"

22

Introduction to Object Modules SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

I

WWW.1i

TEXAS
INSTRUMENTS

i.com How the Assembler Handles Sections

24.4

For COFF, you can create up to 32 767 distinct named sections. For ELF, the max number of sections is
2%2.1 (4294967295).

The section name parameter is the name of the section. For the .usect and .sect directives, a section
name can refer to a subsection; see Section 2.4.4 for details.

Each time you invoke one of these directives with a new name, you create a new user-named section.
Each time you invoke one of these directives with a name that was already used, the assembler resumes
assembling code or data (or reserves space) into the section with that name. You cannot use the same
names with different directives. That is, you cannot create a section with the .usect directive and then try
to use the same section with .sect.

Subsections

A subsection is created by creating a section with a colon in its name. Subsections are logical subdivisions
of larger sections. Subsections are themselves sections and can be manipulated by the assembler and
linker.

The assembler has no concept of subsections; to the assembler, the colon in the name is not special. The
subsection .text:rts would be considered completely unrelated to its parent section .text, and the
assembler will not combine subsections with their parent sections.

Subsections are used to keep parts of a section as distinct sections so that they can be separately
manipulated. For instance, by placing each function and object in a uniquely-named subsection, the linker
gets a finer-grained view of the section for memory placement and unused-function elimination.

By default, when the linker sees a SECTION directive in the linker command file like ".text", it will gather
.text and all subsections of .text into one large output section named ".text". You can instead use the
SECTION directive to control the subsection independently. See Section 8.5.4.1 for an example.

You can create subsections in the same way you create other user-named sections: by using the .sect or
.usect directive.

The syntaxes for a subsection name are:

symbol .usect "section name:subsection name",size in bytes], alignment[, bank offset]]
.sect "section name:subsection name"

A subsection is identified by the base section name followed by a colon and the name of the subsection. A
subsection can be allocated separately or grouped with other sections using the same base name. For
example, you create a subsection called _func within the .text section:

.sect ".text:_func"

Using the linker's SECTIONS directive, you can allocate .text:_func separately, or with all the .text
sections.

You can create two types of subsections:
» Initialized subsections are created using the .sect directive. See Section 2.4.2.
» Uninitialized subsections are created using the .usect directive. See Section 2.4.1.

Subsections are allocated in the same manner as sections. See Section 8.5.4 for information on the
SECTIONS directive.

SPNU118L—-June 2013 Introduction to Object Modules 23
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS

INSTRUMENTS
How the Assembler Handles Sections www.ti.com
2.45 Section Program Counters
The assembler maintains a separate program counter for each section. These program counters are
known as section program counters, or SPCs.
An SPC represents the current address within a section of code or data. Initially, the assembler sets each
SPC to 0. As the assembler fills a section with code or data, it increments the appropriate SPC. If you
resume assembling into a section, the assembler remembers the appropriate SPC's previous value and
continues incrementing the SPC from that value.
The assembler treats each section as if it began at address 0; the linker relocates each section according
to its final location in the memory map. See Section 2.7 for information on relocation.
2.4.6 Using Sections Directives
Figure 2-2 shows how you can build sections incrementally, using the sections directives to swap back
and forth between the different sections. You can use sections directives to begin assembling into a
section for the first time, or to continue assembling into a section that already contains code. In the latter
case, the assembler simply appends the new code to the code that is already in the section.
The format in Figure 2-2 is a listing file. Figure 2-2 shows how the SPCs are modified during assembly. A
line in a listing file has four fields:
Field 1 contains the source code line counter.
Field 2 contains the section program counter.
Field 3 contains the object code.
Field 4 contains the original source statement.
See Section 4.11 for more information on interpreting the fields in a source listing.
24 Introduction to Object Modules SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS

INSTRUMENTS

www.ti.com

How the Assembler Handles Sections

Figure 2-2. Using Sections Directives Example

U WN =

00000000

0000000000000011
00000004 00000022
00000008 00000033

00000000

0000000c 00000123

00000000

00000000 E59F14D2
00000004 E2511001
00000008 1AFFFFFD

00000010

00000010000000AA
00000014 000000BB
00000018 000000CC

khkkkhkhkkhhkhkdhkhhhhddxhhhdhhdhrdrxhdxddxddrdhrrdxrdxisk

** Assemble an initialized table into .data. **
EE R EE

.data
coeff .word 011lh, 022h, 033h

R R R R EEEEEEEEEEEEEEEREEEEEEESEEEEEEEEEEEEESEEES

** Reserve space in .bss for a variable. * %
kkhkkhkkkhkkhkhhkhkhhkhhkhkhhkhkhkhkhhkhhhkhhkhkhkhkhhkhkhhkhkkhkhkkhkkkk*x*x
.bss buffer, 10
kkhkkhkkkhkkhkhkhkkhkhkhkhhkkhkhkhkhhkhkhhkhhkhkhhkhkhkhkhhkhkhkhkhkkkhkkhkkk,k*x*x
*k Still in .data. * %
kkhkkhkkhkkhkhkhkkhhkhkhhkkhkhhkhhkdhkhhkhhhkhhdhhhkhhdhkhdhdhdhhdhkhddkkhxdx*x
ptr .word 0123h
kkhkkhkkkhkkhkhkhkkhkhhkhhkhkhhkhkhkhkhhkhkhkhhkhkhhkhhkhkhhkhkkhkhkkhkkkk**x
% Assemble code into the .text section. * %
kkhkkkkhkkhkhhkkhkhkhkhhkkhkhhkhhkkhkhhkhhhkhhkhkhhkhhkhkhhkhkkhkhkkhkkkik*x*x
.text
add: LDR R1, #1234
aloop: SUBS R1, R1, #1
BNE aloop
kkhkkhkkkhkkhkhhkhkhhkhhkhkhhkhkhkhkhhkhhhkhhkhkhhkhhkhkhhkhkkhkhkkhkkkk*x*x
*% Another initialized table into .data. *k
kkhkkkkhkkhkhkhkhkhkhkhhkkhkhhkhkhkhkhhkhhkhkhhkhkhkhkhhkhkhkhkhkkhkhkkhkkkhk*x*x
.data
ivals .word 0AAh, 0BBh, 0CCh

27 EEE R EE S
28 *%* Define another section for more variables.**
29 EEE
30 00000000 var2 .usect "newvars”, 1
31 00000001 inbuf .usect "newvars”, 7
32 EE R SR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE SRS
33 *k Assemble more code into .text. *k
34 EEE
35 0000000c .text
36 0000000c E59F3D80 mpy: LDR R3, #3456
37 00000010E0120293 mloop: MULS R2, R3, R2
38 00000014 1AFFFFFD BNE mloop
39 EE R R R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE SRS
40 *%* Define a named section for int. vectors. * %
41 EE R R R EE
42 00000000 .sect "vectors”
43 0000000000000011 .word 011h,033h
00000004 00000033
A Vendh s Vaudh V
Field 1 Field 2 Field 3 Field 4

As Figure 2-3 shows, the file in Figure 2-2 creates five sections:

text
.data
vectors
.bss
newvars

contains six 32-bit words of object code.
contains seven words of initialized data.
is a named section created with the .sect directive; it contains two words of initialized data.
reserves ten bytes in memory.

is a named section created with the .usect directive; it reserves eight bytes in memory.

SPNU118L—-June 2013

Submit Documentation Feedback

Introduction to Object Modules

Copyright © 2013, Texas Instruments Incorporated

25

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

How the Linker Handles Sections www.ti.com

The second column shows the object code that is assembled into these sections; the first column shows
the source statements that generated the object code.

Figure 2-3. Object Code Generated by the File in Figure 2-2

Line numbers Object code Section
19 E59F14D2 text
20 E2511001
21 1AFFFFFD
36 E59F3D80
37 E0120293
38 1AFFFFFD

5 00000011 .data
5 00000022
5 00000033
14 00000123
26 000000AA
26 000000BB
26 000000CC
43 00000011 vectors
43 00000033
10 No data - .bss
ten bytes
reserved
30 No data - newvars
31 eight bytes
reserved

2.5 How the Linker Handles Sections
The linker has two main functions related to sections. First, the linker uses the sections in object files as
building blocks; it combines input sections to create output sections in an executable output module.
Second, the linker chooses memory addresses for the output sections; this is called placement.
Two linker directives support these functions:
e« The MEMORY directive allows you to define the memory map of a target system. You can name

portions of memory and specify their starting addresses and their lengths.
» The SECTIONS directive tells the linker how to combine input sections into output sections and where
to place these output sections in memory.

Subsections allow you to manipulate the placement of sections with greater precision. You can specify the
location of each subsection with the linker's SECTIONS directive. If you do not specify a subsection
explicitly, then the subsection is combined with the other sections with the same base section name. See
Section 8.5.4.1.
It is not always necessary to use linker directives. If you do not use them, the linker uses the target
processor's default allocation algorithm described in Section 8.7. When you do use linker directives, you
must specify them in a linker command file.
Refer to the following sections for more information about linker command files and linker directives:
e Section 8.5, Linker Command Files
» Section 8.5.3, The MEMORY Directive
» Section 8.5.4, The SECTIONS Directive
» Section 8.7, Default Allocation Algorithm

26 Introduction to Object Modules SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

I

WWW.1i

TEXAS
INSTRUMENTS

i.com Symbols

251

25.2

2.6

Default Memory Allocation
Figure 2-4 provides a simplified example of the process of linking two files together.

Figure 2-4. Combining Input Sections to Form an Executable Object Module

file1.0bj
Executable
bss object module Memory map
text file1
’ (.bss) Space for
] variables
data file2 (.bss)
' (.bss)
Init - file1 o
(named section) = 5 (.data) Inlgaltlzed
TN] ata
[1 ez (data)
(.data)
file1
file2.0bj || N (-text) Executable
AT code
file2 (.text)
-bss (text)
text — Init Init
.data — > Tables Tables
Tables
(named section)

In Figure 2-4, filel.obj and file2.0bj have been assembled to be used as linker input. Each contains the
.text, .data, and .bss default sections; in addition, each contains a hamed section. The executable object
module shows the combined sections. The linker combines the .text section from filel.obj and the .text
section from file2.0bj to form one .text section, then combines the two .data sections and the two .bss
sections, and finally places the named sections at the end. The memory map shows the combined
sections to be placed into memory.

This is a simplified example, so it does not show all the sections that will be created and or the actual
sequence of the sections. See Section 8.7 for the actual default memory allocation map for ARM.

Placing Sections in the Memory Map

Figure 2-4 illustrates the linker's default method for combining sections. Sometimes you may not want to
use the default setup. For example, you may not want all of the .text sections to be combined into a single
.text section. Or you may want a named section placed where the .data section would normally be
allocated. Most memory maps contain various types of memory (RAM, ROM, EPROM, FLASH, etc.) in
varying amounts; you may want to place a section in a specific type of memory.

For further explanation of section placement within the memory map, see the discussions in Section 8.5.3
and Section 8.5.4.

Symbols

An object file contains a symbol table that stores information about external symbols in the object file. The
linker uses this table when it performs relocation. See Section 2.7.

SPNU118L—-June 2013 Introduction to Object Modules 27
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Symbolic Relocations www.ti.com

An object file symbol is a named 32-bit integer value, usually representing an address or absolute integer.
Whether the value is treated as signed or unsigned is context-specific. How the value is treated
determines the range of legal values, which is 0 to 2732-1 for unsigned treatment and -2731 to 2731-1 for
signed treatment. A symbol can represent such things as the starting address of a function, variable, or
section. See Section 4.7.

2.6.1 The Symbol Table
The assembler generates an entry in the symbol table for each .ref, .def, or .global directive in
Section 2.6.2). The assembler also creates special symbols that point to the beginning of each section.
The assembler does not usually create symbol table entries for any symbols other than those described
above, because the linker does not use them. For example, labels (Section 4.7.2) are not included in the
symbol table unless they are declared with the .global directive. For informational purposes, it is
sometimes useful to have entries in the symbol table for each symbol in a program. To accomplish this,
invoke the assembler with the --output_all_syms option (see Section 4.3).
2.6.2 External Symbols
External symbols are symbols that are visible to other object modules. Because they are visible across
object modules, they may be defined in one file and referenced in another file. You can use the .def, .ref,
or .global directive to identify a symbol as external:
def The symbol is defined in the current file and may be used in another file.
.ref The symbol is referenced in the current file, but defined in another file.
.global The symbol can be either of the above. The assembler chooses either .def or .ref as
appropriate for each symbol.
The following code fragments illustrate the use of the .global directive.
x: ADD RO, #56h ; Define x
.global x ; acts as .def x
Because x is defined in this module, the assembler treats ".global x" as ".def x". Now other modules can
refer to x.
B y ; Reference y
.global y ; .ref of y
Because y is not defined in this module, the assembler treats ".global y" as ".ref y". The symbol y must be
defined in another module.
Both the symbols x and y are external symbols and are placed in the object file's symbol table; x as a
defined symbol, and y as an undefined symbol. When the object file is linked with other object files, the
entry for x will be used to resolve references to x in other files. The entry for y causes the linker to look
through the symbol tables of other files for y’s definition.
The linker must match all references with corresponding definitions. If the linker cannot find a symbol's
definition, it prints an error message about the unresolved reference. This type of error prevents the linker
from creating an executable object module.
An error also occurs if the same symbol is defined more than once.
2.7 Symbolic Relocations
The assembler treats each section as if it began at address 0. Of course, all sections cannot actually
begin at address 0 in memory, so the linker must relocate sections. For COFF, all relocatable symbols
(labels) are relative to address 0 in their sections. For the ELF EABI, relocations are symbol-relative rather
than section-relative.
28 Introduction to Object Modules SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Symbolic Relocations

The linker can relocate sections by:

» Allocating them into the memory map so that they begin at the appropriate address as defined with the
linker's MEMORY directive

» Adjusting symbol values to correspond to the new section addresses

» Adjusting references to relocated symbols to reflect the adjusted symbol values
The linker uses relocation entries to adjust references to symbol values. The assembler creates a
relocation entry each time a relocatable symbol is referenced. The linker then uses these entries to patch

the references after the symbols are relocated. Example 2-1 contains a code fragment for a ARM device
that generates relocation entries.

Example 2-1. Code That Generates Relocation Entries

l khkkhkkhkhkhkhhkhhhkhkkhkkkkkkkkkk*k*x*%
2 *x Generating Rel ocation Entries *x
3 R R O R S R R R R R
4 .ref X

5 .def Y

6 00000000 . text

7 00000000 E0921003 ADDS R1, R2, R3

8 00000004 0A000001 BEQ Y

9 00000008 E1CA410BE STRH Rl1, [R4, #14]

10 0000000c EAFFFFFB! B X ; generates a relocation entry
11 00000010 E0821003 Y: ADD Rl, R2, R3

2.7.1 Expressions With Multiple Relocatable Symbols (COFF Only)

Sometimes an expression contains more than one relocatable symbol, or cannot be evaluated at
assembly time. In this case, the assembler encodes the entire expression in the object file. After
determining the addresses of the symbols, the linker computes the value of the expression.

Expression Cannot Be Larger Than Space Reserved

NOTE: If the value of an expression is larger, in bits, than the space reserved for it, you will receive
an error message from the linker.

Each section in an object module has a table of relocation entries. The table contains one relocation entry
for each relocatable reference in the section. The linker usually removes relocation entries after it uses
them. This prevents the output file from being relocated again (if it is relinked or when it is loaded). A file
that contains no relocation entries is an absolute file (all its addresses are absolute addresses, which are
addresses known at assembly time). If you want the linker to retain relocation entries, invoke the linker
with the --relocatable option (see Section 8.4.2.2).

In Example 2-1, both symbols X and Y are relocatable. Y is defined in the .text section of this module; X is
defined in another module. When the code is assembled, X has a value of 0 (the assembler assumes all
undefined external symbols have values of 0), and Y has a value of 16 (relative to address 0 in the .text
section). The assembler generates two relocation entries: one for X and one for Y. The reference to X is
an external reference (indicated by the ! character in the listing). The reference to Y is to an internally
defined relocatable symbol (indicated by the ' character in the listing).

After the code is linked, suppose that X is relocated to address 0x10014. Suppose also that the .text
section is relocated to begin at address 0x10000; Y now has a relocated value of 0x10010. The linker
uses the relocation entry for the reference to X to patch the branch instruction in the object code:

EAFFFFFB! B X becomes EA000000

SPNU118L—-June 2013 Introduction to Object Modules 29

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS

INSTRUMENTS
Run-Time Relocation www.ti.com
2.8 Run-Time Relocation
At times you may want to load code into one area of memory and run it in another. For example, you may
have performance-critical code in an external-memory-based system. The code must be loaded into
external memory, but it would run faster in internal memory.
The linker provides a simple way to handle this. Using the SECTIONS directive, you can optionally direct
the linker to allocate a section twice: first to set its load address and again to set its run address. Use the
load keyword for the load address and the run keyword for the run address. See Section 3.1.1 for more
about the load and run addresses.
If you provide only one allocation (either load or run) for a section, the section is allocated only once and
loads and runs at the same address. If you provide both allocations, the section is actually allocated as if it
were two separate sections of the same size.
Uninitialized sections (such as .bss) are not loaded, so the only significant address is the run address. The
linker allocates uninitialized sections only once; if you specify both run and load addresses, the linker
warns you and ignores the load address.
For a complete description of run-time relocation, see Section 8.5.5.
2.9 Loading a Program
The linker creates an executable object file which can be loaded in several ways, depending on your
execution environment. These methods include using Code Composer Studio or the hex conversion utility.
For details, see Section 3.1.
30 Introduction to Object Modules SPNU118L—June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

. Chapter 3
I TEXAS SPNU118L—June 2013

INSTRUMENTS
Program Loading and Running

Even after a program is written, compiled, and linked into an executable object file, there are still many
tasks that need to be performed before the program does its job. The program must be loaded onto the
target, memory and registers must be initialized, and the program must be set to running. Some of these
tasks need to be built into the program itself. When a process performs some of its own initialization, the
process is known as bootstrapping. Many of the necessary tasks are handled for you by the compiler and
linker, but if you need more control over these tasks, it helps to understand how the pieces are expected
to fit together. This chapter will introduce you to the concepts involved in program loading, initialization,
and startup.

This chapter does not cover dynamic loading.

This chapter currently provides examples for the C6000 device family. Refer to your device documentation
for various device-specific aspects of bootstrapping.

Topic Page

£ I8 - Vo o o P 32

0 1 Y/ 0 1 P 37

3.3 RUN-TIME INItIAliZAtION ..ottt ettt et e e e e s e e e e a e e aaeananeaas 37

3.4 ATQUMENTS £0 MIAIM tuiutititiitititete et ea ettt a s e e e et s s e e e e aaea e et ea s e e e aaaaeneneneanannns 40

3.5 Additional INfOrMationi.iiiiiii e 40
SPNU118L—-June 2013 Program Loading and Running 31

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Loading www.ti.com

3.1

3.1.1

Loading

A program needs to be placed into the target device's memory before it may be executed. Loading is the
process of preparing a program for execution by initializing device memory with the program's code and
data. A loader might be another program on the device, an external agent (for example, a debugger), or
the device might initialize itself after power-on, which is known as bootstrap loading, or bootloading.

The loader is responsible for constructing the load image in memory before the program starts. The load
image is the program's code and data in memory before execution. What exactly constitutes loading
depends on the environment, such as whether an operating system is present. This section describes
several loading schemes for bare-metal devices. This section is not exhaustive. Additionally, the loader is
responsible for parsing the .cinit section and performing the initializations encoded therein at load time.

A program may be loaded in the following ways:

A debugger running on a connected host workstation. In a typical embedded development setup,
the device is subordinate to a host running a debugger such as Code Composer Studio (CCS). The
device is connected with a communication channel such as a JTAG interface. CCS reads the program
and writes the load image directly to target memory through the communications interface.

* Another program running on the device. The running program can create the load image and
transfer control to the loaded program. If an operating system is present, it may have the ability to load
and run programs.

» "Burning" the load image onto an EPROM module. The hex converter (armhex, which is shipped as
part of the assembly language package) can assist with this by converting the executable object file
into a format suitable for input to an EPROM programmer. The EPROM is placed onto the device itself
and becomes a part of the device's memory. See Chapter 12 for details.

« Bootstrap loading from a dedicated peripheral, such as an I>)C peripheral. The device may require
a small program called a bootloader to perform the loading from the peripheral. The hex converter can
assist in creating a bootloader.

Load and Run Addresses

Consider an embedded device for which the program's load image is burned onto EPROM/ROM. Variable
data in the program must be writable, and so must be located in writable memory, typically RAM.
However, RAM is volatile, meaning it will lose its contents when the power goes out. If this data must have
an initial value, that initial value must be stored somewhere else in the load image, or it would be lost
when power is cycled. The initial value must be copied from the non-volatile ROM to its run-time location
in RAM before it is used. See Section 8.8 for ways this is done.

The load address is the location of an object in the load image.
The run address is the location of the object exists during program execution.
An object is a chunk of memory. It represents a section, segment, function, or data.

The load and run addresses for an object may be the same. This is commonly the case for program code
and read-only data, such as the .const section. In this case, the program can read the data directly from
the load address. Sections that have no initial value, such as the .bss section, do not have load data and
are considered to have load and run addresses that are the same. If you specify different load and run
addresses for an uninitialized section, the linker provides a warning and ignores the load address.

The load and run addresses for an object may be different. This is commonly the case for writable data,
such as the .data section. The .data section's starting contents are placed in ROM and copied to RAM.
This often occurs during program startup, but depending on the needs of the object, it may be deferred to
sometime later in the program.

Symbols in assembly code and object files almost always refer to the run address. When you look at an
address in the program, you are almost always looking at the run address. The load address is rarely
used for anything but initialization.

The load and run addresses for a section are controlled by the linker command file and are recorded in
the object file metadata.

32

Program Loading and Running SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Loading

The load address determines where a loader places the raw data for the section. Any references to the
section (such as references to labels in it) refer to its run address. The application must copy the section
from its load address to its run address before the first reference of the symbol is encountered at run time;
this does not happen automatically simply because you specify a separate run address. For examples that
specify load and run addresses, see Section 8.5.5.1.

For an example that illustrates how to move a block of code at run time, see Example 8-10. To create a
symbol that lets you refer to the load-time address, rather than the run-time address, see the .label
directive. To use copy tables to copy objects from load-space to run-space at boot time, see Section 8.8.

ELF format executable object files contain segments. COFF format executable object files contain
sections.

3.1.2 Bootstrap Loading

The details of bootstrap loading (bootloading) vary a great deal between devices. Not every device
supports every bootloading mode, and using the bootloader is optional. This section discusses various
bootloading schemes to help you understand how they work. Refer to your device's data sheet to see
which bootloading schemes are available and how to use them.

A typical embedded system uses bootloading to initialize the device. The program code and data are
stored in ROM or FLASH memory. At power-on, an on-chip bootloader (the primary bootloader) built into
the device hardware starts automatically.

Figure 3-1. Bootloading Sequence (Simplified)

Power On

Device Reset:
on-chip bootloader

Entry point:
(_c_int00 by default)

main

The primary bootloader is typically very small and copies a limited amount of memory from a dedicated
location in ROM to a dedicated location in RAM. (Some bootloaders support copying the program from an
I/O peripheral.) After the copy is completed, it transfers control to the program.

For many programs, the primary bootloader is not capable of loading the entire program, so these
programs supply a more capable secondary bootloader. The primary bootloader loads the secondary
bootloader and transfers control to it. Then, the secondary bootloader loads the rest of the program and
transfers control to it. There can be any number of layers of bootloaders, each loading a more capable
bootloader to which it transfers control.

SPNU118L—June 2013 Program Loading and Running 33

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Loading www.ti.com

Figure 3-2. Bootloading Sequence with Secondary Bootloader

Power On

Device Reset:
on-chip bootloader

CPU Reset

Secondary Bootloader

Entry point:
(_c_int00 by default)

main

3.1.2.1 Boot, Load, and Run Addresses

The boot address of a bootloaded object is where its raw data exists in ROM before power-on.

The boot, load, and run addresses for an object may all be the same; this is commonly the case for .const
data. If they are different, the object's contents must be copied to the correct location before the object
may be used.

The boot address may be different than the load address. The bootloader is responsible for copying the
raw data to the load address.

The boot address is not controlled by the linker command file or recorded in the object file; it is strictly a
convention shared by the bootloader and the program.

3.1.2.2 Primary Bootloader

The detailed operation of the primary bootloader is device-specific. Some devices have complex
capabilities such as booting from an I/O peripheral or configuring memory controller parameters. This
section describes only one example: the simple primary bootloader supported by the C621x/C671x/C64x.
See your device documentation for variations on this pattern.

When ROM boot is selected as the boot configuration, at power-on, 1 KB of code will automatically be
copied from external ROM CEL1 to address 0 by the EDMA (using default ROM timings) following the
release of /RESET while the CPU is stalled. Upon completion of the transfer, the CPU is released from the
stalled state and starts executing from address 0. Place the secondary bootloader (or the program itself, if
it is small enough) at the beginning of CE1.

3.1.2.3 Secondary Bootloader

The hex converter assumes the secondary bootloader is of a particular format. The hex converter's model
bootloader uses a boot table. You can use whatever format you want, but if you follow this model, the hex
converter can create the boot table automatically.

34

Program Loading and Running SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Loading

3.1.2.4 Boot Table

The input for the model secondary bootloader is the boot table. The boot table contains records that
instruct the secondary bootloader to copy blocks of data contained in the table to specified destination
addresses. The hex conversion utility automatically builds the boot table for the secondary bootloader.
Using the utility, you specify the sections you want to initialize, the boot table location, and the name of the
section containing the secondary bootloader routine and where it should be located. The hex conversion
utility builds a complete image of the table and adds it to the program.

The boot table is target-specific. For C6000, the format of the boot table is simple. A header record
contains a 4-byte field that indicates where the boot loader should branch after it has completed copying
data. After the header, each section that is to be included in the boot table has the following contents:

» 4-byte field containing the size of the section

e 4-byte field containing the destination address for the copy

» the raw data

» 0 to 3 bytes of trailing padding to make the next field aligned to 4 bytes

More than one section can be entered; a termination block containing an all-zero 4-byte field follows the
last section.

See Section 12.10.2 for details about the boot table format.

3.1.2.5 Bootloader Routine

The bootloader routine is a normal function, except that it executes before the C environment is set up.
For this reason, it can't use the C stack, and it can't call any functions that have yet to be loaded!

The following sample code is for C6000 and is from Creating a Second-Level Bootloader for FLASH
Bootloading on TMS320C6000 Platform With Code Composer Studio (SPRA999).

Example 3-1. Sample Secondary Bootloader Routine

; global EMF synbols defined for the c671x famly
.include boot _c671x. h62
.sect ".boot_| oad"
. gl obal _boot

_boot:

B R R R R R R
’

;¥ DEBUG LOOP - COMMENT QUT B FOR NORVAL OPERATI ON

B
’

zero Bl
_nyloop: ; [!Bl] B _nyloop
nop 5
_nyl oopend: nop
;**
; * CONFI GURE EM F
EEE R O R R R R R R
;**
; *EMF_CCTL = EM F_CCTL_V,
;**
mvkl EM F_GCTL, A4
| nvkl EM F_CGCTL_V, B4
nmvkh EM F_GCTL, A4
|l mvkh EM F_GCTL_V, B4
stw B4,*Ad
EEE Rk O R R R R R O
; *EMF_CEO = EM F_CEO_V
;**
nvkl EM F_CEO, A4
|l mvkl EM F_CEO_V, B4
nvkh EM F_CEO, A4
| nvkh EM F_CEO_V, B4

SPNU118L—June 2013 Program Loading and Running 35

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPRA999
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Loading

13 TEXAS
INSTRUMENTS

www.ti.com

Example 3-1. Sample Secondary Bootloader Routine (continued)

ckkkkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkkhkkhkhkkhkkhkkhkkhkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkkkkkkkkkkkk*k*%x
’

stw B4,*Ad

ckkkkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkhkhkkhkkhkkhkkhkkhkhkhkkhkkhkkhkkhkkhkhkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkkk*%x
’

*EMF_CE1 = EMF_CE1_V (setup for 8-bit async)
;**
mvkl EM F_CE1, A4
nvkl EMF_CE1_V, B4
mvkh EM F_CE1, A4
mvkh EM F_CE1_V, B4
stw B4,*Ad

chkkkkkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhhhkhkhhhhkhkhhhhkhkhhhhhhhhhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkx*x*%
’

*EMF_CE2 = EMF_CE2_V (setup for 32-bit async)

B R R R

nmvkl EM F_CE2, A4
mvkl EM F_CE2_V, B4
nmvkh EM F_CE2, A4
nmnvkh EM F_CE2_V, B4
stw B4, * A4

B R R R R
’

*EMF_CE3 = EMF_CE3_V (setup for 32-bit async)
;**
nvkl EM F_CE3, A4
mvkl EMF_CE3_V, B4 ;
mvkh EM F_CE3, A4
mvkh EM F_CE3_V, B4
stw B4, * Ad

ckkkkkkkhkhkkhkkhkhkkhkhkkhkkhkkhkkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkkk*%x

*EM F_SDRAMCTL = EM F_SDRAMCTL_V

chkkkkkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhhkhhhkhhhhhkhkhhhhhhkhhhhkhhhhkhkhkhkhkhkhkhkhkhkhkhkkhkhkkkk*x*x*%x
’

mvkl EM F_SDRAMCTL, A4

mvkl EM F_SDRAMCTL_V, B4 ;
mvkh EM F_SDRAMCTL, A4

mvkh EM F_SDRAMCTL_V, B4

stw B4, * A4

chkkkkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhhhkhkhhhhhhhhhhhkhhhhkhhhhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkxk*x*x*%x

*EM F_SDRAMII M = EM F_SDRAMII M V

B R R R
’

mvkl EM F_SDRAMTI M A4

mvkl EM F_SDRAMTI M V, B4 ;
mvkh EM F_SDRAMII M A4

nmvkh EM F_SDRAMTI M V, B4

stw B4, * A4

B R R R R R

*EM F_SDRAMEXT = EM F_SDRAMEXT V

ckkkkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkkhkkhkhkkhkkhkhkkhkhkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkk*%x
’

nvkl EM F_SDRAVEXT, A4
nvkl EM F_SDRAMEXT V, B4 :
nmvkh EM F_SDRAVEXT, A4

nvkh EM F_SDRANMEXT_V, B4

stw B4, *Ad

; copy sections

chkkkkkhkhkhkhkhkhkhhkhkhkhkhkhhkhkhhhhhhhhhhhhhhhhhhhhhhhkhhhhhhhhhkhhhkhhhkhkhkhkhkhkhkhkhkhkhkhkhkkkk*x*x*%
’

copy_section_top:

[1b0]

copy_| oop:

mvkl COPY_TABLE, a3 ; |oad table pointer

nvkh COPY_TABLE, a3

ldw *a3++, bl ; Load entry point

ldw *a3++, b0 ; byte count

ldw *a3++, a4 ; ramstart address

nop 3

b copy_done ; have we copied all sections?
nop 5

Idb *a3++, b5

sub b0, 1, b0 ; decrenent counter

36 Program Loading and Running

Copyright © 2013, Texas Instruments Incorporated

SPNU118L—June 2013
Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Entry Point

Example 3-1. Sample Secondary Bootloader Routine (continued)

[bo]
[1b0]

[!bO]

[1b0]
[ai]

b copy_|l oop ; setup branch if not done
b copy_section_top
zero al

and 3,a3,al

stb b5, *a4++

and -4, a3, ab ; round address up to next nultiple of 4
add 4, a5, a3 ; round address up to next nultiple of 4

ckkkkkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkhkkhkhkhkhkhkhkkhkhkkhkhkhkhkhkkhkkhkkhkkhkhkkhkhkkhkhkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkhkkkkkkkkkkkkk*k*%x
’

; junp to entry point

ckkkkhkhkhkhkhkhkhkhkhkhkhhhkhkhkhkhhhkhhhhhhhhhhhhhhhkhhhhhhhhhhhhhhhhhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkk*x*x*%x
’

copy_

3.2

done:
b .82 bl
nop 5
Entry Point

The entry point is the address at which the execution of the program begins. This is the address of the
startup routine. The startup routine is responsible for initializing and calling the rest of the program. For a
C/C++ program, the startup routine is usually named _c_int00 (see Section 3.3.1). After the program is
loaded, the value of the entry point is placed in the PC register and the CPU is allowed to run.

The object file has an entry point field. For a C/C++ program, the linker will fill in _c_int00 by default. You
can select a custom entry point; see Section 8.4.12. The device itself cannot read the entry point field from
the object file, so it has to be encoded in the program somewhere.

» If you are using a bootloader, the boot table includes an entry point field. When it finishes running, the
bootloader branches to the entry point.

e If you are using an interrupt vector, the entry point is installed as the RESET interrupt handler. When
RESET is applied, the startup routine will be invoked.

» If you are using a hosted debugger, such as CCS, the debugger may explicitly set the program counter
(PC) to the value of the entry point.

3.3 Run-Time Initialization
After the load image is in place, the program can run. The subsections that follow describe initialization of
a C/C++ program. An assembly-only program may not need to perform all of these steps.
3.3.1 _c_int00
The function _c_int00 is the startup routine (also called the boot routine) for C/C++ programs. It performs
all the steps necessary for a C/C++ program to initialize itself.
The name _c_int00 means that it is the interrupt handler for interrupt number 0, RESET, and that it sets
up the C environment. Its name need not be exactly _c_int00, but the linker sets _c_int00 as the entry
point for C programs by default. The compiler's run-time-support library provides a default implementation
of _c_int0O0.
The startup routine is responsible for performing the following actions:
1. Switch to user mode and sets up the user mode stack
2. Set up status and configuration registers
3. Set up the stack and secondary system stack
4. Process special binit copy table, if present.
5. Process the run-time initialization table to autoinitialize global variables (when using the --rom_model
option)
6. Call all global constructors
7. Call the function main
8. Call exit when main returns
SPNU118L—-June 2013 Program Loading and Running 37

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Run-Time Initialization www.ti.com

3.3.2 RAM Model vs. ROM Model

In the COFF RAM model, the loader is additionally responsible for processing the .cinit section. The .cinit
section is a NOLOAD section, which means it does not get allocated to target memory. Instead, the loader
is responsible for parsing the .cinit section and performing the initializations encoded therein at load time.

In the EABI RAM model, no .cinit records are generated.

In both the COFF ROM and EABI ROM models, the .cinit section is loaded into memory along with other
initialized sections. The linker defines a "cinit" symbol that points to the beginning of the initialization tables
in memory. When the program begins running, the C boot routine copies data from these tables into the
.bss section.

3.3.2.1 Autoinitializing Variables at Run Time (--rom_model)

Autoinitializing variables at run time is the default method of autoinitialization. To use this method, invoke
the linker with the --rom_model option.

Using this method, the .cinit section is loaded into memory along with all the other initialized sections. The
linker defines a special symbol called cinit that points to the beginning of the initialization tables in
memory. When the program begins running, the C boot routine copies data from the tables (pointed to by
.Cinit) into the specified variables in the .bss section. This allows initialization data to be stored in slow
external memory and copied to fast external memory each time the program starts.

Figure 3-3 illustrates autoinitialization at run time. Use this method in any system where your application
runs from code burned into slow external memory.

Figure 3-3. Autoinitialization at Run Time
Object file Memory

C auto init

.cinit
section table and data

(ROM)

Boot
routine

.data
uninitialized
(RAM)

3.3.2.2 Initializing Variables at Load Time (--ram_model)

Initialization of variables at load time enhances performance by reducing boot time and by saving the
memory used by the initialization tables. To use this method, invoke the linker with the --ram_model
option.

When you use the --ram_model linker option, the linker sets the STYP_COPY bit in the .cinit section's
header. This tells the loader not to load the .cinit section into memory. (The .cinit section occupies no
space in the memory map.) The linker also sets the cinit symbol to -1 (normally, cinit points to the
beginning of the initialization tables). This indicates to the boot routine that the initialization tables are not
present in memory; accordingly, no run-time initialization is performed at boot time.

A loader must be able to perform the following tasks to use initialization at load time:
» Detect the presence of the .cinit section in the object file.

» Determine that STYP_COPY is set in the .cinit section header, so that it knows not to copy the .cinit
section into memory.

» Understand the format of the initialization tables.

38

Program Loading and Running SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Run-Time Initialization

Figure 3-4 illustrates the initialization of variables at load time.

Figure 3-4. Initialization at Load Time
Object file Memory

.data
section w

.data section
(initialized)
(RAM)

3.3.2.3 The --rom_model and --ram_model Linker Options

The following list outlines what happens when you invoke the linker with the --ram_model or --rom_model

option.

e The symbol c_int00 is defined as the program entry point. The _c_int00 symbol is the start of the C
boot routine in boot.obj; referencing _c_int00 ensures that boot.obj is automatically linked in from the
appropriate run-time-support library.

» The .cinit output section is padded with a termination record to designate to the boot routine
(autoinitialize at run time) or the loader (initialize at load time) when to stop reading the initialization
tables.

« When you initialize at load time (--ram_model option):

— The linker sets cinit to -1. This indicates that the initialization tables are not in memory, so no
initialization is performed at run time.

— The STYP_COPY flag (0010h) is set in the .cinit section header. STYP_COPY is the special
attribute that tells the loader to perform initialization directly and not to load the .cinit section into
memory. The linker does not allocate space in memory for the .cinit section.

« When you autoinitialize at run time (--rom_model option), the linker defines cinit as the starting address
of the .cinit section. The C boot routine uses this symbol as the starting point for autoinitialization.

3.3.3 Copy Tables

The RTS function copy_in can be used at run-time to move code and data around, usually from its load
address to its run address. This function reads size and location information from copy tables. The linker
automatically generates several kinds of copy tables. Refer to Section 8.8.

You can create and control code overlays using copy tables. See Section 8.8.4 for details and an
example.

3.3.3.1 BINIT

The BINIT (boot-time initialization) copy table is special in that the target will automatically perform the
copying at auto-initialization time. Refer to Section 8.8.6 for more about the BINIT copy table name.

3.3.3.2 CINIT

EABI .cinit tables are special kinds of copy tables. COFF .cinit tables can be used to provide copy table
functionality. Refer to Section 8.11.4 for more about using the .cinit section with the ROM model and
Section 8.11.5 for more using it with the RAM model.

SPNU118L—June 2013 Program Loading and Running 39

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Arguments to main

13 TEXAS
INSTRUMENTS

www.ti.com

3.4 Arguments to main
Some programs expect arguments to main (argc, argv) to be valid. Normally this isn't possible for an
embedded program, but the TI runtime does provide a way to do it. The user must allocate an .args
section of an appropriate size using the --args linker option. It is the responsibility of the loader to populate
the .args section. It is not specified how the loader determines which arguments to pass to the target. The
format of the arguments is the same as an array of char pointers on the target.
3.5 Additional Information
See the following sections and documents for additional information:
Section 2.8, "Run-Time Relocation"
Section 8.4.3, "Allocate Memory for Use by the Loader to Pass Arguments (--arg_size Option)"
Section 8.4.12, "Define an Entry Point (--entry_point Option)"
Section 8.5.5.1 ,"Specifying Load and Run Addresses"
Section 8.8, "Linker-Generated Copy Tables"
Section 8.11.1, "Run-Time Initialization"
Section 8.11.4, "Autoinitializing Variables at Run Time (--rom_model)"
Section 8.11.5, "Autoinitializing Variables at Load Time (--ram_model)"
Section 8.11.6, "The --rom_model and --ram_model Linker Options"
label directive
Chapter 12, "Hex Conversion Utility Description”
"Run-Time Initialization," "Initialization by the Interrupt Vector," and "System Initialization" sections in the
ARM Optimizing C/C++ Compiler User's Guide
Creating a Second-Level Bootloader for FLASH Bootloading on TMS320C6000 Platform With Code
Composer Studio (SPRA999).
40 Program Loading and Running SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPRA999
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

. Chapter 4
l TEXAS SPNU118L—June 2013

INSTRUMENTS

Assembler Description

The ARM assembler translates assembly language source files into machine language object files. These
files are in object modules, which are discussed in Chapter 2. Source files can contain the following
assembly language elements:

Assembler directives described in Chapter 5
Macro directives described in Chapter 6
Assembly language instructions described in the TMS470R1x User's Guide.

Topic Page
O LY =T o] o] = @ Y=Y = 42
4.2 The Assembler's Role in the Software Development FIOWcccoiiiiiiiiiiiiiiinnnnene. 43
4.3 InvoKing the ASSEMDBIEr ... e 44
4.4 Naming Alternate Directories for Assembler INputc.ccooeiiiiiiiiiiiiiiiicii e 45
4.5 Source Statement FOMMALociuiieiiiiiiiii ittt e ae e e st e saeaeansanaanaaens 48
I I =T =TI @ =3 = | 52
O 1Y 1 1] o Yo | £ PP 54
N b X=X [0 1 P 62
4.9 Built-in FUNCLIONS @nNd OPEIratOrSccucuiuiueninieie e iaeeeeaenanra e e eaeaenenanrnsaaeenes 66
4.10 Unified Assembly Language SyntaX SUPPOIT ...eeueuiuiuineninieieiereneneeenensnsnreseaeneenss 67
It o T U1 o =] 41 o PP 68
4.12 Debugging ASSEMDBIY SOUICE ..iuiiiiiiiiiii e et e e e e s e eens 71
4.13 CroSS-ReferenCe LiStiNgS «.viuiuiiiiiiiiiiiii ettt e et e e e e e naaeenens 72

SPNU118L—-June 2013 Assembler Description 41

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Assembler Overview www.ti.com

4.1

Assembler Overview

The 2-pass assembler does the following:

Processes the source statements in a text file to produce a relocatable object file
Produces a source listing (if requested) and provides you with control over this listing

Allows you to divide your code into sections and maintain a section program counter (SPC) for each
section of object code

Defines and references global symbols and appends a cross-reference listing to the source listing (if
requested)

Allows conditional assembly
Supports macros, allowing you to define macros inline or in a library

42

Assembler Description SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com The Assembler's Role in the Software Development Flow

4.2 The Assembler's Role in the Software Development Flow

Figure 4-1 illustrates the assembler's role in the software development flow. The shaded portion highlights
the most common assembler development path. The assembler accepts assembly language source files
as input, both those you create and those created by the ARM C/C++ compiler.

Figure 4-1. The Assembler in the ARM Software Development Flow

C/C++
source
files
Macro
source C/C++
files compiler

Assembler Slem i

source

demangling
utility

Macro

library Assembler

Object Librat.r){.;build Delt)uglging
files utility ools
L Run-time-
Library of support
object library
files

Executable
object file

Hex-conversion
utility

EPROM Absolute lister Cross-reference | Object file

programmer lister utilities

SPNU118L—-June 2013

Assembler Description 43
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Invoking the Assembler

13 TEXAS
INSTRUMENTS

www.ti.com

4.3 Invoking the Assembler

To invoke the assembler, enter the following:

armcl input file [options]

armcl

is the command that invokes the assembler through the compiler. The compiler considers

any file with an .asm extension to be an assembly file and calls the assembler.

input file
options

names the assembly language source file.
identify the assembler options that you want to use. Options are case sensitive and can

appear anywhere on the command line following the command. Precede each option with
one or two hyphens as shown.

The valid assembler options are listed in Table 4-1.

Table 4-1. ARM Assembler Options

Option

Alias

Description

--absolute_listing

--asm_define=name[=def]

--asm_dependency

--asm_includes

--asm_listing
--asm_undefine=name

--cmd_file=filename

--code_state={16|32}

--copy_file=filename

——cross_referen ce

--endian

--force_thumb2_mode=
{true|false}

--include_file=filename

--include_path=pathname

-aa

-apd

-api

-ahc

-ahi

Creates an absolute listing. When you use --absolute_listing, the assembler does not produce
an object file. The --absolute_listing option is used in conjunction with the absolute lister.

Sets the name symbol. This is equivalent to defining name with a .set directive in the case of a
numeric value or with an .asg directive otherwise. If value is omitted, the symbol is set to 1.
See Section 4.7.5.

Performs preprocessing for assembly files, but instead of writing preprocessed output, writes a
list of dependency lines suitable for input to a standard make utility. The list is written to a file
with the same name as the source file but with a .ppa extension.

Performs preprocessing for assembly files, but instead of writing preprocessed output, writes a
list of files included with the .include directive. The list is written to a file with the same name
as the source file but with a .ppa extension.

Produces a listing file with the same name as the input file with a .Ist extension.

Undefines the predefined constant name, which overrides any --asm_define options for the
specified constant.

Appends the contents of a file to the command line. You can use this option to avoid limitations
on command line length imposed by the host operating system. Use an asterisk or a
semicolon (* or ;) at the beginning of a line in the command file to include comments.
Comments that begin in any other column must begin with a semicolon. Within the command
file, filenames or option parameters containing embedded spaces or hyphens must be
surrounded with quotation marks. For example: "this-file.asm"

--code_state=16 (or -mt) instructs the assembler to begin assembling instructions as 16-bit
instructions; UAL syntax (.thumb) for ARMv7 and non-UAL syntax (.state16) otherwise. By
default, the assembler begins assembling 32-bit instructions. You can reset the default
behavior by specifying --code_state=32. For information on indirect calls in 16-bit versus 32-bit
code, see the ARM Optimizing C/C++ Compiler User's Guide.

Copies the specified file for the assembly module. The file is inserted before source file
statements. The copied file appears in the assembly listing files.

Produces a cross-reference table and appends it to the end of the listing file; it also adds
cross-reference information to the object file for use by the cross-reference utility. If you do not
request a listing file but use the --cross_reference option, the assembler creates a listing file
automatically, naming it with the same name as the input file with a .Ist extension.

Produces object code in little-endian format. For more information, see the ARM Optimizing
C/C++ Compiler User's Guide.

Alters default assembler behavior. By default, for C or C++ code, the assembler optimizes 32-
bit Thumb2 instructions when possible. For hand-coded assembly code, the assembler does
not optimize 32-bit Thumb2 instructions.

Includes the specified file for the assembly module. The file is included before source file
statements. The included file does not appear in the assembly listing files.

Specifies a directory where the assembler can find files named by the .copy, .include, or .mlib
directives. There is no limit to the number of directories you can specify in this manner; each
pathname must be preceded by the --include_path option. See Section 4.4.1.

44 Assembler Description

SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS

INSTRUMENTS
www.ti.com Naming Alternate Directories for Assembler Input
Table 4-1. ARM Assembler Options (continued)

Option Alias Description

--max_branch_chain=num Controls the depth of branch chaining through the assembler. For information on optimizations,
see the ARM Optimizing C/C++ Compiler User's Guide.

--output_all_syms -as Puts all defined symbols in the object file's symbol table. The assembler usually puts only
global symbols into the symbol table. When you use --output_all_syms, symbols defined as
labels or as assembly-time constants are also placed in the table.

--quiet -q Suppresses the banner and progress information (assembler runs in quiet mode).

--symdebug:dwarf or -g (On by default) Enables assembler source debugging in the C source debugger. Line

--symdebug:none information is output to the object module for every line of source in the assembly language
source file. You cannot use this option on assembly code that contains .line directives. See
Section 4.12.

--syms_ignore_case -ac Makes case insignificant in the assembly language files. For example, --syms_ignore_case
makes the symbols ABC and abc equivalent. If you do not use this option, case is significant
(default). Case significance is enforced primarily with symbol names, not with mnemonics and
register names.

--ual Accepts UAL syntax when assembling for ARMv6 and earlier architectures. See Section 4.10.

4.4 Naming Alternate Directories for Assembler Input

The .copy, .include, and .mlib directives tell the assembler to use code from external files. The .copy and
.include directives tell the assembler to read source statements from another file, and the .mlib directive
names a library that contains macro functions. Chapter 5 contains examples of the .copy, .include, and
.mlib directives. The syntax for these directives is:

.copy ["]filename["]
.include ["]filename["]
.mlib ["]filename["]

The filename names a copyl/include file that the assembler reads statements from or a macro library that
contains macro definitions. If filename begins with a number the double quotes are required. Quotes are
recommended so that there is no issue in dealing with path information that is included in the filename
specification or path names that include white space. The filename may be a complete pathname, a partial
pathname, or a filename with no path information.

The assembler searches for the file in the following locations in the order given:

1. The directory that contains the current source file. The current source file is the file being assembled
when the .copy, .include, or .mlib directive is encountered.

2. Any directories named with the --include_path option
3. Any directories named with the TI_ARM_C_DIR environment variable
4. Any directories named with the TI_ ARM_C_DIRenvironment variable

Because of this search hierarchy, you can augment the assembler's directory search algorithm by using
the --include_path option (described in Section 4.4.1) or the TI_ARM_A_DIR environment variable
(described in Section 4.4.2). The TI_ARM_C_DIR environment variable is discussed in the ARM
Optimizing C/C++ Compiler User's Guide.

NOTE: The TI_ARM_C_DIR environment variable takes precedence over the older TMS470_C_DIR
environment variable if both are defined. If only TMS470_C_DIR is set, it will continue to be
used. Likewise, the TI_ARM_A_DIR environment variable takes precedence over the older
TMS470_A_DIR environment variable if both are defined. If only TMS470_A_DIR is set, it
will continue to be used.

SPNU118L—-June 2013 Assembler Description 45

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Naming Alternate Directories for Assembler Input www.ti.com

4.4.1 Using the --include_path Assembler Option

The --include_path assembler option names an alternate directory that contains copy/include files or
macro libraries. The format of the --include_path option is as follows:

armcl --include_path= pathname source filename [other options] ‘

There is no limit to the number of --include_path options per invocation; each --include_path option names
one pathname. In assembly source, you can use the .copy, .include, or .mlib directive without specifying
path information. If the assembler does not find the file in the directory that contains the current source
file, it searches the paths designated by the --include_path options.

For example, assume that a file called source.asm is in the current directory; source.asm contains the
following directive statement:

. copy "copy.asnt
Assume the following paths for the copy.asm file:

UNIX: [tools/files/copy.asm
Windows: c:\tools\files\copy.asm

You could set up the search path with the commands shown below:

Operating System Enter
UNIX (Bourne shell) arncl --include_path=/tools/files source.asm
Windows arncl --include_path=c:\tools\files source.asm

The assembler first searches for copy.asm in the current directory because source.asm is in the current
directory. Then the assembler searches in the directory named with the --include_path option.

4.4.2 Using the TI_ARM_C_DIR Environment Variable

An environment variable is a system symbol that you define and assign a string to. The assembler uses
the TI_ARM_C_DIR environment variable to name alternate directories that contain copy/include files or
macro libraries.

The assembler looks for the TI_ARM_A_DIR environment variable and then reads and processes it. If the
assembler does not find the TI_ARM_A_DIR variable, it then searches for TI_ARM_C_DIR. The
processor-specific variables are useful when you are using Texas Instruments tools for different
processors at the same time.

See the ARM Optimizing C/C++ Compiler User's Guide for details on TI_ARM_C_DIR.

NOTE: The TI_ARM_C_DIR environment variable takes precedence over the older TMS470_C_DIR
environment variable if both are defined. If only TMS470_C_DIR is set, it will continue to be
used. Likewise, the TI_ARM_A_DIR environment variable takes precedence over the older
TMS470_A_DIR environment variable if both are defined. If only TMS470_A_DIR is set, it
will continue to be used.

The command syntax for assigning the environment variable is as follows:

Operating System Enter
UNIX (Bourne Shell) TI_ARM_A_DIR=" pathname, ; pathname, ; . .."; export TI_ARM_A_DIR
Windows set TI_ARM_A_DIR= pathname, ; pathname, ; . . .
46 Assembler Description SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Naming Alternate Directories for Assembler Input

The pathnames are directories that contain copy/include files or macro libraries. The pathnames must
follow these constraints:

» Pathnames must be separated with a semicolon.

» Spaces or tabs at the beginning or end of a path are ignored. For example the space before and after
the semicolon in the following is ignored:

set TI_ARM A DIR= c:\path\one\to\tools ; c:\path\tw\to\tools

» Spaces and tabs are allowed within paths to accommodate Windows directories that contain spaces.
For example, the pathnames in the following are valid:

In assembly source, you can use the .copy, .include, or .mlib directive without specifying path information.
If the assembler does not find the file in the directory that contains the current source file or in directories
named by the --include_path option, it searches the paths named by the environment variable.

For example, assume that a file called source.asm contains these statements:

.copy "copyl. asnt
.copy "copy2.asn

Assume the following paths for the files:

UNIX: ltools/files/copyl.asm and /dsys/copy2.asm
Windows: c:\tools\files\copyl.asm and c:\dsys\copy2.asm

You could set up the search path with the commands shown below:

Operating System Enter
UNIX (Bourne shell) TI_ARM A DI R="/dsys"; export TI_ARM A DR

arncl --include_path=/tools/files source.asm
Windows TI _ARM A DI R=c: \ dsys

arncl --include_path=c:\tools\files source.asm

The assembler first searches for copyl.asm and copy2.asm in the current directory because source.asm
is in the current directory. Then the assembler searches in the directory named with the --include_path
option and finds copyl.asm. Finally, the assembler searches the directory named with TI_ARM_A_DIR
and finds copy2.asm.

The environment variable remains set until you reboot the system or reset the variable by entering one of
these commands:

Operating System Enter
UNIX (Bourne shell) unset TI _ARM A DIR
Windows set TI_ARM A Dl R=
SPNU118L—-June 2013 Assembler Description 47

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS

INSTRUMENTS
Source Statement Format www.ti.com
4.5 Source Statement Format
ARM assembly language source programs consist of a sequence of source statements that can contain
assembler directives, assembly language instructions, macro invocations, and comments. A source
statement can contain four ordered fields (label, mnemonic, operand list, and comment). The general
syntax for source statements is as follows:
][Iabel[:]]mnemonic [operand list][;comment]
Following are examples of source statements:
SYML .set 2 ; Symbol SYML = 2
Begi n: MoV RO, #SYML ; Load RO with 2
.word 016h ; Initialize word (016h)
The ARM assembler reads an unlimited number of characters per line. Source statements that extend
beyond 400 characters in length (including comments) are truncated in the listing file.
Follow these guidelines:
« All statements must begin with a label, a blank, an asterisk, or a semicolon.
e Labels are optional; if used, they must begin in column 1.
» One or more space or tab characters must separate each field.
* Comments are optional. Comments that begin in column 1 can begin with an asterisk or a semicolon (*
or;), but comments that begin in any other column must begin with a semicolon.
NOTE: A mnemonic cannot begin in column 1 or it will be interpreted as a label. Mnemonic opcodes
and assembler directive names without the . prefix are valid label names. Remember to
always use whitespace before the mnemonic, or the assembler will think the identifier is a
new label definition.
The following sections describe each of the fields.
45.1 Label Field
Every instruction may optionally have a label. Many directives allow a label, and some require a label.
When used, a label must begin in column 1 of a source statement. A label is an identifier (see
Section 4.7.1) placed in column 1. A label can be followed by a colon (). The colon is not treated as part
of the label name. If you do not use a label, the first character position must contain a blank, a semicolon,
or an asterisk.
When you use a label on an assembly instruction or data directive, an assembler symbol (Section 4.7)
with the same name is created. Its value is the current value of the section program counter (SPC, see
Section 2.4.5). This symbol represents the address of that instruction. In the following example, the .word
directive is used to create an array of 3 words. Because a label was used, the assembly symbol Start
refers to the first word, and the symbol will have the value 40h.
9 . . * Assume some code was assenbl ed
10 00000040 0000000A Start: .word OAh, 3,7
00000044 00000003
00000048 00000007
A label on a line by itself is a valid statement. The label assigns the current value of the section program
counter to the label; this is equivalent to the following directive statement:
label .equ $; $ provides the current value of the SPC
When a label appears on a line by itself, it points to the instruction on the next line (the SPC is not
incremented):
1 00000000 Her e:
2 00000000 00000003 .word 3
If you do not use a label, the character in column 1 must be a blank, an asterisk, or a semicolon.
48 Assembler Description SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

I

TEXAS
INSTRUMENTS

www.ti.com Source Statement Format

452

45.3

Mnemonic Field

The mnemonic field follows the label field. The mnemonic field cannot start in column 1; if it does, it is
interpreted as a label. There is one exception: the parallel bars (||) of the mnemonic field can start in
column 1. The mnemonic field contains one of the following items:

* Machine-instruction mnemonic (such as ADD, MUL, STR)
» Assembler directive (such as .data, .list, .equ)

* Macro directive (such as .macro, .var, .mexit)

* Macro invocation

Operand Field
The operand field follows the mnemonic field and contains zero or more comma-separated operands. An
operand can be one of the following:
e an immediate operand (usually a constant or symbol) (see Section 4.6 and Section 4.7)
» aregister operand
* a memory reference operand
» an expression that evaluates to one of the above (see Section 4.8)

An immediate operand is encoded directly in the instruction. The value of an immediate operand must be
a constant expression. Most instructions with an immediate operand require an absolute constant
expression, such as 1234. Some instructions (such as a call instruction) allow a relocatable constant
expression, such as a symbol defined in another file. (See Section 4.8 for details about types of
expressions.)

A register operand is a special pre-defined symbol that represents a CPU register.

A memory reference operand uses one of several memory addressing modes to refer to a location in
memory. Memory reference operands use a special target-specific syntax defined in the CPU user's
guide.

You must separate operands with commas. Not all operand types are supported for all operands. See the
description of the specific instruction in the CPU user's guide for your device family.

SPNU118L—-June 2013 Assembler Description 49
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Source Statement Format www.ti.com

4.5.3.1 Operand Syntaxes for Instructions

The assembler allows you to specify that an operand should be used as an address, an immediate value,
an indirect address, a register, a shifted register, or a register list. The following rules apply to the
operands of instructions.

prefix — the operand is an immediate value. Using the # sign as a prefix causes the assembler to
treat the operand as an immediate value. This is true even if the operand is a register; the assembler
treats the register as a value instead of using the contents of the register. For example:
Label : ADD Rl, Rl, #123

; Add 123 (decinal) to the value of RL and place the result in R1.

Square brackets — the operand is an indirect address. If the operand is enclosed in square
brackets, the assembler treats the operand as an indirect address; that is, it uses the contents of the
operand as an address. Indirect addresses consist of a base and an offset. The base is specified by a
register and is formed by taking the value in the register. The offset can be specified by a register, an
immediate value, or a shifted register. Furthermore, the offset can be designated as one of the
following:

— Pre-index, where the base and offset are combined to form the address. To designate a pre-index
offset, include the offset within the enclosing right bracket.

— Postindex, where the address is formed from the base, and then the base and offset are combined.
To designate a postindex offset, include the offset outside of the right bracket.

The offset can be added to or subtracted from the base. The following are examples of instructions that
use indirect addresses as operands:
A LDR R1, [R1]
; Load fromaddress in RL into RI1.
LDR R7, [R1, #5]
; Form address by adding the value in RL to 5. Load from address into R7.
STR R3, [Rl, -R?]
; Form address by subtracting the value in R2 fromthe value in RL. Store fromR3
; to nmenory at address.
STR R14, [R1, +R3, LSL #2]
; Form address by adding the value in R3 shifted left by 2 to the value in Rl.
; Store fromRl4 to nenory at address.
LDR R1, [R1], #5
; Load fromaddress in RL into Rl, then add 5 to the address.
STR R2, [Rl], RS
; Store value in R2 in the address in Rl, then add the value in R5 to the address.

I suffix — write-back to register. If you use the ! sign as a suffix, the assembler writes the computed
address back to the base register. Write-back to register is used only with the indirect addressing
mode syntax.

This is an example of an instruction using the write back to register suffix:

LDR R1, [R4, #4]!
Form address by adding the value in R4 to 4. Load fromthis address into Ri1,
; then replace the value in R4 with the address.

N suffix — set S bit. If you use the ” sign as a suffix, the assembler sets the S bit. The resulting action
depends on the type of instruction being executed and whether R15 is in the transfer list. For more
information, see the LDM and STM instructions in the TMS470R1x User's Guide.
LDM A SP, {R4-RLl1, RL5}"

Load registers R4 through R11 and R15 from menory at SP. Load CPSR with SPSR.

Shifted registers. If a register symbol is followed by a shift type, the computed value is the value in
the register shifted according to the type as defined below:

LSL Logical shift left
LSR Logical shift right
ASL Arithmetic shift left
ASR Arithmetic shift right
ROR Rotate right
RRX Rotate right extended
50 Assembler Description SPNU118L—June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

I

TEXAS
INSTRUMENTS

www.ti.com Source Statement Format

The shift type can be followed by a register or an immediate whose value defines the shift amount. The
following are examples of instructions that use shifted registers as operands:
B: ADD R1, R4, R5, LSR R2
; Logical shift right the value in R5 by the value in R2. Add the value in R5 to R4.
; Place result in RL.
LDR Rl, [R5, R4, LSL #4]
; Form address by adding the value in R4 shifted left by 4 to the value in R5.
; Load from address into RI1.
CW R3, R4, RRX
; Conpare the value in R3 with the value in R4 rotate right extend.

» Curly braces - the operand is a register list. If you surround registers with curly braces, the
assembler treats the operand as a list of registers. You can separate registers with commas or indicate
a range of registers with a dash. The following are examples of instructions that use register lists:
LDVEA R2, {Rl1, R3, R6}
; Pre-decrement stack |load. Load registers Rl, R3 and R6 fromnmenory at the address in R2.
STMFD R12, {Rl, R3-R5}
Pre-increment stack store. Store fromregisters RlL and R3 through R5 to nenory at the
; address in R12.

4.5.3.2 Immediate Values as Operands for Directives

454

You use immediate values as operands primarily with instructions. In some cases, you can use immediate
values with the operands of directives. For instance, you can use immediate values with the .byte directive
to load values into the current section.
It is not usually necessary to use the # prefix for directives. Compare the following statements:

ADD R1, #10

.byte 10

In the first statement, the # prefix is necessary to tell the assembler to add the value 10 to R1. In the
second statement, however, the # prefix is not used; the assembler expects the operand to be a value and
initializes a byte with the value 10.

See Chapter 5 for more information on the syntax and usage of directives.

Comment Field

A comment can begin in any column and extends to the end of the source line. A comment can contain
any ASCII character, including blanks. Comments are printed in the assembly source listing, but they do
not affect the assembly.

A source statement that contains only a comment is valid. If it begins in column 1, it can start with a
semicolon (;) or an asterisk (*). Comments that begin anywhere else on the line must begin with a
semicolon. The asterisk identifies a comment only if it appears in column 1.

SPNU118L—-June 2013 Assembler Description 51
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Literal Constants www.ti.com

4.6

46.1

4.6.2

4.6.3

Literal Constants

A literal constant (also known as a literal or in some other documents as an immediate value) is a value
that represents itself, such as 12, 3.14, or "hello".

The assembler supports several types of literals:

* Binary integer literals

» Octal integer literals

e Decimal integer literals

» Hexadecimal integer literals

* Character literals

* Floating-point literals

Error checking for invalid or incomplete literals is performed.

The assembler maintains each literal internally as a 32-bit signless quantity. Literals are considered
unsigned values, and are not sign extended. For example, the literal 00FFh is equal to O0OFF (base 16) or
255 (base 10); it does not equal -1. which is OFFFFFFFFh (base 16). Note that if you store OFFh in a .byte
location, the bits will be exactly the same as if you had stored -1. It is up to the reader of that location to
interpret the signedness of the bits.

Binary Integer Literals

A binary integer literal is a string of up to 32 binary digits (Os and 1s) followed by the suffix B (or b). Binary
literals of the form "O[bB][10]+" are also supported. If fewer than 32 digits are specified, the assembler
right justifies the value and fills the unspecified bits with zeros. These are examples of valid binary literals:

00000000B Literal equal to 0,4 or Oy
0100000b Literal equal to 32,, or 20,4
01b Literal equal to 1,5 or 1,4
11111000B Literal equal to 248,, or OF8,4
0b00101010 Literal equal to 42,, or 2A
0B101010 Literal equal to 42,, or 2A4

Octal Integer Literals

An octal integer literal is a string of up to 11 octal digits (O through 7) followed by the suffix Q (or). Octal
literals may also begin with a 0, contain no 8 or 9 digits, and end with no suffix. These are examples of
valid octal literals:

10Q Literal equal to 8,, or 8,4

054321 Literal equal to 22737,, or 58D1,;
100000Q Literal equal to 32768, or 8000,
226q Literal equal to 150, or 96,4

Decimal Integer Literals

A decimal integer literal is a string of decimal digits ranging from -2147 483 648 to 4 294 967 295. These
are examples of valid decimal integer literals:

1000 Literal equal to 1000,, or 3E8,;

-32768 Literal equal to -32 768, or -8000,,

25 Literal equal to 25,, or 19,4

4815162342 Literal equal to 4815162342,, or 11FO018BE6,

52

Assembler Description SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Literal Constants

4.6.4 Hexadecimal Integer Literals

A hexadecimal integer literal is a string of up to eight hexadecimal digits followed by the suffix H (or h) or
preceded by 0x. Hexadecimal digits include the decimal values 0-9 and the letters A-F or a-f. A
hexadecimal literal must begin with a decimal value (0-9). If fewer than eight hexadecimal digits are
specified, the assembler right justifies the bits. These are examples of valid hexadecimal literals:

78h Literal equal to 120,, or 0078,
0x78 Literal equal to 120,, or 00784
OFh Literal equal to 15,, or 000F 4
37ACh Literal equal to 14252, or 37AC

4.6.5 Character Literals

A character literal is a single character enclosed in single quotes. The characters are represented
internally as 8-bit ASCII characters. Two consecutive single quotes are required to represent each single
guote that is part of a character literal. A character literal consisting only of two single quotes is valid and
is assigned the value 0. These are examples of valid character literals:

Defines the character literal a and is represented internally as 61,4
'C' Defines the character literal C and is represented internally as 43,4
Defines the character literal ' and is represented internally as 27,
Defines a null character and is represented internally as 00,4

Notice the difference between character literals and character string literals (Section 4.6.6 discusses
character strings). A character literal represents a single integer value; a string is a sequence of
characters.

4.6.6 Character String Literals

A character string is a sequence of characters enclosed in double quotes. Double quotes that are part of
character strings are represented by two consecutive double quotes. The maximum length of a string
varies and is defined for each directive that requires a character string. Characters are represented
internally as 8-bit ASCII characters.

These are examples of valid character strings:

"sample program" defines the 14-character string sample program.
"PLAN""C""" defines the 8-character string PLAN "C".

Character strings are used for the following:

e Filenames, as in .copy "filename"

» Section names, as in .sect "section name"

» Data initialization directives, as in .byte "charstring"
* Operands of .string directives

SPNU118L—June 2013 Assembler Description 53

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Symbols www.ti.com
4.6.7 Floating-Point Literals

A floating-point literal is a string of decimal digits followed by a required decimal point, an optional
fractional portion, and an optional exponent portion. The syntax for a floating-point number is:

[[+-1nnn. [nnn] [EJe [+]-] nnn]

Replace nnn with a string of decimal digits. You can precede nnn with a + or a -. You must specify a
decimal point. For example, 3.e5 is valid, but 3e5 is not valid. The exponent indicates a power of 10.
These are examples of valid floating-point literals:

3.0

3.14

3.

-0.314e13

+314. 59e- 2

The assembler syntax does not support all C89-style float literals nor C99-style hexadecimal constants,
but the $strtod built-in mathematical function supports both. If you want to specify a floating-point literal
using one of those formats, use $strtod. For example:

$strtod(".3")
$strtod("0x1. 234p-5")

You cannot directly use NaN, Inf, or -Inf as floating-point literals. Instead, use $strtod to express these
values. The "NaN" and "Inf" strings are handled case-insensitively. See Section 4.9.1 for built-in functions.

$strtod(" NaN")
$strtod("Inf")

4.7 Symbols

An assembler symbol is a named 32-bit signless integer value, usually representing an address or
absolute integer. A symbol can represent such things as the starting address of a function, variable, or
section. The name of a symbol must be an identifier. The identifier becomes a symbolic representation of
the symbol's value.

Some assembler symbols become external symbols, and are placed in the object file's symbol table. A
symbol is valid only within the module in which it is defined, unless you use the .global directive or the .def
directive to declare it as an external symbol (see .global directive).

Symbols can be bound as global symbols, local symbols, or weak symbols. The linker handles symbols
differently based on their binding. For example, the linker does not allow multiple global definitions of a
symbol, but local symbols can be defined multiple times. The linker does not resolve references to local
symbols in different object files, but it does resolve references to global symbols in any other object file.
Weak symbols are similar to global symbols, except that if one object file contains a weak symbol, and
another object file contains a global symbol with the same name, the global symbol is used to resolve
references. In general, common symbols (see .common directive) are preferred over weak symbols.

4.7.1 Identifiers

Identifiers are names used as labels, registers, symbols, and substitution symbols. An identifier is a string
of alphanumeric characters, the dollar sign, and underscores (A-Z, a-z, 0-9, $, and _). The first character
in an identifier cannot be a number, and identifiers cannot contain embedded blanks. The identifiers you
define are case sensitive; for example, the assembler recognizes ABC, Abc, and abc as three distinct
identifiers. You can override case sensitivity with the --syms_ignore_case assembler option (see

Section 4.3).

54 Assembler Description SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS

INSTRUMENTS

www.ti.com Symbols

4.7.2

Labels

An identifier used as a label becomes an assembler symbol, which represent an address in the program.
Labels within a file must be unique.

NOTE: A mnemonic cannot begin in column 1 or it will be interpreted as a label. Mnemonic opcodes
and assembler directive names without the . prefix are valid label names. Remember to
always use whitespace before the mnemonic, or the assembler will think the identifier is a
new label definition.

Symbols derived from labels can also be used as the operands of .global, .ref, .def, or .bss directives; for
example:

. gl obal _f
LDR AL, CONL
STR Al, [sp, #0]
BL _f
CONL: .field -269488145, 32
4.7.3 Local Labels

Local labels are special labels whose scope and effect are temporary. A local label can be defined in two

ways:

* $n, where n is a decimal digit in the range 0-9. For example, $4 and $1 are valid local labels. See
Example 4-1.

e name?, where name is any legal identifier as described above. The assembler replaces the question
mark with a period followed by a unique number. When the source code is expanded, you will not see
the unique number in the listing file. Your label appears with the question mark as it did in the source
definition.

You cannot declare these types of labels as global.

Normal labels must be unique (they can be declared only once), and they can be used as constants in the

operand field. Local labels, however, can be undefined and defined again. Local labels cannot be defined

by directives.

A local label can be undefined or reset in one of these ways:

» By using the .newblock directive

» By changing sections (using a .sect, .text, or .data directive)

e By changing the state of generated code (using the .statel6 or .state32 directives)

» By entering an include file (specified by the .include or .copy directive)

* By leaving an include file (specified by the .include or .copy directive)

SPNU118L—June 2013 Assembler Description 55

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Symbols

13 TEXAS
INSTRUMENTS

www.ti.com

Example 4-1. Local Labels of the Form $n

This is an example of code that declares and uses a local label legally:

Label 1: CwP rl, #0
BCS $1

ADDS ro, r0, #1

MOVCS pc, Ir

$1: LDR r2, [r5],

. newbl ock

ADDS rl, ri,
BPL $1

MVNS ri, rl
$1: MoV pc, Ir

r2

#4

Conpare rl to zero.

If carry is set, branch to $1;
el se increnent to r0

and return.

Load indirect of r5 into r2
with wite back.

Undefine $1 so it can be used
agai n.

Add r2 to ril.

If the negative bit isn't set,
branch to $1;

el se negate r1.

Ret ur n.

The following code uses a local label illegally:

BCS $1

ADDS ro, r0, #1

MOVCS pc, Ir

$1: LDR r2, [r5],

ADDS rl, rl,
BPL $1

MYNS ri, rl
$1: MoV pc, Ir

r2

#4

If carry is set, branch to $1;
el se increnent to r0

and return.

Load indirect of r5 into r2
with wite-back.

Add r2 to ril.

If the negative bit isn't set,
branch to $1;

el se negate r1.

Ret ur n.

The $1 label is not undefined before being reused by the second branch instruction. Therefore, $1 is

redefined, which is illegal.

Local labels are especially useful in macros. If a macro contains a normal label and is called more than
once, the assembler issues a multiple-definition error. If you use a local label and .newblock within a
macro, however, the local label is used and reset each time the macro is expanded.

Up to ten local labels of the $n form can be in effect at one time. Local labels of the form name? are not
limited. After you undefine a local label, you can define it and use it again. Local labels do not appear in
the object code symbol table.

For more information about using labels in macros see Section 6.6.

56 Assembler Description

Copyright © 2013, Texas Instruments Incorporated

SPNU118L—June 2013
Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Symbols

4.7.4 Symbolic Constants

A symbolic constant is a symbol with a value that is an absolute constant expression (see Section 4.8). By
using symbolic constants, you can assign meaningful names to constant expressions. The .set and
.Struct/.tag/.endstruct directives enable you to set constants to symbolic names (see Define Assembly-
Time Constant). Once defined, symbolic constants cannot be redefined.

If you use the .set directive to assign a value to a symbol , the symbol becomes a symbolic constant. For
example:
shift3 . set 3

MOV RO, #shift3

You can also use the .set directive to assign symbolic constants for register names. In this case, the
symbolic constant becomes a synonym for the register:

AuxR1l .set R1
LDR AuxR1l, [SP]

The following example shows how the .set directive can be used with the .struct, .tag. and .endstruct

directives:

K . set 1024 ;constant definitions

maxbuf . set 2*K

item .struct ;itemstructure definition
.int val ue ;constant offsets value = 0
.int delta ;constant offsets delta = 1

i_len .endstruct

array .tag item ;array declaration
. bss array, i_len*K

The assembler also has several predefined symbolic constants; these are discussed in Section 4.7.6.

4.7.5 Defining Symbolic Constants (--asm_define Option)

The --asm_define option equates a constant value or a string with a symbol. The symbol can then be used
in place of a value in assembly source. The format of the --asm_define option is as follows:

armcl --asm_define=name[=value]

The name is the name of the symbol you want to define. The value is the constant or string value you
want to assign to the symbol. If the value is omitted, the symbol is set to 1. If you want to define a quoted
string and keep the quotation marks, do one of the following:

e For Windows, use --asm_define= name ="\" value \"". For example, --asm_define=car="\"sedan\""

e For UNIX, use --asm_define= name =" value "'. For example, --asm_define=car="'sedan
* For Code Composer, enter the definition in a file and include that file with the --cmd_file (or -@) option.

Once you have defined the name with the --asm_define option, the symbol can be used with assembly
directives and instructions as if it had been defined with the .set directive. For example, on the command
line you enter:

arntl --asm define=SYML=1 --asm defi ne=SYM2=2 --asm defi ne=SYM3=3 --asm defi ne=SYMi=4 val ue. asm

Since you have assigned values to SYM1, SYM2, SYM3, and SYM4, you can use them in source code.
Example 4-2 shows how the value.asm file uses these symbols without defining them explicitly.

SPNU118L—-June 2013 Assembler Description 57

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Symbols

13 TEXAS
INSTRUMENTS

www.ti.com

Within assembler source, you can test the symbol defined with the --asm_define option with these

directives:

Type of Test Directive Usage
Existence if Sisdefed(" name ")
Nonexistence if Sisdefed(" name ") =0
Equal to value .if name = value

Not equal to value .if name != value

The argument to the $isdefed built-in function must be enclosed in quotes. The quotes cause the
argument to be interpreted literally rather than as a substitution symbol.

Example 4-2. Using Symbolic Constants Defined on Command Line

| F_4:

| F_5:

| F_6:

IF_7:

i f

.byte
. el se
.byte
.endif

i f

.byte
. el se
.byte
.endif

i f

.byte
. el se
.byte
.endif

i f

.byte
.elseif
.byte
.endif

SYm
SYm4

SYme

SYML

10

SYML

SYMB

SYM3

SYm

SYML

SYML

SYM
SYm

= SYM * SYM

* SYme

<= 10

* Syme !
* SYMR

+ SYM4

= SYM

+ SYMB =

+ SYMB

Equal val ues

Unequal val ues

Less than / equal

Greater than

= SYM} + SYM

5

Unequal val ue

Equal val ues

58

Assembler Description

SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com

Symbols

4.7.6 Predefined Symbolic Constants

The assembler has several types of predefined symbols.

$, the dollar-sign character, represents the current value of the section program counter (SPC). $is a
relocatable symbol if you are using COFF.

In addition, following predefined processor symbolic constants are available:

Table 4-2. ARM Processor Symbolic Constants

Macro Name

Description

TI_ARM
TI_ARM_16BIS

TI_ARM_32BIS
TI_ARM_T2IS

TI_ARM_LITTLE
TI_ARM_BIG
__TI_ARM7ABI_ASSEMBLER

__TI_ARMO9ABI_ASSEMBLER
__TI_EABI_ASSEMBLER
__TI_NEON_SUPPORT_ _

_ _TLARM V4__
__TLARM_V5E_ _
__TLARM_V6_ _
__TIARM_V6MO_ _

_ _TLARM_V7__
__TILARM_V7M3_ _

__TIARM_V7A8_ _
__TILARM_V7R4_ _

__TI_VFP_SUPPORT_ _
__TI_VFPV3_SUPPORT_ _

__TI_VFPV3D16_SUPPORT_ _

__TI_FPV4SPD16_SUPPORT_ _

Always set to 1

Set to 1 if the default state is 16 bit Thumb mode (the --code_state=16 option is used for an ARMv6 or
prior architecture); otherwise, set to 0.

Set to 1 if the default state is 32 bit (the --code_state=16 option is not used or the --code_state=32
option is used); otherwise, set to 0.

Set to 1 if the default state is Thumb-2 mode (the --code_state=16 option is used for an ARMv7 or
higher architecture); otherwise set to 0.

Set to 1 if little-endian mode is selected (the --endian assembler option is used); otherwise, set to 0.
Set to 1 if big-endian mode is selected (the --endian assembler option is not used); otherwise, set to 0.

Set to 1 if the TI ARM7 ABI is enabled (the --abi=tiabi option is used); otherwise, it is set to 0. (This
option is deprecated.)

Set to 1 if the TI ARM9 ABI is enabled (the --abi=ti_arm9_abi option is used); otherwise, it is set to 0.
Set to 1 if the EABI ABI is enabled (the --abi=eabi option is used); otherwise, it is set to 0.

Set to 1 if NEON SIMD extension is targeted (the --neon option is used); otherwise, it is set to 0.

Set to 1 if the v4 architecture (ARM?7) is targeted (the -mv4 option is used); otherwise, it is set to 0.
Set to 1 if the V5E architecture (ARMOE) is targeted (the -mv5e option is used); otherwise, it is set to 0.
Set to 1 if the v6 architecture (ARM11) is targeted (the -mv6 option is used); otherwise, it is set to 0.

Set to 1 if the v6MO architecture (Cortex-MO) is targeted (the -mv6MO option is used); otherwise, it is
setto 0.

Set to 1 if any v7 architecture (Cortex) is targeted; otherwise, it is set to 0.

Set to 1 if the v7M3 architecture (Cortex-M3) is targeted (the -mv7M3 option is used); otherwise, it is
setto O.

Set to 1 if the v7A8 architecture (Cortex-A8) is targeted (the -mv7A8 option is used); otherwise, it is set
to 0.

Set to 1 if the v7R4 architecture (Cortex-R4) is targeted (the -mv7R4 option is used); otherwise, it is
setto O.

Set to 1 if the VFP coprocessor is enabled (any --float_support option is used); otherwise, it is set to 0.

Set to 1 if the VFP coprocessor is enabled (the --float_support=vfpv3 option is used); otherwise, it is
setto 0.

Set to 1 if the VFP coprocessor is enabled (the --float_support=vfpv3d16 option is used); otherwise, it
is set to 0.

Set to 1 if the FP coprocessor is enabled (the --float_support=fpv4spd16 option is used); otherwise, it
is setto 0.

SPNU118L—June 2013
Submit Documentation Feedback

Assembler Description 59

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Symbols www.ti.com

4.7.7 Registers
In addition, control register names are predefined symbols.

The names of ARM registers and their aliases are register symbols, including:
» Coprocessor registers, including C0O-C15.

» Coprocessor IDs, including PO-P15.

e VFP registers, including D0-D31, S0-S31.

* NEON registers, including D0-D31, Q0-Q15.

Table 4-3. ARM Register Symbols with Aliases

Register Name Alias Register Name Alias
RO Al R8 V5
R1 A2 R9 V6
R2 A3 R10 V7
R3 A4 R11 V8
R4 V1 R12 V9, IP
RS V2 R13 SP
R6 V3 R14 LR
R7 V4, AP R15 PC

Register symbols and aliases can be entered as all uppercase or all lowercase characters. For example,
R13 could also be entered as r13, SP, or sp.

Control register symbols can be entered in all upper-case or all lower-case characters.

Status registers can be entered as all uppercase or all lowercase characters; that is, CPSR could also be
entered as cpsr, CPSR_ALL, or cpsr_all.

Table 4-4. ARM Status Registers and Aliases

Register Alias Description
CPSR CPSR_ALL Current processor status register
CPSR_FLG Current processor status register flag bits only
SPSR SPSR_ALL Saved processor status register
SPSR_FLG Saved processor status register flag bits only
60 Assembler Description SPNU118L—June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Symbols

4.7.8 Substitution Symbols

Symbols can be assigned a string value. This enables you to alias character strings by equating them to
symbolic names. Symbols that represent character strings are called substitution symbols. When the
assembler encounters a substitution symbol, its string value is substituted for the symbol name. Unlike
symbolic constants, substitution symbols can be redefined.

A string can be assigned to a substitution symbol anywhere within a program; for example:

. asg "SP*, stack-pointer
; Assigns the string SP to the substitution synbol stack-pointer
. asg "#0x20", bl ock2
; Assigns the string #0x20 to the substitution synmbol bl ock2
ADD st ack- poi nter, stack-pointer, block2
; Adds the value in SP to #0x20 and stores the result in SP
When you are using macros, substitution symbols are important because macro parameters are actually
substitution symbols that are assigned a macro argument. The following code shows how substitution

symbols are used in macros:

addl . macro dest, src
; addl macro definition

ADDS dest, dest, src
; Add the value in register dest to the value in register src,
; and store the result in src.

BLCS reset_ctr
; Handl e overfl ow.

.endm

*addl invocation
addl R4, RS
Calls the nmacro addl and substitutes R4 for dest and R5 for src.
; The macro adds the value of R4 and the value of R5, stores the
; result in R4, and handl es overfl ow.

See Chapter 6 for more information about macros.

SPNU118L—-June 2013 Assembler Description

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

61

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Expressions www.ti.com

4.8

Expressions

Nearly all values and operands in assembly language are expressions, which may be any of the following:
» a literal constant

e aregister

e a register pair

* amemory reference

* asymbol

* a built-in function invocation

* a mathematical or logical operation on one or more expressions

This section defines several types of expressions that are referred to throughout this document. Some
instruction operands accept limited types of expressions. For example, the .if directive requires its operand

be an absolute constant expression with an integer value. Absolute in the context of assembly code
means that the value of the expression must be known at assembly time.

A constant expression is any expression that does not in any way refer to a register or memory reference.
An immediate operand will usually not accept a register or memory reference. It must be given a constant
expression. Constant expressions may be any of the following:

» aliteral constant

e an address constant expression

* asymbol whose value is a constant expression

* a built-in function invocation on a constant expression

» a mathematical or logical operation on one or more constant expressions

An address constant expression is a special case of a constant expression. Some immediate operands
that require an address value can accept a symbol plus an addend; for example, some branch
instructions. The symbol must have a value that is an address, and it may be an external symbol. The

addend must be an absolute constant expression with an integer value. For example, a valid address
constant expression is "array+4".

A constant expression may be absolute or relocatable. Absolute means known at assembly time.
Relocatable means constant, but not known until link time. External symbols are relocatable, even if they
refer to a symbol defined in the same module.

An absolute constant expression may not refer to any external symbols anywhere in the expression. In
other words, an absolute constant expression may be any of the following:

* aliteral constant

e an absolute address constant expression

« asymbol whose value is an absolute constant expression

* a built-in function invocation whose arguments are all absolute constant expressions

» a mathematical or logical operation on one or more absolute constant expressions

A relocatable constant expression refers to at least one external symbol. For ELF, such expressions may
contain at most one external symbol. A relocatable constant expression may be any of the following:

» an external symbol

» arelocatable address constant expression

» asymbol whose value is a relocatable constant expression

* a built-in function invocation with any arguments that are relocatable constant expressions

e a mathematical or logical operation on one or more expressions, at least one of which is a relocatable
constant expression

In some cases, the value of a relocatable address expression may be known at assembly time. For
example, a relative displacement branch may branch to a label defined in the same section.

The 32-bit ranges of valid expression values are -2147 483 648 to 2147 483 647 for signed values, and 0
to 4 294 967 295 for unsigned values.

62

Assembler Description SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Expressions

4.8.1 Mathematical and Logical Operators

The operands of a mathematical or logical operator must be well-defined expressions. That is, you must
use the correct number of operands and the operation must make sense. For example, you cannot take
the XOR of a floating-point value.

Three main factors influence the order of expression evaluation:

Parentheses Expressions enclosed in parentheses are always evaluated first.
8/(4/2)=4,but8/4/2=1
You cannot substitute braces ({}) or brackets ([]) for parentheses.

Precedence groups Operators, listed in Table 4-5, are divided into nine precedence groups.
When parentheses do not determine the order of expression evaluation,
the highest precedence operation is evaluated first.

8+4/2=10(4/2is evaluated first)

Left-to-right evaluation When parentheses and precedence groups do not determine the order of
expression evaluation, the expressions are evaluated from left to right,
except for Group 1, which is evaluated from right to left.

8/4*2=4,but8/(4*2)=1
Table 4-5 lists the operators that can be used in expressions, according to precedence group.

Table 4-5. Operators Used in Expressions (Precedence)

Group® Operator Description®
1 + Unary plus
- Unary minus
~ 1s complement
! Logical NOT
2 * Multiplication
/ Division
% Modulo
3 + Addition
- Subtraction
4 << Shift left
>> Shift right
5 < Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to
6 =[=] Equal to
1= Not equal to
7 & Bitwise AND
8 n Bitwise exclusive OR (XOR)
itwise
9 | Bitwise OR

@ Group 1 operators are evaluated right to left. All other operators are evaluated left to right.
@ Unary + and - have higher precedence than the binary forms.

The assembler checks for overflow and underflow conditions when arithmetic operations are performed
during assembly. It issues a warning (the "value truncated" message) whenever an overflow or underflow
occurs. The assembler does not check for overflow or underflow in multiplication.

SPNU118L—June 2013 Assembler Description 63

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Expressions www.ti.com

4.8.2

4.8.3

48.4

Relational Operators and Conditional Expressions

The assembler supports relational operators that can be used in any expression; they are especially
useful for conditional assembly. Relational operators include the following:

= Equal to | = Not equal to
< Less than <= Less than or equal to
> Greater than >= Greater than or equal to

Conditional expressions evaluate to 1 if true and O if false and can be used only on operands of equivalent
types; for example, absolute value compared to absolute value, but not absolute value compared to
relocatable value.

Well-Defined Expressions

Some assembler directives, such as .if, require well-defined absolute constant expressions as operands.
Well-defined expressions contain only symbols or assembly-time constants that have been defined before
they occur in the directive's expression. The evaluation of a well-defined expression must be
unambiguous.

This is an example of a well-defined expression:
1000h+X

where X was previously defined as an absolute symbol.

Relocatable Symbols and Legal Expressions
All legal expressions can be reduced to one of two forms:
relocatable symbol + absolute symbol
or
absolute value

Unary operators can be applied only to absolute values; they cannot be applied to relocatable symbols.
Expressions that cannot be reduced to contain only one relocatable symbol are illegal.

Table 4-6 summarizes valid operations on absolute, relocatable, and external symbols. An expression
cannot contain multiplication or division by a relocatable or external symbol. An expression cannot contain
unresolved symbols that are relocatable to other sections.

Symbols that have been defined as global with the .global directive can also be used in expressions; in
Table 4-6, these symbols are referred to as external.

Table 4-6. Expressions With Absolute and Relocatable Symbols

If Ais... and If Bis..., then A +Bis...and A-Bis...
absolute absolute absolute absolute
absolute relocatable relocatable illegal
absolute external external illegal
relocatable absolute relocatable relocatable
relocatable relocatable illegal absolute®
relocatable external illegal illegal
external absolute external external
external relocatable illegal illegal
external external illegal illegal

@ A and B must be in the same section; otherwise, adding relocatable symbols to relocatable symbals is illegal.

64 Assembler Description SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Expressions

4.8.5 Expression Examples

Following are examples of expressions that use relocatable and absolute symbols. These examples use
four symbols that are defined in the same section:

.global extern_1 ; Defined in an external nodul e

intern_1: .word '"D ; Relocatable, defined in current
; nmodul e

LAB1: .set 2 ; LABL = 2

intern_2 ; Relocatable, defined in current
; nmodul e

intern_3 ; Relocatable, defined in current
; nodul e

 Example 1

The statements in this example use an absolute symbol, LAB1, which is defined to have a value of 2.
The first statement loads the value 51 into RO. The second statement loads the value 27 into RO.

MV RO, #LABL + ((4+3) * 7) ; RO = 51
2+ ((7) *7)
© 2+ (49) =51

MV RO, #LABL + 4 + (3*7) ; RO = 27
;2 + 4+ (21) =27
 Example 2
The first statement in the following example is valid; the statements that follow it are invalid.

LDR RL, intern_1 - 10 ; Legal

LDR R1, 10-intern_1 ; Can't negate reloc. synbol
LDR R1, -(intern_1) ; Can't negate reloc. synbol
LDR R1, intern_1/10 ; / isn't additive operator

LDR Rl, intern_1 + intern_2 ; Miltiple relocatables
 Example 3

The first statement below is legal; although intern_1 and intern_2 are relocatable, their difference is
absolute because they are in the same section. Subtracting one relocatable symbol from another
reduces the expression to relocatable symbol + absolute value. The second statement is illegal
because the sum of two relocatable symbols is not an absolute value.

LDR RL, intern_1 - intern_2 + intern_3 ; Legal

LDR Rl, intern_1 + intern_2 + intern_3 ;111 egal
 Example 4

A relocatable symbol's placement in the expression is important to expression evaluation. Although the
statement below is similar to the first statement in the previous example, it is illegal because of left-to-
right operator precedence; the assembler attempts to add intern_1 to extern_3.

LDR RL, intern_1 + intern_3 - intern_2 ;111 egal

SPNU118L—June 2013 Assembler Description 65

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Built-in Functions and Operators

13 TEXAS
INSTRUMENTS

www.ti.com

4.9 Built-in Functions and Operators

The assembler supports built-in mathematical functions and built-in addressing operators.

4.9.1 Built-In Math and Trigonometric Functions

The assembler supports built-in functions for conversions and various math computations. Table 4-7
describes the built-in functions. The expr must be a constant value.

The built-in substitution symbol functions are discussed in Section 6.3.2.

Table 4-7. Built-In Mathematical Functions

Function Description

$acos(expr) Returns the arc cosine of expr as a floating-point value
$asin(expr) Returns the arc sin of expr as a floating-point value
$atan(expr) Returns the arc tangent of expr as a floating-point value
$atan2(expr, y) Returns the arc tangent of expr as a floating-point value in range [-T1, 1]
$ceil(expr) Returns the smallest integer not less than expr

$cos(expr) Returns the cosine of expr as a floating-point value
$cosh(expr) Returns the hyperbolic cosine of expr as a floating-point value
$cvf(expr) Converts expr to a floating-point value

$cvi(expr) converts expr to integer value

$exp(expr) Returns the exponential function e &

$fabs(expr) Returns the absolute value of expr as a floating-point value

$floor(expr)
$fmod(expr, y)
$int(expr)
$ldexp(expr, expr2)
$log(expr)
$log10(expr)
$max(exprl, expr2)
$min(exprl, expr2)
$pow(exprl, expr2)
$round(expr)
$sgn(expr)
$sin(expr)
$sinh(expr)
$sqrt(expr)
$strtod(str)

$tan(expr)
$tanh(expr)
$trunc(expr)

Returns the largest integer not greater than expr

Returns the remainder of exprl + expr2

Returns 1 if expr has an integer value; else returns 0. Returns an integer.
Multiplies expr by an integer power of 2. That is, exprl x 2 &2
Returns the natural logarithm of expr, where expr>0

Returns the base 10 logarithm of expr, where expr>0

Returns the maximum of two values

Returns the minimum of two values

Returns exprlraised to the power of expr2

Returns expr rounded to the nearest integer

Returns the sign of expr.

Returns the sine of expr

Returns the hyperbolic sine of expr as a floating-point value
Returns the square root of expr, expr20, as a floating-point value

Converts a character string to a double precision floating-point value. The string contains a properly-
formatted C99-style floating-point literal. C99-style literals are otherwise not accepted anywhere in the
tools.

Returns the tangent of expr as a floating-point value
Returns the hyperbolic tangent of expr as a floating-point value
Returns expr rounded toward 0

Assembler Description

SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Unified Assembly Language Syntax Support

4.10 Unified Assembly Language Syntax Support

Unified assembly language (UAL) is the new assembly syntax introduced by ARM Ltd. to handle the
ambiguities introduced by the original Thumb-2 assembly syntax and provide similar syntax for ARM,
Thumb and Thumb-2. UAL is backwards compatible with old ARM assembly, but incompatible with the
previous Thumb assembly syntax.

UAL syntax is the default assembly syntax beginning with ARMv7 architectures. The old syntax remains
the default for ARMv6 and earlier, while the --ual option can be used to accept UAL syntax when
assembling for these architectures. When writing assembly code, the .arm and .thumb directives are used
to specify ARM and Thumb UAL syntax, respectively. The .state32 and .statel6 directives remain to
specify non-UAL ARM and Thumb syntax. The .arm and .state32 directives are equivalent since UAL
syntax is backwards compatible in ARM mode. Since non-UAL syntax is not supported for Thumb-2
instructions, Thumb-2 instructions cannot be used inside of a .state16 section. However, assembly code
with .state16 sections that contain only non-UAL Thumb code can be assembled for ARMv7 architectures
to allow easy porting of older code.

See Section 5.3 for more information about the .statel6, .state32, .arm, and .thumb directives.

A full description of the UAL syntax can be found in the ARM Ltd. documentation, but there are a few key
differences related to Thumb-2 syntax:

* The .W extension is used to indicate that an instruction should be encoded in a 32-bit form. A .N
extension is used to indicate that an instruction should be encoded in a 16-bit form; the assembler
reports an error if this is not possible. If no extension is used then the assembler uses a 16-bit
encoding whenever possible.

» 16-bit Thumb ALU instructions that set status indicate this with a syntax that has a 'S' modifier. This is
the same as how ARM ALU instructions that set status have always been handled.

SPNU118L—-June 2013 Assembler Description 67

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Source Listings www.ti.com

4.11 Source Listings

A source listing shows source statements and the object code they produce. To obtain a listing file, invoke
the assembler with the --asm_listing option (see Section 4.3).

Two banner lines, a blank line, and a title line are at the top of each source listing page. Any title supplied
by the .title directive is printed on the title line. A page number is printed to the right of the title. If you do
not use the .title directive, the name of the source file is printed. The assembler inserts a blank line below
the title line.

Each line in the source file produces at least one line in the listing file. This line shows a source statement
number, an SPC value, the object code assembled, and the source statement. Figure 4-2 shows these in
an actual listing file.

Field 1: Source Statement Number
Line number

The source statement number is a decimal number. The assembler numbers source lines as it
encounters them in the source file; some statements increment the line counter but are not listed. (For
example, .title statements and statements following a .nolist are not listed.) The difference between two
consecutive source line numbers indicates the number of intervening statements in the source file that
are not listed.

Include file letter

A letter preceding the line number indicates the line is assembled from the include file designated by
the letter.

Nesting level number

A number preceding the line number indicates the nesting level of macro expansions or loop blocks.

Field 2: Section Program Counter

This field contains the SPC value, which is hexadecimal. All sections (.text, .data, .bss, and named
sections) maintain separate SPCs. Some directives do not affect the SPC and leave this field blank.

Field 3: Object Code

This field contains the hexadecimal representation of the object code. All machine instructions and
directives use this field to list object code. This field also indicates the relocation type associated with
an operand for this line of source code. If more than one operand is relocatable, this column indicates
the relocation type for the first operand. The characters that can appear in this column and their
associated relocation types are listed below:

undefined external reference
.text relocatable

+ .sect relocatable

.data relocatable

.bss, .usect relocatable

% relocation expression

68

Assembler Description SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com

Source Listings

Field 4: Source Statement Field

This field contains the characters of the source statement as they were scanned by the assembler. The
assembler accepts a maximum line length of 200 characters. Spacing in this field is determined by the

spacing in the source statement.

Figure 4-2 shows an assembler listing with each of the four fields identified.

Figure 4-2. Example Assembler Listing

Include file Line number
letter

1 00000000 .state32
2 .copy "macl.inc”

A 1 tolé6 .macro

A 2 ADD r0, pc, #1

A 3 BX r0

A 4 .statelé6

A 5

A 6 .endm
3
4 .global __ stack
5 ;***
6 ;* DEFINE THE USER MODE STACK **
7 ;***
8 00000200 STACKSIZE .set 512
9 00000000 __stack: .usect ”".stack”, STACKSIZE, 4
10 ;***
11 ;* INTERRUPT VECTORS **
12 ;***
13 .global reset
14 00000000 .sect ”.intvecs”
15

16 00000000 EAFFFFFE’
17 00000004 00000000
18 0000000800000000
19 0000000c 00000000
20 00000010 00000000
21 00000014 00000000
22 00000018 00000000
23 0000001c 00000000

25 00000000

31 00000000

35 00000000 E10F0000
36 00000004 E3CO001F
37 00000008E3800010
38 0000000cE129F000

B reset
.word 0
.word 0
.word 0
.word 0
.word 0
.word 0
.word 0

.text
.global dispatch
.global reset

;***

;* RESET ROUTINE %

;***

reset:

. %

’

;* SET TO USER MODE

. %

’

MRS r0, cpsr

BIC r0, r0, #0x1F ; Clear modes
ORR r0, r0, #0x10 ; Set user mode
MSR cpsr, r0

Field 1 Field 2 Field 3

Field 4

SPNU118L—June 2013
Submit Documentation Feedback

Assembler Description

Copyright © 2013, Texas Instruments Incorporated

69

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS

INSTRUMENTS
Source Listings www.ti.com
Figure 4-2. Example Assembler Listing (Continued)
Nesting level
/number
40 ;*
41 ;* CHANGE TO 16 BIT STATE
42 ;*
43 00000010 tolé6
1 00000010E28F0001 ADD r0, pc, #1
1 00000014 E12FFF10 BX r0
1 00000018 .statelé6
1
44
45 ;*
46 ;* INITIALIZE THE USER MODE STACK
47 3 *
48 000000184802 LDR r0, stack
49 0000001a4685 MOV sp, r0
50 0000001c 4802 LDR r0, stacksz
51 0000001e 4485 ADD sp, r0
52
53 ;*
54 ;* DISPATCH TASKS
55 *
56 00000020 F7FF! BL dispatch
00000022 FFEE
57 00000024 00000000- stack .long _ stack
58 00000028 00000200 stacksz .long STACKSIZE
59
60
61
Field 1 Field 2 Field 3 Field 4
70 Assembler Description SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

I

TEXAS
INSTRUMENTS

www.ti.com Debugging Assembly Source

4.12 Debugging Assembly Source

By default, when you compile an assembly file, the assembler provides symbolic debugging information
that allows you to step through your assembly code in a debugger rather than using the Disassembly
window in Code Composer Studio. This enables you to view source comments and other source-code
annotations while debugging. The default has the same behavior as using the --symdebug:dwarf option.
You can disable the generation of debugging information by using the --symdebug:none option.

The .asmfunc and .endasmfunc (see .asmfunc directive) directives enable you to use C characteristics in
assembly code that makes the process of debugging an assembly file more closely resemble debugging a
C/C++ source file.

The .asmfunc and .endasmfunc directives allow you to name certain areas of your code, and make these
areas appear in the debugger as C functions. Contiguous sections of assembly code that are not enclosed
by the .asmfunc and .endasmfunc directives are automatically placed in assembler-defined functions
named with this syntax:

‘$ filename : starting source line : ending source line $

If you want to view your variables as a user-defined type in C code, the types must be declared and the
variables must be defined in a C file. This C file can then be referenced in assembly code using the .ref
directive (see .ref directive). Example 4-3 shows the cvar.c C program that defines a variable, svar, as the
structure type X. The svar variable is then referenced in the addfive.asm assembly program in Example 4-

4 and 5 is added to svar's second data member.

Compile both source files with the --symdebug:dwarf option (-g) and link them as follows:

arntl --syndebug:dwarf cvars.c addfive.asm--run_linker --1library=lnk.cnd
--library=rtsv4_A be_eabi.lib --output_fil e=addfive. out

When you load this program into a symbolic debugger, addfive appears as a C function. You can monitor

the values in svar while stepping through main just as you would any regular C variable.

Example 4-3. Viewing Assembly Variables as C Types C Program

typedef struct
{
int ni;
int ng;
P X
X svar = { 1, 2 };

Example 4-4. Assembly Program for Example 4-3

Tell the assenbler we're referencing variable "_svar”, which is defined in
another file (cvars.c).

addfive() - Add five to the second data nenmber of _svar

. text
. gl obal addfive
addfive: .asnfunc
LDW . D2T2 *+Bl4(_svar+4),B4 ; load svar.n2 into B4
RET . S2 B3 ; return fromfunction
NOP 3 ; delay slots 1-3
ADD . D2 5, B4, B4 ; add 5 to B4 (delay slot 4)
STW . D2T2 B4, *+Bl14(_svar+4) ; store B4 back into svar.n®
; (delay slot 5)
. endasnf unc
SPNU118L—-June 2013 Assembler Description 71

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Cross-Reference Listings www.ti.com

4.13 Cross-Reference Listings

A cross-reference listing shows symbols and their definitions. To obtain a cross-reference listing, invoke
the assembler with the --cross_reference option (see Section 4.3) or use the .option directive with the X
operand (see Select Listing Options). The assembler appends the cross-reference to the end of the
source listing. Example 4-5 shows the four fields contained in the cross-reference listing.

Example 4-5. An Assembler Cross-Reference Listing

LABEL VALUE - DEFN REF

. TI _ARM 00000001 0

. TI _ARM 16BI S 00000000 0

. TI _ARM 32BI S 00000001 0

. TI_ARM BI G 00000001 0

. TI _ARM LI TTLE 00000000 0

.ti_arm 00000001 0

.ti_arm 16bis 00000000 0

.ti_arm 32bis 00000001 0

.ti_armbig 00000001 0

Jti_armlittle 00000000 0

STACKSI ZE 00000200 9 10 63

__stack 00000000- 10 5 62

di spat ch REF 29 60

reset 00000000’ 34 16 19 30

st ack 00000024’ 62 52

stacksz 00000028’ 63 54
Label column contains each symbol that was defined or referenced during the assembly.
Value column contains an 8-digit hexadecimal number (which is the value assigned to the

symbol) or a name that describes the symbol's attributes. A value may also be
preceded by a character that describes the symbol's attributes. Table 4-8 lists these
characters and names.

Definition (DEFN) column contains the statement number that defines the symbol. This
column is blank for undefined symbols.
Reference (REF) column lists the line numbers of statements that reference the symbol. A

blank in this column indicates that the symbol was never used.

Table 4-8. Symbol Attributes

Character or Name Meaning

REF External reference (global symbol)

UNDF Undefined

' Symbol defined in a .text section

" Symbol defined in a .data section

+ Symbol defined in a .sect section

- Symbol defined in a .bss or .usect section

72 Assembler Description SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

. Chapter 5
I TEXAS SPNU118L—June 2013

INSTRUMENTS
Assembler Directives

Assembler directives supply data to the program and control the assembly process. Assembler directives
enable you to do the following:

« Assemble code and data into specified sections

* Reserve space in memory for uninitialized variables

» Control the appearance of listings

* Initialize memory

» Assemble conditional blocks

« Define global variables

e Specify libraries from which the assembler can obtain macros
» Examine symbolic debugging information

This chapter is divided into two parts: the first part (Section 5.1 through Section 5.12) describes the
directives according to function, and the second part (Section 5.13) is an alphabetical reference.

Topic Page
5.1 DIr€CHIVES SUMMIAIY tuiuiuitititieeneueueueuanaeterereeeaeasaanss e e e aeaeeasnensnssrerereaeaenenenensnns 74
5.2 Directives That Define SECIONSc.iiiieiiiiie it e e e e eaeeaas 79
5.3 Directives That Change the INStruCtion TYPE@ ..cuiuiiiiieiiiiiiiiiieii e aas 81
5.4 Directives That INitialize VaAlUEScucuiiiniiiiie et a e e eenes 81
5.5 Directives That Perform Alignment and RESErve SPacecccocvevvueeieieieieneieienenanns 84
5.6 Directives That Format the OUtput LiSTINGS ...ociiiiiiiinieiiieiieieiciceen e eeeeeeeeenenes 85
5.7 Directives That Reference Other FIleSccouiuiiiiiiiiiiiiii e e 86
5.8 Directives That Enable Conditional ASSemMbIYcooiiiiiiiiiiiii e 87
5.9 Directives That Define Union or Structure TYPES ...iveveieiiiiiiiiiiiiiiiiiieieieeaneienenanas 87
5.10 Directives That Define EnumMerated TYPES .iuciiiriuiuiiiitiniiieiietiieieatinieneaeassnenenenees 88
5.11 Directives That Define Symbols at Assembly Timeoeiiiiiiiiiiiiiirrereieeaens 88
5.12 MiSCEIaN€0OUS DiFECHIVES .uuuiuetitieieetieee ettt e et a e e et e e e en e e eeaeanananenenees 89
5.13 DireCtiVeS REFEIENCE ...uiieiieeiiit ittt e e et e et e e e e e e e aeeaees 90

SPNU118L—-June 2013 Assembler Directives 73

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Directives Summary www.ti.com

5.1 Directives Summary

Table 5-1 through Table 5-17 summarize the assembler directives.

Besides the assembler directives documented here, the ARM device software tools support the following

directives:

» The assembler uses several directives for macros. Macro directives are discussed in Chapter 6; they
are not discussed in this chapter.

e The C compiler uses directives for symbolic debugging. Unlike other directives, symbolic debugging
directives are not used in most assembly language programs. Appendix A discusses these directives;
they are not discussed in this chapter.

Labels and Comments Are Not Shown in Syntaxes

NOTE: Most source statements that contain a directive can also contain a label and a comment.

Labels begin in the first column (only labels and comments can appear in the first column),

and comments must be preceded by a semicolon, or an asterisk if the comment is the only

element in the line. To improve readability, labels and comments are not shown as part of

the directive syntax here. See the detailed description of each directive for using labels with

directives.

Table 5-1. Directives That Define Sections
Mnemonic and Syntax Description See
.bss symbol, size in bytes|, alignment Reserves size bytes in the .bss (uninitialized data) section .bss topic
[, bank offset]]

.data Assembles into the .data (initialized data) section .data topic
.sect "section name" Assembles into a named (initialized) section .sect topic
text Assembles into the .text (executable code) section .text topic
symbol .usect "section name", size in bytes Reserves size bytes in a named (uninitialized) section .usect topic

[, alignment], bank offset]]

Table 5-2. Directives That Affect Unused Section Elimination

Mnemonic and Syntax Description See
.clink "section name" Enables conditional linking for the current or specified section .clink topic
.retain "section name" EABI only. Instructs the linker to include the current or specified .retain topic

section in the linked output file, regardless of whether the section is
referenced or not

.retainrefs "section name" EABI only. Instructs the linker to include any data object that .retain topic

references the current or specified section.

Table 5-3. Directives That Initialize Values (Data and Memory)

Mnemonic and Syntax Description See
.bits value,[, ..., value,] Initializes one or more successive bits in the current section .bits topic
.byte value], ..., value,] Initializes one or more successive bytes in the current section .byte topic
.char value,], ... , value,] Initializes one or more successive bytes in the current section .char topic
.cstring {expr,|"string,"},... , {expr,|"string,"}] Initializes one or more text strings .string topic
.double value,[, ..., value,] Initializes one or more 64-bit, IEEE double-precision, floating-point .double topic
constants
field value][, size] Initializes a field of size bits (1-32) with value field topic
float value,|, ..., value,] Initializes one or more 32-bit, IEEE single-precision, floating-point float topic
constants
.half value,[, ..., value,] Initializes one or more 16-bit integers (halfword) .half topic
74 Assembler Directives SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Summary

Table 5-3. Directives That Initialize Values (Data and Memory) (continued)

Mnemonic and Syntax Description See

.int value,], ..., value,] Initializes one or more 32-bit integers .int topic

.long value,|, ..., value,] Initializes one or more 32-bit integers .long topic

.short value,|, ..., value,] Initializes one or more 16-bit integers (halfword) .short topic

.string {expr,|"string;"}[,... , {expr,|"string,"}] Initializes one or more text strings .string topic

.ubyte value|, ..., value] Initializes one or more successive unsigned bytes in the current .ubyte topic
section

.uchar valuey[, ..., value,] Initia_llizes one or more successive unsigned bytes in the current .uchar topic
section

.uhalf value,], ..., value,] Initializes one or more unsigned 16-bit integers (halfword) .uhalf topic

.uint value,], ..., value,] Initializes one or more unsigned 32-bit integers .uint topic

.ulong value,], ..., value,] Initializes one or more unsigned 32-bit integers .long topic

.ushort value,[, ..., value,] Initializes one or more unsigned 16-bit integers (halfword) .short topic

.uword value,|, ..., value,] Initializes one or more unsigned 32-bit integers .uword topic

.word value,|, ..., value,] Initializes one or more 32-bit integers .word topic

Table 5-4. Directives That Perform Alignment and Reserve Space
Mnemonic and Syntax Description See
.align [size in bytes] Aligns the SPC on a boundary specified by size inbytes, which .align topic

must be a power of 2; defaults to byte boundary

.bes size Reserves size bytes in the current section; a label points to the end .bes topic

of the reserved space
.space size Reserves size bytes in the current section; a label points to the .space topic

beginning of the reserved space

Table 5-5. Directives That Change the Instruction Type
Mnemonic and Syntax Description See
.arm Begins assembling ARM UAL instructions. Equivalent to .state32. .arm topic
.statel6 Begins assembling non-UAL 16-bit instructions .state16 topic
.state32 Begins assembling 32-bit instructions (default) .state32 topic
thumb Begins assembling Thumb or Thumb-2 UAL instructions .thumb topic
Table 5-6. Directives That Format the Output Listing

Mnemonic and Syntax Description See
.drlist Enables listing of all directive lines (default) .drlist topic

.drnolist

fclist

fcnolist

length [page length]
list

.mlist

.mnolist

.nolist

.option option, [, option, , . . .

.page
.sslist
.ssnolist

Suppresses listing of certain directive lines

Allows false conditional code block listing (default)
Suppresses false conditional code block listing
Sets the page length of the source listing

Restarts the source listing

Allows macro listings and loop blocks (default)
Suppresses macro listings and loop blocks

Stops the source listing

Selects output listing options; available options are A, B, H, M, N,
O,R, T, W, and X

Ejects a page in the source listing
Allows expanded substitution symbol listing
Suppresses expanded substitution symbol listing (default)

.drnolist topic
fclist topic
fenolist topic
.length topic
list topic
.mlist topic
.mnolist topic
.nolist topic
.option topic

.page topic
.sslist topic
.ssnolist topic

SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

Assembler Directives 75

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Directives Summary

I

TEXAS
INSTRUMENTS

www.ti.com

Table 5-6. Directives That Format the Output Listing (continued)

Mnemonic and Syntax Description See

.tab size Sets tab to size characters .tab topic

title "string" Prints a title in the listing page heading title topic

.width [page width] Sets the page width of the source listing .width topic

Table 5-7. Directives That Reference Other Files

Mnemonic and Syntax Description See

.copy ["Ifilename["] Includes source statements from another file .copy topic

.include ["]Jfilename["] Includes source statements from another file .include topic

.mlib ["Ifilename["] Specifies a macro library from which to retrieve macro definitions .mlib topic
Table 5-8. Directives That Affect Symbol Linkage and Visibility

Mnemonic and Syntax Description See

.common symbol, size in bytes [, alignment]r
.common symbol, structure tag [, alignment]

.def symbol,], ... , symbol,]

.global symbol,], ... , symbol,]
.ref symbol,[, ..., symbol,]

.symdepend dst symbol name[, src symbol nhame]

.weak symbol name

Defines a common symbol for a variable.

Identifies one or more symbols that are defined in the current
module and that can be used in other modules

Identifies one or more global (external) symbols

Identifies one or more symbols used in the current module that are
defined in another module

Creates an artificial reference from a section to a symbol

Identifies a symbol used in the current module that is defined in
another module

.common topic
.def topic

.global topic
.ref topic

.symdepend topic
.weak topic

Table 5-9. Directives That Enable Conditional Assembly

Mnemonic and Syntax

Description

See

.if well-defined expression

.else

.elseif well-defined expression

.endif

.loop [well-defined expression]

.break [well-defined expression]

.endloop

Assembles code block if the well-defined expression is true

Assembles code block if the .if well-defined expression is false.
When using the .if construct, the .else construct is optional.

Assembles code block if the .if well-defined expression is false and
the .elseif condition is true. When using the .if construct, the .elseif
construct is optional.

Ends .if code block

Begins repeatable assembly of a code block; the loop count is
determined by the well-defined expression.

Ends .loop assembly if well-defined expression is true. When using
the .loop construct, the .break construct is optional.

Ends .loop code block

.if topic
.else topic

.elseif topic
.endif topic
.loop topic

.break topic

.endloop topic

Table 5-10. Directives That Define Union or Structure Types

Mnemonic and Syntax

Description

See

.cstruct Acts like .struct, but adds padding and alignment like that which is .cstruct topic
done to C structures
.cunion Acts like .union, but adds padding and alignment like that which is .cunion topic
done to C unions
.emember Sets up C-like enumerated types in assembly code Section 5.10
.endenum Sets up C-like enumerated types in assembly code Section 5.10
.endstruct Ends a structure definition .cstruct topic,
.struct topic
76 Assembler Directives SPNU118L—June 2013

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Directives Summary

Table 5-10. Directives That Define Union or Structure Types (continued)

Mnemonic and Syntax Description See
.endunion Ends a union definition .cunion topic,
.union topic
.enum Sets up C-like enumerated types in assembly code Section 5.10
.union Begins a union definition .union topic
.struct Begins structure definition .struct topic
.tag Assigns structure attributes to a label .cstruct topic,
.struct topic
.union topic

Table 5-11. Directives That Define Symbols

Mnemonic and Syntax Description See

.asg ["]character string["], substitution symbol Assigns a character string to substitution symbol. Substitution .asg topic
symbols created with .asg can be redefined.

.define ["]character string["], substitution symbol Assigns a character string to substitution symbol. Substitution .asg topic
symbols created with .define cannot be redefined.

symbol .equ value Equates value with symbol .equ topic

.elfsym name, SYM_SIZE(size Provides ELF symbol information .elfsym topic

.eval well-defined expression , Performs arithmetic on a numeric substitution symbol .eval topic

substitution symbol

.label symbol Defines a load-time relocatable label in a section .label topic

.newblock Undefines local labels .newblock topic

symbol .set value Equates value with symbol .set topic

.unasg symbol Turns off assignment of symbol as a substitution symbol .unasg topic

.undefine symbol Turns off assignment of symbol as a substitution symbol .unasg topic

Table 5-12. Directives That Define Common Data Sections

Mnemonic and Syntax Description See
.endgroup Ends the group declaration .endgroup topic
.gmember section name Designates section name as a member of the group .gmember topic
.group group section name group type : Begins a group declaration .group topic

Table 5-13. Directives That Create or Affect Macros

Mnemonic and Syntax Description See
macname .macro [parameter,][,... , parameter,] Begin definition of macro named macname .macro topic
.endm End macro definition .endm topic
.mexit Go to .endm Section 6.2
.mlib filename Identify library containing macro definitions .mlib topic
.var Adds a local substitution symbol to a macro's parameter list .var topic

Table 5-14. Directives That Control Diagnostics

Mnemonic and Syntax Description See

.emsg string Sends user-defined error messages to the output device; .emsg topic
produces no .obj file

.mmsg string Sends user-defined messages to the output device .mmsg topic

.wmsg string Sends user-defined warning messages to the output device .wmsg topic

SPNU118L—-June 2013 Assembler Directives 77

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS

INSTRUMENTS
Directives Summary www.ti.com
Table 5-15. Directives That Perform Assembly Source Debug
Mnemonic and Syntax Description See
.asmfunc Identifies the beginning of a block of code that contains a function .asmfunc topic
.endasmfunc Identifies the end of a block of code that contains a function .endasmfunc
topic
Table 5-16. Directives That Are Used by the Absolute Lister
Mnemonic and Syntax Description See
.setsect Produced by absolute lister; sets a section Chapter 9
.setsym Produced by the absolute lister; sets a symbol Chapter 9
Table 5-17. Directives That Perform Miscellaneous Functions
Mnemonic and Syntax Description See
.cdecls [options ,]"filename"[, "filename2"][, ...] Share C headers between C and assembly code .cdecls topic
.end Ends program .end topic

In addition to the assembly directives that you can use in your code, the C/C++ compiler produces several
directives when it creates assembly code. These directives are to be used only by the compiler; do not
attempt to use these directives.

 DWAREF directives listed in Section A.1

» COFF/STABS directives listed in Section A.2

e The .battr directive is used to encode build attributes for the object file.
» The .bound directive is used internally for EABI only.

* The .comdat directive is used internally for EABI only

» The .compiler_opts directive indicates that the assembly code was produced by the compiler, and
which build model options were used for this file.

» The .template directive is used for early template instantiation. It encodes information about a template
that has yet to be instantiated. This is a COFF C++ directive.

78 Assembler Directives SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com

Directives That Define Sections

5.2 Directives That Define Sections

These directives associate portions of an assembly language program with the appropriate sections:

The .bss directive reserves space in the .bss section for uninitialized variables.

The .clink directive can be used in the COFF ABI model to indicate that a section is eligible for
removal at link-time via conditional linking. Thus if no other sections included in the link reference the
current or specified section, then the section is not included in the link. The .clink directive can be
applied to initialized or uninitialized sections.

The .data directive identifies portions of code in the .data section. The .data section usually contains
initialized data.

The .retain directive can be used in the EABI model to indicate that the current or specified section
must be included in the linked output. Thus even if no other sections included in the link reference the
current or specified section, it is still included in the link.

The .retainrefs directive can be used in the EABI model to force sections that refer to the specified
section. This is useful in the case of interrupt vectors.

The .sect directive defines an initialized named section and associates subsequent code or data with
that section. A section defined with .sect can contain code or data.

The .text directive identifies portions of code in the .text section. The .text section usually contains
executable code.

The .usect directive reserves space in an uninitialized named section. The .usect directive is similar to
the .bss directive, but it allows you to reserve space separately from the .bss section.

Chapter 2 discusses these sections in detail.

Example 5-1 shows how you can use sections directives to associate code and data with the proper
sections. This is an output listing; column 1 shows line numbers, and column 2 shows the SPC values.
(Each section has its own program counter, or SPC.) When code is first placed in a section, its SPC
equals 0. When you resume assembling into a section after other code is assembled, the section's SPC

res

umes counting as if there had been no intervening code.

The directives in Example 5-1 perform the following tasks:

.text initializes words with the values 1, 2, 3, 4, 5, 6, 7, and 8.

.data initializes words with the values 9, 10, 11, 12, 13, 14, 15, and 16.
var_defs initializes words with the values 17 and 18.

.bss reserves 19 bytes.

Xy reserves 20 bytes.

The .bss and .usect directives do not end the current section or begin new sections; they reserve the
specified amount of space, and then the assembler resumes assembling code or data into the current
section.

SPNU118L—-June 2013 Assembler Directives 79
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Directives That Define Sections

13 TEXAS
INSTRUMENTS

www.ti.com

Example 5-1. Sections Directives

l khkkhkkhkhkkhkhkhkhkhhhhkhhhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkkkkkkkkk*k*k*x*%
2 * Start assenbling into the .text section *
3 R S R R O R R R R R
4 00000000 .text
5 00000000 00000001 .word 1,2

00000004 00000002
6 00000008 00000003 .word 3,4

0000000c 00000004
7
8 khkhkkhkhkhkhkhkhkhhhhhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkkhkkkkkkkkkkk*k*k**x*%
9 * Start assenbling into the .data section *
10 R R R Rk R R R R
11 00000000 . data
12 00000000 00000009 .word 9, 10

00000004 0000000A
13 00000008 0000000B .word 11, 12

0000000c 0000000C
14
15 khkhkhkhkhkhkhkhhhhhhkhkhhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkkkkkkkk*k*k*k*x*%
16 * Start assenbling into a naned, *
17 * initialized section, var_defs *
18 khkhkhkhkhkhkhkhhhhhhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkhkhkkkhkkkkkkkkk*k*x*%
19 00000000 .sect "var_defs"
20 00000000 00000011 .word 17, 18

00000004 00000012
21
22 R R O O Rk R R R R
23 * Resurme assenbling into the .data section *
24 khkkkkhkkkhkkhkkhkhkkhhkkhhkhhkhkhhkkhhkdhkhhhkhhkhhkdhhkhhhhrdhkdkhhhhkhhkx*x
25 00000010 .data
26 00000010 0000000D .word 13, 14

00000014 0000000E
27 00000000 .bss sym 19 ; Reserve space in .bss
28 00000018 0000000F .word 15, 16 ; Still in .data

0000001c 00000010
29
30 khkhkhkhkhkhkhkhhhhhhkhkhhhkhkhkhkhkhkhkhkhkhkhkhkhhkhkkhkhkhkhkkkkk*kkkk*kk*k*x*%
31 * Resume assenbling into the .text section *
32 R R R O Rk R R R R R R R
33 00000010 .text
34 00000010 00000005 .word 5, 6

00000014 00000006
35 00000000 usym .usect "xy", 20 ; Reserve space in Xxy
36 00000018 00000007 .word 7, 8 ;o Still in .text

0000001c 00000008

80 Assembler Directives SPNU118L—June 2013

Copyright © 2013, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com

Directives That Change the Instruction Type

5.3 Dir
By

ectives That Change the Instruction Type

default, the assembler begins assembling all instructions in a file as 32-bit instructions. You can

change the default action by using the --code_state=16 assembler (see Section 4.3) option, which causes

the

assembler to begin assembling all instructions in a file as 16-bit instructions. You can also use four

directives that change how the assembler assembles instructions starting at the point where the directives
occur:

5.4 Dir

The .arm directive tells the assembler to begin assembling ARM UAL syntax 32-bit instructions starting
at the location of the directive. The .arm directive performs an implicit word alignment before any
instructions are written to the section to ensure that all 32-bit instructions are word aligned. The .arm
directive also resets any local labels defined. The .arm directive is equivalent to the .state32 directive.

The .statel6 directive causes the assembler to begin assembling non-UAL 16-bit instructions starting
at the location of the directive. The .state16 directive performs an implicit halfword alignment before
any instructions are written to the section to ensure that all 16-bit instructions are halfword aligned. The
.State16 directive also resets any local labels defined.

The .state32 directive tells the assembler to begin assembling 32-bit instructions starting at the
location of the directive. The .state32 directive performs an implicit word alignment before any
instructions are written to the section to ensure that all 32-bit instructions are word aligned. The
.state32 directive also resets any local labels defined.

The .thumb directive tells the assembler to begin assembling Thumb or Thumb-2 UAL syntax
instructions starting at the location of the directive. The .thumb directive performs an implicit word
alignment before any instructions are written to the section to ensure that all instructions are word
aligned. The .thumb directive also resets any local labels defined.

ectives That Initialize Values

Several directives assemble values for the current section. For example:

The .byte and .char directives place one or more 8-bit values into consecutive bytes of the current
section. These directives are similar to .word, .int, and .long, except that the width of each value is
restricted to 8 bits.

The .double directive calculates the double-precision (64-bit) IEEE floating-point representation of one
or more floating-point values and stores them in two consecutive words in the current section. The
.double directive automatically aligns to the double-word boundary.

SPNU118L—-June 2013 Assembler Directives 81
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Directives That Initialize Values www.ti.com

» The .field directive places a single value into a specified number of bits in the current word. With .field,
you can pack multiple fields into a single word; the assembler does not increment the SPC until a word
is filled.

Figure 5-1 shows how fields are packed into a word. Using the following assembled code, notice that
the SPC does not change for the first three fields (the fields are packed into the same word):

1 00000000 60000000 .field 3, 3

2 00000000 64000000 .field 8, 6

3 00000000 64400000 .field 16, 5

4 00000004 01234000 .field 01234h, 20
5 00000008 00001234 .field 01234h, 32

Figure 5-1. The .field Directive

field 3,3
313029
[0 11
3 bits
field 8,6
31 2827 26 2524 23 0
[o11]oo1000
6 bits
field 16,5
31 2221201918 0

011001000‘10000

5 bits

field 01234h,20

3130292827 2625242322212019181716 15141312 0
00000O0O0O10010001T10100
20 bits

field 01234h,32
31 0

|00000000000000000001001000110100|

» The .float directive calculates the single-precision (32-bit) IEEE floating-point representation of a single
floating-point value and stores it in a word in the current section that is aligned to a word boundary.

» The .half and .short directives place one or more 16-bit values into consecutive 16-bit fields
(halfwords) in the current section. The .half and .short directives automatically align to a short (2-byte)
boundary.

« The .int, .long, and .word directives place one or more 32-bit values into consecutive 32-bit fields
(words) in the current section. The .int, .long, and .word directives automatically align to a word
boundary.

» The .string and .cstring directives place 8-bit characters from one or more character strings into the
current section. The .string and .cstring directives are similar to .byte, placing an 8-bit character in each
consecutive byte of the current section. The .cstring directive adds a NUL character needed by C; the
.string directive does not add a NUL character.

» The .ubyte, .uchar, .uhalf, .uint, .ulong, .ushort, and .uword directives are provided as unsigned
versions of their respective signed directives. These directives are used primarily by the C/C++
compiler to support unsigned types in C/C++.

Directives That Initialize Constants When Used in a .struct/.endstruct Sequence

NOTE: The .bits, .byte, .char, .int, .long, .word, .double, .half, .short, .ubyte, .uchar, .uhalf, .uint,
.ulong, .ushort, .uword, .string, .float, and .field directives do not initialize memory when they
are part of a .struct/ .endstruct sequence; rather, they define a member’s size. For more
information, see the .struct/.endstruct directives.

82 Assembler Directives SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com

Directives That Initialize Values

Figure 5-2 compares the .byte, .char, .short, .int, .long, .float, .double, .word, and .string directives using

the following assembled code:

1 00000000 AA
00000001 BB
00000002 CC
00000004 ABCD
00000006 0000DDDD
0000000a EEEEFFFF
0000000e 0000DDDD
00000012 3FFFFCB9
00000016 3FFFFFF5
0000001a 83A53BSE
9 0000001e 48
0000001f 65
00000020 6C
00000021 70

o~NO O~ WDN

Byte

12

16

1a

1e

1f

20

21

.byte 0AAh, 0BBh
. char 0CCh
.short 0ABCDh
.wor d 0DDDDh
.long OEEEEFFFFh
.int 0DDDDh
.float 1.9999

. doubl e 1. 99999
.string " Hel p"

Figure 5-2. Initialization Directives

Code
7 0
e onn
7 0
-
7 0
.char (QCCh
15 0
.short 0ABCDh
31 0
| 0000 | DDDD | word 0DDDDh
31 0
I EEEE | FFFF | long OEEEEFFFFh
31 0
| 0000 | DDDD | int ODDDDh
31 0
| 3FFF | FCBS | float 1.9999
31 0
| 3FFF | FFFG5 I .double 1.99999
31 0
| 83 A5 | 3B8E I
7 0

.string “Help”

SPNU118L—June 2013
Submit Documentation Feedback

Assembler Directives

Copyright © 2013, Texas Instruments Incorporated

83

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Directives That Perform Alignment and Reserve Space www.ti.com

5.5 Directives That Perform Alignment and Reserve Space

These directives align the section program counter (SPC) or reserve space in a section:

» The .align directive aligns the SPC at a 1-byte to 32K-byte boundary. This ensures that the code
following the directive begins on the byte value that you specify. If the SPC is already aligned at the
selected boundary, it is not incremented. Operands for the .align directive must equal a power of 2
between 2° and 2%, inclusive.

Figure 5-3 demonstrates the .align directive. Using the following assembled code:

1 00000000 40000000 .field 2,3

2 00000000 4000000B .field 11, 21

3 .align 2

4 00000004 45 .string "Errcnt"

00000005 72

00000006 72

00000007 63

00000008 6E

00000009 74
5 .align
6 0000000c 04 .byte 4

Figure 5-3. The .align Directive

P T ==
~— ~

~—=" New SPC = 04h

after assembling

0zh 2 + .align 2 directive
Current el bytes | [FmTTmmTTI

SPC =03h 04h v

———

S~ ~ -

(a) Result of .align 2

——

08h 'y
curent—" | | poooo
SPC = 0Ah 1 word New SPC = QCh
after assembling
.align directive
0Ch Y
(b) Result of .align without an argument
84 Assembler Directives SPNU118L—June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com

Directives That Format the Output Listings

The .bes and .space directives reserve a specified humber of bytes in the current section. The
assembler fills these reserved byres with 0s. You can reserve a specified number of words by
multiplying the number of bytes by 4.

— When you use a label with .space, it points to the first byte that contains reserved bits.
— When you use a label with .bes, it points to the last byte that contains reserved bits.
Figure 5-4 shows how the .space and .bes directives work for the following assembled code:

1

2 00000000 00000100 .word 100h, 200h
00000004 00000200

3 00000008 Res_1: .space 17

4 0000001c 0OOOO00OF .word 15

5 00000033 Res_2: .bes 20

6 00000034 BA . byte 0OBAh

Res_1 points to the first byte in the space reserved by .space. Res_2 points to the last byte in the
space reserved by .bes.

Figure 5-4. The .space and .bes Directives

==

<+— Res_1=08h
17 bytes -
reserved

<+— Res_2 =233h
20 bytes -
reserved

—_——

5.6 Directives That Format the Output Listings

These directives format the listing file:

The .drlist directive causes printing of the directive lines to the listing; the .drnolist directive turns it off
for certain directives. You can use the .drnolist directive to suppress the printing of the following
directives. You can use the .drlist directive to turn the listing on again.

.asg .eval length .mnolist var
.break felist .mlist .sslist .width
.emsg fcnolist .mmsg .ssnolist .wmsg

The source code listing includes false conditional blocks that do not generate code. The .fclist and
fcnolist directives turn this listing on and off. You can use the .fclist directive to list false conditional
blocks exactly as they appear in the source code. You can use the .fcnolist directive to list only the
conditional blocks that are actually assembled.

The .length directive controls the page length of the listing file. You can use this directive to adjust
listings for various output devices.

The .list and .nolist directives turn the output listing on and off. You can use the .nolist directive to
prevent the assembler from printing selected source statements in the listing file. Use the .list directive
to turn the listing on again.

The source code listing includes macro expansions and loop blocks. The .mlist and .mnolist directives
turn this listing on and off. You can use the .mlist directive to print all macro expansions and loop
blocks to the listing, and the .mnolist directive to suppress this listing.

The .option directive controls certain features in the listing file. This directive has the following

SPNU118L—-June 2013 Assembler Directives 85
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS

INSTRUMENTS

Directives That Reference Other Files www.ti.com

operands:

A turns on listing of all directives and data, and subsequent expansions, macros, and blocks.

B limits the listing of .byte and .char directives to one line.

H limits the listing of .half and .short directives to one line.

M turns off macro expansions in the listing.

N turns off listing (performs .nolist).

O turns on listing (performs .list).

R resets the B, H, M, T, and W directives (turns off the limits of B, H, M, T, and W).

T limits the listing of .string directives to one line.

w limits the listing of .word and .int directives to one line.

X produces a cross-reference listing of symbols. You can also obtain a cross-reference listing

5.7

by invoking the assembler with the --cross_reference option (see Section 4.3).

The .page directive causes a page eject in the output listing.

The source code listing includes substitution symbol expansions. The .sslist and .ssnolist directives
turn this listing on and off. You can use the .sslist directive to print all substitution symbol expansions
to the listing, and the .ssnolist directive to suppress this listing. These directives are useful for
debugging the expansion of substitution symbols.

The .tab directive defines tab size.
The .title directive supplies a title that the assembler prints at the top of each page.

The .width directive controls the page width of the listing file. You can use this directive to adjust
listings for various output devices.

Directives That Reference Other Files

These directives supply information for or about other files that can be used in the assembly of the current
file:

The .copy and .include directives tell the assembler to begin reading source statements from another
file. When the assembler finishes reading the source statements in the copy/include file, it resumes
reading source statements from the current file. The statements read from a copied file are printed in
the listing file; the statements read from an included file are not printed in the listing file.

The .def directive identifies a symbol that is defined in the current module and that can be used in
another module. The assembler includes the symbol in the symbol table.

The .global directive declares a symbol external so that it is available to other modules at link time.
(For more information about global symbols, see Section 2.6.2). The .global directive does double duty,
acting as a .def for defined symbols and as a .ref for undefined symbols. The linker resolves an
undefined global symbol reference only if the symbol is used in the program. The .global directive
declares a 16-bit symbol.

The .mlib directive supplies the assembler with the name of an archive library that contains macro
definitions. When the assembler encounters a macro that is not defined in the current module, it
searches for it in the macro library specified with .mlib.

The .ref directive identifies a symbol that is used in the current module but is defined in another
module. The assembler marks the symbol as an undefined external symbol and enters it in the object
symbol table so the linker can resolve its definition. The .ref directive forces the linker to resolve a
symbol reference.

The .symdepend directive creates an artificial reference from the section defining the source symbol
name to the destination symbol. The .symdepend directive prevents the linker from removing the
section containing the destination symbol if the source symbol section is included in the output module.

The .weak directive identifies a symbol that is used in the current module but is defined in another
module. It is equivalent to the .ref directive, except that the reference has weak linkage.

86

Assembler Directives SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Directives That Enable Conditional Assembly

5.8 Directives That Enable Conditional Assembly

Conditional assembly directives enable you to instruct the assembler to assemble certain sections of code
according to a true or false evaluation of an expression. Two sets of directives allow you to assemble
conditional blocks of code:

« The .if/.elseif/.else/.endif directives tell the assembler to conditionally assemble a block of code
according to the evaluation of an expression.

.if well-defined expression marks the beginning of a conditional block and assembles code
if the .if well-defined expression is true.

[.elseif well-defined expression] marks a block of code to be assembled if the .if well-defined
expression is false and the .elseif condition is true.

.else marks a block of code to be assembled if the .if well-defined
expression is false and any .elseif conditions are false.

.endif marks the end of a conditional block and terminates the block.

« The .loop/.break/.endloop directives tell the assembler to repeatedly assemble a block of code
according to the evaluation of an expression.

loop [well-defined expression] marks the beginning of a repeatable block of code. The optional
expression evaluates to the loop count.
.break [well-defined expression] tells the assembler to assemble repeatedly when the .break

well-defined expression is false and to go to the code
immediately after .endloop when the expression is true or
omitted.

.endloop marks the end of a repeatable block.

The assembler supports several relational operators that are useful for conditional expressions. For more
information about relational operators, see Section 4.8.2.

5.9 Directives That Define Union or Structure Types

These directives set up specialized types for later use with the .tag directive, allowing you to use symbolic
names to refer to portions of a complex object. The types created are analogous to the struct and union
types of the C language.

The .struct, .union, .cstruct, and .cunion directives group related data into an aggregate structure which is
more easily accessed. These directives do not allocate space for any object. Objects must be separately
allocated, and the .tag directive must be used to assign the type to the object.

type .struct ; structure tag definition
X .int
Y .int

T_LEN .endstruct

COORD .tag type ; declare COORD (coordinate)
COORD .space T_LEN ; actual nenory allocation

LDR RO, COORD.Y ; load nenber Y of structure
; COORD into register RO.

The .cstruct and .cunion directives guarantee that the data structure will have the same alignment and
padding as if the structure were defined in analogous C code. This allows structures to be shared between
C and assembly code. See Chapter 13. For .struct and .union, element offset calculation is left up to the
assembler, so the layout may be different than .cstruct and .cunion.

SPNU118L—-June 2013 Assembler Directives 87

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Directives That Define Enumerated Types www.ti.com

5.10 Directives That Define Enumerated Types

These directives set up specialized types for later use in expressions allowing you to use symbolic names
to refer to compile-time constants. The types created are analogous to the enum type of the C language.
This allows enumerated types to be shared between C and assembly code. See Chapter 13.

See Section 13.2.10 for an example of using .enum.

5.11 Directives That Define Symbols at Assembly Time

Assembly-time symbol directives equate meaningful symbol names to constant values or strings.

» The .asg directive assigns a character string to a substitution symbol. The value is stored in the
substitution symbol table. When the assembler encounters a substitution symbol, it replaces the
symbol with its character string value. Substitution symbols created with .asg can be redefined.

.asg "10, 20, 30, 40", coefficients
Assign string to substitution synbol.
.byte coefficients
; Place the synbol values 10, 20, 30, and 40
into consecutive bytes in current section.

» The .define directive assigns a character string to a substitution symbol. The value is stored in the
substitution symbol table. When the assembler encounters a substitution symbol, it replaces the
symbol with its character string value. Substitution symbols created with .define cannot be redefined.

» The .eval directive evaluates a well-defined expression, translates the results into a character string,
and assigns the character string to a substitution symbol. This directive is most useful for manipulating

counters:
. asg 1, x ;o x =1
.1 oop ; Begin conditional I|oop.
.byte x*10h ; Store value into current section.
. break X =4 ; Break loop if x = 4.
. eval x+1, x ; Increnment x by 1.
. endl oop ; End conditional I oop.

e The .label directive defines a special symbol that refers to the load-time address within the current
section. This is useful when a section loads at one address but runs at a different address. For
example, you may want to load a block of performance-critical code into slower off-chip memory to
save space and move the code to high-speed on-chip memory to run. See the .label topic for an
example using a load-time address label.

» The .set and .equ directives set a constant value to a symbol. The symbol is stored in the symbol table
and cannot be redefined; for example:

bval .set 0100h ; Set bval = 0100h
.long bval, bval *2, bval +12
Store the val ues 0100h, 0200h, and 010Ch
; into consecutive words in current section

The .set and .equ directives produce no object code. The two directives are identical and can be used
interchangeably.

* The .unasg directive turns off substitution symbol assignment made with .asg.
e The .undefine directive turns off substitution symbol assignment made with .define.
» The .var directive allows you to use substitution symbols as local variables within a macro.

88 Assembler Directives SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Miscellaneous Directives

5.12 Miscellaneous Directives

These directives enable miscellaneous functions or features:

* The .asmfunc and .endasmfunc directives mark function boundaries. These directives are used with
the compiler --symdebug:dwarf (-g) option to generate debug information for assembly functions.

» The .cdecls directive enables programmers in mixed assembly and C/C++ environments to share C
headers containing declarations and prototypes between C and assembly code.

» The .end directive terminates assembly. If you use the .end directive, it should be the last source
statement of a program. This directive has the same effect as an end-of-file character.

» The .group, .gmember, and .endgroup directives define an ELF group section to be shared by
several sections.

» The .newblock directive resets local labels. Local labels are symbols of the form $n, where n is a
decimal digit. They are defined when they appear in the label field. Local labels are temporary labels
that can be used as operands for jump instructions. The .newblock directive limits the scope of local
labels by resetting them after they are used. See Section 4.7.3 for information on local labels.

These three directives enable you to define your own error and warning messages:

» The .emsg directive sends error messages to the standard output device. The .emsg directive
generates errors in the same manner as the assembler, incrementing the error count and preventing
the assembler from producing an object file.

« The .mmsg directive sends assembly-time messages to the standard output device. The .mmsg
directive functions in the same manner as the .emsg and .wmsg directives but does not set the error
count or the warning count. It does not affect the creation of the object file.

» The .wmsg directive sends warning messages to the standard output device. The .wmsg directive
functions in the same manner as the .emsg directive but increments the warning count rather than the
error count. It does not affect the creation of the object file.

For more information about using the error and warning directives in macros, see Section 6.7.

SPNU118L—-June 2013 Assembler Directives 89

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Directives Reference www.ti.com

5.13 Directives Reference

The remainder of this chapter is a reference. Generally, the directives are organized alphabetically, one
directive per topic. Related directives (such as .if/.else/.endif), however, are presented together in one

topic.

.align Align SPC on the Next Boundary

Syntax .align [size in bytes]

Description The .align directive aligns the section program counter (SPC) on the next boundary,
depending on the size in bytes parameter. The size can be any power of 2, although
only certain values are useful for alignment. An operand of 1 aligns the SPC on the next
byte boundary, and this is the default if no size in bytes is given. The assembler
assembles words containing null values (0) up to the next size in bytes boundary:

1 aligns SPC to byte boundary
2 aligns SPC to halfword boundary
4 aligns SPC to word boundary
8 aligns SPC to doubleword boundary
128 aligns SPC to page boundary
Using the .align directive has two effects:
» The assembler aligns the SPC on an x-byte boundary within the current section.
* The assembler sets a flag that forces the linker to align the section so that individual
alignments remain intact when a section is loaded into memory.

Example This example shows several types of alignment, including .align 2, .align 8, and a default

.align.
1 00000000 04 .byte 4
2 .align 2
3 00000002 45 .string "Errorcnt"”
00000003 72
00000004 72
00000005 6F
00000006 72
00000007 63
00000008 6E
00000009 74
4 .align
5 0000000c 60000000 .field 3,3
6 0000000c 6A000000 .field 5,4
7 .align 2
8 0000000c 6A006000 .field 3,3
9 .align 8
10 00000010 50000000 .field 5,4
11 .align
12 00000014 04 .byte 4
90 Assembler Directives SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.asg/.define/.eval

Syntax

Description

Assign a Substitution Symbol

.asg "character string",substitution symbol
.define "character string",substitution symbol
.eval well-defined expression,substitution symbol

The .asg and .define directives assign character strings to substitution symbols.
Substitution symbols are stored in the substitution symbol table. The .asg directive can
be used in many of the same ways as the .set directive, but while .set assigns a
constant value (which cannot be redefined) to a symbol, .asg assigns a character string
(which can be redefined) to a substitution symbol.

» The assembler assigns the character string to the substitution symbol.

» The substitution symbol must be a valid symbol name. The substitution symbol is up
to 128 characters long and must begin with a letter. Remaining characters of the
symbol can be a combination of alphanumeric characters, the underscore (_), and
the dollar sign ($).

The .define directive functions in the same manner as the .asg directive, except that
.define disallows creation of a substitution symbol that has the same name as a register
symbol or mnemonic. It does not create a new symbol hame space in the assembiler,
rather it uses the existing substitution symbol name space. The .define directive is used
to prevent corruption of the assembly environment when converting C/C++ headers. See
Chapter 13 for more information about using C/C++ headers in assembly source.

The .eval directive performs arithmetic on substitution symbols, which are stored in the
substitution symbol table. This directive evaluates the well-defined expression and
assigns the string value of the result to the substitution symbol. The .eval directive is
especially useful as a counter in .loop/.endloop blocks.

* The well-defined expression is an alphanumeric expression in which all symbols have
been previously defined in the current source module, so that the result is an
absolute.

» The substitution symbol must be a valid symbol name. The substitution symbol is up
to 128 characters long and must begin with a letter. Remaining characters of the
symbol can be a combination of alphanumeric characters, the underscore (_), and
the dollar sign ($).

See the .unasg/.undefine topic for information on turning off a substitution symbol.

SPNU118L—-June 2013

Assembler Directives 91

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

Example

This example shows how .asg and .eval can be used.

1

2
3
4
5
6
7

[ee]

10
11
12
13
14

I I I T G S I T i

00000000 E28DDO18

00000004 E28DD018

00000008 00000001

0000000c 00000002

00000010 00000003

00000014 00000004

00000018 00000005

.sslist ;

show expanded sub. synbols
using .asg and .eval

.asg R13, STACKPTR
.asg & AND

ADD STACKPTR, STACKPTR, #280 AND 255
ADD R13, R13, #280 & 255

ADD STACKPTR, STACKPTR, #280 & 255
ADD R13, R13, #280 & 255

.asg 0, x

.1 oop
.eval
.wor d

5
X+1,
X

. endl oop

.eval
. eval
.word
.wor d
. eval
. eval
.wor d
.wor d
. eval
.eval
.wor d
.word
.eval
. eval
.word
.wor d
. eval
. eval
.wor d
.wor d

X+1,
0+1,
X
1
X+1,
1+1,
X
2
x+1,
2+1,
X
3
X+1,
3+1,
X
4
X+1,
4+1,
X
5

92

Assembler Directives

Copyright © 2013, Texas Instruments Incorporated

SPNU118L—June 2013
Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.asmfunc/.endasmfunc Mark Function Boundaries

Syntax

Description

Example

symbol .asmfunc [stack_usage(num)]

.endasmfunc

The .asmfunc and .endasmfunc directives mark function boundaries. These directives
are used with the compiler -g option (--symdebug:dwarf) to allow assembly code
sections to be debugged in the same manner as C/C++ functions.

You should not use the same directives generated by the compiler (see Appendix A) to
accomplish assembly debugging; those directives should be used only by the compiler to
generate symbolic debugging information for C/C++ source files.

The .asmfunc and .endasmfunc directives cannot be used when invoking the compiler
with the backwards-compatibility --symdebug:coff option. This option instructs the
compiler to use the obsolete COFF symbolic debugging format, which does not support
these directives.

The symbol is a label that must appear in the label field.

The .asmfunc directive has an optional parameter, stack _usage, which sets the stack to
num bytes.

Consecutive ranges of assembly code that are not enclosed within a pair of .asmfunc
and .endasmfunc directives are given a default name in the following format:

$ filename : beginning source line : ending source line $

In this example the assembly source generates debug information for the user_func
section.

1 00000000 . sect "otext"

2 . gl obal wuser_func

3 .global printf

4

5 .align 4

6 .arnfunc user_func

7 00000000 .state32

8

9 userfunc: .asnfunc

10 00000000 E92D4008 STMFD SP, {Ad4, LR}
11 00000004 E28F000C ADR Al, SL1

12 00000008 EBFFFFFC! BL printf

13 0000000c E3A00000 MoV Al, #0

14 00000010 E8BD4008 LDVFD SP, {Ad, LR
15 00000014 E12FFF1E BX LR

16 . endasnf unc

17

18 .align 4

19 00000018 48 SL1: .string "Hello Wrld!'", 10,0

00000019 65
0000001a 6C
0000001b 6C
0000001c 6F
0000001d 20
0000001e 57
0000001f 6F
00000020 72
00000021 6C
00000022 64
00000023 21
00000024 OA
00000025 00

SPNU118L—-June 2013

Assembler Directives 93

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS

INSTRUMENTS
Directives Reference www.ti.com
.bits Initialize Bits
Syntax .bits value,][, ..., value,]
Description The .bits directive places one or more values into consecutive bits of the current section.
94 Assembler Directives SPNU118L—June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.bss

Syntax

Description

Example

Reserve Space in the .bss Section

.bss symbol, size in bytes], alignment]

The .bss directive reserves space for variables in the .bss section. This directive is
usually used to allocate space in RAM.

» The symbol is a required parameter. It defines a label that points to the first location
reserved by the directive. The symbol name must correspond to the variable that you
are reserving space for.

» The size in bytes is a required parameter; it must be an absolute expression. The
assembler allocates size bytes in the .bss section. There is no default size.

e The alignment is an optional parameter that ensures that the space allocated to the
symbol occurs on the specified boundary. The boundary indicates the size of the
alignment in bytes and must be set to a power of 2 between 2° and 2*°, inclusive. If
the SPC is aligned at the specified boundary, it is not incremented.

For more information about sections, see Chapter 2.

In this example, the .bss directive allocates space for two variables, TEMP and ARRAY.
The symbol TEMP points to four bytes of uninitialized space (at .bss SPC = 0). The
symbol ARRAY points to 100 bytes of uninitialized space (at .bss SPC = 04h). Symbols
declared with the .bss directive can be referenced in the same manner as other symbols
and can also be declared external.

1 EE R R I S I I R R R R I I R R R S S I
2 ** Start assenbling into the .text section. **
3 khkkhkhkhkkhkhhhkhkhkhkddhhkdhhhhhkhkhkhkhrdhdhdhhkhhhkhkhkhkhrhrhhhhhdhhhkhxx
4 00000000 .text

5 00000000 E3A00000 MoV RO, #0

6

7 ER R R S R R S I I I R R R R I I R R I S I
8 *x Allocate 4 bytes in .bss for TEWP. *x
9 khkkhkhkhkkhkhkhkhkhkhkhkddhhkhhhhhkhkhkhkhdddhdhhhdhhkhkhkhkhrhrhhhhddhhhhxx
10 00000000 Var_1: .bss TEMP, 4

11

12 khkkhkhkhkkhkhkhhkhkhkhkddhhdhhkhhkhkhkhkhdhdhhhhkhkhkhkhkhrhrhhhhddhhhhxx
13 > Still in .text. >
14 khkhkkhkhkkhkhkhkhkhkhhkkkkkkhkkkkkkk*k*x*%x
15 00000004 E2801056 ADD R1l, RO, #56h

16 00000008 E0020091 MUL R2, R1, RO

17

18 khkhkhkhkkhkhhhkhkhkhkdhhhhhkhhkhkhkhkhddhhhhhhkhkhkhkhrhrhhhhkhdkhhhxx
19 ** Al ocate 100 bytes in .bss for the synbol **
20 o named ARRAY. *%
21 khkhkhkhkkhkhhhkhkhkhkddhhkhhhhhhkhkhkhddhdhhkhddhkhkhkhkhrhrhhhhhdkhhkhxx
22 00000004 . bss ARRAY, 100, 4

23

24 khkkhkhkhkkhkhkhhkhkhkhkddhhdhhhkhhkhkhkhkhddrhdhhhdhkhkhkhrhrhrhhhhkhdhhhhxx
25 > Assenbl e nore code into .text. >
26 khkhkhkhkkhkhkkhkkhkkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkkkkkkkkkk*k*k*x*%
27 0000000c E1AOFOOE MoV PC, LR

28

29 khkhkkhkkhkhkkhkkhkhhhhkhkhhkkkkkkkkkk*k*x*%
30 *x Decl are external .bss synbols. *x
31 EE R R I S R S I I R R R R I I R R I I I
32 . gl obal ARRAY, TEMP

33 .end

SPNU118L—-June 2013

Assembler Directives 95

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.byte/.ubyte/.char/.uchar Initialize Byte

Syntax .byte value,], ..., value, |
.ubyte value,|, ..., value,]
.char valuey[, ... , value,]
.uchar value|, ... , value,]

Description The .byte, .ubyte, .char, and .uchar directives place one or more values into

consecutive bytes of the current section. A value can be one of the following:

* An expression that the assembler evaluates and treats as an 8-bit signed number

e A character string enclosed in double quotes. Each character in a string represents a
separate value, and values are stored in consecutive bytes. The entire string must be
enclosed in quotes.

The first byte occupies the eight least significant bits of a full 32-bit word. The second

byte occupies bits eight through 15 while the third byte occupies bits 16 through 23. The

assembler truncates values greater than eight bits.

If you use a label, it points to the location of the first byte that is initialized.

When you use these directives in a .struct/.endstruct sequence, they define a member's

size; they do not initialize memory. For more information, see the .struct/.endstruct/.tag

topic.

Example In this example, 8-bit values (10, -1, abc, and a) are placed into consecutive bytes in
memory with .byte. Also, 8-bit values (8, -3, def, and b) are placed into consecutive
bytes in memory with .char. The label STRX has the value Oh, which is the location of
the first initialized byte. The label STRY has the value 6h, which is the first byte
initialized by the .char directive.

1 00000000 . space 100h

2 00000100 OA STRX .byte 10, -1, "abc", 'a'
00000101 FF
00000102 61
00000103 62
00000104 63
00000105 61

3 00000106 08 STRY .char 8, -3, "def", 'b'
00000107 FD
00000108 64
00000109 65
0000010a 66
0000010b 62

96 Assembler Directives SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.cdecls

Syntax

Syntax

Description

Share C Headers Between C and Assembly Code
Single Line:
.cdecls [options ,] " filename "[, " filename2 "[,...]]

Multiple Lines:
.cdecls [options]

%{
I* */
/* C/C++ code - Typically a list of #includes and a few defines */
[* */
%0}

The .cdecls directive allows programmers in mixed assembly and C/C++ environments
to share C headers containing declarations and prototypes between the C and assembly
code. Any legal C/C++ can be used in a .cdecls block and the C/C++ declarations cause
suitable assembly to be generated automatically, allowing you to reference the C/C++
constructs in assembly code; such as calling functions, allocating space, and accessing
structure members; using the equivalent assembly mechanisms. While function and
variable definitions are ignored, most common C/C++ elements are converted to
assembly, for instance: enumerations, (non-function-like) macros, function and variable
prototypes, structures, and unions.

The .cdecls options control whether the code is treated as C or C++ code; and how the
.cdecls block and converted code are presented. Options must be separated by
commas; they can appear in any order:

C Treat the code in the .cdecls block as C source code (default).

CPP Treat the code in the .cdecls block as C++ source code. This is the
opposite of the C option.

NOLIST Do not include the converted assembly code in any listing file generated
for the containing assembly file (default).

LIST Include the converted assembly code in any listing file generated for the

containing assembly file. This is the opposite of the NOLIST option.

NOWARN Do not emit warnings on STDERR about C/C++ constructs that cannot
be converted while parsing the .cdecls source block (default).

WARN Generate warnings on STDERR about C/C++ constructs that cannot be
converted while parsing the .cdecls source block. This is the opposite of
the NOWARN option.

In the single-line format, the options are followed by one or more filenames to include.
The filenames and options are separated by commas. Each file listed acts as if #include
"filename" was specified in the multiple-line format.

In the multiple-line format, the line following .cdecls must contain the opening .cdecls
block indicator %{. Everything after the %f{, up to the closing block indicator %}, is
treated as C/C++ source and processed. Ordinary assembler processing then resumes
on the line following the closing %}.

The text within %{ and %} is passed to the C/C++ compiler to be converted into
assembly language. Much of C language syntax, including function and variable
definitions as well as function-like macros, is not supported and is ignored during the
conversion. However, all of what traditionally appears in C header files is supported,
including function and variable prototypes; structure and union declarations; non-
function-like macros; enumerations; and #define's.

SPNU118L—-June 2013

Assembler Directives 97

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

The resulting assembly language is included in the assembily file at the point of the
.cdecls directive. If the LIST option is used, the converted assembly statements are
printed in the listing file.

The assembly resulting from the .cdecls directive is treated similarly to a .include file.
Therefore the .cdecls directive can be nested within a file being copied or included. The
assembler limits nesting to ten levels; the host operating system may set additional
restrictions. The assembler precedes the line numbers of copied files with a letter code
to identify the level of copying. An A indicates the first copied file, B indicates a second
copied file, etc.

The .cdecls directive can appear anywhere in an assembly source file, and can occur
multiple times within a file. However, the C/C++ environment created by one .cdecls is
not inherited by a later .cdecls; the C/C++ environment starts new for each .cdecls.

See Chapter 13 for more information on setting up and using the .cdecls directive with C
header files.

Example In this example, the .cdecls directive is used call the C header.h file.
C header file:
#define WANT_I D 10
#defi ne NAME "John\n"
extern int a_variable;
extern float cvt_integer(int src);
struct nmyGCstruct { int nenber_a; float nmenber_b; };
enum status_enum { OK = 1, FAILED = 256, RUNNING = 0 };
Source file:
.cdecl s C LI ST, "nyheader. h"
si ze: .int $sizeof (nyCstruct)
aof fset: .int nmyCstruct.nmenber_a
boffset: .int myCstruct.nenber_b
okval ue: .int status_enum K
failval: .int status_enum FAl LED
.if $defined(WANT_I D)
id .cstring NAME
.endi f
Listing File:
1 .cdecl s C, LI ST, "nyheader. h"
A 1 e
A 2 ; Assenbly Cenerated from ¢ C++ Source Code
A 3 R L LT T
A 4
A 5 =========== MACRO DEFI Nl TI ONS ===========
A 6 .define "10", WANT_I D
A 7 .define """John\n""", NAME
A 8
A 9 ; =========== TYPE DEFI NI TI ONS ===========
A 10 stat us_enum .enum
A 11 00000001 K .emenber 1
A 12 00000100 FAI LED . emenber 256
A 13 00000000 RUNNI NG .enenber 0
A 14 .endenum
A 15
A 16 myCstruct .struct 0,4
17 struct size=(8 bytes|64 bits), alignnent=4
A 18 00000000 nenber_a .field 32
19 ; int nenber_a - offset O bytes, size (4 bytes|32 bits)
A 20 00000004 nenber_b .field 32
21 ; float menber_b - offset 4 bytes, size (4 bytes|32 bits)
98 Assembler Directives SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

>

22
23
24
25
26
27
28

>>>>>>

0 ~NO O~ w

00000000
00000004
00000008
0000000c
00000010

00000014
00000015
00000016
00000017
00000018
00000019

00000008
;o final

00000008 si ze:

00000000 aoffset:
00000004 boffset:
00000001 okval ue:
00000100 failval:

0000004A id
0000006F
00000068
0000006E
0000000A
00000000

.endstruct
size=(8 bytes| 64 bits)

===== EXTERNAL FUNCTI ONS ===========
.global _cvt_integer

===== EXTERNAL VAR|I ABLES ===========
.global _a variable
.int $sizeof (nyCstruct)
.int nyCstruct.nenber_a
.int nyCstruct.nenber_b
.int status_enum K
.int status_enum FAI LED
.if $defined(WANT_I D)
.cstring NAME

.endif

SPNU118L—-June 2013

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

Assembler Directives

99

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.clink

Syntax

Description

Example

00000000

00000000
00000004
00000008

O~NO OO~ WNPE

12 00000000

14 00000000
15 00000004
16 00000008

20 00000000
21 00000000
22 00000004
23 00000008

25 0000000c

Conditionally Leave Section Out of Object Module Output

.clink["section name"]

The .clink directive enables conditional linking by telling the linker to leave a section out
of the final object module output of the linker if there are no references found to any
symbol in that section. The .clink directive can be applied to initialized or uninitialized
sections.

The section name identifies the section. If the directive is used without a section name, it
applies to the current initialized section. If the directive is applied to an uninitialized
section, the section name is required. The section name must be enclosed in double
guotes. A section name can contain a subsection name in the form section
name:subsection name.

The .clink directive is useful only with the COFF object file format. Under the COFF ABI
model, the linker assumes that all sections are ineligible for removal via conditional
linking by default. If you want to make a section eligible for removal, you must apply a
.clink directive to it. In contrast, under the ELF EABI model, the linker assumes that all
sections are eligible for removal via conditional linking. Therefore, the .clink directive has
no effect under EABI.

A section in which the entry point of a C program is defined cannot be marked as a
conditionally linked section.

In this example, the Vars and Counts sections are set for conditional linking.

000000AA
000000AA
000000AA

000000AA
000000AA
000000AA

E59F0004
E5900000
E0800001

00000000+

khkkhkkhkkhkkhkkhkkhkhkhkhkhhkhkhkhhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkkkkkkkk*x*x*%x

** Set Vars section for conditional linking. **
khkkkkhkkkhkkhkhkkhkhkkhhkkhhkhkhhkkhhkhhkhhhkhhhhhkhhkhhdhdkhhkrhdhrhhhxkx*k
.sect "Vars"
.clink
X: .word OAAh
Y: .word OAAh
Z: .word O0AAh
khkkkkhkkkhkhkhkkhkhkkhhkhhkhkhhkkhhkhhkhkhhkhhkkhhhhhkhhdhdrhkrhdhxkdxhxxx*k
** Set Counts section for conditional linking. **

kkhkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkhkkhkkhkkhkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkkkkkkkk*x*%x

.sect "Counts"
.clink
XCount: .word O0AAh
YCount: .word 0AAh
ZCount: .word OAAh

kkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkhkkhkkhkkhkkhkkhkkkhkkhkkkkkkkkkkkkkkkkkk*x*%x

** text is unconditionally linked by default. **
IR RS S RS RS R SRR RS SRR EEREEEEEEEEEREEREEEEEEEEEESEESEESSES
.text
LDR RO, X_ addr
LDR RO, [RO]
ADD RO, RO, R1

X addr: .field X, 32

khkkkkhkhkkhhkhkhkhkhhkhhkhkhkhkhhkhhkdkhkhkhhkhhkdkhkhkhkhhhkdhkdhhhhhkdxkhxk
** The reference to synbol X causes the Vars **
** section to be linked into the COFF output. **

kkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkkkhkkkkkkkkkkkkkkkk*x*%x

100 Assembler Directives

Copyright © 2013, Texas Instruments Incorporated

SPNU118L—June 2013
Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.common

Syntax

Description

Create a Common Symbol

.common symbol,size in bytes|, alignment]

.common symbol,structure tag], alignment]

The .common directive creates a common symbol in a common block, rather than
placing the variable in a memory section.

This directive is used by the compiler when the --common option is enabled (the default),
which causes uninitialized file scope variables to be emitted as common symbols when
using ELF. The benefit of common symbols is that generated code can remove unused
variables that would otherwise increase the size of the .bss section. (Uninitialized
variables of a size larger than 32 bytes are separately optimized through placement in
separate subsections that can be omitted from a link.) This optimization happens for
C/C++ code by default unless you use the --common=off compiler option.

* The symbol is a required parameter. It defines a name for the symbol created by this
directive. The symbol name must correspond to the variable that you are reserving
space for.

e The size in bytes is a required parameter; it must be an absolute expression. The
assembler allocates size bytes in the section used for common symbols. There is no
default size.

» A structure tag can be used in place of a size to specify a structure created with the
.struct directive. Either a size or a structure tag is required for this argument.

e The alignment is an optional parameter that ensures that the space allocated to the
symbol occurs on the specified boundary. The boundary indicates the size of the
alignment in bytes and must be set to a power of 2 between 2° and 2*°, inclusive. If
the SPC is aligned at the specified boundary, it is not incremented.

Common symbols are symbols that are placed in the symbol table of an ELF object file.
They represent an uninitialized variable. Common symbols do not reference a section.
(In contrast, initialized variables need to reference a section that contains the initialized
data.) The value of a common symbol is its required alignment; it has no address and
stores no address. While symbols for an uninitialized common block can appear in
executable object files, common symbols may only appear in relocatable object files.
Common symbols are preferred over weak symbols. See the section on the "Symbol
Table" in the System V ABI specification for more about common symbols.

When object files containing common symbols are linked, space is reserved in an
uninitialized section for each common symbol. A symbol is created in place of the
common symbol to refer to its reserved location.

SPNU118L—-June 2013

Assembler Directives 101

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.copyl.include

Syntax

Description

Example 1

Copy Source File

.copy "filename"

.include "filename"

The .copy and .include directives tell the assembler to read source statements from a
different file. The statements that are assembled from a copy file are printed in the
assembly listing. The statements that are assembled from an included file are not printed
in the assembly listing, regardless of the number of .list/.nolist directives assembled.

When a .copy or .include directive is assembled, the assembler:
1. Stops assembling statements in the current source file
2. Assembles the statements in the copied/included file

3. Resumes assembling statements in the main source file, starting with the statement
that follows the .copy or .include directive

The filename is a required parameter that names a source file. It is enclosed in double
guotes and must follow operating system conventions.

You can specify a full pathname (for example, /320tools/filel.asm). If you do not specify
a full pathname, the assembler searches for the file in;

1. The directory that contains the current source file

2. Any directories named with the --include_path assembler option

3. Any directories specified by the TI_ARM_A_DIR environment variable
4. Any directories specified by the TI_ARM_C_DIR environment variable

For more information about the --include_path option and TI_ ARM_A DIR, see
Section 4.4. For more information about TI_ ARM_C_DIR, see the ARM Optimizing
C/C++ Compiler User's Guide.

The .copy and .include directives can be nested within a file being copied or included.
The assembler limits nesting to 32 levels; the host operating system may set additional
restrictions. The assembler precedes the line numbers of copied files with a letter code
to identify the level of copying. A indicates the first copied file, B indicates a second
copied file, etc.

In this example, the .copy directive is used to read and assemble source statements
from other files; then, the assembler resumes assembling into the current file.

The original file, copy.asm, contains a .copy statement copying the file byte.asm. When
copy.asm assembles, the assembler copies byte.asm into its place in the listing (note
listing below). The copy file byte.asm contains a .copy statement for a second file,
word.asm.

When it encounters the .copy statement for word.asm, the assembler switches to
word.asm to continue copying and assembling. Then the assembler returns to its place
in byte.asm to continue copying and assembling. After completing assembly of byte.asm,
the assembler returns to copy.asm to assemble its remaining statement.

copy.asm byte.asm word.asm
(source file) (first copy file) (second copy file)

. space 29 ** |n byte.asm ** |n word.asm

.copy "byte. asnt .byte 32,1+ ' A .word OABCDh, 56q
** Back in original file
.copy "word. asnf
.string "done"
** Back in byte.asm

.byte 67h + 3q

102

Assembler Directives SPNU118L—-June 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

Listing file:
1 00000000
2
A 1
A 2 0000001d
0000001e
A 3
B 1
B 2 00000020
00000024
A 4
A 5 00000028
3
4
5 00000029
0000002a
0000002b
0000002¢

Example 2

20
42

0000ABCD
0000002E

6A

64
6F
6E
65

* %

* %

* %

* %

. Space 29

.copy "byte.asnt
In byte.asm

.byte 32,1+ ' A

.copy "word.asnt
I'n word. asm
.word OABCDh, 56q

Back in byte.asm
.byte 67h + 3q
Back in original file

.string "done"

In this example, the .include directive is used to read and assemble source statements

from other files; then, the assembler resumes assembling into the current file. The
mechanism is similar to the .copy directive, except that statements are not printed in the
listing file.

include.asm
(source file)

byte2.asm
(first copy file)

word2.asm
(second copy file)

. Space 29
.include "byte2. asnt

** Back in original

.string "done"

file

** |n byte2.asm
.byte 32,1+ ' A

.include

"wor d2. asnt'

** Back in byte2.asm

.byte 67h + 3q

* %

I'n word2. asm
.word OABCDh, 56q

Listing file:

1
2
3
4
5

00000000

00000029
0000002a
0000002b
0000002c

64
6F
6E
65

. Space 29

.include "byte2. asnt

** Back in original
.string "done"

file

SPNU118L—June 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

Assembler Directives 103

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.cstruct/.cunion/.endstruct/.endunion/.tag Declare C Structure Type

Syntax

Description

Example

typedef struct STRUCT1

[stag] .cstruct|.cunion [expr]
[mem,] element [expr,]
[mem,] element [expr,]
[mem,] .tag stag [expr.]
[mem,] element [expry]
[size] .endstruct|.endunion
label .tag stag

The .cstruct and .cunion directives have been added to support ease of sharing of
common data structures between assembly and C code. The .cstruct and .cunion
directives can be used exactly like the existing .struct and .union directives except that
they are guaranteed to perform data layout matching the layout used by the C compiler
for C struct and union data types.

In particular, the .cstruct and .cunion directives force the same alignment and padding as
used by the C compiler when such types are nested within compound data structures.

The .endstruct directive terminates the structure definition. The .endunion directive
terminates the union definition.

The .tag directive gives structure characteristics to a label, simplifying the symbolic
representation and providing the ability to define structures that contain other structures.
The .tag directive does not allocate memory. The structure tag (stag) of a .tag directive
must have been previously defined.

Following are descriptions of the parameters used with the .struct, .endstruct, and .tag
directives:

» The stag is the structure's tag. Its value is associated with the beginning of the
structure. If no stag is present, the assembler puts the structure members in the
global symbol table with the value of their absolute offset from the top of the
structure. The stag is optional for .struct, but is required for .tag.

» The element is one of the following descriptors: .byte, .char, .int, .long, .word,
.double, .half, .short, .string, .float, and .field. All of these except .tag are typical
directives that initialize memory. Following a .struct directive, these directives
describe the structure element's size. They do not allocate memory. A .tag directive
is a special case because stag must be used (as in the definition of stag).

* The expr is an optional expression indicating the beginning offset of the structure.
The default starting point for a structure is 0.

* The expr,, is an optional expression for the number of elements described. This
value defaults to 1. A .string element is considered to be one byte in size, and a .field
element is one bit.

e The mem,, is an optional label for a member of the structure. This label is absolute
and equates to the present offset from the beginning of the structure. A label for a
structure member cannot be declared global.

* The size is an optional label for the total size of the structure.

This example illustrates a structure in C that will be accessed in assembly code.

{ int io0; /* offset 0 */
short sO; /* offset 4 */
} structl; /* size 8, alignment 4 */
104 Assembler Directives SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

; typedef struct STRUCT2

A structl stl; /* offset 0 */
; short si; /* offset 8 */
7} struct2; /* size 12, alignnment 4 */

; The structure will get the follow ng offsets once the C conpiler |lays out the structure
; elenents according to the C standard rul es

; offsetof(structl, i0) =0

; offsetof(structl, s0) = 4

; sizeof(structl) =38

; offsetof(struct2, sl) =0

; offsetof(struct2, il) =8

; sizeof (struct?2) =12

; Attenpts to replicate this structure in assenbly using the .struct/.union directives will not

; create the correct offsets because the assenbler tries to use the nost conpact arrangenent:

structl .Struct
io0 .int ;
sO .short ; bytes

structllen .endstruct

struct 2 .Sstruct
stl .tag structl
sl .short ;

endstruct2 .endstruct

.sect "datal"

.word structl.iO

.word structl.sO ;
.word structllen

.sect "data2"

.word struct2.stl

.word struct2.sl ;
.word endstruct2 ;

; The .cstruct/.cunion directives

; assenbly structure can be used to access the elenents of the C structure
; in the offsets of those structures defined via

cstructl .cstruct
i0 .int ;
sO .short ; bytes

cstructll en . endstruct

cstruct2 .cstruct
stl .tag cstructl

sl .short ; bytes
cendstruct2 . endstruct

.sect "data3"

bytes 0-3
4-5
size 6, alignment 4

bytes 0-5
bytes 6-7
size 8, alignment 4

N

0
6
8

calcul ate offsets in the sane manner as the C conpiler.
Conpare the difference
.struct above and the offsets for the C code

bytes 0-3
4-5
size 8, alignment 4

bytes 0-7

8-

9

size 12, alignnent 4

.word cstructl.i0, structl.iO ;0
.word cstructl.s0, structl.sO ;4
.word cstructllen, structllen ;8

.sect "data4"

.word cstruct2.stl, struct2.stl1 ; O
.word cstruct2.s1, struct2.sl ;8
.word cendstruct2, endstruct2 ;12

The resulting

SPNU118L—June 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

Assembler Directives

105

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS

INSTRUMENTS
Directives Reference www.ti.com
.data Assemble Into the .data Section
Syntax .data
Description The .data directive tells the assembler to begin assembling source code into the .data

section; .data becomes the current section. The .data section is normally used to contain
tables of data or preinitialized variables.

For more information about sections, see Chapter 2.

Example In this example, code is assembled into the .data and .text sections.
l EE R R S I S I I R R R R I I I R R I S I
2 *x Reserve space in .data. *x
3 khkhkhkhkkhkhhhkhkhkhkddhhhhhhhkhkhkhkhddhkhhkhhhkhhkhkhrhrhhhhhkdhhhhxx
4 00000000 .data
5 00000000 .space 0CCh
6
7 EE R R S R I I R R R R I R R R I I
8 *x Assenble into .text. **
9 khkhkhkhkhkhhhkhkhkhkddhhkhhhhhhkhkhkdddhdhhkhdhdhkhkhkhkhrhrhkhhhdhkdhhhhix
10 00000000 .text ; Constant into .data
11 00000000 | NDEX . set 0
12 00000000 E3A00000 MoV RO, #l NDEX
13
14 IR R SR EEEEEEEEEEEEEEEREEEEEEEEEERESEEEEEEEEESEEEESES
15 ** Assenbl e into .data. **
16 ER R R I I S I R R R R S I I R R R I I
17 000000cc Table: .data
18 000000cc FFFFFFFF .wor d -1 ; Assenble 32-bit
19 ; constant into .data.
20
21 000000d0 FF .byte OFFh ; Assenble 8-bit
22 ; constant into .data.
23
24 khkhkhkkhkkhkhhhkhkhkhkddhhkhhhhhhkhkhkhdddhdhhhdhkhkhkhkhrdhhhhdhdkhhhxx
25 * % Assenble into .text. * %
26 IR R SR EEEEEEEEEEEEEEEREEEEEEEEEERESEEEEEEEEESESEEESES
27 00000004 .text
28 00000004 000000CC" con: .field Table, 32
29 00000008 E51F100C LDR R1, con
30 0000000c E5912000 LDR R2, [R1]
31 00000010 E0802002 ADD R2, RO, R2
32 IR EE R EEEEEEEEEEEEEEEREEEEEEEEEERESEEEEEEEEESESEEESES
33 ** Resune assenbling into the .data section **
34 ** at address OFh. * %
35 IR SRR R EEEEEEEEEEEEEREEEEEEEEEEESEEEEEEEEESESEEESES
36 000000d1 .data

106 Assembler Directives SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS

INSTRUMENTS
www.ti.com Directives Reference
.double Initialize Double-Precision Floating-Point Value
Syntax .double value, [, ..., value,]
Description The .double directive places the IEEE double-precision floating-point representation of

one or more floating-point values into the current section. Each value must be a floating-
point constant or a symbol that has been equated to a floating-point constant. Each
constant is converted to a floating-point value in IEEE double-precision 64-bit format.
Double-precision floating point constants are aligned to a double word boundary.

The 64-bit value is stored in the format shown in Figure 5-5.

Figure 5-5. Double-Precision Floating-Point Format

[SEEEEEEEEEEEMMMMMMMMMMMMMMMMMMM M|
31 20 0

|MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMl
31 0

Legend: S =sign
E = exponent (11-bit biased)
M = mantissa (52-bit fraction)

When you use .double in a .struct/.endstruct sequence, .double defines a member's size;
it does not initialize memory. For more information, see the .struct/.endstruct/.tag topic.

Example This example shows the .double directive.
1 00000000 C5308B2A .doubl e -2.0e25
00000004 2C280291
2 00000008 40180000 .doubl e 6
0000000c 00000000
3 00000010 407C8000 . doubl e 456

00000014 00000000

SPNU118L—-June 2013 Assembler Directives 107

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.drlist/.drnolist

Syntax

Description

Example

Control Listing of Directives

drlist
.drnolist

Two directives enable you to control the printing of assembler directives to the listing file:
The .drlist directive enables the printing of all directives to the listing file.

The .drnolist directive suppresses the printing of the following directives to the listing
file. The .drnolist directive has no affect within macros.

e .asg » .fenolist e .ssnolist
e .break e .mlist e var

e .emsg e .mmsg e .wmsg

e .eval e .mnolist

o fclist e .sslist

By default, the assembler acts as if the .drlist directive had been specified.

This example shows how .drnolist inhibits the listing of the specified directives.

Source file:
. asg 0, Xx
.l oop 2
. eval x+1, X
. endl oop
.drnolist
. asg 1, x
.1 oop 3
. eval X+1, X
. endl oop
Listing file:
3 . asg 0, x
4 . | oop 2
5 . eval x+1, X
6 . endl oop
1 . eval 0+1, x
1 . eval 1+1, x
7
8 .drnolist
12 .1 oop 3
13 . eval x+1, X
14 . endl oop

108 Assembler Directives

SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS

INSTRUMENTS

www.ti.com Directives Reference

.elfsym ELF Symbol Information

Syntax .elfsym name, SYM_SIZE(size)

Description The .elfsym directive provides additional information for symbols in the ELF format. This
directive is designed to convey different types of information, so the type, data pair is
used to represent each type. Currently, this directive only supports the SYM_SIZE type.
SYM_SIZE indicates the allocation size (in bytes) of the symbol indicated by name.

Example This example shows the use of the ELF symbol information directive.

. sect " . exanmp"
.alignnent 4
.elfsym ex_sym SYM S| ZE(4)
.ex_sym
SPNU118L—-June 2013 Assembler Directives 109

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS

INSTRUMENTS
Directives Reference www.ti.com
.emsg/.mmsg/.wmsg Define Messages
Syntax .emsg string
.mmsg string
.wmsg string
Description These directives allow you to define your own error and warning messages. When you

use these directives, the assembler tracks the number of errors and warnings it
encounters and prints these numbers on the last line of the listing file.

The .emsg directive sends an error message to the standard output device in the same
manner as the assembler. It increments the error count and prevents the assembler from
producing an object file.

The .mmsg directive sends an assembly-time message to the standard output device in
the same manner as the .emsg and .wmsg directives. It does not, however, set the error
or warning counts, and it does not prevent the assembler from producing an object file.

The .wmsg directive sends a warning message to the standard output device in the
same manner as the .emsg directive. It increments the warning count rather than the
error count, however. It does not prevent the assembler from producing an object file.

Example In this example, the message ERROR -- MISSING PARAMETER is sent to the standard
output device.

Source file:

MSG EX . macro parnl
i f $$syml en(parnt) =0
.emsg "ERROR -- M SSI NG PARAMETER'

. el se
ADD parmi, r7, r8
.endif
.endm
MSG_EX RO
MSG_EX
Listing file:
1 MSG EX .macro parnl
2 Vi f $$sym en(parml) = 0
3 . ensg "ERROR -- M SSI NG PARAMETER'
4 .el se
5 ADD parmi, r7, r8
6 .endif
7 .endm
8
9 00000000 MSG EX RO
1 Jif $$synl en(parmt) =0
1 . ensg "ERROR -- M SSI NG PARAMETER"
1 .el se
1 00000000 E0870008 ADD RO, r7, r8
1 .endif
10
11 00000004 MSG_EX
1 Vi f $$sym en(parml) = 0
1 . ensg "ERROR -- M SSI NG PARAMETER"
*xxx% USER ERROR ***** - : ERROR -- M SSI NG PARAMETER
1 . el se
1 ADD parmi, r7, r8
1 .endif
1 Error, No Vrnings
110 Assembler Directives SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.end

Syntax

Description

Example

In addition, the following messages are sent to standard output by the assembler:

*** ERROR! line 11: ***** USER ERROR ***** - : ERROR -- M SSI NG PARAMETER
. ensg "ERROR -- M SSI NG PARAMETER' 11

1 Error, No Warnings
Errors in source - Assenbler Aborted

End Assembly

.end

The .end directive is optional and terminates assembly. The assembler ignores any
source statements that follow a .end directive. If you use the .end directive, it must be
the last source statement of a program.

This directive has the same effect as an end-of-file character. You can use .end when
you are debugging and you want to stop assembling at a specific point in your code.

Ending a Macro

NOTE: Do not use the .end directive to terminate a macro; use the .endm macro
directive instead.

This example shows how the .end directive terminates assembly. If any source
statements follow the .end directive, the assembler ignores them.

Source file:
START: .space 300
TEMP . set 15

. bss LOC1, 48h
LOCL_n .word LCCL

MVN RO, RO
ADD RO, RO, #TEMP
LDR R4, LOCL_n
STR RO, [R4]
.end
. byte 4
.word CCCh
Listing file:
1 00000000 START: . space 300
2 0000000F TEMP . set 15
3 00000000 . bss LOC1, 48h
4 0000012c 00000000- LOCL_n .word LOC1
5 00000130 E1E00000 MWN RO, RO
6 00000134 E280000F ADD RO, RO, #TEMP
7 00000138 E51F4014 LDR R4, LOCL_n
8 0000013c E5840000 STR RO, [R4]
9 .end

SPNU118L—-June 2013

Assembler Directives 111

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

fclist/.fcnolist

Syntax

Description

Example

Control Listing of False Conditional Blocks

fclist

fcnolist

Two directives enable you to control the listing of false conditional blocks:

The .fclist directive allows the listing of false conditional blocks (conditional blocks that
do not produce code).

The .fcnolist directive suppresses the listing of false conditional blocks until a .fclist
directive is encountered. With .fcnolist, only code in conditional blocks that are actually
assembled appears in the listing. The .if, .elseif, .else, and .endif directives do not
appear.

By default, all conditional blocks are listed; the assembler acts as if the .fclist directive
had been used.

This example shows the assembly language and listing files for code with and without
the conditional blocks listed.

Source file:
AAA .set 1
BBB .set O
.fclist
i f AAA
ADD RO, RO, #1024
. el se
ADD RO, RO, #1024*10
.endif
.fcnoli st
i f AAA
ADD RO, RO, #1024
. el se
ADD RO, RO, #1024*10
.endif
Listing file:
***ARM**
1 00000001 AAA .set 1
2 00000000 BBB .set O
3 .fclist
4
5 i f AAA
6 00000000 E2800B01 ADD RO, RO, #1024
7 .el se
8 ADD RO, RO, #1024*10
9 .endif
10
11 .fcnoli st
12

14 00000004 E2800B0O1 ADD RO, RO, #1024

112 Assembler Directives

SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

field

Syntax

Description

Example

Initialize Field

field value], size in bits]

The .field directive initializes a multiple-bit field within a single word (32 bits) of memory.
This directive has two operands:

» The value is a required parameter; it is an expression that is evaluated and placed in
the field. The value must be absolute.

* The size in bits is an optional parameter; it specifies a number from 1 to 32, which is
the number of bits in the field. The default size is 32 bits. If you specify a value that
cannot fit in size in bits, the assembler truncates the value and issues a warning
message. For example, .field 3,1 causes the assembler to truncate the value 3 to 1;
the assembler also prints the message:

*** WARNING |ine 21: WO001l: Field value truncated to 1
field 3, 1

Successive .field directives pack values into the specified number of bits starting at the
current word. Fields are packed starting at the most significant part of the word, moving
toward the least significant part as more fields are added. If the assembler encounters a
field size that does not fit into the current word, it writes out the word, and begins
packing fields into the next word.

Use the .align directive to force the next .field directive to begin packing a new word.
If you use a label, it points to the byte that contains the specified field.

When you use .field in a .struct/.endstruct sequence, .field defines a member's size; it
does not initialize memory. For more information, see the .struct/.endstruct/.tag topic.

This example shows how fields are packed into a word. The SPC does not change until
a word is filled and the next word is begun.

1 IR R E R EEEEEEEESEEEEEEEREEEEREEEEEEEEESE]
2 ** Initialize a 14-bit field. **
3 khkkkhkkhkkhkkhkhkhkhkhkhkhhkhkhhhhkdhkhkhkhrhrdrhhkhhkkhhhhhkxx
4 00000000 2AF00000 .field OABCh, 14

5

6 khkkkhkkhkkhkkhkkhkhkhkhkhkhhhkhkhhhkhkhkhkhkhrhrhkhkhhkkhhhhhxxx
7 *x Initialize a 5-bit field * %
8 ** in the same word. **
9 khkkkhkkhkkhkkhkhkhkhkhkhkhhkhkhhhkhkhkhkhkhrhrhrhhkhhkkhhhhkhxxx
10 00000000 2AF14000 L_F: .field O0Ah, 5

11

12 khkkkhkkhkkhkkhkhkhkhkhkhkhhkhkhkhkhhkhkhkhkhrhrhrhhkhhkkhkhhhxhxxx
13 * % Wite out the word. * %
14 khkkkkhkkhhkhkhkhkhhkhhkhkhkhkhhdhkdkhkhkhhkhhkhhdkhdxkx
15 .align 4

16

17 khkkkkhkkhkhkhkhkhkhhkhhkhkhkhkhhdkhkdkhkhhhkhhkhkhkhkkx
18 *x Initialize a 4-bit field. *x
19 ** This fields starts a new word. **
20 khkkkkhkkhhkhkhkhkhhkdhhkhkhkhhhkhhkdkhkhhhkhhkhhhkhdkx
21 00000004 CO000000 x: .field 0Ch, 4

22

23 khkkkkhkkhhkhkhkhkhhkdhhkhkhkhkhkhkhhkdkhkhhhkhhkhhhkhdkx
24 *x 32-bit relocatable field *x
25 * % in the next word. * %
26 khkkkkhkhkkhhkhkhkhkhhkhhkhhkhkhhdhkhkhkhhhkhhkhhdkkhdxkx
27 00000008 00000004' field x

28

29 khkkkkhkhkhkhkhkhkhkhhkdkhkhkhkhkhhkdhkhhkhhhkhhkdhhdkhkkx
30 *x Initialize a 32-bit field. *x
31 IR R SRR R EEEEEEEEEEEEEEREEEEREEEEEEEEESE]
32 0000000c 00004321 .field 04321h, 32

SPNU118L—-June 2013

Assembler Directives 113

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

Figure 5-6 shows how the directives in this example affect memory.

Figure 5-6. The .field Directive

Word Code

0 field OABCh, 14
3130292827 262524 2322212019 18 0
00101010111100

14-bit field

0 field 00Ah, 5
31 1817 16 1514 13 0
00101010111100/01010

5-bit field align 4

1 field 00Ch, 5
31302928 0
1100
4-bit field

2 field x
31 0
000000000O0O0O0O0OO0O0OO0OO0OOO0OO0OO0O0OO0O0OO0OT1OQO

3 field 04321, 32

31

0

00000O0O0OOOOOODOOOOOOOOO1TOOOTGO1

100001

114 Assembler Directives

Copyright © 2013, Texas Instruments Incorporated

SPNU118L—June 2013
Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS

INSTRUMENTS
www.ti.com Directives Reference
float Initialize Single-Precision Floating-Point Value
Syntax float value], ..., value,]
Description The .float directive places the IEEE single-precision floating-point representation of a

single floating-point constant into a word in the current section. The value must be a
floating-point constant or a symbol that has been equated to a floating-point constant.
Each constant is converted to a floating-point value in IEEE single-precision 32-bit
format.

The 32-bit value is stored exponent byte first, most significant byte of fraction second,
and least significant byte of fraction third, in the format shown in Figure 5-7.

Figure 5-7. Single-Precision Floating-Point Format

[SEEEEEEEEMMMMMMMMMMMMMMMMMMMMMM M
31 23 0

value = (-1)°x (1.0 + mantissa) x (2)°°"""*’
Legend: S =sign (1 bit)

E = exponent (8-bit biased)

M = mantissa (23-bit fraction)

When you use .float in a .struct/.endstruct sequence, .float defines a member's size; it
does not initialize memory. For more information, see the .struct/.endstruct/.tag topic.

Example Following are examples of the .float directive:
1 00000000 E9045951 .float -1.0e25
2 00000004 40400000 .float 3
3 00000008 42F60000 .float 123
SPNU118L—June 2013 Assembler Directives 115

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.global/.def/.ref

Syntax

Description

Example

Identify Global Symbols

.global symbol,], ... , symbol,]
.def symboly[, ... , symbol,]
.ref symbol,][, ... , symbol,]

Three directives identify global symbols that are defined externally or can be referenced
externally:

The .def directive identifies a symbol that is defined in the current module and can be
accessed by other files. The assembler places this symbol in the symbol table.

The .ref directive identifies a symbol that is used in the current module but is defined in
another module. The linker resolves this symbol's definition at link time.

The .global directive acts as a .ref or a .def, as needed.

A global symbol is defined in the same manner as any other symbol; that is, it appears
as a label or is defined by the .set, .equ, .bss, or .usect directive. As with all symbols, if a
global symbol is defined more than once, the linker issues a multiple-definition error. The
.ref directive always creates a symbol table entry for a symbol, whether the module uses
the symbol or not; .global, however, creates an entry only if the module actually uses the
symbol.

A symbol can be declared global for either of two reasons:

» If the symbol is not defined in the current module (which includes macro, copy, and
include files), the .global or .ref directive tells the assembler that the symbol is
defined in an external module. This prevents the assembler from issuing an
unresolved reference error. At link time, the linker looks for the symbol's definition in
other modules.

» If the symbol is defined in the current module, the .global or .def directive declares
that the symbol and its definition can be used externally by other modules. These
types of references are resolved at link time.

This example shows four files. The filel.Ist and file2.Ist refer to each other for all symbols
used; file3.Ist and file4.Ist are similarly related.

The filel.Ist and file3.Ist files are equivalent. Both files define the symbol INIT and
make it available to other modules; both files use the external symbols X, Y, and Z. Also,
filel.Ist uses the .global directive to identify these global symbols; file3.Ist uses .ref and
.def to identify the symbols.

The file2.Ist and file4.Ist files are equivalent. Both files define the symbols X, Y, and Z
and make them available to other modules; both files use the external symbol INIT. Also,
file2.Ist uses the .global directive to identify these global symbols; file4.Ist uses .ref and
.def to identify the symbols.

filel.lst

1 A obal synbol defined in this file
2 .global INIT
3 d obal synbols defined in file2.lst
4 .global X Y, Z
5 00000000 INIT:
6 00000000 E2800056 ADD RO, RO, #56h
7 00000004 00000000! .word X
8 .
9

10 .

11 .end

116 Assembler Directives

SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

file2.Ist

00000001
00000002
00000003

; d obal
; d obal
X

Y:
Z:

1
2
3
4
5
6
7
8

9
10
11
12

file3.Ist

[
FOOWOMNOUAWNER

filed.Ist

00000000 00000000!

d obal
; d obal
00000000

00000000 E2800056
00000004 00000000!

I'NIT:

; d obal
; d obal

00000001 X

00000002 Y:

00000003 Z:
00000000 00000000!

synbols defined in this file

. gl obal

synbol

. gl obal

. set
. set
. set
.wor d

.end

X Y, Z

defined in filel.lst
INIT

1

2

3

INIT

synbols defined in this file

. def
synbol
.ref

ADD
.wor d

.end

INIT
defined in filed4.lst
X Y, Z

RO, RO, #56
X

synbols defined in this file

. def
synbol
.ref
. set
. set
. set
.wor d

.end

X Y, Z

defined in file3.Ist
INIT

1

2

3

INIT

SPNU118L—June 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

Assembler Directives 117

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.group/.gmember/.endgroup Define Common Data Section

Syntax .group group section name group type
.gmember section name
.endgroup
Description Three directives instruct the assembler to make certain sections members of an ELF
group section (see the ELF specification for more information on group sections).
The .group directive begins the group declaration. The group section name designates
the name of the group section. The group type designates the type of the group. The
following types are supported:
0x0 Regular ELF group
0x1 COMDAT ELF group
The .gmember directive designates section name as a member of the group.
The .endgroup directive ends the group declaration.
118 Assembler Directives SPNU118L—June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.half/.short/.uhalf/.ushort |Initialize 16-Bit Integers

Syntax

Description

Example

.half value,][, ..., value,]
.short value,], ... , value,]
.uhalf value,[, ..., value,]

.ushort value,[, ... , value,]

The .half and .short directives place one or more values into consecutive halfwords in
the current section. A value can be either:

» An expression that the assembler evaluates and treats as a 16-bit signed or unsigned
number

» A character string enclosed in double quotes. Each character in a string represents a
separate value and is stored alone in the least significant eight bits of a 16-bit field,
which is padded with 0s.

The assembler truncates values greater than 16 bits.

If you use a label with .half or .short, it points to the location where the assembler places
the first byte.

These directives perform a halfword (16-bit) alignment before data is written to the
section. This guarantees that data resides on a 16-bit boundary.

When you use .half or .short in a .struct/.endstruct sequence, they define a member's
size; they do not initialize memory. For more information, see the .struct/.endstruct/.tag
topic.

In this example, .half is used to place 16-bit values (10, -1, abc, and a) into consecutive
halfwords in memory; .short is used to place 16-bit values (8, -3, def, and b) into
consecutive halfwords in memory. The label STRN has the value 100ch, which is the
location of the first initialized halfword for .short.

1 00000000 .space 100h * 16
2 00001000 O00A . hal f 10, -1, "abc", 'a
00001002 FFFF
00001004 0061
00001006 0062
00001008 0063
0000100a 0061
3 0000100c 0008 STRN .short 8, -3, "def", 'b
0000100e FFFD
00001010 0064
00001012 0065
00001014 0066
00001016 0062

SPNU118L—-June 2013

Assembler Directives 119

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.if/.elseif/.else/.endif Assemble Conditional Blocks

Syntax .if well-defined expression
[.elseif well-defined expression]
[-else]
.endif
Description These directives provide conditional assembly:
The .if directive marks the beginning of a conditional block. The well-defined expression
is a required parameter.
« If the expression evaluates to true (nonzero), the assembler assembles the code that
follows the expression (up to a .elseif, .else, or .endif).
» If the expression evaluates to false (0), the assembler assembles code that follows a
.elseif (if present), .else (if present), or .endif (if no .elseif or .else is present).
The .elseif directive identifies a block of code to be assembled when the .if expression is
false (0) and the .elseif expression is true (nonzero). When the .elseif expression is
false, the assembler continues to the next .elseif (if present), .else (if present), or .endif
(if no .elseif or .else is present). The .elseif is optional in a conditional block, and more
than one .elseif can be used. If an expression is false and there is no .elseif, the
assembler continues with the code that follows a .else (if present) or a .endif.
The .else directive identifies a block of code that the assembler assembles when the .if
expression and all .elseif expressions are false (0). The .else directive is optional in the
conditional block; if an expression is false and there is no .else statement, the assembler
continues with the code that follows the .endif. The .elseif and .else directives can be
used in the same conditional assembly block.
The .endif directive terminates a conditional block.
See Section 4.8.2 for information about relational operators.
Example This example shows conditional assembly:
1 00000001 SYML . set 1
2 00000002 SYM2 . set 2
3 00000003 SYMB . set 3
4 00000004 SYM4 . set 4
5
6 1f_4: Lif SYMA = SYM2 * SYM2
7 00000000 04 .byte SYm4 ; Equal val ues
8 .el se
9 . byte SYMR * SYmR ; Unequal val ues
10 .endif
11
12 I f_5: i f SYML <= 10
13 00000001 OA . byte 10 ; Less than / equal
14 .el se
15 . byte SYmL ; Greater than
16 .endif
17
18 1f_6: .if SYMB * SYM2 |= SYMt + SYM2
19 .byte SYMB * SYmR ; Unequal val ue
20 .else
21 00000002 08 . byte SYM4 + SYM4 ; Equal val ues
22 .endif
23
24 1f_7: Lif SYML = SYM2
25 .byte SYML
26 .elseif SYM + SYM3 = 5
27 00000003 05 .byte SYM2 + SYM3
28 .endif
120 Assembler Directives SPNU118L—June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.int/.unint/.long/.ulong/.word/.uword Initialize 32-Bit Integers

Syntax .int value,[, ..., value,]

.uint value,], ... , value, |

long value,], ..., value,]

.ulong value,|, ... , value,]
.word value,|, ..., value,]
.uword value,[, ..., value,]
Description The .int, .unint, .long, .ulong, .word, and .uword directives place one or more values

into consecutive words in the current section. Each value is placed in a 32-bit word by

itself and is aligned on a word boundary. A value can be either:
» An expression that the assembler evaluates and treats as a 32-bit signed or unsigned

number

» A character string enclosed in double quotes. Each character in a string represents a

separate value and is stored alone in the least significant eight bits of a 32-bit field,

which is padded with Os.

A value can be either an absolute or a relocatable expression. If an expression is

relocatable, the assembler generates a relocation entry that refers to the appropriate
symbol; the linker can then correctly patch (relocate) the reference. This allows you to

initialize memory with pointers to variables or labels.

If you use a label with these directives, it points to the first word that is initialized.

When you use these directives in a .struct/.endstruct sequence, they define a member's
size; they do not initialize memory. See the .struct/.endstruct/.tag topic.

Example 1 This example uses the .int directive to initialize words.

1 00000000
2 00000000
3 00000080
4 00000074
5 00000078
0000007c
00000080
00000084
00000088
0000008c
00000090
00000094

E3A00056
0000000A
00000080-
FFFFFFFF
00000084
00000074
00000061
00000062
00000063

Example 2 This example shows how the

the first word that is reserved.

1 00000000
00000004
00000008
0000000c

2 00000010
00000014

3 00000018

0000ABCD
00000141
00000067
0000006F
00000000
AABBCCDD

.space 73h

. bss PAGE, 128

. bss SYMPTR, 4
I NST: MOV RO, #056h

.int 10, SYMPTR, -1, 35 + "a', |INST, "abc"

long directive initializes words. The symbol DAT1 points to

DAT1: .long 0OABCDh, 'A" + 100h, 'g', 'O

.long DAT1, OAABBCCDDh

DAT2:

Example 3 In this example, the .word directive is used to initialize words. The symbol WORDX
points to the first word that is reserved.

1 00000000 00000C80 WORDX: .word 3200, 1 + 'AB', -0AFh, 'X

00000004
00000008
0000000c

00004242
FFFFFF51
00000058

SPNU118L—June 2013
Submit Documentation Feedback

Assembler Directives

Copyright © 2013, Texas Instruments Incorporated

121

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

Jabel

Syntax

Description

Examp

le

Create a Load-Time Address Label

.label symbol

The .label directive defines a special symbol that refers to the load-time address rather
than the run-time address within the current section. Most sections created by the
assembler have relocatable addresses. The assembler assembles each section as if it
started at 0, and the linker relocates it to the address at which it loads and runs.

For some applications, it is desirable to have a section load at one address and run at a
different address. For example, you may want to load a block of performance-critical
code into slower memory to save space and then move the code to high-speed memory
to run it. Such a section is assigned two addresses at link time: a load address and a run
address. All labels defined in the section are relocated to refer to the run-time address
so that references to the section (such as branches) are correct when the code runs.

The .label directive creates a special label that refers to the load-time address. This
function is useful primarily to designate where the section was loaded for purposes of
the code that relocates the section.

This example shows the use of a load-time address label.

sect ".exanp"
.l abel exanp_load ; |oad address of section

start: ; run address of section
<code>

finish: ; run address of section end
.l abel exanp_end ; |oad address of section end

See Section 8.5.5 for more information about assigning run-time and load-time
addresses in the linker.

122

Assembler Directives

SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

length/.width

Syntax

Description

Example

Set Listing Page Size

Jength [page length]
.width [page width]

Two directives allow you to control the size of the output listing file.

The .length directive sets the page length of the output listing file. It affects the current
and following pages. You can reset the page length with another .length directive.

» Default length: 60 lines. If you do not use the .length directive or if you use the
.length directive without specifying the page length, the output listing length defaults
to 60 lines.

e Minimum length: 1 line
* Maximum length: 32 767 lines
The .width directive sets the page width of the output listing file. It affects the next line

assembled and the lines following. You can reset the page width with another .width
directive.

» Default width: 132 characters. If you do not use the .width directive or if you use the
.width directive without specifying a page width, the output listing width defaults to
132 characters.

e Minimum width: 80 characters
* Maximum width: 200 characters

The width refers to a full line in a listing file; the line counter value, SPC value, and
object code are counted as part of the width of a line. Comments and other portions of a
source statement that extend beyond the page width are truncated in the listing.

The assembler does not list the .width and .length directives.

The following example shows how to change the page length and width.

Khkkhkhhkhhkhhkhhhhhhhhhhhhhhhhhhkhhhhhkhhkhhkhkhkxx

* % Page |l ength = 65 lines * %
*x Page width = 85 characters *x
khkkkkhkkkhkkhkhkkhkhkkhhkkhhkhkhkhkhhkkhhkkhhhkhhkdhdhhkhhhkhkdhxdhhxxx*%

.length 65

.width 85
khkkhkkhkkhkkhkkhkkhkhkkhkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkkkk**x*%x
*x Page length = 55 lines *x
*x Page wi dth = 100 characters *x
khkkhkkhkkhkkhkkhkkhkhkhkhhkhkhkhhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkkkkk*x*x*%x

.length 55

.width 100

SPNU118L—-June 2013

Assembler Directives 123

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

Jdist/.nolist

Syntax

Description

Example

Start/Stop Source Listing

Jist

.nolist

Two directives enable you to control the printing of the source listing:
The .list directive allows the printing of the source listing.

The .nolist directive suppresses the source listing output until a .list directive is
encountered. The .nolist directive can be used to reduce assembly time and the source
listing size. It can be used in macro definitions to suppress the listing of the macro
expansion.

The assembler does not print the .list or .nolist directives or the source statements that
appear after a .nolist directive. However, it continues to increment the line counter. You
can nest the .list/.nolist directives; each .nolist needs a matching .list to restore the
listing.

By default, the source listing is printed to the listing file; the assembler acts as if the .list
directive had been used. However, if you do not request a listing file when you invoke
the assembler by including the --asm_listing option on the command line (see

Section 4.3), the assembler ignores the .list directive.

This example shows how the .copy directive inserts source statements from another file.
The first time this directive is encountered, the assembler lists the copied source lines in
the listing file. The second time this directive is encountered, the assembler does not list
the copied source lines, because a .nolist directive was assembled. The .nolist, the
second .copy, and the .list directives do not appear in the listing file. Also, the line
counter is incremented, even when source statements are not listed.

Source file:
. copy "copy2. asnt
* Back in original file
NOP
. noli st
. copy "copy2. asnt

Llist
* Back in original file

.string " Done"
Listing file:
1 . copy "copy2. asnf
A 1 * |n copy2.asm (copy file)
A 2 00000000 00000020 .word 32, 1 +'A

00000004 00000042
* Back in original file
00000008 E1A00000 NOP
* Back in original file
.string "Done"

0 ~NWN

00000014 44
00000015 6F
00000016 6E
00000017 65

124 Assembler Directives

SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

Jloop/.endloop/.break Assemble Code Block Repeatedly

Syntax

Description

Example

Joop [well-defined expression]
.break [well-defined expression]

.endloop

Three directives allow you to repeatedly assemble a block of code:

The .loop directive begins a repeatable block of code. The optional expression
evaluates to the loop count (the number of loops to be performed). If there is no well-
defined expression, the loop count defaults to 1024, unless the assembiler first
encounters a .break directive with an expression that is true (nonzero) or omitted.

The .break directive, along with its expression, is optional. This means that when you
use the .loop construct, you do not have to use the .break construct. The .break directive
terminates a repeatable block of code only if the well-defined expression is true
(nonzero) or omitted, and the assembler breaks the loop and assembles the code after
the .endloop directive. If the expression is false (evaluates to 0), the loop continues.

The .endloop directive terminates a repeatable block of code; it executes when the
.break directive is true (nonzero) or when the number of loops performed equals the loop
count given by .loop.

This example illustrates how these directives can be used with the .eval directive. The
code in the first six lines expands to the code immediately following those six lines.

1 .eval 0, x

2 CCEF .loop

3 .wor d x*100

4 .eval x+1, X

5 . break X =6

6 . endl oop
1 00000000 00000000 .word 0*100
1 . eval 0+1, x
1 . break 1=
1 00000004 00000064 .word 1*100
1 . eval 1+1, X
1 . break 2 =6
1 00000008 000000C8 .word 2*100
1 . eval 2+1, X
1 . break 3 =6
1 0000000c 0000012C .word 3*100
1 . eval 3+1, X
1 . break 4 =
1 00000010 00000190 .word 4*100
1 . eval 4+1, x
1 . break 5=6
1 00000014 000001F4 .word 5%*100
1 . eval 5+1, X
1 . break 6 =6

SPNU118L—June 2013
Submit Documentation Feedback

Assembler Directives 125

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS

INSTRUMENTS
Directives Reference www.ti.com
.macro/.endm Define Macro
Syntax macname .macro [parameter,|, ... , parameter,]]

model statements or macro directives

.endm

Description The .macro and .endm directives are used to define macros.

You can define a macro anywhere in your program, but you must define the macro
before you can use it. Macros can be defined at the beginning of a source file, in an
.include/.copy file, or in a macro library.

macname names the macro. You must place the name in the source
statement's label field.

.macro identifies the source statement as the first line of a macro
definition. You must place .macro in the opcode field.

[parameters] are optional substitution symbols that appear as operands for the

.macro directive.

model statements are instructions or assembler directives that are executed each
time the macro is called.

macro directives are used to control macro expansion.
.endm marks the end of the macro definition.

Macros are explained in further detail in Chapter 6.

126 Assembler Directives SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS

INSTRUMENTS

www.ti.com

Directives Reference

.mlib

Syntax

Description

Example

Define Macro Library

.mlib "filename"

The .mlib directive provides the assembler with the filename of a macro library. A macro
library is a collection of files that contain macro definitions. The macro definition files are
bound into a single file (called a library or archive) by the archiver.

Each file in a macro library contains one macro definition that corresponds to the name
of the file. The filename of a macro library member must be the same as the macro
name, and its extension must be .asm. The filename must follow host operating system
conventions; it can be enclosed in double quotes. You can specify a full pathname (for
example, c:\320tools\macs.lib). If you do not specify a full pathname, the assembler
searches for the file in the following locations in the order given:

1. The directory that contains the current source file

2. Any directories hamed with the --include_path assembler option

3. Any directories specified by the TI_ARM_A_DIR environment variable
4. Any directories specified by the TI_ARM_C_DIR environment variable

See Section 4.4 for more information about the --include_path option.

A .mlib directive causes the assembler to open the library specified by filename and
create a table of the library's contents. The assembler stores names of individual library
members in the opcode table as library entries. This redefines any existing opcodes or
macros with the same name. If one of these macros is called, the assembler extracts the
library entry and loads it into the macro table. The assembler expands the library entry
as it does other macros, but it does not place the source code in the listing. Only macros
called from the library are extracted, and they are extracted only once.

See Chapter 6 for more information on macros and macro libraries.

The code creates a macro library that defines two macros, inc4.asm and dec4.asm. The
file inc4.asm contains the definition of inc4 and dec4.asm contains the definition of dec4.

inc4.asm dec4.asm
* Macro for increnenting * Macro for decrenenting
incd .macro regl, reg2, reg3, reg4 dec4 .macro regl, reg2, reg3, reg4
Add regl, regl, #1 SUB regl, regl, #1
ADD reg2, reg2, #1 SUB reg2, reg2, #1
ADD reg3, reg3, #1 SUB reg3, reg3, #l1
ADD reg4, reg4, #1 SUB reg4, reg4, #1
.endm .endm

Use the archiver to create a macro library:
armar -a mac i nc4.asm dec4. asm
ar32 -a mac i nc4.asm dec4. asm

Now you can use the .mlib directive to reference the macro library and define the
inc4.asm and dec4.asm macros:

1 .mMib "mac. |ib"

2 ; Macro cal

3 00000000 inc4 R7, R6, R5, R4
1 00000000 E2877001 ADD R7, R7, #1
1 00000004 E2866001 ADD R6, R6, #1
1 00000008 E2855001 ADD R5, R5, #1
1 0000000c E2844001 ADD R4, R4, #1

4

5 ; Macro call

6 00000010 dec4 RO, Rl, R2, R3
1 00000010 E2400001 SuB RO, RO, #1
1 00000014 E2411001 SuB R1, R1, #1
1 00000018 E2422001 SUB R2, R2, #1
1 0000001c E2433001 SuB R3, R3, #1

SPNU118L—-June 2013

Assembler Directives 127

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.mlist/. mnolist

Start/Stop Macro Expansion Listing

Syntax .mlist
.mnolist

Description Two directives enable you to control the listing of macro and repeatable block
expansions in the listing file:

The .mlist directive allows macro and .loop/.endloop block expansions in the listing file.
The .mnolist directive suppresses macro and .loop/.endloop block expansions in the
listing file.

By default, the assembler behaves as if the .mlist directive had been specified.

See Chapter 6 for more information on macros and macro libraries. See the
loop/.break/.endloop topic for information on conditional blocks.

Example This example defines a macro named STR_3. The first time the macro is called, the
macro expansion is listed (by default). The second time the macro is called, the macro
expansion is not listed, because a .mnolist directive was assembled. The third time the
macro is called, the macro expansion is again listed because a .mlist directive was
assembled.

1 STR 3 .macro P1, P2, P3
2 .string ":pl:", ":p2:", ":p3:"
3 .endm
4
5 00000000 STR 3 "as", "I", "ant ; I nvoke STR_3 nmacro.
1 00000000 3A .string ":pl:", ":p2:", ":p3:"
00000001 70
00000002 31
00000003 3A
00000004 3A
00000005 70
00000006 32
00000007 3A
00000008 3A
00000009 70
0000000a 33
0000000b 3A
6 .mmol i st ; Suppress expansi on.
7 0000000c STR 3 "as", "I", "ant ; I nvoke STR_3 macro.
8 .mist ; Show macro expansi on.
9 00000018 STR 3 "as", "I", "anf ; Invoke STR 3 macro
1 00000018 3A .string ":pl:", ":p2:", ":p3:"
00000019 70
0000001a 31
0000001b 3A
0000001c 3A
0000001d 70
0000001e 32
0000001f 3A
00000020 3A
00000021 70
00000022 33
00000023 3A
128 Assembler Directives SPNU118L—June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.newblock

Syntax

Description

Example

Terminate Local Symbol Block

.newblock

The .newblock directive undefines any local labels currently defined. Local labels, by
nature, are temporary; the .newblock directive resets them and terminates their scope.

A local label is a label in the form $n, where n is a single decimal digit, or name?, where
name is a legal symbol name. Unlike other labels, local labels are intended to be used
locally, and cannot be used in expressions. They can be used only as operands in 8-bit
jump instructions. Local labels are not included in the symbol table.

After a local label has been defined and (perhaps) used, you should use the .newblock
directive to reset it. The .text, .data, and .sect directives also reset local labels. Local
labels that are defined within an include file are not valid outside of the include file.

See Section 4.7.3 for more information on the use of local labels.

This example shows how the local label $1 is declared, reset, and then declared again.

1 00000000 E3510000 LABEL1l: CWP rl, #0

2 00000004 2A000001 BCS $1

3 00000008 E2900001 ADDS r0, r0, #1

4 0000000c 21A0FOQOE MOVCS pc, Ir

5 00000010 E4952004 $1: LDR r2, [r5], #4

6 . newbl ock ; Undefine $1 to use again.
7 00000014 E0911002 ADDS r1, rl, r2

8 00000018 5A000000 BPL $1

9 0000001c E1F01001 MNS r1, rl

10 00000020 E1AOFOOE $1: MoV pc, Ir

SPNU118L—-June 2013

Assembler Directives 129

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.option Select Listing Options

Syntax

.option option,[, option,,. . .]

Description The .option directive selects options for the assembler output listing. The options must
be separated by commas; each option selects a listing feature. These are valid options:

A

Xs—H4mOozZZTrIw

turns on listing of all directives and data, and subsequent expansions, macros,
and blocks.

limits the listing of .byte and .char directives to one line.

limits the listing of .half and .short directives to one line.

limits the listing of .long directives to one line.

turns off macro expansions in the listing.

turns off listing (performs .nolist).

turns on listing (performs .list).

resets any B, H, M, T, and W (turns off the limits of B, H, M, T, and W).
limits the listing of .string directives to one line.

limits the listing of .word and .int directives to one line.

produces a cross-reference listing of symbols. You can also obtain a cross-
reference listing by invoking the assembler with the --cross_reference option
(see Section 4.3).

Options are not case sensitive.

Example This example shows how to limit the listings of the .byte, .char, .int, long, .word, and
.string directives to one line each.
1 R SRR RS R EE S
2 ** |imt the listing of .byte, .char, .int, .long, **
3 ** _word, and .string directives to 1 line each. **
4 R SRR RS R EE S
5 .option B, W T
6 00000000 BD .byte -'C, 0BOh, 5
7 00000003 BC . char -'D, 0COh, 6
8 00000008 0000000A .int 10, 35 + 'a', "abc"
9 0000001c AABBCCDD .long OAABBCCDDh, 536 + 'A'
10 00000024 000015AA .word 5546, 78h
11 0000002c 45 .string "Extended Registers"
12
13 LR EEE R RS EEE S
14 * % Reset the listing options. * %
15 kkhkkhkkhkkhkkhkkhkkhkkhkhkhkkhkkhkhkhkkhkkhkkhkkhkhkkhkkhkkhkkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkkkkkkkk*x*%x
16 .option R
17 0000003e BD .byte -'C, O0BOh, 5
0000003f BO
00000040 05
18 00000041 BC . char -'D, 0COh, 6
00000042 CO
00000043 06
19 00000044 0000000A .int 10, 35 + 'a', "abc"
00000048 00000084
0000004c 00000061
00000050 00000062
00000054 00000063
20 00000058 AABBCCDD .long OAABBCCDDh, 536 + 'A
0000005¢ 00000259
21 00000060 000015AA .wor d 5546, 78h
00000064 00000078
22 00000068 45 .string "Extended Registers"

00000069 78

130 Assembler Directives

SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

0000006a
0000006b
0000006¢
0000006d
0000006e
0000006f

00000070
00000071
00000072
00000073
00000074
00000075
00000076
00000077
00000078
00000079

74
65
6E
64
65
64
20
52
65
67
69
73
74
65
72
73

.page Eject Page in Listing

Syntax

Description The .page directive produces a page eject in the listing file. The .page directive is not

.page

printed in the source listing, but the assembler increments the line counter when it
encounters the .page directive. Using the .page directive to divide the source listing into
logical divisions improves program readability.

Example This example shows how the .page directive causes the assembler to begin a new page
of the source listing.

Source fi

Source file (generic)

le:

.title "x*x*%* Page Directive Exanple ****"
. page
Listing file:
TMB470R1x Assenbl er Ver si on X. XX Day Ti nme Year
Copyright (c) 1996-2011 Texas Instrunents | ncorporated
**** Page Directive Exanple **** PAGE
2 ;
3 ;
4 ; .
TMB470R1x Assenbl er Ver si on X. XX Day Ti me Year
Copyright (c) 1996-2011 Texas |nstrunments | ncorporated
x* Page Directive Exanple * PAGE
No Errors, No Warnings

SPNU118L—June 2013
Submit Documentation Feedback

Assembler Directives

Copyright © 2013, Texas Instruments Incorporated

131

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.retain / .retainrefs

Syntax

Description

Conditionally Retain Sections In Object Module Output

.retain["section name"]

.retainrefs["section name"]

The .retain directive indicates that the current or specified section is not eligible for
removal via conditional linking. You can also override conditional linking for a given
section with the --retain linker option. You can disable conditional linking entirely with the
--unused_section_elimination=off linker option.

The .retainrefs directive indicates that any sections that refer to the current or specified
section are not eligible for removal via conditional linking. For example, applications may
use an .intvecs section to set up interrupt vectors. Under EABI, the .intvecs section is
eligible for removal during conditional linking by default. You can force the .intvecs
section and any sections that reference it to be retained by applying the .retain and
.retainrefs directives to the .intvecs section. This directive is ignored if the COFF model
is used.

The section name identifies the section. If the directive is used without a section name, it
applies to the current initialized section. If the directive is applied to an uninitialized
section, the section name is required. The section name must be enclosed in double
guotes. A section name can contain a subsection name in the form section
name:subsection name.

Under the ELF EABI model, the linker assumes that all sections by default are eligible
for removal via conditional linking. (However, the linker does automatically retain the
.reset section.) The .retain directive is useful for overriding this default conditional linking
behavior for sections that you want to keep included in the link, even if the section is not
referenced by any other section in the link. For example, you could apply a .retain
directive to an interrupt function that you have written in assembly language, but which is
not referenced from any normal entry point in the application.

Under the COFF ABI model, the linker assumes that all sections are not eligible for
removal via conditional linking by default. So under the COFF ABI mode, the .retain
directive does not have any real effect on the section.

132

Assembler Directives

SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.sect

Syntax

Description

Example

Assemble Into Named Section

.sect " section name "
.sect " section name " [{RO|RW}] [[{ALLOC|NOALLOC}]

The .sect directive defines a named section that can be used like the default .text and
.data sections. The .sect directive tells the assembler to begin assembling source code
into the named section. The section name identifies the section. The section name must
be enclosed in double quotes. A section hame can contain a subsection name in the
form section name : subsection name.

In ELF mode the sections can be marked read-only (RO) or read-write (RW). Also, the

sections can be marked for allocation (ALLOC) or no allocation (NOALLOC). These

attributes can be specified in any order, but only one attribute from each set can be

selected. RO conflicts with RW, and ALLOC conflicts with NOALLOC. If conflicting

attributes are specified the assembler generates an error, for example:

"t.asnl, ERRORI at line 1:[EO000] Attribute RO cannot be conbined with attr RW
.sect "illegal _sect", RO RW

The extra operands are allowed only in ELF mode. They are ignored but generate a
warning in COFF mode. For example:
"t.asnl, WARNING at line 1:[WO000] Trailing operands ignored

.sect "cosnt_sect", RO

See Chapter 2 for more information about sections.

This example defines two special-purpose sections, Sym_Defs and Vars, and assembles
code into them.

1 khkkhkkhkkhkhkhkkhkhkkhhhhhhkhhhkhhkhhhhhkhkhkhkhkhhhhkhhkhkhkhkhkhkhkhkhkhkhkkkkkkk**x*%x

2 *x Begi n assenbling into .text section. *x

3 khkkkkhkkkhkhkhkkhkhkkhhkkhhkhkhhkhhkhhkdhhkhhkhhkdhhkhhkdhdhdhhhhhhdhhhhkdxkxx

4 00000000 .text

5 00000000 E3A00078 MoV RO, #78h

6 00000004 E2801078 ADD R1, RO, #78h

7 khkkhkkhkkhkhkkhkkhkhkhhhhhhkhhhhkhkhhhkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkkk*x*x*%

8 *x Begi n assenbling into Sym Defs section. *x

9 khkkkkhkkkhkhkhkkhkhkkhhkkhhkhkhhkhhkkhhkhhhhhkhhdhhhhkhhhhhrhkhhdhxdhhhhxdxk%x

10 00000000 . sect " Sym Def s"

11 00000000 3D4CCCCD .float 0.05 ; Assenbled into Sym Defs

12 00000004 000000AA X: .word 0AAh ; Assenbl ed into Sym Defs

13 00000008 E2833028 ADD R3, R3, #28h ; Assenbled into Sym Defs

14 kkhkkkhkkhkkhkkhkkhkhkhkhkhkhkhkkhkkhkkhkkhkhkhkkhkhkkhkkhkkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkkkkkkkk*x*%x

15 > Begi n assenbling into Vars section. *x

16 khkkkhkkhkkhkkhkhkhkhkhhhhhkhhkhkhhkhkhhkhhkkkkkk*x*x*%

17 00000000 . sect "Vars"

18 00000010 WORD_LEN . set 16

19 00000020 DWORD_LEN . set WORD_LEN * 2

20 00000008 BYTE_LEN . set WORD_LEN / 2

21 khkkkkhkkkhkkhkkhkhkkhhkkhhkhkhhkhhkkhhkdhhkhhkhhdhhhhkhhhhdrhkhhdhdhhhhxdxkx%x

22 * % Resume assenbling into .text section. * %

23 kkhkkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkhkhkkhkhkkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkkkkkkkk*x*%x

24 00000008 . text

25 00000008 E2802042 ADD R2, RO, #42h ; Assenbled into .text

26 0000000c 03 .byte 3, 4 ; Assenbled into .text
0000000d 04

27 khkkhkkhkkhkkhkkhkhkhkkhkhkhhkhkhkhhhkhhhkhhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkkkkk*x*x*%

28 *x Resume assenbling into Vars section. *x

29 khkkkkhkkkhkhkhkkhkhkkhhkkhhkhkhhkhhkkhhkdhhkhhkkhhdhhhhkhhhhdrhkrhdhdhhhhxdxkx%x

30 00000000 . sect "Vars"

31 00000000 000DO000O .field 13, WORD_LEN

32 00000000 000DOAOO .field O0Ah, BYTE_LEN

33 00000004 00000008 .field 10q, DWORD LEN

SPNU118L—-June 2013

Assembler Directives 133

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.set/.equ

Syntax

Description

Example

Define Assembly-Time Constant

symbol .set value
symbol .equ value

The .set and .equ directives equate a constant value to a .set/.equ symbol. The symbol
can then be used in place of a value in assembly source. This allows you to equate
meaningful names with constants and other values. The .set and .equ directives are
identical and can be used interchangeably.

» The symbol is a label that must appear in the label field.
e The value must be a well-defined expression, that is, all symbols in the expression
must be previously defined in the current source module.

Undefined external symbols and symbols that are defined later in the module cannot be
used in the expression. If the expression is relocatable, the symbol to which it is
assigned is also relocatable.

The value of the expression appears in the object field of the listing. This value is not
part of the actual object code and is not written to the output file.

Symbols defined with .set or .equ can be made externally visible with the .def or .global
directive (see the .global/.def/.ref topic). In this way, you can define global absolute
constants.

This example shows how symbols can be assigned with .set and .equ.

1 R Rk Rk R R R S R R R
2 ** Equate symbol AUX RL to register ARL and use **
3 * it instead of the register. *
4 R R S S R O

5 00000001 AUX_R1 . set R1

6 00000000 E3A01056 MoV AUX_R1, #56h

7

8 khkhkkhkhkhkhkhkhhkhhhhhkhkhkhhkhkhkhkhkhkhkhkhkhkkhkhkkhkhkhkhkhkhkhkhkhkhkk*kkkkkkkkk*k*x*%
9 *x Set symbol index to an integer expression. *x
10 > and use it as an immedi ate operand. >
ll khkhkhkhkhkhkhkhhhhhhhkhkhkhhkkkkkkkkkk*k*x*%
12 00000035 |INDEX .equ 100/ 2 +3

13 00000004 E2810035 ADD RO, AUX_R1, # NDEX

14

15 ERE R R E R EEEEEE RS EEEEEEEEEEEEEE RS EEEEEEE RS EEEEEEEESEE SRS
16 ** Set synbol SYMIAB to a rel ocatabl e expression. **
17 *x and use it as a rel ocatabl e operand. *x
18 ERE R R R R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE RS EEEEEEEESEE SRS
19 00000008 0000000A LABEL .word 10

20 00000009' SYMIAB . set LABEL + 1

21

22 R R R R S R R R
23 *x Set synmbol NSYMS equal to the synmbol |NDEX **
24 *x INDEX and use it as you woul d | NDEX. *x
25 khkkhkhkkhhkkhhkhkhhkhhkdhkhhhdhdhdhhkdhdhddrdrhdhdhrdrdrhdhrdrdxdxxx*k
26 00000035 NSYM5 . set | NDEX

27 0000000c 00000035 .word NSYMS

134 Assembler Directives

SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.space/.bes

Syntax

Description

Example

Reserve Space

[label] .space size in bytes

[label] .bes

size in bytes

The .space and .bes directives reserve the number of bytes given by size in bytes in the
current section and fill them with Os. The section program counter is incremented to
point to the word following the reserved space.

When you use a label with the .space directive, it points to the first byte reserved. When
you use a label with the .bes directive, it points to the last byte reserved.

This example shows how memory is reserved with the .space and .bes directives.

[y

QWO ~NOUDWN

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

00000000

00000000
000000f 0
000000f 4

00000000
00000000
00000001
00000002
00000003
00000004
00000005
00000006
00000007

00000008
0000006¢
00000070

00000087
00000088
0000008c

00000100
00000200

49
6E
20
2E
64
61
74
61

0000000F
00000008"

00000036
00000087"

khkhkhkhkhkhkkhkhkhhhhkhkhkhhhkkkkkkkkkkk*k*x*%

*x Begin assenbling into the .text section. *x

Khkhhkhhhkhhkhhkhhhhhhhkhhkhhhhhkhhkhhhkhhhhkhhhkhkhhkhkhkkhkhk*x

. text

Khkhhkhhhkhhkhhkhhhhhhhkhhkhhhhhkhhkhhhkhhhhkhhhkhkhhkhkhkkhkhk*x

*x Reserve OF0 bytes in the .text section. *x
EREEE RS EEEEREEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESE]
. space OFOh
.word 100h, 200h

Khhkhhkhhhkhhkhhkhhhhhhhhhhhhhhkhhkhhhkhhkhhkhhhkhhkhhkhkhkhhkhk*

*x Begi n assenbling into the .data section. *x
EREEE RS EEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESE]
.data
.string "In .data"

Khhkhhkhhhkhhkhhhhhhhhhkhhhhhhhkhhkhhhkhhkhhkhhhhhkhhkhhkkhkhkkx

** Reserve 100 bytes in the .data section; RES 1 **
*x points to the first byte that contains *x
> reserved bytes. >
khkhkhkhkkhkhhkhhkhhhhhkhkhhkkhkhkkkkkkkk*k*k*x*%x
RES 1: .space 100

.word 15

.word RES 1

Khhkhhkhhhkhhkhhhhhhhhhhhhhhhhkhhkhhhkhhkhhkhhhkhhkhhkhkhkhkhkkx

** Reserve 20 bits in the .data section; RES 2 **
*x points to the last byte that contains *x
> reserved bytes. >
khkhkhkkhkhkhkhkhkhhhhkhkhkhhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkhk*kkkkkkk*k*k*k*x*%
RES 2: .bes 20

.word 36h

.word RES 2

SPNU118L—-June 2013

Submit Documentation Feedback

Assembler Directives

Copyright © 2013, Texas Instruments Incorporated

135

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Directives Reference

13 TEXAS

INSTRUMENTS

www.ti.com

.sslist/.ssnolist

Control Listing of Substitution Symbols

Syntax .sslist
.ssholist
Description Two directives allow you to control substitution symbol expansion in the listing file:
The .sslist directive allows substitution symbol expansion in the listing file. The
expanded line appears below the actual source line.
The .ssnolist directive suppresses substitution symbol expansion in the listing file.
By default, all substitution symbol expansion in the listing file is suppressed; the
assembler acts as if the .ssnolist directive had been used.
Lines with the pound (#) character denote expanded substitution symbols.
Example This example shows code that, by default, suppresses the listing of substitution symbol
expansion, and it shows the .sslist directive assembled, instructing the assembler to list
substitution symbol code expansion.
1 ADDL .macro dest, src
2 .global reset_ctr
3 ADDS dest, dest, src
4 BLCS reset _ctr
5 .endm
6
7 00000000 ADDL R4, R5
1 .global reset_ctr
1 00000000 E0944005 ADDS R4, R4, R5
1 00000004 2BFFFFFD! BLCS reset _ctr
8 00000008 E5954000 LDR R4, [R5]
9 0000000c ADDL RO, R4
1 .global reset_ctr
1 0000000c E0900004 ADDS RO, RO, R4
1 00000010 2BFFFFFA! BLCS reset_ctr
10
11 .sslist
12
13 00000014 E5B53004 LDR R3, [R5, #4]!
14 00000018 E5954000 LDR R4, [R5]
15 0000001c ADDL R4, R3
1 .global reset_ctr
1 0000001c E0944003 ADDS dest, dest, src
ADDS R4, R4, R3
1 00000020 2BFFFFF6! BLCS reset _ctr
136 Assembler Directives SPNU118L—June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.Statel6

Syntax

Description

Example

Assemble 16-Bit Instructions (Non-UAL Syntax)

.Statel6

By default, the assembler begins assembling all instructions in a file as 32-bit

instructions. Use the .statel6 directive to direct the assembler to begin assembling all
instructions at that point as 16-bit instructions. This directive and the .state32 directive

allow you to switch between the two assembly modes for non-UAL syntax. If you want to
assemble an entire file as 16-bit instructions for V6 and earlier architectures, use the —-mt
assembler option, which instructs the assembler to begin the assembly process,
assembling all instructions as 16-bit instructions.

The .state16 directive performs an implicit halfword alignment before any instructions are
written to the section to ensure that all 16-bit instructions are halfword-aligned. The
.State16 directive also resets any local labels defined.

In this example, the assembler assembles 16-bit instructions, begins assembling 32-bit
instructions, and returns to assembling 16-bit instructions.

1

oO~NO O~ WN

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

00000000

00000000 4808
00000002 4909
00000004 6800
00000006 6809
00000008 0080
0000000a 3156
0000000c 4778
0000000e 46C0

00000010

00000010 E0845190
00000014 E28FEO01
00000018 E12FFF1E

0000001c

0000001c 1A2D
0000001e D200
00000020 3C01
00000022

00000024 00000000
00000028 00000000

. gl obal globl, glob2

kkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkhkkhkkhkkhkhkkhkkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkkkkkkkkkkkkkkk*x*%

*x Begi n assenbling 16-bit instructions. *x
khkkhkkhkkhkhkkhkkhkhhhkhhhhhkhkhhkhkhkhkhhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkkkkx*x*%x

.Sstatel6

LDR r0, globl_a

LDR rl, glob2_a

LDR ro, [rO]

LDR rl, [r1]

LSL ro, r0, #2

ADD rl, #56h

BX pc

NOP
khkkkkhkkkhkkhkhkkhkhkkhhkkhhkhkhhkkhhkkhhkhhhhhkkhhdhhhhkhhkdhhhhdhxdhkhhhxkxkx*%x
*x Switch to 32-bit instructions to use the *x
*x 32-bit state long nmultiply instruction. *x
khkkkkhkkkhkkhkhkkhkhkkhhkkhhkhkhhkkhhkkhhkhhhkhhkkhhkdhhhhkkhhdhkhhhkhhdhhhhxdxkx*%x

. state32

UMULL r5 r4, r0, rl

ADD Ir, pc, #1

BX Ir
LR EEE R RS EEE S
* % Conti nue assenbling 16-bit instructions. * %
ERE R R R R E R E R EEEEESEEEEEEREEEEEEEEEEEEEEEEEEEEE RS ESEESEE RS

.statel6

SuB r5 r5 r0
BCS $1
SuB r4, #1

$1

gl obl_a .word gl obl

gl ob2_a . word gl ob2

SPNU118L—-June 2013

Submit Documentation Feedback

Assembler Directives

Copyright © 2013, Texas Instruments Incorporated

137

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.state32/.arm

Assemble 32-Bit Instructions

Syntax .state32
.arm
Description By default, the assembler begins assembling all instructions in a file as 32-bit
instructions. When you use the -mt assembler option or the .state16 directive to
assemble 16-bit instructions, you can use the .state32 or .arm directive to tell the
assembler to begin assembling all instructions after the .state32/.arm directive as 32-bit
instructions.
When you are writing assembly code, the .arg directive is used to specify ARM UAL
syntax. The .state32 and .arm directives are equivalent since UAL syntax is backward
compatible.
These directives perform an implicit word alignment before any instructions are written to
the section to ensure that all 32-bit instructions are word-aligned. These directives also
reset any local labels defined.
Example In this example, the assembler assembles 32-bit instructions, begins assembling 16-bit
instructions, and returns to assembling 32-bit instructions.
1 .global globs, filter
2 LR EEE R RS EEE S
3 *x Begi n assenbling 32-bit instructions. *x
4 kkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkhkkhkkhkkhkkhkkhkkhkhkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkkkkkkkkk*x*%x
5 00000000 . state32
6 00000000 E28F4001 ADD r4, pc, #1
7 00000004 E12FFF14 BX r4
8 R EE R R RS EEE S
9 ** Switch to 16-bit instructions to use *
10 *x | ess code space. *x
11 LR EEE R RS EEE S
12 00000008 .statel6
13 00000008 2200 MOV r2, #0
14 0000000a 2300 MOV r3, #0
15 0000000c 4C0B LDR r4, globs_a
16 0000000e 2500 MOV r5, #0
17 00000010 2600 MOV ré, #0
18 00000012 2700 MOV r7, #0
19 00000014 4690 MOV rg, r2
20 00000016 4691 MOV ro, r2
21 00000018 4692 MOV rio, r2
22 0000001a 4693 MOV ri1, r2
23 0000001c 4694 MOV ri2, r2
24 0000001e 4695 MOV ri3, r2
25 00000020 4778 BX pc
26 00000022 46Q0 NOP
27 khkkhkkhkkhkhkkhkhkhkhhhhhkhhkhkhhhkhkhhhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkkkk*x*x*%x
28 *x Conti nue assenbling 32-bit instructions. *x
29 LR EE R R RS EEE S
30 00000024 .state32
31 00000024 E4940004 LDR ro, [r4], #4
32 00000028 E5941000 LDR ri, [r4]
33 0000002¢c EBFFFFF3! BL filter
34 00000030 E1500001 CcWP ro, ri
35 00000034 30804005 ADDCC r4, 10, r5
36 00000038 20464001 SUBCS r4, r6, ri
37 0000003c 00000000! gl obs_a .word gl obs
138 Assembler Directives SPNU118L—June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.string/.cstring

Syntax

Description

Example

Initialize Text

.string {expr, | "string,"} [, ... , {expr, | "string,"}]
.cstring {expr, | "string,"} [, ... , {expr, | "string,"}]

The .string and .cstring directives place 8-bit characters from a character string into the
current section. The expr or string can be one of the following:

* An expression that the assembler evaluates and treats as an 8-bit signed number.

» A character string enclosed in double quotes. Each character in a string represents a
separate value, and values are stored in consecutive bytes. The entire string must be
enclosed in quotes.

The .cstring directive adds a NUL character needed by C; the .string directive does not
add a NUL character. In addition, .cstring interprets C escapes (\\ \a \b \f \n \r \t \v
\<octal>).

The assembler truncates any values that are greater than eight bits. Operands must fit
on a single source statement line.

If you use a label, it points to the location of the first byte that is initialized.

When you use .string and .cstring in a .struct/.endstruct sequence, the directive only
defines a member's size; it does not initialize memory. For more information, see the
.struct/.endstruct/.tag topic.

In this example, 8-bit values are placed into consecutive bytes in the current section.

1 00000000 41 Str_Ptr: .string "ABCD'
00000001 42
00000002 43
00000003 44
2 00000004 41 .string 41h, 42h, 43h, 44h
00000005 42
00000006 43
00000007 44
3 00000008 41 .string "Austin", "Houston", "Dallas"
00000009 75
0000000a 73
0000000b 74
0000000c 69
0000000d 6E
0000000e 48
0000000f 6F
00000010 75
00000011 73
00000012 74
00000013 6F
00000014 6E
00000015 44
00000016 61
00000017 6C
00000018 6C
00000019 61
0000001a 73
4 0000001b 30 .string 36 + 12

SPNU118L—-June 2013

Assembler Directives 139

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.struct/.endstruct/.tag Declare Structure Type

Syntax

Description

[stag] .struct [expr]

[mem,] element [expr,]
[mem,] element [expr,]

[mem,] .tag stag [expr.]

[memy,] element [expry]
[size] .endstruct
label tag stag

The .struct directive assigns symbolic offsets to the elements of a data structure
definition. This allows you to group similar data elements together and let the assembler
calculate the element offset. This is similar to a C structure or a Pascal record. The
.struct directive does not allocate memory; it merely creates a symbolic template that can
be used repeatedly.

The .endstruct directive terminates the structure definition.

The .tag directive gives structure characteristics to a label, simplifying the symbolic
representation and providing the ability to define structures that contain other structures.
The .tag directive does not allocate memory. The structure tag (stag) of a .tag directive
must have been previously defined.

Following are descriptions of the parameters used with the .struct, .endstruct, and .tag
directives:

e The stag is the structure's tag. Its value is associated with the beginning of the
structure. If no stag is present, the assembler puts the structure members in the
global symbol table with the value of their absolute offset from the top of the
structure. The stag is optional for .struct, but is required for .tag.

* The expr is an optional expression indicating the beginning offset of the structure.
The default starting point for a structure is 0.

e The mem,, is an optional label for a member of the structure. This label is absolute
and equates to the present offset from the beginning of the structure. A label for a
structure member cannot be declared global.

» The element is one of the following descriptors: .byte, .char, .int, .long, .word,
.double, .half, .short, .string, .float, .field, and .tag. All of these except .tag are typical
directives that initialize memory. Following a .struct directive, these directives
describe the structure element's size. They do not allocate memory. The .tag
directive is a special case because stag must be used (as in the definition of stag).

* The expr,, is an optional expression for the number of elements described. This
value defaults to 1. A .string element is considered to be one byte in size, and a .field
element is one bit.

» The size is an optional label for the total size of the structure.

Directives That Can Appear in a .struct/.endstruct Sequence

NOTE: The only directives that can appear in a .struct/.endstruct sequence are
element descriptors, conditional assembly directives, and the .align
directive, which aligns the member offsets on word boundaries. Empty
structures are illegal.

140

Assembler Directives

SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS

INSTRUMENTS

www.ti.com

Directives Reference

Example 1

Example 2

Example 3

Example 4

The following examples show various uses of the .struct, .tag, and .endstruct directives.

P OOWOONOUDMWNEER

[

18
19
20
21

OO WNPE

oO~NO O~ WNBR

©

10

00000000
00000004
00000008
00000000
0000000c

00000010
00000020
00000024

00000000

00000000
00000004
00000008

E59F0004
E5904004
E0811004

00000000-

00000000
00000008
00000010

E51F4018
E0811004

00000000
00000004
00000008
0000000C

00000000
00000040
00000040
00000042
00000044
00000048

11 00000048 E51F0010
12 0000004c E0811000

REAL_REC
NOM
DEN
REAL_LEN

REAL_A

CPLX_REC
REALI
| MAG
CPLX_LEN

COVPLEX

COVPLEX

N < X

BI T_REC
STREAM
BI T7

BI T8

Bl T10
X_I NT

BI T_LEN

BI TS
BI TS

.struct
.int

.int
.endstruct

LDR RO, REAL_A
LDR R4
ADD R1, R1, R4
. bss REAL,
.word REAL

.struct

.tag REAL_REC
.tag REAL_REC
.endstruct

.tag CPLX_REC

. space CPLX_LEN

LDR R4, COWPLEX. REALI

ADD R1, R1, R4

.struct
.int

.int

.int
.endstruct
.struct
.string 64
field 7
.field 9
.field 10
.int
.endstruct

.space Bl T_LEN
.tag BI T_REC

LDR RO, BITS. BIT7
ADD R1, RL, RO

REAL_LEN

; stag
; menberl = 0
=1

;. menber 2

real _len = 4

[RO, #REAL_REC. DEN]

; allocate memrec

; stag
; menberl =0

cplx_len =8

; assign structure

attribute

; allocate space
, access structure

no stag puts nmens into

gl obal

synbol table

create 3 di mtenpl ates

stag
; bit7 = 64
; bit9 = 64
; bitl0 = 64
; X_int = 68
; length = 72

SPNU118L—-June 2013

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

Assembler Directives

141

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.symdepend/.weak Affect Symbol Linkage and Visibility

Syntax

Description

.symdepend dst symbol name[, src symbol name]

.weak symbol name

These directives are used to affect symbol linkage and visibility. The .weak directive is
only valid when ELF mode is used.

The .symdepend directive creates an artificial reference from the section defining src
symbol name to the symbol dst symbol name. This prevents the linker from removing the
section containing dst symbol name if the section defining src symbol name is included
in the output module. If src symbol name is not specified, a reference from the current
section is created.

The .weak directive identifies a symbol that is used in the current module but is defined
in another module. The linker resolves this symbol's definition at link time. The .weak
directive is equivalent to the .ref directive, except that the reference has weak linkage.

A global symbol is defined in the same manner as any other symbol; that is, it appears
as a label or is defined by the .set, .equ, .bss, or .usect directive. As with all symbols, if a
global symbol is defined more than once, the linker issues a multiple-definition error. The
.weak directive always creates a symbol table entry for a symbol, whether the module
uses the symbol or not; .symdepend, however, creates an entry only if the module
actually uses the symbol.

A symbol can be declared global for either of two reasons:

e If the symbol is not defined in the current module (which includes macro, copy, and
include files), the .weak directive tells the assembler that the symbol is defined in an
external module. This prevents the assembler from issuing an unresolved reference
error. At link time, the linker looks for the symbol's definition in other modules.

» If the symbol is defined in the current module, the .symdepend directive declares that
the symbol and its definition can be used externally by other modules. These types of
references are resolved at link time.

142

Assembler Directives

SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.tab

Syntax

Description

Example

Define Tab Size

.tab size

The .tab directive defines the tab size. Tabs encountered in the source input are

translated to size character spaces in the listing. The default tab size is eight spaces.

In this example, each of the lines of code following a .tab statement consists of a single
tab character followed by an NOP instruction.

Source file:

; default tab size

Listing file:

1

o ~NOA~WN

©

12
13
14

00000000
00000004
00000008

0000000c
00000010
00000014

00000018
0000001c
00000020

E1A00000
E1A00000
E1A00000

E1A00000
E1A00000
E1A00000

E1A00000
E1A00000
E1A00000

; default tab size

NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP

SPNU118L—-June 2013

Submit Documentation Feedback

Assembler Directives

Copyright © 2013, Texas Instruments Incorporated

143

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

text Assemble Into the .text Section
Syntax text
Description The .text directive tells the assembler to begin assembling into the .text section, which
usually contains executable code. The section program counter is set to 0 if nothing has
yet been assembled into the .text section. If code has already been assembled into the
.text section, the section program counter is restored to its previous value in the section.
The .text section is the default section. Therefore, at the beginning of an assembly, the
assembler assembles code into the .text section unless you use a .data or .sect directive
to specify a different section.
For more information about sections, see Chapter 2.
Example This example assembles code into the .text and .data sections.
l IR EE RS EEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEESEE]
2 ** Begin assenbling into .data section. **
3 khkkhkkhkkhkkhkhkkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkkkkkkkkkk*k*x*%x
4 00000000 .data
5 00000000 OA .byte 0Ah, 0Bh
00000001 0B
6 IR EE RS EEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEESEE]
7 ** Begin assenbling into .text section. **
8 khkkkhkkhkkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkkkkkkkkkkkk*k*x*%x
9 00000000 . text
10 00000000 41 START: .string "A","B","C'
00000001 42
00000002 43
11 00000003 58 END: .string "X, "Y', "z"
00000004 59
00000005 5A
12 00000008 E3A01003 MOV RLl, #END- START
13 0000000c E1A01181 MOV Rl, Rl, LSL #3
14
15 ER R R I I I R R R I R S I I S R R R I I I I
16 ** Resume assenbling into .data section.**
17 R EEE RS EEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]
18 00000002 .data
19 00000002 0OC .byte 0Ch, ODh
00000003 0D
20 ER R R I I R R R I R S I I I S R R R R I I I
21 ** Resume assenbling into .text section.**
22 IR EE RS EEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEESEE]
23 00000010 . text
24 00000010 51 .string "QUI T"
00000011 55
00000012 49
00000013 54
144 Assembler Directives SPNU118L—June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.thumb

Syntax

Description

Example

Assemble Thumb or Thumb-2 Instructions (UAL Syntax)

.thumb

You can use the .thumb directive to tell the assembler to begin assembling all
instructions after the .thumb directive using Thumb (32-bit) or Thumb-2 (16-bit or 32-bit)
UAL syntax. The assembler determines whether instructions are 16- or 32-bit
instructions based on the syntax structure of the code.

The .thumb directive performs an implicit halfword alignment before any instructions are
written to the section to ensure that all Thumb/Thumb-2 instructions are halfword
aligned. These directives also reset any local labels defined.

In this example, the assembler assembles 16-bit instructions, begins assembling 32-bit
instructions, and returns to assembling 16-bit instructions.

1 . gl obal globl, glob2

2 R R S I R S O R R R O
3 *x Begi n assenbling Thumb instructions. *x
4 khkkkkhkkkhkkhkhkkhkhkkhhkkhhkhkhkhkkhhkkhhkhhkhkhhkkhhkdhkhkhhkkhhkhhkhhhhhhhkdhhhxkx
5 00000000 .thunb

6

7 00000000 4808 LDR ro, globl_a

8 00000002 4909 LDR rl, glob2_a

9 00000004 6800 LDR ro, [r0]

10 00000006 6809 LDR rl, [r1]

11 00000008 0080 LSLS ro, ro0, #2

12 0000000a 3156 ADDS rl, #56h

13 0000000c 4778 BX pc

14 0000000e 46C0 NOP

15 khkhkhkhkhkhhkhkhhhkhhhkhkhkhhhkkkkkkkk*kkk*k*x*%
16 *x Switch to ARM node to use the |ong *x
17 > mul tiply instruction. >
18 khkhkhkhkhkhhkhkhhhkhhhkhkhkhhhkkkkkkkk*kkk*k*x*%
19 00000010 .arm

20

21 00000010 E0845190 UMULL r5, r4, r0, rl

22 00000014 E28FE001 ADD Ir, pc, #1

23 00000018 E12FFF1E BX Ir

24 khkhkhkhkhkhkhkhkhhhhhhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkkkkkkkkkk*k*x*%x
25 *x Conti nue assenbling Thunb instructions. *x
26 khkkhkkhhkkhkhkhkhhkhhkkhhhhhkdhdhhdhdhdhdrhdhddrdrhrhddhrdrxhxhxdxkx%x
27 0000001c . thunb

28

29 0000001c 1A2D SUBS r5 r5, r0
30 0000001e D201 BCS $1
31 00000020 3001 SUBS r4, #1
32 00000024 $1

33 00000024 00000000! globl_a .word globl
34 00000028 00000000! gl ob2_a .word gl ob2

SPNU118L—-June 2013

Assembler Directives 145

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

title Define Page Title
Syntax title "string"
Description The .title directive supplies a title that is printed in the heading on each listing page. The
source statement itself is not printed, but the line counter is incremented.
The string is a quote-enclosed title of up to 64 characters. If you supply more than 64
characters, the assembler truncates the string and issues a warning:
*** WARNING |ine x: WO001: String is too long - will be truncated
The assembler prints the title on the page that follows the directive and on subsequent
pages until another .title directive is processed. If you want a title on the first page, the
first source statement must contain a .title directive.
Example In this example, one title is printed on the first page and a different title is printed on
succeeding pages.
Source file:
.title "**** Fast Fourier Transforns ****"
.title "**** F|oating-Point Routines ****"
. page
Listing file:
TMB470R1x Assenbl er Ver si on X. XX Day Ti nme Year
Copyright (c) 1996-2011 Texas Instrunents | ncorporated
**** Fast Fourier Transfornms **** PAGE 1
2 ;
3 ;
4 ; -
TMB470R1x Assenbl er Ver si on X. XX Day Ti me Year
Copyright (c) 1996-2011 Texas |nstrunents | ncorporated
**** | oating-Point Routines **** PAGE 2
No Errors, No Warnings
146 Assembler Directives SPNU118L—June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS

INSTRUMENTS

www.ti.com

Directives Reference

.union/.endunion/.tag Declare Union Type

Syntax

Description

[stag] .union [expr]

[mem,] element [expr,]
[mem,] element [expr,]

[mem,] .tagstag [expr,]

[memy] element [expry]
[size] .endunion
label tag stag

The .union directive assigns symbolic offsets to the elements of alternate data structure
definitions to be allocated in the same memory space. This enables you to define
several alternate structures and then let the assembler calculate the element offset. This
is similar to a C union. The .union directive does not allocate any memory; it merely
creates a symbolic template that can be used repeatedly.

A .struct definition can contain a .union definition, and .structs and .unions can be
nested.

The .endunion directive terminates the union definition.

The .tag directive gives structure or union characteristics to a label, simplifying the
symbolic representation and providing the ability to define structures or unions that
contain other structures or unions. The .tag directive does not allocate memory. The
structure or union tag of a .tag directive must have been previously defined.

Following are descriptions of the parameters used with the .struct, .endstruct, and .tag
directives:

* The utag is the union's tag. is the union's tag. Its value is associated with the
beginning of the union. If no utag is present, the assembler puts the union members
in the global symbol table with the value of their absolute offset from the top of the
union. In this case, each member must have a unique name.

e The expr is an optional expression indicating the beginning offset of the union.
Unions default to start at 0. This parameter can only be used with a top-level union. It
cannot be used when defining a nested union.

* The mem,, is an optional label for a member of the union. This label is absolute and
equates to the present offset from the beginning of the union. A label for a union
member cannot be declared global.

e The element is one of the following descriptors: .byte, .char, .int, .long, .word,
.double, .half, .short, .string, .float, and .field. An element can also be a complete
declaration of a nested structure or union, or a structure or union declared by its tag.
Following a .union directive, these directives describe the element's size. They do not
allocate memory.

» The expr,, is an optional expression for the number of elements described. This
value defaults to 1. A .string element is considered to be one byte in size, and a .field
element is one bit.

* The size is an optional label for the total size of the union.

SPNU118L—-June 2013

Assembler Directives 147

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Directives Reference www.ti.com

Directives That Can Appear in a .union/.endunion Sequence

NOTE: The only directives that can appear in a .union/.endunion sequence are
element descriptors, structure and union tags, and conditional assembly
directives. Empty structures are illegal.

These examples show unions with and without tags.

Example 1 1 . gl obal enpl oyid
2 xanpl e .uni on ; utag
3 0000 ival .word ; menberl = int
4 0000 fval .float ; nmenber2 = float
5 0000 sval .string ; nmenber3 = string
6 0002 real_len . enduni on ; real _len = 2
7
8 000000 .bss enployid, real _len ;allocate nenory
9
10 enpl oyi d .tag xanple ; name an instance
11 000000 0000- ADD enployid.fval, A ; access union el enent
Example 2 1
2 ; utag
3 0000 x .long ; nmenberl = long
4 0000 vy .float ; menber2 = fl oat
5 0000 z .word ; menber3 = word
6 0002 size_u . enduni on ; real _len = 2
7
148 Assembler Directives SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.usect

Syntax

Description

Example

Reserve Uninitialized Space

symbol .usect "section name", size in bytes|, alignment[, bank offset]]

The .usect directive reserves space for variables in an uninitialized, named section. This
directive is similar to the .bss directive; both simply reserve space for data and that
space has no contents. However, .usect defines additional sections that can be placed
anywhere in memory, independently of the .bss section.

* The symbol points to the first location reserved by this invocation of the .usect
directive. The symbol corresponds to the name of the variable for which you are
reserving space.

e The section name must be enclosed in double quotes. This parameter names the
uninitialized section. A section name can contain a subsection name in the form
section name : subsection name.

* The size in bytes is an expression that defines the number of bytes that are reserved
in section name.

e The alignment is an optional parameter that ensures that the space allocated to the
symbol occurs on the specified boundary. The boundary indicates the size of the slot
in bytes and can be set to any power of 2.

» The bank offset is an optional parameter that ensures that the space allocated to the
symbol occurs on a specific memory bank boundary. The bank offset value measures
the number of bytes to offset from the alignment specified before assigning the
symbol to that location.

Initialized sections directives (.text, .data, and .sect) end the current section and tell the
assembler to begin assembling into another section. A .usect or .bss directive
encountered in the current section is simply assembled, and assembly continues in the
current section.

Variables that can be located contiguously in memory can be defined in the same
specified section; to do so, repeat the .usect directive with the same section name and
the subsequent symbol (variable name).

For more information about sections, see Chapter 2.

This example uses the .usect directive to define two uninitialized, named sections, varl
and var2. The symbol ptr points to the first byte reserved in the varl section. The symbol
array points to the first byte in a block of 100 bytes reserved in varl, and dflag points to
the first byte in a block of 50 bytes in varl. The symbol vec points to the first byte
reserved in the var2 section.

SPNU118L—-June 2013

Assembler Directives 149

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

Figure 5-8 shows how this example reserves space in two uninitialized sections, varl

and var2.

[y

o~NO O~ WDN

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

array —»

dflag —»

00000000
00000000

00000000

00000001

00000004

00000065

00000008

00000000

0000000c

E3A01003

E281001F

E2812064

E0824000

khkhkhkhkhkhkhhkhkhhhhhhkhkhkhhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkkkkkkkk*k**x*%

** Assenble into the .text section. **
EE R I I I I I R R R I R R S I I
.text
MOV R1, #03h

khkhkhkhkhkhhkhkhhhhhkhkhkhkhkhhkkhkkkkkkkkk**x*%

*x Reserve 1 byte in the varl section. *x

Khkhhkhhhhhkhhhhhhhhhkhhkhhhkhhhhhhhhhkhhkhhhhhkhhkhkhhkhkhkhkkk*k

ptr .usect "varl", 1

khkhhkhhhkhhkhhhhhhhhhkhhhhhhhkhhhhhkhhkhhkhhhhkhkhhhkhkhkhkkk*k

*x Reserve 100 bytes in the varl section. *x

L R R

array .usect “"varl", 100

ADD RO, R1, #037 ; Still in .text

khkhkhkhkhkhkhhkhhhhhkhhkkhkkhkkkkkkkkk*k*x*%

*x Reserve 50 bytes in the varl section. *x

Khhkhhkhhhhhkhhhhhhhhhkhhkhhhhhhhhhhhhkhhkhhhhhkhhkhkhkhhkhkhkk k%

dflag .usect "varl", 50

ADD R2, Rl, #dflag - array ; Still in .text
khkkkkhkkkhkkhkkhkhkkhhkkhhkhhkhkhhkkhhkhhkhhkhkhhdhkhkhkhkhhkhhkdhkhhhhhkdhkhhhxhxkx
> Reserve 100 bytes in the var2 section. >
khkhkhkhkhkhkhkhkhhhhhhhkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkkkhkkkkkkkk*k**x*%
vec .usect "var2", 100

ADD R4, R2, RO ;o Still in .text

L e R

> Decl are a .usect synbol to be external. >
khkhkhkhkhkhkhhhhhhhkhhkhhkhhkhkhhkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkkkkkkkkkkkk**x*%

.global array

Figure 5-8. The .usect Directive

Section var1

ptr —»

2 bytes

100 bytes

50 bytes

Section var2

ptr —»

100 bytes

100 bytes reserved
in var2

152 bytes reserved

in var1

150

Assembler Directives

SPNU118L—June 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Directives Reference

.unasg/.undefine Turn Off Substitution Symbol

Syntax .unasg symbol
.undefine symbol

Description The .unasg and .undefine directives remove the definition of a substitution symbol
created using .asg or .define. The named symbol will removed from the substitution
symbol table from the point of the .undefine or .unasg to the end of the assembly file.
See Section 4.7.8 for more information on substitution symbols.

These directives can be used to remove from the assembly environment any C/C++
macros that may cause a problem. See Chapter 13 for more information about using
C/C++ headers in assembly source.

.var Use Substitution Symbols as Local Variables
Syntax .var sym, [, sym,, ..., sym,]
Description The .var directive allows you to use substitution symbols as local variables within a

macro. With this directive, you can define up to 32 local macro substitution symbols
(including parameters) per macro.

The .var directive creates temporary substitution symbols with the initial value of the null
string. These symbols are not passed in as parameters, and they are lost after
expansion.

See Section 4.7.8 for more information on substitution symbols .See Chapter 6 for
information on macros.

SPNU118L—-June 2013 Assembler Directives 151

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

. Chapter 6
I TEXAS SPNU118L—June 2013

INSTRUMENTS

Macro Description

The ARM device assembler supports a macro language that enables you to create your own instructions.
This is especially useful when a program executes a particular task several times. The macro language
lets you:

» Define your own macros and redefine existing macros

» Simplify long or complicated assembly code

* Access macro libraries created with the archiver

» Define conditional and repeatable blocks within a macro
e Manipulate strings within a macro

e Control expansion listing

Topic Page
S0 I £ g o 1Y/ = Vo o 1 PP 153
G2 = g Y o /= Lo o 1 153
6.3 Macro Parameters/Substitution Symbolsc.couieieieiiiiiiii e 155
L (V= T o T o] = 1 PP 161
6.5 Using Conditional ASSemMDbIY iN MACIOS ...ceiuiuiiiiiiiiiie et e eeaeeaens 162
6.6 USING LADEIS IN MACIOS .iuiuiitiiiiiiiitititiiei ettt et et e e e et e e a e e et e aaaeaeaeaeanns 164
6.7 Producing MeSSages iN IMACIOS ..ucutiuiuiuiiitiuineeat e istetateneaeeatanesseaeaeeaansaeaeaeanans 165
6.8 Using Directives to Format the Output LiStINGcocieiiiiieiiii e eeeeenes 166
6.9 Using Recursive and NeSted MaCIOS .. .cucuiuiueninieieieieeaeeeenenansereaeaeaearnenenanrnrnnes 167
6.10 MaCrO DireCtiVES SUMMEAIY ...ueeieeneniniueneninre e reeeatuenensn s e seseaettnensnsnsnresanenenen 168

152 Macro Description SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

I

TEXAS

INSTRUMENTS

www.ti.com Using Macros

6.1

6.2

Using Macros

Programs often contain routines that are executed several times. Instead of repeating the source
statements for a routine, you can define the routine as a macro, then call the macro in the places where
you would normally repeat the routine. This simplifies and shortens your source program.

If you want to call a macro several times but with different data each time, you can assign parameters
within a macro. This enables you to pass different information to the macro each time you call it. The
macro language supports a special symbol called a substitution symbol, which is used for macro
parameters. See Section 6.3 for more information.

Using a macro is a 3-step process.

Step 1. Define the macro. You must define macros before you can use them in your program. There
are two methods for defining macros:

(a) Macros can be defined at the beginning of a source file or in a copy/include file. See
Section 6.2, Defining Macros, for more information.

(b) Macros can also be defined in a macro library. A macro library is a collection of files in
archive format created by the archiver. Each member of the archive file (macro library)
may contain one macro definition corresponding to the member name. You can access a
macro library by using the .mlib directive. For more information, see Section 6.4.

Step 2. Call the macro. After you have defined a macro, call it by using the macro name as a
mnemonic in the source program. This is referred to as a macro call.

Step 3. Expand the macro. The assembler expands your macros when the source program calls
them. During expansion, the assembler passes arguments by variable to the macro
parameters, replaces the macro call statement with the macro definition, then assembles the
source code. By default, the macro expansions are printed in the listing file. You can turn off
expansion listing by using the .mnolist directive. For more information, see Section 6.8.

When the assembler encounters a macro definition, it places the macro name in the opcode table. This
redefines any previously defined macro, library entry, directive, or instruction mnemonic that has the same
name as the macro. This allows you to expand the functions of directives and instructions, as well as to
add new instructions.

Defining Macros

You can define a macro anywhere in your program, but you must define the macro before you can use it.
Macros can be defined at the beginning of a source file or in a .copy/.include file (see Copy Source File);
they can also be defined in a macro library. For more information about macro libraries, see Section 6.4.

Macro definitions can be nested, and they can call other macros, but all elements of the macro must be
defined in the same file. Nested macros are discussed in Section 6.9.

A macro definition is a series of source statements in the following format:

macname .macro [parameter,][, ... , parameter,]
model statements or macro directives
[.mexit]
.endm

macname names the macro. You must place the name in the source statement's label field.
Only the first 128 characters of a macro name are significant. The assembler
places the macro name in the internal opcode table, replacing any instruction or
previous macro definition with the same name.

.macro is the directive that identifies the source statement as the first line of a macro
definition. You must place .macro in the opcode field.

parameter ,, are optional substitution symbols that appear as operands for the .macro directive.

parameter Parameters are discussed in Section 6.3.

SPNU118L—June 2013 Macro Description 153
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Defining Macros www.ti.com

model statements are instructions or assembler directives that are executed each time the macro is

called.
macro directives are used to control macro expansion.
.mexit is a directive that functions as a goto .endm. The .mexit directive is useful when

error testing confirms that macro expansion fails and completing the rest of the
macro is unnecessary.

.endm is the directive that terminates the macro definition.

If you want to include comments with your macro definition but do not want those comments to appear in
the macro expansion, use an exclamation point to precede your comments. If you do want your comments
to appear in the macro expansion, use an asterisk or semicolon. See Section 6.7 for more information
about macro comments.

Example 6-1 shows the definition, call, and expansion of a macro.
Example 6-1. Macro Definition, Call, and Expansion

Macro definition: The following code defines a macro, add3, with four parameters:

1 *

2

3 * add3

4 *

5 * ADDRP = P1 + P2 + P3
6

7 add3 .macro P1, P2, P3, ADDRP
8

9 ADD ADDRP, P1, P2
10 ADD ADDRP, ADDRP, P3
11 .endm

Macro call: The following code calls the add3 macro with four arguments:
12
13 00000000 add3 Rl, R2, R3, RO
Macro expansion: The following code shows the substitution of the macro definition for the macro call. The
assembler substitutes R1, R2, R3, and RO for the P1, P2, P3, and ADDRP parameters of add3.
1

1 00000000 E0810002 ADD RO, Rl, R2
1 00000004 E0800003 ADD RO, RO, R3
154 Macro Description SPNU118L—June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Macro Parameters/Substitution Symbols

6.3

Macro Parameters/Substitution Symbols

If you want to call a macro several times with different data each time, you can assign parameters within
the macro. The macro language supports a special symbol, called a substitution symbol, which is used for
macro parameters.

Macro parameters are substitution symbols that represent a character string. These symbols can also be
used outside of macros to equate a character string to a symbol name (see Section 4.7.8).

Valid substitution symbols can be up to 128 characters long and must begin with a letter. The remainder
of the symbol can be a combination of alphanumeric characters, underscores, and dollar signs.

Substitution symbols used as macro parameters are local to the macro they are defined in. You can define
up to 32 local substitution symbols (including substitution symbols defined with the .var directive) per
macro. For more information about the .var directive, see Section 6.3.6.

During macro expansion, the assembler passes arguments by variable to the macro parameters. The
character-string equivalent of each argument is assigned to the corresponding parameter. Parameters
without corresponding arguments are set to the null string. If the number of arguments exceeds the
number of parameters, the last parameter is assigned the character-string equivalent of all remaining
arguments.

If you pass a list of arguments to one parameter or if you pass a comma or semicolon to a parameter, you
must surround these terms with quotation marks.

At assembly time, the assembler replaces the macro parameter/substitution symbol with its corresponding
character string, then translates the source code into object code.

Example 6-2 shows the expansion of a macro with varying numbers of arguments.

Example 6-2. Calling a Macro With Varying Numbers of Arguments

Macro definition:

Par s . macro a, b, c
; a = _:a
; b = :b:
; c =:cC:
.endm
Calling the macro:
Par ns 100, | abel Par ns 100, | abel , x,y
; a = 100 ; a = 100
; b = I abel ; b = I abel
; c="" ;o C =Xy
Par ms 100, , x Par nms " 100, 200, 300", x, y
; a = 100 ; a = 100, 200, 300
: b =" » : b = x
; c =X ; c=y
Par s meeString'™t, X,y
; a = "string"
; b = x
; c=Yy
SPNU118L—-June 2013 Macro Description 155

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Macro Parameters/Substitution Symbols www.ti.com

6.3.1 Directives That Define Substitution Symbols

You can manipulate substitution symbols with the .asg and .eval directives.
» The .asg directive assigns a character string to a substitution symbol.

For the .asg directive, the quotation marks are optional. If there are no quotation marks, the assembler
reads characters up to the first comma and removes leading and trailing blanks. In either case, a
character string is read and assigned to the substitution symbol. The syntax of the .asg directive is:

.asg["]character string["], substitution symbol

Example 6-3 shows character strings being assigned to substitution symbols.

Example 6-3. The .asg Directive

. asg R13, stack_ptr ; stack pointer

» The .eval directive performs arithmetic on numeric substitution symbols.

The .eval directive evaluates the expression and assigns the string value of the result to the
substitution symbol. If the expression is not well defined, the assembler generates an error and
assigns the null string to the symbol. The syntax of the .eval directive is:

.eval well-defined expression , substitution symbol

Example 6-4 shows arithmetic being performed on substitution symbols.

Example 6-4. The .eval Directive

.asg 1, count er

.loop 100

.word counter

.eval counter + 1,counter
. endl oop

In Example 6-4, the .asg directive could be replaced with the .eval directive (.eval 1, counter) without
changing the output. In simple cases like this, you can use .eval and .asg interchangeably. However, you
must use .eval if you want to calculate a value from an expression. While .asg only assigns a character
string to a substitution symbol, .eval evaluates an expression and then assigns the character string
equivalent to a substitution symbol.

See Assign a Substitution Symbol for more information about the .asg and .eval assembler directives.

156 Macro Description SPNU118L—June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com

Macro Parameters/Substitution Symbols

6.3.2 Built-In Substitution Symbol Functions

The following built-in substitution symbol functions enable you to make decisions on the basis of the string
value of substitution symbols. These functions always return a value, and they can be used in
expressions. Built-in substitution symbol functions are especially useful in conditional assembly
expressions. Parameters of these functions are substitution symbols or character-string constants.

In the function definitions shown in Table 6-1, a and b are parameters that represent substitution symbols

or character-string constants. The term string refers to the string value of the parameter. The symbol ch

represents a character constant.

Table 6-1. Substitution Symbol Functions and Return Values

Function Return Value

$symlen (a) Length of string a

$symemp (a,b) <0Oifa<b;0ifa=b;>0ifa>b

$firstch (a,ch) Index of the first occurrence of character constant ch in string a
$lastch (a,ch) Index of the last occurrence of character constant ch in string a
$isdefed (a) 1 if string a is defined in the symbol table

0 if string a is not defined in the symbol table

$ismember (a,b) Top member of list b is assigned to string a
0 if b is a null string

$iscons (a) 1 if string a is a binary constant
2 if string a is an octal constant
3 if string a is a hexadecimal constant
4 if string a is a character constant
5 if string a is a decimal constant

$isname (a) 1 if string a is a valid symbol name
0 if string a is not a valid symbol name

Sisreg (a) @ 1 if string a is a valid predefined register name
0 if string a is not a valid predefined register name

@ For more information about predefined register names, see Section 4.7.6.

Example 6-5 shows built-in substitution symbol functions.

Example 6-5. Using Built-In Substitution Symbol Functions

. asg | abel , ADDR ; ADDR = | abel

Vi f ($$syncnp(ADDR, "l abel") = 0) ; evaluates to true
LDR R4, ADDR

.endif

.asg "X,y,z" , list ;o list = x,y,2

Jif ($$i smenber (ADDR, 1i st)) ; ADDR = x, list =vy,z
SUB R4, R4, #4 ; sub x

.endi f

SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

Macro Description

157

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Macro Parameters/Substitution Symbols www.ti.com

6.3.3 Recursive Substitution Symbols

When the assembler encounters a substitution symbol, it attempts to substitute the corresponding
character string. If that string is also a substitution symbol, the assembler performs substitution again. The
assembler continues doing this until it encounters a token that is not a substitution symbol or until it
encounters a substitution symbol that it has already encountered during this evaluation.

In Example 6-6, the x is substituted for z; z is substituted for y; and y is substituted for x. The assembler
recognizes this as infinite recursion and ceases substitution.

Example 6-6. Recursive Substitution

.asg "x",z declare z and assign z =
.asg "z",y declare y and assigny = "z
.asg "y",x declare x and assign x =
LDR RO, x

RO, x ; recursive expansion

6.3.4 Forced Substitution

In some cases, substitution symbols are not recognizable to the assembler. The forced substitution
operator, which is a set of colons surrounding the symbol, enables you to force the substitution of a
symbol's character string. Simply enclose a symbol with colons to force the substitution. Do not include
any spaces between the colons and the symbol.

The syntax for the forced substitution operator is:

:symbol:

The assembler expands substitution symbols surrounded by colons before expanding other substitution
symbols.

You can use the forced substitution operator only inside macros, and you cannot nest a forced substitution
operator within another forced substitution operator.

Example 6-7 shows how the forced substitution operator is used.

158

Macro Description SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

I

TEXAS
INSTRUMENTS

www.ti.com Macro Parameters/Substitution Symbols

Example 6-7. Using the Forced Substitution Operator

NDNNPNNNNNDNNNMNNNNNNNMNNNNNRRERRERE

1 force . macro
2 . asg 0, x
3 .loop 8
4 AUX: x: . set X
5 .eval x+1,x
6 . endl oop
7 .endm
8
9 00000000 force
.asg 0, x
.loop 8

AUX: X: . set X
.eval x+1,x
. endl oop
00000000 AUX0O . set 0
.eval 0+1, x
00000001 AUX1 .set 1
.eval 1+1,x
00000002 AUX2 .set 2
.eval 2+1,Xx
00000003 AUX3 .set 3
.eval 3+1,x
00000004 AUX4 .set 4
.eval 4+1,x
00000005 AUX5 . set 5
.eval 5+1,x
00000006 AUX6 . set 6
.eval 6+1, x
00000007 AUX7 .set 7
.eval 7+1,x

6.3.5 Accessing Individual Characters of Subscripted Substitution Symbols

In a macro, you can access the individual characters (substrings) of a substitution symbol with subscripted
substitution symbols. You must use the forced substitution operator for clarity.

You can access substrings in two ways:
» :symbol (well-defined expression):

This method of subscripting evaluates to a character string with one character.
« :symbol (well-defined expression ;, well-defined expression ,):

In this method, expression, represents the substring's starting position, and expression, represents the
substring's length. You can specify exactly where to begin subscripting and the exact length of the
resulting character string. The index of substring characters begins with 1, not 0.

Example 6-8 and Example 6-9 show built-in substitution symbol functions used with subscripted
substitution symbols.

In Example 6-8, subscripted substitution symbols redefine the ADD instruction so that it handles short
immediate values. In Example 6-9, the subscripted substitution symbol is used to find a substring strgl
beginning at position start in the string strg2. The position of the substring strgl is assigned to the
substitution symbol pos.

SPNU118L—June 2013 Macro Description 159
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Macro Parameters/Substitution Symbols

13 TEXAS

INSTRUMENTS

www.ti.com

Example 6-8. Using Subscripted Substitution Symbols to Redefine an Instruction

ADDX . macro dst, imm
.var T™P
. asg dinm(1):, TWP
i f $$synmcnp(TMP, "#") = 0
ADD dst, dst, imm
. el se
. ensg "Bad Macro Paraneter”
.endif
.endm
ADDX R9, #100 ; macro cal
ADDX R9, R8 ; macro cal

Example 6-9. Using Subscripted Substitution Symbols to Find Substrings

substr . macro start, strgl, strg2, pos
.var LEN1, LEN2, |, TMP
Vi f $$synml en(start) =0
.eval 1, start
.endif
. eval 0, pos
. eval 1,i
. eval $$synl en(strgl), LENL
. eval $$synl en(strg2), LEN2
.1 oop
. break I = (LEN2 - LENL + 1)
.asg ":strg2(l,LENL):", TMP
.eval i, pos
. break
. el se
. eval I+ 1,i
.endif
. endl oop
.endm
. asg 0, pos
.asg "arl ar2 ar3 ar4",regs
substr 1,"ar2", regs, pos
.word pos

6.3.6 Substitution Symbols as Local Variables in Macros

If you want to use substitution symbols as local variables within a macro, you ca

n use the .var directive to

define up to 32 local macro substitution symbols (including parameters) per macro. The .var directive

creates temporary substitution symbols with the initial value of the null string. Th
passed in as parameters, and they are lost after expansion.

ese symbols are not

var sym, [,sym,, ... ,sym,]

The .var directive is used in Example 6-8 and Example 6-9.

160 Macro Description

Copyright © 2013, Texas Instruments Incorporated

SPNU118L—June 2013
Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

I

TEXAS
INSTRUMENTS

www.ti.com Macro Libraries

6.4

Macro Libraries

One way to define macros is by creating a macro library. A macro library is a collection of files that contain
macro definitions. You must use the archiver to collect these files, or members, into a single file (called an
archive). Each member of a macro library contains one macro definition. The files in a macro library must
be unassembled source files. The macro name and the member name must be the same, and the macro
filename's extension must be .asm. For example:

Macro Name Filename in Macro Library

simple simple.asm
add3 add3.asm

You can access the macro library by using the .mlib assembler directive (described in Define Macro
Library). The syntax is:

‘ .mlib filename

When the assembler encounters the .mlib directive, it opens the library named by filename and creates a
table of the library's contents. The assembler enters the names of the individual members within the library
into the opcode tables as library entries; this redefines any existing opcodes or macros that have the same
name. If one of these macros is called, the assembler extracts the entry from the library and loads it into
the macro table.

The assembler expands the library entry in the same way it expands other macros. See Section 6.1 for
how the assembler expands macros. You can control the listing of library entry expansions with the .mlist
directive. For more information about the .mlist directive, see Section 6.8 and Start/Stop Macro Expansion
Listing. Only macros that are actually called from the library are extracted, and they are extracted only
once.

You can use the archiver to create a macro library by including the desired files in an archive. A macro
library is no different from any other archive, except that the assembler expects the macro library to
contain macro definitions. The assembler expects only macro definitions in a macro library; putting object
code or miscellaneous source files into the library may produce undesirable results. For information about
creating a macro library archive, see Section 7.1.

SPNU118L—June 2013 Macro Description 161
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Using Conditional Assembly in Macros www.ti.com

6.5

Using Conditional Assembly in Macros

The conditional assembly directives are .if/.elseif/.else/.endif and .loop/ .break/.endloop. They can be
nested within each other up to 32 levels deep. The format of a conditional block is:

.if well-defined expression
[.elseif well-defined expression]
[.else]

.endif

The .elseif and .else directives are optional in conditional assembly. The .elseif directive can be used
more than once within a conditional assembly code block. When .elseif and .else are omitted and when
the .if expression is false (0), the assembler continues to the code following the .endif directive. See
Assemble Conditional Blocks for more information on the .if/ .elseif/.else/.endif directives.

The .loop/.break/.endloop directives enable you to assemble a code block repeatedly. The format of a
repeatable block is:

Joop [well-defined expression]
[.break [well-defined expression]]
.endloop

The .loop directive's optional well-defined expression evaluates to the loop count (the number of loops to
be performed). If the expression is omitted, the loop count defaults to 1024 unless the assembler
encounters a .break directive with an expression that is true (nonzero). See Assemble Conditional Blocks
Repeatedly for more information on the .loop/.break/.endloop directives.

The .break directive and its expression are optional in repetitive assembly. If the expression evaluates to
false, the loop continues. The assembler breaks the loop when the .break expression evaluates to true or
when the .break expression is omitted. When the loop is broken, the assembler continues with the code
after the .endloop directive.

For more information, see Section 5.8.

Example 6-10, Example 6-11, and Example 6-12 show the .loop/.break/ .endloop directives, properly
nested conditional assembly directives, and built-in substitution symbol functions used in a conditional
assembly code block.

Example 6-10. The .loop/.break/.endloop Directives

. asg 1, X
.1 oop

.break (x == 10) ; if x == 10, quit |oop/break w th expression

.eval X+1, X
. endl oop

162

Macro Description SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Using Conditional Assembly in Macros

Example 6-11. Nested Conditional Assembly Directives

. asg 1, x

.1 oop

i f (x ==10) ; if x == 10, quit |oop
.break (x == 10) ; force break

.endi f

. eval x+1, x

. endl oop

Example 6-12. Built-In Substitution Symbol Functions in a Conditional Assembly Code Block

.fcnoli st

*

*Doubl e Add or Subtract

*

DBL .macro ABC, dsth, dstl, srch, srcl ; add or subtract double
i f $$synmenp(ABC, " +"
ADDS dstl, dstl, srcl ; add doubl e
ADC dsth, dsth, srch

.elseif $$syncnp(ABC, "-")
SUBS dstl, dstl, srcl ; subtract double
SUBS dsth, dsth, srch

. el se
. ensg "l ncorrect Operator Paraneter"

.endif
.endm

*Macro Cal
DBL -, R4, R5, R6, R7

SPNU118L—June 2013 Macro Description 163

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Using Labels in Macros

13 TEXAS
INSTRUMENTS

www.ti.com

6.6

Using Labels in Macros

All labels in an assembly language program must be unique. This includes labels in macros. If a macro is
expanded more than once, its labels are defined more than once. Defining a label more than once is
illegal. The macro language provides a method of defining labels in macros so that the labels are unique.
Simply follow each label with a question mark, and the assembler replaces the question mark with a
period followed by a unique number. When the macro is expanded, you do not see the unique number in
the listing file. Your label appears with the question mark as it did in the macro definition. You cannot
declare this label as global. The syntax for a unique label is:

label ?

Example 6-13 shows unique label generation in a macro. The maximum label length is shortened to allow
for the unique suffix. For example, if the macro is expanded fewer than 10 times, the maximum label
length is 126 characters. If the macro is expanded from 10 to 99 times, the maximum label length is 125.
The label with its unique suffix is shown in the cross-listing file. To obtain a cross-listing file, invoke the
assembler with the --cross_reference option (see Section 4.3).

Example 6-13. Unique Labels in a Macro

1 ; define macro to find mninum
2 M N .macro dst, srcl, src2
3 CwP srcl, src2
4 BCC mL?
5 MoV dst, srcl
6 B nm?
7
8 mL? MoV dst, src2
9 nm?
10 .endm
11
12 call macro
13 00000000 .statel6
14 00000000 M N r4, rl, r2
1 00000000 4291 cwP rl, r2
1 00000002 D301 BCC mL?
1 00000004 1CQ0C MOV r4, rl
1 00000006 EO000 B nm?
1
1 00000008 1C14 mL? MOV rd, r2
1 0000000a nm?
164 Macro Description SPNU118L—-June 2013

Copyright © 2013, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com

Producing Messages in Macros

6.7 Producing Messages in Macros

The macro language supports three directives that enable you to define your own assembly-time error and
warning messages. These directives are especially useful when you want to create messages specific to
your needs. The last line of the listing file shows the error and warning counts. These counts alert you to

problems in your code and are especially useful during debugging.

.emsg sends error messages to the listing file. The .emsg directive generates errors in the same
manner as the assembler, incrementing the error count and preventing the assembler from

producing an object file.

.mmsg sends assembly-time messages to the listing file. The .mmsg directive functions in the same
manner as the .emsg directive but does not set the error count or prevent the creation of an

object file.

.wmsg sends warning messages to the listing file. The .wmsg directive functions in the same

manner as the .emsg directive, but it increments the warning count and does not prevent the

generation of an object file.

Macro comments are comments that appear in the definition of the macro but do not show up in the
expansion of the macro. An exclamation point in column 1 identifies a macro comment. If you want your
comments to appear in the macro expansion, precede your comment with an asterisk or semicolon.

Example 6-14 shows user messages in macros and macro comments that do not appear in the macro

expansion.

For more information about the .emsg, .mmsg, and .wmsg assembler directives, see Define Messages.

Example 6-14. Producing Messages in a Macro

MUL_I .macro X,y
it ($$sym en(x) ==0)

. mexit
.elseif ($$sym en(y) == 0)

. mexit

. el se
9 MoV
MOV

oO~NO O~ WNPRE

X
y
, Rl, R2

ZBR

11 MUL
12 .endif
13 .endm

15 00000000 MJL_I #50, #51
i f ($$synl en(x) ==0)

. mexi t
.elseif ($$synlen(y) == 0)

. mexit
.el se
00000000 E3A01032 MOV R1, #50
00000004 E3A02033 MOV R2, #51
00000008 E0000291 ML RO, R, R2
.endif

RPRRRPRRRRRRERRR

16
17 0000000c MUL_I
it ($$sym en(x) ==0)

=

1 .enmsg "ERROR -- M ssing Paraneter"”

*xxx%k USER ERROR ***** . : ERROR -- M ssing Paraneter
1 .mexit
1 Error, No Warnings

.enmsg "ERROR -- M ssing Paraneter"”

.enmsg "ERROR -- M ssing Paraneter"”

.ensg "ERROR -- M ssing Paraneter"”

.ensg "ERROR -- M ssing Paraneter"”

SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

Macro Description

165

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Using Directives to Format the Output Listing www.ti.com

6.8 Using Directives to Format the Output Listing

Macros, substitution symbols, and conditional assembly directives may hide information. You may need to
see this hidden information, so the macro language supports an expanded listing capability.

By default, the assembler shows macro expansions and false conditional blocks in the list output file. You
may want to turn this listing off or on within your listing file. Four sets of directives enable you to control
the listing of this information:

* Macro and loop expansion listing

.mlist expands macros and .loop/.endloop blocks. The .mlist directive prints all code
encountered in those blocks.
.mnolist suppresses the listing of macro expansions and .loop/ .endloop blocks.

For macro and loop expansion listing, .mlist is the default.

» False conditional block listing

fclist causes the assembler to include in the listing file all conditional blocks that do not
generate code (false conditional blocks). Conditional blocks appear in the listing
exactly as they appear in the source code.

fcnolist suppresses the listing of false conditional blocks. Only the code in conditional blocks
that actually assemble appears in the listing. The .if, .elseif, .else, and .endif directives
do not appear in the listing.

For false conditional block listing, .fclist is the default.

* Substitution symbol expansion listing

.sslist expands substitution symbols in the listing. This is useful for debugging the expansion
of substitution symbols. The expanded line appears below the actual source line.

.ssnolist turns off substitution symbol expansion in the listing.
For substitution symbol expansion listing, .ssnolist is the default.

» Directive listing
drlist causes the assembler to print to the listing file all directive lines.

.drnolist suppresses the printing of certain directives in the listing file. These directives are
.asg, .eval, .var, .sslist, .mlist, .fclist, .ssnolist, .mnolist, .fcnolist, .emsg, .wmsg,
.mmsg, .length, .width, and .break.

For directive listing, .drlist is the default.

166 Macro Description SPNU118L—June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Using Recursive and Nested Macros

6.9 Using Recursive and Nested Macros

The macro language supports recursive and nested macro calls. This means that you can call other
macros in a macro definition. You can nest macros up to 32 levels deep. When you use recursive macros,
you call a macro from its own definition (the macro calls itself).

When you create recursive or nested macros, you should pay close attention to the arguments that you
pass to macro parameters because the assembler uses dynamic scoping for parameters. This means that
the called macro uses the environment of the macro from which it was called.

Example 6-15 shows nested macros. The y in the in_block macro hides the y in the out_block macro. The
x and z from the out_block macro, however, are accessible to the in_block macro.

Example 6-15. Using Nested Macros

in_block .macro y,a
. visible paraneters are y,a and x,z fromthe calling nacro
.endm

out _bl ock . macro X,Y,2Z
; visible paraneters are x,y,z
in_block x,y ; macro call with x and y as argunents
.endm
out _bl ock ; macro call

Example 6-16 shows recursive and fact macros. The fact macro produces assembly code necessary to
calculate the factorial of n, where n is an immediate value. The result is placed in data memory address
loc. The fact macro accomplishes this by calling factl, which calls itself recursively.

Example 6-16. Using Recursive Macros

fact .macro N, |oc ; Nis an integer constant. Register |oc address = N
Jif N< 2 ;0 =1 =1
MoV loc, #1
. el se
MoV loc, #N ; N>= 2 so, store Nin |oc.
.eval -1, N ; Decrenent N, and do the factorial of N - 1.
factl ; Call fact with current environnent.
.endm

factl . Macro

i f N> 1
MoV RO, #N ; N> 1 so, store Nin RO.
MUL loc, RO, loc ; Miultiply present factorial by present position.
.eval N- 1, N ; Decrenent position.
factl ; Recursive call.
.endif
.endm

SPNU118L—-June 2013 Macro Description 167

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Macro Directives Summary

13 TEXAS
INSTRUMENTS

www.ti.com

6.10 Macro Directives Summary

The directives listed in Table 6-2 through Table 6-6 can be used with macros. The .macro, .mexit, .endm
and .var directives are valid only with macros; the remaining directives are general assembly language

directives.

Table 6-2. Creating Macros

See
Mnemonic and Syntax Description Macro Use Directive
.endm End macro definition Section 6.2 .endm
macname .macro [parameter,][,... , parameter,] Define macro by macname Section 6.2 .macro
.mexit Go to .endm Section 6.2 Section 6.2
.mlib filename Identify library containing macro definitions Section 6.4 .mlib

Table 6-3. Manipulating Substitution Symbols

See
Mnemonic and Syntax Description Macro Use Directive
.asg ["]character string["], substitution symbol Assign character string to substitution symbol Section 6.3.1 .asg
.eval well-defined expression, substitution symbol Perform arithmetic on numeric substitution symbols ~ Section 6.3.1 .eval
var sym, [, sym,, ..., sym,] Define local macro symbols Section 6.3.6 .var

Table 6-4. Conditional Assembly

See
Mnemonic and Syntax Description Macro Use Directive
.break [well-defined expression] Optional repeatable block assembly Section 6.5 .break
.endif End conditional assembly Section 6.5 .endif
.endloop End repeatable block assembly Section 6.5 .endloop
.else Optional conditional assembly block Section 6.5 .else
.elseif well-defined expression Optional conditional assembly block Section 6.5 .elseif
.if well-defined expression Begin conditional assembly Section 6.5 Jif
loop [well-defined expression] Begin repeatable block assembly Section 6.5 loop

Table 6-5. Producing Assembly-Time Messages

See
Mnemonic and Syntax Description Macro Use Directive
.emsg Send error message to standard output Section 6.7 .emsg
.mmsg Send assembly-time message to standard output Section 6.7 .mmsg
.wmsg Send warning message to standard output Section 6.7 .wmsg

Table 6-6. Formatting the Listing
See

Mnemonic and Syntax Description Macro Use Directive
felist Allow false conditional code block listing (default) Section 6.8 fclist
fcnolist Suppress false conditional code block listing Section 6.8 fenolist
.mlist Allow macro listings (default) Section 6.8 .mlist
.mnolist Suppress macro listings Section 6.8 .mnolist
.sslist Allow expanded substitution symbol listing Section 6.8 .sslist
.ssnolist Suppress expanded substitution symbol listing (default) Section 6.8 .ssnolist

168 Macro Description

Copyright © 2013, Texas Instruments Incorporated

SPNU118L—June 2013
Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

. Chapter 7
l TEXAS SPNU118L—June 2013

INSTRUMENTS

Archiver Description

The ARM archiver lets you combine several individual files into a single archive file. For example, you can
collect several macros into a macro library. The assembler searches the library and uses the members
that are called as macros by the source file. You can also use the archiver to collect a group of object files
into an object library. The linker includes in the library the members that resolve external references during
the link. The archiver allows you to modify a library by deleting, replacing, extracting, or adding members.

On architectures like ARM, it is often desirable to have multiple versions of the same object file libraries,
each built with different sets of build options. When several versions of a single library are available, the
library information archiver can be used to create an index library of all the object file library versions. This
index library is the used in the link step in place of a particular version of your object file library.

Topic Page

A% B N o] LA =T Q@ T 170

7.2 The Archiver's Role in the Software Development FIOWcccvveieiiiiiiiiiiieiiinnnenes 171

7.3 INVOKING the ArCRIVET ...t e et e e n e a e e e e e 172

7.4 Archiver EXampPIes ...ttt e e 173

7.5 Library Information Archiver DEeSCHIPLION ...c.uiuiuiiieiiiiiiieiii e e e eeees 174
SPNU118L—-June 2013 Archiver Description 169

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Archiver Overview www.ti.com

7.1

Archiver Overview

You can build libraries from any type of files. Both the assembler and the linker accept archive libraries as
input; the assembler can use libraries that contain individual source files, and the linker can use libraries
that contain individual object files.

One of the most useful applications of the archiver is building libraries of object modules. For example,
you can write several arithmetic routines, assemble them, and use the archiver to collect the object files
into a single, logical group. You can then specify the object library as linker input. The linker searches the
library and includes members that resolve external references.

You can also use the archiver to build macro libraries. You can create several source files, each of which
contains a single macro, and use the archiver to collect these macros into a single, functional group. You
can use the .mlib directive during assembly to specify that macro library to be searched for the macros
that you call. Chapter 6 discusses macros and macro libraries in detail, while this chapter explains how to
use the archiver to build libraries.

170

Archiver Description SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com The Archiver's Role in the Software Development Flow

7.2 The Archiver's Role in the Software Development Flow

Figure 7-1 shows the archiver's role in the software development process. The shaded portion highlights
the most common archiver development path. Both the assembler and the linker accept libraries as input.

Figure 7-1. The Archiver in the ARM Software Development Flow

C/C++
source
files

Macro
source C/C++
files compiler

Assembler
source

C/C++ name

demangling
utility

:\i/tl)?,g:s Assembler
Object Librat_ryll_;build Debugging
files utiiity
L Run-time-
Library of support
object q library
files

Executable
object file

Hex-conversion
utility

EPROM
programmer

Absolute lister

Cross-reference
lister

Object file
utilities

SPNU118L—-June 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

Archiver Description

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Invoking the Archiver

13 TEXAS
INSTRUMENTS

www.ti.com

7.3 Invoking the Archiver

To invoke the archiver, enter:

‘armar [[Jlcommand [options] libname [filename, ... filename,]

armar
[-Jcommand

options

libname

filenames

is the command that invokes the archiver.

tells the archiver how to manipulate the existing library members and any specified. A
command can be preceded by an optional hyphen. You must use one of the following
commands when you invoke the archiver, but you can use only one command per
invocation. The archiver commands are as follows:

@ uses the contents of the specified file instead of command line entries. You can
use this command to avoid limitations on command line length imposed by the
host operating system. Use a ; at the beginning of a line in the command file to
include comments. (See Example 7-1 for an example using an archiver command
file.)

a adds the specified files to the library. This command does not replace an existing
member that has the same name as an added file; it simply appends new
members to the end of the archive.

d deletes the specified members from the library.

replaces the specified members in the library. If you do not specify flenames, the
archiver replaces the library members with files of the same name in the current
directory. If the specified file is not found in the library, the archiver adds it instead
of replacing it.

t prints a table of contents of the library. If you specify filenames, only those files
are listed. If you do not specify any filenames, the archiver lists all the members in
the specified library.

X extracts the specified files. If you do not specify member names, the archiver
extracts all library members. When the archiver extracts a member, it simply
copies the member into the current directory; it does not remove it from the library.

In addition to one of the commands, you can specify options. To use options, combine
them with a command; for example, to use the a command and the s option, enter -as
or as. The hyphen is optional for archiver options only. These are the archiver options:

-q (quiet) suppresses the banner and status messages.

-s prints a list of the global symbols that are defined in the library. (This option is
valid only with the a, r, and d commands.)

-u replaces library members only if the replacement has a more recent modification
date. You must use the r command with the -u option to specify which members to
replace.

-v (verbose) provides a file-by-file description of the creation of a new library from an
old library and its members.

names the archive library to be built or modified. If you do not specify an extension for

libname, the archiver uses the default extension .lib.

names individual files to be manipulated. These files can be existing library members or

new files to be added to the library. When you enter a filename, you must enter a

complete filename including extension, if applicable.

Naming Library Members

NOTE: Itis possible (but not desirable) for a library to contain several members with the same
name. If you attempt to delete, replace, or extract a member whose name is the same as
another library member, the archiver deletes, replaces, or extracts the first library member
with that name.

172 Archiver Description

SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com

Archiver Examples

7.4 Archiver Examples

The following are examples of typical archiver operations:

If you want to create a library called function.lib that contains the files sine.obj, cos.obj, and flt.obj,
enter:

armar -a function sine.obj cos.obj flt.obj
The archiver responds as follows:
==> new archive 'function.lib'" ==> building new archive 'function.lib'
You can print a table of contents of function.lib with the -t command, enter:
armar -t function
The archiver responds as follows:
FI LE NAME SI ZE DATE

si ne. obj 300 Wed Jun 15 10:00: 24 2011
cO0s. obj 300 Wed Jun 15 10:00: 30 2011
flt.obj 300 Wed Jun 15 09:59:56 2011

If you want to add new members to the library, enter:
armar -as function atan. obj

The archiver responds as follows:

==> synbol defined: '_sin'

==> synbol defined: '$sin'

==> synbol defined: '_cos'

==> synbol defined: '$cos'

==> synbol defined: '_tan'

==> synbol defined: '$tan'

==> synbol defined: '_atan

==> synbol defined: '$atan'

==> bui l ding archive 'function.lib'
Because this example does not specify an extension for the libname, the archiver adds the files to the
library called function.lib. If function.lib does not exist, the archiver creates it. (The -s option tells the
archiver to list the global symbols that are defined in the library.)

If you want to modify a library member, you can extract it, edit it, and replace it. In this example,
assume there is a library named macros.lib that contains the members push.asm, pop.asm, and
swap.asm.

armar -XxX nacros pUSh. asm
The archiver makes a copy of push.asm and places it in the current directory; it does not remove

push.asm from the library. Now you can edit the extracted file. To replace the copy of push.asm in the
library with the edited copy, enter:

armar -r macros pUSh. asm
If you want to use a command file, specify the command filename after the -@ command. For
example:
armar - @modul es. crd
The archiver responds as follows:
==> Dbuilding archive 'nodules.lib’
Example 7-1 is the modules.cmd command file. The r command specifies that the filenames given in
the command file replace files of the same name in the modules.lib library. The -u option specifies that

these files are replaced only when the current file has a more recent revision date than the file that is
in the library.

SPNU118L—June 2013 Archiver Description 173
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Library Information Archiver Description www.ti.com

Example 7-1. Archiver Command File

Command file to replace nenbers of the

modul es library with updated files

Use r conmand and u option:

ru

Specify library nane:
nodul es. lib
List filenanes to be replaced if updated:
al i gn. asm
bss. asm
dat a. asm

text.
sect.

asm
asm

clink.asm

copy.

asm

doubl e. asm
drnolist.asm

ensg.

asm

end. asm

7.5

7.5.1

Library Information Archiver Description

Section 7.1 explains how to use the archiver to create libraries of object files for use in the linker of one or
more applications. You can have multiple versions of the same object file libraries, each built with different
sets of build options. For example, you might have different versions of your object file library for big and
little endian, for different architecture revisions, or for different ABIs depending on the typical build
environments of client applications. However, if you have several versions of a library, it can be
cumbersome to keep track of which version of the library needs to be linked in for a particular application.

When several versions of a single library are available, the library information archiver can be used to
create an index library of all of the object file library versions. This index library is used in the linker in
place of a particular version of your object file library. The linker looks at the build options of the
application being linked, and uses the specified index library to determine which version of your object file
library to include in the linker. If one or more compatible libraries were found in the index library, the most
suitable compatible library is linked in for your application.

Invoking the Library Information Archiver
To invoke the library information archiver, enter:

armlibinfo [options] -o=libname libname, [libname, ... libname,,]

armlibinfo is the command that invokes the library information archiver.

options changes the default behavior of the library information archiver. These options are:

-0 libname specifies the name of the index library to create or update. This option is
required.

-u updates any existing information in the index library specified with the -o
option instead of creating a new index.

libnames names individual object file libraries to be manipulated. When you enter a libname, you
must enter a complete filename including extension, if applicable.

174

Archiver Description SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Library Information Archiver Description

7.5.2 Library Information Archiver Example
Consider these object file libraries that all have the same members, but are built with different build

options:
Object File Library Name Build Options
mylib_ ARMv4_be.lib --code_state=32 --silicon_version=4 --endian=big
mylib_ ARMv4_le.lib --code_state=32 --silicon_version=4 --endian=little
mylib_THUMBV4_be.lib --code_state=16 --silicon_version=4 --endian=big
mylib_THUMBV4_le.lib --code_state=16 --silicon_version=4 --endian=little
mylib_ THUMBV7A8_le.lib --code_state=16 --silicon_version=7A8 --endian=little

Using the library information archiver, you can create an index library called mylib.lib from the above
libraries:
armibinfo -o nylib.lib nmylib_ARMW/4_be.lib nylib_THUMBv4_be.lib

nylib_THUMBV7A8_le.lib nylib_ARM/4_le.lib nylib_THUMBv4 le.lib

You can now specify mylib.lib as a library for the linker of an application. The linker uses the index library
to choose the appropriate version of the library to use. If the --issue_remarks option is specified before the
--run_linker option, the linker reports which library was chosen.
» Example 1 (ISA v7A8, little endian):
arncl -mv7A8 -me --issue_remarks main.c -z -1 Ink.cmd ./nylib.lib
<Li nki ng>
remark: linking in "nylib_THUMBv7A8 le.lib" in place of "nylib.Ilib"
* Example 2 (ISAv5, big endian):
arncl -nv5e --issue_remarks main.c -z -1 Ink.cmd ./nylib.lib
<Li nki ng>
remark: linking in "nylib_ARW4 be.lib" in place of "nylib.lib"
In Example 2, there was no version of the library for ISAv5, but an ISAv4 library was available and is
compatible, so it was used.

7.5.3 Listing the Contents of an Index Library

The archiver’s -t option can be used on an index library to list the archives indexed by an index library:
armar t nylib.lib

SI ZE DATE FI LE NAME

119 Mon Apr 23 12:45:22 2007 nylib_ARM/4_be.lib.libinfo

119 Mon Apr 23 12:45:22 2007 nylib_ARMW/4 le.lib.libinfo

119 Mon Apr 23 12:45:22 2007 myl i b_THUMBv4_be.lib.libinfo

119 Mon Apr 23 12:45:22 2007 nylib_THUMBv4_ le.lib.libinfo

119 Mon Apr 23 12:45:22 2007 nylib_THUMBV7A8_le.lib.libinfo
0 Mon Apr 23 12:45:22 2007 __TI_$$LI BI NFO

The indexed object file libraries have an additional .libinfo extension in the archiver listing. The
__TI_$$LIBINFO member is a special member that designates mylib.lib as an index library, rather than a
regular library.

If the archiver’'s -d command is used on an index library to delete a .libinfo member, the linker will no
longer choose the corresponding library when the index library is specified.

Using any other archiver option with an index library, or using -d to remove the __ Tl _3LIBINFO member,
results in undefined behavior, and is not supported.

SPNU118L—June 2013 Archiver Description 175

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Library Information Archiver Description www.ti.com

7.5.4 Requirements

You must follow these requirements to use library index files:

» At least one of the application’s object files must appear on the linker command line before the index
library.

» Each object file library specified as input to the library information archiver must only contain object file
members that are built with the same build options.

» The linker expects the index library and all of the libraries it indexes to be in a single directory.

176 Archiver Description SPNU118L—June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Chapter 8
l ’-{‘IE)S($1§UMENTS SPNU118L—June 2013

Linker Description

The ARM linker creates executable modules by combining object modules. This chapter describes the
linker options, directives, and statements used to create executable modules. Object libraries, command
files, and other key concepts are discussed as well.

The concept of sections is basic to linker operation; Chapter 2 discusses the object module sections in

detail.

Topic Page
S 0 1 0| = @AY= Y A= PP 178
8.2 The Linker's Role in the Software Development FIOWcocveieieiiiiiiniiiinininienenenes 179
8.3 INVOKING the LINKEr . .o.eee et et e et e e e e e a e e e e enns 180
S I T 01 =T 0} o] = PP 181
8.5 Linker Command FilEScuiuiiuiiiiiiiiitiiiiie e 202
S G T © o = o I o = 1 = 235
8.7 Default Allocation AIGOrithm ... e e 236
8.8 Linker-Generated Copy TablesSc.iiiiiiiiiiii et e e e 237
8.9 Linker-Generated CRC TableSiciiiiiiiiiiiiiii et na e 250
8.10 Partial (Incremental) Linking ...ouicioiiiiiiiii et a e e e e e s e e e aes 256
8.11 LiNKING C/CH+ COOE .iututiuiniiititieeiet ittt et e ettt e e et et s e e et aa e e e nanenenenees 257
S 2 T 1T G G- 10] 260

SPNU118L—-June 2013 Linker Description 177

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS

INSTRUMENTS

Linker Overview www.ti.com
8.1 Linker Overview

The ARM linker allows you to configure system memory by allocating output sections efficiently into the

memory map. As the linker combines object files, it performs the following tasks:

» Allocates sections into the target system's configured memory

» Relocates symbols and sections to assign them to final addresses

» Resolves undefined external references between input files

The linker command language controls memory configuration, output section definition, and address

binding. The language supports expression assignment and evaluation. You configure system memory by

defining and creating a memory model that you design. Two powerful directives, MEMORY and

SECTIONS, allow you to:

» Allocate sections into specific areas of memory

» Combine object file sections

» Define or redefine global symbols at link time
178 Linker Description SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com The Linker's Role in the Software Development Flow

8.2 The Linker's Role in the Software Development Flow

Figure 8-1 illustrates the linker's role in the software development process. The linker accepts several
types of files as input, including object files, command files, libraries, and partially linked files. The linker
creates an executable object module that can be downloaded to one of several development tools or
executed by a ARM device.

Figure 8-1. The Linker in the ARM Software Development Flow

C/C++
source
files

Macro
source C/C++
files compiler

Assembler
source

C/C++ name

demangling
utility

Macro
library Assembler
Object Librat_r)Il_-tbuild Del:uglging
files utility ools
- Run-time-
Library of 4 support
object > library
files
Executable
object file

Hex-conversion
utility

EPROM
programmer

Absolute lister

Cross-reference
lister

Object file
utilities

SPNU118L—-June 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

Linker Description

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Invoking the Linker www.ti.com

8.3

Invoking the Linker

The general syntax for invoking the linker is:

armcl --run_linker [options] filename, filename,

armcl --run_linker is the command that invokes the linker. The --run_linker option's short form is

-Z.

options can appear anywhere on the command line or in a link command file. (Options

are discussed in Section 8.4.)

filename 4, filename can be object files, link command files, or archive libraries. The default

extension for all input files is .obj; any other extension must be explicitly
specified. The linker can determine whether the input file is an object or ASCII
file that contains linker commands. The default output filename is a.out, unless
you use the --output_file option to name the output file.

There are two methods for invoking the linker:

Specify options and filenames on the command line. This example links two files, filel.obj and file2.obj,
and creates an output module named link.out.

arncl --run_linker filel.obj file2.0obj --output_file=link.out

Put filenames and options in a link command file. Filenames that are specified inside a link command
file must begin with a letter. For example, assume the file linker.cmd contains the following lines:

--output_file=link.out filel.obj file2.obj
Now you can invoke the linker from the command line; specify the command filename as an input file:
arncl --run_linker linker.cnd

When you use a command file, you can also specify other options and files on the command line. For
example, you could enter:

armcl --run_linker --map_file=link.map linker.cnd file3. obj

The linker reads and processes a command file as soon as it encounters the filename on the

command line, so it links the files in this order: filel.obj, file2.0bj, and file3.obj. This example creates an
output file called link.out and a map file called link.map.

For information on invoking the linker for C/C++ files, see Section 8.11.

180

Linker Description SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com

Linker Options

8.4 Linker Options

Linker options control linking operations. They can be placed on the command line or in a command file.
Linker options must be preceded by a hyphen (-). Options can be separated from arguments (if they have
them) by an optional space.

Table 8-1. Basic Options Summary

Option Alias Description Section
--run_linker -z Enables linking Section 8.3
--output_file -0 Names the executable output module. The default filename is a.out. Section 8.4.24
--map_file -m Produces a map or listing of the input and output sections, including holes, and Section 8.4.19
places the listing in filename
--stack_size -stack Sets C system stack size to size bytes and defines a global symbol that Section 8.4.30
specifies the stack size. Default = 2K bytes
--heap_size -heap Sets heap size (for the dynamic memory allocation in C) to size bytes and Section 8.4.15
defines a global symbol that specifies the heap size. Default = 2K bytes
Table 8-2. File Search Path Options Summary
Option Alias Description Section
--library -l Names an archive library or link command filename as linker input Section 8.4.17
--search_path -i Alters library-search algorithms to look in a directory named with pathname Section 8.4.17.1
before looking in the default location. This option must appear before the --
library option.
--priority -priority Satisfies unresolved references by the first library that contains a definition for ~ Section 8.4.17.3
that symbol
--reread_libs -X Forces rereading of libraries, which resolves back references Section 8.4.17.3
--disable_auto_rts Disables the automatic selection of a run-time-support library Section 8.4.8
Table 8-3. Command File Preprocessing Options Summary
Option Alias Description Section
--define Predefines name as a preprocessor macro. Section 8.4.10
--undefine Removes the preprocessor macro name. Section 8.4.10
--disable_pp Disables preprocessing for command files Section 8.4.10
Table 8-4. Diagnostic Options Summary
Option Alias Description Section
--diag_error Categorizes the diagnostic identified by num as an error Section 8.4.7
--diag_remark Categorizes the diagnostic identified by nhum as a remark Section 8.4.7
--diag_suppress Suppresses the diagnostic identified by num Section 8.4.7
--diag_warning Categorizes the diagnostic identified by nhum as a warning Section 8.4.7
--display_error_number Displays a diagnostic's identifiers along with its text Section 8.4.7
--emit_warnings_as_errors -pdew Treats warnings as errors Section 8.4.7
--issue_remarks Issues remarks (nonserious warnings) Section 8.4.7
--no_demangle Disables demangling of symbol names in diagnostics Section 8.4.21
--no_warnings Suppresses warning diagnostics (errors are still issued) Section 8.4.7
--set_error_limit Sets the error limit to num. The linker abandons linking after this number of Section 8.4.7
errors. (The default is 100.)
--verbose_diagnostics Provides verbose diagnostics that display the original source with line-wrap Section 8.4.7
--warn_sections -w Displays a message when an undefined output section is created Section 8.4.35

SPNU118L—June 2013
Submit Documentation Feedback

Linker Description

Copyright © 2013, Texas Instruments Incorporated

181

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Linker Options

I

TEXAS
INSTRUMENTS

www.ti.com

Table 8-5. Linker Output Options Summary

Option

Alias

Description

Section

--absolute_exe

--ecc:data_error
--ecc:ecc_error

--mapfile_contents
--relocatable

--generate_dead_funcs_list

-a

Produces an absolute, executable module. This is the default; if neither --
absolute_exe nor --relocatable is specified, the linker acts as if --absolute_exe
were specified.

Inject the specified errors into the output file for testing
Inject the specified errors into the Error Correcting Code (ECC) for testing

Controls the information that appears in the map file.
Produces a nonexecutable, relocatable output module

Writes a list of the dead functions that were removed by the linker to file
fname.

Section 8.4.2.1

Section 8.4.11
Section 8.5.8

Section 8.4.11
Section 8.5.8

Section 8.4.20
Section 8.4.2.2
Section 8.4.14

--rom -r Create a ROM object
--run_abs -abs Produces an absolute listing file Section 8.4.28
--xml_link_info Generates a well-formed XML file containing detailed information about the Section 8.4.36
result of a link
Table 8-6. Symbol Management Options Summary
Option Alias Description Section
--entry_point -e Defines a global symbol that specifies the primary entry point for the output Section 8.4.12
module
--globalize Changes the symbol linkage to global for symbols that match pattern Section 8.4.18
--hide Hides global symbols that match pattern Section 8.4.16
--localize Changes the symbol linkage to local for symbols that match pattern Section 8.4.18
--make_global -g Makes symbol global (overrides -h) Section 8.4.18.2
--make_static -h Makes all global symbols static Section 8.4.18.1
--n0_sym_merge -b Disables merge of symbolic debugging information in COFF object files Section 8.4.22
--no_symtable -S Strips symbol table information and line number entries from the output Section 8.4.23
module
--retain Retains a list of sections that otherwise would be discarded Section 8.4.27
--scan_libraries -scanlibs Scans all libraries for duplicate symbol definitions Section 8.4.29
--symbol_map Maps symbol references to a symbol definition of a different name Section 8.4.32
--undef_sym -u Places an unresolved external symbol into the output module's symbol table Section 8.4.34
--unhide Reveals (un-hides) global symbols that match pattern Section 8.4.16
Table 8-7. Run-Time Environment Options Summary
Option Alias Description Section
--arg_size --args Allocates memory to be used by the loader to pass arguments Section 8.4.3
-be32 Forces the linker to generate BE-32 object code. Section 8.4.4
-be8 Forces the linker to generate BE-8 object code. Section 8.4.4
-fill_value -f Sets default fill values for holes within output sections; fill_value is a 32-bit Section 8.4.13
constant
--ram_model -cr Initializes variables at load time Section 8.4.26
--rom_model -C Autoinitializes variables at run time Section 8.4.26
--trampolines Generates far call trampolines; on by default Section 8.4.33
182 Linker Description SPNU118L—-June 2013

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com

Linker Options

Table 8-8. Link-Time Optimization Options Summary

Option Alias Description Section

--cinit_compression Specifies the type of compression to apply to the c auto initialization data Section 8.4.5
(default is rle)

--compress_dwarf Aggressively reduces the size of DWARF information from input object files Section 8.4.6

--copy_compression Compresses data copied by linker copy tables Section 8.4.5

--unused_section_elimination

Eliminates sections that are not needed in the executable module; on by
default

Section 8.4.9.2

Table 8-9. Miscellaneous Options Summary

Option Alias Description Section
--disable_clink - Disables conditional linking of COFF object modules Section 8.4.9.1
--linker_help -help Displays information about syntax and available options -

--minimize_trampolines
--preferred_order
--strict_compatibility

--trampoline_min_spacing

--zero_init

Places sections to minimize number of far trampolines required
Prioritizes placement of functions

Performs more conservative and rigorous compatibility checking of input object

files

When trampoline reservations are spaced more closely than the specified limit,

tries to make them adjacent
Controls preinitialization of uninitialized variables. Default is on.

Section 8.4.33.3
Section 8.4.25
Section 8.4.31

Section 8.4.33.4

Section 8.4.37

8.4.1 Wild Cards in File, Section, and Symbol Patterns

The linker allows file, section, and symbol names to be specified using the asterisk (*) and question mark
(?) wild cards. Using * matches any number of characters and using ? matches a single character. Using
wild cards can make it easier to handle related objects, provided they follow a suitable naming convention.

For example:
mp3*. obj
task?. o*

SECTI ONS
{

.fast_code: { *.obj(*fast*) }
{ vectors.obj(.vector:partl:*) > OxFFFFFFOO
{ rts*.lib<str*.obj>(.text) }

.vectors
.str_code :

8.4.2

/* matches anything .obj that begins with np3 */
/* matches taskl.obj, task2.obj, taskX o055, etc. */

> FAST_MEM

> S1ROM

Relocation Capabilities (--absolute_exe and --relocatable Options)

The linker performs relocation, which is the process of adjusting all references to a symbol when the
symbol's address changes. The linker supports two options (--absolute_exe and --relocatable) that allow
you to produce an absolute or a relocatable output module. The linker also supports a third option (-ar)
that allows you to produce an executable, relocatable output module.

When the linker encounters a file that contains no relocation or symbol table information, it issues a

warning message (but continues executing). Relinking an absolute file can be successful only if each input
file contains no information that needs to be relocated (that is, each file has no unresolved references and
is bound to the same virtual address that it was bound to when the linker created it).

SPNU118L—-June 2013

Linker Description 183

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Linker Options www.ti.com

8.4.2.1 Producing an Absolute Output Module (--absolute_exe option)

When you use the --absolute_exe option without the --relocatable option, the linker produces an absolute,
executable output module. Absolute files contain no relocation information. Executable files contain the
following:

» Special symbols defined by the linker (see Section 8.5.9.4)
* An optional header that describes information such as the program entry point
* No unresolved references

The following example links filel.obj and file2.0bj and creates an absolute output module called a.out:
arntl --run_linker --absolute_exe filel.obj file2.obj

The --absolute_exe and --relocatable Options

NOTE: If you do not use the --absolute_exe or the --relocatable option, the linker acts as if you
specified --absolute_exe.

8.4.2.2 Producing a Relocatable Output Module (--relocatable option)

When you use the --relocatable option, the linker retains relocation entries in the output module. If the
output module is relocated (at load time) or relinked (by another linker execution), use --relocatable to
retain the relocation entries.

The linker produces a file that is not executable when you use the --relocatable option without the --
absolute_exe option. A file that is not executable does not contain special linker symbols or an optional
header. The file can contain unresolved references, but these references do not prevent creation of an
output module.

This example links filel.obj and file2.0bj and creates a relocatable output module called a.out:
arntl --run_linker --relocatable filel.obj file2.obj

The output file a.out can be relinked with other object files or relocated at load time. (Linking a file that will
be relinked with other files is called partial linking. For more information, see Section 8.10.)

8.4.2.3 Producing an Executable, Relocatable Output Module (-ar Option)

If you invoke the linker with both the --absolute_exe and --relocatable options, the linker produces an
executable, relocatable object module. The output file contains the special linker symbols, an optional
header, and all resolved symbol references; however, the relocation information is retained.

This example links filel.obj and file2.0bj to create an executable, relocatable output module called xr.out:

arncl --run_linker -ar filel.obj file2. obj --output_file=xr.out

8.4.3 Allocate Memory for Use by the Loader to Pass Arguments (--arg_size Option)
The --arg_size option instructs the linker to allocate memory to be used by the loader to pass arguments
from the command line of the loader to the program. The syntax of the --arg_size option is:
--arg_size= size
The size is the number of bytes to be allocated in target memory for command-line arguments.
By default, the linker creates the ¢ _args__ symbol and sets it to -1. When you specify --arg_size=size,
the following occur:
» The linker creates an uninitialized section named .args of size bytes.
» The __c_args__ symbol contains the address of the .args section.
The loader and the target boot code use the .args section and the __c¢_args___ symbol to determine
whether and how to pass arguments from the host to the target program. See the ARM Optimizing C/C++
Compiler User's Guide for information about the loader.

184 Linker Description SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS

INSTRUMENTS

www.ti.com Linker Options

8.4.4

8.4.5

8.4.6

8.4.7

Changing Encoding of Big-Endian Instructions

When you are creating big-endian executable files, you can determine whether instruction encoding is in
little or big endian. The -be8 option produces big-endian executable modules with little-endian encoded
instructions. This is the default behavior for architecture version 6 and higher.

The -be32 option produces big-endian executable modules with big-endian encoded instructions. This is
the default behavior for architecture version 5 and lower.

Compression (--cinit_compression and --copy_compression Option)
By default, the linker does not compress data. These two options specify compression through the linker.

The ELF mode --cinit_compression option specifies the compression type the linker applies to the C
autoinitialization data. The default is rle.

Overlays can be managed by using linker-generated copy tables. To save ROM space the linker can
compress the data copied by the copy tables. The compressed data is decompressed during copy. The --
copy_compression option controls the compression of the copy data tables.

The syntax for the options are:
--cinit_compression[=compression_kind]
--copy_compression[=compression_kind]

The compression_kind can be one of the following types:
» off. Don't compress the data.

e rle. Compress data using Run Length Encoding.
» lzss. Compress data using Lempel-Ziv Storer and Symanski compression.

Compress DWARF Information (--compress_dwarf Option)

The --compress_dwarf option aggressively reduces the size of DWARF information by eliminating
duplicate information from input object files. This is the default behavior for COFF object files, and can be
disabled for COFF with the legacy --no_sym_merge option. For ELF object files, the --compress_dwarf
option eliminates duplicate information that could not be removed through the use of ELF COMDAT
groups (see the ELF specification for information on COMDAT groups).

Control Linker Diaghostics

The linker uses certain C/C++ compiler options to control linker-generated diagnostics. The diagnostic
options must be specified before the --run_linker option.

--diag_error=num Categorizes the diagnostic identified by num as an error. To determine the
numeric identifier of a diagnostic message, use the --display_error_number
option first in a separate link. Then use --diag_error=num to recategorize the
diagnostic as an error. You can only alter the severity of discretionary
diagnostics.

--diag_remark=num Categorizes the diagnostic identified by num as a remark. To determine the
numeric identifier of a diagnostic message, use the --display_error_number
option first in a separate link. Then use --diag_remark=num to recategorize
the diagnostic as a remark. You can only alter the severity of discretionary
diagnostics.

--diag_suppress=num Suppresses the diagnostic identified by num. To determine the numeric
identifier of a diagnostic message, use the --display_error_number option first
in a separate link. Then use --diag_suppress=num to suppress the
diagnostic. You can only suppress discretionary diagnostics.

SPNU118L—June 2013 Linker Description 185
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS

INSTRUMENTS
Linker Options www.ti.com
--diag_warning=num Categorizes the diagnostic identified by num as a warning. To determine the

numeric identifier of a diagnostic message, use the --display_error_number
option first in a separate link. Then use --diag_warning=num to recategorize
the diagnostic as a warning. You can only alter the severity of discretionary
diagnostics.

--display_error_number Displays a diagnostic's numeric identifier along with its text. Use this option in
determining which arguments you need to supply to the diagnostic
suppression options (--diag_suppress, --diag_error, --diag_remark, and --
diag_warning). This option also indicates whether a diagnostic is
discretionary. A discretionary diagnostic is one whose severity can be
overridden. A discretionary diagnostic includes the suffix -D; otherwise, no
suffix is present. See the ARM Optimizing C/C++ Compiler User's Guide for
more information on understanding diagnostic messages.

--emit_warnings_as_ Treats all warnings as errors. This option cannot be used with the --
errors no_warnings option. The --diag_remark option takes precedence over this
option. This option takes precedence over the --diag_warning option.
--issue_remarks Issues remarks (nonserious warnings), which are suppressed by default.
--no_warnings Suppresses warning diagnostics (errors are still issued).
--set_error_limit=num Sets the error limit to num, which can be any decimal value. The linker

abandons linking after this number of errors. (The default is 100.)

--verbose_diagnostics Provides verbose diagnostics that display the original source with line-wrap
and indicate the position of the error in the source line

8.4.8 Disable Automatic Library Selection (--disable_auto_rts Option)

The --disable_auto_rts option disables the automatic selection of a run-time-support library. See the ARM
Optimizing C/C++ Compiler User's Guide for details on the automatic selection process.

8.4.9 Controlling Unreferenced and Unused Sections

8.4.9.1 Disable Conditional Linking (--disable_clink Option)

The --disable_clink option disables removal of unreferenced sections in COFF object modules. Only
sections marked as candidates for removal with the .clink assembler directive are affected by conditional
linking. See Conditionally Leave Section Out of Object Module Output for details on setting up conditional
linking using the .clink directive, which is available under ELF as well as COFF.

8.4.9.2 Do Not Remove Unused Sections (--unused_section_elimination Option)

In order to minimize the foot print, the ELF linker does not include a section that is not needed to resolve
any references in the final executable. Use --unused_section_elimination=off to disable this optimization.
The syntax for the option is:

--unused_section_elimination[=on|off]
The linker default behavior is equivalent to --unused_section_elimination=on.

186 Linker Description SPNU118L—June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Linker Options

8.4.10 Link Command File Preprocessing (--disable_pp, --define and --undefine Options)

The linker preprocesses link command files using a standard C preprocessor. Therefore, the command
files can contain well-known preprocessing directives such as #define, #include, and #if / #endif.

Three linker options control the preprocessor:

--disable_pp Disables preprocessing for command files
--define=name[=val] Predefines name as a preprocessor macro
--undefine=name Removes the macro name

The compiler has --define and --undefine options with the same meanings. However, the linker options are
distinct; only --define and --undefine options specified after --run_linker are passed to the linker. For
example:

arncl --define=FOO=1 main.c --run_linker --define=BAR=2 | nk.cnd
The linker sees only the --define for BAR; the compiler only sees the --define for FOO.

When one command file #includes another, preprocessing context is carried from parent to child in the
usual way (that is, macros defined in the parent are visible in the child). However, when a command file is
invoked other than through #include, either on the command line or by the typical way of being named in
another command file, preprocessing context is not carried into the nested file. The exception to this is --
define and --undefine options, which apply globally from the point they are encountered. For example:
--defi ne GLOBAL
#def i ne LOCAL

#i nclude "incfile.cnmd" /* sees GLOBAL and LOCAL */
nestfile.cnd /* only sees GLOBAL */

Two cautions apply to the use of --define and --undefine in command files. First, they have global effect as
mentioned above. Second, since they are not actually preprocessing directives themselves, they are
subject to macro substitution, probably with unintended consequences. This effect can be defeated by
guoting the symbol name. For example:

--define MYSYM=123

--undefi ne MYSYM /* expands to --undefine 123 (!) */

--undefine "MYSYM /* ahh, that's better */

The linker uses the same search paths to find #include files as it does to find libraries. That is, #include
files are searched in the following places:
1. If the #include file name is in quotes (rather than <brackets>), in the directory of the current file

2. In the list of directories specified with --library options or environment variables (see Section 8.4.17)

There are two exceptions: relative pathnames (such as "../name") always search the current directory; and
absolute pathnames (such as "/usr/tools/name") bypass search paths entirely.

The linker has the standard built-in definitions for the macros __ FILE_ , DATE__,and __ TIME__ . It
does not, however, have the compiler-specific options for the target (__.TI_ARM__), version
(__TI_COMPILER_VERSION_), run-time model, and so on.

SPNU118L—June 2013 Linker Description 187

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Linker Options www.ti.com

8.4.11 Error Correcting Code Testing (--ecc Options)

Error Correcting Codes (ECC) can be generated and placed in separate sections through the linker
command file. ECC uses extra bits to allow errors to be detected and/or corrected by a device. The ECC
support provided by the linker is compatible with the ECC support in Tl Flash memory on various Tl
devices. Tl Flash memory uses a modified Hamming(72,64) code, which uses 8 parity bits for every 64
bits. Check the documentation for your Flash memory to see if ECC is supported. (ECC for read-write
memory is handled completely in hardware at run time.)

See Section 8.5.8 for details on linker command file syntax for ECC support.

To test ECC error detection and handling, you can use two command-line options that inject bit errors into
the linked executable. These options let you specify an address where an error should appear and a
bitmask of bits in the code/data at that address to flip. You can specify the address of the error absolutely
or as an offset from a symbol.

When a data error is injected, the ECC parity bits for the data are calculated as if the error were not
present. This simulates bit errors that might actually occur and test ECC's ability to correct different levels
of errors.

The --ecc:data_error option injects errors into the load image at the specified location. The syntax is:
--ecc: data_error=(synbol +of f set | addr ess) [, page], bi t mask

The address is the location of the minimum addressable unit where the error is to be injected. A
symbol+offset can be used to specify the location of the error to be injected with a signed offset from that
symbol. The page number is needed to make the location non-ambiguous if the address occurs on
multiple memory pages. The bitmask is a mask of the bits to flip; its width should be the width of an
addressable unit.

For example, the following command line flips the least-significant bit in the byte at the address 0x100,
making it inconsistent with the ECC parity bits for that byte:
arntl test.c --ecc:data_error=0x100,0x01 -z -0 test.out

The following command flips two bits in the third byte of the code for main():
arntl test.c --ecc:data_error=mai n+2,0x42 -z -0 test.out
The --ecc:ecc_error option injects errors into the ECC parity bits that correspond to the specified

location. Note that the ecc_error option can therefore only specify locations inside ECC input ranges,
whereas the data_error option can also specify errors in the ECC output memory ranges. The syntax is:

--ecc: ecc_error=(synbol +of f set| address) [, page], bi t mask

The parameters for this option are the same as for --ecc:data_error, except that the bitmask must be
exactly 8 bits. Mirrored copies of the affected ECC byte will also contain the same injected error.

An error injected into an ECC byte with --ecc:ecc_error may cause errors to be detected at run time in any
of the 8 data bytes covered by that ECC byte.

For example, the following command flips every bit in the ECC byte that contains the parity information for
the byte at 0x200:
arncl test.c --ecc:ecc_error=0x200, 0xff -z -0 test. out

The linker disallows injecting errors into memory ranges that are neither an ECC range nor the input range
for an ECC range. The compiler can only inject errors into initialized sections.

188 Linker Description SPNU118L—June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Linker Options

8.4.12 Define an Entry Point (--entry_point Option)

The memory address at which a program begins executing is called the entry point. When a loader loads
a program into target memory, the program counter (PC) must be initialized to the entry point; the PC then
points to the beginning of the program.

The linker can assign one of four values to the entry point. These values are listed below in the order in
which the linker tries to use them. If you use one of the first three values, it must be an external symbol in
the symbol table.

» The value specified by the --entry_point option. The syntax is:
--entry_point= global_symbol

where global_symbol defines the entry point and must be defined as an external symbol of the input
files. The external symbol name of C or C++ objects may be different than the name as declared in the
source language; refer to the ARM Optimizing C/C++ Compiler User's Guide.

e The value of symbol _c_int0O0 (if present). The _c_int0O0 symbol must be the entry point if you are
linking code produced by the C compiler.

» The value of symbol _main (if present)
* 0 (default value)

This example links filel.obj and file2.obj. The symbol begin is the entry point; begin must be defined as
external in filel or file2.

arnmcl --run_linker --entry_point=begin filel.obj file2.obj

8.4.13 Set Default Fill Value (--fill_value Option)
The --fill_value option fills the holes formed within output sections. The syntax for the option is:
-fill_value= value

The argument value is a 32-bit constant (up to eight hexadecimal digits). If you do not use --fill_value, the
linker uses 0 as the default fill value.

This example fills holes with the hexadecimal value ABCDABCD:
arnmcl --run_linker --fill_val ue=OxABCDABCD fil el.obj file2. obj

8.4.14 Generate List of Dead Functions (--generate_dead_funcs_list Option)

The --generate_dead_funcs_list option creates a list of functions that are never referenced (dead) and
writes the list to the specified file. If no filename is specified, the default filename dead_funcs.xml is used.
The syntax for the option is:

--generate_dead_funcs_list=filename

Refer to the ARM Optimizing C/C++ Compiler User's Guide for details on the --generate_dead_funcs_list
option and the corresponding --use_dead_funcs_list option.

8.4.15 Define Heap Size (--heap_size Option)

The C/C++ compiler uses an uninitialized section called .sysmem for the C run-time memory pool used by
malloc(). You can set the size of this memory pool at link time by using the --heap_size option. The syntax
for the --heap_size option is:

--heap_size= size

The size must be a constant. This example defines a 4K byte heap:
arntl --run_linker --heap_size=0x1000 /* defines a 4k heap (.sysnmem section)*/

The linker creates the .sysmem section only if there is a .sysmem section in an input file.

The linker also creates a global symbol _ SYSMEM_SIZE and assigns it a value equal to the size of the
heap. The default size is 2K bytes.

For more information about C/C++ linking, see Section 8.11.

SPNU118L—June 2013 Linker Description 189

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Linker Options www.ti.com

8.4.16 Hiding Symbols

Symbol hiding prevents the symbol from being listed in the output file's symbol table. While localization is
used to prevent name space clashes in a link unit, symbol hiding is used to obscure symbols which should
not be visible outside a link unit. Such symbol’'s names appear only as empty strings or “no name” in
object file readers. The linker supports symbol hiding through the --hide and --unhide options.

The syntax for these options are:
--hide=' pattern'
--unhide=' pattern'

The pattern is a string with optional wildcards ? or *. Use ? to match a single character and use * to match
zero or more characters.

The --hide option hides global symbols which have a linkname matching the pattern. It hides the symbols
matching the pattern by changing the name to an empty string. A global symbol which is hidden is also
localized.

The --unhide option reveals (un-hides) global symbols that match the pattern that are hidden by the --hide
option. The --unhide option excludes symbols that match pattern from symbol hiding provided the pattern
defined by --unhide is more restrictive than the pattern defined by --hide.

These options have the following properties:

* The --hide and --unhide options can be specified more than once on the command line.
» The order of --hide and --unhide has no significance.

* A symbol is matched by only one pattern defined by either --hide or --unhide.

e A symbol is matched by the most restrictive pattern. Pattern A is considered more restrictive than
Pattern B, if Pattern A matches a narrower set than Pattern B.

» ltis an error if a symbol matches patterns from --hide and --unhide and if one does not supersede
other. Pattern A supersedes pattern B if A can match everything B can, and some more. If Pattern A
supersedes Pattern B, then Pattern B is said to more restrictive than Pattern A.

» These options affect final and partial linking.
In map files these symbols are listed under the Hidden Symbols heading.

8.4.17 Alter the Library Search Algorithm (--library Option, --search_path Option, and

TI_ARM_C_DIR Environment Variable)

Usually, when you want to specify a file as linker input, you simply enter the filename; the linker looks for
the file in the current directory. For example, suppose the current directory contains the library object.lib.
Assume that this library defines symbols that are referenced in the file filel.obj. This is how you link the
files:

arntl --run_linker filel.obj object.lib

If you want to use a file that is not in the current directory, use the --library linker option. The --library
option's short form is -I. The syntax for this option is:

--library=[pathname] filename

The filename is the name of an archive, an object file, or link command file. You can specify up to 128
search paths.

The --library option is not required when one or more members of an object library are specified for input
to an output section. For more information about allocating archive members, see Section 8.5.4.5.

You can augment the linker's directory search algorithm by using the --search_path linker option or the
TI_ARM_C_DIR environment variable. The linker searches for object libraries and command files in the
following order:

1. It searches directories named with the --search_path linker option. The --search_path option must
appear before the --library option on the command line or in a command file.

2. It searches directories named with TI_ARM_C_DIR.

190

Linker Description SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Linker Options

3. If T_ARM_C_DIR is not set, it searches directories named with the assembler's TI_ARM_A_DIR
environment variable.

4. It searches the current directory.

NOTE: The TI_ARM_C_DIR environment variable takes precedence over the older TMS470_C_DIR
environment variable if both are defined. If only TMS470_C_DIR is set, it will continue to be
used. Likewise, the TI_ARM_A_DIR environment variable takes precedence over the older
TMS470_A_DIR environment variable if both are defined. If only TMS470_A_DIR is set, it
will continue to be used.

8.4.17.1 Name an Alternate Library Directory (--search_path Option)

The --search_path option names an alternate directory that contains input files. The --search_path option's
short form is -1 . The syntax for this option is:

--search_path= pathname
The pathname names a directory that contains input files.

When the linker is searching for input files named with the --library option, it searches through directories
named with --search_path first. Each --search_path option specifies only one directory, but you can have
several --search_path options per invocation. When you use the --search_path option to name an
alternate directory, it must precede any --library option used on the command line or in a command file.

For example, assume that there are two archive libraries called r.lib and lib2.lib that reside in Id and 1d2
directories. The table below shows the directories that r.lib and lib2.lib reside in, how to set environment
variable, and how to use both libraries during a link. Select the row for your operating system:

Operating System Enter

arncl --run_linker f1.0bj f2.0bj --search_path=/1d --search_path=/1d2

UNIX (Bourne shell) --library=r.lib --library=lib2.1ib
arntl --run_linker f1.0bj f2.0bj --search_path=\Id --search_path=\Ild2
Windows --library=r.lib --library=lib2.1ib

8.4.17.2 Name an Alternate Library Directory (TI_ARM_C_DIR Environment Variable)

An environment variable is a system symbol that you define and assign a string to. The linker uses an
environment variable named TI_ARM_C_DIR to name alternate directories that contain object libraries.
The command syntaxes for assigning the environment variable are:

Operating System Enter
UNIX (Bourne shell) TI_ARM_C_DIR=" pathname,; pathname,; . . . "; export TI_ARM_C_DIR
Windows set TI_ARM_C_DIR= pathname, ; pathname, ; . ..

The pathnames are directories that contain input files. Use the --library linker option on the command line
or in a command file to tell the linker which library or link command file to search for. The pathnames must
follow these constraints:

» Pathnames must be separated with a semicolon.

» Spaces or tabs at the beginning or end of a path are ignored. For example the space before and after
the semicolon in the following is ignored:

set TI_ARM C DIR= c:\path\one\to\tools ; c:\path\two\to\tools

e Spaces and tabs are allowed within paths to accommodate Windows directories that contain spaces.
For example, the pathnames in the following are valid:
set TI_ARM C DIR=c:\first path\to\tools;d:\second path\to\tools

In the example below, assume that two archive libraries called r.lib and lib2.lib reside in Id and |1d2

directories. The table below shows how to set the environment variable, and how to use both libraries
during a link. Select the row for your operating system:

SPNU118L—June 2013 Linker Description 191

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS

INSTRUMENTS
Linker Options www.ti.com
Operating System Invocation Command
TI_ARMC DIR="/1d ;/1d2"; export TI_ARM C DIR
UNIX (Bourne shell) arnmcl --run_linker fl1.0bj f2.0bj --library=r.lib --library=lib2.1ib
TI_ARM C DIR=\1d;\1d2
Windows arncl --run linker fl1.0bj f2.0bj --library=r.lib --library=lib2.lib

The environment variable remains set until you reboot the system or reset the variable by entering:

Operating System Enter
UNIX (Bourne shell) unset TI_ARM C DIR
Windows set TI_ARM C DI R=

The assembler uses an environment variable named TI_ARM_A_DIR to name alternate directories that
contain copy/include files or macro libraries. If TI_ARM_C_DIR is not set, the linker searches for object
libraries in the directories named with TI_ARM_A_DIR. For information about TI_ARM_A_DIR, see
Section 4.4.2. For more information about object libraries, see Section 8.6.

8.4.17.3 Exhaustively Read and Search Libraries (--reread_libs and --priority Options)

There are two ways to exhaustively search for unresolved symbols:
» Reread libraries if you cannot resolve a symbol reference (--reread_libs).
» Search libraries in the order that they are specified (--priority).

The linker normally reads input files, including archive libraries, only once when they are encountered on
the command line or in the command file. When an archive is read, any members that resolve references
to undefined symbols are included in the link. If an input file later references a symbol defined in a
previously read archive library, the reference is not resolved.

With the --reread_libs option, you can force the linker to reread all libraries. The linker rereads libraries
until no more references can be resolved. Linking using --reread_libs may be slower, so you should use it
only as needed. For example, if a.lib contains a reference to a symbol defined in b.lib, and b.lib contains a
reference to a symbol defined in a.lib, you can resolve the mutual dependencies by listing one of the
libraries twice, as in:

arncl --run_linker --library=a.lib --library=b.lib --library=a.lib
or you can force the linker to do it for you:

The --priority option provides an alternate search mechanism for libraries. Using --priority causes each
unresolved reference to be satisfied by the first library that contains a definition for that symbol. For
example:

objfile references A

libl defines B
i b2 defines A B; obj defining A references B
% arncl --run_linker objfile libl |ib2

Under the existing model, objfile resolves its reference to A in lib2, pulling in a reference to B, which
resolves to the B in lib2.

Under --priority, obijfile resolves its reference to A in lib2, pulling in a reference to B, but now B is resolved
by searching the libraries in order and resolves B to the first definition it finds, namely the one in lib1.

The --priority option is useful for libraries that provide overriding definitions for related sets of functions in
other libraries without having to provide a complete version of the whole library.

For example, suppose you want to override versions of malloc and free defined in the rtsv4d_A be_eabi.lib
without providing a full replacement for rtsv4_A_be_eabi.lib. Using --priority and linking your new library
before rtsv4_A_be_eabi.lib guarantees that all references to malloc and free resolve to the new library.

The --priority option is intended to support linking programs with SYS/BIOS where situations like the one
illustrated above occur.

192

Linker Description SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Linker Options

8.4.18 Change Symbol Localization

Symbol localization changes symbol linkage from global to local (static). This is used to obscure global
symbols in a library which should not be visible outside the library, but must be global because they are
accessed by several modules in the library. The linker supports symbol localization through the --localize
and --globalize linker options.

The syntax for these options are:
--localize=" pattern '
--globalize=' pattern '

The pattern is a string with optional wild cards ? or *. Use ? to match a single character and use * to
match zero or more characters.

The --localize option changes the symbol linkage to local for symbols matching the pattern.

The --globalize option changes the symbol linkage to global for symbols matching the pattern. The --
globalize option only affects symbols that are localized by the --localize option. The --globalize option
excludes symbols that match the pattern from symbol localization, provided the pattern defined by --
globalize is more restrictive than the pattern defined by --localize.

Specifying C/C++ Symbols with --localize and --globalize

NOTE: For COFF ABI, the compiler prepends an underscore _ to the beginning of all C/C++
identifiers. That is, for a function named foo2(), foo2() is prefixed with _ and _foo2 becomes
the link-time symbol. The --localize and --globalize options accept the link-time symbols.
Thus, you specify --localize='_foo2' to localize the C function _foo2(). For more information
on linknames see the C/C++ Language Implementation chapter in the ARM Optimizing
C/C++ Compiler User's Guide.

ARM EABI is an exception to this case. Under the ARM EABI the link-time symbol is the
same as the HLL name.

These options have the following properties:

* The --localize and --globalize options can be specified more than once on the command line.
» The order of --localize and --globalize options has no significance.

» A symbol is matched by only one pattern defined by either --localize or --globalize.

* A symbol is matched by the most restrictive pattern. Pattern A is considered more restrictive than
Pattern B, if Pattern A matches a narrower set than Pattern B.

« ltis an error if a symbol matches patterns from --localize and --globalize and if one does not supersede

other. Pattern A supersedes pattern B if A can match everything B can, and some more. If Pattern A
supersedes Pattern B, then Pattern B is said to more restrictive than Pattern A.

* These options affect final and partial linking.
In map files these symbols are listed under the Localized Symbols heading.

8.4.18.1 Make All Global Symbols Static (--make_static Option)

The --make_static option makes all global symbols static. Static symbols are not visible to externally linked
modules. By making global symbols static, global symbols are essentially hidden. This allows external
symbols with the same name (in different files) to be treated as unique.

The --make_static option effectively nullifies all .global assembler directives. All symbols become local to
the module in which they are defined, so no external references are possible. For example, assume
filel.obj and file2.0bj both define global symbols called EXT. By using the --make_static option, you can
link these files without conflict. The symbol EXT defined in filel.obj is treated separately from the symbol
EXT defined in file2.obj.

arntl --run_linker --nake_static filel.obj file2.obj

SPNU118L—June 2013 Linker Description 193

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Linker Options www.ti.com

8.4.18.2 Make a Symbol Global (--make_global Option)

The --make_static option makes all global symbols static. If you have a symbol that you want to remain
global and you use the --make_static option, you can use the --make_global option to declare that symbol
to be global. The --make_global option overrides the effect of the --make_static option for the symbol that
you specify. The syntax for the --make_global option is:

--make_global= global_symbol

8.4.19 Create a Map File (--map_file Option)
The syntax for the --map_file option is:

--map_file= filename

The linker map describes:

Memory configuration

Input and output section allocation

Linker-generated copy tables

Trampolines

The addresses of external symbols after they have been relocated
Hidden and localized symbols

The map file contains the name of the output module and the entry point; it can also contain up to three
tables:

A table showing the new memory configuration if any nondefault memory is specified (memory
configuration). The table has the following columns; this information is generated on the basis of the
information in the MEMORY directive in the link command file:

— Name. This is the name of the memory range specified with the MEMORY directive.

— Origin. This specifies the starting address of a memory range.

— Length. This specifies the length of a memory range.

— Unused. This specifies the total amount of unused (available) memory in that memory area.
— Attributes. This specifies one to four attributes associated with the named range:

specifies that the memory can be read.

specifies that the memory can be written to.

specifies that the memory can contain executable code.
specifies that the memory can be initialized.

- xXs®D

For more information about the MEMORY directive, see Section 8.5.3.

A table showing the linked addresses of each output section and the input sections that make up the
output sections (section allocation map). This table has the following columns; this information is
generated on the basis of the information in the SECTIONS directive in the link command file:

— Output section. This is the name of the output section specified with the SECTIONS directive.

— Origin. The first origin listed for each output section is the starting address of that output section.
The indented origin value is the starting address of that portion of the output section.

— Length. The first length listed for each output section is the length of that output section. The
indented length value is the length of that portion of the output section.

— Attributes/input sections. This lists the input file or value associated with an output section. If the
input section could not be allocated, the map file will indicate this with "FAILED TO ALLOCATE".

For more information about the SECTIONS directive, see Section 8.5.4.
A table showing each external symbol and its address sorted by symbol name.
A table showing each external symbol and its address sorted by symbol address.

194 Linker Description SPNU118L—June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Linker Options

The following example links filel.obj and file2.obj and creates a map file called map.out:
arntl --run_linker filel.obj file2.0obj --map_fil e=map. out

Example 8-32 shows an example of a map file.

8.4.20 Managing Map File Contents (--mapfile_contents Option)

The --mapfile_contents option assists with managing the content of linker-generated map files. The syntax
for the --mapfile_contents option is:

--mapfile_contents= filter], filter]

When the --map_file option is specified, the linker produces a map file containing information about
memory usage, placement information about sections that were created during a link, details about linker-
generated copy tables, and symbol values.

The new --mapfile_contents option provides a mechanism for you to control what information is included in
or excluded from a map file. When you specify --mapfile_contents=help from the command line, a help
screen listing available filter options is displayed.

The following filter options are available:

Attribute Description Default State
crctables CRC tables On
copytables Copy tables On
entry Entry point On
load_addr Display load addresses Off
memory Memory ranges On
sections Sections On
sym_defs Defined symbols per file Off
sym_dp Symbols sorted by data page On
sym_name Symbols sorted by name On
sym_runaddr Symbols sorted by run address On
all Enables all attributes

none Disables all attributes

The --mapfile_contents option controls display filter settings by specifying a comma-delimited list of display
attributes. When prefixed with the word no, an attribute is disabled instead of enabled. For example:
--mapfil e_cont ent s=copyt abl es, noentry

--mapfil e_contents=all, nocopytabl es

--mapfil e_contents=none, entry

By default, those sections that are currently included in the map file when the --map_file option is specified
are included. The filters specified in the --mapfile_contents options are processed in the order that they
appear in the command line. In the third example above, the first filter, none, clears all map file content.
The second filter, entry, then enables information about entry points to be included in the generated map
file. That is, when --mapfile_contents=none,entry is specified, the map file contains only information about
entry points.

The load_addr and sym_defs attributes are both disabled by default.

If you turn on the load_addr filter, the map file includes the load address of symbols that are included in
the symbol list in addition to the run address (if the load address is different from the run address).

By default, information about static and global symbols defined in an application are included in tables
sorted by name, data page, and run address. In addition, you can use the sym_defs filter to include
information sorted on a file by file basis. You may find it useful to replace the sym_name, sym_dp, and
sym_runaddr sections of the map file with the sym_defs section by specifying the following --
mapfile_contents option:

--mapfil e_cont ent s=nosym nane, nosym dp, nosym r unaddr, sym def s

SPNU118L—June 2013 Linker Description 195

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Linker Options www.ti.com

8.4.21 Disable Name Demangling (--no_demangle)

By default, the linker uses demangled symbol names in diagnostics. For example:

undefined symbol first referenced in file
ANewClass::getValue() test.obj

The --no_demangle option disables the demangling of symbol names in diagnostics. For example:

undefined symbol first referenced in file
_ZN9ANewClass8getValueEv test.obj

8.4.22 Disable Merge of Symbolic Debugging Information (--no_sym_merge Option)

By default, the linker eliminates duplicate entries of symbolic debugging information. Such duplicate
information is commonly generated when a C program is compiled for debugging. For example:
-[header.h]-

typedef struct
{

<define sone structure nenbers>
} XYZ;

-[fl.c]-
#i ncl ude "header.h"

-[f2.¢]-
#i ncl ude "header. h"

When these files are compiled for debugging, both f1.o0bj and f2.0bj have symbolic debugging entries to
describe type XYZ. For the final output file, only one set of these entries is necessary. The linker
eliminates the duplicate entries automatically.

Use the COFF only --no_sym_merge option if you want the linker to keep such duplicate entries in COFF
object files. Using the --no_sym_merge option has the effect of the linker running faster and using less
host memory during linking, but the resulting executable file may be very large due to duplicated debug
information.

8.4.23 Strip Symbolic Information (--no_symtable Option)

The --no_symtable option creates a smaller output module by omitting symbol table information and line
number entries. The --no_sym_table option is useful for production applications when you do not want to
disclose symbolic information to the consumer.

This example links filel.obj and file2.obj and creates an output module, stripped of line numbers and
symbol table information, named nosym.out:

arntl --run_linker --output_file=nosymout --no_syntable filel.obj file2.obj

Using the --no_symtable option limits later use of a symbolic debugger.

Stripping Symbolic Information

NOTE: The --no_symtable option is deprecated. To remove symbol table information, use the
armstrip utility as described in Section 11.4.

196 Linker Description SPNU118L—June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Linker Options

8.4.24 Name an Output Module (--output_file Option)

The linker creates an output module when no errors are encountered. If you do not specify a filename for
the output module, the linker gives it the default name a.out. If you want to write the output module to a
different file, use the --output_file option. The syntax for the --output_file option is:

--output_file= filename
The filename is the new output module name.

This example links filel.obj and file2.obj and creates an output module named run.out:
arntl --run_linker --output_file=run.out filel.obj file2.obj

8.4.25 Prioritizing Function Placement (--preferred_order Option)

The compiler prioritizes the placement of a function relative to others based on the order in which --
preferred_order options are encountered during the linker invocation. The syntax is:

--preferred_order=function specification

Refer to the ARM Optimizing C/C++ Compiler User's Guide for details on the program cache layout tool,
which is impacted by --preferred_option.

8.4.26 C Language Options (--ram_model and --rom_model Options)
The --ram_model and --rom_model options cause the linker to use linking conventions that are required by
the C compiler.
» The --ram_model option tells the linker to initialize variables at load time.
e The --rom_model option tells the linker to autoinitialize variables at run time.

For more information, see Section 8.11, Section 8.11.4, and Section 8.11.5.

8.4.27 Retain Discarded Sections (--retain Option)

When --unused_section_elimination is on, the ELF linker does not include a section in the final link if it is
not needed in the executable to resolve references. The --retain option tells the linker to retain a list of
sections that would otherwise not be retained. This option accepts the wildcards *' and '?". When
wildcards are used, the argument should be in quotes. The syntax for this option is:
--retain=sym_or_scn_spec
The --retain option take one of the following forms:
e --retain=symbol_spec
Specifying the symbol format retains sections that define symbol_spec. For example, this code retains
sections that define symbols that start with init:
--retain="init*'
You cannot specify --retain="*",
» --retain=file_spec(scn_spec|, scn_spec, ...]
Specifying the file format retains sections that match one or more scn_spec from files matching the
file_spec. For example, this code retains .initvec sections from all input files:
--retain="init*'
You can specify --retain="*(*)' to retain all sections from all input files. However, this does not prevent
sections from library members from being optimized out.
e --retain=ar_spec<mem_spec, [mem_spec, ...>(scn_spec][, scn_spec, ...]

Specifying the archive format retains sections matching one or more scn_spec from members
matching one or more mem_spec from archive files matching ar_spec. For example, this code retains
the .text sections from printf.obj in the rts32eabi.lib library:

--retai n=rts32eabi.lib<printf.obj>(.text)

SPNU118L—June 2013 Linker Description 197

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Linker Options www.ti.com

If the library is specified with the --library option (--library=rts32eabi.lib) the library search path is used
to search for the library. You cannot specify "*<*>(*)'.

8.4.28 Create an Absolute Listing File (--run_abs Option)

The --run_abs option produces an output file for each file that was linked. These files are named with the
input filenames and an extension of .abs. Header files, however, do not generate a corresponding .abs
file.

8.4.29 Scan All Libraries for Duplicate Symbol Definitions (--scan_libraries)

The --scan_libraries option scans all libraries during a link looking for duplicate symbol definitions to those
symbols that are actually included in the link. The scan does not consider absolute symbols or symbols
defined in COMDAT sections. The --scan_libraries option helps determine those symbols that were
actually chosen by the linker over other existing definitions of the same symbol in a library.

The library scanning feature can be used to check against unintended resolution of a symbol reference to
a definition when multiple definitions are available in the libraries.

8.4.30 Define Stack Size (--stack_size Option)

The ARM C/C++ compiler uses an uninitialized section, .stack, to allocate space for the run-time stack.
You can set the size of this section in bytes at link time with the --stack_size option. The syntax for the --
stack_size option is:

--stack_size= size

The size must be a constant and is in bytes. This example defines a 4K byte stack:
arncl --run_linker --stack_size=0x1000 /* defines a 4K heap (.stack section)*/

If you specified a different stack size in an input section, the input section stack size is ignored. Any
symbols defined in the input section remain valid; only the stack size is different.

When the linker defines the .stack section, it also defines a global symbol, _ STACK_SIZE, and assigns it
a value equal to the size of the section. The default software stack size is 2K bytes.

8.4.31 Enforce Strict Compatibility (--strict_compatibility Option)

The linker performs more conservative and rigorous compatibility checking of input object files when you
specify the --strict_compatibility option. Using this option guards against additional potential compatibility
issues, but may signal false compatibility errors when linking in object files built with an older toolset, or
with object files built with another compiler vendor's toolset. To avoid issues with legacy libraries, the --
strict_compatibility option is turned off by default.

8.4.32 Mapping of Symbols (--symbol_map Option)

Symbol mapping allows a symbol reference to be resolved by a symbol with a different name. Symbol
mapping allows functions to be overridden with alternate definitions. This feature can be used to patch in
alternate implementations, which provide patches (bug fixes) or alternate functionality. The syntax for the -
-symbol_map option is:

--symbol_map= refname=defname

For example, the following code makes the linker resolve any references to foo by the definition
foo_patch:

--synbol _map='f oo=f oo_pat ch’

The --symbol_map option is now supported even if --opt_level=4 was used when compiling.

198

Linker Description SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Linker Options

8.4.33 Generate Far Call Trampolines (--trampolines Option)

The ARM device has PC-relative call and PC-relative branch instructions whose range is smaller than the
entire address space. When these instructions are used, the destination address must be near enough to
the instruction that the difference between the call and the destination fits in the available encoding bits. If
the called function is too far away from the calling function, the linker generates an error.

The alternative to a PC-relative call is an absolute call, which is often implemented as an indirect call: load
the called address into a register, and call that register. This is often undesirable because it takes more
instructions (speed- and size-wise) and requires an extra register to contain the address.

By default, the compiler generates near calls. The --trampolines option causes the linker to generate a
trampoline code section for each call that is linked out-of-range of its called destination. The trampoline
code section contains a sequence of instructions that performs a transparent long branch to the original
called address. Each calling instruction that is out-of-range from the called function is redirected to the
trampoline.

For example, in a section of C code the bar function calls the foo function. The compiler generates this
code for the function:

bar:

call foo ; call the function "foo"

If the foo function is placed out-of-range from the call to foo that is inside of bar, then with --trampolines
the linker changes the original call to foo into a call to foo_trampoline as shown:

bar:

cal | foo_tranpoline ; call a tranpoline for foo

The above code generates a trampoline code section called foo_trampoline, which contains code that
executes a long branch to the original called function, foo. For example:

foo_tranpoline:
branch_l ong f oo

Trampolines can be shared among calls to the same called function. The only requirement is that all calls
to the called function be linked near the called function's trampoline.

The syntax for this option is:
--trampolines[=on|off]
The default setting is on. For ARM, trampolines are turned on by default.

When the linker produces a map file (the --map_file option) and it has produced one or more trampolines,
then the map file will contain statistics about what trampolines were generated to reach which functions. A
list of calls for each trampoline is also provided in the map file.

The Linker Assumes R13 Contains the Stack Pointer

NOTE: Assembly language programmers must be aware that the linker assumes R13 contains the
stack pointer. The linker must save and restore values on the stack in trampoline code that it
generates. If you do not use R13 as the stack pointer, you should use the linker option that
disables trampolines, --trampolines=off. Otherwise, trampolines could corrupt memory and
overwrite register values.

8.4.33.1 Carrying Trampolines From Load Space to Run Space

It is sometimes useful to load code in one location in memory and run it in another. The linker provides the
capability to specify separate load and run allocations for a section. The burden of actually copying the
code from the load space to the run space is left to you.

SPNU118L—June 2013 Linker Description 199

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Linker Options www.ti.com

A copy function must be executed before the real function can be executed in its run space. To facilitate
this copy function, the assembler provides the .label directive, which allows you to define a load-time
address. These load-time addresses can then be used to determine the start address and size of the code
to be copied. However, this mechanism will not work if the code contains a call that requires a trampoline
to reach its called function. This is because the trampoline code is generated at link time, after the load-
time addresses associated with the .label directive have been defined. If the linker detects the definition of
a .label symbol in an input section that contains a trampoline call, then a warning is generated.

To solve this problem, you can use the START(), END(), and SIZE() operators (see Section 8.5.9.7).
These operators allow you to define symbols to represent the load-time start address and size inside the
link command file. These symbols can be referenced by the copy code, and their values are not resolved
until link time, after the trampoline sections have been allocated.

Here is an example of how you could use the START() and SIZE() operators in association with an output
section to copy the trampoline code section along with the code containing the calls that need trampolines:
SECTI ONS
{ .foo: load = ROM run = RAM start(foo_start), size(foo_size)

{ x.obj(.text) }

.text: {} > ROM

far @ { -l=rts.lib(.text) } > FAR_ MEM
}

A function in x.obj contains an run-time-support call. The run-time-support library is placed in far memory
and so the call is out-of-range. A trampoline section will be added to the .foo output section by the linker.
The copy code can refer to the symbols foo_start and foo_size as parameters for the load start address
and size of the entire .foo output section. This allows the copy code to copy the trampoline section along
with the original x.obj code in .text from its load space to its run space.

8.4.33.2 Disadvantages of Using Trampolines

An alternative method to creating a trampoline code section for a call that cannot reach its called function
is to actually modify the source code for the call. In some cases this can be done without affecting the size
of the code. However, in general, this approach is extremely difficult, especially when the size of the code
is affected by the transformation.

While generating far call trampolines provides a more straightforward solution, trampolines have the
disadvantage that they are somewhat slower than directly calling a function. They require both a call and a
branch. Additionally, while inline code could be tailored to the environment of the call, trampolines are
generated in a more general manner, and may be slightly less efficient than inline code.

8.4.33.3 Minimizing the Number of Trampolines Required (--minimize_trampolines Option)

The --minimize_trampolines option attempts to place sections so as to minimize the number of far call
trampolines required, possibly at the expense of optimal memory packing. The syntax is:

--minimize_trampolines=postorder

The argument selects a heuristic to use. The postorder heuristic attempts to place functions before their
callers, so that the PC-relative offset to the callee is known when the caller is placed.

When a call is placed and the callee's address is unknown, the linker must provisionally reserve space for
a far call trampoline in case the callee turns out to be too far away. Even if the callee ends up being close
enough, the trampoline reservation can interfere with optimal placement for very large code sections. By
placing the callee first, its address is known when the caller is placed so the linker can definitively know if
a trampoline is required.

8.4.33.4 Making Trampoline Reservations Adjacent (--trampoline_min_spacing Option)

When trampoline reservations are spaced more closely than the specified limit, use the --
trampoline_min_spacing option to try to make them adjacent. The syntax is:

--trampoline_min_spacing=size

200

Linker Description SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Linker Options

A higher value minimizes fragmentation, but may result in more trampolines. A lower value may reduce
trampolines, at the expense of fragmentation and linker running time. Specifying O for this option disables
coalescing. The default is 16K.

8.4.34 Introduce an Unresolved Symbol (--undef_sym Option)

The --undef_sym option introduces the linkname for an unresolved symbol into the linker's symbol table.
This forces the linker to search a library and include the member that defines the symbol. The linker must
encounter the --undef_sym option before it links in the member that defines the symbol. The syntax for the
--undef_sym option is:

--undef_sym= symbol

For example, suppose a library named rtsv4_A_be_eabi.lib contains a member that defines the symbol
symtab; none of the object files being linked reference symtab. However, suppose you plan to relink the
output module and you want to include the library member that defines symtab in this link. Using the --
undef_sym option as shown below forces the linker to search rtsv4_A_be_eabi.lib for the member that
defines symtab and to link in the member.

arntl --run_linker --undef_synrsymtab filel.obj file2.obj rtsv4d_A be_eabi.lib

If you do not use --undef_sym, this member is not included, because there is no explicit reference to it in
filel.obj or file2.0bj.

8.4.35 Display a Message When an Undefined Output Section Is Created (--warn_sections)

In a link command file, you can set up a SECTIONS directive that describes how input sections are
combined into output sections. However, if the linker encounters one or more input sections that do not
have a corresponding output section defined in the SECTIONS directive, the linker combines the input
sections that have the same name into an output section with that name. By default, the linker does not
display a message to tell you that this occurred.

You can use the --warn_sections option to cause the linker to display a message when it creates a new
output section.

For more information about the SECTIONS directive, see Section 8.5.4. For more information about the
default actions of the linker, see Section 8.7.

8.4.36 Generate XML Link Information File (--xml_link_info Option)

The linker supports the generation of an XML link information file through the --xml_link_info=file option.
This option causes the linker to generate a well-formed XML file containing detailed information about the
result of a link. The information included in this file includes all of the information that is currently produced
in a linker generated map file.

See Appendix B for specifics on the contents of the generated XML file.

8.4.37 Zero Initialization (--zero_init Option)

In ANSI C, global and static variables that are not explicitly initialized must be set to 0 before program
execution. The C/C++ EABI compiler supports preinitialization of uninitialized variables by default. To turn
this off, specify the linker option --zero_init=off. COFF ABI does not support zero initialization.

The syntax for the --zero_init option is:
--zero_init[={on|off}]

Disabling Zero Initialization Not Recommended

NOTE: In general, this option it is not recommended. In EABI mode, if you turn off zero initialization,
automatic initialization of uninitialized global and static objects to zero will not occur. You are
then expected to initialize these variables to zero in some other manner.

SPNU118L—June 2013 Linker Description 201

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

8.5

Linker Command Files

Linker command files allow you to put linking information in a file; this is useful when you invoke the linker
often with the same information. Linker command files are also useful because they allow you to use the
MEMORY and SECTIONS directives to customize your application. You must use these directives in a
command file; you cannot use them on the command line.

Linker command files are ASCII files that contain one or more of the following:

« Input filenames, which specify object files, archive libraries, or other command files. (If a command file
calls another command file as input, this statement must be the last statement in the calling command
file. The linker does not return from called command files.)

» Linker options, which can be used in the command file in the same manner that they are used on the
command line

 The MEMORY and SECTIONS linker directives. The MEMORY directive defines the target memory
configuration (see Section 8.5.3). The SECTIONS directive controls how sections are built and
allocated (see Section 8.5.4.)

» Assignment statements, which define and assign values to global symbols

To invoke the linker with a command file, enter the armcl --run_linker command and follow it with the
name of the command file:

armcl --run_linker command_filename

The linker processes input files in the order that it encounters them. If the linker recognizes a file as an
object file, it links the file. Otherwise, it assumes that a file is a command file and begins reading and
processing commands from it. Command filenames are case sensitive, regardless of the system used.

Example 8-1 shows a sample link command file called link.cmd.

Example 8-1. Linker Command File

a. obj
b. obj

/* First input filenane */
/* Second input filenamne */

--out put _fil e=prog. out /* Option to specify output file */
--map_fil e=prog. map /* Option to specify map file */

The sample file in Example 8-1 contains only flenames and options. (You can place comments in a
command file by delimiting them with /* and */.) To invoke the linker with this command file, enter:

arncl --run_linker link.cnd

You can place other parameters on the command line when you use a command file:
arncl --run_linker --relocatable link.cnd c.obj d.obj

The linker processes the command file as soon as it encounters the filename, so a.obj and b.obj are
linked into the output module before c.obj and d.obj.

You can specify multiple command files. If, for example, you have a file called names.Ist that contains
filenames and another file called dir.cmd that contains linker directives, you could enter:

arnmcl --run_linker nanes.|st dir.cnd

One command file can call another command file; this type of nesting is limited to 16 levels. If a command

file calls another command file as input, this statement must be the last statement in the calling command
file.

202

Linker Description SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

Blanks and blank lines are insignificant in a command file except as delimiters. This also applies to the
format of linker directives in a command file. Example 8-2 shows a sample command file that contains
linker directives.

Example 8-2. Command File With Linker Directives

a.obj b.obj c.obj /* Input filenanes */
--out put _fil e=prog. out /* Options */
--map_fil e=prog. map

MEMORY /* MEMORY directive */
{
FAST_MEM origin = 0x0100 I ength = 0x0100
SLOW MEM origin = 0x7000 I ength = 0x1000
}
SECTI ONS /* SECTIONS directive */

{
.text: > SLOW MEM

.data: > SLOW MEM
. bss: > FAST_MEM

}

For more information, see Section 8.5.3 for the MEMORY directive, and Section 8.5.4 for the SECTIONS
directive.

8.5.1 Reserved Names in Linker Command Files

The following names (in both uppercase and lowercase) are reserved as keywords for linker directives. Do
not use them as symbol or section names in a command file.

address_mask END LENGTH org SIZE
ALGORITHM f LOAD ORIGIN START
ALIGN FILL LOAD_END PAGE TABLE

ATTR GROUP LOAD_SIZE PALIGN TYPE

BLOCK hamming_mask LOAD_START parity_mask UNION
COMPRESSION HIGH MEMORY RUN UNORDERED
COPY input_page mirroring RUN_END VFILL
CRC_TABLE input_range NOINIT RUN_SIZE

DSECT | (lowercase L) NOLOAD RUN_START

ECC len o] SECTIONS

8.5.2 Constants in Linker Command Files

You can specify constants with either of two syntax schemes: the scheme used for specifying decimal,
octal, or hexadecimal constants used in the assembler (see Section 4.6) or the scheme used for integer
constants in C syntax.

Examples:
Format Decimal Octal Hexadecimal
Assembler format 32 40q 020h
C format 32 040 0x20
SPNU118L—-June 2013 Linker Description 203

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

8.5.3 The MEMORY Directive

The linker determines where output sections are allocated into memory; it must have a model of target
memory to accomplish this. The MEMORY directive allows you to specify a model of target memory so
that you can define the types of memory your system contains and the address ranges they occupy. The
linker maintains the model as it allocates output sections and uses it to determine which memory locations
can be used for object code.

The memory configurations of ARM systems differ from application to application. The MEMORY directive
allows you to specify a variety of configurations. After you use MEMORY to define a memory model, you
can use the SECTIONS directive to allocate output sections into defined memory.

For more information, see Section 2.5 and Section 2.7.

8.5.3.1 Default Memory Model

If you do not use the MEMORY directive, the linker uses a default memory model that is based on the
ARM architecture. This model assumes that the full 32-bit address space (2 locations) is present in the
system and available for use. For more information about the default memory model, see Section 8.7.

8.5.3.2 MEMORY Directive Syntax

The MEMORY directive identifies ranges of memory that are physically present in the target system and
can be used by a program. Each range has several characteristics:

* Name
e Starting address
* Length

» Optional set of attributes
e Optional fill specification

When you use the MEMORY directive, be sure to identify all memory ranges that are available for loading
code. Memory defined by the MEMORY directive is configured; any memory that you do not explicitly
account for with MEMORY is unconfigured. The linker does not place any part of a program into
unconfigured memory. You can represent nonexistent memory spaces by simply not including an address
range in a MEMORY directive statement.

The MEMORY directive is specified in a command file by the word MEMORY (uppercase), followed by a
list of memory range specifications enclosed in braces. The MEMORY directive in Example 8-3 defines a
system that has 4K bytes of fast external memory at address 0x0000 0000, 2K bytes of slow external
memory at address 0x0000 1000 and 4K bytes of slow external memory at address 0x1000 0000. It also
demonstrates the use of memory range expressions as well as start/end/size address operators (see
Example 8-4).

Example 8-3. The MEMORY Directive

AR R EE AR EEEY]

/* Sanmpl e command file with MEMORY directive */
/**/
filel. obj file2. obj /* I nput files */
--out put _fil e=prog. out /* Opti ons */
MEMORY
{
FAST_MEM (RX): origin = 0x00000000 |ength = 0x00001000
SLOW MEM (RW: origin = 0x00001000 |ength = 0x00000800
EXT_MEM (RX): origin = 0x10000000 |ength = 0x00001000

204 Linker Description

Copyright © 2013, Texas Instruments Incorporated

SPNU118L—June 2013
Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

The general syntax for the MEMORY directive is:
MEMORY

{

name 1 [(attr)] : origin = expression , length = expression [, fill = constant]

name n [(attr)] : origin = expression , length = expression [, fill = constant]

name names a memory range. A memory name can be one to 64 characters; valid characters
include A-Z, a-z, $, ., and _. The names have no special significance to the linker; they
simply identify memory ranges. Memory range names are internal to the linker and are not
retained in the output file or in the symbol table. All memory ranges must have unique
names and must not overlap.

attr specifies one to four attributes associated with the named range. Attributes are optional;
when used, they must be enclosed in parentheses. Attributes restrict the allocation of
output sections into certain memory ranges. If you do not use any attributes, you can
allocate any output section into any range with no restrictions. Any memory for which no
attributes are specified (including all memory in the default model) has all four attributes.
Valid attributes are:

R specifies that the memory can be read.

w specifies that the memory can be written to.

X specifies that the memory can contain executable code.
I specifies that the memory can be initialized.

origin specifies the starting address of a memory range; enter as origin, org, or 0. The value,
specified in bytes, is an expression of 32-bit constants, which can be decimal, octal, or
hexadecimal.

length specifies the length of a memory range; enter as length, len, or I. The value, specified in
bytes, is an expression of 32-bit constants, which can be decimal, octal, or hexadecimal.

fill specifies a fill character for the memory range; enter as fill or f. Fills are optional. The value
is a integer constant and can be decimal, octal, or hexadecimal. The fill value is used to fill
areas of the memory range that are not allocated to a section. (See Section 8.5.8.3 for
virtual filling of memory ranges when using Error Correcting Code (ECC).)

Filling Memory Ranges

NOTE: If you specify fill values for large memory ranges, your output file will be very large because
filling a memory range (even with 0s) causes raw data to be generated for all unallocated
blocks of memory in the range.

The following example specifies a memory range with the R and W attributes and a fill constant of
OFFFFFFFFh:

MEMORY
{

}

You normally use the MEMORY directive in conjunction with the SECTIONS directive to control allocation
of output sections. After you use MEMORY to specify the target system's memory model, you can use
SECTIONS to allocate output sections into specific named memory ranges or into memory that has
specific attributes. For example, you could allocate the .text and .data sections into the area named
FAST_MEM and allocate the .bss section into the area named SLOW_MEM.

RFILE (RW : o = 0x0020, | = 0x1000, f = OxFFFF

SPNU118L—June 2013 Linker Description 205

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Linker Command Files

13 TEXAS
INSTRUMENTS

www.ti.com

8.5.3.3 Expressions and Address Operators

Memory range origin and length can use expressions of integer constants with the following operators:

Binary operators: * [0 + - << >> == =
<<= >>= & | && ||
Unary operators: -~

Expressions are evaluated using standard C operator precedence rules.

No checking is done for overflow or underflow, however, expressions are evaluated using a larger integer

type.

Preprocess directive #define constants can be used in place of integer constants. Global symbols cannot

be used in Memory Directive expressions.

Three new address operators have been added for referencing memory range properties from prior

memory range entries:

START(MR) Returns start address for previously defined memory range MR.
SIZE(MR) Returns size of previously defined memory range MR.
END(MR) Returns end address for previously defined memory range MR.

Example 8-4. Origin and Length as Expressions

/**/

/* Sanpl e command file with MEMORY directive */
/**/
filel.obj file2.obj /* Input files */
--out put _fil e=prog. out /* Opti ons */

#define ORI G N 0x00000000
#def i ne BUFFER 0x00000200
#define CACHE 0x0001000

MEMORY

{
FAST_MEM (RX): origin
SLONV MEM (RW: origin
EXT_MEM (RX): origin

ORIG N + CACHE | ength
end(FAST_MEM |l ength
0x10000000 I ength

8.5.4 The SECTIONS Directive

0x00001000 + BUFFER
0x00001800 - si ze(FAST_MEM
si ze(FAST_MEM

- CACHE

The SECTIONS directive controls your sections in the following ways:
» Describes how input sections are combined into output sections

» Defines output sections in the executable program

» Specifies where output sections are placed in memory (in relation to each other and to the entire

memory space)
* Permits renaming of output sections

For more information, see Section 2.5, Section 2.7, and Section 2.4.4. Subsections allow you to

manipulate sections with greater precision.

If you do not specify a SECTIONS directive, the linker uses a default algorithm for combining and
allocating the sections. Section 8.7 describes this algorithm in detail.

8.5.4.1 SECTIONS Directive Syntax

The SECTIONS directive is specified in a command file by the word SECTIONS (uppercase), followed by

a list of output section specifications enclosed in braces.

206 Linker Description

SPNU118L—June 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com

Linker Command Files

The

general syntax for the SECTIONS directive is:

SECTIONS

{

}

name : [property [, property] [, property] . . .]
name : [property [, property] [, property] . . .]
name : [property [, property] [, property] . . .]

Each section specification, beginning with name, defines an output section. (An output section is a section
in the output file.) A section name can be a subsection specification. (See Section 8.5.4.4 for information
on multi-level subsections.) After the section name is a list of properties that define the section's contents

and how the section is allocated. The properties can be separated by optional commas. Possible

properties for a section are as follows:

Load allocation defines where in memory the section is to be loaded.

Syntax: load = allocation or
allocation or
> allocation

Run allocation defines where in memory the section is to be run.
Syntax: run = allocation or
run > allocation

Input sections defines the input sections (object files) that constitute the output section.

Syntax: { input_sections }

Section type defines flags for special section types. See Section 8.5.7
Syntax: type = COPY or

type = DSECT or

type = NOLOAD

Fill value defines the value used to fill uninitialized holes. See Section 8.5.10.
Syntax: fill = value or
name : [properties = value]

Example 8-5 shows a SECTIONS directive in a sample link command file.

Example 8-5. The SECTIONS Directive

1A AR R R R EREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEY]

/* Sanple command file with SECTIONS directive */
/**/
filel.obj file2.obj /* Input files */
--out put _fil e=prog. out /* Options */
SECTI ONS
{

.text: load = EXT_MEM run = 0x00000800

.const: | oad = FAST_MEM

. bss: | oad = SLOW MEM

.vectors: | oad = 0x00000000

{

t1.obj(.intvecl)
t2.0bj (.intvec2)
endvec = .;

SPNU118L—-June 2013

Submit Docu

mentation Feedback
Copyright © 2013, Texas Instruments Incorporated

Linker Description

207

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Linker Command Files

13 TEXAS
INSTRUMENTS

www.ti.com

Example 8-5. The SECTIONS Directive (continued)

16
16

.data: al pha: align
.data: beta: align

Figure 8-2 shows the six output sections defined by the SECTIONS directive in Example 8-5 (.vectors,
.text, .const, .bss, .data:alpha, and .data:beta) and shows how these sections are allocated in memory
using the MEMORY directive given in Example 8-3.

Figure 8-2. Section Allocation Defined by Example 8-5

0x00000000 FAST MEM
- Bound at 0x00000000 The .vectors section is composed of the .intvec1
-vectors section from t1.0bj and the .intvec2 section from
t2.0bj.
- Allocated in FAST_MEM The .const section combines the .const sections
-const from file1.obj and file2.obj.
0x00001000
SLOW_MEM
bss - Allocated in SLOW_MEM The .bss section combines the .bss sections from
file1.obj and file2.0bj.
- Aligned on 16-byte The .data:alpha subsection combines the .data:al-
.data:alpha boundary pha subsections from file1.obj and file2.obj. The
.data:beta subsection combines the .data:beta
- Aligned on 16-bvte subsections from file1.obj and file2.obj. The linker
data:beta bogndar Yy places the subsections anywhere there is space for
y them (in SLOW_MEM in this illustration) and aligns
each on a 16-byte boundary.
0x00001800
- Empty range of memory
as defined in above
0x10000000 .))
EXT MEM The .text section combines the .text sections from
— - Allocated in EXT_MEM file1.0bj and file2.obj. The linker combines all sec-
text tions named .text into this section. The application
must relocate the section to run at 0x00000800.
0x10001000
- Empty range of memory
as defined in above
OxFFFFFFFF

8.5.4.2 Allocation

The linker assigns each output section two locations in target memory: the location where the section will
be loaded and the location where it will be run. Usually, these are the same, and you can think of each
section as having only a single address. The process of locating the output section in the target's memory
and assigning its address(es) is called allocation. For more information about using separate load and run
allocation, see Section 8.5.5.

If you do not tell the linker how a section is to be allocated, it uses a default algorithm to allocate the
section. Generally, the linker puts sections wherever they fit into configured memory. You can override this
default allocation for a section by defining it within a SECTIONS directive and providing instructions on
how to allocate it.

You control allocation by specifying one or more allocation parameters. Each parameter consists of a
keyword, an optional equal sign or greater-than sign, and a value optionally enclosed in parentheses. If
load and run allocation are separate, all parameters following the keyword LOAD apply to load allocation,
and those following the keyword RUN apply to run allocation. The allocation parameters are:

208

Linker Description SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

I

TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

Binding allocates a section at a specific address.
.text: load = 0x1000

Named memory allocates the section into a range defined in the MEMORY directive with the specified

name (like SLOW_MEM) or attributes.
.text: load > SLON MEM

Alignment uses the align or palign keyword to specify that the section must start on an address
boundary.
.text: align = 0x100

Blocking uses the block keyword to specify that the section must fit between two address

boundaries: if the section is too big, it starts on an address boundary.
.text: bl ock(0x100)

For the load (usually the only) allocation, use a greater-than sign and omit the load keyword:
.text: > SLOW MEM
.text: {...} > SLON.MEM
.text: > 0x4000
If more than one parameter is used, you can string them together as follows:
.text: > SLONMEM align 16

Or if you prefer, use parentheses for readability:
.text: load = (SLOW MEM al i gn(16))

You can also use an input section specification to identify the sections from input files that are combined
to form an output section. See Section 8.5.4.3.

8.5.4.2.1 Binding

You can supply a specific starting address for an output section by following the section name with an
address:

.text: 0x00001000

This example specifies that the .text section must begin at location 0x1000. The binding address must be
a 32-bit constant.

Output sections can be bound anywhere in configured memory (assuming there is enough space), but
they cannot overlap. If there is not enough space to bind a section to a specified address, the linker issues
an error message.

Binding is Incompatible With Alignment and Named Memory

NOTE: You cannot bind a section to an address if you use alignment or named memory. If you try to
do this, the linker issues an error message.

8.5.4.2.2 Named Memory

You can allocate a section into a memory range that is defined by the MEMORY directive (see
Section 8.5.3). This example names ranges and links sections into them:

MEMORY
SLOWMEM (RI X) : origin = 0x00000000, |ength = 0x00001000
FAST_MEM (RWX) : origin = 0x03000000, |ength = 0x00000300
}
SECTI ONS
{
.text > SLOW MEM
.data > FAST_MEM ALI G\(128)
. bss : > FAST_MEM
}
SPNU118L—-June 2013 Linker Description 209

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

In this example, the linker places .text into the area called SLOW_MEM. The .data and .bss output
sections are allocated into FAST_MEM. You can align a section within a named memory range; the .data
section is aligned on a 128-byte boundary within the FAST_MEM range.

Similarly, you can link a section into an area of memory that has particular attributes. To do this, specify a
set of attributes (enclosed in parentheses) instead of a memory name. Using the same MEMORY directive
declaration, you can specify:

SECTI ONS

{
.text: > (X) /* .text --> executable nenory */
.data: > (RI) /* .data --> read or init nenory */
.bss : > (RW /* .bss -->read or wite menory */

}

In this example, the .text output section can be linked into either the SLOW_MEM or FAST_MEM area
because both areas have the X attribute. The .data section can also go into either SLOW_MEM or
FAST_MEM because both areas have the R and | attributes. The .bss output section, however, must go
into the FAST_MEM area because only FAST_MEM is declared with the W attribute.

You cannot control where in a named memory range a section is allocated, although the linker uses lower
memory addresses first and avoids fragmentation when possible. In the preceding examples, assuming no
conflicting assignments exist, the .text section starts at address 0. If a section must start on a specific
address, use binding instead of named memory.

8.5.4.2.3 Controlling Allocation Using The HIGH Location Specifier

The linker allocates output sections from low to high addresses within a designated memory range by
default. Alternatively, you can cause the linker to allocate a section from high to low addresses within a
memory range by using the HIGH location specifier in the SECTION directive declaration.

For example, given this MEMORY directive:

MEMORY

{
RAM : origin = 0x0200, Iength = 0x0800
FLASH : origin = 0x1100, length = OXEEEO
VECTCORS . origin = OXFFEO, |ength = Ox001lE
RESET : origin = OxFFFE, | ength = 0x0002

}
and an accompanying SECTIONS directive:

SECTI ONS

{
. bss : {} > RAM
.sysmem : {} > RAM
.stack : {} > RAM (H &)

}

The HIGH specifier used on the .stack section allocation causes the linker to attempt to allocate .stack into
the higher addresses within the RAM memory range. The .bss and .sysmem sections are allocated into
the lower addresses within RAM. Example 8-6 illustrates a portion of a map file that shows where the
given sections are allocated within RAM for a typical program.

Example 8-6. Linker Allocation With the HIGH Specifier

0 00000200 00000270 UNI NI TI ALI ZED

00000200 0000011a rtsxxx.lib : defs.obj (.bss)

0000031a 00000088 : trgdrv.obj (.bss)
000003a2 00000078 : low ev.obj (.bss)
0000041a 00000046 : exit.obj (.bss)

00000460 00000008 : menory.obj (.bss)
00000468 00000004 . _lock.obj (.bss)
0000046¢ 00000002 . fopen.obj (.bss)
0000046e 00000002 hel | 0. obj (.bss)

Linker Description SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS

INSTRUMENTS

www.ti.com

Linker Command Files

Example 8-6. Linker Allocation With the HIGH Specifier (continued)

. sysmem 0 00000470 00000120 UNI NI TI ALI ZED
00000470 00000004 rtsxxx .lib :

.stack 0 000008c0 00000140 UNI NI TI ALI ZED
000008c0 00000002 rtsxxx .lib :

menory. obj (.sysnen)

boot. obj (.stack)

As shown in Example 8-6 , the .bss and .sysmem sections are allocated at the lower addresses of RAM

(0x0200 - 0x0590) and the .stack section is allocated at
are available.

address 0x08c0, even though lower addresses

Without using the HIGH specifier, the linker allocation would result in the code shown in Example 8-7

The HIGH specifier is ignored if it is used with specific address binding or automatic section splitting (>>

operator).

Example 8-7. Linker Allocation Without HIGH Specifier

. bss 0 00000200 00000270 UNI NI TI ALI ZED
00000200 0000011a rtsxxx.lib
0000031a 00000088
000003a2 00000078
0000041a 00000046
00000460 00000008
00000468 00000004
0000046¢ 00000002
0000046e 00000002 hel | 0. obj (.bs
. stack 0 00000470 00000140 UNI NI TI ALI ZED
00000470 00000002 rtsxxx.lib
. sysmem 0 000005b0 00000120 UNI NI TI ALI ZED
000005b0 00000004 rtsxxx.lib

8.5.4.2.4 Alignment and Blocking

defs.obj (.bss)

: trgdrv.obj (.bss)
| owl ev. obj (. bss)
exit.obj (.bss)
menory. obj (.bss)
_lock.obj (.bss)
f open. obj (.bss)
s)
boot . obj (.stack)
menory. obj (.sysnen)

You can tell the linker to place an output section at an address that falls on an n-byte boundary, where n
is a power of 2, by using the align keyword. For example, the following code allocates .text so that it falls

on a 32-byte boundary:

.text: load = align(32)

You can specify the same alignment with the palign keyword. In addition, palign ensures the section's size

is a multiple of its placement alignment restrictions, padding the section size up to such a boundary, as

needed.

Blocking is a weaker form of alignment that allocates a section anywhere within a block of size n. The

specified block size must be a power of 2. For example,
section is contained in a single 128-byte page or begins

bss: bl ock(0x0080)

| oad

the following code allocates .bss so that the entire

on that boundary:

You can use alignment or blocking alone or in conjunction with a memory area, but alignment and

blocking cannot be used together.

8.5.4.2.5 Alignment With Padding

As with align, you can tell the linker to place an output section at an address that falls on an n-byte
boundary, where n is a power of 2, by using the palign keyword. In addition, palign ensures that the size
of the section is a multiple of its placement alignment restrictions, padding the section size up to such a

boundary, as needed.
For example, the following code lines allocate .text on a

2-byte boundary within the PMEM area. The .text

section size is guaranteed to be a multiple of 2 bytes. Both statements are equivalent:

SPNU118L—-June 2013

Submit Documentation Feedback

Linker Description

Copyright © 2013, Texas Instruments Incorporated

211

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

.text: palign(2) {} > PMEM

.text: palign = 2 {} > PMEM

If the linker adds padding to an initialized output section then the padding space is also initialized. By
default, padding space is filled with a value of O (zero). However, if a fill value is specified for the output
section then any padding for the section is also filled with that fill value. For example, consider the
following section specification:

.nytext: palign(8), fill = Oxffffffff {} > PMEM

In this example, the length of the .mytext section is 6 bytes before the palign operator is applied. The
contents of .mytext are as follows:

addr content

0000 0x1234
0002 0x1234
0004 0x1234

After the palign operator is applied, the length of .mytext is 8 bytes, and its contents are as follows:
addr content

0000 0x1234
0002 0x1234
0004 0x1234
0006 Oxffff

The size of .mytext has been bumped to a multiple of 8 bytes and the padding created by the linker has
been filled with Oxff.

The fill value specified in the linker command file is interpreted as a 16-bit constant. If you specify this
code:

.nytext: palign(8), fill = 0Oxff {} > PMEM

The fill value assumed by the linker is 0x00ff, and .mytext will then have the following contents:
addr content

0000 0x1234
0002 0x1234
0004 0x1234
0006 Oxffff
0008 0Ox00f f
000a OxO00f f

If the palign operator is applied to an uninitialized section, then the size of the section is bumped to the
appropriate boundary, as needed, but any padding created is not initialized.

The palign operator can also take a parameter of power2. This parameter tells the linker to add padding to
increase the section's size to the next power of two boundary. In addition, the section is aligned on that
power of 2 as well. For example, consider the following section specification:

.nytext: palign(power2) {} > PMEM

Assume that the size of the .mytext section is 120 bytes and PMEM starts at address 0x10020. After
applying the palign(power2) operator, the .mytext output section will have the following properties:

nane addr si ze align
.yt ext 0x00010080 0x80 128
212 Linker Description SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

8.5.4.3 Specifying Input Sections

An input section specification identifies the sections from input files that are combined to form an output
section. In general, the linker combines input sections by concatenating them in the order in which they
are specified. However, if alignment or blocking is specified for an input section, all of the input sections
within the output section are ordered as follows:

» All aligned sections, from largest to smallest
» All blocked sections, from largest to smallest
» All other sections, from largest to smallest

The size of an output section is the sum of the sizes of the input sections that it comprises.
Example 8-8 shows the most common type of section specification; note that no input sections are listed.

Example 8-8. The Most Common Method of Specifying Section Contents

SECTI ONS
{
.text:
.dat a:
. bss:
}

In Example 8-8, the linker takes all the .text sections from the input files and combines them into the .text
output section. The linker concatenates the .text input sections in the order that it encounters them in the
input files. The linker performs similar operations with the .data and .bss sections. You can use this type of
specification for any output section.

You can explicitly specify the input sections that form an output section. Each input section is identified by
its filename and section name. If the filename is hyphenated (or contains special characters), enclose it
within quotes:

SECTI ONS
{
.text /* Build .text output section */
{
f1.0bj(.text) /* Link .text section fromf1. obj */
f 2. obj (secl) /* Link secl section fromf2.obj */
"f 3- new. obj " /* Link ALL sections from f3-new. obj */
f4.0bj(.text,sec2) /* Link .text and sec2 from f4. obj */
f5.0bj (.task??) /* Link .task00, .task01, .taskXX, etc. fromfb5.0bj */
f6.0bj (*_ctable) /* Link sections ending in "_ctable" fromf6. obj */
X*. obj (.text) /* Link .text section for all files starting with */
/* "X" and ending in ".obj" */
}
}

It is not necessary for input sections to have the same name as each other or as the output section they
become part of. If a file is listed with no sections,all of its sections are included in the output section. If any
additional input sections have the same name as an output section but are not explicitly specified by the
SECTIONS directive, they are automatically linked in at the end of the output section. For example, if the
linker found more .text sections in the preceding example and these .text sections were not specified
anywhere in the SECTIONS directive, the linker would concatenate these extra sections after f4.obj(sec2).

The specifications in Example 8-8 are actually a shorthand method for the following:

SECTI ONS

{
text: { *(.text) }
.data: { *(.data) }
.bss: { *(.bss) }

}

SPNU118L—June 2013 Linker Description 213

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

The specification *(.text) means the unallocated .text sections from all input files. This format is useful if:

* You want the output section to contain all input sections that have a specified name, but the output
section name is different from the input sections' name.

* You want the linker to allocate the input sections before it processes additional input sections or
commands within the braces.

The following example illustrates the two purposes above:

SECTI ONS
{
text 0 |
abc. obj (xqt)
*(.text)
}
.data : {

*(.data)
fil.obj(table)

}

In this example, the .text output section contains a hamed section xqt from file abc.obj, which is followed
by all the .text input sections. The .data section contains all the .data input sections, followed by a named
section table from the file fil.obj. This method includes all the unallocated sections. For example, if one of
the .text input sections was already included in another output section when the linker encountered
*(.text), the linker could not include that first .text input section in the second output section.

8.5.4.4 Using Multi-Level Subsections

Subsections can be identified with the base section name and one or more subsection names separated
by colons. For example, A:B and A:B:C name subsections of the base section A. In certain places in a link
command file specifying a base name, such as A, selects the section A as well as any subsections of A,
such as A:B or A:C:D.

A name such as A:B can specify a (sub)section of that name as well as any (multi-level) subsections
beginning with that name, such as A:B:C, A:B:OTHER, etc. All subsections of A:B are also subsections of
A. A and A:B are supersections of A:B:C. Among a group of supersections of a subsection, the nearest
supersection is the supersection with the longest name. Thus, among {A, A:B} the nearest supersection of
A:B:C:D is A:B. With multiple levels of subsections, the constraints are the following:

1. When specifying input sections within a file (or library unit) the section name selects an input section
of the same name and any subsections of that name.

2. Input sections that are not explicitly allocated are allocated in an existing output section of the same
name or in the nearest existing supersection of such an output section. An exception to this rule is that
during a partial link (specified by the --relocatable linker option) a subsection is allocated only to an
existing output section of the same name.

3. If no such output section described in 2) is defined, the input section is put in a newly created output
section with the same name as the base name of the input section

Consider linking input sections with the following names:

europe:north:norway europe:central:france europe:south:spain
europe:north:sweden europe:central:germany europe:south:italy
europe:north:finland europe:central:denmark europe:south:malta

europe:north:iceland

This SECTIONS specification allocates the input sections as indicated in the comments:

SECTI ONS {
nordic: {*(europe:north)
(europe:central :denmark)} / the nordic countries */

central: {*(europe:central)} /* france, gernany */
therest: {*(europe)} /* spain, italy, malta */
}
214 Linker Description SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

This SECTIONS specification allocates the input sections as indicated in the comments:

SECTI ONS {
i sl ands: {*(europe:south:malta)
(europe:north:iceland)} / malta, iceland */

europe:north:finland : {} /* finland */
europe: north {} /* norway, sweden */
eur ope: central {} /* germany, denmark */
europe: central : france: {} /* france */

/* (italy, spain) go into a |inker-generated output section "europe" */

Upward Compatibility of Multi-Level Subsections

NOTE: Existing linker commands that use the existing single-level subsection features and which do
not contain section names containing multiple colon characters continue to behave as
before. However, if section names in a link command file or in the input sections supplied to
the linker contain multiple colon characters, some change in behavior could be possible. You
should carefully consider the impact of the rules for multiple levels to see if it affects a
particular system link.

8.5.4.5 Specifying Library or Archive Members as Input to Output Sections

You can specify one or more members of an object library or archive for input to an output section.
Consider this SECTIONS directive:

Example 8-9. Archive Members to Output Sections

SECTI ONS
{
boot > BOOT1
{
-l =rtsXX. |ib<boot.obj> (.text)
-l=rtsXX. i b<exit.obj strcpy.obj> (.text)
}
.rts > BOOT2
{
-l=rtsXX. lib (.text)
}
. text > RAM
{
* (.text)
}
}

In Example 8-9, the .text sections of boot.obj, exit.obj, and strcpy.obj are extracted from the run-time-
support library and placed in the .boot output section. The remainder of the run-time-support library object
that is referenced is allocated to the .rts output section. Finally, the remainder of all other .text sections are
to be placed in section .text.

An archive member or a list of members is specified by surrounding the member name(s) with angle
brackets < and > after the library name. Any object files separated by commas or spaces from the
specified archive file are legal within the angle brackets.

The --library option (which normally implies a library path search be made for the named file following the
option) listed before each library in Example 8-9 is optional when listing specific archive members inside <
>, Using < > implies that you are referring to a library.

SPNU118L—June 2013 Linker Description 215

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

To collect a set of the input sections from a library in one place, use the --library option within the
SECTIONS directive. For example, the following collects all the .text sections from rtsv4_A_be_eabi.lib
into the .rtstest section:

SECTI ONS

{

}

.rtstest { -l=rtsv4d_A be eabi.lib(.text) } > RAM

SECTIONS Directive Effect on --priority

NOTE: Specifying a library in a SECTIONS directive causes that library to be entered in the list of
libraries that the linker searches to resolve references. If you use the --priority option, the first
library specified in the command file will be searched first.

8.5.4.6 Allocation Using Multiple Memory Ranges

The linker allows you to specify an explicit list of memory ranges into which an output section can be
allocated. Consider the following example:

MEMORY

{
P_MEML : origin = 0x02000, |ength = 0x01000
P_MEM2 : origin = 0x04000, Iength = 0x01000
P_MEMB : origin = 0x06000, Iength = 0x01000
P_MEMA : origin = 0x08000, |ength = 0x01000

}

SECTI ONS

{

.text : {} >P MEML | P_MEMR | P_MEMA
}

The | operator is used to specify the multiple memory ranges. The .text output section is allocated as a
whole into the first memory range in which it fits. The memory ranges are accessed in the order specified.
In this example, the linker first tries to allocate the section in P_MEML1. If that attempt fails, the linker tries
to place the section into P_MEMZ2, and so on. If the output section is not successfully allocated in any of
the named memory ranges, the linker issues an error message.

With this type of SECTIONS directive specification, the linker can seamlessly handle an output section
that grows beyond the available space of the memory range in which it is originally allocated. Instead of
modifying the link command file, you can let the linker move the section into one of the other areas.

8.5.4.7 Automatic Splitting of Output Sections Among Non-Contiguous Memory Ranges

The linker can split output sections among multiple memory ranges to achieve an efficient allocation. Use
the >> operator to indicate that an output section can be split, if necessary, into the specified memory
ranges. For example:

MEMORY

{
P_MEML : origin = 0x2000, Iength = 0x1000
P_MEM2 : origin = 0x4000, Iength = 0x1000
P_MEMB : origin = 0x6000, Iength = 0x1000
P_MEM4A : origin = 0x8000, Iength = 0x1000

}

SECTI ONS
{

.text: { *(.text) } >> P_MEML | P_.MEM2 | P_MEMB | P_MEMA
}

In this example, the >> operator indicates that the .text output section can be split among any of the listed
memory areas. If the .text section grows beyond the available memory in P_MEM1, it is split on an input
section boundary, and the remainder of the output section is allocated to P_MEM2 | P_MEM3 | P_MEMA4.

216

Linker Description SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

The | operator is used to specify the list of multiple memory ranges.

You can also use the >> operator to indicate that an output section can be split within a single memory
range. This functionality is useful when several output sections must be allocated into the same memory
range, but the restrictions of one output section cause the memory range to be partitioned. Consider the
following example:

MEMORY

{
RAM : origin = 0x1000, Iength = 0x8000

}

SECTI ONS

{
.special: { fl.obj(.text) } load = 0x4000

.text: { *(.text) } >> RAM
}

The .special output section is allocated near the middle of the RAM memory range. This leaves two
unused areas in RAM: from 0x1000 to 0x4000, and from the end of f1.obj(.text) to 0x8000. The
specification for the .text section allows the linker to split the .text section around the .special section and
use the available space in RAM on either side of .special.

The >> operator can also be used to split an output section among all memory ranges that match a
specified attribute combination. For example:

MEMORY

{
P_MEML (RN) : origin = 0x1000, Iength = 0x2000
P_MEMR (RW) : origin = 0x4000, Iength = 0x1000

}

SECTI ONS

{
Jtext: { *(.text) } >> (RW
}

The linker attempts to allocate all or part of the output section into any memory range whose attributes
match the attributes specified in the SECTIONS directive.

This SECTIONS directive has the same effect as:

SECTI ONS

{
.text: { *(.text) } >> P_MEML | P_MEMR}

}

Certain sections should not be split:

» Certain sections created by the compiler, including
— The .cinit section, which contains the autoinitialization table for C/C++ programs
— The .pinit section, which contains the list of global constructors for C++ programs
— The .bss section, which defines global variables

e An output section with an input section specification that includes an expression to be evaluated. The
expression may define a symbol that is used in the program to manage the output section at run time.

* An output section that has a START(), END(), OR SIZE() operator applied to it. These operators
provide information about a section's load or run address, and size. Splitting the section may
compromise the integrity of the operation.

» The run allocation of a UNION. (Splitting the load allocation of a UNION is allowed.)
If you use the >> operator on any of these sections, the linker issues a warning and ignores the operator.

SPNU118L—-June 2013 Linker Description 217

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

8.5.5 Specifying a Section's Run-Time Address

At times, you may want to load code into one area of memory and run it in another. For example, you may
have performance-critical code in slow external memory. The code must be loaded into slow external
memory, but it would run faster in fast external memory.

The linker provides a simple way to accomplish this. You can use the SECTIONS directive to direct the
linker to allocate a section twice: once to set its load address and again to set its run address. For
example:

.fir: load = SLONMEM run = FAST_MEM
Use the load keyword for the load address and the run keyword for the run address.

See Section 2.8 for an overview on run-time relocation.

8.5.5.1 Specifying Load and Run Addresses

The load address determines where a loader places the raw data for the section. Any references to the
section (such as labels in it) refer to its run address. See Section 3.1.1 for an overview of load and run
addresses.

The application must copy the section from its load address to its run address; this does not happen
automatically when you specify a separate run address. (The TABLE operator instructs the linker to
produce a copy table; see Section 8.8.5.)

If you provide only one allocation (either load or run) for a section, the section is allocated only once and
loads and runs at the same address. If you provide both allocations, the section is allocated as if it were
two sections of the same size. This means that both allocations occupy space in the memory map and
cannot overlay each other or other sections. (The UNION directive provides a way to overlay sections; see
Section 8.5.6.1.)

If either the load or run address has additional parameters, such as alignment or blocking, list them after
the appropriate keyword. Everything related to allocation after the keyword load affects the load address
until the keyword run is seen, after which, everything affects the run address. The load and run allocations
are completely independent, so any qualification of one (such as alignment) has no effect on the other.
You can also specify run first, then load. Use parentheses to improve readability.

The examples below specify load and run addresses:

.data: load = SLOWMEM align = 32, run = FAST_MEM

(align applies only to load)
.data: load = (SLONMEM align 32), run = FAST_MEM

(identical to previous example)

.data: run = FAST_MEM align 32,
load = align 16

(align 32 in FAST_MEM for run; align 16 anywhere for load)

For more information on run-time relocation see Section 2.8.

8.5.5.2 Uninitialized Sections

Uninitialized sections (such as .bss) are not loaded, so their only significant address is the run address.
The linker allocates uninitialized sections only once: if you specify both run and load addresses, the linker
warns you and ignores the load address. Otherwise, if you specify only one address, the linker treats it as
a run address, regardless of whether you call it load or run. This example specifies load and run
addresses for an uninitialized section:

.bss: load = 0x1000, run = FAST_MEM

A warning is issued, load is ignored, and space is allocated in FAST_MEM. All of the following examples
have the same effect. The .bss section is allocated in FAST_MEM.

.bss: | oad = FAST_MEM

.bss: run = FAST_MEM

.bss: > FAST_MEM

218

Linker Description SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com

Linker Command Files

8.5.5.3 Referring to the Load Address by Using the .label Directive

Normally, any reference to a symbol in a section refers to its run-time address. However, it may be
necessary at run time to refer to a load-time address. Specifically, the code that copies a section from its
load address to its run address must have access to the load address. The .label directive defines a
special symbol that refers to the section's load address. Thus, whereas normal symbols are relocated with

respect to the run address, .label symbols are relocated with respect to the load address. See Create a
Load-Time Address Label for more information on the .label directive.

Example 8-10 and Example 8-11 show the use of the .label directive to copy a section from its load
address in SLOW_MEM to its run address in FAST_MEM. Figure 8-3 illustrates the run-time execution of

Example 8-10.

The table operator and cpy_in can also be used to refer to a load address; see Section 8.8.5.

Example 8-10. Copying Section Assembly Language File

.sect ".fir"

.label fir_src ; load address of section
fir: ; run address of section

<code here> ; code for section

.label fir_end ; load address of section end

t ext
LDR r4, fir_s ; get fir load address start
LDR r5, fir_e ; get fir load address stop
LDR r3, fir_a ; get fir run address

$1: cwP r4, r5

LDRCC r0, [r4], #4 ; copy fir routine to its
; run address
STRCC r0, [r3], #4

; jump to fir routine, now in FAST_MEM

B fir
fir_a .word fir
fir_s .word fir_start
fir_e .word fir_end

Example 8-11. Linker Command File for Example 8-10

AR EEA R EEE AR EREEEEEEEEEEEREREEEEREEEEEEEEEEEEERERY

/* PARTI AL LI NKER COMVAND FI LE FOR FI R EXAMPLE */

/**/

MEMORY

{
FAST_MEM : origin = 0x00001000, | ength = 0x00001000

SLOVWMEM : origin = 0x10000000, |ength = 0x00001000
}
SECTI ONS
{
.text: load = FAST_MEM
.fir: load = SLONMEM run FAST_MEM
}

SPNU118L—June 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

Linker Description

219

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

Figure 8-3. Run-Time Execution of Example 8-10

0x00000000
FAST_MEM
text
: fir (relocated |
I torunhere)
L _ a
0x00001000
0x10000000
SLOW_MEM
l- --------- hl
: fir (loads here) |
L a
0x10001000
OXFFFFFFFF

8.5.6 Using UNION and GROUP Statements

Two SECTIONS statements allow you to conserve memory: GROUP and UNION. Unioning sections
causes the linker to allocate them to the same run address. Grouping sections causes the linker to
allocate them contiguously in memory. Section names can refer to sections, subsections, or archive library
members.

8.5.6.1 Overlaying Sections With the UNION Statement

For some applications, you may want to allocate more than one section to occupy the same address
during run time. For example, you may have several routines you want in fast external memory at various
stages of execution. Or you may want several data objects that are not active at the same time to share a
block of memory. The UNION statement within the SECTIONS directive provides a way to allocate several
sections at the same run-time address.

In Example 8-12, the .bss sections from filel.obj and file2.0bj are allocated at the same address in
FAST_MEM. In the memory map, the union occupies as much space as its largest component. The
components of a union remain independent sections; they are simply allocated together as a unit.

Example 8-12. The UNION Statement

SECTI ONS

{
.text: load = SLON MEM
UNION: run = FAST_MEM

{
.bss:partl: { filel.obj(.bss) }

.bss:part2: { file2.0bj(.bss) }

.bss:part3: run = FAST_MEM { gl obal s. obj (. bss) }

Allocation of a section as part of a union affects only its run address. Under no circumstances can
sections be overlaid for loading. If an initialized section is a union member (an initialized section, such as
.text, has raw data), its load allocation must be separately specified. See Example 8-13.

220 Linker Description SPNU118L—June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

Example 8-13. Separate Load Addresses for UNION Sections

UNI ON run = FAST_MEM
{
.text:partl: |oad
.text:part2: |oad

SLOWMEM { filel.obj(.text) }
SLOWMEM { file2. obj(.text) }

Figure 8-4. Memory Allocation Shown in Example 8-12 and Example 8-13

FAST_MEM Sections can run FAST_MEM
as a union. This ;
) C t
.bss:part2 |/7 is run-time alloca- text 2 (run) |'\ ru?]ptlienfea
bss:part1 tion only. text 1 (run)
W
.bss:part3 .bss:part3
SLOW_MEM SLOW_MEM
text . text 1 (load)
Sections cannot
load as a union t\
text 2 (load)

Since the .text sections contain raw data, they cannot load as a union, although they can be run as a
union. Therefore, each requires its own load address. If you fail to provide a load allocation for an
initialized section within a UNION, the linker issues a warning and allocates load space anywhere it can in
configured memory.

Uninitialized sections are not loaded and do not require load addresses.

The UNION statement applies only to allocation of run addresses, so it is meaningless to specify a load
address for the union itself. For purposes of allocation, the union is treated as an uninitialized section: any
one allocation specified is considered a run address, and if both run and load addresses are specified, the
linker issues a warning and ignores the load address.

SPNU118L—-June 2013 Linker Description 221

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

8.5.6.2 Grouping Output Sections Together

The SECTIONS directive's GROUP option forces several output sections to be allocated contiguously. For
example, assume that a section named term_rec contains a termination record for a table in the .data
section. You can force the linker to allocate .data and term_rec together:

Example 8-14. Allocate Sections Together

SECTI ONS

{
.text /* Normal output section */
. bss /* Normal output section */

GROUP 0x00001000 : /* Specify a group of sections */
{

.data /* First section in the group */
termrec /* Allocated imedi ately after .data */

You can use hinding, alignment, or named memory to allocate a GROUP in the same manner as a single
output section. In the preceding example, the GROUP is bound to address 0x1000. This means that .data
is allocated at 0x1000, and term_rec follows it in memory.

You Cannot Specify Addresses for Sections Within a GROUP

NOTE: When you use the GROUP option, binding, alignment, or allocation into named memory can
be specified for the group only. You cannot use binding, named memory, or alignment for
sections within a group.

8.5.6.3 Nesting UNIONs and GROUPs

The linker allows arbitrary nesting of GROUP and UNION statements with the SECTIONS directive. By
nesting GROUP and UNION statements, you can express hierarchical overlays and groupings of sections.
Example 8-15 shows how two overlays can be grouped together.

Example 8-15. Nesting GROUP and UNION Statements

SECTI ONS

{
GROUP 0x1000 : run = FAST_MEM

UNI ON:
{
nysect1l: |oad = SLON MEM
nysect2: |oad = SLOW MEM
}
UNI ON:
{
mysect3: | oad = SLOW MEM
nysect4: |oad = SLON MEM

For this example, the linker performs the following allocations:

» The four sections (mysectl, mysect2, mysect3, mysect4) are assigned unigue, non-overlapping load
addresses. The name you defined with the .label directive is used in the SLOW_MEM memory region.
This assignment is determined by the particular load allocations given for each section.

e Sections mysectl and mysect2 are assigned the same run address in FAST_MEM.
» Sections mysect3 and mysect4 are assigned the same run address in FAST_MEM.

222 Linker Description SPNU118L—June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

» The run addresses of mysectl/mysect2 and mysect3/mysect4 are allocated contiguously, as directed
by the GROUP statement (subject to alignment and blocking restrictions).

To refer to groups and unions, linker diagnostic messages use the notation:
GROUP_n UNION_n

In this notation, n is a sequential number (beginning at 1) that represents the lexical ordering of the group
or union in the linker control file, without regard to nesting. Groups and unions each have their own
counter.

8.5.6.4 Checking the Consistency of Allocators

The linker checks the consistency of load and run allocations specified for unions, groups, and sections.
The following rules are used:

* Run allocations are only allowed for top-level sections, groups, or unions (sections, groups, or unions
that are not nested under any other groups or unions). The linker uses the run address of the top-level
structure to compute the run addresses of the components within groups and unions.

» The linker does not accept a load allocation for UNIONs.
* The linker does not accept a load allocation for uninitialized sections.

* In most cases, you must provide a load allocation for an initialized section. However, the linker does
not accept a load allocation for an initialized section that is located within a group that already defines
a load allocator.

e As a shortcut, you can specify a load allocation for an entire group, to determine the load allocations
for every initialized section or subgroup nested within the group. However, a load allocation is
accepted for an entire group only if all of the following conditions are true:

— The group is initialized (that is, it has at least one initialized member).
— The group is not nested inside another group that has a load allocator.
— The group does not contain a union containing initialized sections.

« If the group contains a union with initialized sections, it is necessary to specify the load allocation for
each initialized section nested within the group. Consider the following example:

SECTI ONS

{
GROUP: | oad = SLONWMEM run = SLOW MEM
{

.text1:

UNI ON:

{
.text2:
.text3:

}

}
}

The load allocator given for the group does not uniquely specify the load allocation for the elements
within the union: .text2 and .text3. In this case, the linker issues a diagnostic message to request that
these load allocations be specified explicitly.

SPNU118L—June 2013 Linker Description 223

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

8.5.6.5 Naming UNIONs and GROUPs

You can give a hame to a UNION or GROUP by entering the name in parentheses after the declaration.
For example:

GROUP(BSS_SYSMVEM _STACK_GROUP)
{

. bss {}
.sysmem : {}
.stack :{}

} load=D_MEM run=D_MEM

The name you defined is used in diagnostics for easy identification of the problem LCF area. For example:
war ni ng: LOAD pl acenent ignored for "BSS_SYSMEM STACK GROUP": object is uninitialized

UNI ON(TEXT_CI NI T_UNI ON)

{
.const :{}load=D_MEM table(tablel)
.pinit :{}l oad=D_MEM tabl e(tablel)
}run=P_MEM

war ni ng: tabl e(tabl el) operator ignored: table(tablel) has already been applied to a section
inthe "UNON(TEXT_CINIT_UNION)" in which ".pinit" is a descendant

8.5.7 Special Section Types (DSECT, COPY, NOLOAD, and NOINIT)

You can assign three special types to output sections: DSECT, COPY, and NOLOAD. These types affect

the way that the program is treated when it is linked and loaded. You can assign a type to a section by

placing the type after the section definition. For example:

SECTI ONS
{
secl: | oad = 0x00002000, type = DSECT {fl.o0bj}
sec2: | oad = 0x00004000, type = COPY {f2.0bj}
sec3: | oad = 0x00006000, type = NOLOAD {f3.0bj}
sec4: | oad = 0x00008000, type = NONT {f4.o0bj}

}

* The DSECT type creates a dummy section with the following characteristics:

— Itis notincluded in the output section memory allocation. It takes up no memory and is not included
in the memory map listing.

— It can overlay other output sections, other DSECTs, and unconfigured memory.

— Global symbols defined in a dummy section are relocated normally. They appear in the output
module's symbol table with the same value they would have if the DSECT had actually been
loaded. These symbols can be referenced by other input sections.

— Undefined external symbols found in a DSECT cause specified archive libraries to be searched.

— The section's contents, relocation information, and line number information are not placed in the
output module.

In the preceding example, none of the sections from fl1.obj are allocated, but all the symbols are

relocated as though the sections were linked at address 0x2000. The other sections can refer to any of

the global symbols in secl.

» A COPY section is similar to a DSECT section, except that its contents and associated information are
written to the output module. The .cinit section that contains initialization tables for the ARM C/C++
compiler has this attribute under the run-time initialization model.

A NOLOAD section differs from a normal output section in one respect: the section's contents,
relocation information, and line number information are not placed in the output module. The linker
allocates space for the section, and it appears in the memory map listing.

* A NOINIT section is not C auto-initialized by the linker. It is your responsibility to initialize this section
as needed.

224 Linker Description SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

I

TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

8.5.8 Configuring Error Correcting Code (ECC) with the Linker

Error Correcting Codes (ECC) can be generated and placed in separate sections through the linker
command file. ECC uses extra bits to allow errors to be detected and/or corrected by a device. The ECC
support provided by the linker is compatible with the ECC support in Tl Flash memory on various Tl
devices. Tl Flash memory uses a modified Hamming(72,64) code, which uses 8 parity bits for every 64
bits. Check the documentation for your Flash memory to see if ECC is supported. (ECC for read-write
memory is handled completely in hardware at run time.)

See Section 8.4.11 for command-line options that introduce bit errors into code that has a corresponding
ECC section or into the ECC parity bits themselves. You can use these options to test your ECC error
handling code.

ECC can be generated during linking. The ECC data is included in the resulting object file, alongside code
and data, as a data section located at the appropriate address. No extra ECC generation step is required
after compilation, and the ECC can be uploaded to the device along with everything else.

You can control the generation of ECC data using the ECC specifier in the memory map (Section 8.5.8.1)
and the ECC directive (Section 8.5.8.2).

8.5.8.1 Using the ECC Specifier in the Memory Map

To generate ECC, add a separate memory range to your memory map to hold ECC data and to indicate
which memory range contains the Flash data that corresponds to this ECC data. If you have multiple
memory ranges for Flash data, you should add a separate ECC memory range for each Flash data range.

The definition of an ECC memory range can also provide parameters for how to generate the ECC data.
The memory map for a device supporting Flash ECC may look something like this:

MEMORY {
VECTORS : origi n=0x00000000 | engt h=0x000020
FLASHO : origi n=0x00000020 | engt h=0x17FFEOQ
FLASH1 : origi n=0x00180000 | engt h=0x180000
STACKS : origi n=0x08000000 | engt h=0x000500
RAM :origi n=0x08000500 | engt h=0x03FB0OO

ECC VEC : origi n=0xf 0400000 | engt h=0x000004 ECC={ i nput_range=VECTORS }

ECC _FLAO : origi n=0xf 0400004 | engt h=0x02FFFC ECC={ i nput _range=FLASHO }

ECC_FLAl : ori gi n=0xf 0430000 | engt h=0x030000 ECC={ i nput_range=FLASH1 }
}

The "ECC" specifier attached to the ECC memory ranges indicates the data memory range that the ECC
range covers. The ECC specifier supports the following parameters:

input_range = <memory The data memory range covered by this ECC data range. Required.
range>
input_page = <page The page number of the input range. Required only if the input range's
number> name is ambiguous.
algorithm = <ECC algorithm The name of an ECC algorithm defined later in the command file using
name> the ECC directive. Optional if only one algorithm is defined. (See

Section 8.5.8.2.)
fill = true | false Whether to generate ECC data for holes in the initialized data of the input

range. The default is "true". Using fill=false produces behavior similar to
the nowECC tool. The input range can be filled normally or using a virtual
fill (see Section 8.5.8.3).

8.5.8.2 Using the ECC Directive

In addition to specifying ECC memory ranges in the memory map, the linker command file must specify
parameters for the algorithm that generates ECC data. You might need multiple ECC algorithm
specifications if you have multiple Flash devices.

SPNU118L—June 2013 Linker Description 225
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

Each Tl device supporting Flash ECC has exactly one set of valid values for these parameters. The linker
command files provided with Code Composer Studio include the ECC parameters necessary for ECC
support on the Flash memaory accessible by the device. Documentation is provided here for completeness.

You specify algorithm parameters with the top-level ECC directive in the linker command file. For
example:

ECC {

al go_nane : address_nask 0x003ffff8

hanm ng_mask = FMC
parity_mask = Oxfc
mrroring = FO021

}
This ECC directive accepts the following attributes:

address_mask = <32-bit This mask determines which bits of the address of each 64-bit piece of
mask> memory are used in the calculation of the ECC byte for that memory.
Default is 0.

hamming_mask = FMC | R4 This setting determines for which data bits the ECC bits encode parity.
Default is FMC.

parity_mask = <8-bit mask> This mask determines which ECC bits encode even parity and which bits
encode odd parity. Default is 0, meaning that all bits encode even parity.

mirroring = F021 | FO35 This setting determines the order of the ECC bytes and their duplication
pattern for redundancy. Default is FO21.

8.5.8.3 Using the VFILL Specifier in the Memory Map

Normally, specifying a fill value for a MEMORY range creates initialized data sections to cover any
previously uninitialized areas of memory. To generate ECC data for an entire memory range, the linker
either needs to have initialized data in the entire range, or needs to know what value uninitialized memory
areas will have at run time.

In cases where you want to generate ECC for an entire memory range, but do not want to initialize the
entire range by specifying a fill value, you can use the "Vfill" specifier instead of a "fill" specifier to virtually
fill the range:
MEMORY {

FLASH : origi n=0x0000 | engt h=0x4000 vfill=0Oxffffffff
}

The Vfill specifier is functionally equivalent to omitting a fill specifier, except that it allows ECC data to be
generated for areas of the input memory range that remain uninitialized. This has the benefit of reducing
the size of the resulting object file.

The Vfill specifier has no effect other than in ECC data generation. It cannot be specified along with a fill
specifier, since that would introduce ambiguity.

8.5.9 Assigning Symbols at Link Time
Linker assignment statements allow you to define external (global) symbols and assign values to them at
link time. You can use this feature to initialize a variable or pointer to an allocation-dependent value.

226 Linker Description SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

8.5.9.1 Syntax of Assighment Statements
The syntax of assignment statements in the linker is similar to that of assignment statements in the C

language:
symbol = expression; assigns the value of expression to symbol
symbol + = expression; adds the value of expression to symbol
symbol -= expression; subtracts the value of expression from symbol
symbol * = expression; multiplies symbol by expression
symbol /= expression; divides symbol by expression

The symbol should be defined externally. If it is not, the linker defines a new symbol and enters it into the
symbol table. The expression must follow the rules defined in Section 8.5.9.3. Assignment statements
must terminate with a semicolon.

The linker processes assignment statements after it allocates all the output sections. Therefore, if an
expression contains a symbol, the address used for that symbol reflects the symbol's address in the
executable output file.

For example, suppose a program reads data from one of two tables identified by two external symbols,
Tablel and Table2. The program uses the symbol cur_tab as the address of the current table. The
cur_tab symbol must point to either Tablel or Table2. You could accomplish this in the assembly code,
but you would need to reassemble the program to change tables. Instead, you can use a linker
assignment statement to assign cur_tab at link time:

pr og. obj /* Input file */

cur_tab = Tablel; /* Assign cur_tab to one of the tables */

8.5.9.2 Assigning the SPC to a Symbol

A special symbol, denoted by a dot (.), represents the current value of the section program counter (SPC)
during allocation. The SPC keeps track of the current location within a section. The linker's . symbol is
analogous to the assembler's $ symbol. The . symbol can be used only in assignment statements within a
SECTIONS directive because . is meaningful only during allocation and SECTIONS controls the allocation
process. (See Section 8.5.4.)

The . symbol refers to the current run address, not the current load address, of the section.

For example, suppose a program needs to know the address of the beginning of the .data section. By
using the .global directive (see Identify Global Symbols), you can create an external undefined variable
called Dstart in the program. Then, assign the value of . to Dstart:

SECTI ONS

{
.text: {}
. dat a: {Dstart = .;}
.bss : {}

}

This defines Dstart to be the first linked address of the .data section. (Dstart is assigned before .data is
allocated.) The linker relocates all references to Dstart.

A special type of assignment assigns a value to the . symbol. This adjusts the SPC within an output
section and creates a hole between two input sections. Any value assigned to . to create a hole is relative
to the beginning of the section, not to the address actually represented by the . symbol. Holes and
assignments to . are described in Section 8.5.10.

SPNU118L—-June 2013 Linker Description 227

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

8.5.9.3 Assignment Expressions

These rules apply to linker expressions:

Expressions can contain global symbols, constants, and the C language operators listed in Table 8-10.
All numbers are treated as long (32-bit) integers.

Constants are identified by the linker in the same way as by the assembler. That is, numbers are
recognized as decimal unless they have a suffix (H or h for hexadecimal and Q or g for octal). C
language prefixes are also recognized (0 for octal and Ox for hex). Hexadecimal constants must begin
with a digit. No binary constants are allowed.

Symbols within an expression have only the value of the symbol's address. No type-checking is
performed.

Linker expressions can be absolute or relocatable. If an expression contains any relocatable symbols
(and 0 or more constants or absolute symbols), it is relocatable. Otherwise, the expression is absolute.
If a symbol is assigned the value of a relocatable expression, it is relocatable; if it is assigned the value
of an absolute expression, it is absolute.

The linker supports the C language operators listed in Table 8-10 in order of precedence. Operators in the
same group have the same precedence. Besides the operators listed in Table 8-10, the linker also has an
align operator that allows a symbol to be aligned on an n-byte boundary within an output section (n is a
power of 2). For example, the following expression aligns the SPC within the current section on the next
16-byte boundary. Because the align operator is a function of the current SPC, it can be used only in the
same context as . —that is, within a SECTIONS directive.

= align(16);

Table 8-10. Groups of Operators Used in Expressions (Precedence)

Group 1 (Highest Precedence) Group 6
! Logical NOT
~ Bitwise NOT & Bitwise AND
- Negation
Group 2 Group 7
* Multiplication
/ Division Bitwise OR
% Modulus
Group 3 Group 8
+ Addition .
Subtraction && Logical AND
Group 4 Group 9
>> Arithmetic right shift .
<« Arithmetic left shift I Logical OR
Group 5 Group 10 (Lowest Precedence)
R - msgmen
S Greater than += A+=B is equivalentto A=A+B
< Less than -= A-=B is equivalentto A=A-B
* = A*=B is equivalentto A=A*B
<= Less than or equal to _ _ . . _
5= Greater than or equal to /= A/=B is equivalentto A=A/B
228 Linker Description SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Linker Command Files
8.5.9.4 Symbols Defined by the Linker

The linker automatically defines several symbols based on which sections are used in your assembly
source. A program can use these symbols at run time to determine where a section is linked. Since these
symbols are external, they appear in the linker map. Each symbol can be accessed in any assembly
language module if it is declared with a .global directive (see Identify Global Symbols). You must have
used the corresponding section in a source module for the symbol to be created. Values are assigned to
these symbols as follows:

text is assigned the first address of the .text output section.
(It marks the beginning of executable code.)

etext is assigned the first address following the .text output section.
(It marks the end of executable code.)

.data is assigned the first address of the .data output section.
(It marks the beginning of initialized data tables.)

edata is assigned the first address following the .data output section.
(It marks the end of initialized data tables.)

.bss is assigned the first address of the .bss output section.
(It marks the beginning of uninitialized data.)

end is assigned the first address following the .bss output section.

(It marks the end of uninitialized data.)

The following symbols are defined only for C/C++ support when the --ram_model or --rom_maodel option is

used.
__TI_ STACK_END is assigned the end of the .stack size for ELF.
__TI_STACK_SIZE is assigned the size of the .stack section for ELF.
__ _STACK_END is assigned the end of the .stack size.
__STACK_SIZE is assigned the size of the .stack section for COFF.
__TI_SYSMEM_SIZE is assigned the size of the .sysmem section for ELF.

8.5.9.5 Assigning Exact Start, End, and Size Values of a Section to a Symbol

The code generation tools currently support the ability to load program code in one area of (slow) memory
and run it in another (faster) area. This is done by specifying separate load and run addresses for an
output section or group in the link command file. Then execute a sequence of instructions (the copying
code in Example 8-10) that moves the program code from its load area to its run area before it is needed.

There are several responsibilities that a programmer must take on when setting up a system with this
feature. One of these responsibilities is to determine the size and run-time address of the program code to
be moved. The current mechanisms to do this involve use of the .label directives in the copying code. A
simple example is illustrated Example 8-10.

This method of specifying the size and load address of the program code has limitations. While it works
fine for an individual input section that is contained entirely within one source file, this method becomes
more complicated if the program code is spread over several source files or if the programmer wants to
copy an entire output section from load space to run space.

Another problem with this method is that it does not account for the possibility that the section being
moved may have an associated far call trampoline section that needs to be moved with it.

SPNU118L—June 2013 Linker Description 229

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

8.5.9.6 Why the Dot Operator Does Not Always Work

The dot operator (.) is used to define symbols at link-time with a particular address inside of an output
section. It is interpreted like a PC. Whatever the current offset within the current section is, that is the
value associated with the dot. Consider an output section specification within a SECTIONS directive:

out sect :

{
sl.obj (.text)
end_of _s1 = .;
start_of _s2 = .;
s2.0bj (.text)
end_of _s2 = .;

}

This statement creates three symbols:

» end_of_sl—the end address of .text in s1.0bj
» start_of_s2—the start address of .text in s2.0bj
e end_of s2—the end address of .text in s2.0bj

Suppose there is padding between s1.0bj and s2.obj that is created as a result of alignment. Then
start_of s2 is not really the start address of the .text section in s2.0bj, but it is the address before the
padding needed to align the .text section in s2.0bj. This is due to the linker's interpretation of the dot
operator as the current PC. It is also due to the fact that the dot operator is evaluated independently of the
input sections around it.

Another potential problem in the above example is that end_of_s2 may not account for any padding that
was required at the end of the output section. You cannot reliably use end_of_s2 as the end address of
the output section. One way to get around this problem is to create a dummy section immediately after the
output section in question. For example:

GROUP

{

out sect :

{

start_of _outsect = .;

dummy: { size_of outsect = . - start_of_outsect; }

8.5.9.7 Address and Dimension Operators
Six operators allow you to define symbols for load-time and run-time addresses and sizes:

LOAD_START(sym)
START(sym)
LOAD_END(sym)
END(sym)
LOAD_SIZE(sym)
SIZE(sym)
RUN_START(sym)
RUN_END(sym)
RUN_SIZE(sym)

Defines sym with the load-time start address of related allocation unit
Defines sym with the load-time end address of related allocation unit
Defines sym with the load-time size of related allocation unit

Defines sym with the run-time start address of related allocation unit
Defines sym with the run-time end address of related allocation unit
Defines sym with the run-time size of related allocation unit

Linker Command File Operator Equivalencies

NOTE: LOAD_START() and START() are equivalent, as are LOAD_END()/END() and
LOAD_SIZE()/SIZE(). The LOAD names are recommended for clarity.

230 Linker Description

SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

I

www.ti.com

TEXAS
INSTRUMENTS

Linker Command Files

8.5.9.7.1

These address and dimension operators can be associated with several different kinds of allocation units,
including input items, output sections, GROUPs, and UNIONs. The following sections provide some
examples of how the operators can be used in each case.

Input Items

Consider an output section specification within a SECTIONS directive:
out sect:

{
sl.obj (.text)
end_of _s1 = .
start_of _s2 = .;
s2.0bj (.text)
end_of _s2 = .;

}

This can be rewritten using the START and END operators as follows:
out sect:

{
sl.obj (.text) { END(end_of_s1) }
s2.0bj (.text) { START(start_of_s2), END(end_of_s2) }

}

The values of end_of sl and end_of s2 will be the same as if you had used the dot operator in the
original example, but start_of s2 would be defined after any necessary padding that needs to be added
between the two .text sections. Remember that the dot operator would cause start_of_s2 to be defined
before any necessary padding is inserted between the two input sections.

The syntax for using these operators in association with input sections calls for braces { } to enclose the
operator list. The operators in the list are applied to the input item that occurs immediately before the list.

8.5.9.7.2 Output Section

The START, END, and SIZE operators can also be associated with an output section. Here is an example:

outsect: START(start_of_outsect),

{

}

In this case, the SIZE operator defines size_of outsect to incorporate any padding that is required in the
output section to conform to any alignment requirements that are imposed.

S| ZE(si ze_of _out sect)

<list of input itens>

The syntax for specifying the operators with an output section does not require braces to enclose the
operator list. The operator list is simply included as part of the allocation specification for an output
section.

8.5.9.7.3 GROUPs

Here is another use of the START and SIZE operators in the context of a GROUP specification:

GROUP
{

outsectl: { ... }
outsect2: { ... }

} load = ROM run = RAM START(group_start), SIZE(group_size);

This can be useful if the whole GROUP is to be loaded in one location and run in another. The copying
code can use group_start and group_size as parameters for where to copy from and how much is to be
copied. This makes the use of .label in the source code unnecessary.

SPNU118L—June 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

Linker Description 231

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

8.5.9.7.4 UNIONs

The RUN_SIZE and LOAD_SIZE operators provide a mechanism to distinguish between the size of a
UNION's load space and the size of the space where its constituents are going to be copied before they
are run. Here is an example:
UNION: run = RAM LOAD_START(uni on_| oad_addr),
LOAD_SI ZE(uni on_l d_sz), RUN_SI ZE(uni on_run_sz)

{

.text1l: |oad

.text2: |oad

ROM Sl ZE(text1l size) { fl.obj(.text) }
ROM Sl ZE(text2_size) { f2.obj(.text) }

}

Here union_ld_sz is going to be equal to the sum of the sizes of all output sections placed in the union.
The union_run_sz value is equivalent to the largest output section in the union. Both of these symbols
incorporate any padding due to blocking or alignment requirements.

8.5.10 Creating and Filling Holes

The linker provides you with the ability to create areas within output sections that have nothing linked into
them. These areas are called holes. In special cases, uninitialized sections can also be treated as holes.
This section describes how the linker handles holes and how you can fill holes (and uninitialized sections)
with values.

8.5.10.1 Initialized and Uninitialized Sections

There are two rules to remember about the contents of output sections. An output section contains either:
» Raw data for the entire section
* No raw data

A section that has raw data is referred to as initialized. This means that the object file contains the actual
memory image contents of the section. When the section is loaded, this image is loaded into memory at
the section's specified starting address. The .text and .data sections always have raw data if anything was
assembled into them. Named sections defined with the .sect assembler directive also have raw data.

By default, the .bss section (see Reserve Space in the .bss Section) and sections defined with the .usect
directive (see Reserve Uninitialized Space) have no raw data (they are uninitialized). They occupy space
in the memory map but have no actual contents. Uninitialized sections typically reserve space in fast
external memory for variables. In the object file, an uninitialized section has a normal section header and
can have symbols defined in it; no memory image, however, is stored in the section.

8.5.10.2 Creating Holes

You can create a hole in an initialized output section. A hole is created when you force the linker to leave
extra space between input sections within an output section. When such a hole is created, the linker must
supply raw data for the hole.

Holes can be created only within output sections. Space can exist between output sections, but such
space is not a hole. To fill the space between output sections, see Section 8.5.3.2.

To create a hole in an output section, you must use a special type of linker assignment statement within
an output section definition. The assignment statement modifies the SPC (denoted by .) by adding to it,
assigning a greater value to it, or aligning it on an address boundary. The operators, expressions, and
syntaxes of assignment statements are described in Section 8.5.9.

232 Linker Description SPNU118L—June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

The following example uses assignment statements to create holes in output sections:
SECTI ONS
{

out sect :

{
filel.obj(.text)

+= 0x0100 /* Create a hole with size 0x0100 */
file2.obj(.text)

. = align(16); /* Create a hole to align the SPC */
file3.obj(.text)

}

The output section outsect is built as follows:

The .text section from filel.obj is linked in.

The linker creates a 256-byte hole.

The .text section from file2.obj is linked in after the hole.

The linker creates another hole by aligning the SPC on a 16-byte boundary.
Finally, the .text section from file3.obj is linked in.

akrwnh e

All values assigned to the . symbol within a section refer to the relative address within the section. The
linker handles assignments to the . symbol as if the section started at address 0 (even if you have
specified a binding address). Consider the statement . = align(16) in the example. This statement
effectively aligns the file3.obj .text section to start on a 16-byte boundary within outsect. If outsect is
ultimately allocated to start on an address that is not aligned, the file3.obj .text section will not be aligned
either.

The . symbol refers to the current run address, not the current load address, of the section.

Expressions that decrement the . symbol are illegal. For example, it is invalid to use the -= operator in an
assignment to the . symbol. The most common operators used in assignments to the . symbol are += and
align.

If an output section contains all input sections of a certain type (such as .text), you can use the following
statements to create a hole at the beginning or end of the output section.

.text: { .+= 0x0100; } /* Hol e at the beginning */
.dat a: { *(.data)
+= 0x0100; } /* Hole at the end */

Another way to create a hole in an output section is to combine an uninitialized section with an initialized
section to form a single output section. In this case, the linker treats the uninitialized section as a hole and
supplies data for it. The following example illustrates this method:

SECTI ONS
{

out sect :

{
filel.obj(.text)

filel.obj(.bss) /* This becones a hole */

}
}

Because the .text section has raw data, all of outsect must also contain raw data. Therefore, the
uninitialized .bss section becomes a hole.

Uninitialized sections become holes only when they are combined with initialized sections. If several
uninitialized sections are linked together, the resulting output section is also uninitialized.

SPNU118L—June 2013 Linker Description 233

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

8.5.10.3 Filling Holes

When a hole exists in an initialized output section, the linker must supply raw data to fill it. The linker fills
holes with a 32-hit fill value that is replicated through memory until it fills the hole. The linker determines
the fill value as follows:

1. If the hole is formed by combining an uninitialized section with an initialized section, you can specify a
fill value for the uninitialized section. Follow the section name with an = sign and a 32-bit constant. For
example:

SECTI ONS
{ outsect:

{
filel.obj(.text)

file2.obj(.bss)= OxFFOOFFOO /* Fill this hole w th OxFFOOFFOO */
}
}

2. You can also specify a fill value for all the holes in an output section by supplying the fill value after the
section definition:

SECTI ONS
{ outsect:fill = OxFFOOFFOO /* Fills holes with OXxFFOOFFOO */
{
+= 0x0010; /* This creates a hole */
filel.obj(.text)
filel.obj(.bss) /* This creates another hole */
}
}

3. If you do not specify an initialization value for a hole, the linker fills the hole with the value specified
with the --fill_value option (see Section 8.4.13). For example, suppose the command file link.cmd
contains the following SECTIONS directive:

SECTIONS { .text: { .= 0x0100; } /* Create a 100 word hole */ }

Now invoke the linker with the --fill_value option:
arncl --run_linker --fill_val ue=0xFFFFFFFF |i nk.cnd

This fills the hole with OxFFFFFFFF.

4. If you do not invoke the linker with the --fill_value option or otherwise specify a fill value, the linker fills
holes with Os.

Whenever a hole is created and filled in an initialized output section, the hole is identified in the link map
along with the value the linker uses to fill it.

8.5.10.4 Explicit Initialization of Uninitialized Sections

You can force the linker to initialize an uninitialized section by specifying an explicit fill value for it in the
SECTIONS directive. This causes the entire section to have raw data (the fill value). For example:

SECTI ONS
{

.bss: fill = 0x12341234 /* Fills .bss with 0x12341234 */
}

Filling Sections

NOTE: Because filling a section (even with 0s) causes raw data to be generated for the entire
section in the output file, your output file will be very large if you specify fill values for large
sections or holes.

234 Linker Description SPNU118L—June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

I3 TEXAS

INSTRUMENTS

www.ti.com Object Libraries

8.6 Object Libraries
An object library is a partitioned archive file that contains object files as members. Usually, a group of
related modules are grouped together into a library. When you specify an object library as linker input, the
linker includes any members of the library that define existing unresolved symbol references. You can use
the archiver to build and maintain libraries. Section 7.1 contains more information about the archiver.
Using object libraries can reduce link time and the size of the executable module. Normally, if an object
file that contains a function is specified at link time, the file is linked whether the function is used or not;
however, if that same function is placed in an archive library, the file is included only if the function is
referenced.
The order in which libraries are specified is important, because the linker includes only those members
that resolve symbols that are undefined at the time the library is searched. The same library can be
specified as often as necessary; it is searched each time it is included. Alternatively, you can use the --
reread_libs option to reread libraries until no more references can be resolved (see Section 8.4.17.3). A
library has a table that lists all external symbols defined in the library; the linker searches through the table
until it determines that it cannot use the library to resolve any more references.
The following examples link several files and libraries, using these assumptions:
* Input files f1.0bj and f2.0bj both reference an external function named clrscr.
* Input file f1.0bj references the symbol origin.
» Input file f2.0bj references the symbol fillclr.
e Member 0 of library libc.lib contains a definition of origin.
e Member 3 of library liba.lib contains a definition of fillclr.
* Member 1 of both libraries defines clrscr.
If you enter:
arncl --run_linker fl1.0bj f2.0bj liba.lib libc.lib
then:
» Member 1 of liba.lib satisfies the f1.0bj and f2.0bj references to clrscr because the library is searched

and the definition of clrscr is found.

« Member 0 of libc.lib satisfies the reference to origin.
» Member 3 of liba.lib satisfies the reference to fillclr.
If, however, you enter:
arncl --run_linker fl1.0bj f2.0bj libc.lib liba.lib
then the references to clrscr are satisfied by member 1 of libc.lib.
If none of the linked files reference symbols defined in a library, you can use the --undef_sym option to
force the linker to include a library member. (See Section 8.4.34.) The next example creates an undefined
symbol routl in the linker's global symbol table:
arncl --run_linker --undef_synmrroutl libc.lib
If any member of libc.lib defines routl, the linker includes that member.
Library members are allocated according to the SECTIONS directive default allocation algorithm; see
Section 8.5.4.
Section 8.4.17 describes methods for specifying directories that contain object libraries.

SPNU118L—-June 2013 Linker Description 235

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Defau

13 TEXAS
INSTRUMENTS

It Allocation Algorithm www.ti.com

8.7

Default Allocation Algorithm

The MEMORY and SECTIONS directives provide flexible methods for building, combining, and allocating
sections. However, any memory locations or sections that you choose not to specify must still be handled
by the linker. The linker uses default algorithms to build and allocate sections within the specifications you
supply.

If you do not use the MEMORY and SECTIONS directives, the linker allocates output sections as though
the memory map and section definitions in Example 8-16 were specified.

Example 8-16. Default Allocation for ARM Devices

{

RAM : origin = 0x00000000, |ength = OXFFFFFFFF
}
SECTI ONS
{
.text : ALIGN(4) {} > RAM
.const: ALIGN(4) {} > RAM
.data : ALIGN(4) {} > RAM
.bss : ALIGN(4) {} > RAM
.cinit: ALIGN(4) {} > RAM /* -c option only */
.pinit: ALIGN(4) {} > RAM /* -c option only */

8.7.1

Also see Section 2.5.1 for information about default memory allocation.

All .text input sections are concatenated to form a .text output section in the executable output file, and all
.data input sections are combined to form a .data output section.

If you use a SECTIONS directive, the linker performs no part of the default allocation. Allocation is
performed according to the rules specified by the SECTIONS directive and the general algorithm
described next in Section 8.7.1.

How the Allocation Algorithm Creates Output Sections
An output section can be formed in one of two ways:

Method 1 As the result of a SECTIONS directive definition

Method 2 By combining input sections with the same name into an output section that is not defined in
a SECTIONS directive

If an output section is formed as a result of a SECTIONS directive, this definition completely determines
the section's contents. (See Section 8.5.4 for examples of how to define an output section's content.)

If an output section is formed by combining input sections not specified by a SECTIONS directive, the
linker combines all such input sections that have the same name into an output section with that name.
For example, suppose the files f1.0bj and f2.0bj both contain named sections called Vectors and that the
SECTIONS directive does not define an output section for them. The linker combines the two Vectors
sections from the input files into a single output section named Vectors, allocates it into memory, and
includes it in the output file.

By default, the linker does not display a message when it creates an output section that is not defined in
the SECTIONS directive. You can use the --warn_sections linker option (see Section 8.4.35) to cause the
linker to display a message when it creates a new output section.

After the linker determines the composition of all output sections, it must allocate them into configured
memory. The MEMORY directive specifies which portions of memory are configured. If there is no
MEMORY directive, the linker uses the default configuration as shown in Example 8-16. (See

Section 8.5.3 for more information on configuring memory.)

236

Linker Description SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

I

TEXAS

INSTRUMENTS

www.ti.com Linker-Generated Copy Tables

8.7.2

Reducing Memory Fragmentation

The linker's allocation algorithm attempts to minimize memory fragmentation. This allows memory to be
used more efficiently and increases the probability that your program will fit into memory. The algorithm
comprises these steps:

1. Each output section for which you have supplied a specific binding address is placed in memory at that
address.

2. Each output section that is included in a specific, named memory range or that has memory attribute
restrictions is allocated. Each output section is placed into the first available space within the named
area, considering alignment where necessary.

3. Any remaining sections are allocated in the order in which they are defined. Sections not defined in a
SECTIONS directive are allocated in the order in which they are encountered. Each output section is
placed into the first available memory space, considering alignment where necessary.

8.8 Linker-Generated Copy Tables
The linker supports extensions to the link command file syntax that enable the following:
» Make it easier for you to copy objects from load-space to run-space at boot time
e Make it easier for you to manage memory overlays at run time
» Allow you to split GROUPs and output sections that have separate load and run addresses

8.8.1 Using Copy Tables for Boot Loading
In some embedded applications, there is a need to copy or download code and/or data from one location
to another at boot time before the application actually begins its main execution thread. For example, an
application may have its code and/or data in FLASH memory and need to copy it into on-chip memory
before the application begins execution.
One way you can develop an application like this is to create a copy table in assembly code that contains
three elements for each block of code or data that needs to be moved from FLASH into on-chip memory
at boot time:
* The load address
* The run address
* The size
The process you follow to develop such an application might look like this:
1. Build the application to produce a .map file that contains the load and run addresses of each section

that has a separate load and run placement.
2. Edit the copy table (used by the boot loader) to correct the load and run addresses as well as the size
of each block of code or data that needs to be moved at boot time.

3. Build the application again, incorporating the updated copy table.
4. Run the application.
This process puts a heavy burden on you to maintain the copy table (by hand, no less). Each time a piece
of code or data is added or removed from the application, you must repeat the process in order to keep
the contents of the copy table up to date.

SPNU118L—-June 2013 Linker Description 237

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Linker-Generated Copy Tables www.ti.com

8.8.2 Using Built-in Link Operators in Copy Tables

You can avoid some of this maintenance burden by using the LOAD_START(), RUN_START(), and
SIZE() operators that are already part of the link command file syntax . For example, instead of building
the application to generate a .map file, the link command file can be annotated:

SECTI ONS

{

.flashcode: { app_tasks.obj(.text) }
load = FLASH, run = PVMEM
LOAD_START(_fl ash_code_l d_start),
RUN_START(_fl ash_code_rn_start),
S| ZE(_fl ash_code_si ze)

}

In this example, the LOAD_START(), RUN_START(), and SIZE() operators instruct the linker to create
three symbols:

Symbol Description

_flash_code_Id_start Load address of .flashcode section
_flash_code_rn_start Run address of .flashcode section
_flash_code_size Size of .flashcode section

These symbols can then be referenced from the copy table. The actual data in the copy table will be
updated automatically each time the application is linked. This approach removes step 1 of the process
described in Section 8.8.1.

While maintenance of the copy table is reduced markedly, you must still carry the burden of keeping the
copy table contents in sync with the symbols that are defined in the link command file. Ideally, the linker
would generate the boot copy table automatically. This would avoid having to build the application twice
and free you from having to explicitly manage the contents of the boot copy table.

For more information on the LOAD_START(), RUN_START(), and SIZE() operators, see Section 8.5.9.7.

238

Linker Description SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Linker-Generated Copy Tables

8.8.3 Overlay Management Example

Consider an application that contains a memory overlay that must be managed at run time. The memory
overlay is defined using a UNION in the link command file as illustrated in Example 8-17:

Example 8-17. Using a UNION for Memory Overlay

SECTI ONS
{
UNI ON
{
GROUP

{
.taskl: { taskl.obj(.text) }

.task2: { task2.obj(.text) }
} load = ROM LOAD START(_taskl1l2_| oad_start), SIZE(_taskl2_size)
GROUP

{
.task3: { task3.obj(.text) }

.task4: { task4.obj(.text) }
} load = ROM LOAD START(_task34_l oad_start), SlIZE(_task_34_size)

} run = RAM RUN_START(_task_run_start)

The application must manage the contents of the memory overlay at run time. That is, whenever any
services from .taskl or .task2 are needed, the application must first ensure that .taskl and .task2 are
resident in the memory overlay. Similarly for .task3 and .task4.

To affect a copy of .taskl and .task2 from ROM to RAM at run time, the application must first gain access
to the load address of the tasks (_task12 load_start), the run address (_task run_start), and the size
(_task12_size). Then this information is used to perform the actual code copy.

8.8.4 Generating Copy Tables Automatically With the Linker

The linker supports extensions to the link command file syntax that enable you to do the following:

« Identify any object components that may need to be copied from load space to run space at some
point during the run of an application

» Instruct the linker to automatically generate a copy table that contains (at least) the load address, run
address, and size of the component that needs to be copied

» Instruct the linker to generate a symbol specified by you that provides the address of a linker-
generated copy table. For instance, Example 8-17 can be written as shown in Example 8-18:

SPNU118L—June 2013 Linker Description 239

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Linker-Generated Copy Tables www.ti.com

Example 8-18. Produce Address for Linker Generated Copy Table

SECTI ONS

{

UNI ON

{

}

8.8.5

GROUP

{
.taskl: { taskl.obj(.text) }
.task2: { task2.obj(.text) }

} load = ROM tabl e(_taskl2_copy_table)

GROUP

{
.task3: { task3.obj(.text) }
.task4: { task4.obj(.text) }

} load = ROM tabl e(_task34_copy_table)

run = RAM

Using the SECTIONS directive from Example 8-18 in the link command file, the linker generates two copy
tables named: task12 copy table and _task34 copy table. Each copy table provides the load address,
run address, and size of the GROUP that is associated with the copy table. This information is accessible
from application source code using the linker-generated symbols, task12 copy_table and

_task34 copy_table, which provide the addresses of the two copy tables, respectively.

Using this method, you do not have to worry about the creation or maintenance of a copy table. You can
reference the address of any copy table generated by the linker in C/C++ or assembly source code,
passing that value to a general purpose copy routine which will process the copy table and affect the
actual copy.

The table() Operator

You can use the table() operator to instruct the linker to produce a copy table. A table() operator can be
applied to an output section, a GROUP, or a UNION member. The copy table generated for a particular
table() specification can be accessed through a symbol specified by you that is provided as an argument
to the table() operator. The linker creates a symbol with this name and assigns it the address of the copy
table as the value of the symbol. The copy table can then be accessed from the application using the
linker-generated symbol.

Each table() specification you apply to members of a given UNION must contain a unique name. If a
table() operator is applied to a GROUP, then none of that GROUP's members may be marked with a
table() specification. The linker detects violations of these rules and reports them as warnings, ignoring
each offending use of the table() specification. The linker does not generate a copy table for erroneous
table() operator specifications.

Copy tables can be generated automatically; see Section 8.8.4. The table operator can be used with
compression; see Section 8.8.8.

240

Linker Description SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Linker-Generated Copy Tables
8.8.6 Boot-Time Copy Tables

The linker supports a special copy table name, BINIT (or binit), that you can use to create a boot-time
copy table. For example, the link command file for the boot-loaded application described in Section 8.8.2
can be rewritten as follows:

SECTI ONS

{

.flashcode: { app_tasks.obj(.text) }
| oad = FLASH, run = PMEM
tabl e(BINIT)

}

For this example, the linker creates a copy table that can be accessed through a special linker-generated
symbol, __binit__, which contains the list of all object components that need to be copied from their load
location to their run location at boot-time. If a link command file does not contain any uses of table(BINIT),
then the __binit__ symbol is given a value of -1 to indicate that a boot-time copy table does not exist for a
particular application.

You can apply the table(BINIT) specification to an output section, GROUP, or UNION member. If used in
the context of a UNION, only one member of the UNION can be designated with table(BINIT). If applied to
a GROUP, then none of that GROUP's members may be marked with table(BINIT).The linker detects

violations of these rules and reports them as warnings, ignoring each offending use of the table(BINIT)
specification.

8.8.7 Using the table() Operator to Manage Object Components

If you have several pieces of code that need to be managed together, then you can apply the same table()
operator to several different object components. In addition, if you want to manage a particular object
component in multiple ways, you can apply more than one table() operator to it. Consider the link
command file excerpt in Example 8-19:

Example 8-19. Linker Command File to Manage Object Components

SECTI ONS

{
UNI ON

{
.first: { al.obj(.text), bl.obj(.text), cl.obj(.text) }
load = EMEM run = PMEM table(BINIT), table(_first_cthl)

.second: { a2.obj(.text), b2.obj(.text) }
load = EMEM run = PMEM tabl e(_second_cthl)
}

.extra: load = EMEM run = PMEM table(BINT)

In this example, the output sections .first and .extra are copied from external memory (EMEM) into
program memory (PMEM) at boot time while processing the BINIT copy table. After the application has
started executing its main thread, it can then manage the contents of the overlay using the two overlay
copy tables named: _first_ctbl and _second_ctbl.

SPNU118L—-June 2013 Linker Description 241

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Linker-Generated Copy Tables www.ti.com

8.8.8 Compression Support

When automatically generating copy tables, the linker provides a way to compress the load-space data.
This can reduce the read-only memory foot print. This compressed data can be decompressed while
copying the data from load space to run space.

You can specify compression in two ways:

e The linker command line option --copy_compression=compression_kind can be used to apply the
specified compression to any output section that has a table() operator applied to it.

» The table() operator accepts an optional compression parameter. The syntax is: .
table(name , compression= compression_kind)
The compression_kind can be one of the following types:
— off. Don't compress the data.
— rle. Compress data using Run Length Encoding.
— lzss. Compress data using Lempel-Ziv-Storer-Szymanski compression.
A table() operator without the compression keyword uses the compression kind specified using the
command line option --copy_compression.

When you choose compression, it is not guaranteed that the linker will compress the load data. The linker
compresses load data only when such compression reduces the overall size of the load space. In some
cases even if the compression results in smaller load section size the linker does not compress the data if
the decompression routine offsets for the savings.

For example, assume RLE compression reduces the size of sectionl by 30 bytes. Also assume the RLE
decompression routine takes up 40 bytes in load space. By choosing to compress sectionl the load space
is increased by 10 bytes. Therefore, the linker will not compress sectionl. On the other hand, if there is
another section (say section2) that can benefit by more than 10 bytes from applying the same
compression then both sections can be compressed and the overall load space is reduced. In such cases
the linker compresses both the sections.

You cannot force the linker to compress the data when doing so does not result in savings.

8.8.8.1 Compressed Copy Table Format

The copy table format is the same irrespective of the compression. The size field of the copy record is
overloaded to support compression. Figure 8-5 illustrates the compressed copy table layout.

Figure 8-5. Compressed Copy Table

Rec size Rec cnt
Load address Run address |Size (0 if load data is compressed)l

In Figure 8-5, if the size in the copy record is non-zero it represents the size of the data to be copied, and
also means that the size of the load data is the same as the run data. When the size is 0, it means that
the load data is compressed.

8.8.8.2 Compressed Section Representation in the Object File

When the load data is not compressed, the object file can have only one section with a different load and
run address.

Consider the following table() operation in the linker command file.

SECTI ONS
{

}

The output object file has one output section named .taskl which has a different load and run addresses.
This is possible because the load space and run space have identical data when the section is not
compressed.

.taskl: load = ROM run = RAM table(_taskl_table)

242

Linker Description SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Linker-Generated Copy Tables

Alternatively, consider the following:

SECTI ONS
{

}

If the linker compresses the .taskl section then the load space data and the run space data are different.
The linker creates the following two sections:

» .taskl: This section is uninitialized. This output section represents the run space image of section
taskl.

» .taskl.load : This section is initialized. This output section represents the load space image of the
section taskl. This section usually is considerably smaller in size than .task1 output section.

.taskl: load = ROM run = RAM tabl e(_taskl_table, conpression=rle)

8.8.8.3 Compressed Data Layout
The compressed load data has the following layout:

8-bit index ‘ Compressed data ‘

The first eight bits of the load data are the handler index. This handler index is used to index into a
handler table to get the address of a handler function that knows how to decode the data that follows. The
handler table is a list of 32-bit function pointers as shown in Figure 8-6.

Figure 8-6. Handler Table

_TI_Handler_Table Base:

32-bit handler address 1

32-bit handler address N

_TI_Handler_Table_Limit:

The linker creates a separate output section for the load and run space. For example, if .taskl.load is
compressed using RLE, the handler index points to an entry in the handler table that has the address of
the run-time-support routine __TI_decompress_rle().

8.8.8.4 Run-Time Decompression

During run time you call the run-time-support routine copy_in() to copy the data from load space to run
space. The address of the copy table is passed to this routine. First the routine reads the record count.
Then it repeats the following steps for each record:

1. Read load address, run address and size from record.

If size is zero go to step 5.

Call memcpy passing the run address, load address and size.
Go to step 1 if there are more records to read.

Read the first byte from load address. Call this index.

Read the handler address from (&__TI_Handler_Base)[index].
Call the handler and pass load address + 1 and run address.
Go to step 1 if there are more records to read.

© N OA WD

The routines to handle the decompression of load data are provided in the run-time-support library.

SPNU118L—June 2013 Linker Description 243

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Linker-Generated Copy Tables www.ti.com

8.8.8.5 Compression Algorithms
Run Length Encoding (RLE):

8-bit index ‘ Initialization data compressed using run length encoding

The data following the 8-bit index is compressed using run length encoded (RLE) format. ARM uses a
simple run length encoding that can be decompressed using the following algorithm:

1. Read the first byte, Delimiter (D).

2. Read the next byte (B).

3. If B !=D, copy B to the output buffer and go to step 2.
4. Read the next byte (L).

(a) If L == 0, then length is either a 16-bit, a 24-bit value, or we've reached the end of the data, read
next byte (L).

(i) IfL==0, length is a 24-bit value or the end of the data is reached, read next byte (L).
(i) If L==0, the end of the data is reached, go to step 7.
(i) Else L <<= 16, read next two bytes into lower 16 bits of L to complete 24-bit value for L.
(i) Else L <<= 8, read next byte into lower 8 bits of L to complete 16-bit value for L.
(b) Else if L >0 and L < 4, copy D to the output buffer L times. Go to step 2.
(c) Else, length is 8-bit value (L).
5. Read the next byte (C); C is the repeat character.
6. Write C to the output buffer L times; go to step 2.
7. End of processing.
The ARM run-time support library has a routine __Tl_decompress_rle24() to decompress data

compressed using RLE. The first argument to this function is the address pointing to the byte after the 8-
bit index. The second argument is the run address from the C auto initialization record.

RLE Decompression Routine

NOTE: The previous decompression routine, __TI_decompress_rle(), is included in the run-time-
support library for decompressing RLE encodings that are generated by older versions of the
linker.

Lempel-Ziv-Storer-Szymanski Compression (LZSS):

8-bit index ‘ Data compressed using LZSS ‘

The data following the 8-bit index is compressed using LZSS compression. The ARM run-time-support
library has the routine __ Tl _decompress_lzss() to decompress the data compressed using LZSS. The first
argument to this function is the address pointing to the byte after the 8-bit Index, and the second argument
is the run address from the C auto initialization record.

244 Linker Description SPNU118L—June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Linker-Generated Copy Tables

8.8.9 Copy Table Contents

To use a copy table generated by the linker, you must know the contents of the copy table. This

information is included in a run-time-support library header file, cpy_tbl.h, which contains a C source
representation of the copy table data structure that is generated by the linker. Example 8-20 shows the

copy table header file.

Example 8-20. ARM cpy_tbl.h File

AR AR R E R R EEEE R R R R R R R LY

/* cpy_thbl.h v##### */
/* Copyright (c) 2003 Texas |nstrunents | ncorporated */
/* */
/* Specification of copy table data structures which can be autonatically */
/* generated by the linker (using the table() operator in the LCF). */

AR AR E R EEERE R RS R R R R R R LY

#i fndef _CPY_TBL
#define _CPY_TBL

#i fdef __cpl uspl us
extern "C' namespace std {
#endif /* __cplusplus */

/***/

/* Copy Record Data Structure */
/***/
typedef struct copy_record
{

unsi gned int | oad_addr;

unsi gned int run_addr;

unsi gned int size;
} COPY_RECORD;

/***/

/* Copy Table Data Structure */
/***/
typedef struct copy_table
{

unsi gned short rec_si ze;

unsi gned short numrecs;

COPY_RECORD recs[1];
} COPY_TABLE;

AR AR E R EEE R R R R R R R R R LRy

/* Prototype for general purpose copy routine. */
/***/

extern void copy_i n(COPY_TABLE *tp);

#i fdef __ cplusplus
} /* extern "C' nanmespace std */

#i fndef _CPP_STYLE_HEADER

usi ng std:: COPY_RECORD;

usi ng std:: COPY_TABLE;

using std::copy_in;

#endif /* _CPP_STYLE HEADER */
#endif /* __cplusplus */
#endif /* | _CPY_TBL */

For each object component that is marked for a copy, the linker creates a COPY_RECORD obiject for it.
Each COPY_RECORD contains at least the following information for the object component:

e The load address
e The run address
* The size

SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

Linker Description

245

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Linker-Generated Copy Tables

13 TEXAS
INSTRUMENTS

www.ti.com

The linker collects all COPY_RECORDSs that are associated with the same copy table into a
COPY_TABLE object. The COPY_TABLE object contains the size of a given COPY_RECORD, the
number of COPY_RECORD:s in the table, and the array of COPY_RECORD:s in the table. For instance, in
the BINIT example in Section 8.8.6, the .first and .extra output sections will each have their own
COPY_RECORD entries in the BINIT copy table. The BINIT copy table will then look like this:

COPY_TABLE __binit__ = { 12, 2,

{ <load address of .first>,
<run address of .first>,
<size of .first>},

{ <l oad address of .extra>,
<run address of .extra>,
<size of .extra>} };

8.8.10 General Purpose Copy Routine

The cpy_tbl.h file in Example 8-20 also contains a prototype for a general-purpose copy routine, copy_in(),
which is provided as part of the run-time-support library. The copy_in() routine takes a single argument:
the address of a linker-generated copy table. The routine then processes the copy table data object and

performs the copy of each object component specified in the copy table.

The copy_in() function definition is provided in the cpy_tbl.c run-time-support source file shown in

Example 8-21.

Example 8-21. Run-Time-Support cpy_tbl.c File

AR R AR RS R R R R R R R R R R R R R

[* cpy_thbl.c v#####

/* Copyright (c) 2003 Texas |nstrunents |ncorporated

/*

/* General purpose copy routine. Gven the address of a |inker-generated

/* COPY_TABLE data structure, effect the copy of all object conponents

/* that are designated for copy via the corresponding LCF table() operator.
/**
#i ncl ude <cpy_tbl.h>

#i ncl ude <string. h>

typedef void (*handler_fptr)(const unsigned char *in, unsigned char *out)

1A AR R EE AR EEEEEEEEREEEEEEREEE]

/* COPY_IN()

AR AR R AR LR RS R R R R R R R R R R R R R

voi d copy_i n(COPY_TABLE *tp)

{
unsi gned short |;
for (I =0; I < tp->numrecs; |++)
{
COPY_RECORD crp = tp->recs[i];
unsi gned char *1d_addr = (unsigned char *)crp.load_addr;
unsi gned char *rn_addr = (unsigned char *)crp.run_addr;
if (crp.size)
{
| % o e e e o e e e e e e e e e e e e e emeeee oo
/* Copy record has a non-zero size so the data is not conpressed.
/* Just copy the data.
| % o e e e o e e e e e e e e e e e e e emeeee oo
mencpy(rn_addr, |d_addr, crp.size);
}
}
}

*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/

*/
*/
*/
*/

246 Linker Description

Copyright © 2013, Texas Instruments Incorporated

SPNU118L—June 2013
Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Linker-Generated Copy Tables

8.8.11 Linker-Generated Copy Table Sections and Symbols

The linker creates and allocates a separate input section for each copy table that it generates. Each copy
table symbol is defined with the address value of the input section that contains the corresponding copy
table.

The linker generates a unique name for each overlay copy table input section. For example,
table(_first_ctbl) would place the copy table for the .first section into an input section called
.ovly:_first_ctbl. The linker creates a single input section, .binit, to contain the entire boot-time copy table.

Example 8-22 illustrates how you can control the placement of the linker-generated copy table sections
using the input section names in the link command file.

Example 8-22. Controlling the Placement of the Linker-Generated Copy Table Sections

SECTI ONS

{
UNI ON

{
first: { al.obj(.text), bl.obj(.text), cl.obj(.text) }

load = EMEM run = PMEM table(BINIT), table(_first_cthl)

.second: { a2.obj(.text), b2.obj(.text) }
load = EMEM run = PMEM tabl e(_second_cthbl)

}

.extra: load = EMEM run = PMEM table(BINT)

.ovly: { } > BVMEM
.binit: { } > BMEM

For the link command file in Example 8-22, the boot-time copy table is generated into a .binit input section,
which is collected into the .binit output section, which is mapped to an address in the BMEM memory
area. The _first_ctbl is generated into the .ovly:_first_ctbl input section and the _second_ctbl is generated
into the .ovly:_second_ctbl input section. Since the base names of these input sections match the name of
the .ovly output section, the input sections are collected into the .ovly output section, which is then
mapped to an address in the BMEM memory area.

If you do not provide explicit placement instructions for the linker-generated copy table sections, they are
allocated according to the linker's default placement algorithm.

The linker does not allow other types of input sections to be combined with a copy table input section in
the same output section. The linker does not allow a copy table section that was created from a partial link
session to be used as input to a succeeding link session.

SPNU118L—-June 2013 Linker Description 247

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Linker-Generated Copy Tables www.ti.com

8.8.12 Splitting Object Components and Overlay Management

In previous versions of the linker, splitting sections that have separate load and run placement instructions
was not permitted. This restriction was because there was no effective mechanism for you, the developer,
to gain access to the load address or run address of each one of the pieces of the split object component.
Therefore, there was no effective way to write a copy routine that could move the split section from its load
location to its run location.

However, the linker can access both the load address and run address of every piece of a split object
component. Using the table() operator, you can tell the linker to generate this information into a copy table.
The linker gives each piece of the split object component a COPY_RECORD entry in the copy table
object.

For example, consider an application which has seven tasks. Tasks 1 through 3 are overlaid with tasks 4
through 7 (using a UNION directive). The load placement of all of the tasks is split among four different
memory areas (LMEM1, LMEM2, LMEM3, and LMEM4). The overlay is defined as part of memory area
PMEM. You must move each set of tasks into the overlay at run time before any services from the set are
used.

You can use table() operators in combination with splitting operators, >>, to create copy tables that have
all the information needed to move either group of tasks into the memory overlay as shown in Example 8-
23. Example 8-24 illustrates a possible driver for such an application.

Example 8-23. Creating a Copy Table to Access a Split Object Component

SECTI ONS

{

UNI ON

{

}

.tasklto3: { *(.taskl), *(.task2), *(.task3) }
load >> LMEML | LMEM2 | LMEM4, table(_taskl3_cthl)

GROUP

{
.task4: { *(.task4) }
.task5: { *(.task5) }
.task6: { *(.task6) }
.task7: { *(.task7) }

} load >> LMEML | LMEMB | LMEMA4, table(_task47_ctbl)

run = PVEM

.ovly: > LMEMA

248

Linker Description SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

TEXAS
INSTRUMENTS

www.ti.com Linker-Generated Copy Tables

Example 8-24. Split Object Component Driver

#i ncl ude <cpy_tbl.h>

extern far COPY_TABLE task13_cthl;
extern far COPY_TABLE task47_ctbl;

extern void taskl(void);

extern void task7(void);

mai n()

{

copy_in(& ask13_cthl);
task1();
task2();
task3();

copy_in(& ask47_cthbl);
task4();
task5();
task6();
task7();

You must declare a COPY_TABLE object as far to allow the overlay copy table section placement to be
independent from the other sections containing data objects (such as .bss).

The contents of the .task1to3 section are split in the section's load space and contiguous in its run space.
The linker-generated copy table, _task13_ctbl, contains a separate COPY_RECORD for each piece of the
split section .task1to3. When the address of _task13_ctbl is passed to copy_in(), each piece of .task1to3
is copied from its load location into the run location.

The contents of the GROUP containing tasks 4 through 7 are also split in load space. The linker performs
the GROUP split by applying the split operator to each member of the GROUP in order. The copy table for
the GROUP then contains a COPY_RECORD entry for every piece of every member of the GROUP.
These pieces are copied into the memory overlay when the _task47_ctbl is processed by copy_in().

The split operator can be applied to an output section, GROUP, or the load placement of a UNION or
UNION member. The linker does not permit a split operator to be applied to the run placement of either a
UNION or of a UNION member. The linker detects such violations, emits a warning, and ignores the
offending split operator usage.

SPNU118L—June 2013 Linker Description 249
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Linker-Generated CRC Tables www.ti.com

8.9

8.9.1

8.9.2

Linker-Generated CRC Tables

The linker supports an extension to the link command file syntax that enables the verification of code or
data by means of a CRC. The linker computes a CRC value for the specified region at link time, and
stores that value in target memory such that it is accessible at boot or run time. The application code can
then compute the CRC for that region and ensure that the value matches the linker-computed value. The
run-time-support library does not supply a routine to calculate CRC values at boot or run time.

The crc_table() Operator

For any section that should be verified with a CRC, the linker command file must be modified to include
the crc_table() operator. The specification of a CRC algorithm is optional.

crc_table(user_specified_table _name][, algorithm=xxx])

The linker uses the CRC algorithm from any specification given in a crc_table() operator. If that
specification is omitted, the TMS570_CRC64_1SO algorithm is used.

The CRC table generated for a particular crc_table() instance can be accessed through the table name
provided as an argument to the crc_table() operator. The linker creates a symbol with this name and
assigns the address of the CRC table as the value of the symbol. The CRC table can then be accessed
from the application using the linker-generated symbol.

The crc_table() operator can be applied to an output section, a GROUP, a GROUP member, a UNION, or
a UNION member. If applied to a GROUP or UNION, the operator is applied to each member of the
GROUP or UNION.

You can include calls in your application to a routine that will verify CRC values for relevant sections. You
must provide this routine. See below for more details on the data structures and suggested interface.

The linker includes CRC table information in the map file. This includes the CRC value as well as the
algorithm used for the calculation.

Restrictions

It is important to note that the CRC generator used by the linker is parameterized as described in the
crc_tbl.h header file (see Example 8-29). Any CRC calculation routine employed outside of the linker must
function in the same way to ensure matching CRC values. The linker cannot detect a mismatch in the
parameters. To understand these parameters, see A Painless Guide to CRC Error Detection Algorithms
by Ross Williams, which is likely located at http://www.ross.net/crc/download/crc_v3.txt.

Only the CRC algorithm names and identifiers specified in crc_tbl.h are supported. All other names and ID
values are reserved for future use.

There is one supported CRC algorithm for ARM. The details of the algorithm are available in the MCRC
documentation. The algorithm is identified within the linker as TMS570_CRC64 _ISO. The initial value for
the algorithm is 0.

There are also restrictions which will be enforced by the linker.

e CRC can only be requested at final link time.

* CRC can only be applied to initialized sections.

* CRC can be requested for load addresses only.

» Certain restrictions also apply to CRC table names. For example, BINIT may not be used as a CRC
table name.

250

Linker Description SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.ross.net/crc/download/crc_v3.txt
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

I

www.ti.com

TEXAS
INSTRUMENTS

Linker-Generated CRC Tables

8.9.3 Examples

The crc_table() operator is similar in syntax to the table() operator used for copy tables. A few simple
examples of link command files follow.

Example 8-25. Using crc_table() Operator to Compute the CRC Value for .text Data

SECTI ONS

{

.section_to_be_verified: {al.obj(.text)} crc_table(_ny_crc_table_for_al)

Example 8-25 defines a section named “.section_to_be_verified”, which contains the .text data from the
al.obj file. The crc_table() operator requests that the linker compute the CRC value for the .text data and
store that value in a table named “my_crc_table for_al”. This table will contain all the information needed
to invoke a user-supplied CRC calculation routine, and verify that the CRC calculated at run time matches
the linker-generated CRC. The table can be accessed from application code using the symbol
my_crc_table_for_al, which should be declared of type “extern CRC_TABLE”. This symbol will be defined
by the linker. The application code might resemble the following.

#i nclude "crc_thbl.h"
extern CRC _TABLE ny_crc_table_for_al;

verify_al_text_contents()

{

/* Verify CRC value for .text sections of al.obj. */
if (ny_check_CRC(&ny_crc_table_for_al)) puts("OK");
}

The my_check_CRC() routine is discussed in detail in Section 8.9.4, Example 8-30.

Example 8-26. Specifying an Algorithm in the crc_table() Operator

SECTI ONS

{

.section_to_be_verified_2: {bl.obj(.text)} | 0oad=SLON MEM run=FAST_MEM

crc_table(_my_crc_table_for_bl, algorithnTMS570_CRC64_| SO

.Tl.crctab: > CRCMVEM

}

In Example 8-26, the CRC algorithm is specified in the crc_table() operator. The specified algorithm is
used to compute the CRC of the text data from b1l.obj. The CRC tables generated by the linker are
created in the special section .Tl.crctab, which can be placed in the same manner as other sections. In
this case, the CRC table _my crc_table for_bl is created in section .Tl.crctab:_my crc_table for b1, and
that section is placed in the CRCMEM memory region.

SPNU118L—June 2013 Linker Description 251
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Linker-Generated CRC Tables www.ti.com

Example 8-27. Using a Single Table for Multiple Sections

SECTI ONS
{
.section_to_be verified_1: {al.obj(.text)}
crc_table(_my_crc_table_for_al and_cl)

.section_to_be verified_3: {cl.obj(.text)}
crc_table(_my_crc_table_for_al and_cl, al gorithnTMS570_CRC64_| SO

In Example 8-27 the same identifier, _my crc_table for_al and_c1, is specified for both al.obj and
cl.obj. The linker creates a single table that contains entries for both text sections.

Example 8-28. Applying the crc_table() Operator to a GROUP or UNION

SECTI ONS

UNI ON
{
sectionl: {} crc_tabl e(tablel)
section2:
} crc_tabl e(tabl e2)
}
When the crc_table() operator is applied to a GROUP or a UNION, the linker applies the table
specification to the members of the GROUP or UNION.
In Example 8-28 the linker creates two CRC tables, tablel and table2. tablel contains one entry for
sectionl. Because both sections are members of the UNION, table2 contains entries for sectionl and
section2. The order of the entries in table2 is unspecified.
252 Linker Description SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Linker-Generated CRC Tables
8.9.4 Interface

The CRC generation function uses a mechanism similar to the copy table functionality. Using the syntax
shown above in the linker command file allows specification of code/data sections that have CRC values
computed and stored in the run time image. This section describes the table data structures created by
the linker, and how to access this information from application code.

The CRC tables contain entries as detailed in the run-time-support header file crc_tbl.h, as illustrated in

Figure 8-7.
Figure 8-7. CRC_TABLE Conceptual Model
table_name »| rec_size=8
(such as linker—generated symbol num_recs=2
my_crc_table for_a1)
recs
— [algID address data size CRC value
alg ID address data size CRC value

The crc_tbl.h header file is included in Example 8-29. This file specifies the C structures created by the
linker to manage CRC information. It also includes the specifications of the supported CRC algorithms. A
full discussion of CRC algorithms is beyond the scope of this document, and the interested reader should
consult the referenced document for a description of the fields shown in the table. The following fields are
relevant to this document.

* Name — text identifier of the algorithm, used by the programmer in the link command file.

» ID —the numeric identifier of the algorithm, stored by the linker in the crc_alg_ID member of each table
entry.

e Order — the number of bits used by the CRC calculation.
» Polynomial — used by the CRC computation engine.
» Initial Value — the initial value given to the CRC computation engine.

SPNU118L—June 2013 Linker Description 253

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS

INSTRUMENTS
Linker-Generated CRC Tables www.ti.com
Example 8-29. The CRC Table Header, crc_tbl.h
/***/
/* crc_tbl.h */
/* */
/* Specification of CRC table data structures which can be automatically */
/* generated by the linker (using the crc_table() operator in the linker */
/* command file). */
/***/
/* */
/* The CRC generator used by the linker is based on concepts fromthe */
/* docurent: */
/* "A Painless Guide to CRC Error Detection Al gorithns" */
/* */
/* Author : Ross WIIlians (ross@uest.adel ai de. edu. au.). */
/* Date : 3 June 1993. */
/* Status : Public donain (C code). */
/* */
/* Description : For nore information on the Rocksoft”tm Mbdel CRC */
/* Algorithm see the docunent titled "A Painless Guide to CRC Error */
/* Detection Algorithns" by Ross WIlians (ross@uest. adel ai de. edu. au.). */
/* This docunent is likely to be in "ftp.adel ai de. edu. au/ pub/ rocksoft" or */
/* at http: ww.ross. net/crc/downl oad/crc_v3.txt. */
/* */
/* Note: Rocksoft is a trademark of Rocksoft Pty Ltd, Adel aide, Australi a. */
/***/
#i ncl ude <stdint. h> /* For uintXX_t */
/***/
/* CRC Al gorithm Specifiers */
/* */
/* The followi ng specifications, based on the above cited docunment, are used */
/* by the linker to generate CRC val ues. */
/*
ID Nane Order Polynomial Initial Ref Ref CRC XOR Zero
Val ue In Qut Value Pad
10 "TMsS570_CRC64_I SO', 64, 0x0000001b, 0x00000000, O, O, 0x00000000, 1
*
/
/* Users should specify the nanme, such as TMS570_CRC64_I SO, in the l|inker */
/* command file. The resulting CRC_ RECORD structure will contain the */
/* corresponding ID value in the crc_alg_IDfield. */
/***/
#defi ne TMS570_CRC64_I SO 10
/***/
/* CRC Record Data Structure */
/* NOTE: The list of fields and the size of each field */
/* varies by target and nenory nodel . */
/***/
typedef struct crc_record
{
ui nt 64_t crc_val ue;
ui nt32_t crc_alg_I D /* CRC algorithmID */
ui nt 32_t addr; /* Starting address */
ui nt 32_t si ze; /* size of data in bytes */
ui nt 32_t paddi ng; /* explicit padding so |ayout is the same */
/* for COFF and ELF */
} CRC_RECORD;
254 Linker Description SPNU118L—June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

I

TEXAS
INSTRUMENTS

www.ti.com Linker-Generated CRC Tables

In the CRC_TABLE struct, the array recs[1] is dynamically sized by the linker to accommodate the number
of records contained in the table (num_recs). A user-supplied routine to verify CRC values should take a
table name and check the CRC values for all entries in the table. An outline of such a routine is shown in
Example 8-30.

Example 8-30. General Purpose CRC Check Routine

AR R R EEEY]

/*

General purpose CRC check routine. Gven the address of a */
/* linker-generated CRC TABLE data structure, verify the CRC */
/* of all object conponents that are designated with the */
/* corresponding LCF crc_table() operator. */

AR AR E R EEEREEEEEEEEEEEEEEEEEEEREEE R EEEE R EEE L EEEEY]

#i nclude <crc_thbl.h>

AR R R R R EEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEY]

/* MY_CHECK CRC() - returns 1 if CRCs match, O otherw se */

AR EE AR E R R EEEEEEEEEEEEEEEEEE R R EEELY]

unsi gned int my_check_CRC(CRC_TABLE *tp)

{

int i;

for (i =0; i < tp-> numrecs; i++)

{

}
if
el

CRC_RECORD crc_rec = tp->recs[i];

AR R R AR R R EEE R R R R R R Ry

/* COWPUTE CRC OF DATA STARTI NG AT crc_rec. addr */
/* FOR crc_rec.size UNNTS. USE */
/* crc_rec.crc_alg_ID to select algorithm */

/* COWMPARE COMPUTED VALUE TO crc_rec.crc_val ue. */

/**/

all CRCs match, return 1;
se return O;

8.9.5 A Note on the TMS570_CRC64_ISO Algorithm

The MCRC module calculates CRCs on 64-bit chunks of data. This is accomplished by writing a long long
value to two memory mapped registers. In C this looks like a normal write of a long long to memory. The
code generated to read/write a long long to memory is something like the following, where R2 contains the
most significant word and R3 contains the least significant word. So the most significant word is written to
the low address and the least significant word is written to the high address:

LDM RO, {R2, R3}

STMRL, {R2, R3}

The CRC memory mapped registers are in the reverse order from how the compiler performs the store.
The least significant word is mapped to the low address and the most significant word is mapped to the
high address.

This means that the words are actually swapped before performing the CRC calculation. It also means
that the calculated CRC value has the words swapped. The TMS570_CRC64_|ISO algorithm takes these
issues into consideration and performs the swap when calculating the CRC value. The computed CRC
value stored in the table has the words swapped so the value is the same as it is in memory.

For the end user, these details should be transparent. If the run-time CRC routine is written in C, the long
long loads and stores will be generated correctly. The DMA mode of the MCRC module will also work
correctly.

SPNU118L—June 2013 Linker Description 255
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Partial (Incremental) Linking www.ti.com

Another issue with the algorithm is that it requires the run-time CRC calculation to be done with 64-bit
chunks. The MCRC module allows smaller chunks of data, but the values are padded to 64-bits. The
TMS570_CRC64_ISO algorithm does not perform any padding, so all CRC computations must be done
with 64-bit values. The algorithm will automatically pad the end of the data with zeros if it does not end on
a 64-bit boundary.

8.10 Partial (Incremental) Linking

An output file that has been linked can be linked again with additional modules. This is known as partial
linking or incremental linking. Partial linking allows you to partition large applications, link each part
separately, and then link all the parts together to create the final executable program.

Follow these guidelines for producing a file that you will relink:

« The intermediate files produced by the linker must have relocation information. Use the --relocatable
option when you link the file the first time. (See Section 8.4.2.2.)

* Intermediate files must have symbolic information. By default, the linker retains symbolic information in
its output. Do not use the --no_sym_table option if you plan to relink a file, because --no_sym_table
strips symbolic information from the output module. (See Section 8.4.23.)

» Intermediate link operations should be concerned only with the formation of output sections and not
with allocation. All allocation, binding, and MEMORY directives should be performed in the final link.

When the ELF object file format is used, input sections are not combined into output sections during a
partial link unless a matching SECTIONS directive is specified in the link step command file.

» If the intermediate files have global symbols that have the same name as global symbols in other files
and you want them to be treated as static (visible only within the intermediate file), you must link the
files with the --make_static option (see Section 8.4.18.1).

e If you are linking C code, do not use --ram_model or --rom_maodel until the final linker. Every time you
invoke the linker with the --ram_model or --rom_model option, the linker attempts to create an entry
point. (See Section 8.4.26.)

The following example shows how you can use partial linking:

Step 1: Link the file filel.com; use the --relocatable option to retain relocation information in the
output file tempoutl.out.
arntl --run_linker --relocatable --output_file=tenpoutl filel.com
filel.com contains:
SECTI ONS
{
ssl: {
f 1. obj
f2. obj

fﬁ. obj
}
}

Step 2: Link the file file2.com; use the --relocatable option to retain relocation information in the
output file tempout2.out.
arntl --run_linker --relocatable --output_file=tenpout2 file2.com
file2.com contains:
SECTI ONS
{
Ss2: {
gl. obj
g2. obj

gn. obj

}

256 Linker Description SPNU118L—June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Linking C/C++ Code

Step 3: Link tempoutl.out and tempout2.out.
arntl --run_linker --map_file=final.mp --
output _file=final.out tenpoutl.out tenpout?2.out

8.11 Linking C/C++ Code

The C/C++ compiler produces assembly language source code that can be assembled and linked. For
example, a C program consisting of modules progl, prog2, etc., can be assembled and then linked to
produce an executable file called prog.out:

arncl --run_linker --romnodel --

output _file prog.out progl.obj prog2.obj ... rtsv4d_A be eabi.lib

The --rom_model option tells the linker to use special conventions that are defined by the C/C++
environment.

The archive libraries shipped by Tl contain C/C++ run-time-support functions.

C, C++, and mixed C and C++ programs can use the same run-time-support library. Run-time-support
functions and variables that can be called and referenced from both C and C++ will have the same
linkage.

For more information about the ARM C/C++ language, including the run-time environment and run-time-
support functions, see the ARM Optimizing C/C++ Compiler User's Guide.

8.11.1 Run-Time Initialization

All C/C++ programs must be linked with code to initialize and execute the program, called a bootstrap
routine, also known as the boot.obj object module. The symbol _c¢_int00 is defined as the program entry
point and is the start of the C boot routine in boot.obj; referencing _c_int00 ensures that boot.obj is
automatically linked in from the run-time-support library. When a program begins running, it executes
boot.obj first. The boot.obj symbol contains code and data for initializing the run-time environment and
performs the following tasks:

e Changes from system mode to user mode
e Sets up the user mode stack

» Processes the run-time .cinit initialization table and autoinitializes global variables (when the linker is
invoked with the --rom_model option)

e Calls main

The run-time-support object libraries contain boot.obj. You can:
* Use the archiver to extract boot.obj from the library and then link the module in directly.

* Include the appropriate run-time-support library as an input file (the linker automatically extracts
boot.obj when you use the --ram_model or --rom_model option).

8.11.2 Obiject Libraries and Run-Time Support

The ARM Optimizing C/C++ Compiler User's Guide describes additional run-time-support functions that
are included in rts.src. If your program uses any of these functions, you must link the appropriate run-time-
support library with your object files.

You can also create your own object libraries and link them. The linker includes and links only those
library members that resolve undefined references.

8.11.3 Setting the Size of the Stack and Heap Sections

The C/C++ language uses two uninitialized sections called .sysmem and .stack for the memory pool used
by the malloc(') functions and the run-time stacks, respectively. You can set the size of these by using the
--heap_size or --stack_size option and specifying the size of the section as a 4-byte constant immediately
after the option. If the options are not used, the default size of the heap is 2K bytes and the default size of
the stack is 2K bytes.

See Section 8.4.15 for setting heap sizes and Section 8.4.30 for setting stack sizes.

SPNU118L—June 2013 Linker Description 257

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Linking C/C++ Code www.ti.com

8.11.4 Autoinitializing Variables at Run Time (--rom_model)

Autoinitializing variables at run time is the default method of autoinitialization. To use this method, invoke
the linker with the --rom_model option.

Using this method, the .cinit section is loaded into memory along with all the other initialized sections. The
linker defines a special symbol called cinit that points to the beginning of the initialization tables in
memory. When the program begins running, the C boot routine copies data from the tables (pointed to by
.Cinit) into the specified variables in the .bss section. This allows initialization data to be stored in slow
external memory and copied to fast external memory each time the program starts.

Figure 8-8 illustrates autoinitialization at run time. Use this method in any system where your application
runs from code burned into slow external memory.

Figure 8-8. Autoinitialization at Run Time

Object file Memory

C auto init

sé%ﬂgn table and data

(ROM)

Boot
routine

.data
uninitialized
(RAM)

8.11.5 |Initializing Variables at Load Time (--ram_model)

Initialization of variables at load time enhances performance by reducing boot time and by saving the
memory used by the initialization tables. To use this method, invoke the linker with the --ram_model
option.

When you use the --ram_model linker option, the linker sets the STYP_COPY bit in the .cinit section's
header. This tells the loader not to load the .cinit section into memory. (The .cinit section occupies no
space in the memory map.) The linker also sets the cinit symbol to -1 (normally, cinit points to the
beginning of the initialization tables). This indicates to the boot routine that the initialization tables are not
present in memory; accordingly, no run-time initialization is performed at boot time.

A loader must be able to perform the following tasks to use initialization at load time:
» Detect the presence of the .cinit section in the object file.

» Determine that STYP_COPY is set in the .cinit section header, so that it knows not to copy the .cinit
section into memory.

» Understand the format of the initialization tables.

258 Linker Description SPNU118L—June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Linking C/C++ Code

Figure 8-9 illustrates the initialization of variables at load time.

Figure 8-9. Initialization at Load Time
Object file Memory

.data
section w

.data section
(initialized)
(RAM)

8.11.6 The --rom_model and --ram_model Linker Options

The following list outlines what happens when you invoke the linker with the --ram_model or --rom_model

option.

e The symbol c_int00 is defined as the program entry point. The _c_int00 symbol is the start of the C
boot routine in boot.obj; referencing _c_int00 ensures that boot.obj is automatically linked in from the
appropriate run-time-support library.

» The .cinit output section is padded with a termination record to designate to the boot routine
(autoinitialize at run time) or the loader (initialize at load time) when to stop reading the initialization
tables.

« When you initialize at load time (--ram_model option):

— The linker sets cinit to -1. This indicates that the initialization tables are not in memory, so no
initialization is performed at run time.

— The STYP_COPY flag (0010h) is set in the .cinit section header. STYP_COPY is the special
attribute that tells the loader to perform initialization directly and not to load the .cinit section into
memory. The linker does not allocate space in memory for the .cinit section.

« When you autoinitialize at run time (--rom_model option), the linker defines cinit as the starting address
of the .cinit section. The C boot routine uses this symbol as the starting point for autoinitialization.

SPNU118L—June 2013 Linker Description 259

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Linker Example www.ti.com

8.12

Linker Example

This example links three object files named demo.obj, ctrl.obj, and tables.obj and creates a program called
demo.out.

Assume that target memory has the following program memory configuration:

Address Range Contents
0x00000000 to 0x00001000 SLOW_MEM
0x00001000 to 0x00002000 FAST _MEM
0x08000000 to 0x08000400 EEPROM

The output sections are constructed in the following manner:

Executable code, contained in the .text sections of demo.obj, fft.obj, and tables.obj, is linked into
program memory ROM.

Variables, contained in the var_defs section of demo.obj, are linked into data memory in block
FAST_MEM_2.

Tables of coefficients in the .data sections of demo.obj, tables.obj, and fft.obj are linked into
FAST_MEM_1. A hole is created with a length of 100 and a fill value of 0x07A1C.

The xy section form demo.obj, which contains buffers and variables, is linked by default into page 1 of
the block STACK, since it is not explicitly linked.

Executable code, contained in the .text sections of demo.obj, ctrl.obj, and tables.obj, must be linked
into FAST_MEM.

A set of interrupt vectors, contained in the .intvecs section of tables.obj, must be linked at address
FAST_MEM.

A table of coefficients, contained in the .data section of tables.obj, must be linked into EEPROM. The
remainder of block FLASH must be initialized to the value OXFFOOFFOO.

A set of variables, contained in the .bss section of ctrl.obj, must be linked into SLOW_MEM and
preinitialized to 0x00000100.

The .bss sections of demo.obj and tables.obj must be linked into SLOW_MEM.

260

Linker Description SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com

Linker Example

Example 8-31 shows the link command file for this example. Example 8-32 shows the map file.

Example 8-31. Linker Command File, demo.cmd

/**/

[xxx Speci fy Link Options *x

/**/

--entry_point SETUP /* Define the programentry point */
--output_fil e=deno. out /* Nanme the output file */
--map_fil e=deno. map /* Create an output nmap file */
/**/
[xxx Specify the Input Files *x
/**/
deno. obj

ctrl.obj

t abl es. obj

/**/

[xxx Specify the Menory Configurations *x

/**/

MEMORY

FAST_MEM : org
SLOW MEM : org
EEPROM : org

0x00000000 I en 0x00001000 /* PROGRAM MEMORY (ROM */
0x00001000 I en 0x00001000 /* DATA MEMORY (RAM */
0x08000000 | en = 0x00000400 /* COCEFFI Cl ENTS (EEPROM */

kkhkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkhkhkhkhkhkhkhkhkkhkhkkhkhkkhkkhkkhkhkkhkkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkhkkhkkhkkhkkhkkkhkkkkkkkkkkkkkkkk*x*%x
/ /
/* Specify the Qutput Sections */

/**/

SECTI ONS

{
.text : {} > FAST_MEM /* Link all .text sections into ROM */
.intvecs : {} > 0x0 /* Link interrupt vectors at 0xO */
.data : /* Link .data sections */
{
t abl es. obj (. dat a)
= 0x400; /* Create hole at end of bl ock */
} = OxFFOOFFO0 > EEPROM /* Fill and link into EEPROM */
ctrl _vars: /* Create new sections for ctrl variables */
{
ctrl.obj(.bss)
} = 0x00000100 > SLOWMEM /* Fill with 0x100 and link into RAM */
. bss : {} > SLOWMEM /* Link renumining .bss sections into RAM */
}
/**/
[x** End of Command File xRk

/**/

Invoke the linker by entering the following command:
arncl --run_linker deno.cnd

This creates the map file shown in Example 8-32 and an output file called demo.out that can be run on an

ARM devicean ARP32.

SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

Linker Description

261

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Linker Example

13 TEXAS
INSTRUMENTS

www.ti.com

Example 8-32. Output Map File, demo.map

<denv. ou
" SETUP"

OUTPUT FI LE NAME
ENTRY PO NT SYMBOL

MEMORY CONFI GURATI ON

nanme origin
FAST_MEM 00000000
SLOW MEM 00001000
EEPROM 08000000

SECTI ON ALLOCATI ON MAP

t>
address: 000000d4
I ength attribut
000001000 RW X
000001000 RW X
000000400 RW X

out put attri butes/
section page origin I ength i nput sections
. text 0 00000020 00000138
00000020 000000a0 ctrl.obj (.text)
000000c0 00000000 tabl es. obj (.text)
000000c0 00000098 denp. obj (.text)
.intvecs 0 00000000 00000020
00000000 00000020 tabl es. obj (.intvecs)
.data 0 08000000 00000400
08000000 00000168 tabl es. obj (.data)
08000168 00000298 --HOLE-- [fill = ffo0OffO00]
08000400 00000000 ctrl.obj (.data)
08000400 00000000 deno. obj (. data)
ctrl _var 0 00001000 00000500
00001000 00000500 ctrl.obj (.bss) [fill = 00000100]
. bss 0 00001500 00000100 UNI NI TI ALI ZED
00001500 00000100 deno. obj (. bss)
00001600 00000000 tabl es. obj (.bss)
GLOBAL SYMBOLS
address nane address nane
00001500 . bss 00000020 cl ear
08000000 . data 00000020 .text
00000020 .text 000000b8 set
000000d4 SETUP 000000c0 x42
00000020 cl ear 000000d4 SETUP
08000400 edata 00000158 et ext
00001600 end 00001500 . bss
00000158 et ext 00001600 end
000000b8 set 08000000 . data
000000c0 x42 08000400 edata
[10 synbol s]
262 Linker Description SPNU118L—-June 2013

Copyright © 2013, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

. Chapter 9
I —{‘IE)S(’?EUMENTS SPNU118L—June 2013

Absolute Lister Description

The ARM absolute lister is a debugging tool that accepts linked object files as input and creates .abs files
as output. These .abs files can be assembled to produce a listing that shows the absolute addresses of
object code. Manually, this could be a tedious process requiring many operations; however, the absolute
lister utility performs these operations automatically.

Topic Page

9.1 Producing an ADSOIULE LiSTINQG .iueeieieiiiieiiiiieeetetieieeee e aeea e e aaseean e ananenenes 264

9.2 InvOKINg the ADSOIULE LiSTEI ..uiuieieie ettt e e e e n e aeees 265

9.3 Absolute Lister EXamMpPle ...t 266
SPNU118L—-June 2013 Absolute Lister Description 263

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Producing an Absolute Listing

13 TEXAS
INSTRUMENTS

www.ti.com

9.1 Producing an Absolute Listing
Figure 9-1 illustrates the steps required to produce an absolute listing.
Figure 9-1. Absolute Lister Development Flow
Step 1: Assembler First, assemble a source file.
source file
Assembler
_______ Object o o o]
file
Step 2 Link the resulting object file.
Linker
264 Absolute Lister Description SPNU118L—-June 2013

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Invoking the Absolute Lister

9.2 Invoking the Absolute Lister

The syntax for invoking the absolute lister is:

‘ armabs [-options] input file

armabs is the command that invokes the absolute lister.

options identifies the absolute lister options that you want to use. Options are not case sensitive
and can appear anywhere on the command line following the command. Precede each
option with a hyphen (-). The absolute lister options are as follows:

-e enables you to change the default naming conventions for filename extensions on
assembly files, C source files, and C header files. The valid options are:
e ea [.Jasmext for assembly files (default is .asm)
» ec [.Jeext for C source files (default is .c)
* eh [.]hext for C header files (default is .h)
* ep [.]Jpext for CPP source files (default is cpp)
The . in the extensions and the space between the option and the extension are

optional.
-q (quiet) suppresses the banner and all progress information.
input file names the linked object file. If you do not supply an extension, the absolute lister

assumes that the input file has the default extension .out. If you do not supply an input
filename when you invoke the absolute lister, the absolute lister prompts you for one.

The absolute lister produces an output file for each file that was linked. These files are named with the
input filenames and an extension of .abs. Header files, however, do not generate a corresponding .abs
file.

Assemble these files with the --absolute_listing assembler option as follows to create the absolute listing:
armcl --absolute_listing filename .abs

The -e options affect both the interpretation of filenames on the command line and the names of the
output files. They should always precede any filename on the command line.

The -e options are useful when the linked object file was created from C files compiled with the debugging
option (--symdebug:dwarf compiler option). When the debugging option is set, the resulting linked object
file contains the name of the source files used to build it. In this case, the absolute lister does not generate
a corresponding .abs file for the C header files. Also, the .abs file corresponding to a C source file uses
the assembly file generated from the C source file rather than the C source file itself.

For example, suppose the C source file hello.csr is compiled with the debugging option set; the debugging
option generates the assembly file hello.s. The hello.csr file includes hello.hsr. Assuming the executable
file created is called hello.out, the following command generates the proper .abs file:

armabs -ea s -ec csr -eh hsr hello. out

An .abs file is not created for hello.hsr (the header file), and hello.abs includes the assembly file hello.s,
not the C source file hello.csr.

SPNU118L—-June 2013 Absolute Lister Description 265

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Absolute Lister Example

13 TEXAS
INSTRUMENTS

www.ti.com

9.3

Absolute Lister Example

This example uses three source files. The files modulel.asm and module2.asm both include the file

globals.def.

modulel.asm

.text
. bss df | a
. bss arra

dflag_a .wo

rd dfla

g, 1
y, 100

g

array_a .word array
of fst_a .word of f st
. copy gl ob

LDR
LDR
LDR
LDR
STR

r4,
r5,
r3,
ro0,
ro,

module2.asm
. text

. bss
of fst_a .word

. copy

LDR
STR

globals.def

. gl obal
. gl obal
. gl obal

al s. def

array_a
of fst_a
dfl ag_a
[r4, rb5]
[r3]

offst, 1
of f st
gl obal s. def

r4, offst_a
ro, [r4]

array
of f st
dfl ag

The following steps create absolute listings for the files modulel.asm and module2.asm:

Step 1:

Step 2:

First, assemble modulel.asm and module2.asm:
arncl nodul el
arncl nodul e2

This creates two object files called modulel.obj and module2.ob;.

Next, link modulel.obj and module2.obj using the following linker command file, called
bttest.cmd:

--output_file=bttest. out
--map_fil e=bttest. map

nmodul el. obj
nmodul e2. obj

MEMORY
{

P_MEM :
D_MEM :

}

SECTI ONS

{
.data:
.text:
. bss:

or
or

Q «Q

>D_MEM
>P_MEM
>D_MEM

Invoke the linker:

arncl --r

un_l i nker

0x00000000 |en
0x00001000 | en

0x00001000
0x00001000

bttest.cnmd

This command creates an executable object file called bttest.out; use this file as input for the

absolute |

ister.

266

Absolute Lister

Description

Copyright © 2013, Texas Instruments Incorporated

SPNU118L—June 2013
Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS

INSTRUMENTS
www.ti.com Absolute Lister Example
Step 3: Now, invoke the absolute lister:

ar mabs bttest. out
This command creates two files called modulel.abs and module2.abs:

modulel.abs:

.nolist

array .setsym 000001001h

dfl ag .setsym 000001000h

of f st .setsym 000001068h

.data .setsym 000001000h

edat a .setsym 000001000h

.text .setsym 000000000h

et ext .setsym 00000002ch

. bss .setsym 000001000h

end .setsym 00000106ch
. setsect ".text", 000000000h
. setsect ".data", 000001000h
. set sect ". bss", 000001000h
st
. text
. copy "modul el. asnt'

module2.abs:

.nolist

array .setsym 000001001h

dfl ag .setsym 000001000h

of f st .setsym 000001068h

.data .setsym 000001000h

edat a .setsym 000001000h

.text .setsym 000000000h

et ext .setsym 00000002ch

. bss .setsym 000001000h

end .setsym 00000106ch
. setsect ".text", 000000020h
. setsect ".data", 000001000h
. set sect ". bss", 000001068h
st
. text
. copy "modul e2. asnt'

These files contain the following information that the assembler needs for Step 4:

» They contain .setsym directives, which equate values to global symbols. Both files contain
global equates for the symbol dflag. The symbol dflag was defined in the file globals.def,
which was included in modulel.asm and module2.asm.

» They contain .setsect directives, which define the absolute addresses for sections.
» They contain .copy directives, which defines the assembly language source file to include.

The .setsym and .setsect directives are useful only for creating absolute listings, not normal
assembly.

Step 4: Finally, assemble the .abs files created by the absolute lister (remember that you must use

the --absolute_listing option when you invoke the assembler):
arntl --absolute_listing nmodul el. abs
arntl --absolute_listing nodul e2. abs

This command sequence creates two listing files called modulel.Ist and module2.lst; no
object code is produced. These listing files are similar to normal listing files; however, the
addresses shown are absolute addresses.

The absolute listing files created are modulel.Ist (see Example 9-1) and module2.Ist (see
Example 9-2).

SPNU118L—-June 2013 Absolute Lister Description 267

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Absolute Lister Example

13 TEXAS
INSTRUMENTS

www.ti.com

Example 9-1. modulel.Ist

nmodul el. abs
15 00000000
16

[y

00000000
00001000
00001001
00000000
00000004
00000008

COCWNEFEPNOOODMWNDN

©

0000000c
10 00000010
11 00000014
12 00000018
13 0000001c

g >>>>>>O0O0DO>>>>>>D>

00001000- dflag_a
00001001- array_a
00001068! offst_a

E51F4010
E51F5010
E51F301C
E7940005
E5830000

Errors, No Wrnings

Example 9-2. module2.Ist

nodul e2. abs
15 00000020
16

=

00000020
2 00001068
3 00000020
4
1
2
3

5
6 00000024
7 00000028

g >>>WWW>>>>

00001068- offst_a

E51F400C
E5840000

Errors, No Warnings

. text
. copy
.text
. bss
. bss
.word
.wor d
.word
. copy
. gl obal
. gl oba
. gl oba

LDR
LDR
LDR
LDR
STR

. text
. copy
.text
. bss
.word
. copy
. gl oba
. gl obal
. gl oba

LDR
STR

"modul el. asnt

dflag, 1
array, 100
df |l ag
array

of f st

gl obal s. def
array

of f st

df |l ag

r4, array_a
r5, offst_a

r3, dflag_a
ro, [r4, r5]
ro, [r3]

"nodul e2. asnf

offst, 1
of f st

gl obal s. def
array

of f st

df |l ag

r4, offst_a
ro, [r4]

PAGE

PACE

268 Absolute Lister Description

Copyright © 2013, Texas Instruments Incorporated

SPNU118L—-June 2013

Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Chapter 10
l ¥IE)S($1§UMENTS SPNU118L—June 2013

Cross-Reference Lister Description

The ARM cross-reference lister is a debugging tool. This utility accepts linked object files as input and
produces a cross-reference listing as output. This listing shows symbols, their definitions, and their
references in the linked source files.

Topic

Page

10.1 Producing a CroSS-Reference LiStiNg ..coeieirieiiieiiiiiiiiieie e ieieeeeasseneanenanes 270

10.2 Invoking the CroSS-ReferenCe LiSter ..iuciiieieiiiiiiitiiieieeetie et iee e eneeneneananas 271

10.3 Cross-Reference Listing EXample ... ettt e e e eaeeene 272
SPNU118L—-June 2013 Cross-Reference Lister Description 269

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS

INSTRUMENTS
Producing a Cross-Reference Listing www.ti.com
10.1 Producing a Cross-Reference Listing
Figure 10-1 illustrates the steps required to produce a cross-reference listing.
Figure 10-1. The Cross-Reference Lister Development Flow
.)
Step 1: Assembler First, invoke the assembler with the compiler
source file --cross_reference option. This produces
T a cross-reference table in the listing file and
adds to the object file cross-reference infor-
Assembler mation. By default, only global symbols are
cross-referenced. If you use the compiler
--output_all_syms option, local symbols are
- cross-referenced as well.
_______ Object -
file
Step 2: Link the object file (.obj) to obtain an
executable object file (.out).
Linker
Linked object
file
Invoke the cross-reference lister. The
following section provides the command
Cross-reference | syntax for invoking the cross-reference lister
lister utility.
Cross-reference
listing
270 Cross-Reference Lister Description SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Invoking the Cross-Reference Lister

10.2 Invoking the Cross-Reference Lister

To use the cross-reference utility, the file must be assembled with the correct options and then linked into
an executable file. Assemble the assembly language files with the --cross_reference option. This option
creates a cross-reference listing and adds cross-reference information to the object file. By default, the
assembler cross-references only global symbols, but if the assembler is invoked with the --
output_all_syms option, local symbols are also added. Link the object files to obtain an executable file.

To invoke the cross-reference lister, enter the following:

‘armxref [options] [input filename [output filename]]

armxref is the command that invokes the cross-reference utility.
options identifies the cross-reference lister options you want to use. Options are not case
sensitive and can appear anywhere on the command line following the command.

-l (lowercase L) specifies the number of lines per page for the output file. The format
of the -l option is -Inum, where num is a decimal constant. For example, -I130 sets
the number of lines per page in the output file to 30. The space between the
option and the decimal constant is optional. The default is 60 lines per page.

-qg suppresses the banner and all progress information (run quiet).

input filename is a linked object file. If you omit the input filename, the utility prompts for a filename.
output filename is the name of the cross-reference listing file. If you omit the output filename, the default
filename is the input filename with an .xrf extension.

SPNU118L—-June 2013 Cross-Reference Lister Description 271

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Cross-Reference Listing Example

13 TEXAS
INSTRUMENTS

www.ti.com

10.3 Cross-Reference Listing Example

Example 10-1 is an example of cross-reference listing.

Example 10-1. Cross-Reference Listing

File: bttest.out Wed Nov 13 17:07:42 xxxx Page: 1

Synbol : array

Fi | enane RTYP AsnVal LnkVal Def Ln Ref Ln Ref Ln Ref Ln
nodul el. asm EDEF -00000001 00001001 3 1A 5

Synbol : array_a

Fi | enane RTYP Asnmval LnkVal Def Ln Ref Ln Ref Ln Ref Ln
nmodul el. asm STAT ' 00000004 00000004 5 9

Synbol : dfl ag

Fi | enanme RTYP Asnmval LnkVal Def Ln Ref Ln Ref Ln Ref Ln
nmodul el. asm EDEF -00000000 00001000 2 3A 4

Synbol : dfl ag_a

Fi | enane RTYP AsnVal LnkVal Def Ln Ref Ln Ref Ln Ref Ln
nodul el. asm STAT ' 00000000 00000000 4 11

Synbol : of f st

Fi | enane RTYP Asnmval LnkVal Def Ln Ref Ln Ref Ln Ref Ln
nmodul el. asm EREF 00000000 00001068 2A 6

nodul e2. asm EDEF -00000000 00001068 2 2A 3

Synbol : offst_a

Fi | enane RTYP Asnmval LnkVal Def Ln Ref Ln Ref Ln Ref Ln
nmodul el. asm STAT ' 00000008 00000008 6 10

nodul e2. asm STAT ' 00000000 00000020 3 6

The terms defined below appear in the preceding cross-reference listing:

Symbol
Filename

RTYP

AsmVal

LnkVal
DefLn
RefLn

Name of the symbol listed
Name of the file where the symbol appears
The symbol's reference type in this file. The possible reference types are:

STAT The symbol is defined in this file and is not declared as global.
EDEF The symbol is defined in this file and is declared as global.

EREF The symbol is not defined in this file but is referenced as global.
UNDF The symbol is not defined in this file and is not declared as global.

This hexadecimal number is the value assigned to the symbol at assembly time. A
value may also be preceded by a character that describes the symbol's attributes.
Table 10-1 lists these characters and names.

This hexadecimal number is the value assigned to the symbol after linking.
The statement number where the symbol is defined.

The line number where the symbol is referenced. If the line number is followed by an
asterisk (*), then that reference can modify the contents of the object. A blank in this
column indicates that the symbol was never used.

272 Cross-Reference Lister Description

SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS

INSTRUMENTS
www.ti.com Cross-Reference Listing Example
Table 10-1. Symbol Attributes in Cross-Reference
Listing
Character Meaning
Symbol defined in a .text section
Symbol defined in a .data section
+ Symbol defined in a .sect section
- Symbol defined in a .bss or .usect section
SPNU118L—-June 2013 Cross-Reference Lister Description 273

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

I3 TEXAS
INSTRUMENTS

Chapter 11

Object File Utilities

This chapter describes how to invoke the following utilities:

e The object file display utility prints the contents of object files, executable files, and/or archive
libraries in both text and XML formats.

» The disassembler accepts object files and executable files as input and produces an assembly listing
as output. This listing shows assembly instructions, their opcodes, and the section program counter
values.

» The name utility prints a list of names defined and referenced in an object file, executable files, and/or

archive libraries.
e The strip utility removes symbol table and debugging information from object and executable files.

Topic Page
11.1 Invoking the Object File Display ULilityccoiieiiieiiiiiiiie e aa e 275
11.2 INVOKING the DiSaSSEMBIETuuiuiii ittt et e e e e s e et e anseeneananas 276
11.3 Invoking the NamMe ULIHITYceiiinieie ittt et et e e e e e e a e e e e e e e eeaenennens 278
11.4 Invoking the SErip ULy ..coceeiiiii it e e e e e e e e e reneas 279

274

Object File Utilities

Copyright © 2013, Texas Instruments Incorporated

SPNU118L—-June 2013

SPNU118L—June 2013
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com

Invoking the Object File Display Utility

11.1 Invoking the Object File Display Utility

The object file display utility, armofd, prints the contents of object files (.obj), executable files (.out), and/or
archive libraries (.lib) in both text and XML formats. Hidden symbols are listed as no name, while localized

symbols are listed like any other local symbol.

To invoke the object file display utility, enter the following:

’armofd [options] input filename [input filename]

armofd is the command that invokes the object file display utility.

input filename names the object file (.obj), executable file (.out), or archive library (.lib) source file.
The filename must contain an extension.

options identify the object file display utility options that you want to use. Options are not case
sensitive and can appear anywhere on the command line following the command.
Precede each option with a hyphen.

--dwarf_display=attributes

--dynamic_info
-9

-h

-o=filename

--0bj_display attributes

-V
-X
--xml_indent=num

controls the DWARF display filter settings by specifying a
comma-delimited list of attributes. When prefixed with no,
an attribute is disabled instead of enabled.

Examples: --dwarf_display=nodabbrev,nodline
--dwarf_display=all,nodabbrev
--dwarf_display=none,dinfo,types

The ordering of attributes is important (see --obj_display).

The list of available display attributes can be obtained by

invoking armofd --dwarf_display=help.

outputs dynamic linking information for ELF only.

appends DWARF debug information to program output.

displays help

sends program output to filename rather than to the

screen.

controls the object file display filter settings by specifying

a comma-delimited list of attributes. When prefixed with

no, an attribute is disabled instead of enabled.

Examples: --0bj_display=rawdata,nostrings
--0bj_display=all,norawdata
--0bj_display=none,header

The ordering of attributes is important. For instance, in "--

obj_display=none,header", armofd disables all output,

then re-enables file header information. If the attributes
are specified in the reverse order, (header,none), the file
header is enabled, the all output is disabled, including the
file header. Thus, nothing is printed to the screen for the
given files. The list of available display attributes can be
obtained by invoking armofd --obj_display=help.

prints verbose text output.

displays output in XML format.

sets the number of spaces to indent nested XML tags.

If an archive file is given as input to the object file display utility, each object file member of the archive is
processed as if it was passed on the command line. The object file members are processed in the order in

which they appear in the archive file.

If the object file display utility is invoked without any options, it displays information about the contents of

the input files on the console screen.

SPNU118L—June 2013
Submit Documentation Feedback

Object File Utilities 275

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Invoking the Disassembler

13 TEXAS
INSTRUMENTS

www.ti.com

Object File Display Format

NOTE: The object file display utility produces data in a text format by default. This data is not
intended to be used as input to programs for further processing of the information. XML
format should be used for mechanical processing.

11.2 Invoking the Disassembler
The disassembler, armdis, examines the output of the assembler or linker. This utility accepts an object
file or executable file as input and writes the disassembled object code to standard output or a specified
file.
To invoke the disassembler, enter the following:
‘armdis [options] input filename[.] [output filename]
armdis is the command that invokes the disassembiler.
options identifies the name utility options you want to use. Options are not case sensitive and
can appear anywhere on the command line following the invocation. Precede each
option with a hyphen (-). The name utility options are as follows:
-a disables printing of address along with label names within
instructions.
-b displays data as bytes instead of words.
-be8 disassembles in BE-8 mode.
-C dumps the object file information.
--copy_tables (aliased as -y, or -Y) displays copy tables and the sections copied.
The table information is dumped first, then each record followed by
its load and run data. See Example 11-3.
-d disables display of data sections.
-e displays integer values in hexadecimal.
-h shows the current help screen.
-i disassembles data sections as text.
-1 disassembles text as data.
-n dumps the symbol table.
-q (quiet mode) suppresses the banner and all progress information.
-qq (super quiet mode) suppresses all headers.
-r uses raw register IDs (RO, R1, etc.).
-R shows run-time address if different from load-time address.
-S suppresses printing of address and data words.
input is the name of the input file. If the optional extension is not specified, the file is
filename[.ext] searched for in this order:
1. infile
2. infile.out, an executable file
3. infile.obj, an object file
output filename is the name of the optional output file to which the disassembly will be written. If an
output filename is not specified, the disassembly is written to standard output.
276 Object File Utilities SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Invoking the Disassembler

When the example file in Example 11-1 is compiled, the assembler produces an object file,
memcpy32.0bj.

Example 11-1. Object File memcpy32.asm

. gl obal C_MEMCPY
C_MEMCPY: .asnfunc stack_usage(12)

CW r2, #0 ; CHECK FOR n == 0
BXEQ Ir ;
STMFD sp!, {r0, Ir} ; SAVE RETURN VALUE AND ADDRESS
TST r1, #0x3 ; CHECK ADDRESS AL| GNVENT
BNE _unaln ; |'F NOT WORD ALI GNED, HANDLE SPECI ALLY
TST r0, #0x3 ;
BNE _saln ;
_aln: QW r2, #16 ; CHECK FOR n >= 16
BCC _l16 ;

STMFD sp!, {r4} ;
SuB r2, r2, #16

As shown in Example 11-2, the disassembler can produce disassembly from the object file,
memcpy32.0bj. The first two lines are entered on the command line.

Example 11-2. Disassembly From memcpy32.asm

TEXT Section .text, 0x180 bytes at 0xO0

000000: C_MEMCPY:

000000: .state32

000000: E3520000 CcwP R2, #0
000004: O012FFF1E BXEQ R14
000008: E92D4001 STMFD R13!, {RO, R14}
00000c: E3110003 TST R1, #3
000010: 1A00002B BNE 0x000000C4
000014: E3100003 TST RO, #3
000018: 1A00002F BNE 0x000000DC
00001c: E3520010 cwP R2, #16
000020: 3A000008 BCC 0x00000048
000024: E92D0010 STMFD R13!, {R4}
000028: E2422010 SuB R2, Rz, #16

Example 11-3 provides an example of how the output would appear if a copy record refers to different

load and run sections and the --copy_table option is used.

SPNU118L—-June 2013 Object File Utilities

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

277

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Invoking the Name Utility

13 TEXAS
INSTRUMENTS

www.ti.com

Example 11-3. Partial Copy Record Output With Different Load and Run Address

COPY TABLE: _data2_ctbl,

_data2_cthbl [0]:

0x30 at Ox5E10, 1 record(s)

| oad addr=0x200158, size=0x12B, encodi ng=l zss

DATA Section .data2_scn.|oad, 0x12B bytes at 0x200158

200158

200158: 020f 0000
20015c: beef 0003

_data2_cthbl [0]:

$d

DATA Section .datal_scn
dat al

0052a0:
0052a0:
0052a0:
0052a0: 0000beef
0052a4: 0000beef

$d:

.word 0x020f 0000
.word Oxbeef 0003

run addr=0x52A0, size=0x960

0x960 bytes at 0x52A0

.datal_scn

.word 0x0000beef
.word 0x0000beef

11.3 Invoking the Name Utility
The name utility, armnm, prints the list of names defined and referenced in an object file, executable file,
or archive library. It also prints the symbol value and an indication of the kind of symbol. Hidden symbols
are listed as "".
To invoke the name utility, enter the following:
‘armnm [-options] [input filenames]
armnm is the command that invokes the name utility.
input filename is an object file (.obj), executable file (.out), or archive library (.lib).
options identifies the name ultility options you want to use. Options are not case sensitive and
can appear anywhere on the command line following the invocation. Precede each
option with a hyphen (-). The name utility options are as follows:
-a prints all symbols.
-C also prints C_NULL symbols for a COFF object module.
-d also prints debug symbols for a COFF object module.
-f prepends file name to each symbol.
-g prints only global symbols.
-h shows the current help screen.
-l produces a detailed listing of the symbol information.
-n sorts symbols numerically rather than alphabetically.
-o file outputs to the given file.
-p causes the name utility to not sort any symbols.
-q (quiet mode) suppresses the banner and all progress information.
-r sorts symbols in reverse order.
-S lists symbols in the dynamic symbol table for an ELF object module.
-t also prints tag information symbols for a COFF object module.
-u only prints undefined symbols.
278 Object File Utilities SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Invoking the Strip Utility
11.4 Invoking the Strip Utility

The strip utility, armstrip, removes symbol table and debugging information from object and executable
files.

To invoke the strip utility, enter the following:

armstrip [-p] input filename [input filename]

armstrip is the command that invokes the strip utility.
input filename is an object file (.obj) or an executable file (.out).
options identifies the strip utility options you want to use. Options are not case sensitive and can

appear anywhere on the command line following the invocation. Precede each option
with a hyphen (-). The strip utility option is as follows:

-0 filename writes the stripped output to filename.
-p removes all information not required for execution. This option causes more
information to be removed than the default behavior, but the object file is

left in a state that cannot be linked. This option should be used only with
executable (.out) files.

When the strip utility is invoked without the -0 option, the input object files are replaced with the stripped
version.

SPNU118L—June 2013 Object File Utilities 279

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

. Chapter 12
l TEXAS SPNU118L—-June 2013

INSTRUMENTS

Hex Conversion Utility Description

The ARM assembler and linker create object files which are in binary formats that encourage modular
programming and provide powerful and flexible methods for managing code segments and target system
memory.

Most EPROM programmers do not accept object files as input. The hex conversion utility converts an
object file into one of several standard ASCII hexadecimal formats, suitable for loading into an EPROM
programmer. The utility is also useful in other applications requiring hexadecimal conversion of an object
file (for example, when using debuggers and loaders).

The hex conversion utility can produce these output file formats:

e ASCII-Hex, supporting 16-bit addresses

» Extended Tektronix (Tektronix)

» Intel MCS-86 (Intel)

» Motorola Exorciser (Motorola-S), supporting 16-bit addresses

» Texas Instruments SDSMAC (TI-Tagged), supporting 16-bit addresses

e Texas Instruments TI-TXT format, supporting 16-bit addresses

Topic Page
12.1 The Hex Conversion Utility's Role in the Software Development FlIow 281
12.2 Invoking the Hex Conversion ULHItYccviiiiiiiiiiii e eee s e e e aaaes 282
12.3 Understanding Memory WIdtNSoeieiiiiiiiiiiiiii e e et e e e e e eneanens 285
12.4 The ROMS DilECHIVE ..utueuittiutetetettetaeaaaasesaeeaaasaeeateesaeee s e sesasanansneneanananns 290
12.5 The SECTIONS Dilr€CHIVE ..uueuieiuieeuieieaeieaaeeeneeenaeeaseensesensaearasenenaenanaeanaenanss 293
12.6 The Load Image Format (--load_image OPLtioN)oueieiiieinieiiieiieiee e e eaeeeeanes 294
12.7 Excluding a SpecCified SECTION ..iuiiiiiiiiiiitiiiiie et e et e e s e eaeaaanas 295
12.8 Assigning OUtpUL FIlENAMESiuiiiiiiiii ettt e e e e nanaaes 296
12.9 Image Mode and the --fill OPLiONoeie i e eene 297
12.10 Building a Table for an On-Chip BOOt LOAAErceivieiiiiiiiiiiiiieieieieeeieieeenenens 298
12.11 Controlling the ROM DeViCe AGAIESS ...viiiuiiiuininitieitieneeeeeneasarereeeaeneeenanans 304
12.12 Control Hex Conversion Utility DIagnOStICS ..cueiuiuiuiiitieiiieiiieiieieiteeeneeeaeaaeanes 305
12.13 Description of the ObjeCt FOrMALSccuiuiiiiiiiiiiiiiii i aa e 306

280 Hex Conversion Utility Description SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com The Hex Conversion Utility's Role in the Software Development Flow

12.1 The Hex Conversion Utility's Role in the Software Development Flow
Figure 12-1 highlights the role of the hex conversion utility in the software development process.

Figure 12-1. The Hex Conversion Utility in the ARM Software Development Flow

C/C++
source
files

Macro
source C/C++
files compiler

C/C++ name

Asserpbler demangling
source utility
:\i/kl)arg:s Assembler
Object Libratr_yr-tbuild Delt)uglging
files utility ools
- Run-time-
Library of A support
object q library
files
Executable
object file

Hex-conversion
utility

EPROM
programmer

Absolute lister

Cross-reference
lister

Object file
utilities

SPNU118L—-June 2013
Submit Documentation Feedback

Hex Conversion Utility Description

Copyright © 2013, Texas Instruments Incorporated

281

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Invoking the Hex Conversion Utility

13 TEXAS
INSTRUMENTS

www.ti.com

12.2 Invoking the Hex Conversion Utility

There are two basic methods for invoking the hex conversion utility:
e Specify the options and filenames on the command line. The following example converts the file

firmware.out into TI-Tagged format, producing two output files, firm.Isb and firm.msb.

armhex -t firmvare -o firmlsb -o firmnsb

» Specify the options and filenames in a command file. You can create a file that stores command
line options and filenames for invoking the hex conversion utility. The following example invokes the
utility using a command file called hexutil.cmd:

ar mhex hexutil.cnd

In addition to regular command line information, you can use the hex conversion utility ROMS and
SECTIONS directives in a command file.

12.2.1 Invoking the Hex Conversion Utility From the Command Line

To invoke the hex conversion utility, enter:

‘ armhex [options] filename

armhex is the command that invokes the hex conversion utility.
options supplies additional information that controls the hex conversion process. You can use
options on the command line or in a command file. Table 12-1 lists the basic options.
« All options are preceded by a hyphen and are not case sensitive.
e Several options have an additional parameter that must be separated from the option
by at least one space.
« Options with multi-character names must be spelled exactly as shown in this
document; no abbreviations are allowed.
e Options are not affected by the order in which they are used. The exception to this rule
is the --quiet option, which must be used before any other options.
filename names an object file or a command file (for more information, see Section 12.2.2).
Table 12-1. Basic Hex Conversion Utility Options
Option Alias Description See
General Options
—byte “byte l;léjcrirr\é)sesriggtput locations by bytes rather than by target _
—entrypoint=addr e E)gfj?rlg the entry point at which to begin execution after boot Table 12-2
——eéﬂ:?neez}{fname(sname) | -exclude grltgr?\&gl\?v?l??:&r::?ﬂi?cﬂs omitted, all sections matching Section 12.7
-fill=value fill Fill holes with value Section 12.9.2
Display the syntax for invoking the utility and list available
--help -options, -h options. If the option is followed by another option or phrase, Section 12.2.2
detailed information about that option or phrase is displayed.
--image -image Select image mode Section 12.9.1
--linkerfill -linkerfill Include linker fill sections in images --
--map=filename -map Generate a map file Section 12.4.2
--memwidth=value -memwidth Define the system memory word width (default 16 bits) Section 12.3.2
--olength=value -olength Specify maximum number of data items per line of output -
--outfile=filename -0 Specify an output filename Section 12.8
--quiet -q Run quietly (when used, it must appear before other options) Section 12.2.2

282 Hex Conversion Utility

Description

SPNU118L—-June 2013

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS

INSTRUMENTS

www.ti.com

Invoking the Hex Conversion Utility

Table 12-1. Basic Hex Conversion Utility Options (continued)

Option Alias Description See
—romwidth=value —romwidth ﬁgee((j:)ify the ROM device width (default depends on format Section 12.3.3
--zero -zero, -z Reset the address origin to 0 in image mode Section 12.9.3
Diagnostic Options
--diag_error=id Categorizes the diagnostic identified by id as an error Section 12.12
--diag_remark=id Categorizes the diagnostic identified by id as a remark Section 12.12
--diag_suppress=id Suppresses the diagnostic identified by id Section 12.12
--diag_warning=id Categorizes the diagnostic identified by id as a warning Section 12.12
--display_error_number Displays a diagnostic's identifiers along with its text Section 12.12
--issue_remarks Issues remarks (nonserious warnings) Section 12.12
--no_warnings Suppresses warning diagnostics (errors are still issued) Section 12.12
—set error limit=count Sgts the error limit to count. The Iin_ker abandons linking after Section 12.12
- - this number of errors. (The default is 100.)
Output Options
--ascii -a Select ASCIl-Hex Section 12.13.1
--intel -i Select Intel Section 12.13.2
--motorola=1 -m1 Select Motorola-S1 Section 12.13.3
--motorola=2 -m2 Select Motorola-S2 Section 12.13.3
--motorola=3 -m3 Select Motorola-S3 (default -m option) Section 12.13.3
—tektronix x fgéi%tie'l;‘e)ktronix (default format when no output option is Section 12.13.4
--ti_tagged -t Select TI-Tagged Section 12.13.5
--ti_txt Select TI-Txt Section 12.13.6
Load Image Options
--load_image Select load image Section 12.6
--section_name_prefix=string Specify the section name prefix for load image object files Section 12.6

SPNU118L—June 2013
Submit Documentation Feedback

Hex Conversion Utility Description

Copyright © 2013, Texas Instruments Incorporated

283

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Invoking the Hex Conversion Utility www.ti.com

12.2.2 Invoking the Hex Conversion Utility With a Command File

A command file is useful if you plan to invoke the utility more than once with the same input files and
options. It is also useful if you want to use the ROMS and SECTIONS hex conversion utility directives to
customize the conversion process.

Command files are ASCII files that contain one or more of the following:

e Options and filenames. These are specified in a command file in exactly the same manner as on the
command line.

 ROMS directive. The ROMS directive defines the physical memory configuration of your system as a
list of address-range parameters. (See Section 12.4.)

» SECTIONS directive. The hex conversion utility SECTIONS directive specifies which sections from the
object file are selected. (See Section 12.5.)

e« Comments. You can add comments to your command file by using the /* and */ delimiters. For
example:
/* This is a comrent. */

To invoke the utility and use the options you defined in a command file, enter:

armhex command_filename

You can also specify other options and files on the command line. For example, you could invoke the
utility by using both a command file and command line options:

arnmhex firmnare.cnd --nmap=firnware. nxp

The order in which these options and filenames appear is not important. The utility reads all input from the

command line and all information from the command file before starting the conversion process. However,
if you are using the -g option, it must appear as the first option on the command line or in a command file.

The --help option displays the syntax for invoking the compiler and lists available options. If the --help
option is followed by another option or phrase, detailed information about the option or phrase is
displayed. For example, to see information about options associated with generating a boot table use --
help boot.

The --quiet option suppresses the hex conversion utility's normal banner and progress information.

* Assume that a command file named firmware.cmd contains these lines:

firmare. out /* input file */
--ti-tagged /* Tl -Tagged */
--outfile=firmlsb /* output file */
--outfile=firmnsb /* output file */
You can invoke the hex conversion utility by entering:

armhex firnmware. cnd

» This example shows how to convert a file called appl.out into eight hex files in Intel format. Each output
file is one byte wide and 4K bytes long.

appl . out /* input file */
--intel /* Intel format */
- - map=appl . nxp /* map file */
ROVS

{
ROML: ori gi n=0x00000000 | en=0x4000 romni dt h=8

files={ appl.u0 appl.ul appl.u2 appl.u3 }
ROM2: ori gi n=0x00004000 | en=0x4000 r omni dt h=8
files={ appl.u4 appl.u5 appl.u6 appl.u7 }

}
SECTI ONS
{ .text, .data, .cinit, .sectl, .vectors, .const:
}
284 Hex Conversion Utility Description SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Understanding Memory Widths

12.3 Understanding Memory Widths

The hex conversion utility makes your memory architecture more flexible by allowing you to specify
memory and ROM widths. To use the hex conversion utility, you must understand how the utility treats
word widths. Three widths are important in the conversion process:

» Target width
* Memory width
* ROM width

The terms target word, memory word, and ROM word refer to a word of such a width.
Figure 12-2 illustrates the separate and distinct phases of the hex conversion utility's process flow.

Figure 12-2. Hex Conversion Utility Process Flow
Raw data in object files is
/ represented in the target’s
addressable units. For the
(inputfile) ARM device, this is 32 bits.

The raw data in the object file
is grouped into words according
Phase | to the size specified by the
--memwidth option.

The memwidth-sized words are
broken up according to the size
specified by the --romwidth option
and are written to a file(s)
according to the specified format
(i.e., Intel, Tektronix, etc.).

Phase Il

(outputfile(s))

12.3.1 Target Width

Target width is the unit size (in bits) of the target processor's word. The unit size corresponds to the data
bus size on the target processor. The width is fixed for each target and cannot be changed. The ARM
targets have a width of 32 bits.

SPNU118L—-June 2013 Hex Conversion Utility Description 285
Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Understanding Memory Widths www.ti.com

12.3.2 Specifying the Memory Width

Memory width is the physical width (in bits) of the memory system. Usually, the memory system is
physically the same width as the target processor width: a 16-bit processor has a 32-bit memory
architecture. However, some applications require target words to be broken into multiple, consecutive, and
narrower memory words.

By default, the hex conversion utility sets memory width to the target width (in this case, 32 hits).
You can change the memory width (except for TI-TXT format) by:
* Using the --memwidth option. This changes the memory width value for the entire file.

» Setting the memwidth parameter of the ROMS directive. This changes the memory width value for the
address range specified in the ROMS directive and overrides the --memwidth option for that range.
See Section 12.4.

For both methods, use a value that is a power of 2 greater than or equal to 8.

You should change the memory width default value of 16 only when you need to break single target words
into consecutive, harrower memory words.

TI-TXT Format is 8 Bits Wide

NOTE: You cannot change the memory width of the TI-TXT format. The TI-TXT hex format supports
an 8-bit memory width only.

286

Hex Conversion Utility Description SPNU118L—-June 2013
Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

I

www.ti.com

TEXAS
INSTRUMENTS

Understanding Memory Widths

Figure 12-3 demonstrates how the memory width is related to object file data.

Figure 12-3. Object File Data and Memory Widths

Source file

word OAABBCCDDh
word 011223344h

L

Object file data (assumed to be in big-endian format)

|AA|/BB||[cc||DD|

111/ 22][33][44|
Memory widths (variable)
--memwidth=32 (default) -memwidth=16 —memwidth=8
A
Data after Tt CC
e

ol (M]] = m
| [B = m

12.3.3 Partitioning Data Into Output Files

ROM width specifies the physical width (in bits) of each ROM device and corresponding output file
(usually one byte or eight bits). The ROM width determines how the hex conversion utility partitions the
data into output files. After the object file data is mapped to the memory words, the memory words are

broken into one or more output files. The number of output files is determined by the following formulas:

* If memory width = ROM width:

number of files = memory width + ROM width
e If memory width < ROM width:

number of files = 1

For example, for a memory width of 32, you could specify a ROM width value of 32 and get a single
output file containing 32-bit words. Or you can use a ROM width value of 16 to get two files, each
containing 16 bits of each word.

The default ROM width that the hex conversion utility uses depends on the output format:

« All hex formats except TI-Tagged are configured as lists of 8-bit bytes; the default ROM width for these

formats is 8 bits.
* TI-Tagged is a 16-bit format; the default ROM width for TI-Tagged is 16 bits.

SPNU118L—-June 2013 Hex Conversion Utility Description
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

287

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Understanding Memory Widths www.ti.com

The TI-Tagged Format is 16 Bits Wide

NOTE: You cannot change the ROM width of the TI-Tagged format. The TI-Tagged format supports
a 16-bit ROM width only.

TI-TXT Format is 8 Bits Wide

NOTE: You cannot change the ROM width of the TI-TXT format. The TI-TXT hex format supports
only an 8-bit ROM width.

You can change ROM width (except for TI-Tagged and TI-TXT formats) by:
» Using the --romwidth option. This option changes the ROM width value for the entire object file.

e Setting the romwidth parameter of the ROMS directive. This parameter changes the ROM width value
for a specific ROM address range and overrides the --romwidth option for that range. See
Section 12.4.

For both methods, use a value that is a power of 2 greater than or equal to 8.

If you select a ROM width that is wider than the natural size of the output format (16 bits for TI-Tagged or
8 bits for all others), the utility simply writes multibyte fields into the file.

Figure 12-4 illustrates how the object file data, memory, and ROM widths are related to one another.

Memory width and ROM width are used only for grouping the object file data; they do not represent
values. Thus, the byte ordering of the object file data is maintained throughout the conversion process. To
refer to the partitions within a memory word, the bits of the memory word are always numbered from right
to left as follows:

--memwidth=32
AABBCCDD11223344
31 0

288

Hex Conversion Utility Description SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS

INSTRUMENTS
www.ti.com Understanding Memory Widths
Figure 12-4. Data, Memory, and ROM Widths
Source file
word O0AABBCCDDh
word 011223344h
Object file data (assumed to be in big-endian format)
AA||BB ||CC || DD
11112213344
AABBCCDD
11223344
Data after
phase |
of armhex m
DD 44
CC 33
BB 22
Data after AA 11
phase Il
of armhex AABBCCDD11223344
BB DD 22 44
AA CC 11 33
AABBCCDD11223344

SPNU118L—June 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

Hex Conversion Utility Description

289

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

The ROMS Directive

13 TEXAS
INSTRUMENTS

www.ti.com

12.4 The ROMS Directive

The ROMS directive specifies the physical memory configuration of your system as a list of address-range

parameters.

Each address range produces one set of files containing the hex conversion utility output data that
corresponds to that address range. Each file can be used to program one single ROM device.

The ROMS directive is similar to the MEMORY directive of the ARM linker: both define the memory map
of the target address space. Each line entry in the ROMS directive defines a specific address range. The

general syntax is:

ROMS
{

romname : [origin=value,] [length=value,] [romwidth=value,]

[memwidth=value,] [fill=value]
[files={ filename ,, filename ,, ...}]

romname : [origin=value,] [length=value,] [romwidth=value,]

ROMS
romname

origin

[memwidth=value,] [fill=value]
[files={ filename ,, filename ,, ...}]

begins the directive definition.

identifies a memory range. The name of the memory range can be one to eight
characters in length. The name has no significance to the program; it simply identifies
the range, except when the output is for a load image in which case it denotes the
section name. (Duplicate memory range names are allowed.)

specifies the starting address of a memory range. It can be entered as origin, org, or o.
The associated value must be a decimal, octal, or hexadecimal constant. If you omit
the origin value, the origin defaults to 0. The following table summarizes the notation
you can use to specify a decimal, octal, or hexadecimal constant:

Constant

Notation Example

Hexadecimal
Octal
Decimal

0x prefix or h suffix 0x77 or 077h
0 prefix 077
No prefix or suffix 77

length

romwidth

memwidth

specifies the length of a memory range as the physical length of the ROM device. It
can be entered as length, len, or I. The value must be a decimal, octal, or hexadecimal
constant. If you omit the length value, it defaults to the length of the entire address
space.

specifies the physical ROM width of the range in bits (see Section 12.3.3). Any value
you specify here overrides the --romwidth option. The value must be a decimal, octal,
or hexadecimal constant that is a power of 2 greater than or equal to 8.

specifies the memory width of the range in bits (see Section 12.3.2). Any value you
specify here overrides the --memwidth option. The value must be a decimal, octal, or
hexadecimal constant that is a power of 2 greater than or equal to 8. When using the
memwidth parameter, you must also specify the paddr parameter for each section in
the SECTIONS directive. (See Section 12.5.)

290

Hex Conversion Utility Description SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com

The ROMS Directive

fill

files

specifies a fill value to use for the range. In image mode, the hex conversion utility
uses this value to fill any holes between sections in a range. A hole is an area between
the input sections that comprises an output section that contains no actual code or
data. The fill value must be a decimal, octal, or hexadecimal constant with a width
equal to the target width. Any value you specify here overrides the --fill option. When
using fill, you must also use the --image command line option. (See Section 12.9.2.)

identifies the names of the output files that correspond to this range. Enclose the list of
names in curly braces and order them from least significant to most significant output
file, where the bits of the memory word are numbered from right to left. The number of
file names must equal the number of output files that the range generates. To calculate
the number of output files, see Section 12.3.3. The utility warns you if you list too many
or too few filenames.

Unless you are using the --image option, all of the parameters that define a range are optional; the
commas and equal signs are also optional. A range with no origin or length defines the entire address
space. In image mode, an origin and length are required for all ranges.

Ranges must not overlap and must be listed in order of ascending address.

12.4.1 When to Use the ROMS Directive

If you do not use a ROMS directive, the utility defines a single default range that includes the entire
address space. This is equivalent to a ROMS directive with a single range without origin or length.

Use the ROMS directive when you want to:

» Program large amounts of data into fixed-size ROMs. When you specify memory ranges
corresponding to the length of your ROMs, the utility automatically breaks the output into blocks that fit

into the ROMSs.

» Restrict output to certain segments. You can also use the ROMS directive to restrict the conversion
to a certain segment or segments of the target address space. The utility does not convert the data
that falls outside of the ranges defined by the ROMS directive. Sections can span range boundaries;
the utility splits them at the boundary into multiple ranges. If a section falls completely outside any of
the ranges you define, the utility does not convert that section and issues ho messages or warnings.
Thus, you can exclude sections without listing them by name with the SECTIONS directive. However, if
a section falls partially in a range and partially in unconfigured memory, the utility issues a warning and
converts only the part within the range.

» Use image mode. When you use the --image option, you must use a ROMS directive. Each range is
filled completely so that each output file in a range contains data for the whole range. Holes before,
between, or after sections are filled with the fill value from the ROMS directive, with the value specified
with the --fill option, or with the default value of 0.

12.4.2 An Example of the ROMS Directive

The ROMS directive in Example 12-1 shows how 16K bytes of 16-bit memory could be partitioned for two
8K-byte 8-bit EPROMS. Figure 12-5 illustrates the input and output files.

Example 12-1. A ROMS Directive Example

infile.out
--image
--memd dth 16

ROMS
{

EPROML: org = 0x00004000, |en = 0x2000, ronwi dth

1
[ee]

files = { romt000. b0, ron#000. b1}

EPROWR: org = 0x00006000, | en = 0x2000, romni dth

1
®

fill = OxFFOOFFOO,
files = { ron6000. b0, ron6000. b1}

SPNU118L—-June 2013

Hex Conversion Utility Description 291

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

The ROMS Directive www.ti.com

Figure 12-5. The infile.out File Partitioned Into Four Output Files

COFF file: Output files:
infile.out EPROM1
rom4000.b0 rom4000.b1
text g text text
0x00005B80 0Oh 0Oh
.data 0x00005B80
0x0000633F data data
0x00006700
0x00005FFF
.table i
Width = 8 bits
EPROM2
rom6000.b0 rom6000.b1
0x00006000
0X00006340 .data .data
X FFh 00h
0x00006700
.table .table
0x00007C80 = 00h
0x00007FFF

The map file (specified with the --map option) is advantageous when you use the ROMS directive with
multiple ranges. The map file shows each range, its parameters, names of associated output files, and a
list of contents (section names and fill values) broken down by address. Example 12-2 is a segment of the
map file resulting from the example in Example 12-1.

Example 12-2. Map File Output From Example 12-1 Showing Memory Ranges

QUTPUT FI LES: romd000. b0 [bO. . b7]
ron4000. bl [b8. . bl5]
CONTENTS: 00004000. . 0000487f .text
00004880. . 00005b7f FILL = 00000000
00005b80. . 00005f ff .data

QUTPUT FILES: ron6000.b0 [bO. . b7]
roms000. bl [b8..b15]
CONTENTS: 00006000. . 0000633f . dat a
00006340. . 000066f f FILL = ff00ff00
00006700. . 00007c7f .table
00007c¢80. . 00007fff FILL = ff00ff00

292 Hex Conversion Utility Description SPNU118L—-June 2013
Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com The SECTIONS Directive

EPROML1 defines the address range from 0x00004000 through 0xO0005FFF with the following sections:

This section ... Has this range ...
.text 0x00004000 through 0x0000487F
.data 0x00005B80 through 0x00005FFF

The rest of the range is filled with Oh (the default fill value), converted into two output files:
* rom4000.b0 contains bits O through 7
e rom4000.b1 contains bits 8 through 15

EPROM2 defines the address range from 0x00006000 through 0x00007FFF with the following sections:

This section ... Has this range ...
.data 0x00006000 through 0x0000633F
.table 0x00006700 through 0x00007C7F

The rest of the range is filled with 0OXFFOOFFO0O (from the specified fill value). The data from this range is
converted into two output files:

* rom6000.b0 contains bits O through 7
* rom6000.b1 contains bits 8 through 15

12.5 The SECTIONS Directive

You can convert specific sections of the object file by name with the hex conversion utility SECTIONS
directive. You can also specify those sections that you want to locate in ROM at a different address than
the load address specified in the linker command file. If you:

» Use a SECTIONS directive, the utility converts only the sections that you list in the directive and
ignores all other sections in the object file.

» Do not use a SECTIONS directive, the utility converts all initialized sections that fall within the
configured memory.

Uninitialized sections are never converted, whether or not you specify them in a SECTIONS directive.

Sections Generated by the C/C++ Compiler

NOTE: The ARM C/C++ compiler automatically generates these sections:
. Initialized sections: .text, .const, .cinit, and .switch
¢ Uninitialized sections: .bss, .stack, and .sysmem

Use the SECTIONS directive in a command file. (See Section 12.2.2.) The general syntax for the
SECTIONS directive is:

SECTIONS

{
oname(sname)[:] [paddr=value]
oname(sname)[:] [paddr= boot]
oname(shame)[:] [boot]

}
SECTIONS begins the directive definition.
oname identifies the object filename the section is located within. The filename is optional
when only a single input file is given, but required otherwise.
shame identifies a section in the input file. If you specify a section that does not exist, the
utility issues a warning and ignores the name.
SPNU118L—-June 2013 Hex Conversion Utility Description 293

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS

INSTRUMENTS
The Load Image Format (--load_image Option) www.ti.com
paddr=value specifies the physical ROM address at which this section should be located. This value

12.6

overrides the section load address given by the linker. This value must be a decimal,
octal, or hexadecimal constant. It can also be the word boot (to indicate a boot table
section for use with a boot loader). If your file contains multiple sections, and if one
section uses a paddr parameter, then all sections must use a paddr parameter.

boot configures a section for loading by a boot loader. This is equivalent to using
paddr=boot. Boot sections have a physical address determined by the location of the
boot table. The origin of the boot table is specified with the --bootorg option.

For more similarity with the linker's SECTIONS directive, you can use colons after the section names (in
place of the equal sign on the boot keyboard). For example, the following statements are equivalent:

SECTIONS { .text: .data: boot }

SECTIONS { .text: .data = boot }

In the example below, the object file contains six initialized sections: .text, .data, .const, .vectors, .coeff,
and .tables. Suppose you want only .text and .data to be converted. Use a SECTIONS directive to specify
this:

SECTIONS { .text: .data: }

To configure both of these sections for boot loading, add the boot keyword:

SECTIONS { .text = boot .data = boot }

The Load Image Format (--load_image Option)

A load image is an object file which contains the load addresses and initialized sections of one or more
executable files. The load image object file can be used for ROM masking or can be relinked in a
subsequent link step.

12.6.1 Load Image Section Formation

The load image sections are formed by collecting the initialized sections from the input executables. There
are two ways the load image sections are formed:

» Using the ROMS Directive. Each memory range that is given in the ROMS directive denotes a load
image section. The romname is the section name. The origin and length parameters are required. The
memwidth, romwidth, and files parameters are invalid and are ignored.

When using the ROMS directive and the load_image option, the --image option is required.

» Default Load Image Section Formation. If no ROMS directive is given, the load image sections are
formed by combining contiguous initialized sections in the input executables. Sections with gaps
smaller than the target word size are considered contiguous.

The default section names are image_1, image_2, ... If another prefix is desired, the --
section_name_ prefix=prefix option can be used.

294

Hex Conversion Utility Description SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Excluding a Specified Section

12.6.2 Load Image Characteristics

All load image sections are initialized data sections. In the absence of a ROMS directive, the load/run
address of the load image section is the load address of the first input section in the load image section. If
the SECTIONS directive was used and a different load address was given using the paddr parameter, this
address will be used.

The load image format always creates a single load image object file. The format of the load image object
file is determined based on the input files. The file is not marked executable and does not contain an entry
point. The default load image object file name is ti_load_image.obj. This can be changed using the --
outfile option. Only one --outfile option is valid when creating a load image, all other occurrences are
ignored.

Concerning Load Image Format
NOTE: These options are invalid when creating a load image:
e --memwidth
e --romwidth
e --zero
e --byte

If a boot table is being created, either using the SECTIONS directive or the --boot option, the
ROMS directive must be used.

12.7 Excluding a Specified Section

The --exclude section_name option can be used to inform the hex utility to ignore the specified section. If
a SECTIONS directive is used, it overrides the --exclude option.

For example, if a SECTIONS directive containing the section name mysect is used and an --exclude
mysect is specified, the SECTIONS directive takes precedence and mysect is not excluded.

The --exclude option has a limited wildcard capability. The * character can be placed at the beginning or
end of the name specifier to indicate a suffix or prefix, respectively. For example, --exclude sect*
disqualifies all sections that begin with the characters sect.

If you specify the --exclude option on the command line with the * wildcard, use quotes around the section
name and wildcard. For example, --exclude"sect*". Using quotes prevents the * from being interpreted by
the hex conversion utility. If --exclude is in a command file, do not use quotes.

If multiple object files are given, the object file in which the section to be excluded can be given in the form
oname(sname). If the object filename is not provided, all sections matching the section name are
excluded. Wildcards cannot be used for the filename, but can appear within the parentheses.

SPNU118L—-June 2013 Hex Conversion Utility Description 295

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Assigning Output Filenames www.ti.com

12.8 Assigning Output Filenames

When the hex conversion utility translates your object file into a data format, it partitions the data into one

or more output files. When multiple files are formed by splitting memory words into ROM words, filenames
are always assigned in order from least to most significant, where bits in the memory words are numbered
from right to left. This is true, regardless of target or endian ordering.

The hex conversion utility follows this sequence when assigning output filenames:

1. It looks for the ROMS directive. If a file is associated with a range in the ROMS directive and you
have included a list of files (files = {. . .}) on that range, the utility takes the filename from the list.

For example, assume that the target data is 32-bit words being converted to four files, each eight bits
wide. To name the output files using the ROMS directive, you could specify:

ROV

{

RANGEL: romwi dt h=8, files={ xyz.b0 xyz.bl xyz.b2 xyz.b3 }

}
The utility creates the output files by writing the least significant bits to xyz.b0 and the most significant
bits to xyz.b3.

2. It looks for the --outfile options. You can specify hames for the output files by using the --outfile
option. If no filenames are listed in the ROMS directive and you use --outfile options, the utility takes
the filename from the list of --outfile options. The following line has the same effect as the example
above using the ROMS directive:

--outfile=xyz.b0O --outfile=xyz.bl --outfile=xyz.b2 --outfile=xyz.b3
If both the ROMS directive and --outfile options are used together, the ROMS directive overrides the --
outfile options.

3. It assigns a default filename. If you specify no filenames or fewer names than output files, the utility
assigns a default filename. A default filename consists of the base name from the input file plus a 2- to
3-character extension. The extension has three parts:

(a) A format character, based on the output format (see Section 12.13):
a for ASCII-Hex
[for Intel
m for Motorola-S
t for TI-Tagged
X for Tektronix
(b) The range number in the ROMS directive. Ranges are numbered starting with 0. If there is no
ROMS directive, or only one range, the utility omits this character.
(c) The file number in the set of files for the range, starting with 0 for the least significant file.
For example, assume a.out is for a 32-bit target processor and you are creating Intel format output.
With no output filenames specified, the utility produces four output files named a.i0, a.il, a.i2, a.i3.
If you include the following ROMS directive when you invoke the hex conversion utility, you would have
eight output files:
ROV
{
rangel: o = 0x00001000 I = 0x1000
range2: o = 0x00002000 I = 0x1000
}
These output files ... Contain data in these locations ...
a.i00, a.i01, a.i02, a.i03 0x00001000 through 0x00001FFF
a.i10, a.ill, a.i12, a.i13 0x00002000 through 0x00002FFF
296 Hex Conversion Utility Description SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Image Mode and the --fill Option

12.9 Image Mode and the -fill Option

This section points out the advantages of operating in image mode and describes how to produce output
files with a precise, continuous image of a target memory range.

12.9.1 Generating a Memory Image

With the --image option, the utility generates a memory image by completely filling all of the mapped
ranges specified in the ROMS directive.

An object file consists of blocks of memory (sections) with assigned memory locations. Typically, all
sections are not adjacent: there are holes between sections in the address space for which there is no
data. When such a file is converted without the use of image mode, the hex conversion utility bridges
these holes by using the address records in the output file to skip ahead to the start of the next section. In
other words, there may be discontinuities in the output file addresses. Some EPROM programmers do not
support address discontinuities.

In image mode, there are no discontinuities. Each output file contains a continuous stream of data that
corresponds exactly to an address range in target memory. Any holes before, between, or after sections
are filled with a fill value that you supply.

An output file converted by using image mode still has address records, because many of the
hexadecimal formats require an address on each line. However, in image mode, these addresses are
always contiguous.

Defining the Ranges of Target Memory

NOTE: If you use image mode, you must also use a ROMS directive. In image mode, each output
file corresponds directly to a range of target memory. You must define the ranges. If you do
not supply the ranges of target memory, the utility tries to build a memory image of the entire
target processor address space. This is potentially a huge amount of output data. To prevent
this situation, the utility requires you to explicitly restrict the address space with the ROMS
directive.

12.9.2 Specifying a Fill Value

The -fill option specifies a value for filling the holes between sections. The fill value must be specified as
an integer constant following the --fill option. The width of the constant is assumed to be that of a word on
the target processor. For example, specifying --fill=0xFFFF results in a fill pattern of 0XO000FFFF. The
constant value is not sign extended.

The hex conversion utility uses a default fill value of 0 if you do not specify a value with the fill option. The
--fill option is valid only when you use --image; otherwise, it is ignored.

12.9.3 Steps to Follow in Using Image Mode

Step 1: Define the ranges of target memory with a ROMS directive. See Section 12.4.

Step 2: Invoke the hex conversion utility with the --image option. You can optionally use the --zero
option to reset the address origin to O for each output file. If you do not specify a fill value
with the ROMS directive and you want a value other than the default of 0, use the --fill option.

SPNU118L—-June 2013 Hex Conversion Utility Description 297

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Building a Table for an On-Chip Boot Loader www.ti.com

12.10 Building a Table for an On-Chip Boot Loader

The ARM hex utility provides the ability to create a boot table for use with an on-chip boot loader. The
supported boot formats are intended for use on C28x devices with ARM cores. The boot table is stored in
memory or loaded from a device peripheral to initialize code or data.

See Section 3.1.2 for a general discussion of bootstrap loading.

12.10.1 Description of the Boot Table

The input for a boot loader is the boot table. The boot table contains records that instruct the on-chip
loader to copy blocks of data contained in the table to specified destination addresses. The table can be
stored in memory (such as EPROM) or read in through a device peripheral (such as a serial or
communications port).

The hex conversion utility automatically builds the boot table for the boot loader. Using the utility, you
specify the sections you want the boot loader to initialize and the table location. The hex conversion utility
builds a complete image of the table according to the format specified and converts it into hexadecimal in
the output files. Then, you can burn the table into ROM or load it by other means.

12.10.2 The Boot Table Format

The boot table format is simple. Typically, there is a header record containing a key value that indicates
memory width, entry point, and values for control registers. Each subsequent block has a header
containing the size and destination address of the block followed by data for the block. Multiple blocks can
be entered. The table ends with a header containing size zero.

12.10.3 How to Build the Boot Table
Table 12-2 summarizes the hex conversion utility options available for the boot loader.

Table 12-2. Boot-Loader Options

Option Description

--boot Convert all sections into bootable form (use instead of a SECTIONS directive).

--bootorg=value Specify the source address of the boot-loader table.

--entrypoint=value Specify the entry point at which to begin execution after boot loading. The value can be an
address or a global symbol.

--gpio8 Specify the source of the boot-loader table as the GP I/O port, 8-bit mode

--gpiol6 Specify the source of the boot-loader table as the GP I/O port, 16-bit mode

--lospcp=value Specify the initial value for the LOSPCP register. The value is used only for the spi8 boot table
format and is ignored for all other formats. A value greater than Ox7F is truncated to Ox7F.

--spi8 Specify the source of the boot-loader table as the SPI-A port, 8-bit mode

--spibrr=value Specify the initial value for the SPIBRR register. The value is used only for the spi8 boot table

format and is ignored for all other formats. A value greater than Ox7F is truncated to Ox7F.

12.10.3.1 Building the Boot Table
To build the boot table, follow these steps:

Step 1: Link the file. Each block of the boot table data corresponds to an initialized section in the
object file. Uninitialized sections are not converted by the hex conversion utility (see
Section 12.5).

When you select a section for placement in a boot-loader table, the hex conversion utility
places the section's load address in the destination address field for the block in the boot
table. The section content is then treated as raw data for that block. The hex conversion
utility does not use the section run address. When linking, you need not worry about the
ROM address or the construction of the boot table; the hex conversion utility handles this.

298 Hex Conversion Utility Description SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

I3 TEXAS
INSTRUMENTS
www.ti.com Building a Table for an On-Chip Boot Loader
Step 2: Identify the bootable sections. You can use the --boot option to tell the hex conversion

utility to configure all sections for boot loading. Or, you can use a SECTIONS directive to
select specific sections to be configured (see Section 12.5). If you use a SECTIONS
directive, the --boot option is ignored.

Step 3: Set the boot table format. Specify the --gpio8, --gpiol6, or --spi8 options to set the source
format of the boot table. You do not need to specify the memwidth and romwidth as the utility
will set these formats automatically. If --memwidth and --romwidth are used after a format
option, they override the default for the format.

Step 4: Set the ROM address of the boot table. Use the --bootorg option to set the source address
of the complete table.

Step 5: Set boot-loader-specific options. Set entry point and control register values as needed.
Step 6: Describe your system memory configuration. See Section 12.3 and Section 12.4.

12.10.3.2 Leaving Room for the Boot Table

The complete boot table is similar to a single section containing all of the header records and data for the
boot loader. The address of this section is the boot table origin. As part of the normal conversion process,
the hex conversion utility converts the boot table to hexadecimal format and maps it into the output files
like any other section.

Be sure to leave room in your system memory for the boot table, especially when you are using the
ROMS directive. The boot table cannot overlap other nonboot sections or unconfigured memory. Usually,
this is not a problem; typically, a portion of memory in your system is reserved for the boot table. Simply
configure this memory as one or more ranges in the ROMS directive, and use the --bootorg option to
specify the starting address.

12.10.4 Booting From a Device Peripheral

You can choose the port to boot from by using the --gpio8, --gpiol6, or --spi8 boot table format option.

The initial value for the LOSPCP register can be specified with the --lospcp option. The initial value for the
SPIBRR register can be specified with the --spibrr option. Only the --spi8 format uses these control
register values in the boot table.

If the register values are not specified for the --spi8 format, the hex conversion utility uses the default
values 0x02 for LOSPCP and 0x7F for SPIBRR. When the boot table format options are specified and the
ROMS directive is not specified, the ASCII format hex utility output does not produce the address record.

12.10.5 Setting the Entry Point for the Boot Table

After completing the boot load process, execution starts at the default entry point specified by the linker
and contained in the object file. By using the --entrypoint option with the hex conversion utility, you can set
the entry point to a different address.

For example, if you want your program to start running at address 0x0123 after loading, specify --
entrypoint=0x0123 on the command line or in a command file. You can determine the --entrypoint address
by looking at the map file that the linker generates.

Valid Entry Points

NOTE: The value can be a constant, or it can be a symbol that is externally defined (for example,
with a .global) in the assembly source.

SPNU118L—-June 2013 Hex Conversion Utility Description 299
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Building a Table for an On-Chip Boot Loader www.ti.com

12.10.6 Using the ARM Boot Loader

This subsection explains how to use the hex conversion utility with the boot loader for C28x devices with
ARM cores. The boot loader accepts the formats listed in Table 12-3.

Table 12-3. Boot Table Source Formats

Format Option
Parallel boot GP 1/0 8 bit --gpio8
Parallel boot GP 1/0 16 bit --gpiol6
8-bit SPI boot --Spi8

The ARM on C28x devices with ARM cores can boot through the SPI-A 8-bit, GP 1/O 8-bit, or GP I/l 16-bit
interface. The format of the boot table is shown in Table 12-4.

Table 12-4. Boot Table Format

Description Bytes Content

Boot table header 1-2 Key value (Ox10AA or OxX08AA)
3-18 Register initialization value or reserved for future use
19-22 Entry point

Block header 23-24 Block size in number of bytes (nl)
25-28 Destination address of the block

Block data 29-30 Raw data for the block (nl bytes)

Block header 31 +nl Block size in number of bytes

Destination address of the block

Block data . Raw data for the block

Additional block headers and data, Content as appropriate

as required

Block header with size 0 0x0000; indicates the end of the boot table.

The ARM on C28x devices with ARM cores can boot through either the serial 8-bit or parallel interface
with either 8- or 16-bit data. The format is the same for any combination: the boot table consists of a field
containing the destination address, a field containing the length, and a block containing the data. You can
boot only one section. If you are booting from an 8-bit channel, 8-bit bytes are stored in the table with
MSBs first; the hex conversion utility automatically builds the table in the correct format. Use the following
options to specify the boot table source:

» To boot from a SPI-A port, specify --spi8 when invoking the utility. Do not specify --memwidth or --
romwidth. Use --lospcp to set the initial value for the LOSPCP register and --spibrr to set the initial
value for the SPIBRR register. If the register values are not specified for the --spi8 format, the hex
conversion utility uses the default value 0x02 for LOSPCP and 0x7F for SPIBRR.

» To load from a general-purpose parallel I/O port, invoke the utility with --gpio8 or --gpio16. Do not
specify --memwidth or --romwidth.

300 Hex Conversion Utility Description SPNU118L—June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Building a Table for an On-Chip Boot Loader

The command file in Example 12-3 allows you to boot the .text and .cinit sections of test.out from a 16-bit-
wide EPROM at location Ox3FFCO00. The map file test.map is also generated.

Example 12-3. Sample Command File for Booting From 8-Bit SPI Boot

/* ___ */
/* Hex converter command file. */
/* ___ */
test. out /* Input COFF file */

--ascii /* Select ASCII format */

- - map=t est . map /* Specify the map file */

--outfile=test_spi8.hex /[/* Hex utility out file */

- - boot /* Consider all the input sections as boot sections */
--spi 8 /* Specify the SPI 8-bit boot format */

- -1 ospcp=0x3F /* Set the initial value for the LOSPCP as Ox3F */

/* The -spibrr option is not specified to show that */
/* the hex utility uses the default value (Ox7F) */
--ent rypoi nt =0x3F0000 /* Set the entry point */

The command file in Example 12-3 generates the out file in Figure 12-6. The control register values are
coded in the boot table header and that header has the address that is specified with the --entrypoint
option.

SPNU118L—-June 2013 Hex Conversion Utility Description 301

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Building a Table for an On-Chip Boot Loader www.ti.com

Figure 12-6. Sample Hex Converter Out File for Booting From 8-Bit SPI Boot

— Key value

SPIBRR register initial value
LOSPCP initial value
J: Reserved for future use Entry point
)\ .

08 An 3F 7F 00 00 00 00 0O 00 OO0 00 00 OO 00 00 00 0O 00 3F 00 00 01 20

~—T—/

Length of first block in bytes

Address of the first block

—_—

3F 00 00 00 42 BB 00 9A 04 28 05 00 O6 00 AD 28 88 10 69 FF 1F 56 16 56
12 56 40 29 1F 76 00 00 02 29 1B 76 22 76 A9 28 90 00 A8 28 3F 00 01 09
1D 61 FF 76 90 00 04 29 OF 6F 00 9B A9 24 01 DF 04 6C 04 29 A8 24 01 DF
A6 1E Al F7 86 24 A7 06 Al B1 01 09 A7 1E AD 24 03 63 5C FF 04 3B A9 59
00 77 00 77 01 DF 09 00 EA FF 1A 76 A9 28 FF FF A8 28 FF FF 01 09 OE 61
FF 76 FF FF 06 6F 01 DF BD C3 A7 1E 67 3E BE C5 A9 24 01 DF AB 24 58 FF
F7 60 7F 76 00 00 7F 76 4B 00 BD B2 42 BB BD AA 02 C5 67 3E 40 B8 00 59
Al 92 0D EC 03 56 Al 01 A9 08 40 10 A9 5A 82 DA C2 C5 67 3E Al 92 FF 9C
A9 59 FA ED 40 BB 02 06 03 EC A7 1E 67 3E 40 B8 04 06 03 EC A7 1E 67 3E
00 77 00 oF 42 BB BD B2 02 C5 A4 BB 67 3E 40 B8 00 92 20 52 06 64 42 BB
00 c5 &7 3E 01 9A 0D 6F 00 93 00 OA 03 56 AB 01 A9 5C R4 08 40 10 42 BS
C4 B2 00 C5 67 3E 00 9A BE 8B 06 00 00 6r 06 00 42 BB 02 A8 06 00 42 B8
00 a8 06 00

Length of second block in bytes
Address of the second block

—_—

00 34 00 3F 01 20 04 00 84 10 01 00 02 00 03 00 04 00 01 0O 00 10 00 0O
02 00 02 10 00 0O 00 00 02 OO 04 10 OO0 OO 0O 00 02 OO B8O 10 B9 00 3F 0O
02 00 82 10 89 00 3F 0O 00 00 00 0O

Terminating header with length zero

The command file in Example 12-4 allows you to boot the .text and .cinit sections of test.out from the 16-
bit parallel GP 1/0O port. The map file test.map is also generated.

Example 12-4. Sample Command File for ARM 16-Bit Parallel Boot GP I/O

/* ___ */
/* Hex converter comand file. */
/* ___ */
test. out /* Input COFF file */

--ascii /* Select ASCII format */

- - map=t est . map /* Specify the map file */
--outfile=test_gpi0l6.hex /* Hex utility out file */

--gpi 016 /* Specify the 16-bit GP I/O boot format */
SECTI ONS

{

.text: paddr=BOOT
.cinit: paddr=BOCT

The command file in Example 12-4 generates the out file in Figure 12-7.

302 Hex Conversion Utility Description SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS

INSTRUMENTS

www.ti.com

Building a Table for an On-Chip Boot Loader

Figure 12-7. Sample Hex Converter Out File for ARM 16-Bit Parallel Boot GP I/O

00
56
61
1E
77
76
60
92
59
77
c5
B2
RS

Key value

3F
1a
1D
Ab
00
FF
F7
Al
A%
00
00
c4
00

Reserved for future use

Entry point

|

00
29
76
F7
77
FF
76
EC
ED
&6F
3E
Cc5
00

00
40
FF
Al
00
FF
7F
0D
FA
0o
67
0o
06

BS
76
00
24
DF
6F
00
56
BB
B8
94
3E

42
1F
90
86
01

00
03
40
42
01
67

Address of the first block

JE

94
00
29
06
00
DF
76
01
06
B2
6F
9a

00
00
04
A7
09

7F
Al
0z
BD
0D
0o

28
29
6F
81
FF
Cc3
00
08
EC
Cc5
93
8B

04
02
OF
Al
EA
BD
4B
AS
03
02
00
BE

Length of second block in bytes

00
76
9B
09
76
1E
B2
10
1E
8B
oA
00

05
1B
0o
01
1a
AT
BD
40
A7
Ad
00
06

[Address of the second block

00 34 00 3F 00 90 00 04 10 84 00 01
00 02 10 02 00 00 OO0 00 00 02 10 04
00 02 10 B2 00 B89 00 3F 00 00 0O 0O

(I

[

00
76
24
1E
28
3E
B8
54
3E
3E
56
6F

00

10 AA 00 00 00 00 00 00 00 00 00 00 00 00

06
22
A9
AT
A9
67
42
A9
b7
&7
03
00

02

0o

28
28
DF
24
FF
c5

DA
BB
B8
01
00

0o

00

AD
A9
01
A9
FF
BE

82
40
40
A8
06

03

00 00 00 00

Terminating header with length zero

00 00 00 3F 00 05 01 20

SR

Length of first block in bytes

10 88 FF 69 56 1F 56 16
00 90 28 AB 00 3F 09 01
6C 04 29 04 24 AB DF 01
63 03 FF 5C 3B 04 59 A9
28 A8 FF FF 09 01 61 OE

C5 02 3E 67 B8 40 59 00
C5 C2 3E 67 92 Al 9C FF
06 04 EC 03 1E A7 3E 67
92 00 52 20 64 06 BB 42
5C A9 08 A4 10 40 B8 42
BE 42 AB 02 00 06 BB 42

00 04 00 01 10 GO 00 00
00 02 10 80 00 89 00 3F

SPNU118L—-June 2013
Submit Documentation Feedback

Hex Conversion Utility Description

Copyright © 2013, Texas Instruments Incorporated

303

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Controlling the ROM Device Address www.ti.com

12.11 Controlling the ROM Device Address

The hex conversion utility output address field corresponds to the ROM device address. The EPROM
programmer burns the data into the location specified by the hex conversion utility output file address field.
The hex conversion utility offers some mechanisms to control the starting address in ROM of each
section. However, many EPROM programmers offer direct control of the location in ROM in which the
data is burned.

The address field of the hex-conversion utility output file is controlled by the following items, which are
listed from low to high priority:

1.

2.

The linker command file. By default, the address field of the hex conversion utility output file is the
load address (as given in the linker command file).

The paddr parameter of the SECTIONS directive. When the paddr parameter is specified for a
section, the hex conversion utility bypasses the section load address and places the section in the
address specified by paddr.

The --zero option. When you use the --zero option, the utility resets the address origin to 0 for each
output file. Since each file starts at 0 and counts upward, any address records represent offsets from
the beginning of the file (the address within the ROM) rather than actual target addresses of the data.

You must use the --zero option in conjunction with the --image option to force the starting address in
each output file to be zero. If you specify the --zero option without the --image option, the utility issues
a warning and ignores the --zero option.

The --byte option. Some EPROM programmers may require the output file address field to contain a
byte count rather than a word count. If you use the —byte option, the output file address increments
once for each byte. For example, if the starting address is Oh, the first line contains eight words, and
you use no —byte option, the second line would start at address 8 (8h). If the starting address is Oh, the
first line contains eight words, and you use the —byte option, the second line would start at address 16
(010h). The data in both examples are the same; —byte affects only the calculation of the output file
address field, not the actual target processor address of the converted data.

The --byte option causes the address records in an output file to refer to byte locations within the file,
whether the target processor is byte-addressable or not.

304

Hex Conversion Utility Description SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com

Control Hex Conversion Utility Diagnostics

12.12 Control Hex Conversion Utility Diagnostics

The hex conversion utility uses certain C/C++ compiler options to control hex-converter-generated

diagnostics.

--diag_error=id

--diag_remark=id

--diag_suppress=id

--diag_warning=id

--display_error_number

--issue_remarks
--no_warnings
--set_error_limit=count

--verbose_diagnostics

Categorizes the diagnostic identified by id as an error. To determine the
numeric identifier of a diagnostic message, use the --display_error_number
option first in a separate link. Then use --diag_error=id to recategorize the
diagnostic as an error. You can only alter the severity of discretionary
diagnostics.

Categorizes the diagnostic identified by id as a remark. To determine the
numeric identifier of a diagnostic message, use the --display_error_number
option first in a separate link. Then use --diag_remark=id to recategorize the
diagnostic as a remark. You can only alter the severity of discretionary
diagnostics.

Suppresses the diagnostic identified by id. To determine the numeric
identifier of a diagnostic message, use the --display_error_number option first
in a separate link. Then use --diag_suppress=id to suppress the diagnostic.
You can only suppress discretionary diagnostics.

Categorizes the diagnostic identified by id as a warning. To determine the
numeric identifier of a diagnostic message, use the --display_error_number
option first in a separate link. Then use --diag_warning=id to recategorize the
diagnostic as a warning. You can only alter the severity of discretionary
diagnostics.

Displays a diagnostic's numeric identifier along with its text. Use this option in
determining which arguments you need to supply to the diagnostic
suppression options (--diag_suppress, --diag_error, --diag_remark, and --
diag_warning). This option also indicates whether a diagnostic is
discretionary. A discretionary diagnostic is one whose severity can be
overridden. A discretionary diagnostic includes the suffix -D; otherwise, no
suffix is present. See the ARM Optimizing C/C++ Compiler User's Guide for
more information on understanding diagnostic messages.

Issues remarks (nonserious warnings), which are suppressed by default.
Suppresses warning diagnostics (errors are still issued).

Sets the error limit to count, which can be any decimal value. The linker
abandons linking after this number of errors. (The default is 100.)

Provides verbose diagnostics that display the original source with line-wrap
and indicate the position of the error in the source line

SPNU118L—June 2013
Submit Documentation Feedback

Hex Conversion Utility Description 305

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Description of the Object Formats www.ti.com

12.13 Description of the Object Formats

The hex conversion utility has options that identify each format. Table 12-5 specifies the format options.
They are described in the following sections.

* You need to use only one of these options on the command line. If you use more than one option, the
last one you list overrides the others.

* The default format is Tektronix (--tektronix option).

Table 12-5. Options for Specifying Hex Conversion Formats

Option Alias Format Address Bits Default Width
--ascii -a ASCII-Hex 16 8

--intel -i Intel 32 8
--motorola=1 -ml Motorola-S1 16 8
--motorola=2 -m2 Motorola-S2 24 8
--motorola=3 -m3 Motorola-S3 32 8
--ti-tagged -t TI-Tagged 16 16
—ti_txt TI_TXT 8 8
--tektronix -X Tektronix 32 8

Address bits determine how many bits of the address information the format supports. Formats with 16-
bit addresses support addresses up to 64K only. The utility truncates target addresses to fit in the number
of available bits.

The default width determines the default output width of the format. You can change the default width by
using the --romwidth option or by using the romwidth parameter in the ROMS directive. You cannot
change the default width of the TI-Tagged format, which supports a 16-bit width only.

12.13.1 ASCII-Hex Object Format (--ascii Option)

The ASCII-Hex object format supports 16-bit addresses. The format consists of a byte stream with bytes
separated by spaces. Figure 12-8 illustrates the ASCII-Hex format.

Figure 12-8. ASCII-Hex Object Format

Nonprintable
Nonprintable Address end code

start code 1_‘ Jj

"B $AXXXXXXXX,
XX XX XX XX XX XX XX XX XX XX. . ."C

Data byte

The file begins with an ASCII STX character (ctrl-B, 02h) and ends with an ASCII ETX character (ctrl-C,
03h). Address records are indicated with SAXXXXXXX, in which XXXXXXXX is a 8-digit (16-bit)
hexadecimal address. The address records are present only in the following situations:

* When discontinuities occur
* When the byte stream does not begin at address 0

You can avoid all discontinuities and any address records by using the --image and --zero options. This
creates output that is simply a list of byte values.

306

Hex Conversion Utility Description SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Description of the Object Formats

12.13.2 Intel MCS-86 Object Format (--intel Option)

The Intel object format supports 16-bit addresses and 32-bit extended addresses. Intel format consists of
a 9-character (4-field) prefix (which defines the start of record, byte count, load address, and record type),
the data, and a 2-character checksum suffix.

The 9-character prefix represents three record types:

Record Type Description

00 Data record
01 End-of-file record
04 Extended linear address record

Record type00, the data record, begins with a colon (:) and is followed by the byte count, the address of
the first data byte, the record type (00), and the checksum. The address is the least significant 16 bits of a
32-bit address; this value is concatenated with the value from the most recent 04 (extended linear
address) record to create a full 32-bit address. The checksum is the 2s complement (in binary form) of the
preceding bytes in the record, including byte count, address, and data bytes.

Record type 01, the end-of-file record, also begins with a colon (:), followed by the byte count, the
address, the record type (01), and the checksum.

Record type 04, the extended linear address record, specifies the upper 16 address bits. It begins with a
colon (:), followed by the byte count, a dummy address of Oh, the record type (04), the most significant
16 bits of the address, and the checksum. The subsequent address fields in the data records contain the
least significant bytes of the address.

Figure 12-9 illustrates the Intel hexadecimal object format.

Figure 12-9. Intel Hexadecimal Object Format

Start
character
Address

Extended linear
address record
Most significant 16 bits

:2000000000000100020003000400050006000700080009000A000B000C000DO00OEOOOF0068
:2000200010001100120013001400150016001700180019001A001B001C001D001EO01F0048 | Data
:2000400000000100020003000400050006000700080009000A000B000C000DO00OEOOOF0028 records

:2000600010001100120013001400150016001700180019001A001B001C001D001EO01F0008
:00000001FF L]
T |
‘ Checksum
Byte Record End-of-file
count type record
SPNU118L—-June 2013 Hex Conversion Utility Description 307

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Description of the Object Formats www.ti.com

12.13.3 Motorola Exorciser Object Format (--motorola Option)

The Motorola S1, S2, and S3 formats support 16-bit, 24-bit, and 32-bit addresses, respectively. The
formats consist of a start-of-file (header) record, data records, and an end-of-file (termination) record.
Each record consists of five fields: record type, byte count, address, data, and checksum. The three
record types are:

Record Type Description

SO Header record

S1 Code/data record for 16-bit addresses (S1 format)
S2 Code/data record for 24-bit addresses (S2 format)
S3 Code/data record for 32-bit addresses (S3 format)
S7 Termination record for 32-bit addresses (S3 format)
S8 Termination record for 24-bit addresses (S2 format)
S9 Termination record for 16-bit addresses (S1 format)

The byte count is the character pair count in the record, excluding the type and byte count itself.

The checksum is the least significant byte of the 1s complement of the sum of the values represented by
the pairs of characters making up the byte count, address, and the code/data fields.

Figure 12-10 illustrates the Motorola-S object format.

Figure 12-10. Motorola-S Format

Record Address Checksum

type
S00600004844521B _F Header record
$32200DD
S31AP001FFEB00FA Data records
$70500000000FA F Termination

record
Checksum
Byte count
Address for S3 records
308 Hex Conversion Utility Description SPNU118L—June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Description of the Object Formats

12.13.4 Extended Tektronix Object Format (--tektronix Option)
The Tektronix object format supports 32-bit addresses and has two types of records:

Data records contains the header field, the load address, and the object code.
Termination records signifies the end of a module.

The header field in the data record contains the following information:

Number of ASCII

Item Characters Description

% 1 Data type is Tektronix format

Block length 2 Number of characters in the record, minus the %
Block type 1 6 = data record

8 = termination record

Checksum 2 A 2-digit hex sum modulo 256 of all values in the record except the % and the
checksum itself.

The load address in the data record specifies where the object code will be located. The first digit
specifies the address length; this is always 8. The remaining characters of the data record contain the
object code, two characters per byte.

Figure 12-11 illustrates the Tektronix object format.

Figure 12-11. Extended Tektronix Object Format

Checksum:; 21h = 1+5+6+8+1+0+0+0+0+0+0+
0+

Block length 0

1ah = 26 4'_‘_‘ I: Object code: 6 bytes

Header $15621810000000202020202020
character T

2+0+2+0+2+0+2+0+2+0+2+

Load address: 10000000h
Block type: 6 Length of
(data) load address

SPNU118L—-June 2013 Hex Conversion Utility Description

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

309

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Description of the Object Formats www.ti.com

12.13.5 Texas Instruments SDSMAC (Tl-Tagged) Object Format (--ti_tagged Option)

The Texas Instruments SDSMAC (TI-Tagged) object format supports 16-bit addresses, including start-of-
file record, data records, and end-of-file record. Each data records consists of a series of small fields and
is signified by a tag character:

Tag Character Description

K Followed by the program identifier
Followed by a checksum

Followed by a dummy checksum (ignored)
Followed by a 16-bit load address
Followed by a data word (four characters)
Identifies the end of a data record

*+ M W © 0

Followed by a data byte (two characters)

Figure 12-12 illustrates the tag characters and fields in TI-Tagged object format.

Figure 12-12. TI-Tagged Object Format

Start-of-file Load
record Program address Tag characters
identifier ‘

9 e e e e S A A A A

KOOOOCOFFTOTI90000BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7EF3DF
BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7EE37F Data

er FF blBlb FFFBFFF ble FF J:lBlr FF blBlb FF J:XBXJ: FF bﬁb FF J:XBXJ: FF blBlb FF 1:171F24 51F B records
T [I I I I I I I]

End-of-file Data

record words Checksum

If any data fields appear before the first address, the first field is assighed address 0000h. Address fields
may be expressed but not required for any data byte. The checksum field, preceded by the tag character
7, is the 2s complement of the sum of the 8-bit ASCII values of characters, beginning with the first tag
character and ending with the checksum tag character (7 or 8). The end-of-file record is a colon (:).

310 Hex Conversion Utility Description SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Description of the Object Formats

12.13.6 TI-TXT Hex Format (--ti_txt Option)

The TI-TXT hex format supports 16-bit hexadecimal data. It consists of section start addresses, data byte,
and an end-of-file character. These restrictions apply:

» The number of sections is unlimited.

» Each hexadecimal start address must be even.

» Each line must have 16 data bytes, except the last line of a section.

» Data bytes are separated by a single space.

* The end-of-file termination tag q is mandatory.

The data record contains the following information:

Item Description
@ADDR Hexadecimal start address of a section
DATAN Hexadecimal data byte
q End-of-file termination character

Figure 12-13. TI-TXT Object Format

Section
start

l—l—l

@ADDR1

D { DATAO]l DATAO2 .eeeeees DATAl6
ata

bytes DATA17 DATA32 DATA32

DATAM «.¢ceeeon DATAnN

Section —{ @ADDR2

sta DATAOL +eveveeeeeennennnnns DATAn }— Data
q bytes

Ll_l

End-of-line
character

Example 12-5. TI-TXT Object Format

@000

31 40 00 03 B2 40 80 5A 20 01 D2 D3 22 00 D2 E3
21 00 3F 40 E8 FD 1F 83 FE 23 F9 3F

@FFE

00 FO

Q

SPNU118L—-June 2013 Hex Conversion Utility Description 311

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

I3 TEXAS
INSTRUMENTS

You can use the .cdecls assembler directive to share C headers containing declarations and prototypes
between C and assembly code. Any legal C/C++ can be used in a .cdecls block and the C/C++
declarations will cause suitable assembly to be generated automatically, allowing you to reference the

Chapter 13

Sharing C/C++ Header Files With Assembly Source

C/C++ constructs in assembly code.

Topic

131
13.2
13.3
13.4

Page

Overview Of the .CAECIS DIrECHIVE ..uuiuiieiiiiiii it e et ea e e eaaeaeeneneraeanenaens 313
NOLES ON C/CH+ CONVEISIONS 1uiuuiueiutiniett ettt tneaetattaeaasattataaeaeaeaasaeeneanraeeneansnes 313
Notes on C++ SPECIfiC CONVEISIONS ..uiuiuieieitiiiiieiire ettt seeasarasaaeanaeeenenes 317
Special ASSEMDIEr SUPPOIT «.eneee ettt ettt e e e e e et eaaneeeaeanns 318

312

Sharing C/C++ Header Files With Assembly Source

Copyright © 2013, Texas Instruments Incorporated

SPNU118L—-June 2013

SPNU118L—June 2013
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

I

TEXAS
INSTRUMENTS

www.ti.com Overview of the .cdecls Directive

13.1

13.2

13.2.

Overview of the .cdecls Directive

The .cdecls directive allows programmers in mixed assembly and C/C++ environments to share C headers
containing declarations and prototypes between the C and assembly code. Any legal C/C++ can be used
in a .cdecls block and the C/C++ declarations will cause suitable assembly to be generated automatically.
This allows the programmer to reference the C/C++ constructs in assembly code — calling functions,
allocating space, and accessing structure members — using the equivalent assembly mechanisms. While
function and variable definitions are ignored, most common C/C++ elements are converted to assembly:
enumerations, (non function-like) macros, function and variable prototypes, structures, and unions.

See the .cdecls directive description for details on the syntax of the .cdecls assembler directive.

The .cdecls directive can appear anywhere in an assembly source file, and can occur multiple times within
a file. However, the C/C++ environment created by one .cdecls is not inherited by a later .cdecls; the
C/C++ environment starts over for each .cdecls instance.

For example, the following code causes the warning to be issued:
.cdecl s C NOLI ST
A
#define ASMIEST 1
%

.cdecl s C NOLI ST
A
#i f ndef ASMIEST
#warn "ASMIEST not defined!" /* will be issued */
#endi f
%
Therefore, a typical use of the .cdecls block is expected to be a single usage near the beginning of the
assembly source file, in which all necessary C/C++ header files are included.

Use the compiler --include_path=path options to specify additional include file paths needed for the header
files used in assembly, as you would when compiling C files.

Any C/C++ errors or warnings generated by the code of the .cdecls are emitted as they normally would for
the C/C++ source code. C/C++ errors cause the directive to fail, and any resulting converted assembly is
not included.

C/C++ constructs that cannot be converted, such as function-like macros or variable definitions, cause a
comment to be output to the converted assembly file. For example:

; ASM HEADER WARNI NG - variable definition ' ABCD ignored

The prefix ASM HEADER WARNING appears at the beginning of each message. To see the warnings,
either the WARN parameter needs to be specified so the messages are displayed on STDERR, or else
the LIST parameter needs to be specified so the warnings appear in the listing file, if any.

Finally, note that the converted assembly code does not appear in the same order as the original C/C++
source code and C/C++ constructs may be simplified to a normalized form during the conversion process,
but this should not affect their final usage.

Notes on C/C++ Conversions

The following sections describe C and C++ conversion elements that you need to be aware of when
sharing header files with assembly source.

1 Comments

Comments are consumed entirely at the C level, and do not appear in the resulting converted assembly
file.

SPNU118L—June 2013 Sharing C/C++ Header Files With Assembly Source 313
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Notes on C/C++ Conversions www.ti.com

13.2.2 Conditional Compilation (#if/#else/#ifdef/etc.)

Conditional compilation is handled entirely at the C level during the conversion step. Define any necessary
macros either on the command line (using the compiler --define=name=value option) or within a .cdecls
block using #define. The #if, #ifdef, etc. C/C++ directives are not converted to assembly .if, .else, .elseif,
and .endif directives.

13.2.3 Pragmas

Pragmas found in the C/C++ source code cause a warning to be generated as they are not converted.
They have no other effect on the resulting assembly file. See the .cdecls topic for the WARN and
NOWARN parameter discussion for where these warnings are created.

13.2.4 The #error and #warning Directives

These preprocessor directives are handled completely by the compiler during the parsing step of
conversion. If one of these directives is encountered, the appropriate error or warning message is emitted.
These directives are not converted to .emsg or .wmsg in the assembly output.

13.2.5 Predefined symbol _ _ASM_HEADER_ _

The C/C++ macro _ _ASM_HEADER_ _is defined in the compiler while processing code within .cdecls.
This allows you to make changes in your code, such as not compiling definitions, during the .cdecls
processing.

Be Careful With the _ _ASM_HEADER_ _ Macro

NOTE: You must be very careful not to use this macro to introduce any changes in the code that
could result in inconsistencies between the code processed while compiling the C/C++
source and while converting to assembly.

13.2.6 Usage Within C/C++ asm() Statements

The .cdecls directive is not allowed within C/C++ asm() statements and will cause an error to be
generated.

13.2.7 The #include Directive

The C/C++ #include preprocessor directive is handled transparently by the compiler during the conversion
step. Such #includes can be nested as deeply as desired as in C/C++ source. The assembly directives
.include and .copy are not used or needed within a .cdecls. Use the command line --include_path option to
specify additional paths to be searched for included files, as you would for C compilation.

13.2.8 Conversion of #define Macros

Only object-like macros are converted to assembly. Function-like macros have no assembly
representation and so cannot be converted. Pre-defined and built-in C/C++ macros are not converted to
assembly (i.e., __FILE_ , _TIME__, _TI_COMPILER_VERSION__, etc.). For example, this code is
converted to assembly because it is an object-like macro:

#defi ne NAME Charl ey

This code is not converted to assembly because it is a function-like macro:
#define MAX(X,y) (x>y ? X :Y)
Some macros, while they are converted, have no functional use in the containing assembly file. For

example, the following results in the assembly substitution symbol FOREVER being set to the value
while(1), although this has no useful use in assembly because while(1) is not legal assembly code.

#defi ne FOREVER whil e(1)

314 Sharing C/C++ Header Files With Assembly Source SPNU118L—June 2013
Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Notes on C/C++ Conversions

Macro values are not interpreted as they are converted. For example, the following results in the
assembler substitution symbol OFFSET being set to the literal string value 5+12 and not the value 17.
This happens because the semantics of the C/C++ language require that macros are evaluated in context
and not when they are parsed.

#def i ne OFFSET 5+12

Because macros in C/C++ are evaluated in their usage context, C/C++ printf escape sequences such as
\n are not converted to a single character in the converted assembly macro. See Section 13.2.11 for
suggestions on how to use C/C++ macro strings.

Macros are converted using the .define directive (see Section 13.4.2), which functions similarly to the .asg
assembler directive. The exception is that .define disallows redefinitions of register symbols and
mnemonics to prevent the conversion from corrupting the basic assembly environment. To remove a
macro from the assembly scope, .undef can be used following the .cdecls that defines it (see

Section 13.4.3).

The macro functionality of # (stringize operator) is only useful within functional macros. Since functional
macros are not supported by this process, # is not supported either. The concatenation operator ## is only
useful in a functional context, but can be used degenerately to concatenate two strings and so it is
supported in that context.

13.2.9 The #undef Directive
Symbols undefined using the #undef directive before the end of the .cdecls are not converted to assembly.

13.2.10 Enumerations

Enumeration members are converted to .enum elements in assembly. For example:
enum state { ACTI VE=0x10, SLEEPI NG=0x01, | NTERRUPT=0x100, POWEROFF, LAST};

is converted to the following assembly code:

state .enum

ACTI VE .emenber 16

SLEEPI NG .emenber 1

NTERRUPT . emenber 256

PONERCFF . emenber 257

LAST . emenber 258
. endenum

The members are used via the pseudo-scoping created by the .enum directive.
The usage is similar to that for accessing structure members, enum_name.member.

This pseudo-scoping is used to prevent enumeration member names from corrupting other symbols within
the assembly environment.

13.2.11 C Strings

Because C string escapes such as \n and \t are not converted to hex characters 0xOA and 0x09 until their
use in a string constant in a C/C++ program, C macros whose values are strings cannot be represented
as expected in assembly substitution symbols. For example:

#define MSG "\tH \n"

becomes, in assembly:
.define """\tH\n""" MSG ; 6 quoted characters! not 5!

When used in a C string context, you expect this statement to be converted to 5 characters (tab, H, I,
newline, NULL), but the .string assembler directive does not know how to perform the C escape
conversions.

You can use the .cstring directive to cause the escape sequences and NULL termination to be properly
handled as they would in C/C++. Using the above symbol MSG with a .cstring directive results in 5
characters of memory being allocated, the same characters as would result if used in a C/C++ strong
context. (See Section 13.4.7 for the .cstring directive syntax.)

SPNU118L—June 2013 Sharing C/C++ Header Files With Assembly Source 315

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Notes on C/C++ Conversions www.ti.com

13.2.12 C/C++ Built-In Functions

The C/C++ built-in functions, such as sizeof(), are not translated to their assembly counterparts, if any, if
they are used in macros. Also, their C expression values are not inserted into the resulting assembly
macro because macros are evaluated in context and there is no active context when converting the
macros to assembly.

Suitable functions such as $sizeof() are available in assembly expressions. However, as the basic types
such as int/char/float have no type representation in assembly, there is no way to ask for $sizeof(int), for
example, in assembly.

13.2.13 Structures and Unions

C/C++ structures and unions are converted to assembly .struct and .union elements. Padding and ending
alignments are added as necessary to make the resulting assembly structure have the same size and
member offsets as the C/C++ source. The primary purpose is to allow access to members of C/C++
structures, as well as to facilitate debugging of the assembly code. For nested structures, the assembly
.tag feature is used to refer to other structures/unions.

The alignment is also passed from the C/C++ source so that the assembly symbol is marked with the
same alignment as the C/C++ symbol. (See Section 13.2.3 for information about pragmas, which may
attempt to modify structures.) Because the alignment of structures is stored in the assembly symbol, built-
in assembly functions like $sizeof() and $alignof() can be used on the resulting structure name symbol.
When using unnamed structures (or unions) in typedefs, such as:

typedef struct { int a_nenber; } nystrnane;

This is really a shorthand way of writing:
struct tenporary_nanme { int a_nenber; };
typedef tenporary_nane mnystrnane;

The conversion processes the above statements in the same manner: generating a temporary name for
the structure and then using .define to output a typedef from the temporary name to the user name. You
should use your mystrname in assembly the same as you would in C/C++, but do not be confused by the
assembly structure definition in the list, which contains the temporary name. You can avoid the temporary
name by specifying a hame for the structure, as in:

typedef struct a_st_name { ... } nystrnane;

If a shorthand method is used in C to declare a variable with a particular structure, for example:
extern struct a_nanme { int a_nenber; } a_variable;

Then after the structure is converted to assembly, a .tag directive is generated to declare the structure of
the external variable, such as:

_a variable .tag a_st_nane

This allows you to refer to _a_variable.a_member in your assembly code.

13.2.14 Function/Variable Prototypes

Non-static function and variable prototypes (not definitions) will result in a .global directive being generated
for each symbol found.

See Section 13.3.1 for C++ name mangling issues.

Function and variable definitions will result in a warning message being generated (see the
WARN/NOWARN parameter discussion for where these warnings are created) for each, and they will not
be represented in the converted assembly.

The assembly symbol representing the variable declarations will not contain type information about those
symbols. Only a .global will be issued for them. Therefore, it is your responsibility to ensure the symbol is
used appropriately.

See Section 13.2.13 for information on variables names which are of a structure/union type.

316

Sharing C/C++ Header Files With Assembly Source SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

I

TEXAS
INSTRUMENTS

www.ti.com Notes on C++ Specific Conversions

13.2.15 C Constant Suffixes

The C constant suffixes u, |, and f are passed to the assembly unchanged. The assembler will ignore
these suffixes if used in assembly expressions.

13.2.16 Basic C/C++ Types

13.3

Only complex types (structures and unions) in the C/C++ source code are converted to assembly. Basic
types such as int, char, or float are not converted or represented in assembly beyond any existing .int,
.char, .float, etc. directives that previously existed in assembly.

Typedefs of basic types are therefore also not represented in the converted assembly.

Notes on C++ Specific Conversions

The following sections describe C++ specific conversion elements that you need to be aware of when
sharing header files with assembly source.

13.3.1 Name Mangling

Symbol names may be mangled in C++ source files. When mangling occurs, the converted assembly will
use the mangled names to avoid symbol name clashes. You can use the demangler (armdem) to
demangle names and identify the correct symbols to use in assembly.

To defeat name mangling in C++ for symbols where polymorphism (calling a function of the same name
with different kinds of arguments) is not required, use the following syntax:

extern "C' void somefunc(int arg);

The above format is the short method for declaring a single function. To use this method for multiple
functions, you can also use the following syntax:

extern "C'

{

voi d sonefunc(int arg);
int anotherfunc(int arg);

13.3.2 Derived Classes

Derived classes are only partially supported when converting to assembly because of issues related to
C++ scoping which does not exist in assembly. The greatest difference is that base class members do not
automatically become full (top-level) members of the derived class. For example:

cl ass base

{
publi c:
int bil;

3

class derived : public base

{
publi c:
int di;

}

In C++ code, the class derived would contain both integers b1 and d1. In the converted assembly
structure "derived”, the members of the base class must be accessed using the name of the base class,
such as derived.__b_base.bl rather than the expected derived.bl.

A non-virtual, non-empty base class will have __b_ prepended to its name within the derived class to
signify it is a base class name. That is why the example above is derived.__b_base.b1 and not simply
derived.base.bl.

SPNU118L—June 2013 Sharing C/C++ Header Files With Assembly Source 317
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Special Assembler Support www.ti.com

13.3.3 Templates

No support exists for templates.

13.3.4 Virtual Functions

No support exists for virtual functions, as they have no assembly representation.

13.4 Special Assembler Support

13.4.1 Enumerations (.enum/.emember/.endenum)

The following directives support a pseudo-scoping for enumerations:

ENUM_NAME .enum

MEMBER1 .emember [value]
MEMBER2 .emember [value]
.endenum

The .enum directive begins the enumeration definition and .endenum terminates it.
The enumeration name (ENUM_NAME) cannot be used to allocate space; its size is reported as zero.

The format to use the value of a member is ENUM_NAME.MEMBER, similar to a structure member
usage.

The .emember directive optionally accepts the value to set the member to, just as in C/C++. If not
specified, the member takes a value one more than the previous member. As in C/C++, member names
cannot be duplicated, although values can be. Unless specified with .emember, the first enumeration
member will be given the value 0 (zero), as in C/C++.

The .endenum directive cannot be used with a label, as structure .endstruct directives can, because the
.endenum directive has no value like the .endstruct does (containing the size of the structure).

Conditional compilation directives (.if/.else/.elseif/.endif) are the only other non-enumeration code allowed
within the .enum/.endenum sequence.

13.4.2 The .define Directive

The .define directive functions in the same manner as the .asg directive, except that .define disallows
creation of a substitution symbol that has the same name as a register symbol or mnemonic. It does not
create a new symbol name space in the assembler, rather it uses the existing substitution symbol name
space. The syntax for the directive is:

.define substitution string , substitution symbol name

The .define directive is used to prevent corruption of the assembly environment when converting C/C++
headers.

13.4.3 The .undefine/.unasg Directives

The .undef directive is used to remove the definition of a substitution symbol created using .define or .asg.
This directive will remove the named symbol from the substitution symbol table from the point of the .undef
to the end of the assembly file. The syntax for these directives is:

.undefine substitution symbol name
.unasg substitution symbol name

This can be used to remove from the assembly environment any C/C++ macros that may cause a
problem.

Also see Section 13.4.2, which covers the .define directive.

318

Sharing C/C++ Header Files With Assembly Source SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

I

TEXAS
INSTRUMENTS

www.ti.com Special Assembler Support

13.4.4 The $defined() Built-In Function

The $defined directive returns true/1 or false/O depending on whether the name exists in the current
substitution symbol table or the standard symbol table. In essence $defined returns TRUE if the
assembler has any user symbol in scope by that name. This differs from $isdefed in that $isdefed only
tests for NON-substitution symbols. The syntax is:

$defined(substitution symbol name)
A statement such as ".if $defined(macroname)” is then similar to the C code "#ifdef macroname".
See Section 13.4.2 and Section 13.4.3 for the use of .define and .undef in assembly.

13.4.5 The $sizeof Built-In Function

The assembly built-in function $sizeof() can be used to query the size of a structure in assembly. It is an
alias for the already existing $structsz(). The syntax is:

$sizeof(structure name)
The $sizeof function can then be used similarly to the C built-in function sizeof().

The assembler's $sizeof() built-in function cannot be used to ask for the size of basic C/C++ types, such
as $sizeof(int), because those basic type names are not represented in assembly. Only complex types are
converted from C/C++ to assembly.

Also see Section 13.2.12, which notes that this conversion does not happen automatically if the C/C++
sizeof() built-in function is used within a macro.

13.4.6 Structure/Union Alignment and $alignof()

The assembly .struct and .union directives take an optional second argument which can be used to
specify a minimum alignment to be applied to the symbol name. This is used by the conversion process to
pass the specific alignment from C/C++ to assembly.

The assembly built-in function $alignof() can be used to report the alignment of these structures. This can
be used even on assembly structures, and the function will return the minimum alignment calculated by
the assembler.

13.4.7 The .cstring Directive

You can use the .cstring directive to cause the escape sequences and NULL termination to be properly
handled as they would in C/C++.

.cstring "String with C escapes.\nWII be NULL term nated.\012"

See Section 13.2.11 for more information on the .cstring directive.

SPNU118L—June 2013 Sharing C/C++ Header Files With Assembly Source 319
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Appendix A
l ’{E)S(?IEUMENTS SPNU118L—-June 2013

Symbolic Debugging Directives

The assembler supports several directives that the ARM C/C++ compiler uses for symbolic debugging.
These directives differ for the two debugging formats, DWARF and COFF.

These directives are not meant for use by assembly-language programmers. They require arguments that
can be difficult to calculate manually, and their usage must conform to a predetermined agreement
between the compiler, the assembler, and the debugger. This appendix documents these directives for
informational purposes only.

Topic Page
A.1 DWARF Debugging FOIMMALoeiiiiuiiiinieieitiiiiieee e e e eee s ar e e e eenenns 321
A.2 COFF Debugging FOIMALuiuiuiiiiiiiiiie ittt ettt e e e e a e e e e e eaeeeaaananan 321
A.3 DeEbUQ DIrECHIVE SYNEAX tuiuiuiitiuiiiiititiieetetiatea et ettt e ta et aa e saeeaeaaaaaaeaeaaananss 322
320 Symbolic Debugging Directives SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

I3 TEXAS
INSTRUMENTS
www.ti.com DWARF Debugging Format
A.1 DWARF Debugging Format

A subset of the DWARF symbolic debugging directives are always listed in the assembly language file that

the compiler creates for program analysis purposes. To list the complete set used for full symbolic debug,

invoke the compiler with the --symdebug:dwarf option, as shown below:

arncl --syndebug: dwarf --keep_asminput_file

The --keep_asm option instructs the compiler to retain the generated assembly file.

To disable the generation of all symbolic debug directives, invoke the compiler with the -symdebug:none

option:

arntl --syndebug: none --keep_asminput_file

The DWARF debugging format consists of the following directives:

» The .dwtag and .dwendtag directives define a Debug Information Entry (DIE) in the .debug_info
section.

e The .dwattr directive adds an attribute to an existing DIE.

* The .dwpsn directive identifies the source position of a C/C++ statement.

» The .dwcie and .dwendentry directives define a Common Information Entry (CIE) in the .debug_frame
section.

» The .dwfde and .dwendentry directives define a Frame Description Entry (FDE) in the .debug_frame
section.

* The .dwcfi directive defines a call frame instruction for a CIE or FDE.

A.2 COFF Debugging Format

COFF symbolic debug is obsolete. These directives are supported for backwards-compatibility only. The

decision to switch to DWARF as the symbolic debug format was made to overcome many limitations of

COFF symbolic debug, including the absence of C++ support.

The COFF debugging format consists of the following directives:

* The .sym directive defines a global variable, a local variable, or a function. Several parameters allow
you to associate various debugging information with the variable or function.

* The .stag, .etag, and .utag directives define structures, enumerations, and unions, respectively. The
.member directive specifies a member of a structure, enumeration, or union. The .eos directive ends a
structure, enumeration, or union definition.

« The .func and .endfunc directives specify the beginning and ending lines of a C/C++ function.

» The .block and .endblock directives specify the bounds of C/C++ blocks.

» The .file directive defines a symbol in the symbol table that identifies the current source filename.

* The .line directive identifies the line number of a C/C++ source statement.

SPNU118L—-June 2013 Symbolic Debugging Directives 321

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Debug Directive Syntax

13 TEXAS
INSTRUMENTS

www.ti.com

A.3 Debug Directive Syntax

Table A-1 is an alphabetical listing of the symbolic debugging directives. For information on the C/C++
compiler, refer to the ARM Optimizing C/C++ Compiler User's Guide.

Table A-1. Symbolic Debugging Directives

Label Directive Arguments
.block [beginning line number]
.dwattr DIE label , DIE attribute name (DIE attribute value)[, DIE attribute name (attribute value) [, ...]
.dwcfi call frame instruction opcode[, operand|, operand]]
CIE label .dwcie version , return address register
.dwendentry
.dwendtag
.dwfde CIE label
.dwpsn " filename ", line number , column number
DIE label .dwtag I[DIE]tag name , DIE attribute name (DIE attribute value)[, DIE attribute name (attribute value)
.endblock [ending line number]
.endfunc [ending line number[, register mask[, frame size]]]
.e0s
.etag name[, size]
file " filename "
func [beginning line number]
line line number|, address]
.member name , value[, type , storage class , size , tag , dims]
.stag name[, size]
.sym name , value[, type , storage class, size , tag , dims]
.utag name[, size]

322

Symbolic Debugging Directives

SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Appendix B
l ’{E)S(?SUMENTS SPNU118L—-June 2013

XML Link Information File Description

The ARM linker supports the generation of an XML link information file via the --xml_link_info file option.
This option causes the linker to generate a well-formed XML file containing detailed information about the
result of a link. The information included in this file includes all of the information that is currently produced
in a linker-generated map file.

As the linker evolves, the XML link information file may be extended to include additional information that
could be useful for static analysis of linker results.

This appendix enumerates all of the elements that are generated by the linker into the XML link
information file.

Topic Page

B.1 XML Information File EIEMeNnt TYPES ..cciiiiriniiiiiiiiiiii it e e e aeaeae 324

B.2 DOCUMENT ElEMENES ..uiuieiiiiiii it ettt e e e et a e e s e et eaaseeanananas 324
SPNU118L—-June 2013 XML Link Information File Description 323

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

XML Information File Element Types www.ti.com

B.1 XML Information File Element Types

These element types will be generated by the linker:

Container elements represent an object that contains other elements that describe the object.
Container elements have an id attribute that makes them accessible from other elements.

String elements contain a string representation of their value.
Constant elements contain a 32-bit unsigned long representation of their value (with a Ox prefix).

Reference elements are empty elements that contain an idref attribute that specifies a link to another
container element.

In Section B.2, the element type is specified for each element in parentheses following the element
description. For instance, the <link_time> element lists the time of the link execution (string).

B.2 Document Elements

The root element, or the document element, is <link_info>. All other elements contained in the XML link
information file are children of the <link_info> element. The following sections describe the elements that
an XML information file can contain.

B.2.1 Header Elements

The first elements in the XML link information file provide general information about the linker and the link
session:

The <banner> element lists the name of the executable and the version information (string).
The <copyright> element lists the Tl copyright information (string).

The <link_time> is a timestamp representation of the link time (unsigned 32-bit int).

The <output_file> element lists the name of the linked output file generated (string).

The <entry_point> element specifies the program entry point, as determined by the linker (container)
with two entries:

— The <name> is the entry point symbol name, if any (string).
— The <address> is the entry point address (constant).

Example B-1. Header Element for the hi.out Output File

<banner >TMS320Cxx Li nker Version x.xx (Jan 6 2008) </ banner >
<copyri ght >Copyri ght (c) 1996-2008 Texas |nstruments | ncorporated</copyright>
<link_time>0x43dfd8a4</link_time>
<out put _file>hi.out</output_file>
<entry_point>

<nanme>_c_i nt 00</ nane>

<addr ess>0xaf 80</ addr ess>
</ entry_point>

324 XML Link Information File Description SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com

Document Elements

B.2.2 Input File List

The next section of the XML link information file is the input file list, which is delimited with a
<input_file_list> container element. The <input_file_list> can contain any number of <input_file>

elements.

Each <input_file> instance specifies the input file involved in the link. Each <input_file> has an id attribute
that can be referenced by other elements, such as an <object_component>. An <input_file> is a container
element enclosing the following elements:

» The <path> element names a directory path, if applicable (string).

» The <kind> element specifies a file type, either archive or object (string).

» The <file> element specifies an archive name or filename (string).

» The <name> element specifies an object file name, or archive member name (string).

Example B-2. Input File List for the hi.out Output File

<input _file_list>

<input_file id="fl-1">

<ki nd>obj ect </ ki nd>
<file>hi.obj</file>
<namne>hi . obj </ name>

</input_file>
<input _file id="fl-2">

<pat h>/tool s/lib/ </ pat h>
<ki nd>ar chi ve</ ki nd>
<file>rtsxxx.lib</file>
<nanme>boot . obj </ nane>

</input_file>
<input _file id="fl-3">

<pat h>/t ool s/ | i b/ </ pat h>
<ki nd>ar chi ve</ ki nd>
<file>rtsxxx.lib</file>
<nanme>exit. obj </ name>

</input_file>
<input _file id="fl-4">

<pat h>/t ool s/ | i b/ </ pat h>
<ki nd>ar chi ve</ ki nd>
<file>rtsxxx.lib</file>
<nane>printf. obj </ name>

</input_file>

</input_file_list>

SPNU118L—June 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

XML Link Information File Description

325

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Document Elements

13 TEXAS
INSTRUMENTS

www.ti.com

B.2.3 Object Component List

The next section of the XML link information file contains a specification of all of the object components
that are involved in the link. An example of an object component is an input section. In general, an object

Example B-3. Object Component List for the fl-4 Input File

component is the smallest piece of object that can be manipulated by the linker.

The <object_component_list> is a container element enclosing any humber of <object_component>

elements.

Each <object_component> specifies a single object component. Each <object_component> has an id
attribute so that it can be referenced directly from other elements, such as a <logical_group>. An

<object_component> is a container element enclosing the following elements:
e The <name> element names the object component (string).

» The <load_address> element specifies the load-time address of the object component (constant).
» The <run_address> element specifies the run-time address of the object component (constant).

» The <size> element specifies the size of the object component (constant).

» The <input_file_ref> element specifies the source file where the object component originated

(reference).

<obj ect _conponent id="oc-20">

<nane>. t ext </ name>

<l oad_addr ess>0xac00</ | oad_addr ess>
<run_addr ess>0xac00</ run_addr ess>
<si ze>0xc0</ si ze>

<input_file_ref idref="fl-4"/>

</ obj ect _conponent >
<obj ect _conponent id="oc-21">

<nane>. dat a</ name>

<l oad_addr ess>0x80000000</ | oad_addr ess>
<run_addr ess>0x80000000</ r un_addr ess>
<si ze>0x0</ si ze>

<input_file_ref idref="fl-4"/>

</ obj ect _conponent >
<obj ect _conponent id="oc-22">

<nane>. bss</ nanme>

<l oad_addr ess>0x80000000</ | oad_addr ess>
<run_addr ess>0x80000000</ r un_addr ess>
<si ze>0x0</ si ze>

<input _file_ref idref="fl-4"/>

</ obj ect _conponent >

326

XML Link Information File Description

Copyright © 2013, Texas Instruments Incorporated

SPNU118L—June 2013
Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com

Document Elements

B.2.4 Logical Group List

The <logical_group_list> section of the XML link information file is similar to the output section listing in a
linker-generated map file. However, the XML link information file contains a specification of GROUP and
UNION output sections, which are not represented in a map file. There are three kinds of list items that
can occur in a <logical_group_list>:

The <logical_group> is the specification of a section or GROUP that contains a list of object
components or logical group members. Each <logical_group> element is given an id so that it may be
referenced from other elements. Each <logical_group> is a container element enclosing the following
elements:

— The <name> element names the logical group (string).

— The <load_address> element specifies the load-time address of the logical group (constant).
— The <run_address> element specifies the run-time address of the logical group (constant).
— The <size> element specifies the size of the logical group (constant).

— The <contents> element lists elements contained in this logical group (container). These elements
refer to each of the member objects contained in this logical group:

» The <object_component_ref> is an object component that is contained in this logical group
(reference).

* The <logical_group_ref> is a logical group that is contained in this logical group (reference).

The <overlay> is a special kind of logical group that represents a UNION, or a set of objects that
share the same memory space (container). Each <overlay> element is given an id so that it may be
referenced from other elements (like from an <allocated_space> element in the placement map). Each
<overlay> contains the following elements:

— The <name> element names the overlay (string).
— The <run_address> element specifies the run-time address of overlay (constant).
— The <size> element specifies the size of logical group (constant).

— The <contents> container element lists elements contained in this overlay. These elements refer to
each of the member objects contained in this logical group:

» The <object_component_ref> is an object component that is contained in this logical group
(reference).

* The <logical_group_ref> is a logical group that is contained in this logical group (reference).

The <split_section> is another special kind of logical group that represents a collection of logical
groups that is split among multiple memory areas. Each <split_section> element is given an id so that
it may be referenced from other elements. The id consists of the following elements.

— The <name> element names the split section (string).

— The <contents> container element lists elements contained in this split section. The
<logical_group_ref> elements refer to each of the member objects contained in this split section,
and each element referenced is a logical group that is contained in this split section (reference).

SPNU118L—-June 2013 XML Link Information File Description 327
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Document Elements

13 TEXAS
INSTRUMENTS

www.ti.com

Example B-4. Logical Group List for the fl-4 Input File

<l ogi cal _group_list>

<l ogi cal _group id="1g-7">
<nane>. t ext </ name>

<l oad_addr ess>0x20</ | oad_addr ess>
<run_addr ess>0x20</r un_addr ess>

<si ze>0xb240</ si ze>
<cont ent s>

<obj ect _conponent _ref idref="o0c-34"/>
<obj ect _conponent _ref idref="oc-108"/>
<obj ect _conponent _ref idref="oc-e2"/>

</ cont ent s>
</l ogi cal _group>

<overlay id="Ig-b">
<nanme>UNl ON_1</ nane>

<run_addr ess>0xb600</ run_addr ess>

<si ze>0xcO0</ si ze>
<cont ent s>

<obj ect _conponent _ref idref="0c-45"/>
<l ogi cal _group_ref idref="1g-8"/>

</ cont ent s>
</ overl ay>

<split_section id="1g-12">
<nane>. t ask_scn</ nanme>
<si ze>0x120</ si ze>
<cont ent s>

<l ogi cal _group_ref idref="1g-10"/>
<l ogi cal _group_ref idref="1g-11"/>

</ cont ent s>

</l ogi cal _group_list>

328

XML Link Information File Description

Copyright © 2013, Texas Instruments Incorporated

SPNU118L—June 2013
Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com

Document Elements

B.2.5 Placement Map

The <placement_map> element describes the memory placement details of all named memory areas in

the
me

application, including unused spaces between logical groups that have been placed in a particular
mory area.

The <memory_area> is a description of the placement details within a named memory area (container).
The description consists of these items:

Example

<pl acene
<meno

<n

<p

<o

<

<u

<u

The <name> names the memory area (string).

The <page_id> gives the id of the memory page in which this memory area is defined (constant).
The <origin> specifies the beginning address of the memory area (constant).

The <length> specifies the length of the memory area (constant).

The <used_space> specifies the amount of allocated space in this area (constant).

The <unused_space> specifies the amount of available space in this area (constant).

The <attributes> lists the RWXI attributes that are associated with this area, if any (string).

The <fill_value> specifies the fill value that is to be placed in unused space, if the fill directive is
specified with the memory area (constant).

The <usage_details> lists details of each allocated or available fragment in this memory area. If the
fragment is allocated to a logical group, then a <logical_group_ref> element is provided to facilitate
access to the details of that logical group. All fragment specifications include <start_address> and
<size> elements.

— The <allocated_space> element provides details of an allocated fragment within this memory area
(container):

» The <start_address> specifies the address of the fragment (constant).
» The <size> specifies the size of the fragment (constant).

e The <logical_group_ref> provides a reference to the logical group that is allocated to this
fragment (reference).

— The <available_space element provides details of an available fragment within this memory area
(container):

» The <start_address> specifies the address of the fragment (constant).
» The <size> specifies the size of the fragment (constant).

B-5. Placement Map for the fl-4 Input File

nt _map>

ry_area>

ame>PMEMK/ name>

age_i d>0x0</ page_i d>

ri gi n>0x20</ ori gi n>

engt h>0x100000</ | engt h>
sed_space>0xb240</ used_space>
nused_space>0xf 4dc0</ unused_space>

<attributes>RWKI </attributes>

<u

</

sage_detai |l s>
<al | ocat ed_space>
<start_address>0x20</start_address>
<si ze>0xb240</ si ze>
<l ogi cal _group_ref idref="1g-7"/>
</ al | ocat ed_space>
<avai |l abl e_space>
<start_address>0xb260</ st art_address>
<si ze>0xf 4dc0</ si ze>
</ avai |l abl e_space>
usage_detai |l s>

</ menory_ar ea>

</ pl acenment _nmap>

SPNU118L—-June 2013 XML Link Information File Description 329
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Document Elements

13 TEXAS
INSTRUMENTS

www.ti.com

B.2.6

Far Call Trampoline List

The <far_call_trampoline_list> is a list of <far_call_trampoline> elements. The linker supports the
generation of far call trampolines to help a call site reach a destination that is out of range. A far call
trampoline function is guaranteed to reach the called function (callee) as it may utilize an indirect call to
the called function.

The <far_call_trampoline_list> enumerates all of the far call trampolines that are generated by the linker
for a particular link. The <far_call_trampoline_list> can contain any number of <far_call_trampoline>
elements. Each <far_call_trampoline> is a container enclosing the following elements:

Example B-6. Fall Call Trampoline List for the fl-4 Input File

The <callee_name> element names the destination function (string).
The <callee_address> is the address of the called function (constant).

The <trampoline_object_component_ref> is a reference to an object component that contains the

definition of the trampoline function (reference).

The <trampoline_address> is the address of the trampoline function (constant).
The <caller_list> enumerates all call sites that utilize this trampoline to reach the called function

(container).

The <trampoline_call_site> provides the details of a trampoline call site (container) and consists of

these items:

— The <caller_address> specifies the call site address (constant).

— The <caller_object_component_ref> is the object component where the call site resides

(reference).

<far_call _tranmpoline_list>

<far_cal |l _tranpoline>

</far_

</far_

<cal | ee_nane>_f oo</ cal | ee_name>
<cal | ee_addr ess>0x08000030</ cal | ee_addr ess>
<tranpol i ne_obj ect _conponent _ref idref="o0c-123"/>
<t ranpol i ne_addr ess>0x2020</ t r anpol i ne_addr ess>
<cal ler_list>
<call _site>
<cal | er _addr ess>0x1800</ cal | er _addr ess>
<cal | er _obj ect _conponent _ref idref="0c-23"/>
</call _site>
<cal |l _site>
<cal | er _address>0x1810</cal | er _addr ess>
<cal | er _obj ect _conponent _ref idref="0c-23"/>
</call_site>
</caller_list>
call _tranpoline>

call _trampoline_list>

330 XML Link Information File Description

Copyright © 2013, Texas Instruments Incorporated

SPNU118L—June 2013
Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Document Elements

B.2.7 Symbol Table

The <symbol_table> contains a list of all of the global symbols that are included in the link. The list
provides information about a symbol's name and value. In the future, the symbol_table list may provide
type information, the object component in which the symbol is defined, storage class, etc.

The <symbol> is a container element that specifies the name and value of a symbol with these elements:
e The <name> element specifies the symbol name (string).
» The <value> element specifies the symbol value (constant).

Example B-7. Symbol Table for the fl-4 Input File

<synbol _t abl e>

<synbol >
<nanme>_c_i nt 00</ nane>
<val ue>0xaf 80</ val ue>

</ synbol >

<synbol >
<name>_nai n</ nane>
<val ue>0xble0</ val ue>

</ synbol >

<synbol >
<nanme>_pri nt f </ nane>
<val ue>0xac00</ val ue>

</ synbol >

</ synbol _t abl e>

SPNU118L—-June 2013 XML Link Information File Description 331

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

I3 TEXAS
INSTRUMENTS

Appendix C

SPNU118L—-June 2013

Hex Conversion Utility Examples

The flexible hex conversion utility offers many options and capabilities. Once you understand the proper
ways to configure your EPROM system and the requirements of the EPROM programmer, you will find
that converting a file for a specific application is easy.

The three scenarios in this appendix show how to develop a hex conversion command file for avoiding
holes, using 16-BIS (16-bit instruction set) code, and using multiple-EPROM systems. The scenarios use
this assembly code:

kkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkkkkkkkkkkkkkkkk*x*%x

* Assenble two words into section "secA" *
IR R SR SR EEEEEE SRS RS R SRR R RS R EREREEEEEEEEEESEEEEESESESS]

.sect "secA'
.word 012345678h
.word Oabcd1234h

khkhkkhkkhkkhkkhkkhkhkhkhhhkhkhkhkhkhkhkhkhkhhkkkkk*x*x*%x

* Assenble two words into section "secB" *

Khkkhkhkhkhkhkhhkhhkhhkhhhhhkhhkhhhkhhkhhkhhhkhhkhhkhhkkhhkhkhhkhkhkk k%

.sect "secB"
.word 087654321h
.word 04321dcbah

Before you use this appendix, read Chapter 12 to understand how to use the hex conversion utility.

Topic Page

C.1 Scenario 1: Building a Hex Conversion Command File for a Single 8-Bit EPROM 333

C.2 Scenario 2: Building a Hex Conversion Command File for 16-BIS Code 337
C.3 Scenario 3: Building a Hex Conversion Command File for Two 8-Bit EPROMs 340
332 Hex Conversion Utility Examples SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Scenario 1: Building a Hex Conversion Command File for a Single 8-Bit EPROM

C.1 Scenario 1: Building a Hex Conversion Command File for a Single 8-Bit EPROM

Scenario 1 shows how to build the hex conversion command file for converting an object file for the
memory system shown in Figure C-1. In this system, there is one external 128K x 8-bit EPROM
interfacing with a TMS470 target processor.

Figure C-1. EPROM Memory System for Scenario 1

]

ARM CPU

128K 8
ROMO

Width: 32 bits V

ROM width: 8 bits

;\/—/

EPROM system memory width: 8 bits

A object file consists of blocks of memory (sections) with assigned memory locations. Typically, all
sections are not adjacent: there are holes between sections in the address space for which there is no
data. Scenario 1 shows how you can use the hex conversion utility's image mode to fill any holes before,
between, or after sections with a fill value.

For this scenario, the application code resides in the program memory (ROM) on the TMS470 CPU, but
the data tables used by this code reside in an off-chip EPROM.

The circuitry of the target board handles the access to the data; the native TMS470 address of 0x1000
accesses location 0x0 on the EPROM.

To satisfy the address requirements for the code, this scenario requires a linker command file that
allocates sections and memory as follows:

» The program/application code (represented in this scenario by the secA section shown in Example C-
1) must be linked so that its address space resides in the program memory (ROM) on the TMS470
CPU.

» To satisfy the condition that the data be loaded on the EPROM at address 0x0 but be referenced by
the application code at address 0x1000, secB (the section that contains the data for this application)
must be assigned a linker load address of 0x1000 so that all references to data in this section will be
resolved with respect to the TMS470 CPU address. In the hex conversion utility command file, the
paddr option must be used to burn the section of data at EPROM address 0x0. This value overrides
the section load address given by the linker.

Example C-1 shows the linker command file that resolves the addresses needed in the stated
specifications.

SPNU118L—June 2013 Hex Conversion Utility Examples 333

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Scenario 1: Building a Hex Conversion Command File for a Single 8-Bit EPROM www.ti.com

Example C-1. Linker Command File and Link Map for Scenario 1

/**/

/* Scenario 1 Link Command */
/* */
/* Usage: arm nk <obj files...> -0 <out file> -m<map file> |nk32.cnd */
/* arntl <src files...> -z -0 <out file> -m<map file> | nk32.cnd */
/* */
/* Description: This file is a sanple command file that can be used */
/* for linking programs built with the TM5470 C */
/* conpi l er. Use it as a guideline; you nay want to change */
/* the allocation schene according to the size of your */
/* program and the nenory | ayout of your target system */
/* */
/* Notes: (1) You must specify the directory in which rts32.1ib is */
/* located. Either add a "-i<directory>" line to this */
/* file, or use the systemenvironnent variable CD R to */
/* specify a search path for libraries. */
/* */
/* (2) If the runtine-support library you are using is not */
/* naned rts32.1ib, be sure to use the correct name here. */

AR R AR R R R RS R R R R R R R EE LY

-m exanpl el. map
/* SPECI FY THE SYSTEM MEMORY MAP */

MEMORY
{
I_MEM : org = 0x00000000 |en = 0x00000020 /* | NTERRUPTS *)
D MEM : org = 0x00000020 |en = 0x00010000 /* DATA MEMORY (RAM) */
P_.MEM : org = 0x00010020 |en = 0x00100000 /* PROGRAM MEMORY (ROM) */
}
/* SPECI FY THE SECTI ONS ALLOCATI ON | NTO MEMORY */
SECTI ONS
{
secA: |load = P_MEM
secB: | oad = 0x1000
}

You must create a hex conversion command file to generate a hex output with the correct addresses and

format for the EPROM programmer.

In the memory system outlined in Figure C-1, only the application data is stored on the EPROM,; the data

resides in secB of the object file created by the linker. By default, the hex conversion utility converts all

initialized sections that appear in the object file. To prevent the conversion of the application code in secA,

a SECTIONS directive must be defined in the hex conversion command file to list explicitly the section(s)

to be converted. In this case, secB must be listed explicitly as the section to be converted.

The EPROM programmer in this scenario has the following system requirements:

e« The EPROM programmer loads only a complete ROM image. A complete ROM image is one in which
there is a contiguous address space (there are no holes in the addresses in the converted file), and
each address in the range contains a known value. Creating a complete ROM image requires the use
of the —image option and the ROMS directive.

— Using the —-image option causes the hex conversion utility to create an output file that has
contiguous addresses over the specified memory range and forces the utility to fill address spaces
that are not previously filled by raw data from sections defined in the input object file. By default,
the value used to fill the unused portions of the memory range is 0.

— Because the -image option operates over a known range of memory addresses, a ROMS directive
is needed to specify the origin and length of the memory for the EPROM.

» To burn the section of data at EPROM address 0x0, the paddr option must be used. This value
overrides the section load address given by the linker.

e In this scenario, the EPROM is 128K x 8 bits. Therefore, the memory addresses for the EPROM must
range from 0x0 to 0x20000.

334 Hex Conversion Utility Examples SPNU118L—June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com

Scenario 1: Building a Hex Conversion Command File for a Single 8-Bit EPROM

* Because the EPROM memory width is eight bits, the memwidth value must be set to 8.
* Because the physical width of the ROM device is eight bits, the romwidth value must be set to 8.
* Intel format must be used.

Since memwidth and romwidth have the same value, only one output file is generated (the number of
output files is determined by the ratio of memwidth to romwidth). The output file is named with the -0

option.

The hex conversion command file for Scenario 1 is shown in Example C-2. This command file uses the

following options to select the requirements of the system:

Option Description
-i Create Intel format
-image Generate a memory image

-map examplel.mxp
-0 examplel.hex
-memwidth 8
-romwidth 8

Generate examplel.mxp as the map file of the conversion

Name examplel.hex as the output file

Set EPROM system memory width to 8
Set physical ROM width to 8

Example C-2. Hex Conversion Command File for Scenario 1

file for Scenario 1 */

i nked object file, input */
Intel format */

Generate a nmap of the conversion */
Resul ting hex output file */

EPROM nenory system wi dth */

Physi cal width of ROM */

EPROM origin = 0x0, |ength = 0x20000

/* Hex Conversion Conmand
a. out [*
-1 /*
-i mage
-map exanpl el. nxp /*
-0 exanpl el. hex /*
-memd dth 8 /*
-romn dth 8 [*
ROVS
{
}
SECTI ONS
{

secB: paddr = 0x0 /*
}

Sel ect only section, secB, for conversion */

Example C-3 shows the contents of the resulting map file (examplel.mxp). Figure C-2 shows the contents
of the resulting hex output file (examplel.hex). The hex conversion utility places the data tables, secB, at
address 0 and then fills the remainder of the address space with the default fill value of 0. For more

information about the Intel MCS-86 object format, see Figure 12-9.

SPNU118L—June 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

Hex Conversion Utility Examples

335

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Scenario 1: Building a Hex Conversion Command File for a Single 8-Bit EPROM www.ti.com

Example C-3. Contents of Hex Map File examplel.mxp

khkhkhkhkhkhhhhhhhhhhkhhkhhhkhhkkkkkkkkkkkkk*k*x*%

TMB470 COFF/ Hex Converter Ver si on X. XX

khkhhkhhhkhhkhhhhhhhhhhhhhhhhkhhhhhhhkhhkhhhhhkhhkhkhhkhhkhhkhhkhkkk k%

Mon Sep 18 15:57: 00 1995

I NPUT FI LE NAME: <a. out>
QUTPUT FORVAT: I ntel

PHYSI CAL MEMORY PARAMETERS
Default data width: 8
Defaul t nenory width:
Default output width: 8

[ee]

OUTPUT TRANSLATI ON MAP

00000000. . 0001ffff Page=0 ROM Wdth=8 Menory Wdth=8 "EPROV

QUTPUT FI LES: exanpl el. hex [b0..b7]

CONTENTS: 00000000. . 00000007 Data Wdth=1 secB
00000007. . 0001f fff FILL = 00000000

Figure C-2. Contents of Hex Output File examplel.hex

Start character

Address secB data tables

T l 1T l |
:20000000876543214321DCBAO00096

:$20002000C0
:$20004000A0

.

.

:20FFE001
:020000040001F<—— Extended linear address record

:2000E0
:20002000C0

.

.

:20FFC00021
:20FFE001

:00000001FE
L|—| LI:I End-of-file record Checksum
Record type
Byte count
336 Hex Conversion Utility Examples SPNU118L—June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Scenario 2: Building a Hex Conversion Command File for 16-BIS Code

C.2 Scenario 2: Building a Hex Conversion Command File for 16-BIS Code

Scenario 2 shows how to build the hex conversion command file to generate the correct converted file for
the application code and data that will reside on a single 16-bit EPROM. The EPROM memory system for
this scenario is shown in Figure C-3. For this scenario, the TMS470 CPU operates with the T control bit
set, so the processor executes instructions in 16-BIS mode.

Figure C-3. EPROM Memory System for Scenario 2

DI

128K 16
ROMO

ARM CPU

Width: 32 bits ;v_/

ROM width: 16 bits

;\/—/

EPROM system memory width: 16 bits

For this scenario, the application code and data reside on the EPROM: the lower 64K words of EPROM
memory are dedicated to application code space and the upper 64K words are dedicated to the data
tables. The application code is loaded starting at address 0x0 on the EPROM but maps to the TMS470
CPU at address 0x3000. The data tables are loaded starting at address 0x1000 on the EPROM and map

to the TMS470 CPU address 0x20.

SPNU118L—-June 2013 Hex Conversion Utility Examples 337

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

Scenario 2: Building a Hex Conversion Command File for 16-BIS Code

13 TEXAS
INSTRUMENTS

www.ti.com

Example C-4 shows the linker command file that resolves the addresses needed for the load on EPROM
and the TMS470 CPU access.

Example C-4. Linker Command File for Scenario 2

AR R AR R E R EERE SRR R EEEEEEEEEEEE R EREE R R R R R R EEEEY]

/* Scenario 2 Link Conmmand

/*

1 * Usage: armnk <obj files...>

/* ar ntl
/*

1 * Descri ption:
/*

/*

/*

/*

/*

1 * Notes: (1)
/*

/*

/*

/*

I (2)
/*

IR R R EE

-m exanpl e2. map

<src files...>

-0 <out file> -m<map file> I nkl6.cnd
-z -0 <out file> -m<map file> | nkl6.cnd

This file is a sanple command file that can be used
for linking prograns built with the TM5470 C

co

mpi | er. Use

it as a guideline; you nay want to change

the all ocati on schene according to the size of your
program and the nenory |ayout of your target system

You must specify the directory in which rtsl6.lib is

lo
fi

cated. Either
le, or use the

add a "-i<directory>" line to this
system environment variable CDIR to

specify a search path for libraries.

If the runtine-support library you are using is not
naned rtsl6.lib, be sure to use the correct nane here.

/* SPECI FY THE SYSTEM MEMORY MAP */

MEMORY

{
I _MEM org
D _MEM org
P_MEM org

}

0x00000000
0x00000020
0x00010020

len = 0x00000020 /* | NTERRUPTS
len = 0x00010000 /* DATA MEMORY (RAM
len = 0x00100000 /* PROGRAM NEMORY (ROM)

/* SPECI FY THE SECTI ONS ALLOCATI ON | NTO MEMORY */

SECTI ONS

{
secA: | oad = 0x3000
secB: |l oad = Ox

20

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/

You must create a hex conversion command file to generate a hex output with the correct addresses and
format for the EPROM programmer. The EPROM programmer in this scenario has the following system

requirements:

* Because the EPROM memory width is 16 bits, the memwidth value must be set to 16.
» Because the physical width of the ROM device is 16 bits, the romwidth value must be set to 16.
* Intel format must be used.

The EPROM programmer does not require a ROM image, so the addresses in the input hex output file do
not need to be contiguous.

Because memwidth and romwidth have the same value, only one output file is generated (the number of
output files is determined by the ratio of memwidth to romwidth). The output file is named with the -0

option.

A ROMS directive is used in this scenario since the paddr option is used to relocate both secA and secB.

338 Hex Conversion Utility Examples

Copyright © 2013, Texas Instruments Incorporated

SPNU118L—June 2013
Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Scenario 2: Building a Hex Conversion Command File for 16-BIS Code

The hex conversion command file for Scenario 2 is shown in Example C-5. This command file uses the
following options to select the requirements of the system:

Option Description

-i Create Intel format

-map example2.mxp Generate example2.mxp as the map file of the conversion
-0 example2.hex Name example2.hex as the output file

-memwidth 8 Set EPROM system memory width to 8

-romwidth 8 Set physical ROM width to 8

Example C-5. Hex Conversion Command File for Scenario 2

/* Hex Conversion Command file for Scenario 2 */
a. out /* linked object file, input */
-1 /* Intel format */

/* The following two options are optional */

-map exanpl e2. nxp /* Generate a map of the conversion */
-0 exanpl e2. hex /* Resulting Hex Qutput file */
/* Specify EPROM system Menory Wdth and Physical ROM w dth */
-menni dth 16 /* EPROM nmenmory system w dth */
-romni dth 16 /* Physical width of ROM */
ROVS
{
EPROM origin = 0x0, length = 0x20000
}
SECTI ONS
{
secA: paddr = 0x0
secB: paddr = 0x1000
}

Example C-6 shows the contents of the resulting map file (example2.mxp). Figure C-4 shows the contents
of the resulting hex output file (example2.hex).

Example C-6. Contents of Hex Map File example2.mxp

R R R R R

TMB470 COFF/ Hex Converter Ver si on X. XX

EE Rk Sk Sk Sk Sk Sk Sk Sk Sk kS kS Sk kS kS Ik kS Sk Sk Sk gk Sk Sk Sk kS Sk Sk kI kS gk Sk ok o

Mon Sep 18 19:34:47 1995

I NPUT FI LE NAME: <a. out >
OUTPUT FORMAT: Intel

PHYSI CAL MEMORY PARAMETERS
Default data width: 8
Default nenory width: 16
Default output width: 16

OUTPUT TRANSLATI ON MAP

QUTPUT FI LES: exanpl e2. hex [b0..b15]

CONTENTS: 00000000. . 00000003 Data Wdth=1 secA
00001000. . 00001003 Data Wdth=1 secB

SPNU118L—June 2013 Hex Conversion Utility Examples 339
Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Scenario 3: Building a Hex Conversion Command File for Two 8-Bit EPROMs www.ti.com

Figure C-4. Contents of Hex Output File example2.hex

Start character

L Address Data
1

[[1
:0800000012345678ABCD123426

:08100000876543214321DCBAYSE

:00000001FF Y Ghecksum
‘T‘ o End-of-file record
Record type
Byte count

C.3 Scenario 3: Building a Hex Conversion Command File for Two 8-Bit EPROMs

Scenario 3 shows how to build the hex conversion command file for converting a object file for the
memory system shown in Figure C-5. In this system, there are two external 64K x 16-bit EPROMs
interfacing with the TMS470 target processor. The application code and data will be burned on the
EPROM starting at address 0x20. The application code will be burned first, followed by the data tables.

Figure C-5. EPROM Memory System for Scenario 3

Upper 16 bits
Lower 16 bits

ARM CPU
64K 16 64K 16
ROMO ROM1
Width: 32 bits
V V
ROM width: ROM width:
16 bits 16 bits
V

EPROM system memory width: 32 bits

In this scenario, the EPROM load address for the application code and for the data also corresponds to
the TMS470 CPU address that accesses the code and data. Therefore, only a load address needs to be
specified.

340 Hex Conversion Utility Examples SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Scenario 3: Building a Hex Conversion Command File for Two 8-Bit EPROMs

Example C-7 shows the linker command file for this scenario.

Example C-7. Linker Command File for Scenario 3

/**/

/* Scenario 3 Link Command */
/* */
/* Usage: armnk <obj files...> -0 <out file> -m<map file> Ink32.cnd */
/* arncl <src files...> -z -0 <out file> -m<map file> | nk32.cnd */
/* */
/* Description: This file is a sanple command file that can be used */
/* for linking prograns built with the TM3470 C */
/* conpi l er. Use it as a guideline; you may want to change */
/* the all ocati on schene according to the size of your */
/* program and the nmenory | ayout of your target system */
/* */
/* Notes: (1) You must specify the directory in which rts32.1ib is */
/* located. Either add a "-i<directory>" line to this */
/* file, or use the systemenvironnment variable CD R to */
/* specify a search path for libraries. */
/* */
/* (2) If the runtine-support library you are using is not */
/* named rts32.1ib, be sure to use the correct nanme here. */

AR AR R E RS EEEEEEEEEEEE SRR EEEEEEEREEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEY]

-m exanpl e3. map

/* SPECI FY THE SYSTEM MEMORY MAP */

MEMORY

{
I _MEM org = 0x00000000 I en = 0x00000020 /* | NTERRUPTS */
D_MEM org = 0x00000020 | en = 0x00010000 /* DATA MEMORY (RAM */
P_MEM org = 0x00010020 I en = 0x00100000 /* PROGRAM MEMORY (ROM) */

}

/* SPECI FY THE SECTI ONS ALLOCATI ON | NTO MEMORY */

SECTI ONS
{
secA: | oad = 0x20
secB: |oad = D_MEM
}
You must create a hex conversion command file to generate a hex output with the correct addresses and
format for the EPROM programmer.
The EPROM programmer in this scenario has the following system requirements:
* In the memory system outlined in Figure C-5, the EPROM system memory width is 32 bits because
each of the physical ROMs provides 16 bits of a 32-bit word. Because the EPROM system memory
width is 32 bits, the memwidth value must be set to 32.
» Because the width of each of the physical ROMs is 16 bits, the romwidth value must be set to 16.
* Intel format must be used.
With a memwidth of 32 and a romwidth of 16, two output files are generated by the hex conversion utility
(the number of files is determined by the ratio of memwidth to romwidth). In previous scenarios, the output
filename was specified with the -o option. Another way to specify the output filename is to use the files
keyword within a ROMS directive. When you use -o or the files keyword, the first output filename always
contains the low-order bytes of the word.
SPNU118L—-June 2013 Hex Conversion Utility Examples 341

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Scenario 3: Building a Hex Conversion Command File for Two 8-Bit EPROMs www.ti.com

The hex conversion command file for Scenario 3 is shown in Example C-8. This command file uses the
following options to select the requirements of the system:

Option Description

-i Create Intel format

-map example3.mxp Generate example3.mxp as the map file of the conversion
-memwidth 32 Set EPROM system memory width to 32

-romwidth 16 Set physical ROM width to 16

The files keyword is used within the ROMS directive to specify the output filenames.

Example C-8. Hex Conversion Command File for Scenario 3

/* Hex Conversion Command file for Scenario 3 */
a. out /* linked object file, input */
-1 /* Intel format */

/* Optional Conmands */

-map exanpl e3. nxp /* Generate a map of the conversion */
/* Specify EPROM system nenory wi dth and physical ROM wi dth */
-menwi dth 32 /* EPROM nmenmory systemw dth */
-rommi dth 16 /* Physical width of ROM*/
ROV
{
EPROM org = 0x0, |ength = 0x20000
files={ |ower16.bit, upperl6.bit }
}

Example C-9 shows the contents of the resulting map file (example3.mxp).

Example C-9. Contents of Hex Map File example3.mxp

khkkhkhkkhkkhkhkhkhhkhhhhhkhkhkhkhkhhhhkhkhhkhkhkhkhkhkhkhhhhhkhkhkhkhkhkhkhkhkhkhkhkhkkkkkkkk*x*%

TMB470 COFF/ Hex Converter Ver si on X. Xx

R R R R

Tue Sep 19 07:41:28 1995

I NPUT FI LE NAME: <a. out >
QUTPUT FORMAT: I ntel

PHYSI CAL MEMORY PARAMETERS
Default data width: 8
Default nmenory width: 32
Default output width: 16

QUTPUT TRANSLATI ON MAP

00000000. . 0001ffff Page=0 ROM Wdth=16 Menory Wdth=32 "EPROM

QUTPUT FILES: |ower16.bit [bO..bl5]
upper 16. bit [bl16..b31]

CONTENTS: 00000020..00000021 Data Wdth=1 secA
00000028. . 00000029 Data Wdth=1 secB

342 Hex Conversion Utility Examples SPNU118L—-June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Scenario 3: Building a Hex Conversion Command File for Two 8-Bit EPROMs

The contents of the output files lower16.bit and upperl16.bit are shown in Figure C-6 and Figure C-7,
respectively. The low-order 16 bits of the 32-bit output word are stored in the lower16.bit file, while the

upper 16 bits are stored in the upper16.bit file.

Figure C-6. Contents of Hex Output File lower16.bit

Start character
L Ad‘dress Data

l
[[1
:0400200056781234C8

:040028004321DCBADA
:00000001FF % Checksum
‘T . End-of-file record

Record type
Byte count

Figure C-7. Contents of Hex Output File upper16.bit

Start character
Address Data
T ‘ T ‘ 1

:040020001234ABCD1E

:040028008765432184

:00000001FF if Checksum

T a8 End-of-file record
Record type
Byte count

SPNU118L—-June 2013 Hex Conversion Utility Examples

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

343

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

I3 TEXAS
INSTRUMENTS

Appendix D

SPNU118L—-June 2013

Glossary

ABI — Application binary interface.
absolute address — An address that is permanently assigned to a ARM memory location.

absolute constant expression — An expression that does not refer to any external symbols or any
registers or memory reference. The value of the expression must be knowable at assembly time.

absolute lister — A debugging tool that allows you to create assembler listings that contain absolute
addresses.

address constant expression — A symbol with a value that is an address plus an addend that is an
absolute constant expression with an integer value.

alignment — A process in which the linker places an output section at an address that falls on an n-byte
boundary, where n is a power of 2. You can specify alignment with the SECTIONS linker directive.

allocation — A process in which the linker calculates the final memory addresses of output sections.

ANSI — American National Standards Institute; an organization that establishes standards voluntarily
followed by industries.

archive library — A collection of individual files grouped into a single file by the archiver.

archiver — A software program that collects several individual files into a single file called an archive
library. With the archiver, you can add, delete, extract, or replace members of the archive library.

ASCIl — American Standard Code for Information Interchange; a standard computer code for
representing and exchanging alphanumeric information.

assembler — A software program that creates a machine-language program from a source file that
contains assembly language instructions, directives, and macro definitions. The assembler
substitutes absolute operation codes for symbolic operation codes and absolute or relocatable
addresses for symbolic addresses.

assembly-time constant — A symbol that is assigned a constant value with the .set directive.

big endian — An addressing protocol in which bytes are numbered from left to right within a word. More
significant bytes in a word have lower numbered addresses. Endian ordering is hardware-specific
and is determined at reset. See also little endian

binding — A process in which you specify a distinct address for an output section or a symbol.
BIS — Bit instruction set.
block — A set of statements that are grouped together within braces and treated as an entity.

.bss section — One of the default object file sections. You use the assembler .bss directive to reserve a
specified amount of space in the memory map that you can use later for storing data. The .bss
section is uninitialized.

byte — Per ANSI/ISO C, the smallest addressable unit that can hold a character.

C/C++ compiler — A software program that translates C source statements into assembly language
source statements.

344 Glossary SPNU118L—June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Appendix D

COFF — Common object file format; a system of object files configured according to a standard
developed by AT&T. These files are relocatable in memory space.

command file — A file that contains options, filenames, directives, or commands for the linker or hex
conversion utility.

comment — A source statement (or portion of a source statement) that documents or improves
readability of a source file. Comments are not compiled, assembled, or linked; they have no effect
on the object file.

compiler program — A utility that lets you compile, assemble, and optionally link in one step. The
compiler runs one or more source modules through the compiler (including the parser, optimizer,
and code generator), the assembler, and the linker.

conditional processing — A method of processing one block of source code or an alternate block of
source code, according to the evaluation of a specified expression.

configured memory — Memory that the linker has specified for allocation.
constant — A type whose value cannot change.
constant expression — An expression that does not in any way refer to a register or memory reference.

cross-reference lister — A utility that produces an output file that lists the symbols that were defined,
what file they were defined in, what reference type they are, what line they were defined on, which
lines referenced them, and their assembler and linker final values. The cross-reference lister uses
linked object files as input.

cross-reference listing — An output file created by the assembler that lists the symbols that were
defined, what line they were defined on, which lines referenced them, and their final values.

.data section — One of the default object file sections. The .data section is an initialized section that
contains initialized data. You can use the .data directive to assemble code into the .data section.

directives — Special-purpose commands that control the actions and functions of a software tool (as
opposed to assembly language instructions, which control the actions of a device).

DWARF — A standardized debugging data format that was originally designed along with ELF, although it
is independent of the object file format.

EABI — An embedded application binary interface (ABI) that provides standards for file formats, data
types, and more.

ELF — Executable and linking format; a system of object files configured according to the System V
Application Binary Interface specification.

emulator — A hardware development system that duplicates the ARM operation.
entry point — A point in target memory where execution starts.

environment variable — A system symbol that you define and assign to a string. Environmental
variables are often included in Windows batch files or UNIX shell scripts such as .cshrc or .profile.

epilog — The portion of code in a function that restores the stack and returns.
executable module — A linked object file that can be executed in a target system.

expression — A constant, a symbol, or a series of constants and symbols separated by arithmetic
operators.

external symbol — A symbol that is used in the current program module but defined or declared in a
different program module.

field — For the ARM, a software-configurable data type whose length can be programmed to be any
value in the range of 1-32 bits.

SPNU118L—June 2013 Glossary 345

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Appendix D www.ti.com

global symbol — A symbol that is either defined in the current module and accessed in another, or
accessed in the current module but defined in another.

GROUP — An option of the SECTIONS directive that forces specified output sections to be allocated
contiguously (as a group).

hex conversion utility — A utility that converts object files into one of several standard ASCII
hexadecimal formats, suitable for loading into an EPROM programmer.

high-level language debugging — The ability of a compiler to retain symbolic and high-level language
information (such as type and function definitions) so that a debugging tool can use this
information.

hole — An area between the input sections that compose an output section that contains no code.
identifier— Names used as labels, registers, and symbols.
immediate operand — An operand whose value must be a constant expression.

incremental linking — Linking files in several passes. Incremental linking is useful for large applications,
because you can partition the application, link the parts separately, and then link all of the parts
together.

initialization at load time — An autoinitialization method used by the linker when linking C/C++ code.
The linker uses this method when you invoke it with the --ram_model link option. This method
initializes variables at load time instead of run time.

initialized section — A section from an object file that will be linked into an executable module.
input section — A section from an object file that will be linked into an executable module.

ISO — International Organization for Standardization; a worldwide federation of national standards
bodies, which establishes international standards voluntarily followed by industries.

label — A symbol that begins in column 1 of an assembler source statement and corresponds to the
address of that statement. A label is the only assembler statement that can begin in column 1.

linker — A software program that combines object files to form an object module that can be allocated
into system memory and executed by the device.

listing file — An output file, created by the assembler, that lists source statements, their line numbers,
and their effects on the section program counter (SPC).

literal constant — A value that represents itself. It may also be called a literal or an immediate value.

little endian — An addressing protocol in which bytes are numbered from right to left within a word. More
significant bytes in a word have higher numbered addresses. Endian ordering is hardware-specific
and is determined at reset. See also big endian

loader — A device that places an executable module into system memory.
macro — A user-defined routine that can be used as an instruction.
macro call — The process of invoking a macro.

macro definition — A block of source statements that define the name and the code that make up a
macro.

macro expansion — The process of inserting source statements into your code in place of a macro call.

macro library — An archive library composed of macros. Each file in the library must contain one macro;
its name must be the same as the macro name it defines, and it must have an extension of .asm.

map file — An output file, created by the linker, that shows the memory configuration, section
composition, section allocation, symbol definitions and the addresses at which the symbols were
defined for your program.

346

Glossary SPNU118L—June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

www.ti.com Appendix D

member — The elements or variables of a structure, union, archive, or enumeration.
memory map — A map of target system memory space that is partitioned into functional blocks.

memory reference operand — An operand that refers to a location in memory using a target-specific
syntax.

mnemonic — An instruction name that the assembler translates into machine code.

model statement — Instructions or assembler directives in a macro definition that are assembled each
time a macro is invoked.

named section — An initialized section that is defined with a .sect directive.
object file — An assembled or linked file that contains machine-language object code.
object library — An archive library made up of individual object files.

object module — A linked, executable object file that can be downloaded and executed on a target
system.

operand — An argument of an assembly language instruction, assembler directive, or macro directive
that supplies information to the operation performed by the instruction or directive.

optimizer — A software tool that improves the execution speed and reduces the size of C programs.

options — Command-line parameters that allow you to request additional or specific functions when you
invoke a software tool.

output module — A linked, executable object file that is downloaded and executed on a target system.
output section — A final, allocated section in a linked, executable module.

partial linking — Linking files in several passes. Incremental linking is useful for large applications
because you can partition the application, link the parts separately, and then link all of the parts
together.

guiet run — An option that suppresses the normal banner and the progress information.
raw data — Executable code or initialized data in an output section.
register operand — A special pre-defined symbol that represents a CPU register.

relocatable constant expression— An expression that refers to at least one external symbol, register, or
memory location. The value of the expression is not known until link time.

relocation — A process in which the linker adjusts all the references to a symbol when the symbol's
address changes.

ROM width — The width (in bits) of each output file, or, more specifically, the width of a single data value
in the hex conversion utility file. The ROM width determines how the utility partitions the data into
output files. After the target words are mapped to memory words, the memory words are broken
into one or more output files. The number of output files is determined by the ROM width.

run address — The address where a section runs.

run-time-support library — A library file, rts.src, that contains the source for the run time-support
functions.

section — A relocatable block of code or data that ultimately will be contiguous with other sections in the
memory map.

section program counter (SPC) — An element that keeps track of the current location within a section;
each section has its own SPC.

sign extend — A process that fills the unused MSBs of a value with the value's sign bit.

SPNU118L—June 2013 Glossary 347

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

13 TEXAS
INSTRUMENTS

Appendix D www.ti.com

simulator — A software development system that simulates ARM operation.

source file — A file that contains C/C++ code or assembly language code that is compiled or assembled
to form an object file.

static variable — A variable whose scope is confined to a function or a program. The values of static
variables are not discarded when the function or program is exited; their previous value is resumed
when the function or program is reentered.

storage class — An entry in the symbol table that indicates how to access a symbol.

string table — A table that stores symbol names that are longer than eight characters (symbol nhames of
eight characters or longer cannot be stored in the symbol table; instead they are stored in the string
table). The name portion of the symbol's entry points to the location of the string in the string table.

structure — A collection of one or more variables grouped together under a single name.

subsection — A relocatable block of code or data that ultimately will occupy continuous space in the
memory map. Subsections are smaller sections within larger sections. Subsections give you tighter
control of the memory map.

symbol — A name that represents an address or a value.
symbolic constant — A symbol with a value that is an absolute constant expression.

symbolic debugging — The ability of a software tool to retain symbolic information that can be used by a
debugging tool such as a simulator or an emulator.

tag — An optional type name that can be assigned to a structure, union, or enumeration.
target memory — Physical memory in a system into which executable object code is loaded.

.text section — One of the default object file sections. The .text section is initialized and contains
executable code. You can use the .text directive to assemble code into the .text section.

unconfigured memory — Memory that is not defined as part of the memory map and cannot be loaded
with code or data.

uninitialized section — A obiject file section that reserves space in the memory map but that has no
actual contents. These sections are built with the .bss and .usect directives.

UNION — An option of the SECTIONS directive that causes the linker to allocate the same address to
multiple sections.

union — A variable that can hold objects of different types and sizes.
unsigned value — A value that is treated as a nonnegative number, regardless of its actual sign.
variable — A symbol representing a quantity that can assume any of a set of values.

veneer — A sequence of instructions that serves as an alternate entry point into a routine if a state
change is required.

well-defined expression — A term or group of terms that contains only symbols or assembly-time
constants that have been defined before they appear in the expression.

word — A 32-bit addressable location in target memory

348 Glossary SPNU118L—June 2013

Submit Documentation Feedback
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU118L

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESDA48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI's terms and conditions of sale
supplied at the time of order acknowledgment.

Tl warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent Tl deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.

Tl assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.

Tl does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from Tl under the patents or other intellectual property of TI.

Reproduction of significant portions of Tl information in Tl data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. Tl is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by Tl for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
Tl is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of Tl components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify Tl and its representatives against any damages arising out of the use
of any Tl components in safety-critical applications.

In some cases, Tl components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class Il (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.

Only those Tl components which Tl has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.

Tl has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, Tl will not be responsible for any failure to meet ISO/TS16949.

Products Applications
Audio www.ti.com/audio Automotive and Transportation —www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications

Data Converters
DLP® Products

DSP

Clocks and Timers
Interface

Logic

Power Mgmt
Microcontrollers
RFID

OMAP Applications Processors
Wireless Connectivity

dataconverter.ti.com

www.dlp.com

dsp.ti.com
www.ti.com/clocks

interface.ti.com

logic.ti.com

power.ti.com
microcontroller.ti.com

www.ti-rfid.com
www.ti.com/omap

Computers and Peripherals
Consumer Electronics
Energy and Lighting
Industrial

Medical

Security

Space, Avionics and Defense
Video and Imaging

Tl E2E Community

www.ti.com/wirelessconnectivity

www.ti.com/computers

www.ti.com/consumer-apps

www.ti.com/energy
www.ti.com/industrial

www.ti.com/medical

www.ti.com/security
www.ti.com/space-avionics-defense

www.ti.com/video

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	Table of Contents
	Preface
	1 Introduction to the Software Development Tools
	1.1 Software Development Tools Overview
	1.2 Tools Descriptions

	2 Introduction to Object Modules
	2.1 Object File Format Specifications
	2.2 Executable Object Files
	2.3 Introduction to Sections
	2.3.1 Special Section Names

	2.4 How the Assembler Handles Sections
	2.4.1 Uninitialized Sections
	2.4.2 Initialized Sections
	2.4.3 User-Named Sections
	2.4.4 Subsections
	2.4.5 Section Program Counters
	2.4.6 Using Sections Directives

	2.5 How the Linker Handles Sections
	2.5.1 Default Memory Allocation
	2.5.2 Placing Sections in the Memory Map

	2.6 Symbols
	2.6.1 The Symbol Table
	2.6.2 External Symbols

	2.7 Symbolic Relocations
	2.7.1 Expressions With Multiple Relocatable Symbols (COFF Only)

	2.8 Run-Time Relocation
	2.9 Loading a Program

	3 Program Loading and Running
	3.1 Loading
	3.1.1 Load and Run Addresses
	3.1.2 Bootstrap Loading
	3.1.2.1 Boot, Load, and Run Addresses
	3.1.2.2 Primary Bootloader
	3.1.2.3 Secondary Bootloader
	3.1.2.4 Boot Table
	3.1.2.5 Bootloader Routine

	3.2 Entry Point
	3.3 Run-Time Initialization
	3.3.1  _c_int00
	3.3.2 RAM Model vs. ROM Model
	3.3.2.1 Autoinitializing Variables at Run Time (--rom_model)
	3.3.2.2 Initializing Variables at Load Time (--ram_model)
	3.3.2.3 The --rom_model and --ram_model Linker Options

	3.3.3 Copy Tables
	3.3.3.1 BINIT
	3.3.3.2 CINIT

	3.4 Arguments to main
	3.5 Additional Information

	4 Assembler Description
	4.1 Assembler Overview
	4.2 The Assembler's Role in the Software Development Flow
	4.3 Invoking the Assembler
	4.4 Naming Alternate Directories for Assembler Input
	4.4.1 Using the --include_path Assembler Option
	4.4.2 Using the TI_ARM_C_DIR Environment Variable

	4.5 Source Statement Format
	4.5.1 Label Field
	4.5.2 Mnemonic Field
	4.5.3 Operand Field
	4.5.3.1 Operand Syntaxes for Instructions
	4.5.3.2 Immediate Values as Operands for Directives

	4.5.4 Comment Field

	4.6 Literal Constants
	4.6.1 Binary Integer Literals
	4.6.2 Octal Integer Literals
	4.6.3 Decimal Integer Literals
	4.6.4 Hexadecimal Integer Literals
	4.6.5 Character Literals
	4.6.6 Character String Literals
	4.6.7 Floating-Point Literals

	4.7 Symbols
	4.7.1 Identifiers
	4.7.2 Labels
	4.7.3 Local Labels
	4.7.4 Symbolic Constants
	4.7.5 Defining Symbolic Constants (--asm_define Option)
	4.7.6 Predefined Symbolic Constants
	4.7.7 Registers
	4.7.8 Substitution Symbols

	4.8 Expressions
	4.8.1 Mathematical and Logical Operators
	4.8.2 Relational Operators and Conditional Expressions
	4.8.3 Well-Defined Expressions
	4.8.4 Relocatable Symbols and Legal Expressions
	4.8.5 Expression Examples

	4.9 Built-in Functions and Operators
	4.9.1 Built-In Math and Trigonometric Functions

	4.10 Unified Assembly Language Syntax Support
	4.11 Source Listings
	4.12 Debugging Assembly Source
	4.13 Cross-Reference Listings

	5 Assembler Directives
	5.1 Directives Summary
	5.2 Directives That Define Sections
	5.3 Directives That Change the Instruction Type
	5.4 Directives That Initialize Values
	5.5 Directives That Perform Alignment and Reserve Space
	5.6 Directives That Format the Output Listings
	5.7 Directives That Reference Other Files
	5.8 Directives That Enable Conditional Assembly
	5.9 Directives That Define Union or Structure Types
	5.10 Directives That Define Enumerated Types
	5.11 Directives That Define Symbols at Assembly Time
	5.12 Miscellaneous Directives
	5.13 Directives Reference

	6 Macro Description
	6.1 Using Macros
	6.2 Defining Macros
	6.3 Macro Parameters/Substitution Symbols
	6.3.1 Directives That Define Substitution Symbols
	6.3.2 Built-In Substitution Symbol Functions
	6.3.3 Recursive Substitution Symbols
	6.3.4 Forced Substitution
	6.3.5 Accessing Individual Characters of Subscripted Substitution Symbols
	6.3.6 Substitution Symbols as Local Variables in Macros

	6.4 Macro Libraries
	6.5 Using Conditional Assembly in Macros
	6.6 Using Labels in Macros
	6.7 Producing Messages in Macros
	6.8 Using Directives to Format the Output Listing
	6.9 Using Recursive and Nested Macros
	6.10 Macro Directives Summary

	7 Archiver Description
	7.1 Archiver Overview
	7.2 The Archiver's Role in the Software Development Flow
	7.3 Invoking the Archiver
	7.4 Archiver Examples
	7.5 Library Information Archiver Description
	7.5.1 Invoking the Library Information Archiver
	7.5.2 Library Information Archiver Example
	7.5.3 Listing the Contents of an Index Library
	7.5.4 Requirements

	8 Linker Description
	8.1 Linker Overview
	8.2 The Linker's Role in the Software Development Flow
	8.3 Invoking the Linker
	8.4 Linker Options
	8.4.1 Wild Cards in File, Section, and Symbol Patterns
	8.4.2 Relocation Capabilities (--absolute_exe and --relocatable Options)
	8.4.2.1 Producing an Absolute Output Module (--absolute_exe option)
	8.4.2.2 Producing a Relocatable Output Module (--relocatable option)
	8.4.2.3 Producing an Executable, Relocatable Output Module (-ar Option)

	8.4.3 Allocate Memory for Use by the Loader to Pass Arguments (--arg_size Option)
	8.4.4 Changing Encoding of Big-Endian Instructions
	8.4.5 Compression (--cinit_compression and --copy_compression Option)
	8.4.6 Compress DWARF Information (--compress_dwarf Option)
	8.4.7 Control Linker Diagnostics
	8.4.8 Disable Automatic Library Selection (--disable_auto_rts Option)
	8.4.9 Controlling Unreferenced and Unused Sections
	8.4.9.1 Disable Conditional Linking (--disable_clink Option)
	8.4.9.2 Do Not Remove Unused Sections (--unused_section_elimination Option)

	8.4.10 Link Command File Preprocessing (--disable_pp, --define and --undefine Options)
	8.4.11 Error Correcting Code Testing (--ecc Options)
	8.4.12 Define an Entry Point (--entry_point Option)
	8.4.13 Set Default Fill Value (--fill_value Option)
	8.4.14 Generate List of Dead Functions (--generate_dead_funcs_list Option)
	8.4.15 Define Heap Size (--heap_size Option)
	8.4.16 Hiding Symbols
	8.4.17 Alter the Library Search Algorithm (--library Option, --search_path Option, and TI_ARM_C_DIR Environment Variable)
	8.4.17.1 Name an Alternate Library Directory (--search_path Option)
	8.4.17.2 Name an Alternate Library Directory (TI_ARM_C_DIR Environment Variable)
	8.4.17.3 Exhaustively Read and Search Libraries (--reread_libs and --priority Options)

	8.4.18 Change Symbol Localization
	8.4.18.1 Make All Global Symbols Static (--make_static Option)
	8.4.18.2 Make a Symbol Global (--make_global Option)

	8.4.19 Create a Map File (--map_file Option)
	8.4.20 Managing Map File Contents (--mapfile_contents Option)
	8.4.21 Disable Name Demangling (--no_demangle)
	8.4.22 Disable Merge of Symbolic Debugging Information (--no_sym_merge Option)
	8.4.23 Strip Symbolic Information (--no_symtable Option)
	8.4.24 Name an Output Module (--output_file Option)
	8.4.25 Prioritizing Function Placement (--preferred_order Option)
	8.4.26 C Language Options (--ram_model and --rom_model Options)
	8.4.27 Retain Discarded Sections (--retain Option)
	8.4.28 Create an Absolute Listing File (--run_abs Option)
	8.4.29 Scan All Libraries for Duplicate Symbol Definitions (--scan_libraries)
	8.4.30 Define Stack Size (--stack_size Option)
	8.4.31 Enforce Strict Compatibility (--strict_compatibility Option)
	8.4.32 Mapping of Symbols (--symbol_map Option)
	8.4.33 Generate Far Call Trampolines (--trampolines Option)
	8.4.33.1 Carrying Trampolines From Load Space to Run Space
	8.4.33.2 Disadvantages of Using Trampolines
	8.4.33.3 Minimizing the Number of Trampolines Required (--minimize_trampolines Option)
	8.4.33.4 Making Trampoline Reservations Adjacent (--trampoline_min_spacing Option)

	8.4.34 Introduce an Unresolved Symbol (--undef_sym Option)
	8.4.35 Display a Message When an Undefined Output Section Is Created (--warn_sections)
	8.4.36 Generate XML Link Information File (--xml_link_info Option)
	8.4.37 Zero Initialization (--zero_init Option)

	8.5 Linker Command Files
	8.5.1 Reserved Names in Linker Command Files
	8.5.2 Constants in Linker Command Files
	8.5.3 The MEMORY Directive
	8.5.3.1 Default Memory Model
	8.5.3.2 MEMORY Directive Syntax
	8.5.3.3 Expressions and Address Operators

	8.5.4 The SECTIONS Directive
	8.5.4.1 SECTIONS Directive Syntax
	8.5.4.2 Allocation
	8.5.4.2.1 Binding
	8.5.4.2.2 Named Memory
	8.5.4.2.3 Controlling Allocation Using The HIGH Location Specifier
	8.5.4.2.4 Alignment and Blocking
	8.5.4.2.5 Alignment With Padding

	8.5.4.3 Specifying Input Sections
	8.5.4.4 Using Multi-Level Subsections
	8.5.4.5 Specifying Library or Archive Members as Input to Output Sections
	8.5.4.6 Allocation Using Multiple Memory Ranges
	8.5.4.7 Automatic Splitting of Output Sections Among Non-Contiguous Memory Ranges

	8.5.5 Specifying a Section's Run-Time Address
	8.5.5.1 Specifying Load and Run Addresses
	8.5.5.2 Uninitialized Sections
	8.5.5.3 Referring to the Load Address by Using the .label Directive

	8.5.6 Using UNION and GROUP Statements
	8.5.6.1 Overlaying Sections With the UNION Statement
	8.5.6.2 Grouping Output Sections Together
	8.5.6.3 Nesting UNIONs and GROUPs
	8.5.6.4 Checking the Consistency of Allocators
	8.5.6.5 Naming UNIONs and GROUPs

	8.5.7 Special Section Types (DSECT, COPY, NOLOAD, and NOINIT)
	8.5.8 Configuring Error Correcting Code (ECC) with the Linker
	8.5.8.1 Using the ECC Specifier in the Memory Map
	8.5.8.2 Using the ECC Directive
	8.5.8.3 Using the VFILL Specifier in the Memory Map

	8.5.9 Assigning Symbols at Link Time
	8.5.9.1 Syntax of Assignment Statements
	8.5.9.2 Assigning the SPC to a Symbol
	8.5.9.3 Assignment Expressions
	8.5.9.4 Symbols Defined by the Linker
	8.5.9.5 Assigning Exact Start, End, and Size Values of a Section to a Symbol
	8.5.9.6 Why the Dot Operator Does Not Always Work
	8.5.9.7 Address and Dimension Operators
	8.5.9.7.1 Input Items
	8.5.9.7.2 Output Section
	8.5.9.7.3 GROUPs
	8.5.9.7.4 UNIONs

	8.5.10 Creating and Filling Holes
	8.5.10.1 Initialized and Uninitialized Sections
	8.5.10.2 Creating Holes
	8.5.10.3 Filling Holes
	8.5.10.4 Explicit Initialization of Uninitialized Sections

	8.6 Object Libraries
	8.7 Default Allocation Algorithm
	8.7.1 How the Allocation Algorithm Creates Output Sections
	8.7.2 Reducing Memory Fragmentation

	8.8 Linker-Generated Copy Tables
	8.8.1 Using Copy Tables for Boot Loading
	8.8.2 Using Built-in Link Operators in Copy Tables
	8.8.3 Overlay Management Example
	8.8.4 Generating Copy Tables Automatically With the Linker
	8.8.5 The table() Operator
	8.8.6 Boot-Time Copy Tables
	8.8.7 Using the table() Operator to Manage Object Components
	8.8.8 Compression Support
	8.8.8.1 Compressed Copy Table Format
	8.8.8.2 Compressed Section Representation in the Object File
	8.8.8.3 Compressed Data Layout
	8.8.8.4 Run-Time Decompression
	8.8.8.5 Compression Algorithms

	8.8.9 Copy Table Contents
	8.8.10 General Purpose Copy Routine
	8.8.11 Linker-Generated Copy Table Sections and Symbols
	8.8.12 Splitting Object Components and Overlay Management

	8.9 Linker-Generated CRC Tables
	8.9.1 The crc_table() Operator
	8.9.2 Restrictions
	8.9.3 Examples
	8.9.4 Interface
	8.9.5 A Note on the TMS570_CRC64_ISO Algorithm

	8.10 Partial (Incremental) Linking
	8.11 Linking C/C++ Code
	8.11.1 Run-Time Initialization
	8.11.2 Object Libraries and Run-Time Support
	8.11.3 Setting the Size of the Stack and Heap Sections
	8.11.4 Autoinitializing Variables at Run Time (--rom_model)
	8.11.5 Initializing Variables at Load Time (--ram_model)
	8.11.6 The --rom_model and --ram_model Linker Options

	8.12 Linker Example

	9 Absolute Lister Description
	9.1 Producing an Absolute Listing
	9.2 Invoking the Absolute Lister
	9.3 Absolute Lister Example

	10 Cross-Reference Lister Description
	10.1 Producing a Cross-Reference Listing
	10.2 Invoking the Cross-Reference Lister
	10.3 Cross-Reference Listing Example

	11 Object File Utilities
	11.1 Invoking the Object File Display Utility
	11.2 Invoking the Disassembler
	11.3 Invoking the Name Utility
	11.4 Invoking the Strip Utility

	12 Hex Conversion Utility Description
	12.1 The Hex Conversion Utility's Role in the Software Development Flow
	12.2 Invoking the Hex Conversion Utility
	12.2.1 Invoking the Hex Conversion Utility From the Command Line
	12.2.2 Invoking the Hex Conversion Utility With a Command File

	12.3 Understanding Memory Widths
	12.3.1 Target Width
	12.3.2 Specifying the Memory Width
	12.3.3 Partitioning Data Into Output Files

	12.4 The ROMS Directive
	12.4.1 When to Use the ROMS Directive
	12.4.2 An Example of the ROMS Directive

	12.5 The SECTIONS Directive
	12.6 The Load Image Format (--load_image Option)
	12.6.1 Load Image Section Formation
	12.6.2 Load Image Characteristics

	12.7 Excluding a Specified Section
	12.8 Assigning Output Filenames
	12.9 Image Mode and the --fill Option
	12.9.1 Generating a Memory Image
	12.9.2 Specifying a Fill Value
	12.9.3 Steps to Follow in Using Image Mode

	12.10 Building a Table for an On-Chip Boot Loader
	12.10.1 Description of the Boot Table
	12.10.2 The Boot Table Format
	12.10.3 How to Build the Boot Table
	12.10.3.1 Building the Boot Table
	12.10.3.2 Leaving Room for the Boot Table

	12.10.4 Booting From a Device Peripheral
	12.10.5 Setting the Entry Point for the Boot Table
	12.10.6 Using the ARM Boot Loader

	12.11 Controlling the ROM Device Address
	12.12 Control Hex Conversion Utility Diagnostics
	12.13 Description of the Object Formats
	12.13.1 ASCII-Hex Object Format (--ascii Option)
	12.13.2 Intel MCS-86 Object Format (--intel Option)
	12.13.3 Motorola Exorciser Object Format (--motorola Option)
	12.13.4 Extended Tektronix Object Format (--tektronix Option)
	12.13.5 Texas Instruments SDSMAC (TI-Tagged) Object Format (--ti_tagged Option)
	12.13.6 TI-TXT Hex Format (--ti_txt Option)

	13 Sharing C/C++ Header Files With Assembly Source
	13.1 Overview of the .cdecls Directive
	13.2 Notes on C/C++ Conversions
	13.2.1 Comments
	13.2.2 Conditional Compilation (#if/#else/#ifdef/etc.)
	13.2.3 Pragmas
	13.2.4 The #error and #warning Directives
	13.2.5 Predefined symbol _ _ASM_HEADER_ _
	13.2.6 Usage Within C/C++ asm() Statements
	13.2.7 The #include Directive
	13.2.8 Conversion of #define Macros
	13.2.9 The #undef Directive
	13.2.10 Enumerations
	13.2.11 C Strings
	13.2.12 C/C++ Built-In Functions
	13.2.13 Structures and Unions
	13.2.14 Function/Variable Prototypes
	13.2.15 C Constant Suffixes
	13.2.16 Basic C/C++ Types

	13.3 Notes on C++ Specific Conversions
	13.3.1 Name Mangling
	13.3.2 Derived Classes
	13.3.3 Templates
	13.3.4 Virtual Functions

	13.4 Special Assembler Support
	13.4.1 Enumerations (.enum/.emember/.endenum)
	13.4.2 The .define Directive
	13.4.3 The .undefine/.unasg Directives
	13.4.4 The $defined() Built-In Function
	13.4.5 The $sizeof Built-In Function
	13.4.6 Structure/Union Alignment and $alignof()
	13.4.7 The .cstring Directive

	A Symbolic Debugging Directives
	A.1 DWARF Debugging Format
	A.2 COFF Debugging Format
	A.3 Debug Directive Syntax

	B XML Link Information File Description
	B.1 XML Information File Element Types
	B.2 Document Elements
	B.2.1 Header Elements
	B.2.2 Input File List
	B.2.3 Object Component List
	B.2.4 Logical Group List
	B.2.5 Placement Map
	B.2.6 Far Call Trampoline List
	B.2.7 Symbol Table

	C Hex Conversion Utility Examples
	C.1 Scenario 1: Building a Hex Conversion Command File for a Single 8-Bit EPROM
	C.2 Scenario 2: Building a Hex Conversion Command File for 16-BIS Code
	C.3 Scenario 3: Building a Hex Conversion Command File for Two 8-Bit EPROMs

	D Glossary

