Simulink® Coder™

Reference

R2013a

MATLAB&SIMULINK®

<+)} MathWorks:

LN N

How to Contact MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup

www . mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
Simulink® Coder™ Reference
© COPYRIGHT 2011-2013 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www . mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www .mathworks.com/patents for more information.

Revision History

April 2011 Online only New for Version 8.0 (Release 2011a)

September 2011 Online only Revised for Version 8.1 (Release 2011b)
March 2012 Online only Revised for Version 8.2 (Release 2012a)
September 2012 Online only Revised for Version 8.3 (Release 2012b)

March 2013 Online only Revised for Version 8.4 (Release 2013a)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Check Bug Reports for Issues and Fixes

Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks

reports critical known bugs brought to its attention on its Bug Report system at

www . mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs tool
with the search phrase “Incorrect Code Generation” to obtain a report of known bugs that
produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies between
the actual behavior of a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

http://www.mathworks.com/support/bugreports/

Simulink Code Generation Limitations

Simulink Code Generation Limitations 1-2

Glossary

Alphabetical List

2

Blocks — Alphabetical List

3

Configuration Parameters for Simulink Models

4|

Code Generation Pane: General 4-2
Code Generation: General Tab Overview 4-5
System targetfile 4-6
Browse ... e e 4-8
Language e 4-9
Compiler optimizationlevel 4-11
Custom compiler optimization flags 4-13
TLC OPtIonS .« vttt ittt ettt e e e et 4-14

Generate makefile 4-16

vi

Contents

Make command e 4-18

Template makefile 4-20
Ignore custom storageclasses 4-22
Ignore test point signals 4-24
Select objective e e 4-26
Prioritized objectives 4-28
Setobjectives i e 4-29
Set Objectives — Code Generation Advisor Dialog Box ... 4-30
Checkmodel 4-33
Check model before generatingcode 4-34
Generatecodeonly, 4-36
Build/Generatecode, 4-38
Package code and artifacts 4-39
Zipfilename e 4-41
Code Generation Pane: Report 4-43
Code Generation: Report Tab Overview 4-45
Create code generation reportooeueeeee... 4-46
Open report automatically 4-49
Code-to-model i 4-51
Model-to-codeo i e 4-53
ConfIgUrE .ottt e 4-55
Generate model Web view 4-56
Eliminated / virtual blocks 4-57
Traceable Simulink blocks 4-59
Traceable Stateflow objects 4-61
Traceable MATLAB functions 4-63
Static code metrics ...t e e 4-65

Summarize which blocks triggered code replacements 4-67

Code Generation Pane: Comments 4-69
Code Generation: Comments Tab Overview 4-72
Include comments 4-73
Simulink block / Stateflow object comments 4-75
MATLAB source code as comments 4-76
Show eliminated blocksc ... 4-78
Verbose comments for SimulinkGlobal storage class 4-79
Operator annotationsc.uiiiimnneeneeeennnn 4-80
Simulink block descriptions 4-82
Simulink data object descriptions 4-84
Custom comments (MPT objectsonly) 4-86
Custom comments function 4-88
Stateflow object descriptionsccoviieie.... 4-90

Requirements in block comments 4-92

MATLAB function helptext 4-94
Code Generation Pane: Symbols 4-96
Code Generation: Symbols Tab Overview 4-99
Global variables i 4-100
Global types ...t e 4-103
Field name of global types 4-106
Subsystem methods 4-108
Subsystem method arguments 4-111
Local temporary variables 4-113
Local block output variables 4-116
Constant macrosuviiiiieeennnnnnnnnenn. 4-118
Minimum manglelength 4-121
Maximum identifierlength 4-123
System-generated identifiers 4-125
Generate scalar inlined parameteras 4-130
Signal namingt e 4-131
M-function i e 4-133
Parameternaming, 4-135
#defilne naming ittt 4-137
Use the same reserved names as Simulation Target 4-139
Reservednames 4-140
Code Generation Pane: Custom Code 4-142
Code Generation: Custom Code Tab Overview 4-145

Use the same custom code settings as Simulation Target .. 4-146
Use local custom code settings (do not inherit from main

model) ... e 4-147
Source file e 4-149
Headerfile 4-150
Initialize function00 4-151
Terminate functionc.0iiiiiiiinnnnn.. 4-152
Include directoriesc.ciiiiii i, 4-153
Source files i e 4-155
Libraries e 4-157

Code Generation Pane: Debug 4-159
Code Generation: Debug Tab Overview 4-161
Verbosebuild i 4-162
Retain.rtwfile i 4-163
Profile TLC i e 4-164
Start TLC debugger when generating code 4-165

vii

viii

Contents

Start TLC coverage when generatingcode
Enable TLC assertionc.oiuiiiiineeneennnnn.

Code Generation Pane: Interface
Code Generation: Interface Tab Overview
Code replacement libraryccouiieeo.....
CUStOM .. e e
Shared code placementcciuiiii...
Support: floating-point numbers
Support: non-finite numbers
Support: complex numbers,
Support: absolutetime
Support: continuous timec.iiiiiinneneeeen..
Support: non-inlined S-functions
Support: variable-size signals
Multiword type definitions,
Maximum word length
Classiccallinterface,
Single output/update function
Terminate function required
Generate reusablecode
Reusable code error diagnostic
Passroot-level /O ascoiiiiiiiiinnnn.
Block parameter visibility,
Internal data visibility
Block parameter accessc. it
Internal data access,
External /O accessc.viiiiiiiiiinnnnnnnnn..
Generate destructor
Use operator new for referenced model object

registrationttt e e
Generate preprocessor conditionals
Suppress error status in real-time model data structure ..
Combine signal/state structures
Configure Model Functionsc.cov ...,
Configure C++ Encapsulation Interface
MAT-filelogging 0.
MAT-file variable name modifier
Interfaceo i
Generate C APIfor: signals
Generate C API for: parameters
Generate C API for: statescccuviiie...
Generate C API for: root-level /O
Transportlayerc.ciiiiiiiiiinnnnn.

MEX-file argumentscciiiiiiiernn. 4-246

Static memory allocation 4-248
Static memory buffersize 4-250
Code Generation Pane: RSim Target 4-252
Code Generation: RSim Target Tab Overview 4-254
Enable RSim executable to load parameters from a
MAT-file e e e 4-255
Solver selectionc. 0o, 4-256
Force storage classesto AUTO 4-257
Code Generation Pane: S-Function Target 4-258
Code Generation S-Function Target Tab Overview 4-260
Createnewmodel ittt 4-261
Use value for tunable parameters 4-262
Include custom sourcecode 4-263
Code Generation Pane: Tornado Target 4-264
Code Generation: Tornado Target Tab Overview 4-266
Code replacement librarycccuiiei.o. .. 4-267
Shared code placementccuiiiii... 4-269
MAT-filelogging 0. 4-271
MAT-file variable name modifier 4-273
Code Format 0. 4-275
StethoScope i e 4-276
Download to VxWorks target 4-278
Basetask priorityiiiii e 4-280
Task stack 81z€ v v iiii it i i e e e 4-282
External mode0 i 4-283
Transportlayerc.ciiiiiiiiinnnnnn. 4-285
MEX-file argumentsc.iiiiiinnnn.. 4-287
Static memory allocation 4-289
Static memory buffersize 4-291
Code Generation: Coder Target Pane 4-293
Code Generation: Coder Target Pane Overview (previously
“IDE Link Tab Overview”)c.cc.... 4-295
Coder Target: Tool Chain Automation Tab Overview 4-296
Build format 4-298
Buildaction e 4-300
Overrun notificationcciiiiiinne... 4-303

Functionname i 4-305

X

Contents

Configurationiiiiiiiiiiieeeeeeeennn 4-306

Compiler options stringcc ... 4-308
Linker options stringouiiiineeennnnnnnnn 4-310
System stack size MAUS)ottt 4-312
Profile real-time execution 4-315
Profileby 4-317
Number of profiling samplestocollect 4-319
Maximum time allowed to build project (s) 4-321
Maximum time allowed to complete IDE operation (s) 4-323
Export IDE link handle to base workspace 4-324
IDE link handlename, 4-326
Source file replacement 4-327
Parameter Reference 4-329
Recommended Settings Summary 4-329
Parameter Command-Line Information Summary 4-358

Model Advisor Checks

5

Embedded Coder Checks 5-2
Checks OVErVIEW ..ttt ettt e e 5-3
Check solver for code generation 5-4
Identify questionable blocks within the specified system .. 5-6
Check for blocks not supported by code generation 5-7
Check for blocks not recommended for C/C++ production

code deployment, 5-8
Identify lookup table blocks that generate expensive

out-of-range checkingcode 5-9
Check output types of logicblocks 5-11
Identify blocks using one-based indexing 5-13
Check the hardware implementation 5-14
Identify questionable software environment

SPeCIficationsttt e e 5-15
Identify questionable code instrumentation (data I/O) 5-17
Check for blocks that have constraints on tunable

PAraAMEterS ... e e 5-18
Check for blocks not recommended for MISRA-C:2004

compliance e 5-20

Check configuration parameters for MISRA-C:2004

compPliance e 5-21
Check for model reference configuration mismatch 5-23
Identify blocks that generate expensive saturation and

rounding codet e 5-24
Check sample times and tasking mode 5-25
Identify questionable subsystem settings 5-26
Identify questionable fixed-point operations 5-27
Available Checks for Code Generation Objectives 5-36
Check model configuration settings against code generation

0DJECEIVES . i e 5-40

Index

xi

xii Contents

Simulink Code Generation
Limitations

1 Simulink Code Generation Limitations

1-2

Simulink Code Generation Limitations

The following topics identify Simulink® code generation limitations:

“C++ Target Language Limitations”

“packNGo Function Limitations”

“Tunable Expression Limitations”

“Limitations on Data Type Specifications in Workspace”
“Code Reuse Limitations for Subsystems”

“Simulink Coder™ Model Referencing Limitations”
“External Mode Limitations”

“Noninlined S-Function Parameter Type Limitations”
“S-Function Target Limitations”

“Rapid Simulation Target Limitations”
“Asynchronous Support Limitations”

“C API Limitations”

“Supported Products and Block Usage”

Glossary

application modules
With respect to Simulink Coder program architecture, these are
collections of programs that implement functions carried out by the
system-dependent, system-independent, and application components.

atomic subsystem
Subsystem whose blocks are executed as a unit before moving on.
Conditionally executed subsystems are atomic, and atomic subsystems
are nonvirtual. Unconditionally executed subsystems are virtual by
default, but can be designated as atomic. The Simulink Coder build
process can generate reusable code only for nonvirtual subsystems.

base sample rate
Fundamental sample time of a model; in practice, limited by the fastest
rate at which a processor’s timer can generate interrupts. All sample
times must be integer multiples of the base rate.

block 1/0O structure (model_B)
Global data structure for storing block output signals. The number of
block output signals is the sum of the widths of the data output ports
of all nonvirtual blocks in your model. By default, Simulink and the
Simulink Coder build process try to reduce the size of the model B
structure by reusing the entries in the model B structure and making
other entries local variables.

block target file
File that describes how a specific Simulink block is to be transformed to
a language such as C, based on the block’s description in the Simulink
Coder generated file model.rtw. Typically, there is one block target
file for each Simulink block.

code reuse
Optimization whereby code generated for identical nonvirtual
subsystems is collapsed into one function that is called for each
subsystem instance with specified parameters. Code reuse, along with
expression folding, can dramatically reduce the amount of generated
code.

Glossary-1

Glossary

Glossary-2

configuration

Set of attributes for a model which defines parameters governing how a
model simulates and generates code. A model can have one or more such
configuration sets, and users can switch between them to change code
generation targets or to modify the behavior of models in other ways.

configuration component

Named element of a configuration set. Configuration components
encapsulate settings associated with the Solver, Data Import/Export,
Optimization, Diagnostics, Hardware Implementation, Model
Referencing, and Code Generation panes in the Configuration
Parameters dialog box. A component may contain subcomponents.

embedded real-time (ERT) target

Target configuration that generates model code for execution on an
independent embedded real-time system. Requires a Embedded Coder®
license.

expression folding

Code optimization technique that minimizes the computation of
intermediate results at block outputs and the storage of such results
in temporary buffers or variables. It can dramatically improve the
efficiency of generated code, achieving results that compare favorably
with hand-optimized code.

file extensions

The table below lists the Simulink, Target Language Compiler, and
Simulink Coder file extensions.

Extension Created by Description
.Cc or .cpp Target Language The generated C or
Compiler C++ code
.h Target Language C/C++ include header
Compiler file used by the .c or
.Cpp program

Glossary

Extension

Created by

Description

.mk

Simulink Coder

Makefile specific to
your model that is
derived from the
template makefile

.rtw

Simulink Coder

Intermediate
compilation
(model.rtw) of a
model file used in
generating C or C++
code

.slx

Simulink

Contains structures
associated with
Simulink block
diagrams

.tlc

MathWorks and
Simulink Coder users

Target Language
Compiler script files
that the Simulink
Coder build process
uses to generate code
for targets and blocks

.tmf

Supplied with
Simulink Coder

Template makefiles

Ltmw

Simulink Coder

Project marker file
inside a build folder
that identifies the
date and product
version of generated
code

generic real-time (GRT) target
Target configuration that generates model code for a real-time system,
with the resulting code executed on your workstation. (Execution is
not tied to a real-time clock.) You can use GRT as a starting point for
targeting custom hardware.

Glossary-3

Glossary

Glossary-4

host system
Computer system on which you create and may compile your real-time
application. Also referred to as emulation hardware.

inline
Generally, this means to place something directly in the generated
source code. You can inline parameters and S-functions using the
Simulink Coder software and the Target Language Compiler.

inlined parameters
(Target Language Compiler Boolean global variable: InlineParameters)
The numerical values of the block parameters are hard-coded into the
generated code. Advantages include faster execution and less memory
use, but you lose the ability to change the block parameter values at
run time.

inlined S-function
An S-function can be inlined into the generated code by implementing it
as a .tlc file. The code for this S-function is placed in the generated
model code itself. In contrast, noninlined S-functions require a function
call to an S-function residing in an external MEX-file.

interrupt service routine (ISR)
Piece of code that your processor executes when an external event, such
as a timer, occurs.

loop rolling
(Target Language Compiler global variable: Rol1Threshold) Depending
on the block’s operation and the width of the input/output ports, the
generated code uses a for statement (rolled code) instead of repeating
identical lines of code (flat code) over the signal width.

make
Utility to maintain, update, and regenerate related programs and files.
The commands to be executed are placed in a makefile.

makefiles
Files that contain a collection of commands that allow groups of
programs, object files, libraries, and so on, to interact. Makefiles are
executed by your development system’s make utility.

Glossary

model.ritw
Intermediate record file into which the Simulink Coder build process
compiles the blocks, signals, states, and parameters for a model. The
Target Language Compiler reads this file to generate code to represent
the model.

multitasking
Process by which a microprocessor schedules the handling of multiple
tasks. In generated code, the number of tasks is equal to the number of
sample times in your model. See also pseudo multitasking.

noninlined S-function
In the context of the Simulink Coder build process, this is a C MEX
S-function that is not implemented using a customized .tlc file. If you
create a C MEX S-function as part of a Simulink model, it is by default
noninlined unless you write your own .tlc file that inlines it.

nonreal time
Simulation environment of a block diagram provided for high-speed
simulation of your model. Execution is not tied to a real-time clock.

nonvirtual block
A Dblock that performs some algorithm, such as a Gain block. The
Simulink Coder build process generates code for nonvirtual blocks,
either inline or as separate functions and files, as directed by users.

pseudo multitasking
On processors that do not offer multitasking support, you can perform
pseudo multitasking by scheduling events on a fixed time sharing basis.

real-time model data structure
The Simulink Coder build process encapsulates information about the
root model in the real-time model data structure, often abbreviated as
rtM. rtM contains global information related to timing, solvers, and
logging, and model data such as inputs, outputs, states, and parameters.

real-time system

Computer that processes real-world events as they happen, under the
constraint of a real-time clock, and that can implement algorithms in

Glossary-5

Glossary

Glossary-6

dedicated hardware. Examples include mobile telephones, test and
measurement devices, and avionic and automotive control systems.

Simulink Coder target

Set of code files generated by the Simulink Coder build process for a
standard or custom target, specified by a Simulink Coder configuration
component. These source files can be built into an executable program
that will run independently of Simulink. See also simulation target,
configuration.

run-time interface

Wrapper around the generated code that can be built into a stand-alone
executable. The run-time interface consists of routines to move the
time forward, save logged variables at specified time steps, and so on.
The run-time interface is responsible for managing the execution of the
real-time program created from your Simulink block diagram.

S-function

Customized Simulink block written in C, Fortran, or MATLAB® code.
The Simulink Coder build process can target C code S-functions as is or
users can inline C code S-functions by preparing TLC scripts for them.

simstruct

Simulink data structure and associated application program interface
(API) that enables S-functions to communicate with other entities in
models. Simstructs are included in code generated by the Simulink
Coder build process for noninlined S-functions.

simulation target

Set of code files generated for a model which is referenced by a Model
block. Simulation target code is generated into /slprj/sim project
folder in the working folder. Also an executable library compiled from
these codes that implements a Model block. See also Simulink Coder
target.

single-tasking

Mode in which a model runs in one task, regardless of the number of
sample rates it contains.

Glossary

stiffness
Property of a problem that forces a numerical method, in one or more
intervals of integration, to use a step length that is excessively small in
relation to the smoothness of the exact solution in that interval.

system target file
Entry point to the Target Language Compiler program, used to
transform the Simulink Coder file into target-specific code.

target file
File that is compiled and executed by the Target Language Compiler.
The block and system target TLC files used specify how to transform
the Simulink Coder file model.rtw into target-specific code.

Target Language Compiler (TLC)
Program that compiles and executes system and target files by
translating a model.rtw file into a target language by means of TLC
scripts and template makefiles.

Target Language Compiler program
One or more TLC script files that describe how to convert a model.rtw
file into generated code. There is one TLC file for the target, plus one
for each built-in block. Users can provide their own TLC files to inline
S-functions or to wrap existing user code.

target system
Specific or generic computer system on which your real-time application
is intended to execute. Also referred to as embedded hardware.

targeting
Process of creating software modules for execution on your target
system.

task identifier (tid)
In generated code, each sample rate in a multirate model is assigned a
task identifier (tid). The tid is used by the model output and update
routines to control the portion of your model that should execute at
a given time step. Single-rate systems ignore the tid. See also base
sample rate.

Glossary-7

Glossary

template makefile
Line-for-line makefile used by a make utility. The Simulink Coder
build process converts the template makefile to a makefile by copying
the contents of the template makefile (usually system.tmf) to a
makefile (usually system.mk) replacing tokens describing your model’s
configuration.

virtual block
Connection or graphical block, for example a Mux block, without
algorithmic functionality. Virtual blocks do not incur real-time overhead
because code is not generated for them.

work vector
Data structures for saving internal states or similar information,
accessible to blocks that may require such work areas. These include
state work (rtDWork), real work (rtRWork), integer work (rtIWork), and
pointer work (rtPWork) structures. For example, the Memory block uses
a real work element for each signal.

Glossary-8

Alphabetical List

addCompileFlags

2-2

Purpose

Syntax

Arguments

Add compiler options to model build information

addCompileFlags(buildinfo, options, groups)

groups is optional.

buildinfo
Build information returned by RTW.BuildInfo.

options

A character array or cell array of character arrays that specifies
the compiler options to be added to the build information. The
function adds each option to the end of a compiler option vector. If
you specify multiple options within a single character array, for
example '-Zi -Wall', the function adds the string to the vector
as a single element. For example, if you add '-Zi -Wall' and
then '-03', the vector consists of two elements, as shown below.

'.Zi -Wall' '-03"

groups (optional)
A character array or cell array of character arrays that groups
specified compiler options. You can use groups to

¢ Document the use of specific compiler options

e Retrieve or apply collections of compiler options

You can apply
® A single group name to one or more compiler options

e Multiple group names to collections of compiler options
(available for non-makefile build environments only)

addCompileFlags

To... Specify groups as a...

Apply one group Character array.
name to one or more
compiler options

Apply different group Cell array of character arrays such that

names to compiler the number of group names matches
options the number of elements you specify for
options.
Note

¢ To specify compiler options to be used in the standard Simulink
Coder makefile build process, specify groups as either 'OPTS'
or 'OPT_OPTS'.

¢ To control compiler optimizations for your Simulink Coder
makefile build at Simulink GUI level, use the Compiler
optimization level parameter on the Code Generation pane
of the Simulink Configuration Parameters dialog box. The
Compiler optimization level parameter provides

— Target-independent values Optimizations on (faster
runs) and Optimizations off (faster builds), which
allow you to easily toggle compiler optimizations on and off
during code development

— The value Custom for entering custom compiler optimization
flags at Simulink GUI level (rather than at other levels of
the build process)

If you use the configuration parameter Make command to
specify compiler options for your Simulink Coder makefile
build using OPT_OPTS, MEX_OPTS (except MEX_OPTS="-v"), or
MEX_OPT_FILE, the value of Compiler optimization level is
ignored and a warning is issued about the ignored parameter.

2-3

addCompileFlags

2-4

Description The addCompileFlags function adds specified compiler options to the
model build information. Simulink Coder stores the compiler options in
a vector. The function adds options to the end of the vector based on the
order in which you specify them.

In addition to the required buildinfo and options arguments, you can
use an optional groups argument to group your options.

Examples ¢ Add the compiler option -03 to build information myModelBuildInfo
and place the option in the group OPTS.

myModelBuildInfo = RTW.BuildInfo;
addCompileFlags(myModelBuildInfo, '-03', 'OPTS');

¢ Add the compiler options -Zi and -Wall to build information
myModelBuildInfo and place the options in the group OPT_OPTS.

myModelBuildInfo = RTW.BuildInfo;
addCompileFlags(myModelBuildInfo, '-Zi -Wall', 'OPT_OPTS');

¢ For a non-makefile build environment, add the compiler options -Zi,
-Wall, and -03 to build information myModelBuildInfo. Place the
options -Zi and -Wall in the group Debug and the option -03 in the
group MemOpt.

myModelBuildInfo = RTW.BuildInfo;
addCompileFlags(myModelBuildInfo, {'-Zi -wall' '-03'},
{'Debug' 'MemOpt'});

See Also addDefines | addLinkFlags | getCompileFlags

How To + “Customize Post-Code-Generation Build Processing”

activate

Purpose
Syntax
IDEs

Description

Input
Arguments

Mark file, project, or build configuration as active
IDE Obj.activate('objectname', 'type')

This function supports the following IDEs:
® Eclipse™ IDE

Use the IDE Obj.activate('objectname', 'type') method to make a
project file or build configuration active in the MATLAB session.

When you make a project, file, or build configuration active, methods
you invoke on the IDE handle object apply to that project, file, or build
configuration.

IDE_Obj

For IDE 0Obj, enter the name of the IDE handle object you created using
a constructor function.

objectname

For objectname, enter the name of the project file or build configuration
to make active.

For project files, enter the full file name including the extension.

For build configurations, enter 'Debug', 'Release', or 'Custom'.
Before using the activate method on a build configuration, activate
the project that contains the build configuration. For more information
about configurations, see “Configuration” on page 4-306.

type

For type, enter the type of object to make active. If you omit the type
argument, type defaults to 'project'. Enter one of the following
strings for type:

® 'project' — Makes a specified project active.

e 'buildcfg' — Make a specified build configuration active

2-5

activate

Examples

See Also

IDE support for type

ccs Eclipse MULTI VisualDSP++
'project’ Yes Yes Yes Yes
'buildcfg' | Yes Yes Yes

After using a constructor to create the IDE handle object, h, open
several projects, make the first one active, and build the project:

.open('c:\temp\myproji')
.open('c:\temp\myproj2')
.open('c:\temp\myproj3"')
.activate('c:\temp\myproji1', ‘project')
.build

O 3 5 5T

After making a project active, make the 'debug' configuration active:

h.activate('debug', 'buildcfg')

build | new | remove

add

Purpose
Syntax
IDEs

Description

Add files to active project in IDE

IDE Obj.add(filename,filetype)

This function supports the following IDEs:

* Eclipse IDE

Use IDE Obj.add(filename,filetype) to add an existing file to the
active project in the IDE. Using the add function is equivalent to
selecting Project > Add Files to Project in the IDE.

Before using add:

e Use the constructor function for your IDE to create an IDE handle
object, such as IDE 0Obj.

e (Create or open a project using the new or open methods.

® Make the project active in the IDE using the activate method.

You can add file types your IDE supports to your project. Consult the
documentation for your IDE for detailed information about supported

file types.

Supported File Types and Extensions

Extensions CCS IDE Project
File Type Supported Folder
C/C++ source files .C, .Cpp, .CC, .CXX, Source
.sa, .h,.hpp,.hxx
Assembly source files | .a*, .s* (excluding Source
.sa), .dsp
Object and library .0*, .1ib, .doj, .dlb | Libraries
files
Linker command file | .cmd, .1ldf Project Name

add

2-8

Input
Arguments

Examples

Supported File Types and Extensions (Continued)

Extensions CCS IDE Project
File Type Supported Folder
VDK support file .vdk Not applicable
DSP/BIOS file (only .tef DSP/BIOS Config
with CCS IDE)

Note CCS IDE drops files in the project folder, indicated in the
right-most column of the preceding table.

add places the file specified by filename in the active project in the IDE.

IDE_Obj

IDE 0bj is a handle for an instance of the IDE. Before using a method,
the constructor function for your IDE to create IDE _0bj.

filename

filename is the name of the file to add to the active IDE project.

If you supply a filename without a path or relative path, your coder
product searches the IDE working folder first. It then searches the
folders on your MATLAB path. Add supported file types shown in the
preceding table.

filetype
filetype is an optional argument that specifies the file type. For
example, 'lib', 'src’', 'header'.

Start by creating an IDE handle object, such as IDE_Obj using the
constructor for your IDE. Then enter the following commands:

add

See Also

IDE_Obj.new('myproject', 'project'); % Create a new project.

IDE_Obj.add('sourcefile.c'); % Add a C source file.

activate | | new | open | remove

addDefines

Purpose Add preprocessor macro definitions to model build information

Syntax addDefines(buildinfo, macrodefs, groups)

groups is optional.

Arguments buildinfo
Build information returned by RTW.BuildInfo.

macrodefs
A character array or cell array of character arrays that specifies
the preprocessor macro definitions to be added to the object.
The function adds each definition to the end of a compiler
option vector. If you specify multiple definitions within a single
character array, for example ' -DRT -DDEBUG', the function adds
the string to the vector as a single element. For example, if you
add '-DPROTO -DDEBUG' and then '-DPRODUCTION', the vector
consists of two elements, as shown below.

' -DPROTO -DDEBUG' ' -DPRODUCTION'

groups (optional)
A character array or cell array of character arrays that groups
specified definitions. You can use groups to

¢ Document the use of specific macro definitions

¢ Retrieve or apply groups of macro definitions

You can apply
¢ A single group name to one or more macro definitions

e Multiple group names to collections of macro definitions
(available for non-makefile build environments only)

2-10

addDefines

Description

Examples

To... Specify groups as a...

Apply one group Character array.
name to one or more
macro definitions

Apply different group Cell array of character arrays such that

names to macro the number of group names matches
definitions the number of elements you specify for
macrodefs.

Note To specify macro definitions to be used in the standard
Simulink Coder makefile build process, specify groups as either
'OPTS' or 'OPT_OPTS'.

The addDefines function adds specified preprocessor macro definitions
to the model build information. The Simulink Coder software stores the
definitions in a vector. The function adds definitions to the end of the
vector based on the order in which you specify them.

In addition to the required buildinfo and macrodefs arguments, you
can use an optional groups argument to group your options.

Add the macro definition -DPRODUCTION to build information
myModelBuildInfo and place the definition in the group OPTS.

myModelBuildInfo = RTW.BuildInfo;
addDefines (myModelBuildInfo, '-DPRODUCTION', 'OPTS');

Add the macro definitions -DPROTO and -DDEBUG to build information
myModelBuildInfo and place the definitions in the group OPT_OPTS.

myModelBuildInfo = RTW.BuildInfo;
addDefines (myModelBuildInfo,
' -DPROTO -DDEBUG', 'OPT_OPTS');

2-11

addDefines

® For a non-makefile build environment, add the macro definitions
-DPROTO, -DDEBUG, and -DPRODUCTION to build information
myModelBuildInfo. Place the definitions -DPROTO and -DDEBUG in the
group Debug and the definition -DPRODUCTION in the group Release.

myModelBuildInfo = RTW.BuildInfo;

addDefines(myModelBuildInfo,
{'-DPROTO -DDEBUG' '-DPRODUCTION'},
{'Debug' 'Release'});

See Also addCompileFlags | addLinkFlags | getDefines

How To * “Customize Post-Code-Generation Build Processing”

2-12

addincludeFiles
|

Purpose Add include files to model build information

Syntax addIncludeFiles(buildinfo, filenames, paths, groups)

paths and groups are optional.

Arguments buildinfo
Build information returned by RTW.BuildInfo.

filenames
A character array or cell array of character arrays that specifies
names of include files to be added to the build information.

The filename strings can include wildcard characters, provided
that the dot delimiter (.) is present. Examples are '*.*' '*.h',
and '*.h*"',

The function adds the filenames to the end of a vector in the order
that you specify them.

The function removes duplicate include file entries that

® You specify as input

¢ Already exist in the include file vector

¢ Have a path that matches the path of a matching filename

A duplicate entry consists of an exact match of a path string and
corresponding filename.

paths (optional)
A character array or cell array of character arrays that specifies
paths to the include files. The function adds the paths to the end of
a vector in the order that you specify them. If you specify a single
path as a character array, the function uses that path for all files.

groups (optional)
A character array or cell array of character arrays that groups
specified include files. You can use groups to

2-13

addincludeFiles

2-14

Description

¢ Document the use of specific include files

¢ Retrieve or apply groups of include files

You can apply
® A single group name to an include file
® A single group name to multiple include files

e Multiple group names to collections of multiple include files

To... Specify groups as a...

Apply one group name Character array.
to one or more include
files

Apply different group Cell array of character arrays such

names to include files that the number of group names that
you specify matches the number of
elements you specify for filenames.

The addIncludeFiles function adds specified include files to the model
build information. The Simulink Coder software stores the include files
in a vector. The function adds the filenames to the end of the vector in
the order that you specify them.

In addition to the required buildinfo and filenames arguments, you
can specify optional paths and groups arguments. You can specify
each optional argument as a character array or a cell array of character
arrays.

addincludeFiles
|

If You Specify an Optional The Function...
Argument as a...

Character array Applies the character array to include files it adds to the
build information

Cell array of character arrays Pairs each character array with a specified include file.
Thus, the length of the cell array must match the length of
the cell array you specify for filenames.

If you choose to specify groups, but omit paths, specify a null string
(') for paths.

Note The packNGo function also can add include files to the model
build information. If you call the packNGo function to package model
code, packNGo finds include files from source and include paths recorded
in the model build information and adds them to the build information.

Examples Add the include file mytypes.h to build information

myModelBuildInfo and place the file in the group SysFiles.

myModelBuildInfo = RTW.BuildInfo;
addIncludeFiles(myModelBuildInfo,
‘mytypes.h', '/proj/src', 'SysFiles');

® Add the include files etc.h and etc_private.h to build information
myModelBuildInfo and place the files in the group AppFiles.

myModelBuildInfo = RTW.BuildInfo;
addIncludeFiles(myModelBuildInfo,
{'etc.h' 'etc_private.h'},
"/proj/src', 'AppFiles');

¢ Add the include files etc.h, etc_private.h, and mytypes.h to
build information myModelBuildInfo. Group the files etc.h and

2-15

addincludeFiles

etc_private.h with the string AppFiles and the file mytypes.
with the string SysFiles.

myModelBuildInfo = RTW.BuildInfo;
addIncludeFiles(myModelBuildInfo,
{'etc.h' 'etc_private.h' 'mytypes.h'},
"/proj/src',

{'AppFiles' 'AppFiles' 'SysFiles'});

® Add the .h files in a specified folder to build information
myModelBuildInfo and place the files in the group HFiles

myModelBuildInfo = RTW.BuildInfo;
addIncludeFiles(myModelBuildInfo,
‘*.h', '"/proj/src', 'HFiles');

See Also addIncludePaths | addSourceFiles | addSourcePaths
| findIncludeFiles | getIncludeFiles |
updateFilePathsAndExtensions | updateFileSeparator

How To + “Customize Post-Code-Generation Build Processing”

2-16

addincludePaths

Purpose

Syntax

Arguments

Add include paths to model build information

addIncludePaths(buildinfo, paths, groups)

groups is optional.

buildinfo
Build information returned by RTW.BuildInfo.

paths
A character array or cell array of character arrays that specifies

include file paths to be added to the build information. The
function adds the paths to the end of a vector in the order that
you specify them.

The function removes duplicate include file entries that

® You specify as input

® Already exist in the include path vector

¢ Have a path that matches the path of a matching filename

A duplicate entry consists of an exact match of a path string and
corresponding filename.

groups (optional)
A character array or cell array of character arrays that groups
specified include paths. You can use groups to

¢ Document the use of specific include paths

¢ Retrieve or apply groups of include paths

You can apply
® A single group name to an include path
® A single group name to multiple include paths

e Multiple group names to collections of multiple include paths

2-17

addincludePaths

2-18

Description

To... Specify groups as a...

Apply one group Character array.
name to one or more
include paths

Apply different group Cell array of character arrays such that

names to include the number of group names that you

paths specify matches the number of elements
you specify for paths.

The addIncludePaths function adds specified include paths to the
model build information. The Simulink Coder software stores the
include paths in a vector. The function adds the paths to the end of the
vector in the order that you specify them.

In addition to the required buildinfo and paths arguments, you can
specify an optional groups argument. You can specify groups as a
character array or a cell array of character arrays.

If You Specify an Optional The Function...
Argument as a...

Character array Applies the character array to include
paths it adds to the build information.

Cell array of character arrays Pairs each character array with a
specified include path. Thus, the
length of the cell array must match
the length of the cell array you specify
for paths.

addincludePaths
|

Examples ¢ Add the include path /etcproj/etc/etc_build to build information
myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addIncludePaths(myModelBuildInfo,...
"/etcproj/etc/etc_build');

® Add the include paths /etcproj/etclib and
/etcproj/etc/etc_build to build information myModelBuildInfo
and place the files in the group etc.

myModelBuildInfo = RTW.BuildInfo;
addIncludePaths(myModelBuildInfo,...
{'/etcproj/etclib' '/etcproj/etc/etc_build'}, 'etc');

® Add the include paths /etcproj/etclib, /etcproj/etc/etc_build,
and /common/1lib to build information myModelBuildInfo. Group the
paths /etc/proj/etclib and /etcproj/etc/etc_build with the
string etc and the path /common/1ib with the string shared.

myModelBuildInfo = RTW.BuildInfo;

addIncludePaths(myModelBuildInfo,...

{'/etc/proj/etclib' '/etcproj/etc/etc_build'...
"/common/1lib'}, {'etc' 'etc' 'shared'});

See Also addIncludeFiles | addSourceFiles | addSourcePaths
| getIncludePaths | updateFilePathsAndExtensions
updateFileSeparator

How To + “Customize Post-Code-Generation Build Processing”

2-19

addLinkFlags

Purpose Add link options to model build information

Syntax addLinkFlags (buildinfo, options, groups)

groups is optional.

Arguments buildinfo

Build information returned by RTW.BuildInfo.
options

A character array or cell array of character arrays that specifies
the linker options to be added to the build information. The
function adds each option to the end of a linker option vector. If
you specify multiple options within a single character array, for
example ' -MD -Gy', the function adds the string to the vector as
a single element. For example, if you add '-MD -Gy' and then
'-T', the vector consists of two elements, as shown below.

'-MD -Gy' LT

groups (optional)
A character array or cell array of character arrays that groups
specified linker options. You can use groups to

¢ Document the use of specific linker options

¢ Retrieve or apply groups of linker options

You can apply
® A single group name to one or more linker options

e Multiple group names to collections of linker options (available
for non-makefile build environments only)

2-20

addLinkFlags

Description

Examples

To...

Apply one group
name to one or more
linker options

Apply different
group names to
linker options

Specify groups as a...

Character array.

Cell array of character arrays such that
the number of group names matches
the number of elements you specify for
options.

Note To specify linker options to be used in the standard
Simulink Coder makefile build process, specify groups as either

'"OPTS' or 'OPT_OPTS"'.

The addLinkFlags function adds specified linker options to the model
build information. The Simulink Coder software stores the linker
options in a vector. The function adds options to the end of the vector
based on the order in which you specify them.

In addition to the required buildinfo and options arguments, you can

use an optional groups argument to group your options.

Add the linker - T option to build information myModelBuildInfo and

place the option in the group OPTS.

myModelBuildInfo = RTW.BuildInfo;
addLinkFlags(myModelBuildInfo, '-T', 'OPTS');

¢ Add the linker options -MD and -Gy to build information
myModelBuildInfo and place the options in the group OPT_OPTS.

myModelBuildInfo = RTW.BuildInfo;
addLinkFlags (myModelBuildInfo, '-MD -Gy', 'OPT_OPTS');

2-21

addLinkFlags

® For a non-makefile build environment, add the linker options -MD,
-Gy, and -T to build information myModelBuildInfo. Place the
options -MD and-Gy in the group Debug and the option -T in the
groupTemp.

myModelBuildInfo = RTW.BuildInfo;
addLinkFlags (myModelBuildInfo, {'-MD -Gy' '-T'},
{'Debug' 'Temp'});

See Also addCompileFlags | addDefines | getLinkFlags

How To * “Customize Post-Code-Generation Build Processing”

2-22

addLinkObjects
|

Purpose Add link objects to model build information

Syntax addLinkObjects(buildinfo, linkobjs, paths, priority,
Y
precompiled, linkonly, groups)

Arguments except buildinfo , linkobjs, and paths are optional. If you
specify an optional argument, you must specify the optional arguments
preceding it.

Arguments buildinfo
Build information returned by RTW.BuildInfo.

linkobjs
A character array or cell array of character arrays that specifies
the filenames of linkable objects to be added to the build
information. The function adds the filenames that you specify
in the function call to a vector that stores the object filenames
in priority order. If you specify multiple objects that have the
same priority (see priority below), the function adds them to
the vector based on the order in which you specify the object
filenames in the cell array.

The function removes duplicate link objects that

® You specify as input

¢ Already exist in the linkable object filename vector

¢ Have a path that matches the path of a matching linkable
object filename

A duplicate entry consists of an exact match of a path string and

corresponding linkable object filename.

paths
A character array or cell array of character arrays that specifies
paths to the linkable objects. If you specify a character array, the
path string applies to all linkable objects.

2-23

addLinkObjects

priority (optional)
A numeric value or vector of numeric values that indicates the
relative priority of each specified link object. Lower values have
higher priority. The default priority is 1000.

precompiled (optional)
The logical value true or false, or a vector of logical values that
indicates whether each specified link object is precompiled.

Specify true if the link object has been prebuilt for faster
compiling and linking and exists in a specified location.

If precompiled is false (the default), the Simulink Coder build
process creates the link object in the build folder.

This argument is ignored if 1inkonly equals true.

linkonly (optional)
The logical value true or false, or a vector of logical values that
indicates whether each specified link object is to be used only
for linking.

Specify true if the Simulink Coder build process should not build,
nor generate rules in the makefile for building, the specified link
object, but should include it when linking the final executable.
For example, you can use this to incorporate link objects for which
source files are not available. If I1inkonly is true, the value of
precompiled is ignored.

If 1inkonly is false (the default), rules for building the link
objects are added to the makefile. In this case, the value

of precompiled determines which subsection of the added
rules is expanded, START_PRECOMP_LIBRARIES (true) or
START_EXPAND_LIBRARIES (false).

groups (optional)
A character array or cell array of character arrays that groups
specified link objects. You can use groups to

2-24

addLinkObjects
|

¢ Document the use of specific link objects

¢ Retrieve or apply groups of link objects

You can apply
® A single group name to a linkable object
® A single group name to multiple linkable objects

e Multiple group name to collections of multiple linkable objects

To... Specify groups as a...

Apply one group Character array.
name to one or more
link objects

Apply different group Cell array of character arrays such that

names to link objects the number of group names matches
the number of elements you specify for
linkobjs.

The default value of groups is {''}.

Description The addLinkObjects function adds specified link objects to the model
build information. The Simulink Coder software stores the link objects
in a vector in relative priority order. If multiple objects have the same
priority or you do not specify priorities, the function adds the objects to
the vector based on the order in which you specify them.

In addition to the required buildinfo, 1inkobjs, and paths arguments,
you can specify the optional arguments priority, precompiled,
linkonly, and groups. You can specify paths and groups as a character
array or a cell array of character arrays.

2-25

addLinkObjects

2-26

Examples

If You Specify paths or
groups as d...

Character array

Cell array of character arrays

The Function...

Applies the character array to objects
it adds to the build information.

Pairs each character array with a
specified object. Thus, the length

of the cell array must match the
length of the cell array you specify for
linkobjs.

Similarly, you can specify priority, precompiled, and linkonly as a

value or vector of values.

If You Specify priority,
precompiled, or linkonly
as a...

Value

Vector of values

The Function...

Applies the value to objects it adds to
the build information.

Pairs each value with a specified
object. Thus, the length of the vector
must match the length of the cell
array you specify for 1inkobjs.

addLinkObjects(myBuildInfo,

If you choose to specify an optional argument, you must specify optional

arguments preceding it. For example, to specify that objects are

precompiled using the precompiled argument, you must specify the
priority argument that precedes precompiled. You could pass the

default priority value 1000, as shown below.

"test1', '/proj/lib/lib1', 1000, true);

¢ Add the linkable objects 1ibobj1 and 1ibobj2 to build information
myModelBuildInfo and set the priorities of the objects to 26 and 10,
respectively. Since 1ibobj2 is assigned the lower numeric priority

addLinkObjects

How To

value, and thus has the higher priority, the function orders the
objects such that 1ibobj2 precedes 1ibobj1 in the vector.

myModelBuildInfo = RTW.BuildInfo;
addLinkObjects(myModelBuildInfo, {'libobj1' 'libobj2'},...
{'/proj/lib/1lib1" '/proj/lib/1lib2'}, [26 10]);

e Add the linkable objects 1ibobj1 and 1ibobj2 to build information

myModelBuildInfo. Mark both objects as link-only. Since individual
priorities are not specified, the function adds the objects to the vector
in the order specified.

myModelBuildInfo = RTW.BuildInfo;
addLinkObjects(myModelBuildInfo, {'libobj1' 'libobj2'},...
{'/proj/lib/1ib1"' '/proj/lib/1ib2'}, 1000,...

false, true);

¢ Add the linkable objects 1ibobj1 and 1ibobj2 to build information

myModelBuildInfo. Set the priorities of the objects to 26 and 10,
respectively. Mark both objects as precompiled, and group them
under the name MyTest.

myModelBuildInfo = RTW.BuildInfo;
addLinkObjects(myModelBuildInfo, {'libobj1' 'libobj2'},...
{'/proj/lib/1lib1"' '/proj/lib/1lib2'}, [26 10],...

true, false, 'MyTest');

+ “Customize Post-Code-Generation Build Processing”

2-27

addNonBuildFiles

Purpose Add nonbuild-related files to model build information

Syntax addNonBuildFiles (buildinfo, filenames, paths, groups)

paths and groups are optional.

Arguments buildinfo
Build information returned by RTW.BuildInfo.

filenames
A character array or cell array of character arrays that specifies
names of nonbuild-related files to be added to the build
information.

The filename strings can include wildcard characters, provided
that the dot delimiter (.) is present. Examples are '*.*"',
"*.DLL', and '*.D*".

The function adds the filenames to the end of a vector in the order
that you specify them.

The function removes duplicate nonbuild file entries that
¢ Already exist in the nonbuild file vector

¢ Have a path that matches the path of a matching filename

A duplicate entry consists of an exact match of a path string and
corresponding filename.

paths (optional)
A character array or cell array of character arrays that specifies
paths to the nonbuild files. The function adds the paths to the
end of a vector in the order that you specify them. If you specify
a single path as a character array, the function uses that path
for all files.

groups (optional)
A character array or cell array of character arrays that groups
specified nonbuild files. You can use groups to

2-28

addNonBuildFiles
|

¢ Document the use of specific nonbuild files

¢ Retrieve or apply groups of nonbuild files

You can apply
® A single group name to a nonbuild file
® A single group name to multiple nonbuild files

e Multiple group names to collections of multiple nonbuild files

To... Specify groups as a...

Apply one group name Character array.
to one or more nonbuild
files

Apply different group Cell array of character arrays such

names to nonbuild files that the number of group names that
you specify matches the number of
elements you specify for filenames.

Description The addNonBuildFiles function adds specified nonbuild-related files,
such as DLL files required for a final executable, or a README file, to
the model build information. The Simulink Coder software stores the
nonbuild files in a vector. The function adds the filenames to the end of
the vector in the order that you specify them.

In addition to the required buildinfo and filenames arguments, you
can specify optional paths and groups arguments. You can specify
each optional argument as a character array or a cell array of character
arrays.

2-29

addNonBuildFiles

If You Specify an Optional The Function...
Argument as a...

Character array Applies the character array to nonbuild files it adds to
the build information.

Cell array of character arrays Pairs each character array with a specified nonbuild file.
Thus, the length of the cell array must match the length
of the cell array you specify for filenames.

If you choose to specify groups, but omit paths, specify a null string
(') for paths.

Examples ¢ Add the nonbuild file readme.txt to build information
myModelBuildInfo and place the file in the group DocFiles.

myModelBuildInfo = RTW.BuildInfo;
addNonBuildFiles (myModelBuildInfo,
‘readme.txt', '/proj/docs', 'DocFiles');

¢ Add the nonbuild files myutility1.d1l and myutility2.d11 to
build information myModelBuildInfo and place the files in the group
DLLFiles.

myModelBuildInfo = RTW.BuildInfo;
addNonBuildFiles(myModelBuildInfo,
{'myutility1.dll' ‘myutility2.dll'},
"/proj/dlls', 'DLLFiles');

e Add the DLL files in a specified folder to build information
myModelBuildInfo and place the files in the group DLLFiles.

myModelBuildInfo = RTW.BuildInfo;

addNonBuildFiles (myModelBuildInfo,

'*.dl1l', '/proj/dlls', 'DLLFiles');
See Also getNonBuildFiles

How To + “Customize Post-Code-Generation Build Processing”

2-30

address

Purpose
Syntax
IDEs

Description

Input
Arguments

Memory address and page value of symbol in IDE
a = IDE Obj.address(symbol,scope)

This function supports the following IDEs:
* Eclipse IDE

The a = IDE Obj.address(symbol,scope) method returns the
memory address of the first matching symbol in the symbol table of
the most recently loaded program.

Because the address method returns the address and page values as a
structure, your programs can use the values directly. For example, the
IDE Obj.read and IDE Obj.write can use a as an input.

If the address method does not find the symbol in the symbol table, it
generates a warning and returns a null value.

a

Use a as a variable to capture the return values from the address
method.

IDE_Obj

IDE 0bj is a handle for an instance of the IDE. Before using a method,
use the constructor function for your IDE to create IDE_0bj.

symbol

symbol is the name of the symbol for which you are getting the memory
address and page values.

Symbol names are case sensitive.

For address to return an address, the symbol must be a valid entry in
the symbol table. If the address method does not find the symbol, it
generates a warning and leaves a empty.

2-31

address

2-32

Output
Arguments

scope

Optionally, you set the scope of the address method. Enter 'local' or
'global'. Use 'local' when the current scope of the program is the
desired function scope. If you omit the scope argument, the address
method uses 'local' by default.

If the address method does not find the symbol, it generates a warning
and does not return a value for a.

The address method only returns address information for the first
matching symbol in the symbol table.
For Code Composer Studio™

The return value, a, is a numeric array with the symbol’s address offset,
a(1), and page, a(2).

With TI C6000™ processors, the memory page value is 0.

For Eclipse

With Eclipse IDE, the address method only returns the symbol address.
It does not return a value for page.

The return value, a, is the numeric value of the symbol address.

For MULTI®

With MULTI, address requires a linker command file (Icf) in your
project.

The return value, a, is a numeric array with the symbol’s address offset,
a(1), and page, a(2).

For VisualDSP++®

With Visual DSP++, address requires a linker command file (Icf) in
your project.

The return value a is a numeric array with the symbol’s start address,
a(1), and memory type, a(2).

address

Examples

See Also

After you load a program to your processor, address lets you read
and write to specific entries in the symbol table for the program. For
example, the following function reads the value of symbol 'ddat' from
the symbol table in the IDE.

ddatv = IDE_Obj.read(IDE_Obj.address('ddat'), 'double’',4)

ddat is an entry in the current symbol table. address searches for the
string ddat and returns a value when it finds a match. read returns
ddat to MATLAB software as a double-precision value as specified by
the string 'double’.

To change values in the symbol table, use address with write:

IDE_Obj.write(IDE_Obj.address('ddat'),double([pi 12.3 exp(-1)...
sin(pi/4)1))

After executing this write operation, ddat contains double-precision

values for o, 12.3, e, and sin(n/4). Use read to verify the contents
of ddat:

ddatv = IDE_Obj.read(IDE_Obj.address('ddat'), 'double', 4)

MATLAB software returns

ddatv =

3.1416 12.3 0.3679 0.7071

load | read | write

2-33

addSourceFiles

Purpose Add source files to model build information

Syntax addSourceFiles(buildinfo, filenames, paths, groups)

paths and groups are optional.

Arguments buildinfo
Build information returned by RTW.BuildInfo.

filenames
A character array or cell array of character arrays that specifies
names of the source files to be added to the build information.

The filename strings can include wildcard characters, provided
that the dot delimiter (.) is present. Examples are '*.*' '*.¢',
and '*.c*'.

The function adds the filenames to the end of a vector in the order
that you specify them.

The function removes duplicate source file entries that

® You specify as input

¢ Already exist in the source file vector

¢ Have a path that matches the path of a matching filename

A duplicate entry consists of an exact match of a path string and
corresponding filename.

paths (optional)
A character array or cell array of character arrays that specifies
paths to the source files. The function adds the paths to the end of
a vector in the order that you specify them. If you specify a single
path as a character array, the function uses that path for all files.

groups (optional)
A character array or cell array of character arrays that groups
specified source files. You can use groups to

2-34

addSourceFiles

¢ Document the use of specific source files

¢ Retrieve or apply groups of source files

You can apply
® A single group name to a source file
® A single group name to multiple source files

e Multiple group names to collections of multiple source files

To... Specify group as a...

Apply one group name Character array.
to one or more source
files

Apply different group Cell array of character arrays such

names to source files that the number of group names that
you specify matches the number of
elements you specify for filenames.

Description The addSourceFiles function adds specified source files to the model
build information. The Simulink Coder software stores the source files
in a vector. The function adds the filenames to the end of the vector in
the order that you specify them.

In addition to the required buildinfo and filenames arguments, you
can specify optional paths and groups arguments. You can specify
each optional argument as a character array or a cell array of character
arrays.

2-35

addSourceFiles

2-36

If You Specify an Optional The Function...

Argument as a...

Character array

Applies the character array to source files it adds to the
build information.

Cell array of character Pairs each character array with a specified source file.

arrays

Thus, the length of the cell array must match the length of
the cell array you specify for filenames.

Examples

If you choose to specify groups, but omit paths, specify a null string
(') for paths.

Add the source file driver.c to build information myModelBuildInfo
and place the file in the group Drivers.

myModelBuildInfo = RTW.BuildInfo;
addSourceFiles(myModelBuildInfo, 'driver.c',
"/proj/src', 'Drivers');

Add the source files test1.c and test2.c to build information
myModelBuildInfo and place the files in the group Tests.

myModelBuildInfo = RTW.BuildInfo;
addSourceFiles(myModelBuildInfo,
{'test1.c' 'test2.c'},
"/proj/src', 'Tests');

Add the source files test1.c, test2.c, and driver.c to build
information myModelBuildInfo. Group the files test1.c and
test2.c with the string Tests and the file driver.c with the string
Drivers.

myModelBuildInfo = RTW.BuildInfo;
addSourceFiles(myModelBuildInfo,
{'test1.c' 'test2.c' 'driver.c'},
"/proj/src',

{'Tests' 'Tests' 'Drivers'});

addSourceFiles

e Add the .c files in a specified folder to build information
myModelBuildInfo and place the files in the group CFiles.

myModelBuildInfo = RTW.BuildInfo;
addIncludeFiles(myModelBuildInfo,

‘*.¢', '/proj/src', 'CFiles');
See Also addIncludeFiles | addIncludePaths | addSourcePaths
| getSourceFiles | updateFilePathsAndExtensions
updateFileSeparator

How To + “Customize Post-Code-Generation Build Processing”

2-37

addSourcePaths

Purpose Add source paths to model build information

Syntax addSourcePaths(buildinfo, paths, groups)

groups is optional.

Arguments buildinfo
Build information returned by RTW.BuildInfo.

paths
A character array or cell array of character arrays that specifies
source file paths to be added to the build information. The
function adds the paths to the end of a vector in the order that
you specify them.
The function removes duplicate source file entries that
® You specify as input
® Already exist in the source path vector
¢ Have a path that matches the path of a matching filename

A duplicate entry consists of an exact match of a path string and
corresponding filename.

Note The Simulink Coder software does not check whether a
specified path string is valid.

groups (optional)
A character array or cell array of character arrays that groups
specified source paths. You can use groups to

¢ Document the use of specific source paths

¢ Retrieve or apply groups of source paths

2-38

addSourcePaths
|

You can apply
¢ A single group name to a source path
® A single group name to multiple source paths

e Multiple group names to collections of multiple source paths

To... Specify groups as a...

Apply one group name Character array.
to one or more source
paths

Apply different group Cell array of character arrays such

names to source paths that the number of group names that
you specify matches the number of
elements you specify for paths.

Description The addSourcePaths function adds specified source paths to the model
build information. The Simulink Coder software stores the source paths
in a vector. The function adds the paths to the end of the vector in the
order that you specify them.

In addition to the required buildinfo and paths arguments, you can
specify an optional groups argument . You can specify groups as a
character array or a cell array of character arrays.

If You Specify an Optional The Function...
Argument as a...

Character array Applies the character array to source
paths it adds to the build information.

Cell array of character arrays Pairs each character array with a
specified source path. Thus, the
length of the character array or cell
array must match the length of the
cell array you specify for paths.

2-39

addSourcePaths

2-40

Examples

See Also

How To

Note The Simulink Coder software does not check whether a specified
path string is valid.

¢ Add the source path /etcproj/etc/etc_build to build information
myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addSourcePaths(myModelBuildInfo,...
"/etcproj/etc/etc_build');

® Add the source paths /etcproj/etclib and
/etcproj/etc/etc_build to build information myModelBuildInfo
and place the files in the group etc.

myModelBuildInfo = RTW.BuildInfo;
addSourcePaths (myModelBuildInfo,...
{'/etcproj/etclib' '/etcproj/etc/etc_build'}, 'etc');

® Add the source paths /etcproj/etclib, /etcproj/etc/etc_build,
and /common/1ib to build information myModelBuildInfo. Group the
paths /etc/proj/etclib and /etcproj/etc/etc_build with the
string etc and the path /common/1lib with the string shared.

myModelBuildInfo = RTW.BuildInfo;

addSourcePaths (myModelBuildInfo,...

{'/etc/proj/etclib' '/etcproj/etc/etc_build'...
"/common/lib'}, {'etc' 'etc' 'shared'});

addIncludeFiles | addIncludePaths | addSourceFiles
| getSourcePaths | updateFilePathsAndExtensions
updateFileSeparator

+ “Customize Post-Code-Generation Build Processing”

addTMFTokens
|

Purpose Add template makefile (TMF) tokens that provide build-time
information for makefile generation

Syntax addTMFTokens (buildinfo, tokennames, tokenvalues, groups)

groups is optional.

Arguments buildinfo
Build information returned by RTW.BuildInfo.

tokennames
A character array or cell array of character arrays that specifies
names of TMF tokens (for example, ' | >CUSTOM_OUTNAME<| ') to
be added to the build information. The function adds the token
names to the end of a vector in the order that you specify them.

If you specify a token name that already exists in the vector,
the first instance takes precedence and its value is used for
replacement.

tokenvalues
A character array or cell array of character arrays that specifies
TMF token values corresponding to the previously-specified TMF
token names. The function adds the token values to the end of a
vector in the order that you specify them.

groups (optional)
A character array or cell array of character arrays that groups
specified TMF tokens. You can use groups to

¢ Document the use of specific TMF tokens

¢ Retrieve or apply groups of TMF tokens

You can apply

® A single group name to a TMF token

® A single group name to multiple TMF tokens

e Multiple group names to collections of multiple TMF tokens

2-41

addTMFTokens

2-42

Description

To... Specify groups as a...

Apply one group name Character array.
to one or more TMF
tokens

Apply different group Cell array of character arrays such

names to TMF tokens that the number of group names that
you specify matches the number of
elements you specify for tokennames.

Call the addTMFTokens function inside a post code generation command
to provide build-time information to help customize makefile generation.
The tokens specified in the addTMFTokens function call must be handled
in the template makefile (TMF) for the target selected for your model.
For example, if your post code generation command calls addTMFTokens
to add a TMF token named |>CUSTOM_OUTNAME<| that specifies an
output file name for the build, the TMF must take action with the value
of |>CUSTOM_OUTNAME<| to achieve the desired result. (See “Examples”
on page 2-43.)

The addTMFTokens function adds specified TMF token names and
values to the model build information. The Simulink Coder software
stores the TMF tokens in a vector. The function adds the tokens to the
end of the vector in the order that you specify them.

In addition to the required buildinfo, tokennames, and tokenvalues
arguments, you can specify an optional groups argument. You can
specify groups as a character array or a cell array of character arrays.

If You Specify an
Argument as a...

Character array

Optional The Function...

Applies the character array to TMF tokens it adds to
the build information.

Cell array of character arrays Pairs each character array with a specified TMF token.

Thus, the length of the cell array must match the length
of the cell array you specify for tokennames.

addTMFTokens
|

Examples Inside a post code generation command, add the TMF token
| >CUSTOM_OUTNAME<| and its value to build information
myModelBuildInfo, and place the token in the group LINK_INFO.

myModelBuildInfo = RTW.BuildInfo;
addTMFTokens (myModelBuildInfo,
' |>CUSTOM_OUTNAME<| ', 'foo.exe', 'LINK INFO');

In the TMF for the target selected for your model, code such as the
following uses the token value to achieve the desired result:

CUSTOM_OUTNAME = |>CUSTOM_OUTNAME< |
target:
$(LD) -o $(CUSTOM_OUTNAME)

How To + “Customize Post-Code-Generation Build Processing”

2-43

bu

ild

2-44

Purpose

Syntax

IDEs

Description

See Also

Build or rebuild current project

[result,numwarns]=IDE_Obj.build(timeout)
IDE Obj.build('all')

This function supports the following IDEs:
* Eclipse IDE

[result,numwarns]=IDE Obj.build(timeout) incrementally builds
the active project. Incremental builds recompile only source files in
your project that you changed or added after the most recent build.
build uses the file time stamp to determine whether to recompile a file.
After recompiling the source files, build links the object files to make
a new program file.

The value of result is 1 when the build process completes. The value
of numwarns is the number of compilation warnings generated from
the build process.

The timeout argument defines the number of seconds MATLAB waits
for the IDE to complete the build process. If the IDE exceeds the
timeout period, this method returns a timeout error immediately. The
timeout error does not terminate the build process in the IDE. The IDE
continues the build process. The timeout error indicates that the build
process did not complete before the specified timeout period expired.

If you omit the timeout argument, the build method uses a default
value of 1000 seconds.

IDE Obj.build('all') rebuilds the files in the active project.

isrunning | open

close

Purpose
Syntax
IDEs

Description

Examples

Close project in IDE window
IDE Obj.close(filename, 'project')

This function supports the following IDEs:
* Eclipse IDE

Use IDE Obj.close(filename, 'project') to close a specific project,
projects, or the active open project.

For the filename argument:
® To close the project files, enter 'all’.

® To close a specific project, enter the project file name, such as
'myProj'.If the file is not an open file in the IDE, MATLAB returns a
warning message.

® To close the active project, enter [].

With the VisualDSP++ IDE, to close the current project group (if
filename is 'all' or []), replace 'project'with 'projectgroup’.

Note
® The open method does not support the 'text' argument.

e Save changes to your files and projects in the IDE before you use
close. The close method does not save changes, nor does it prompt
you to save changes, before it closes the project.

To close the open project files:
IDE_Obj.close('all', 'project')
To close the open project, myProj:

IDE_Obj.close('myProj', 'project')

2-45

close

2-46

See Also

To close the active open project:

IDE_Obj.close([], 'project')

With the VisualDSP++ IDE, to close the open project groups:

IDE_Obj.close('all', 'projectgroup')

With the VisualDSP++ IDE, to close the active project group:

IDE_Obj.close([], 'projectgroup')

add | open

coder.report.close

Purpose Close HTML code generation report

Syntax coder.report.close()

Description coder.report.close() closes the HTML code generation report.
Concepts * “Reports for Code Generation”

2-47

coder.report.generate

2-48

Purpose

Syntax

Description

Input
Arguments

Generate HTML code generation report

coder.report.generate(model)
coder.report.generate(subsystem)
coder.report.generate(model,Name,Value)

coder.report.generate(model) generates a code generation report
for the model. The build folder for the model must be present in the
current working folder.

coder.report.generate(subsystem) generates the code generation
report for the subsystem. The build folder for the subsystem must be
present in the current working folder.

coder.report.generate(model,Name,Value) generates the code
generation report according to the current model configuration and the
specified Name ,Value arguments. Possible values for the Name,Value
arguments are parameters on the Code Generation > Report

pane. Using the Name,Value arguments, you can generate a report
with a different report configuration without modifying the model
configuration.

When you generate the report, the Web view includes the block diagram
attributes displayed in the Simulink Editor, such as, block sorted
execution order, signal properties, and port data types. Before calling
coder.report.generate, press Ctrl+D to update the model.

model

String specifying the name of a Simulink model.

subsystem

String specifying the name of a subsystem.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can

coder.report.generate

specify several name and value pair arguments in any order as
Namei1,Valuetl,...,NameN,ValueN.

Each Name,Value argument corresponds to a parameter on the
Configuration Parameters Code Generation > Report pane. The
following parameters require an Embedded Coder license and is
enabled when the configuration parameter GenerateReport is on.
The Name,Value arguments are only used for generating the current
report, the arguments do not set the corresponding parameters in the
model configuration.

‘IncludeHyperlinkinReport’

Specify on to include code-to-model hyperlinks that link code to the
corresponding blocks, Stateflow® objects, and MATLAB functions in the
model diagram. For more information, see “Code-to-model” on page
4-51.

Default: off

‘GenerateTracelnfo’
Specify on to include model-to-code highlighting in the code generation
report. For more information, see “Model-to-code” on page 4-53.

Default: off

'‘GenerateWebview’
Specify on to include the model Web view in the code generation report.
For more information, see “Generate model Web view” on page 4-56.

Default: off

‘GenerateTraceReport’

Specify on to include a summary of eliminated and virtual blocks in the
code generation report. For more information, see “Eliminated / virtual
blocks” on page 4-57.

2-49

coder.report.generate

2-50

Examples

Default: off

‘GenerateTraceReportSl’

Specify on to include a summary of the Simulink blocks and the
corresponding code location in the code generation report. For more
information, see “Traceable Simulink blocks” on page 4-59.

Default: off

‘GenerateTraceReporiSf’

Specify on to include a summary of Stateflow objects and the
corresponding code location in the code generation report. For more
information, see “Traceable Stateflow objects” on page 4-61.

Default: off

‘GenerateTraceReportEml’

Specify on to include a summary of the MATLAB functions and the
corresponding code locations in the code generation report. For more
information, see “Traceable MATLAB functions” on page 4-63.

Default: off

‘GenerateCodeMetricsReport’
Specify on to include static code metrics in the code generation report.

For more information, see “Static code metrics” on page 4-65.

Default: off

This example shows how to generate a code generation report to
include a static code metrics report after the build process and without
modifying the model.

coder.report.generate

Alternatives

See Also

Concepts

Open the model rtwdemo_hyperlinks.

Build the model. The model is configured to automatically create and
open a code generation report.

rtwbuild('rtwdemo_hyperlinks');

Close the code generation report.

coder.report.close;

Generate a code generation report that includes the static code metrics
report.

coder.report.generate('rtwdemo_hyperlinks', 'GenerateCodeMetricsReport','on');

The code generation report opens. In the left navigation pane, click on
Static Code Metrics Report and view the report.

® “Generate a Code Generation Report”

® “Generate Code Generation Report After Build Process”
coder.report.open | coder.report.close

® “Reports for Code Generation”
® “Create code generation report” on page 4-46

2-51

coder.report.open

Purpose

Syntax

Description

Input
Arguments

Examples

Alternative
See Also

Concepts

2-52

Open existing HTML code generation report

coder.report.open(model)
coder.report.open(subsystem)

coder.report.open(model) opens a code generation report for the
model. The build folder for the model must be present in the current
working folder.

coder.report.open(subsystem) opens the code generation report for
the subsystem. The build folder for the subsystem must be present in
the current working folder.

model

String specifying the name of a Simulink model.

subsystem

String specifying the name of a subsystem.

After generating code for rtwdemo_counter, open a code generation
report for the model:

coder.report.open('rtwdemo_counter')

To open a code generation report for a subsystem:

coder.report.open('rtwdemo_counter/Amplifier')
® “Open Code Generation Report”
coder.report.generate | coder.report.close

® “Reports for Code Generation”

Purpose

Syntax

IDEs

Description

Files and folders in current IDE window

IDE Obj .dir
d=IDE_Obj .dir

This function supports the following IDEs:
* Eclipse IDE

IDE Obj .dir lists the files and folders in the IDE working folder, where
IDE_Obj is the object that references the IDE. IDE_Obj can be either

a single object, or a vector of objects. When IDE_O0bj is a vector, dir
returns the files and folders referenced by each object.

d=IDE Obj.dir returns the list of files and folders as an M-by-1
structure in d with the fields for each file and folder shown in the
following table.

Field Name Description

name Name of the file or folder.

date Date of most recent file or folder modification.

bytes Size of the file in bytes. Folders return 0 for
the number of bytes.

isdirectory 0 if it is a file, 1 if it is a folder.

datenum The Eclipse IDE and Code Composer Studio

IDE also return the modification date as a
MATLAB serial date number.

To view the entries in structure d, use an index in the syntax at the
MATLAB prompt, as shown by the following examples.

® d(3) returns the third element in the structure.
® d(10) returns the tenth element in the structure d.

® d(4).date returns the date field value for the fourth structure
element.

2-53

See Also open

2-54

display (IDE Object)
|

Purpose Properties of IDE handle
Syntax IDE _Obj.display()
IDEs This function supports the following IDEs:

* Eclipse IDE
Description IDE Obj.display() displays the properties and property values of the
IDE handleIDE_Obj.

For example, after you creating IDE_0bj with a constructor, using the
display method with IDE_Obj returns a set of properties and values:

IDE_Obj.display

IDE Object:
Propertyi : valuea
Property2 : valueb
Property3 : valuec
Property4 : valued
See Also get

2-55

eclipseide

2-56

Purpose

Syntax

IDEs

Description

Create handle object to interact with Eclipse IDE

IDE Obj = eclipseide
IDE Obj eclipseide('timeout', period)

This function supports the following IDEs:
* Eclipse IDE

Before using eclipseide for the first time:

¢ Install the versions of Eclipse IDE and related build tools described
in “Installing Third-Party Software for Eclipse”.

® Use the eclipseidesetup function to configure and install a plug-in
that enables your coder product to interact with Eclipse IDE.

Use IDE _Obj = eclipseide to create an IDE handle object, which you
can use to communicate with the Eclipse IDE and processors connected
to the Eclipse IDE. After creating the IDE handle object, you can use
the methods for the Eclipse IDE.

When you use eclipseide, your coder product uses the plug-in to open
a session with Eclipse. If Eclipse IDE is not already running, the
eclipseide function starts the Eclipse IDE. The session connects via
the IP port number and uses the workspace you specified previously
with eclipseidesetup.

When you build a model, the software uses eclipseide to create an
IDE handle object. In that case, the software gets the name of the IDE
handle object from the IDE link handle name parameter (default
value: IDE_Obj) in the configuration parameters for the model.

To assign a timeout period to the handle object, enter the following
command:

IDE Obj = eclipseide('timeout', period)

For period, enter the number of seconds that the handle object waits
for processor operations (such as load) to complete. Operations that

eclipseide

Examples

See Also

exceed the timeout period generate timeout errors. The default period
1s 10 seconds.

For example, to create an object handle with a 20-second timeout
period, enter:

>> IDE_Obj = eclipseide('timeout',20)
Starting Eclipse(TM) IDE...

ECLIPSEIDE Object:
Default timeout : 20.00 secs
Eclipse folder : C:\eclipse3.4\eclipse
Eclipse workspace: C:\WINNT\Profiles\rdlugyhe\workspace
Port number : 5555
Processor site : local

eclipseidesetup

2-57

eclipseidesetup

Purpose
Syntax
IDEs

Description

See Also

2-58

Configure your coder product to interact with Eclipse IDE
eclipseidesetup

This function supports the following IDEs:
* Eclipse IDE

Before using eclipseidesetup for the first time, install the versions of
Eclipse IDE and related build tools described in “Installing Third-Party
Software for Eclipse”.

To avoid potential build errors later on, close Eclipse IDE before you
run eclipseidesetup. For more information, see Build Errors.

Use eclipseidesetup at the MATLAB command line to set up your
coder product to interact with Eclipse IDE. This action displays a dialog
box which you use to configure and add a plugin to the Eclipse IDE. For
detailed instructions and examples, see “Configuring Your MathWorks®
Software to Work with Eclipse”.

When to use eclipseidesetup:
e After you install or reinstall the Eclipse IDE.
® Before you use the eclipseide constructor function to create an IDE

handle object for the first time.

eclipseide

findIincludeFiles

Purpose

Syntax

Arguments

Description

Examples

Find and add include (header) files to build information object

findIncludeFiles(buildinfo, extPatterns)

extPatterns is optional.

buildinfo
Build information returned by RTW.BuildInfo.

extPatterns (optional)
A cell array of character arrays that specify patterns of file name
extensions for which the function is to search. Each pattern

e Must start with *.
¢ Can include a combination of alphanumeric and underscore
(U characters

The default pattern is *.h.

Examples of valid patterns include

*.h
*.hpp

* . X*
The findIncludeFiles function

e Searches for include files, based on specified file name extension
patterns, in source and include paths recorded in the model build
information object

e Adds the files found, along with their full paths, to the build
information object

® Deletes duplicate entries

Find include files with filename extension .h that are in build
information object myModelBuildInfo, and add the full paths for the
files found to the object.

2-59

findIincludeFiles

myModelBuildInfo = RTW.BuildInfo;
addSourcePaths(myModelBuildInfo, {fullfile(pwd,...
‘mycustomheaders')}, 'myheaders');
findIncludeFiles(myModelBuildInfo);
headerfiles = getIncludeFiles(myModelBuildInfo, true, false);
headerfiles
headerfiles =

'W:\work\mycustomheaders\myheader.h'

See Also addIncludeFiles | getIncludeFiles | packNGo

How To + “Customize Post-Code-Generation Build Processing”

2-60

halt

Purpose

Syntax

IDEs

Description

Halt program execution by processor

IDE Obj.halt
IDE Obj.halt(timeout)

This function supports the following IDEs:
* Eclipse IDE

IDE Obj.halt stops the program running on the processor. After you
issue this command, MATLAB waits for a response from the processor
that the processor has stopped. By default, the wait time is 10 seconds.
If 10 seconds elapses before the response arrives, MATLAB returns an
error. In this syntax, the timeout period defaults to the global timeout
period specified in IDE_Obj. Use IDE_Obj.get to determine the global
timeout period. However, the processor usually stops in spite of the
error message.

To resume processing after you halt the processor, use run. Also, the
IDE_Obj.read('pc') function can determine the memory address
where the processor stopped after you use halt.

IDE Obj.halt(timeout) immediately stops program execution by the
processor. After the processor stops, halt returns to the host. timeout
defines, in seconds, how long the host waits for the processor to stop
running. If the processor does not stop within the specified timeout
period, the routine returns with a timeout error.

Examples

Use one of the provided example programs to show how halt works.
Load and run one of the example projects. At the MATLAB prompt,
check whether the program is running on the processor.

IDE_Obj.isrunning

ans =

2-61

halt

IDE_Obj.isrunning % Alternate syntax for checking the run status.
ans =

1
IDE_Obj.halt % Stop the running application on the processor.

IDE_Obj.isrunning

ans =

Issuing the halt stops the process on the processor. Checking in the IDE
confirms that the process has stopped.

See Also isrunning | run

2-62

insert

Purpose

Syntax

IDEs

Description

Insert debug point in file

IDE Obj.insert(addr,type,timeout)
IDE Obj.insert(addr)
IDE Obj.insert(file,line,type,timeout)

This function supports the following IDEs:
* Eclipse IDE

IDE Obj.insert(addr,type,timeout) places a debug point at the
provided address of the processor. The IDE_Obj handle defines
the processor that will receive the new debug point. The debug
point location is defined by addr, the desired memory address. The
IDEs support several types of debug points. Refer to your IDE help
documentation for information on their respective behavior. The
following table shows which debug types each IDE supports.

CCS IDE Eclipse IDE | MULTI VisualDSP++
'break’ Yes Yes Yes Yes
(default)
'watch' Yes Yes
"probe’ Yes

The timeout parameter defines how long to wait (in seconds) for the
insert to complete. If this period is exceeded, the routine returns
immediately with a timeout error. In general the action (insert) still
occurs, but the timeout value gave insufficient time to verify the
completion of the action.

IDE Obj.insert(addr) same as the preceding example, except the
timeout value defaults to the timeout property specified by the IDE_ODbj
object. Use IDE Obj.get('timeout') to examine this default timeout
value.

IDE Obj.insert(file,line,type,timeout) places a debug point at
the specified line in a source file of Eclipse. The FILE parameter gives

2-63

insert

2-64

See Also

the name of the source file. LINE defines the line number to receive the
breakpoint. Eclipse IDE provides several types of debug points. Refer to
the previous list of supported debug point types. Refer to Eclipse IDE
documentation for information on their respective behavior.

IDE Obj.insert(file,line) same as the preceding example, except the
timeout value defaults to the timeout property specified by the IDE_Ob;
object. Use IDE Obj.get('timeout') to examine this default timeout
value.

address | run

isrunning

Purpose Determine whether processor is executing process
Syntax IDE Obj.isrunning
IDEs This function supports the following IDEs:

* Eclipse IDE

Description IDE Obj.isrunning returns 1 when the processor is executing a
program. When the processor is halted, isrunning returns 0.

Examples isrunning lets you determine whether the processor is running. After
you load a program to the processor, use isrunning to verify that the
program is running.

IDE_Obj.load('program.exe', 'program')
IDE_Obj.run
IDE_Obj.isrunning
ans =
1
IDE_Obj.halt
IDE_Obj.isrunning

ans =

See Also halt | load | run

2-65

getCompileFlags

Purpose

Syntax

Input
Arguments

Output
Arguments

Description

Examples

2-66

Compiler options from model build information

options = getCompileFlags(buildinfo, includeGroups,
excludeGroups)

includeGroups and excludeGroups are optional.

buildinfo
Build information returned by RTW.BuildInfo.

includeGroups (optional)
A character array or cell array of character arrays that specifies
groups of compiler flags you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies
groups of compiler flags you do not want the function to return.

Compiler options stored in the model build information.

The getCompileFlags function returns compiler options stored in
the model build information. Using optional includeGroups and

excludeGroups arguments, you can selectively include or exclude
groups of options the function returns.

If you choose to specify excludeGroups and omit includeGroups,
specify a null string (' ') for includeGroups.

® Get the compiler options stored in build information
myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;

addCompileFlags(myModelBuildInfo, {'-Zi -wall' '-03'},
'"OPTS');

compflags=getCompileFlags(myModelBuildInfo);

compflags

getCompileFlags
|

compflags =
'-Zi -Wall' '-03'

® Get the compiler options stored with the group name Debug in build
information myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addCompileFlags(myModelBuildInfo, {'-Zi -Wwall' '-03'},

{'Debug' 'MemOpt'});
compflags=getCompileFlags(myModelBuildInfo, 'Debug');
compflags

compflags =
'-Zi -Wall'

® Get the compiler options stored in build information
myModelBuildInfo, except those with the group name Debug.

myModelBuildInfo = RTW.BuildInfo;
addCompileFlags(myModelBuildInfo, {'-Zi -wWall' '-03'},
{'Debug' 'MemOpt'});

compflags=getCompileFlags(myModelBuildInfo, '', 'Debug');
compflags
compflags =
03"
See Also addCompileFlags | getDefines | getLinkFlags
How To + “Customize Post-Code-Generation Build Processing”

2-67

getDefines

2-68

Purpose

Syntax

Input
Arguments

Output
Arguments

Preprocessor macro definitions from model build information

[macrodefs, identifiers, values] = getDefines(buildinfo,
includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.

buildinfo
Build information returned by RTW.BuildInfo.

includeGroups (optional)
A character array or cell array of character arrays that specifies
groups of macro definitions you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies
groups of macro definitions you do not want the function to return.

Preprocessor macro definitions stored in the model build information.
The function returns the macro definitions in three vectors.

Vector Description

macrodefs Complete macro definitions with -D
prefix

identifiers Names of the macros

values Values assigned to the macros (anything

specified to the right of the first equals
sign) ; the default is an empty string (' ')

getDefines

Description

Examples

The getDefines function returns preprocessor macro definitions stored
in the model build information. When the function returns a definition,
it automatically

® Prepends a -D to the definition if the -D was not specified when the
definition was added to the build information

® Changes a lowercase -d to -D

Using optional includeGroups and excludeGroups arguments, you
can selectively include or exclude groups of definitions the function
1s to return.

If you choose to specify excludeGroups and omit includeGroups,
specify a null string (' ') for includeGroups.

® Get the preprocessor macro definitions stored in build information
myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addDefines(myModelBuildInfo,
{'PROTO=first' '-DDEBUG' 'test' '-dPRODUCTION'}, 'OPTS');
[defs names values]=getDefines(myModelBuildInfo);
defs
defs =
' -DPROTO=first' ' -DDEBUG' '-Dtest’ ' -DPRODUCTION'
names
names =
'"PROTO'
'DEBUG
"test'
'"PRODUCTION'

values

2-69

getDefines

values =

'first'

¢ Get the preprocessor macro definitions stored with the group name
Debug in build information myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addDefines(myModelBuildInfo,
{'PROTO=first' '-DDEBUG' 'test' '-dPRODUCTION'},
{'Debug' 'Debug' 'Debug' 'Release'});
[defs names values]=getDefines(myModelBuildInfo, 'Debug');
defs

defs =

'-DPROTO=first' ' -DDEBUG' '-Dtest’

® Get the preprocessor macro definitions stored in build information
myModelBuildInfo, except those with the group name Debug.

myModelBuildInfo = RTW.BuildInfo;
addDefines(myModelBuildInfo,
{'PROTO=first' '-DDEBUG' 'test' '-dPRODUCTION'},
{'Debug' 'Debug' 'Debug' 'Release'});

[defs names values]=getDefines(myModelBuildInfo, '', 'Debug');
defs
defs =
' -DPRODUCTION'
See Also addDefines | getCompileFlags | getLinkFlags

2-70

getDefines

How To * “Customize Post-Code-Generation Build Processing”

2-71

getFullFileList

Purpose

Syntax

Input
Arguments

Output
Arguments

2-72

List of files from model build information

[fPathNames, names] = getFullFilelList(buildinfo, fcase)

fcase is optional.

buildinfo
Build information returned by RTW.BuildInfo.

fcase (optional)
The string 'source', 'include’, or 'nonbuild'. If the argument
is omitted, the function returns files from the model build
information.

If You Specify... The Function...

'source’ Returns source files from the model build
information.
"include' Returns include files from the model

build information.

'nonbuild’ Returns nonbuild files from the model
build information.

Fully-qualified file paths and file names for files stored in the model
build information.

Note It is not required to resolve the path of every file in the model
build information, because the makefile for the model build will
resolve file locations based on source paths and rules. Therefore,
getFullFilelList returns the path for each file only if a path was
explicitly associated with the file when it was added, or if you called
updateFilePathsAndExtensions to resolve file paths and extensions
before calling getFullFilelList.

getFullFileList

Description

Examples

How To

The getFullFileList function returns the fully-qualified paths
and names of all files, or files of a selected type (source, include, or
nonbuild), stored in the model build information.

The packNGo function calls getFullFileList to return a list of files in
the model build information before processing files for packaging.

List the files stored in build information myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
[fPathNames, names] = getFullFilelList(myModelBuildInfo);

+ “Customize Post-Code-Generation Build Processing”

2-73

getincludeFiles

2-74

Purpose

Syntax

Input
Arguments

Include files from model build information
files = getIncludeFiles(buildinfo, concatenatePaths,
replaceMatlabroot, includeGroups, excludeGroups)
includeGroups and excludeGroups are optional.
buildinfo

Build information returned by RTW.BuildInfo.

concatenatePaths
The logical value true or false.

If You Specify... The Function...

true Concatenates and returns each filename
with its corresponding path.

false Returns only filenames.

Note It is not required to resolve the path of every file in
the model build information, because the makefile for the
model build will resolve file locations based on source paths
and rules. Therefore, specifying true for concatenatePaths
returns the path for each file only if a path was explicitly
associated with the file when it was added, or if you called
updateFilePathsAndExtensions to resolve file paths and
extensions before calling getIncludeFiles.

replaceMatlabroot
The logical value true or false.

getincludeFiles

Output
Arguments

Description

Examples

If You Specify... The Function...

true Replaces the token $(MATLAB_ROOT)
with the absolute path string for your
MATLAB installation folder.

false Does not replace the token
$ (MATLAB_ROOT).

includeGroups (optional)
A character array or cell array of character arrays that specifies
groups of include files you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies
groups of include files you do not want the function to return.

Names of include files stored in the model build information. The
names include files you added using the addIncludeFiles function
and, if you called the packNGo function, files packNGo found and added
while packaging model code.

The getIncludeFiles function returns the names of include files
stored in the model build information. Use the concatenatePaths and
replaceMatlabroot arguments to control whether the function includes
paths and your MATLAB root definition in the output it returns.
Using optional includeGroups and excludeGroups arguments, you
can selectively include or exclude groups of include files the function
returns.

If you choose to specify excludeGroups and omit includeGroups,
specify a null string (' ') for includeGroups.

® Get the include paths and filenames stored in build information
myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addIncludeFiles(myModelBuildInfo, {'etc.h' 'etc_private.h'...
'mytypes.h'}, {'/etc/proj/etclib' '/etcproj/etc/etc_build'...

2-75

getincludeFiles

'/common/1lib'}, {'etc' 'etc' 'shared'});
incfiles=getIncludeFiles(myModelBuildInfo, true, false);
incfiles

incfiles =

[1x22 char] [1x36 char] [1x21 char]

Get the names of include files in group etc that are stored in build
information myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;

addIncludeFiles(myModelBuildInfo, {'etc.h' 'etc_private.h'...
‘mytypes.h'}, {'/etc/proj/etclib' '/etcproj/etc/etc_build'...

"/common/lib'}, {'etc' 'etc' 'shared'});
incfiles=getIncludeFiles(myModelBuildInfo, false, false,...

‘etc');
incfiles
incfiles =
'etc.h' ‘etc_private.h'
See Also addIncludeFiles | findIncludeFiles | getIncludePaths |

getSourceFiles | getSourcePaths | updateFilePathsAndExtensions

How To + “Customize Post-Code-Generation Build Processing”

2-76

getincludePaths

Purpose

Syntax

Input
Arguments

Output
Arguments

Description

Include paths from model build information

files=getIncludePaths(buildinfo, replaceMatlabroot,
includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.
buildinfo
Build information returned by RTW.BuildInfo.

replaceMatlabroot
The logical value true or false.

If You Specify... The Function...

true Replaces the token $ (MATLAB_ROOT)
with the absolute path string for your
MATLAB installation folder.

false Does not replace the token
$ (MATLAB_ROOT).

includeGroups (optional)
A character array or cell array of character arrays that specifies
groups of include paths you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies
groups of include paths you do not want the function to return.

Paths of include files stored in the model build information.

The getIncludePaths function returns the names of include file paths
stored in the model build information. Use the replaceMatlabroot
argument to control whether the function includes your MATLAB root
definition in the output it returns. Using optional includeGroups
and excludeGroups arguments, you can selectively include or exclude
groups of include file paths the function returns.

2-77

getincludePaths

If you choose to specify excludeGroups and omit includeGroups,
specify a null string (' ') for includeGroups.

Examples ® Get the include paths stored in build information myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addIncludePaths(myModelBuildInfo, {'/etc/proj/etclib'...
"/etcproj/etc/etc_build' '/common/lib'},...

{'etc' 'etc' 'shared'});
incpaths=getIncludePaths(myModelBuildInfo, false);
incpaths

incpaths =
"\etc\proj\etclib' [1x22 char] ‘\common\1lib'

® Get the paths in group shared that are stored in build information
myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addIncludePaths(myModelBuildInfo, {'/etc/proj/etclib'...
"/etcproj/etc/etc_build' '/common/lib'},...

{'etc' 'etc' 'shared'});
incpaths=getIncludePaths(myModelBuildInfo, false, 'shared');

incpaths
incpaths =
"\common\1lib""'
See Also addIncludePaths | getIncludeFiles | getSourceFiles |
getSourcePaths
How To + “Customize Post-Code-Generation Build Processing”

2-78

getLinkFlags

Purpose

Syntax

Input
Arguments

Output
Arguments

Description

Link options from model build information

options=getLinkFlags(buildinfo, includeGroups,
excludeGroups)

includeGroups and excludeGroups are optional.

buildinfo
Build information returned by RTW.BuildInfo.

includeGroups (optional)
A character array or cell array that specifies groups of linker flags
you want the function to return.

excludeGroups (optional)
A character array or cell array that specifies groups of linker
flags you do not want the function to return. To exclude groups
and not include specific groups, specify an empty cell array (' ')
for includeGroups.

Linker options stored in the model build information.

The getLinkFlags function returns linker options stored in the model
build information. Using optional includeGroups and excludeGroups
arguments, you can selectively include or exclude groups of options
the function returns.

If you choose to specify excludeGroups and omit includeGroups,
specify a null string (' ') for includeGroups.

2-79

getlLinkFlags

2-80

Examples

See Also

® Get the linker options stored in build information myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;

addLinkFlags (myModelBuildInfo, {'-MD -Gy' '-T'}, 'OPTS');
linkflags=getLinkFlags(myModelBuildInfo);

linkflags

linkflags =
'-MD -Gy' LT

Get the linker options stored with the group name Debug in build
information myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addLinkFlags(myModelBuildInfo, {'-MD -Gy' '-T'},

{'Debug' 'MemOpt'});
linkflags=getLinkFlags(myModelBuildInfo, {'Debug'});
linkflags

linkflags =
'"-MD -Gy'

Get the linker options stored in build information myModelBuildInfo,
except those with the group name Debug.

myModelBuildInfo = RTW.BuildInfo;

addLinkFlags (myModelBuildInfo, {'-MD -Gy' '-T'},
{'Debug' 'MemOpt'});

linkflags=getLinkFlags(myModelBuildInfo, '', {'Debug'});

linkflags

linkflags =

I_Tl

addLinkFlags | getCompileFlags | getDefines

getLinkFlags
|

How To * “Customize Post-Code-Generation Build Processing”

2-81

getNonBuildFiles

Purpose Nonbuild-related files from model build information

Syntax files=getNonBuildFiles(buildinfo, concatenatePaths,
replaceMatlabroot, includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.

Input buildinfo
Arguments Build information returned by RTW.BuildInfo.
concatenatePaths

The logical value true or false.

If You Specify... The Function...

true Concatenates and returns each filename
with its corresponding path.

false Returns only filenames.

Note It is not required to resolve the path of every file in the
model build information, because the makefile for the model
build will resolve file locations based on source paths and rules.
Therefore, specifying true for concatenatePaths returns the
path for each file only if a path was explicitly associated with the
file when it was added.

replaceMatlabroot
The logical value true or false.

2-82

getNonBuildFiles

Output
Arguments

Description

Examples

If You Specify... The Function...

true Replaces the token $(MATLAB_ROOT)
with the absolute path string for your
MATLAB installation folder.

false Does not replace the token
$ (MATLAB_ROOT).

includeGroups (optional)
A character array or cell array of character arrays that specifies
groups of nonbuild files you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies
groups of nonbuild files you do not want the function to return.

Names of nonbuild files stored in the model build information.

The getNonBuildFiles function returns the names of nonbuild-related
files, such as DLL files required for a final executable, or a README
file, stored in the model build information. Use the concatenatePaths
and replaceMatlabroot arguments to control whether the function
includes paths and your MATLAB root definition in the output it
returns. Using optional includeGroups and excludeGroups arguments,
you can selectively include or exclude groups of nonbuild files the
function returns.

If you choose to specify excludeGroups and omit includeGroups,
specify a null string (' ') for includeGroups.

Get the nonbuild filenames stored in build information
myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;

addNonBuildFiles(myModelBuildInfo, {'readme.txt' 'myutility1.dll'...
'myutility2.dl1l'});

2-83

getNonBuildFiles

nonbuildfiles=getNonBuildFiles(myModelBuildInfo, false, false);

nonbuildfiles
nonbuildfiles =
'readme.txt’ ‘myutility1.dll’ ‘myutility2.dll’
See Also addNonBuildFiles
How To * “Customize Post-Code-Generation Build Processing”

2-84

getSourceFiles

Purpose

Syntax

Input
Arguments

Source files from model build information
srcfiles=getSourceFiles(buildinfo, concatenatePaths,
replaceMatlabroot, includeGroups, excludeGroups)
includeGroups and excludeGroups are optional.
buildinfo

Build information returned by RTW.BuildInfo.

concatenatePaths
The logical value true or false.

If You Specify... The Function...

true Concatenates and returns each filename
with its corresponding path.

false Returns only filenames.

Note It is not required to resolve the path of every file in
the model build information, because the makefile for the
model build will resolve file locations based on source paths
and rules. Therefore, specifying true for concatenatePaths
returns the path for each file only if a path was explicitly
associated with the file when it was added, or if you called
updateFilePathsAndExtensions to resolve file paths and
extensions before calling getSourceFiles.

replaceMatlabroot
The logical value true or false.

2-85

getSourceFiles

Output
Arguments

Description

Examples

2-86

If You Specify... The Function...

true Replaces path tokens, such as
$(MATLAB_ROOT) and $(START DIR),
with the absolute path string.

false Does not replace path tokens with the
absolute path string.

includeGroups (optional)
A character array or cell array of character arrays that specifies
groups of source files you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies
groups of source files you do not want the function to return.

Names of source files stored in the model build information.

The getSourceFiles function returns the names of source files

stored in the model build information. Use the concatenatePaths

and replaceMatlabroot arguments to control whether the function
includes paths and expansions of path tokens in the output it returns.
Using optional includeGroups and excludeGroups arguments, you can
selectively include or exclude groups of source files the function returns.

If you choose to specify excludeGroups and omit includeGroups,
specify a null string (' ') for includeGroups.

® Get the source paths and filenames stored in build information
myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addSourceFiles(myModelBuildInfo,...
{'test1.c' 'test2.c' 'driver.c'}, ''
{'Tests' 'Tests' 'Drivers'});
srcfiles=getSourceFiles(myModelBuildInfo, false, false);

g

getSourceFiles

srcfiles
srcfiles =

'testi1.c' 'test2.c' 'driver.c'

® Get the names of source files in group tests that are stored in build
information myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addSourceFiles(myModelBuildInfo, {'testi.c' 'test2.c'...
‘driver.c'}, {'/proj/test1' '/proj/test2'...

"/drivers/src'}, {'tests', 'tests', 'drivers'});
incfiles=getSourceFiles(myModelBuildInfo, false, false,...
"tests');
incfiles
incfiles =
"testt.c' "test2.c'
See Also addSourceFiles | getIncludeFiles | getIncludePaths |

getSourcePaths | updateFilePathsAndExtensions

How To + “Customize Post-Code-Generation Build Processing”

2-87

getSourcePaths

2-88

Purpose

Syntax

Input
Arguments

Output
Arguments

Description

Source paths from model build information

files=getSourcePaths(buildinfo, replaceMatlabroot,
includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.
buildinfo
Build information returned by RTW.BuildInfo.

replaceMatlabroot
The logical value true or false.

If You Specify... The Function...

true Replaces the token $ (MATLAB_ROOT) with
the absolute path string for your MATLAB
installation folder.

false Does not replace the token
$ (MATLAB_ROOT).

includeGroups (optional)
A character array or cell array of character arrays that specifies
groups of source paths you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies
groups of source paths you do not want the function to return.

Paths of source files stored in the model build information.

The getSourcePaths function returns the names of source file paths
stored in the model build information. Use the replaceMatlabroot
argument to control whether the function includes your MATLAB root
definition in the output it returns. Using optional includeGroups
and excludeGroups arguments, you can selectively include or exclude
groups of source file paths the function returns.

getSourcePaths

Examples

If you choose to specify excludeGroups and omit includeGroups,
specify a null string (' ') for includeGroups.

® Get the source paths stored in build information myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;

addSourcePaths (myModelBuildInfo, {'/proj/testt1'...
"/proj/test2' '/drivers/src'}, {'tests' 'tests'...
‘drivers'});
srcpaths=getSourcePaths(myModelBuildInfo, false);
srcpaths

srcpaths =
‘“\proj\test1’ "\proj\test2'’ ‘\drivers\src'

Get the paths in group tests that are stored in build information
myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addSourcePaths(myModelBuildInfo, {'/proj/test1'...
"/proj/test2' '/drivers/src'}, {'tests' 'tests'...
‘drivers'});

srcpaths=getSourcePaths(myModelBuildInfo, true, 'tests');
srcpaths

srcpaths =
"\proj\testt' "\proj\test2’

Get a path stored in build information myModelBuildInfo. First get
the path without replacing $ (MATLAB_ROOT) with an absolute path,
then get it with replacement. The MATLAB root folder in this case is
\\myserver\myworkspace\matlab

myModelBuildInfo = RTW.BuildInfo;
addSourcePaths(myModelBuildInfo, fullfile(matlabroot,...
‘rtw', 'c', 'src'));

2-89

getSourcePaths

srcpaths=getSourcePaths(myModelBuildInfo, false);
srcpaths{:}

ans =
$ (MATLAB_ROOT) \rtw\c\src

srcpaths=getSourcePaths(myModelBuildInfo, true);
srcpaths{:}

ans =

\\myserver\myworkspace\matlab\rtw\c\src

See Also addSourcePaths | getIncludeFiles | getIncludePaths |
getSourceFiles
How To * “Customize Post-Code-Generation Build Processing”

2-90

load

Purpose
Syntax
IDEs

Description

Load program file onto processor
IDE_Obj.load(filename,timeout)

This function supports the following IDEs:
* Eclipse IDE

IDE_Obj.load(filename,timeout) loads the file specified by the
filename argument to the processor.

The filename argument can include a full path to the file, or the name
of a file in the IDE working folder.

With the VisualDSP++, MULTI, and Code Composer Studio IDEs, you
can use the cd method to check or modify the IDE working folder.

For MULTI, you can add an option argument after filename to specify
options for the 'prepare_target' command in MULTI debugger. Refer
to the MULTI documentation for information on 'prepare_target'.

Only use load with program files created by the IDE build process.

The timeout argument defines the number of seconds MATLAB waits
for the load process to complete. If the time-out period expires before
the load process returns a completion message, MATLAB generates an
error and returns. Usually the program load process works in spite of
the error message.

If you omit the timeout argument, load uses the timeout
property of the IDE handle object, which you can get by entering
IDE_Obj.get('timeout').

Using load with Eclipse IDE

With Eclipse IDE:

® Before using load, use activate to make the project associated with
the executable file active.

e For the filename argument, use a relative or absolute path to specify
the executable file.

2-91

load

2-92

Examples

See Also

A relative path consists of:

project/configuration/executablefile

An absolute path consists of:

workspace/project/configuration/executablefile

If the workspace is not the active workspace when you use load, the
software generates errors.

If the project is not the active project when you use load, the software
makes the project active.

If the software generates socket server errors when you use methods
with a Eclipse IDE handle object, such as IDE_Obj:

1 Delete the handle object from the MATLAB workspace.

2 Reconnect to the Eclipse IDE using the eclipseide constructor.

IDE_Obj.load(programfile)
run(id)

dir | open

model _initialize

Purpose
Syntax

Description

See Also

How To

Initialization entry point in generated code for Simulink model
void model_initialize(void)

The generated model_initialize function contains the model
initialization code for a Simulink model and should be called at the
beginning of model execution.

model SetEventsForThisBaseStep | model step | model terminate

+ “Entry Point Functions and Scheduling”

Command Line Information

2-93

model_SetEventsForThisBaseStep

2-94

Purpose

Syntax

Arguments

Description

Set event flags for multirate, multitasking operation before calling
model_step for Simulink model — not generated as of R2008a

void model_SetEventsForThisBaseStep(boolean_T *eventFlags)
void model_SetEventsForThisBaseStep(boolean_T *eventFlags,
RT_MODEL_model *model M)

eventFlags
Pointer to the model’s event flags array.

model_M
Pointer to the real-time model object. The Embedded Coder
software generates this argument only if Generate reusable
code is on.

Versions of the Embedded Coder software prior to R2008a generate
the model _SetEventsForThisBaseStep function for multirate,
multitasking models. The function maintains model event flags that
determine which subrate tasks need to run on a given base rate time
step. In a multirate, multitasking application, the program code must
call model SetEventsForThisBaseStep before calling the model step
function.

Note The macro MODEL_SETEVENTS, defined in the static ert_main.c
module, provides a way to call model SetEventsForThisBaseStep from
a static main program.

Note Simulink Coder and Embedded Coder do not generate this
function and you should avoid using it. The model event flags are
now maintained by code in the main program for a model. For more
information, see “Optimize Multirate Multitasking Operation on RTOS
Targets”.

model_SetEventsForThisBaseStep

See Also model initialize | model step | model terminate

How To + “Entry Point Functions and Scheduling”

2-95

model_step

2-96

Purpose

Syntax

Calling
Interfaces

Step routine entry point in generated code for Simulink model

void model_step(void)
void model_stepN(void)

The model step default function prototype varies depending on the
Tasking mode for periodic sample times (SolverMode) parameter
specified for the model:

Tasking Mode Function Prototype
SingleTasking void model_step(void);
(single-rate or multirate)

MultiTasking void model_stepN (void);
(multirate) (N 1s a task identifier)

Note If you use Embedded Coder to generate reusable, reentrant code
for an ERT-based model using the Generate reusable code option,
the generated code passes the model’s root-level inputs and outputs,
block states, parameters, and external outputs to model step using a
function prototype that generally resembles the following:

void model_step(inport_args, outport_args, BlockIO arg, DWork_arg, RT_model_arg);

The manner in which the inport and outport arguments are passed is
determined by the setting of the Pass root-level I/0O as parameter,
which appears on the Interface pane of the Configuration Parameters
dialog box only if Generate reusable code is selected.

model_step

Description

For greater control over the model step function prototype, you can
use the Configure Model Functions button on the Interface pane
to launch a Model Interface dialog box (see “Configure Function
Prototypes Using Graphical Interfaces” in the Embedded Coder
documentation). Based on the Function specification value you
specify for your model step function (supported values include Default
model initialize and step functions and Model specific C
prototypes), you can preview and modify the function prototype. Once
you validate and apply your changes, you can generate code based on
your function prototype modifications. For more information about
controlling the model step function prototype, see the sections in “Code
Generation Pane: Interface” on page 4-169 and “Function Prototype
Control” in the Embedded Coder documentation.

The generated model step function contains the output and update code
for the blocks in a Simulink model. The model step function computes
the current value of the blocks. If logging is enabled, model step

updates logging variables. If the model’s stop time is finite, model step
signals the end of execution when the current time equals the stop time.

Under the following conditions, model step does not check the current
time against the stop time:

¢ The model’s stop time is set to inf.
® Logging is disabled.
¢ The Terminate function required option is not selected.

Therefore, if one or more of these conditions are true, the program runs
indefinitely.

For an ERT-based model, the software generates a model step function
when the Single output/update function configuration option is
selected (the default) in the Configuration Parameters dialog box.

model_ step is designed to be called at interrupt level from rt_OneStep,
which is assumed to be invoked as a timer ISR. rt_OneStep calls
model step to execute processing for one clock period of the model.

2-97

model_step

See “rt_OneStep and Scheduling Considerations” in the Embedded
Coder documentation for a description of how calls to model _step are
generated and scheduled.

Note For an ERT-based model, if the Single output/update
function configuration option is not selected, the Embedded Coder
software generates the following model entry point functions in place
of model step:

* model output: Contains the output code for the blocks in the model
* model update: Contains the update code for the blocks in the model

See Also model initialize | model SetEventsForThisBaseStep |
model_terminate

How To * “Entry Point Functions and Scheduling”

2-98

model terminate

Purpose
Syntax

Description

See Also

How To

Termination entry point in generated code for Simulink model
void model_terminate(void)

The generated model terminate function contains the termination code
for a Simulink model and should be called as part of system shutdown.

When model terminate is called, blocks that have a terminate function
execute their terminate code. If logging is enabled, model terminate
ends data logging.

The model_terminate function should be called only once.

For an ERT-based model, the Embedded Coder software generates
the model_terminate function for a model when the Terminate
function required configuration option is selected (the default) in
the Configuration Parameters dialog box. If your application runs
indefinitely, you do not need the model terminate function. To
suppress the function, clear the Terminate function required
configuration option in the Configuration Parameters dialog box.

model initialize | model SetEventsForThisBaseStep | model step

“Entry Point Functions and Scheduling”

2-99

new

Purpose
Syntax
IDEs

Description

2-100

Create project, library, or build configuration in IDE
IDE_Obj.new('name', 'type')

This function supports the following IDEs:
* Eclipse IDE

IDE_Obj.new('name','type') creates a project, library, or build
configuration in the IDE.

The name argument specifies the name of the new project, library, or
build configuration

The type argument specifies whether to create a project, library, or
build configuration. The options are:

®* 'project' — Executable project. Sometimes this file is called a
“DSP executable file”.

® 'projlib' — Library project.

* 'projext' — External make project. Only the CCS IDE supports
this option.

® 'buildcfg' — Build configuration in the active project. Only the
VisualDSP++ and CCS IDEs support this option.

When type is 'project' or 'projlib' , name can include the full path
to the new file. You can use the path to differentiate two files with
the same name. If you omit the path, the new method creates the file
or project in the current IDE working folder.

If you omit the type argument, and the name argument does not include
a file extension, type defaults to 'project’.

When type is 'buildcfg', use a unique name to differentiate the build
configuration from other build configurations in the active project.

The new method does not support 'text' as a type argument.

new

Examples IDE_Obj.new('my_project','project') #Create an IDE project, 'my_project.gpj'
IDE_Obj.new('my_build_config', 'buildcfg') #Create a build configuration.

See Also activate | close

2-101

open

Purpose

Syntax

IDEs

Description

2-102

Open project in IDE

IDE Obj.open(filename,filetype,timeout)
IDE_Obj.open(myproject)

This function supports the following IDEs:
* Eclipse IDE

IDE Obj.open(filename,filetype,timeout) opens a project in the
IDE.

Use the filename argument to specify the file name, including the file
name extension. If the filename does not include a file name extension,
you can specify the file type using the filetype argument. If the file
does not exist in the current project or folder path, MATLAB returns a
warning and returns control to MATLAB.

For the optional filetype argument, you can specify the following
types.

CCS IDE Eclipse IDE | MULTI IDE | VisualDSP++

IDE

'project’ Yes Yes Yes Yes

— Project

files

'"ProjectGroupNo No No Yes

— Project

group files

'program' No. Use No Yes No

— Target load

program file | instead.

(executable)

If you omit the filetype argument, filetype defaults to 'project'.

open

The optional timeout argument determines the number of seconds
MATLAB waits for the IDE to finish opening the file before returning
an error. If you omit the timeout argument, the open method uses
the timeout property of the IDE handle object IDE_ODbj) instead. The
timeout error does not terminate the loading process on the IDE.

Note The open method does not support the 'text', 'program', or
'workspace' arguments.

Examples IDE_Obj.open(myproject) opens the myproject project in the IDE.
dir | load | new

2-103

packNGo

Purpose Package model code in zip file for relocation
Syntax packNGo (buildinfo, propVals...)
propVals is optional.
Arguments buildinfo
Build information returned by RTW.BuildInfo.
propVals (optional)
A cell array of property-value pairs that specify packaging details.
To... Specify Property... With Value...

Package model code files in a zip file as | 'packType' 'flat' (default)
a single, flat folder
Package model code files hierarchically | 'packType' "hierarchical'Paths
in a primary zip file that contains for files in the
three secondary zip files: secondary zip files
® mlrFiles.zip — files in your are relative to the root
matlabroot folder tree folder of the primary
® sDirFiles.zip — files in and under 4 ille:
your build folder
® otherFiles.zip — required files
not in the matlabroot or start
folder trees
Specify a file name for the primary zip | 'fileName' 'string'
file Default: 'model.zip'
If you omit the . zip file
extension, the function
adds it for you.
Include only the minimal header files | 'minimalHeaders' true (default)
required to build the code in the zip file
Include header files found on the 'minimalHeaders' false

include path in the zip file

2-104

packNGo

Description

Examples

The packNGo function packages the following code files in a compressed
zip file so you can relocate, unpack, and rebuild them in another
development environment:

® Source files (for example, .c and .cpp files)
® Header files (for example, .h and . hpp files)

® Nonbuild-related files (for example, .d11 files required for a final
executable and . txt informational files)

e MAT-file that contains the model build information object (.mat file)

You might use this function to relocate files so they can be recompiled for
a specific target environment or rebuilt in a development environment
in which MATLAB is not installed.

By default, the function packages the files as a flat folder structure in
a zip file named model.zip. You can tailor the output by specifying
property name and value pairs as explained above.

After relocating the zip file, use a standard zip utility to unpack the
compressed file.

Note The packNGo function potentially can modify the build
information passed in the first packNGo argument. As part of packaging
model code, packNGo might find additional files from source and include
paths recorded in the model’s build information and add them to the
build information.

® Package the code files for model zingbit in the file zingbit.zip
as a flat folder structure.

set_param('zingbit', 'PostCodeGenCommand', 'packNGo(buildInfo);"');

Then, rebuild the model.

e Package the code files for model zingbit in the file portzingbit.zip
and maintain the relative file hierarchy.

2-105

packNGo

2-106

Alternatives

How To

cd zingbat_grt_rtw;
load buildInfo.mat

packNGo (buildInfo, {'packType', 'hierarchical’,
'fileName', 'portzingbit'});

You can configure model code packaging by selecting the Package
code and artifacts option on the Code Generation pane of the

Configuration Parameters dialog box.
* “Customize Post-Code-Generation Build Processing”
+ “Relocate Code to Another Development Environment”

* “packNGo Function Limitations”

pwd

Purpose
Syntax
IDEs

Description

Examples

See Also

Working folder used by Eclipse
wd= IDE_Obj .pwd

This function supports the following IDEs:
* Eclipse IDE

Use wd= IDE Obj .pwd to get the working folder of the Eclipse IDE. This
value is the same as the Eclipse IDE workspace folder.

To get the Eclipse IDE working folder:

IDE_Obj = eclipseide;
wd = IDE_Obj.pwd

wd =

C:\WINNT\Profiles\rdlugyhe\workspace

dir

2-107

read

Purpose

Syntax

IDEs

Description

2-108

Read data from processor memory

mem=IDE_Obj.read(address)
mem=IDE_Obj.read(...,datatype)
mem=IDE_Obj.read(...,count)
mem=IDE_Obj.read(...,memorytype)
mem=IDE_Obj.read(...,timeout)

This function supports the following IDEs:
* Eclipse IDE

mem=IDE Obj.read(address) returns a block of data values from
the memory space of the processor referenced by IDE_Obj. The block
to read begins from the DSP memory location given by the address
argument. The data is read starting from address without regard
to type-alignment boundaries in the processor. Conversely, the byte
ordering defined by the data type is automatically applied.

The address argument is a decimal or hexadecimal representation of
a memory address in the processor. The full memory address consist
of two parts:

® The start address

® The memory type

You can define the memory type value can be explicitly using a numeric
vector representation of the address.

Alternatively, the IDE_Obj object has a default memory type value that
is applied if the memory type value is not explicitly incorporated in
the passed address parameter. In DSP processors with only a single
memory type, it is possible to specify addresses using the abbreviated
(implied memory type) format by setting the IDE_Obj object memory
type value to zero.

read

Note You cannot read data from processor memory while the processor
1s running.

Provide the address argument either as a numerical value that is a
decimal representation of the DSP memory address, or as a string that
read converts to the decimal representation of the start address. (Refer
to function hex2dec in the MATLAB Function Reference. read uses
hex2dec to convert the hexadecimal string to a decimal value).

The examples in the following table show how read uses the address
parameter.

address Description
Parameter Value

131082 Decimal address specification. The memory
start address is 131082 and memory type is 0.
This action is the same as specifying [131082
0].

[131082 1] Decimal address specification. The memory
start address is 131082 and memory type is 1.

'2000A' Hexadecimal address specification provided as
a string entry. The memory start address is
131082 (converted to the decimal equivalent)
and memory type is 0.

It is possible to specify address as a cell array. You can use a
combination of numbers and strings for the start address and memory
type values. For example, the following are valid addresses from cell
array myaddress

myaddress1 myaddressi1{1}=131072;
myadddressi{2}="'Program(PM) Memory';

myaddress2 myaddress2{1}='20000";
myadddress2{2}='Program(PM) Memory"';

2-109

read

2-110

myaddress3 myaddress3{1}=131072; myaddress3{2}=0;

mem=IDE Obj.read(...,datatype) where the input argument datatype
defines the interpretation of the raw values read from DSP memory.
Parameter datatype specifies the data format of the raw memory
image. The data is read starting from address without regard to data
type alignment boundaries in the processor. The byte ordering defined
by the data type is automatically applied. This syntax supports the
following MATLAB data types.

MATLAB Data Type Description

double IEEE double-precision floating
point value

single IEEE single-precision floating
point value

uint8 8-bit unsigned binary integer
value

uint16 16-bit unsigned binary integer
value

uint32 32-bit unsigned binary integer
value

int8 8-bit signed two’s complement

integer value

int16 16-bit signed two’s complement
integer value

int32 32-bit signed two’s complement
integer value

The read method does not coerce data type alignment. Some
combinations of address and datatype will be difficult for the processor
to use.

mem=IDE Obj.read(...,count) adds the count input parameter that
defines the dimensions of the returned data block mem. To read a block

read

of multiple data values. Specify count to determine how many values
to read from address. count can be a scalar value that causes read

to return a column vector that has count values. You can perform
multidimensional reads by passing a vector for count. The elements in
the input vector of count define the dimensions of the returned data
matrix. The memory is read in column-major order. count defines the
dimensions of the returned data array mem as shown in the following
table.

® n — Read n values into a column vector.
® [m,n] — Read m-by-n values into m by n matrix in column-major order.

® [m,n,...] — Read a multidimensional matrix m-by-n-by...of values
into an m-by-n-by...array.

To read a block of multiple data values, specify the input argument
count that determines how many values to read from address.

mem=IDE Obj.read(...,memorytype) adds an optional input argument
memorytype. Object IDE_Obj has a default memory type value O that
read applies if the memory type value is not explicitly incorporated
into the passed address parameter.

In processors with only a single memory type, it is possible to specify
addresses using the implied memory type format by setting the
IDE_Objmemorytype property value to zero.

Using read with MULTI

Blackfin and SHARC use different memory types. Blackfin processors
have one memory type. SHARC processors provide five types. The
following table shows the memory types for both processor families.

String Entry for Numerical Entry for | Processor
memorytype memorytype Support
‘program(pm) 0 Blackfin and
memory' SHARC
'data(dm) memory' 1 SHARC

2-111

read

Examples

See Also

2-112

String Entry for Numerical Entry for | Processor
memorytype memorytype Support
‘data(dm) short 2 SHARC
word memory'

‘external data(dm) 3 SHARC
byte memory'

"boot (prom) 4 SHARC
memory'

mem=IDE Obj.read(...,timeout) adds the optional parameter timeout
that defines how long, in seconds, MATLAB waits for the specified read
process to complete. If the time-out period expires before the read
process returns a completion message, MATLAB returns an error and
returns. Usually the read process works in spite of the error message.

This example reads one 16-bit integer from memory on the processor.

mlvar = IDE_Obj.read(131072,'int16")

131072 is the decimal address of the data to read.

You can read more than one value at a time. This read command
returns 100 32-bit integers from the address 0x20000 and plots the
result in MATLAB.

data = IDE_Obj.read('20000',"'int32"',100)
plot(double(data))

write

reload

Purpose

Syntax

IDEs

Description

Reload most recent program file to processor signal processor

(7]
|

= IDE Obj.reload(timeout)
= IDE Obj.reload

(7]
|

This function supports the following IDEs:
* Eclipse IDE

s = IDE Obj.reload(timeout) resends the most recently loaded
program file to the processor. If you have not loaded a program file

in the current session (so there is no previously loaded file), reload
returns the null entry [] in s indicating that it could not load a file to
the processor. Otherwise, s contains the full path name to the program
file. After you reset your processor or after an event produces changes
In your processor memory, use reload to restore the program file to
the processor for execution.

To limit the time the IDE spends trying to reload the program file to the
processor, timeout specifies how long the load process can take. If the
load process exceeds the timeout limit, the IDE stops trying to load the
program file and returns an error stating that the time period expired.
Exceeding the allotted time for the reload operation usually indicates
that the reload was complete but the IDE did not receive confirmation
before the timeout period passed.

s = IDE Obj.reload reloads the most recent program file, using the
timeout value set when you created link IDE_Obj, the global timeout
setting.

Using reload with Multiprocessor Boards

When your board contains more than one processor, reload calls the
reloading function for each processor represented by IDE_Obj, reloading
the most recently loaded program on each processor.

This action is the same as calling reload for each processor individually
through IDE handle objects for each one.

2-113

reload

Examples

2-114

After you create an object that connects to the IDE, use the available
methods to reload your most recently loaded project. If you have not
loaded a project in this session, reload returns an error and an empty
value for s. Loading a project eliminates the error. First, create an IDE
handle object, such as IDE_ODbj, using the constructor for your IDE.

s=IDE_Obj.reload(23)
Warning: No action taken - load a valid Program file before
you reload...

IDE_Obj.open('D:\ti\tutorial\sim62xx\gelsolid\hellodsp.pjt', 'project')
IDE_Obj.build
IDE_Obj.load('hellodsp.pjt') #This file extension varies by IDE

IDE_Obj.halt
s=IDE_Obj.reload(23)

D:\ti\tutorial\sim62xx\gelsolid\Debug\hellodsp.out

load | open

remove

Purpose

Syntax

IDEs

Description

Input
Arguments

Remove file, project, or breakpoint

IDE Obj.remove
IDE Obj.remove
IDE Obj.remove
IDE Obj.remove

filename,filetype)
addr,debugtype,timeout)
filename,line,debugtype,timeout)
all,break)

—_—~ e~~~

This function supports the following IDEs:
* Eclipse IDE

IDE Obj.remove(filename,filetype) deletes a file from the active
project in the IDE or deletes the project.

IDE Obj.remove(addr,debugtype,timeout) removes a debug point
from an address in the program.

IDE Obj.remove(filename,line,debugtype,timeout) removes a
debug point from a line in a source file.

IDE Obj.remove(all,break) removes the breakpoints and waits for
completion.

IDE_Obj

Enter the name of the IDE link handle for your IDE. Create an IDE
link handle before you use the remove method. .

filename

Replace filename with the name of the file you are removing, or the
source file from which you are removing debug points. If the file is
not located in the active project, MATLAB returns a warning instead
of completing the action.

filetype
To remove a project, enter 'project'. To remove a source file, enter
"text'.

2-115

remove

Examples

See Also

2-116

Default: 'text'

addr

Enter the memory address of the debug point. Enter 'all' to remove
the breakpoints.

debugtype

Enter the type of debug point to remove. The IDE provide several types
of debug points. Refer to the IDE help documentation for information
on their respective behavior.

Default: 'break' (breakpoint)

line

Enter the line number of the debug point located in a file.

timeout

Enter a time limit, in seconds, for the method to complete an action.

After you have a project in the IDE, you can delete files from it using
remove from the MATLAB software command line. For example, build a
project and load the resulting . out file. With the project build complete,
load your .out file by typing

IDE_Obj.load('filename.out')

Now remove one file from your project

IDE_Obj.remove('filename')

You see in the IDE that the file no longer appears.

add | | open

restart

Purpose

Syntax

IDEs

Description

See Also

Reload most recent program file to processor signal processor

IDE Obj.restart
IDE Obj.restart(timeout)

This function supports the following IDEs:
* Eclipse IDE

IDE Obj.restart issues a restart command in the IDE debugger. The
behavior of the restart process depends on the processor. Refer to the
documentation for your IDE for details about using restart with various
processors.

When IDE_Obj is an array that contains more than one processor, each
processor calls restart in sequence.

IDE Obj.restart(timeout) adds the optional timeout input
argument. timeout defines an upper limit in seconds on the period
the restart routine waits for completion of the restart process. If the
time-out period is exceeded, restart returns control to MATLAB with a
time-out error. In general, restart causes the processor to initiate a
restart, even if the time-out period expires. The time-out error indicates
that the restart confirmation was not received before the time-out
period elapsed.

halt | isrunning | run

2-117

rsimgetrip

Purpose

Syntax

Description

2-118

Global model parameter structure

rsimgetrtp('model")
rsimgetrtp('model', 'AddTunableParamInfo', 'value')

rsimgetrtp('model') forces a block update diagram action for model,
a model for which you are running rapid simulations, and returns the
global parameter structure for that model.

rsimgetrtp('model', 'AddTunableParamInfo', 'value') includes
tunable parameter information in the parameter structure if value is
‘on'. The function omits tunable parameters if value is 'off'. To use
AddTunableParamInfo, you must enable inline parameters.

The model parameter structure contains the following fields:

Field Description

modelChecksum A four-element vector that encodes the
structure. The Simulink Coder software uses
the checksum to check whether the structure
has changed since the RSim executable was
generated. If you delete or add a block, and
then generate a new version of the structure,
the new checksum will not match the original
checksum. The RSim executable detects
this incompatibility in model parameter
structures and exits to avoid returning
incorrect simulation results. If the structure
changes, you must regenerate code for the
model.

parameters A structure that defines model global
parameters.

The parameters substructure includes the following fields:

rsimgetrtp

Examples

See Also

Field Description

dataTypeName Name of the parameter data type, for
example, double

dataTypelID An internal data type identifier

complex Value 1 if parameter values are complex and
0 if real

dtTransIdx Internal use only

values Vector of parameter values

If you set 'AddTunableParamInfo' to 'on', the function creates and
then deletes model . rtw from your current working folder and includes
a map substructure that has the following fields:

Field Description

Identifier Parameter name

ValueIndicies Vector of indices to parameter values
Dimensions Vector indicating parameter dimensions

Return global parameter structure for model rtwdemo_rsimtf to
param_struct:

rtwdemo_rsimtf
param_struct = rsimgetrtp('rtwdemo_rsimtf')

param_struct =
modelChecksum: [1.7165e+009 3.0726e+009 2.6061e+009

2.3064e+009]
parameters: [1x1 struct]

rsimsetrtpparam

2-119

rsimgetrip

How To

2-120

“Create a MAT-File That Includes a Model Parameter Structure”
“Update a Block Diagram”

“Inline parameters”

“Block Creation”

“Tune Parameters”

rsimsetrtpparam

Purpose

Syntax

Description

Input
Arguments

Set parameters of rtP model parameter structure

rtp = rsimsetrtpparam(rtp, idx)
rtp = rsimsetrtpparam(rtp, 'paramName', paramValue)
rtP = rsimsetrtpparam(rtP, idx, 'paramName', paramValue)

rtp = rsimsetrtpparam(rtp, idx)
Expands the rtP structure to have idx sets of parameters
rtp = rsimsetrtpparam(rtp, 'paramName', paramValue)

Takes an rtP structure with tunable parameter information and sets
the values associated with 'paramName’ to be paramValue if possible.
There can be more than one name-value pair.

rtP = rsimsetrtpparam(rtP, idx, 'paramName', paramValue)

The rsimsetrtpparam utility allows for defining the values of an
existing rtP parameter structure.

Takes an rtP structure with tunable parameter information and sets
the values associated with 'paramName’ to be paramValue in the idx’th
parameter set. There can be more than one name-value pair. If the rtP
structure does not have idx parameter sets, the first set is copied and
appended until there are idx parameter sets. Subsequently, the idx’th
set is changed.

riP

A parameter structure that contains the sets of parameter names and
their respective values.

idx

An index used to indicate the number of parameter sets in the rtP
structure

paramValue

The value of the rtP parameter, paramName

2-121

rsimsetripparam

Output
Arguments

Definitions

Examples

See Also

2-122

paramName

The name of the parameter set to add to the rtP structure

riP

An expandedrtP parameter structure that contains idx additional
parameter sets defined by the rsimsetrtpparam function call.

The rtP structure should match the format of the structure returned by
rsimsetrtp(modelName).

1 Expand the number of parameter sets in the 'rtp’ structure to 10.

rtp = rsimsetrtpparam(rtp, 10);

2 Add three parameter sets to the parameter structure, 'rtp’.

rtp = rsimsetrtpparam(rtp, idx, 'X1', iX1, 'X2' ,iX2, 'Num', iNum);

rsimgetrtp

rtw_precompile_libs

Purpose
Syntax

Description

Input
Arguments

Build libraries within model without building model
rtw_precompile_libs('model', build_spec)

rtw_precompile libs('model', build_spec) builds libraries within
model, according to the build spec arguments, and places the libraries
in a precompiled folder.

model

Character array. Name of the model containing the libraries that you
want to build.

build_spec

Structure of field and value pairs that define a build specification; fields
except rtwmakecfgDirs are optional:

Field Value

rtwmakecfgDirs Cell array of strings that names the folders
containing rtwmakecfg files for libraries that
you want to precompile. Uses the Name and
Location elements of makeInfo.library, as
returned by the rtwmakecfg function, to specify
name and location of precompiled libraries. If you
use the TargetPreCompLibLocation parameter
to specify the library folder, it overrides the
makeInfo.library.Location setting.

The specified model must contain blocks that use
precompiled libraries that the rtwmakecfg files
specify. The template makefile (TMF)-to-makefile
conversion generates the library rules only if the
conversion needs the libraries.

libSuffix String that specifies the suffix, including the file
(optional) type extension, to append to the name of each
library (for example, .a or _vc.1lib). The string

2-123

rtw_precompile_libs

Field Value
must include a period (.). Set the suffix with either
this field or the TargetLibSuffix parameter. If
you specify a suffix with both mechanisms, the
TargetLibSuffix setting overrides the setting of
this field.
intOnlyBuild Boolean flag. When set to true, indicates the
(optional) function optimizes the libraries so that they
compile from integer code only. Applies to
ERT-based targets only.
makeOpts String that specifies an option to include in the
(optional) rtwMake command line.
addLibs Cell array of structures that specify the libraries
(optional) to build that an rtwmakecfg function does not
specify. Define each structure with two fields that
are character arrays:
e libName — name of the library without a suffix
e libLoc — location for the precompiled library
The TMF can specify other libraries and how to
build them. Use this field if you must precompile
libraries.
Examples Build the libraries in my_model without building my model:
% Specify the library suffix
if isunix
suffix = '.a';
else
suffix = '_vc.lib';
end

set_param(my_model,

‘TargetLibSuffix', suffix);

% Set the prcompiled library folder

set_param(my_model,

2-124

'TargetPreCompLibLocation', fullfile(pwd,'lib'));

rtw_precompile_libs

%

s Define a build specification that specifies the location of the files to
build_spec = [];

compile.

build_spec.rtwmakecfgDirs = {fullfile(pwd, 'src')};

o

% Build the libraries in 'my_model'

rtw_precompile_libs(my_model, build_spec);

How To + “Precompile S-Function Libraries”

+ “Recompile Precompiled Libraries”

2-125

riwbuild

Purpose

Syntax

Description

2-126

Initiate build process

rtwbuild(model)
rtwbuild(model,Name,Value)

rtwbuild(subsystem)

rtwbuild(subsystem, 'Mode', 'ExportFunctionCalls"')

blockHandle = rtwbuild(subsystem, 'Mode’,
"ExportFunctionCalls')

rtwbuild(subsystem, 'Mode', 'ExportFunctionCalls,
"ExportFunctionInitializeFunctionName', fcnname)

rtwbuild(model) generates code from model based on current model
configuration parameter settings. If model is not already loaded into
the MATLAB environment, rtwbuild loads it before generating code.

If you clear the Generate code only model configuration parameter,
the function generates code and builds an executable image.

rtwbuild (model,Name,Value) uses additional options specified by
one or more Name,Value pair arguments.

rtwbuild(subsystem) generates code from subsystem based on
current model configuration parameter settings. Before initiating the
build, open (or load) the parent model.

If you clear the Generate code only model configuration parameter,
the function generates code and builds an executable image.

rtwbuild(subsystem, 'Mode', 'ExportFunctionCalls'), if you have

an Embedded Coder software license, generates code from subsystem
that includes function calls that you can export to external application
code.

riwbuild

Input
Arguments

blockHandle =

rtwbuild(subsystem, 'Mode', 'ExportFunctionCalls'),

if you have an Embedded Coder license and Code

Generation > Verification > Create block is set to SIL, returns the
handle to a SIL block created for code generated from the specified
subsystem. You can then use the SIL block for SIL verification testing.

rtwbuild(subsystem, 'Mode', 'ExportFunctionCalls, 'ExportFunctionInitial:
fcnname) names the exported initialization function, specified as a
string, for the specified subsystem.

model - Model for which to generate code or build an
executable image
handle | name

Model for which to generate code or build an executable image, specified
as a handle or string representing the model name.

Example: 'rtwdemo_export functions'
subsystem - Subsystem for which to generate code or build

executable image
name

Subsystem for which to generate code or build an executable image,
specified as a string representing the subsystem name or full block path.

Example: 'rtwdemo_export functions/rtwdemo_subsystem'

Data Types
char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding

value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Valuetl,...,NameN,ValueN.

2-127

riwbuild

‘ForceTopModelBuild’ - Force regeneration of top model code
false (default) | true

Force regeneration of top model code, specified as true or false.

If You Want to... Specify...

Force the coder to regenerate code for true
the top model of a system that includes
referenced models

Let the coder determine whether to false
regenerate top model code based on model
and model parameter changes

Consider forcing regeneration of code for a top model if you make
changes associated with external or custom code, such as code for a
custom target. For example, you should set ForceTopModelBuild to
true if you change

¢ TLC code
e S-function source code, including rtwmakecfg.m files
¢ Integrated custom code

Alternatively, you can force regeneration of top model code by deleting
code generation folders, such as slprj or the generated model code
folder.

‘OkayToPushNags’ - Display build error messages in Simulation
Diagnostics Viewer
false (default) | true

Display build error messages in Simulation Diagnostics Viewer,
specified as true or false.

2-128

riwbuild

Output
Arguments

Tips

Examples

If You Want to... Specify...

Display build error messages in the true
Simulation Diagnostics Viewer and in the
Command Window

Display build error messages in the false
Command Window only

blockHandle - Handle to SIL block created for generated
subsystem code
handle

Handle to SIL block created for generated subsystem code. Returned
only if both of the following conditions apply:

® You are licensed to use Embedded Coder software.

¢ The Create block parameter on the Code
Generation > Verification pane of the Configuration Parameters
dialog box is set to SIL.

You can initiate code generation and the build process by using the
following options:

¢ (Clear the Generate code only option on the Code Generation
pane of the Configuration Parameters dialog box and click Build.

® Press Ctrl+B.
e Select Code > C/C++ Code > Build Model.
e Invoke the slbuild command from the MATLAB command line.

Generate Code and Build Executable Image for Model

Generate C code for model rtwdemo_rtwintro.

rtwbuild('rtwdemo_rtwintro')

2-129

riwbuild

2-130

For the GRT target, the coder generates the following code files
and places them in folders rtwdemo _rtwintro grt_rtw and
slprj/grt/_sharedutils.

Model Files

Shared Utility
Files

Interface Files

Other Files

rtwdemo_rtwint
rtwdemo_rtwint
rtwdemo_rtwint
rtwdemo_rtwint

rot@etInf.c
rot@etInf.h
rot@eiNalech
rot@peNaN.h
rt_nonfinite.c

rtw_shared_uti
rtwtypes.h

rtmodel.h

rt_nonfinite.h

1s.h

rt_logging.c

If the following model configuration parameters settings apply, the
coder generates additional results.

Parameter Setting

Results

Code Generation > Generate
code only pane is cleared

Executable image
rtwdemo_rtwintro.exe

Code

Generation > Report > Create
code generation report is

selected

and data stores

Report appears, providing
information and links to
generated code files, subsystem
and code interface reports,
entry-point functions, inports,
outports, interface parameters,

riwbuild

Force Top Model Build

Generate code and build an executable image for rtwdemo_mdlreftop,
which refers to model rtwdemo_mdlrefbot, regardless of model
checksums and parameter settings.

rtwbuild('rtwdemo_mdlreftop', 'ForceTopModelBuild',true)

Display Error Messages in Simulation Diagnostics Viewer

Introduce an error to model rtwdemo_mdlreftop and save the model
as rtwdemo_mdlreftop_witherr. Display build error messages

in Simulation Diagnostics Viewer and in the Command Window
while generating code and building an executable image for model
rtwdemo_mdlreftop_witherr

rtwbuild('rtwdemo_mdlreftop_witherr', 'OkayToPushNags',true)

Generate Code and Build Executable Image for Subsystem

Generate C code for subsystem Amplifiler in model rtwdemo_rtwintro.

rtwbuild('rtwdemo_rtwintro/Amplifier')

For the GRT target, the coder generates the following code
files and places them in folders Amplifier grt rtw and
slprj/grt/_sharedutils.

Model Files Shared Utility | Interface Files | Other Files
Files

Amplifier.c rtGetInf.c rtmodel.h rt_logging.c
Amplifier.h rtGetInf.h
Amplifier_privatéGbhtNaN.c
Aplifier_types|.htGetNaN.h
rt_nonfinite.cfrt_nonfinite.h

rtw_shared_utills.h
rtwtypes.h

2-131

riwbuild

If the following model configuration parameters settings apply, the
coder generates additional results.

Parameter Setting Results

Code Generation > Generate | Executableimage Amplifier.exe
code only pane is cleared

Code Report appears, providing
Generation > Report > Create | information and links to

code generation report is generated code files, subsystem
selected and code interface reports,

entry-point functions, inports,
outports, interface parameters,
and data stores

Build Subsystem for Exporting Code to External Application

Build an executable image from a function-call subsystem to export the
image to external application code.

rtwdemo_export_functions
rtwbuild('rtwdemo_export_functions/rtwdemo_subsystem', '‘Mode', 'ExportFunct

The executable image rtwdemo_subsystem.exe appears in your
working folder.

Create SIL Block for Verification

From a function-call subsystem, create a SIL block that you can use to
test the code generated from a model.

Open subsystem rtwdemo_subsystem in model
rtwdemo_export_functions and set Code
Generation > Verification > Create block to SIL.

2-132

riwbuild
|

Create the SIL block.

mysilblockhandle = rtwbuild('rtwdemo_export_functions/rtwdemo_subsyst¢
‘Mode', "ExportFunctionCalls"')

The coder generates a SIL block for the generated subsystem code. You
can add the block to an environment or test harness model that supplies
test vectors or stimulus input. You can then run simulations that
perform SIL tests and verify that the generated code in the SIL block
produces the same result as the original subsystem.

Name Exported Initialization Function

Name the initialization function generated when building an executable
image from a function-call subsystem.

rtwdemo_export_functions
rtwbuild('rtwdemo_export_functions/rtwdemo_subsystem',...
‘Mode', '"ExportFunctionCalls', 'ExportFunctionInitializeFunctionName',

The initialization function name subsysinit appears in
rtwdemo_subsystem_ert_rtw/ert_main.c

See Also silbuild

Initiate the Build Process

“Program Builds”

Control Regeneration of Top Model Code
“Generate S-Function Wrappers”
“Export Function-Call Subsystems”
“Software-in-the-Loop (SIL) Simulation”

Concepts

2-133

RTW.getBuildDir

Purpose Build folder information for specified model
Syntax struct=RTW.getBuildDir (modelName)
Input modelName
Arguments String specifying the name of a Simulink model, which can be
open or closed.
OUprf Structure containing the following build folder information about the
Arguments specified model:
Field Description
BuildDirectory String specifying the fully qualified path to the build
folder for the model.
RelativeBuildDir String specifying the build folder relative to the current
working folder (pwd).
BuildDirSuffix String specifying the suffix appended to the model name

to create the build folder.

ModelRefRelativeBuildDir | String specifying the model reference target build folder

relative to current working folder (pwd).

ModelRefRelativeSimDir String specifying the model reference target simulation

folder relative to current working folder (pwd).

ModelRefDirSuffix String specifying the suffix appended to the system target

file name to create the model reference build folder.

Description

2-134

The RTW.getBuildDir function returns build folder information for a
specified model, which can be open or closed. If the model is closed, the
function opens and then closes the model, leaving it in its original state.

This function can be used in automated scripts to programmatically
determine the build folder in which the generated code for a model
would be placed if the model were built in its current state.

RTW.getBuildDir
|

Note The RTW.getBuildDir function may take significantly longer to
execute if the specified model is large and closed.

Examples Return build folder information for the model mymmodel.

>> info=RTW.getBuildDir ('mymodel’');
>> info

info =

BuildDirectory: 'c:\work\mymodel ert_ rtw'
RelativeBuildDir: 'mymodel_ert_rtw'
BuildDirSuffix: '_ert_rtw'
ModelRefRelativeBuildDir: 'slprj\ert\mymodel’
ModelRefRelativeSimDir: 'slprj\sim\mymodel'’
ModelRefDirSuffix: ''

2-135

riwrebuild

Purpose

Syntax

Description

Input
Arguments

Examples

How To

2-136

Rebuild generated code

rtwrebuild()
rtwrebuild('model")
rtwrebuild('path')

rtwrebuild() recompiles generated code files you modified by invoking
the makefile generated during the previous build. If you omit the input
arguments, the current working folder must be the build folder of the
model (not the model location).

Use rtwrebuild('model"') if your current working folder is one level
above the build folder of the model (pwd when you initiated the Simulink
Coder build).

Use rtwrebuild('path') to specify the path to the build folder of the
model.

If your model includes submodels, the Simulink Coder software builds
the submodels recursively before rebuilding the top model.

model String specifying the model name.

path String specifying the fully qualified path to
the build folder for the model.

Rebuild generated code for a model located in the current working folder
(one level above its build folder):

rtwrebuild('mymodel")

Rebuild generated code for a model by specifying a path to its build
folder:

rtwrebuild(fullfile('C:', 'work', ‘'mymodel grt _rtw'))

+ “Rebuild a Model”

rtwreport

Purpose

Syntax

Description

Input
Arguments

Create generated code report for model with Simulink Report Generator

rtwreport(model)
rtwreport(model, folder)

rtwreport(model) creates a report of code generation information for
a model. Before creating the report, the function loads the model and
generates code. This function requires Simulink Report Generator™
software. The Simulink Coder software names the report codegen.html.
It places the file in your current folder. The report includes:

e Snapshots of the model, including subsystems.
® Block execution order list.

¢ Code generation summary with a list of generated code files,
configuration settings, a subsystem map, and a traceability report.

e Full listings of generated code that reside in the build folder.

rtwreport(model, folder) specifies the build folder,

model_target rtw. The Simulink project folder, s1lprj, must reside in
the parent folder of folder. If the software cannot find the folder, an
error occurs and code is not generated.

model - Model name

string

Model name for which the report is generated, specified as a string.
Example: 'rtwdemo_roll'

Data Types

char

folder - Build folder name
string

2-137

rftwreport

Build folder name, specified as a string. When you have multiple build
folders, include a folder name. For example, if you have multiple builds
using different targets, such as GRT and ERT.

Example: 'rtwdemo_roll ert_rtw'
Data Types
char

Examples Create Report Documenting Generated Code

Create a report for model rtwdemo_roll:
rtwreport('rtwdemo_roll');

Create Report Specifying Build Folder

Create a report for model rtwdemo_roll using build folder,
rtwdemo_roll_grt_rtw:

rtwreport('rtwdemo_roll', 'rtwdemo_roll_grt rtw');
Related ® “Document Generated Code with Simulink Report Generator”
Exqmples ¢ Import Generated Code
Concepts e “Report Explorer”

¢ Code Generation Summary

2-138

rftwtrace

Purpose
Syntax

Description

Input
Arguments

Examples

Trace a block to generated code in HTML code generation report
rtwtrace('blockpath')

rtwtrace('blockpath') opens an HTML code generation report that
displays contents of the source code file, and highlights the line of code
corresponding to the specified block.

Before calling rtwtrace, make sure:
® You select an ERT-based model and enabled model to code navigation.

To do this, on the Configuration Parameters dialog box, select the
Code Generation > Report pane, and select the Model-to-code
parameter.

® You generate code for the model using the Embedded Coder software.

® You have the build folder under the current working folder;
otherwise, rtwtrace may produce an error.

blockpath - block path

string

blockpath is a string enclosed in quotes specifying the full Simulink
block path, for example, 'model name/block name'.

Example: 'Outt’

Data Types

char

Display Generated Code for a Block

Display the generated code for block Out1 in the model
rtwdemo_comments in HTML code generation report:

rtwtrace('rtwdemo_comments/Outi')

2-139

rftwtrace

Alternatives

Related
Examples

2-140

Code Generation Report

Contents

Summary

Subsystem Report

Code Interface Report
Traceability Report

Static Code Metrics Report

Code Replacements Report

Highlight Navigation

Generated Code

[-1 Main file
ert_main.c

[-1 Model files
rtwdemo_comments.c (3)
rtwdemo_comments.h (1)
rtwdemo_comments_private.h
rtwdemo_comments_types.h

[+] Shared Utility files (1)

}

intr; tateflov */

rtDiork.bitsForTIDO.is active cl rtwdemo commsnts = 10;

T sition:]

rtDiWork.bitsForTID0.is_cl_rtwdemo_comments = IN_First:

/* Outport: '<Root>/Cuti’ */
/* Entry 'First': 'sS2>:2" */
rt¥.0uctl = 1;

/% After ir n, t fer to normal

rtDiWork.bitsForTID0.is_cl_rtwdemo_comments = IN_Normal:

else if (rtDWork.bitsForTID0.is_cl_rtwdemo_comments == IN_First)
VA >

m

To trace from a block in the model diagram, right-click a block and
select C/C++ Code > Navigate to C/C++ Code.

e “Trace Model Objects to Generated Code”
¢ “Model-to-code” on page 4-53

run

Purpose

Syntax

IDEs

Description

Execute program loaded on processor

IDE Obj.run
IDE Obj.run('runopt')
IDE Obj.run(...,timeout)

This function supports the following IDEs:
* Eclipse IDE

IDE Obj.run runs the program file loaded on the referenced processor,
returning immediately after the processor starts running. Program
execution starts from the location of program counter (PC). Usually, the
program counter is positioned at the top of the executable file. However,
if you stopped a running program with halt, the program counter may
be anywhere in the program. run starts the program from the program
counter current location.

If IDE_Obj references more the one processor, each processors calls
run in sequence.

IDE Obj.run('runopt') includes the parameter runopt that defines
the action of the run method. The options for runopt are listed in the
following table.

runopt string Description

‘run’ Executes the run and waits to confirm that
the processor is running, and then returns to
MATLAB.

'runtohalt’ Executes the run but then waits until the

processor halts before returning. The halt can
be the result of the PC reaching a breakpoint,

or by direct interaction with the IDE, or by the
normal program exit process.

2-141

run

runopt string Description

'tohalt' Waits until the running program has halted.
Unlike the other options, this selection does not
execute a run, it simply waits for the running
program to halt.

'main' This option resets the program and executes a
run until the start of function 'main'.

"tofunc' This option must be followed by an extra
parameter funname, the name of the function
to run to:

IDE_Obj.run('tofunc',funcname)

This executes a run from the present PC location
until the start of function funcname is reached.
If funcname is not along the program’s normal
execution path, funcname is not reached and the
method times out.

In the 'run' and 'runtohalt' cases, a halt can be caused by a
breakpoint, a direct interaction with the IDE, or by a normal program
exit.

The following table shows the availability of the runopt options by IDE.

CCS IDE Eclipse IDE | MULTI IDE | VisualDSP++

IDE
‘run' Yes Yes Yes Yes
'runtohalt'| Yes Yes Yes Yes
'tohalt' Yes Yes
'main' Yes Yes
"tofunc' Yes Yes

2-142

run

IDE Obj.run(...,timeout) adds input argument timeout, to allow you
to set the time out to a value different from the global timeout value.
The timeout value specifies how long, in seconds, MATLAB waits for
the processor to start executing the loaded program before returning.

Most often, the 'run' and 'runtohalt' options cause the processor
to initiate execution, even when a timeout is reached. The timeout

indicates that the confirmation was not received before the timeout
period elapsed.

See Also halt | load |

2-143

Simulink.fileGenControl

Purpose

Syntax

Description

2-144

Specify root folders in which to put files generated by diagram updates
and model builds

Simulink.fileGenControl(action)

cfg = Simulink.fileGenControl('getConfig')

Simulink.fileGenControl('reset', 'keepPreviousPath', true)

Simulink.fileGenControl('setConfig', 'config', cfg,
"keepPreviousPath', true, 'createDir', true)

Simulink.fileGenControl('set', 'CacheFolder',
cacheFolderPath, 'CodeGenFolder', codeGenFolderPath,
"keepPreviousPath', true, 'createDir', true)

Simulink.fileGenControl(action) performs a requested action
related to the file generation control parameters CacheFolder and
CodeGenFolder for the current MATLAB session. CacheFolder
specifies the root folder in which to put model build artifacts used for
simulation, and CodeGenFolder specifies the root folder in which to put
Simulink Coder code generation files. The initial session defaults for
these parameters are provided by the Simulink preferences “Simulation
cache folder” and “Code generation folder”.

cfg = Simulink.fileGenControl('getConfig') returns a handle
to an instance of the Simulink.FileGenConfig object containing the
current values of the CacheFolder and CodeGenFolder parameters.
You can then use the handle to get or set the CacheFolder and
CodeGenFolder fields.

Simulink.fileGenControl('reset', 'keepPreviousPath', true)
reinitializes the CacheFolder and CodeGenFolder parameters to
the values provided by the Simulink preferences “Simulation cache
folder” and “Code generation folder”. To keep the previous values

of CacheFolder and CodeGenFolder in the MATLAB path, specify
'keepPreviousPath' with the value true.

Simulink.fileGenControl('setConfig', 'config', cfg,
'keepPreviousPath', true, 'createDir', true) sets the file
generation control configuration for the current MATLAB session
by passing a handle to an instance of the Simulink.FileGenConfig

Simulink.fileGenControl

Input
Arguments

object containing values for the CacheFolder and/or CodeGenFolder
parameters. To keep the previous values of CacheFolder and
CodeGenFolder in the MATLAB path, specify 'keepPreviousPath'
with the value true. To create the specified file generation folders if
they do not already exist, specify 'createDir' with the value true.

Simulink.fileGenControl('set', 'CacheFolder’,
cacheFolderPath, 'CodeGenFolder', codeGenFolderPath,
'keepPreviousPath', true, 'createDir', true) sets the file
generation control configuration for the current MATLAB session by
directly passing values for the CacheFolder and/or CodeGenFolder
parameters. To keep the previous values of CacheFolder and
CodeGenFolder in the MATLAB path, specify 'keepPreviousPath'
with the value true. To create the specified file generation folders if
they do not already exist, specify 'createDir' with the value true.

action

String specifying one of the following actions:

Action Description

getConfig Returns a handle to an instance of the
Simulink.FileGenConfig object containing
the current values of the CacheFolder and
CodeGenFolder parameters.

reset Reinitializes the CacheFolder and
CodeGenFolder parameters to the values
provided by the Simulink preferences
“Simulation cache folder” and “Code generation
folder”.

2-145

Simulink.fileGenControl

2-146

Action Description

set Sets the CacheFolder and/or CodeGenFolder
parameters for the current MATLAB session
by directly passing values.

setConfig Sets the CacheFolder and/or CodeGenFolder
parameters for the current MATLAB session
by passing a handle to an instance of the
Simulink.FileGenConfig object.

‘config’, cfg

Specifies a handle cfg to an instance of the Simulink.FileGenConfig
object containing values to be set for the CacheFolder and/or
CodeGenFolder parameters.

’CacheFolder’, cacheFolderPath

Specifies a string value cacheFolderPath representing a folder path to
directly set for the CacheFolder parameter.

’‘CodeGenFolder’, codeGenFolderPath

Specifies a string value codeGenFolderPath representing a folder path
to directly set for the CodeGenFolder parameter.

Simulink.fileGenControl

Output
Arguments

Examples

Note You can specify absolute or relative paths to the build folders.
For example:

® 'C:\Work\mymodelsimcache' and '/mywork/mymodelgencode'
specify absolute paths.

* 'mymodelsimcache’ is a path relative to the current working
folder (pwd). The software converts a relative path to a fully
qualified path at the time the CacheFolder or CodeGenFolder
parameter is set. For example, if pwd is ' /mywork', the result is
" /mywork/mymodelsimcache'.

e ' ./test/mymodelgencode' is a path relative to pwd. If pwd is
' /mywork', the result is ' /test/mymodelgencode".

’keepPreviousPath’, true

For reset, set, or setConfig, specifies whether to keep the previous
values of CacheFolder and CodeGenFolder in the MATLAB path. If
'keepPreviousPath' is omitted or specified as false, the call removes
previous folder values from the MATLAB path.

‘createDir’, true

For set or setConfig, specifies whether to create the specified file
generation folders if they do not already exist. If 'createDir' is
omitted or specified as false, the call throws an exception if a specified
file generation folder does not exist.

cfg

Handle to an instance of the Simulink.FileGenConfig object
containing the current values of the CacheFolder and CodeGenFolder
parameters.

Obtain the current CacheFolder and CodeGenFolder values:

cfg = Simulink.fileGenControl('getConfig');

2-147

Simulink.fileGenControl

myCacheFolder = cfg.CacheFolder;
myCodeGenFolder = cfg.CodeGenFolder;

Set the CacheFolder and CodeGenFolder parameters for the
current MATLAB session by first setting fields in an instance of the
Simulink.FileGenConfig object and then passing a handle to the
object instance:

% Get the current configuration

cfg = Simulink.fileGenControl('getConfig');

% Change the parameters to C:\cachefolder and current working folder
cfg.CacheFolder = fullfile('C:', 'cachefolder');

cfg.CodeGenFolder = pwd;

Simulink.fileGenControl('setConfig', 'config', cfg);

Directly set the CacheFolder and CodeGenFolder parameters for
the current MATLAB session without creating an instance of the
Simulink.FileGenConfig object:

myCacheFolder = fullfile('C:','cachefolder');

myCodeGenFolder = pwd;

Simulink.fileGenControl('set', 'CacheFolder', myCacheFolder,
'CodeGenFolder', myCodeGenFolder);

Reinitialize the CacheFolder and CodeGenFolder parameters to the
values provided by the Simulink preferences “Simulation cache folder”
and “Code generation folder”:

Simulink.fileGenControl('reset');

Alternatives Instead of setting the CacheFolder and CodeGenFolder parameters just
for the current MATLAB session, you can set the Simulink preferences
“Simulation cache folder” and “Code generation folder”, which provide
the initial MATLAB session defaults. The preferences can be set using

2-148

Simulink.fileGenControl

the Simulink Preferences dialog box or using the MATLAB command

set_param.
See Also “Simulation cache folder” | “Code generation folder”
How To + “Control the Location for Generated Files”

2-149

Simulink.ModelReference.protect

Purpose

Syntax

Description

Input
Arguments

2-150

Obscure referenced model contents to hide intellectual property

Simulink.ModelReference.protect(model)
Simulink.ModelReference.protect(model,Name,Value)

[harnessHandle] = Simulink.ModelReference.protect(model,
Harness,true)
[~ ,neededVars] = Simulink.ModelReference.protect(model)

Simulink.ModelReference.protect(model) creates a protected model
from the specified model and places the protected model in the current
working folder. The protected model has the same name as the source
model. It has the extension .slxp.

Simulink.ModelReference.protect(model,Name,Value) uses
additional options specified by one or more Name,Value pair
arguments.

[harnessHandle] =
Simulink.ModelReference.protect(model,Harness,true) creates a
harness model for the protected model and returns the handle of the
harnessed model in harnessHandle.

[~ ,neededVars] = Simulink.ModelReference.protect(model)
returns a cell array that includes the names of base workspace variables
used by the protected model.

model - Model name
string (default)

Model name, specified as a string that contains the name of a model
or the path name of a Model block that references the model to be
protected.

Simulink.ModelReference.protect

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding

value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Namei1,Valuetl,...,NameN,ValueN.

Example:

"Mode ', 'CodeGeneration', 'OutputFormat', 'Binaries', 'ObfuscateCode’, trus
specifies that obfuscated code be generated for the protected model

and only binary files and headers in the generated code be

visible to users of the protected model.

‘Harness’ - Option to create a harness model

false (default) | true

Option to create a harness model, specified as a Boolean.
Example: 'Harness',true

‘Mode’ - Model protection mode

"Normal' (default) | 'Accelerator' | 'CodeGeneration'

Model protection mode, specified as a string. Specify one of the following
values:

® 'Normal': The protected model runs as a child of the top model,
provided the top model is also running in 'Normal' mode.

e 'Accelerator': The top model can run in 'Normal' or
"Accelerator' mode.

® 'CodeGeneration': The top model can run in 'Normal' or
'Accelerator' mode and support code generation.

Example: 'Mode', 'Accelerator'

‘ObfuscateCode’ - Option to obfuscate generated code
true (default) | false

2-151

Simulink.ModelReference.protect

2-152

Option to obfuscate generated code, specified as a Boolean. Applicable
only when code generation during protection is enabled.

Example: 'ObfuscateCode',true

’Path’ - Folder for protected model

Current working folder (default) | string

Folder for protected model, specified as a Boolean.
Example: 'Path','C:\Work'

‘Report’ - Option to generate a report

false (default) | true

Option to generate a report, specified as a Boolean.

The report is generated in HTML format. It includes environment
information as well as the model interface.

Example: 'Report',true
‘OutputFormat’ - Protected code visibility

‘CompiledBinaries' (default) | 'MinimalCode' |
"AllReferencedHeaders'

Note This argument affects the output only when Mode is specified
as 'Accelerator' or 'CodeGeneration. When Mode is specified as
"Normal', only a MEX-file is part of the output package.

Protected code visibility, specified as a string. This argument
determines what part of the code generated for a protected model is
visible to users. Specify one of the following values:

e 'CompiledBinaries': Only binary files and headers are visible.

® 'MinimalCode': All code in the build directory is visible. Users can
inspect the code in the protected model report and recompile it for
their purposes.

Simulink.ModelReference.protect

Output
Arguments

Examples

e 'AllReferencedHeaders': All code in the build directory is visible.
In addition, all headers referenced by the code are also visible.

Example: 'OutputFormat', 'AllReferenceHeaders'

harnessHandle - Handle of the harness model

Handle of the harness model, returned as a double or 0, depending
on the value of Harness.

If Harness is true, the value is the handle of the harness model,;
otherwise, the value is 0.

neededVars - Names of base workspace variables

cell array

Names of base workspace variables used by the model being protected,
returned as a cell array.

The cell array may also include variables that are not used by the
protected model.

Protect Referenced Model

Protect a referenced model and place the protected model in the current
working folder.

sldemo_mdlref_bus;
model= 'sldemo_mdlref_counter_bus'

Simulink.ModelReference.protect(model);

A protected model named sldemo_mdlref counter_ bus.slxp is
created. The file is placed in the current working folder.

Place Protected Model in Specified Folder

Protect a referenced model and place the protected model in a specified
folder.

sldemo_mdlref_bus;

2-153

Simulink.ModelReference.protect

2-154

model= 'sldemo_mdlref_counter_bus'
Simulink.ModelReference.protect(model, 'Path', 'C:\Work');
A protected model named sldemo_mdlref_counter_bus.slxp is
created. The file is placed in C: \Work.

Generate Code for Protected Model

Protect a referenced model, generate code for it in Normal mode, and
obfuscate the code.

sldemo_mdlref_bus;
model= 'sldemo_mdlref_counter_bus'

Simulink.ModelReference.protect(model, ‘Path', 'C:\Work', 'Mode'

A protected model named sldemo_mdlref_counter_bus.slxp is
created. The file is placed in the C: \Work folder. The protected models
runs as a child of the parent model, and the code generates for the
protected model is obfuscated.

Control Code Visibility for Protected Model
Control code visibility by allowing users to view only binary files and

headers in the code generated for a protected model.

sldemo_mdlref_bus;
model= 'sldemo_mdlref_counter_bus'

Simulink.ModelReference.protect(model, 'Mode', 'CodeGeneration'

A protected model named sldemo_mdlref counter_ bus.slxp is
created. The file is placed in the current working folder. Users can only
view binary files and headers in the code generated for the protected
model.

Create Harness Model for Protected Model

Create a harness model for a protected model and generate an HTML
report.

, 'CodeGenere

, 'OutputForn

Simulink.ModelReference.protect

sldemo_mdlref_bus;
modelPath= 'sldemo_mdlref_bus/CounterA'’

[harnessHandle] = Simulink.ModelReference.protect(modelPath, ' 'Path','C

A protected model named sldemo_mdlref_counter_bus.slxp is
created, along with an untitled harness model. The protected model
file is placed in the C: \Work folder. The folder also contains an HTML
report. The handle of the harness model is returned in harnessHandle.

Protect Model for Code Generation

Create a harness model for a protected model, remove unnecessary
variables from neededVars, and package the protected model.

Create harness model

Protect a model and create a harness model for it.

sldemo_mdlref_bus;
modelPath = 'sldemo_mdlref_bus/CounterA'

[harnessHandle,neededVars] = Simulink.ModelReference.protect('sldemo_r

A protected model named sldemo_mdlref counter_bus.slxp is
created, along with an untitled harness model. The file is placed in
the C:\Work folder.

The handle of the harness model is returned in harnessHandle.
Variables used by the protected model are returned as a cell array in
neededVars.

Remove Unnecessary Variables from neededvars

The returned cell array neededVars includes the name of every
required base workspace variable.

neededVars =

"COUNTERBUS'' "INCREMENTBUS' 'LIMITBUS'

2-155

Simulink.ModelReference.protect

Alternatives

Related
Examples

Concepts

2-156

Delete names that do not correspond to definitions listed in “Save Base
Workspace Definitions”. Leaving unnecessary names in neededvars
might:

e Risk disclosing intellectual property.
¢ Add unnecessary definitions to the model of the receiver.

® Increase the likelihood of a name conflict with model of the receiver.

Save Base Workspace Definitions

The cell array derived via the previous steps contains only the names
of base workspace variables. The protected model must have the
definitions in a separate file that you can ship with the model. To create
this file, execute:

save('sldemo_mdlref_counter_bus.mat', neededVars{:});

The {:} operator converts the cell array neededVars into a list
of comma-separated names, which become arguments to save.
Executing this command, evaluates each name and obtains the
definition from the base workspace. The definitions are stored in
sldemo_mdlref_counter_bus.mat.

Package Protected Model
Package your model for delivery to a third-party.

“Create a Protected Model”

® Protected Models for Model Reference
e “Test the Protected Model”
“Package a Protected Model”

“Protected Model”

“Protect a Referenced Model”
“Protected Model File”
“Harness Model”

“Protected Model Report”

../../simulink/examples/protected-models-for-model-reference.html

Simulink.ModelReference.protect

® “Code Generation Support in a Protected Model”

2-157

slConfigUIGetVal

Purpose
Syntax

Input
Arguments

Output
Arguments

Description

Examples

2-158

Return current value for custom target configuration option
value = slConfigUIGetVal(hDlg, hSrc, 'OptionName')

hD1lg
Handle created in the context of a SelectCallback function and
used by the System Target File Callback Interface functions. Pass
this variable but do not set it or use it for another purpose.

hSrc
Handle created in the context of a SelectCallback function and
used by the System Target File Callback Interface functions. Pass
this variable but do not set it or use it for another purpose.

‘OptionName'
Quoted name of the TLC variable defined for a custom target
configuration option.

Current value of the specified option. The data type of the return value
depends on the data type of the option.

The s1ConfigUIGetVal function is used in the context of a user-written
SelectCallback function, which is triggered when the custom target
is selected in the System Target File Browser in the Configuration
Parameters dialog box. You use s1ConfigUIGetVal to read the current
value of a specified target option.

In the following example, the s1ConfigUIGetVal function returns

the value of the Terminate function required option on the Code
Generation > Interface pane of the Configuration Parameters dialog
box.

function usertarget_selectcallback(hDlg, hSrc)

disp(['*** Select callback triggered:', sprintf('\n'), ...
Uncheck and disable "Terminate function required".']);

slConfigUIGetVal

disp(['Value of IncludeMdlTerminateFcn was '

y e

slConfigUIGetVal(hDlg, hSrc, 'IncludeMdlTerminateFcn')]);

slConfigUISetVal(hDlg, hSrc, 'IncludeMdlTerminateFcn', 'off');
slConfigUISetEnabled(hDlg, hSrc, 'IncludeMdlTerminateFcn', false);

See Also slConfigUISetEnabled | s1ConfigUISetVal

How To + “Define and Display Custom Target Options”

+ “Parameter Command-Line Information Summary” on page 4-358

+ “Support Optional Features”

2-159

slConfigUISetEnabled

Purpose

Syntax

Arguments

Description

Examples

2-160

Enable or disable custom target configuration option

slConfigUISetEnabled(hDlg, hSrc, 'OptionName', true)
slConfigUISetEnabled(hDlg, hSrc, 'OptionName', false)

hD1lg
Handle created in the context of a SelectCallback function and
used by the System Target File Callback Interface functions. Pass
this variable but do not set it or use it for another purpose.

hSrc
Handle created in the context of a SelectCallback function and
used by the System Target File Callback Interface functions. Pass
this variable but do not set it or use it for another purpose.

‘OptionName'
Quoted name of the TLC variable defined for a custom target
configuration option.

true
Specifies that the option should be enabled.

false
Specifies that the option should be disabled.

The s1ConfigUISetEnabled function is used in the context of a
user-written SelectCallback function, which is triggered when the
custom target is selected in the System Target File Browser in the
Configuration Parameters dialog box. You use s1ConfigUISetEnabled
to enable or disable a specified target option.

If you use this function to disable a parameter that is represented in the
Configuration Parameters dialog box, the parameter appears greyed
out in the dialog context.

In the following example, the s1ConfigUISetEnabled function
disables the Terminate function required option on the Code
Generation > Interface pane of the Configuration Parameters dialog
box.

slConfigUISetEnabled

function usertarget_selectcallback(hDlg, hSrc)

disp(['*** Select callback triggered:', sprintf('\n'),

Uncheck and disable "Terminate function required".']);

disp(['Value of IncludeMdlTerminateFcn was '

3

slConfigUIGetVal(hDlg, hSrc, 'IncludeMdlTerminateFcn')]);

slConfigUISetVal(hDlg, hSrc, 'IncludeMdlTerminateFcn', 'off');

slConfigUISetEnabled(hDlg, hSrc, 'IncludeMdlTerminateFcn', false);

See Also slConfigUIGetVal | slConfigUISetVal

How To + “Define and Display Custom Target Options”

+ “Parameter Command-Line Information Summary” on page 4-358

+ “Support Optional Features”

2-161

slConfigUISetVal

Purpose
Syntax

Arguments

Description

Examples

2-162

Set value for custom target configuration option
slConfigUISetVal(hDlg, hSrc, 'OptionName', OptionValue)

hD1lg
Handle created in the context of a SelectCallback function and
used by the System Target File Callback Interface functions. Pass
this variable but do not set it or use it for another purpose.

hSrc
Handle created in the context of a SelectCallback function and
used by the System Target File Callback Interface functions. Pass
this variable but do not set it or use it for another purpose.

‘OptionName'
Quoted name of the TLC variable defined for a custom target
configuration option.

OptionValue
Value to be set for the specified option.

The s1ConfigUISetVal function is used in the context of a user-written
SelectCallback function, which is triggered when the custom target
1s selected in the System Target File Browser in the Configuration
Parameters dialog box. You use s1ConfigUISetVal to set the value of
a specified target option.

In the following example, the s1ConfigUISetVal function sets the
value 'off' for the Terminate function required option on the
Code Generation > Interface pane of the Configuration Parameters
dialog box.

function usertarget_selectcallback(hDlg, hSrc)

disp(['*** Select callback triggered:', sprintf('\n'), ...
Uncheck and disable "Terminate function required".']);

disp(['Value of IncludeMdlTerminateFcn was ', ...

slConfigUISetVal

slConfigUIGetVal(hDlg, hSrc, 'IncludeMdlTerminateFcn')]);

slConfigUISetVal(hDlg, hSrc, 'IncludeMdlTerminateFcn', 'off');
slConfigUISetEnabled(hDlg, hSrc, 'IncludeMdlTerminateFcn', false);

See Also slConfigUIGetVal | slConfigUISetEnabled

How To * “Define and Display Custom Target Options”

+ “Parameter Command-Line Information Summary” on page 4-358

+ “Support Optional Features”

2-163

switchTarget

Purpose
Syntax

Description

Input
Arguments

Examples

2-164

Specify target for configuration set
switchTarget('config_set', 'sys_tgt file', target_options)

switchTarget('config set', 'sys_tgt file', target_options)
specifies a system target file for the configuration set that you specify.
config_set

Handle to the active configuration set for the model.

sys_tgt_file

String that specifies a system target file.

target_options

Structure of field and value pairs to optionally specify the template
makefile, TLC options, make command, and description associated
with the target. If you do not want to use options, specify an empty
structure ([]).

Field Value

TemplateMakefile String specifying file name of template
makefile.

TLCOptions String specifying TLC argument.

MakeCommand String specifying make command MATLAB

language file.

Description String specifying a description of the target.

Select an ert.tlc system target file for the active configuration set:

% Get the active configuration set for 'model'’
cs = getActiveConfigSet(model);

% Define a system target file

stf = 'ert.tlc';

switchTarget

Alternatives

How To

% Change the system target file for the configuration set.
switchTarget(cs,stf,[]);

Specify an ert.tlc system target file and target options for the active
configuration set:

% Get the active configuration set for 'model'’
cs = getActiveConfigSet(model);

% Define a system target file

stf = 'ert.tlc';

% Specify target options
tgtOpt.TemplateMakefile = 'grt_default_tmf';
tgtOpt.TLCOptions = '-aVarName=1';
tgtOpt.MakeCommand = 'make_rtw';
tgtOpt.Description = 'my target';

% Change the system target file and target options
% for the configuration set.
switchTarget(cs,stf,tgtOpt);

To select system target files using the Configuration Parameters dialog
box:

1 In your model, open the Configuration Parameters dialog box.
2 Navigate to the Code Generation pane.

3 Specify the System target file.

4 Optionally specify, Make command and TLC options.

5 Click Apply.

+ “Selecting a System Target File Programmatically”

+ “Selecting a Target”
+ “Set Target Language Compiler Options”

2-165

tlc

Purpose

Syntax

Description

Options

2-166

Invoke Target Language Compiler to convert model description file to
generated code

tlc [-options] [file]

t1lc invokes the Target Language Compiler (TLC) from the command
prompt. The TLC converts the model description file, model.rtw (or
similar files), into target-specific code or text. Typically, you do not call
this command because the Simulink Coder build process automatically
invokes the Target Language Compiler when generating code. For more
information, see “Introduction to the Target Language Compiler”.

Note This command is used only when invoking the TLC separately
from the Simulink Coder build process. You cannot use this command
to initiate code generation for a model.

tlc [-options] [file]

You can change the default behavior by specifying one or more
compilation options as described in “Options” on page 2-166

You can specify one or more compilation options with each tlc
command. Use spaces to separate options and arguments. TLC resolves
options from left to right. If you use conflicting options, the rightmost
option prevails. The tlc options are:

e “r Specify Simulink® Coder™ filename” on page 2-167
® “.v Specify verbose level” on page 2-167

e “] Specify path to local include files” on page 2-167

* “.m Specify maximum number of errors” on page 2-167
e “.0 Specify the output file path” on page 2-167

e “d[alc|n]|o] Invoke debug mode” on page 2-167

tlc

® “.a Specify parameters” on page 2-168

® “p Print progress” on page 2-168

e “lint Performance checks and runtime statistics” on page 2-168
e “x0 Parse only” on page 2-168

-r Specify Simulink Coder filename

-r file_name

Specify the filename that you want to translate.

-v Specify verbose level

-v number

Specify a number indicating the verbose level. If you omit this option,
the default value is one.

-1 Specify path to local include files
-1 path

Specify a folder path to local include files. The TLC searches this path
in the order specified.

-m Specify maximum number of errors
-m number

Specify the maximum number of errors reported by the TLC prior to
terminating the translation of the .tlc file.

If you omit this option, the default value is five.

-O Specify the output file path

-0 path

Specify the folder path to place output files.

If you omit this option, TLC places output files in the current folder.
-d[a|c|n]o] Invoke debug mode

-da execute any %assert directives

2-167

tlc

2-168

-dc invoke the TLC command line debugger

-dn produce log files, which indicate those lines hit and those lines
missed during compilation.

-do disable debugging behavior

-a Specify parameters
-a identifier = expression

Specify parameters to change the behavior of your TLC program. For
example, this option is used by the Simulink Coder software to set
inlining of parameters or file size limits.

-p Print progress
-p number

Print a .’ indicating progress for every number of TLC primitive
operations executed.

-lint Performance checks and runtime statistics

-lint

Perform simple performance checks and collect runtime statistics.
-xO Parse only

-x0

Parse only a TLC file; do not execute it.

updateFilePathsAndExtensions

Purpose

Syntax

Arguments

Description

Update files in model build information with missing paths and file
extensions

updateFilePathsAndExtensions(buildinfo, extensions)

extensions is optional.

buildinfo
Build information returned by RTW.BuildInfo.

extensions (optional)
A cell array of character arrays that specifies the extensions
(file types) of files for which to search and include in the update
processing. By default, the function searches for files with a
.c extension. The function checks files and updates paths and
extensions based on the order in which you list the extensions in
the cell array. For example, if you specify {'.¢' '.cpp'} and a
folder contains myfile.c and myfile.cpp, an instance of myfile
would be updated to myfile.c.

Using paths that already exist in the model build information,

the updateFilePathsAndExtensions function checks whether file
references in the build information need to be updated with a path or
file extension. This function can be particularly useful for

® Maintaining build information for a toolchain that requires the use of
file extensions

¢ Updating multiple customized instances of build information for a
given model

Note If you need to use updateFilePathsAndExtensions, you should
call it once, after you add files to the build information, to minimize the
potential performance impact of the required disk I/0.

2-169

updateFilePathsAndExtensions

Examples

2-170

Create the folder path etcproj/etc in your working folder, add files
etc.c, test1.c, and test2.c to the folder etc. This example assumes
the working folder is w: \work\BuildInfo. From the working folder,
update build information myModelBuildInfo with missing paths or
file extensions.

myModelBuildInfo = RTW.BuildInfo;
addSourcePaths(myModelBuildInfo, fullfile(pwd,...
'etcproj', '/etc'), 'test');
addSourceFiles(myModelBuildInfo, {'etc' 'testl'...
"test2'}, '', 'test');
before=getSourceFiles(myModelBuildInfo, true, true);
before
before =
"\etc' "\test1' "\test2'
updateFilePathsAndExtensions(myModelBuildInfo);
after=getSourceFiles(myModelBuildInfo, true, true);
after{:}

ans =

w:\work\BuildInfo\etcproj\etc\etc.c

ans =

w:\work\BuildInfo\etcproj\etc\testl.c

ans =

w:\work\BuildInfo\etcproj\etc\test2.c

updateFilePathsAndExtensions

See Also addIncludeFiles | addIncludePaths | addSourceFiles |
addSourcePaths | updateFileSeparator

How To + “Customize Post-Code-Generation Build Processing”

2-171

updateFileSeparator

Purpose
Syntax

Arguments

Description

Examples

See Also

How To

2-172

Change file separator used in model build information
updateFileSeparator(buildinfo, separator)

buildinfo
Build information returned by RTW.BuildInfo.

separator
A character array that specifies the file separator \ (Windows®) or
/ (UNIX®) to be applied to file path specifications.

The updateFileSeparator function changes instances of the current
file separator (/ or \) in the model build information to the specified
file separator.

The default value for the file separator matches the value returned by
the MATLAB command filesep. For makefile based builds, you can
override the default by defining a separator with the MAKEFILE FILESEP
macro in the template makefile (see “Cross-Compile Code Generated on
Microsoft® Windows”. If the GenerateMakefile parameter is set, the
Simulink Coder software overrides the default separator and updates
the model build information after evaluating the PostCodeGenCommand
configuration parameter.

Update object myModelBuildInfo to apply the Windows file separator.

myModelBuildInfo = RTW.BuildInfo;
updateFileSeparator(myModelBuildInfo, '\');

addIncludeFiles | addIncludePaths | addSourceFiles
addSourcePaths | updateFilePathsAndExtensions

+ “Customize Post-Code-Generation Build Processing”

* “Cross-Compile Code Generated on Microsoft Windows”

write

Purpose

Syntax

IDEs

Description

Write data to processor memory block

mem=IDE_Obj.write(address,data)
mem=write(...,datatype)
mem=IDE_Obj.write(...,memorytype)
mem=IDE_Obj.write(...,timeout)

This function supports the following IDEs:
* Eclipse IDE

mem=IDE Obj.write(address,data) writes data, a collection of values,
to the memory space of the DSP processor referenced by IDE_Obj.

The data argument is a scalar, vector, or array of values to write to
the memory of the processor. The block to write begins from the DSP
memory location given by the input parameter address.

The method writes the data starting from address without regard to
type-alignment boundaries in the DSP. Conversely, the byte ordering of
the data type is automatically applied.

Note You cannot write data to processor memory while the processor
1s running.

The address argument is a decimal or hexadecimal representation of a
memory address in the processor. The full memory address consist of
two parts: the start address and the memory type. The memory type
value can be explicitly defined using a numeric vector representation
of the address.

Alternatively, the IDE_Obj object has a default memory type value
which is applied if the memory type value is not explicitly incorporated
into the passed address parameter. In DSP processors with only a
single memory type, by setting the IDE_Obj object memory type value

2-173

write

2-174

to zero 1t is possible to specify the addresses using the abbreviated
(implied memory type) format.

You provide the address argument either as a numerical value that is
a decimal representation of the DSP memory address, or as a string
that write converts to the decimal representation of the start address.
(Refer to function hex2dec in the MATLAB Function Reference that
read uses to convert the hexadecimal string to a decimal value).

The following examples show how write uses the address argument.

address Description

Parameter

Value

131082 Decimal address specification. The memory start

address is 131082 and memory type is 0. This action is
the same as specifying [131082 0].

[131082 1] | Decimal address specification. The memory start
address is 131082 and memory type is 1.

'2000A' Hexadecimal address specification provided as a string
entry. The memory start address is 131082 (converted
to the decimal equivalent) and memory type is 0.

It is possible to specify address as cell array, in which case you can use
a combination of numbers and strings for the start address and memory
type values. For example, the following are valid addresses from cell
array myaddress

myaddressi myaddressi{1}
‘Program(PM) Memory';

131072; myadddressi{2} =

myaddress2 myaddress2{1}
"Program(PM) Memory';

'20000'; myadddress2{2} =

myaddress3 myaddress3{1} 131072; myaddress3{2} = O0;

mem=write(...,datatype) where the datatype argument defines the
interpretation of the raw values written to DSP memory. The datatype

write

argument specifies the data format of the raw memory image. The
data is written starting from address without regard to data type
alignment boundaries in the DSP. The byte ordering of the data type
is automatically applied. The following MATLAB data types are

supported.

MATLAB Data Type

Description

double IEEE double-precision floating
point value

single IEEE single-precision floating
point value

uint8 8-bit unsigned binary integer
value

uinti6 16-bit unsigned binary integer
value

uint32 32-bit unsigned binary integer
value

int8 8-bit signed two’s complement
integer value

int16 16-bit signed two’s complement
integer value

int32 32-bit signed two’s complement

integer value

write does not coerce data type alignment. Some combinations of
address and datatype will be difficult for the processor to use.

mem=IDE Obj.write(...,memorytype) adds an optional memorytype
argument. Object IDE_Obj has a default memory type value O that
write applies if the memory type value is not explicitly incorporated
into the passed address parameter. In processors with only a single
memory type, it is possible to specify the addresses using the implied
memory type format by setting the value of the IDE_0bj memorytype

property to zero.

2-175

write

Examples

2-176

mem=IDE Obj.write(...,timeout) adds the optional timeout argument,
which the number of seconds MATLAB waits for the write process to
complete. If the timeout period expires before the write process returns
a completion message, MATLAB throws an error and returns. Usually
the process works in spite of the error message.

Using write with VisualDSP++ IDE

Blackfin and SHARC use different memory types. Blackfin processors
have one memory type. SHARC processors provide five types. The
following table shows the memory types for both processor families.

String Entry for Numerical Entry Processor Support
memorytype for memorytype

‘program(pm) 0 Blackfin and SHARC
memory'

"data(dm) 1 SHARC

memory'

'data(dm) short 2 SHARC

word memory'

'external 3 SHARC

data(dm) byte

memory'

"boot (prom) 4 SHARC

memory'

Example with VisualDSP++ IDE

These three syntax examples show how to use write in some common
ways. In the first example, write an array of 16-bit integers to location
[131072 1].

IDE_Obj.write([131072 1],int16([1:100]));

Now write a single-precision IEEE floating point value (32-bits) at
address 2000A(Hex).

write

IDE_Obj.write('2000A',single(23.5));

For the third example, write a 2-D array of integers in row-major format
(standard C programming format) at address 131072 (decimal).

mlarr = int32([1:10;101:110]);
IDE_Obj.write(131072,mlarr');

See Also hex2dec | read

2-177

xmakefilesetup

Purpose
Syntax
IDEs

Description

2-178

Configure your coder product to generate makefiles
xmakefilesetup

This function supports the following IDEs:
* Eclipse IDE

You can configure your coder product to generate and build your
software using makefiles. This process can use the software build
toolchains, such as compilers and linkers, associated with the preceding
list of IDEs. However, the makefile build process does not use the
graphical user interface of the IDE directly.

Enter xmakefilesetup at the MATLAB command line to configure
how to generate makefiles.

Use this function:
¢ Before you build your software using makefiles for the first time.
¢ If you change the software build toolchain or processor family.

For more instructions and examples, see “Makefiles for Software Build
Tool Chains”.

The xmakefile function displays the following dialog box, which
prompts you for information about your make utility and software
build toolchain.

xmakefilesetup

See Also

] xMakefile User Configuration |

Active
Template:
Configuration: w| ¥ Display operational configurations only New... Delete

User Templates: |H: \Documents\MATLABY Browse...
User Configurations: [H:\Documents!MATLABY Browse...

make Utlity | compler | Lnker | Archiver | Prebuid | Postbuld | Execute | Tool Directories |
Make utility: |c: \Work\Sandboxes'R 2010a,01.05\matlzbpin\win32igmake Browse, ..
Arguments: I F "I MW _XMK_GENERATED_FILE MAME[RT]|[]™ [11TMW_XMK_ACTIVE BUILD_ACTION_REF(|]]

Optional indude: | Browse. ..

OK | Cancel | Help | Apply |

“Build format” on page 4-298 | “Build action” on page 4-300

2-179

xmakefilesetup

2-180

Blocks — Alphabetical List

Async Interrupt

3-2

Purpose

Library

Description

WSimIRQ IRCM

Parameters

Generate Versa Module Eurocard (VME) interrupt service routines
(ISRs) that are to execute downstream subsystems or Task Sync blocks

Asynchronous / Interrupt Templates

For each specified VxWorks® VME interrupt level, the Async Interrupt
block generates an interrupt service routine (ISR) that calls one of the
following:

¢ A function call subsystem
® A Task Sync block

e A Stateflow chart configured for a function call input event

You can use the block for simulation and code generation.

VME interrupt number(s)

An array of VME interrupt numbers for the interrupts to be
installed. The valid range is 1..7.

The width of the Async Interrupt block output signal corresponds
to the number of VME interrupt numbers specified.

Note A model can contain more than one Async Interrupt block.
However, if you use more than one Async Interrupt block, do not
duplicate the VME interrupt numbers specified in each block.

VME interrupt vector offset(s)
An array of unique interrupt vector offset numbers corresponding
to the VME interrupt numbers entered in the VME interrupt
number(s) field. The Stateflow software passes the offsets to the
VxWorks call intConnect (INUM_TO IVEC(offset),...).

Async Interrupt

Simulink task priority(s)
The Simulink priority of downstream blocks. Each output
of the Async Interrupt block drives a downstream block (for
example, a function-call subsystem). Specify an array of priorities
corresponding to the VME interrupt numbers you specify for
VME interrupt number(s).

The Simulink task priority values are required to generate a
rate transition code (see “Rate Transitions and Asynchronous
Blocks” in the Simulink Coder documentation). Simulink task
priority values are also required to maintain absolute time
integrity when the asynchronous task needs to obtain real time
from its base rate or its caller. The assigned priorities typically
are higher than the priorities assigned to periodic tasks.

Note The Simulink software does not simulate asynchronous
task behavior. The task priority of an asynchronous task is
for code generation purposes only and is not honored during
simulation.

Preemption flag(s); preemptable-1; non-preemptable-0
The value 1 or 0. Set this option to 1 if an output signal of the
Async Interrupt block drives a Task Sync block.

Higher priority interrupts can preempt lower priority interrupts
in VxWorks. To lock out interrupts during the execution of an
ISR, set the preemption flag to 0. This causes generation of
intLock() and intUnlock() calls at the beginning and end of
the ISR code. Use interrupt locking carefully, as it increases

the system’s interrupt response time for interrupts at the
intLockLevelSet () level and below. Specify an array of flags
corresponding to the VME interrupt numbers entered in the VME
interrupt number(s) field.

3-3

Async Interrupt

Note The number of elements in the arrays specifying VME
interrupt vector offset(s) and Simulink task priority must
match the number of elements in the VME interrupt number(s)
array.

Manage own timer

If checked, the ISR generated by the Async Interrupt block
manages its own timer by reading absolute time from the
hardware timer. Specify the size of the hardware timer with the
Timer size option.

Timer resolution (seconds)

The resolution of the ISRs timer. ISRs generated by the Async
Interrupt block maintain their own absolute time counters. By
default, these timers obtain their values from the VxWorks
kernel by using the tickGet call. The Timer resolution

field determines the resolution of these counters. The default
resolution is 1/60 second. The tickGet resolution for your board
support package (BSP) might be different. You should determine
the tickGet resolution for your BSP and enter it in the Timer
resolution field.

If you are targeting VxWorks, you can obtain better timer
resolution by replacing the tickGet call and accessing a hardware
timer by using your BSP instead. If you are targeting an RTOS
other than VxWorks, you should replace the tickGet call

with an equivalent call to the target RTOS, or generate code

to read the timer register on the target hardware. See “Use
Timers in Asynchronous Tasks” and “Async Interrupt Block
Implementation” in the Simulink Coder documentation for more
information.

Timer size

3-4

The number of bits to be used to store the clock tick for a hardware
timer. The ISR generated by the Async Interrupt block uses the
timer size when you select Manage own timer. The size can be

Async Interrupt

32bits (the default), 16bits, 8bits, or auto. If you select auto,
the Simulink Coder software determines the timer size based
on the settings of Application lifespan (days) and Timer
resolution.

By default, timer values are stored as 32-bit integers. However,
when Timer size is auto, you can indirectly control the word
size of the counters by setting the Application lifespan (days)
option. If you set Application lifespan (days) to a value that
1s too large for the code generator to handle as a 32-bit integer of
the specified resolution, the code generator uses a second 32-bit
integer to address overflows.

For more information, see “Control Memory Allocation for Time
Counters”. See also “Use Timers in Asynchronous Tasks”.

Enable simulation input
If checked, the Simulink software adds an input port to the Async
Interrupt block. This port is for use in simulation only. Connect
one or more simulated interrupt sources to the simulation input.

Note Before generating code, consider removing blocks that drive
the simulation input to prevent the blocks from contributing to
the generated code. Alternatively, you can use the Environment
Controller block, as explained in “Dual-Model Approach: Code
Generation”. However, if you use the Environment Controller
block, be aware that the sample times of driving blocks contribute
to the sample times supported in the generated code.

3-5

Async Interrupt

Inputs and Input
OUprts A simulated interrupt source.
Output

Control signal for a
¢ Function-call subsystem
e Task Sync block

e Stateflow chart configured for a function call input event

Assumptions ¢ The block supports VME interrupts 1 through 7.

°,“d, . e The block requires a VxWorks Board Support Package (BSP) that
Limitations supports the following VxWorks system calls:

sysIntEnable
sysIntDisable
intConnect
intLock
intUnlock
tickGet

Performance Execution of large subsystems at interrupt level can have a significant

Considerations impact on interrupt response time for interrupts of equal and lower
priority in the system. As a general rule, it is best to keep ISRs as short
as possible. Connect only function-call subsystems that contain a small
number of blocks to an Async Interrupt block.

A better solution for large subsystems is to use the Task Sync block to
synchronize the execution of the function-call subsystem to a VxWorks
task. Place the Task Sync block between the Async Interrupt block
and the function-call subsystem. The Async Interrupt block then uses
the Task Sync block as the ISR. The ISR releases a synchronization
semaphore (performs a semGive) to the task, and returns immediately
from interrupt level. VxWorks then schedules and runs the task. See
the description of the Task Sync block for more information.

Async Interrupt
|

See Also Task Sync
“Handle Asynchronous Events” in the Simulink Coder documentation

3-7

Asynchronous Task Specification

Purpose

Library

Description

Data Type
Support

Allow for parameter specifications for asynchronous tasks associated
with root-level Inport blocks that output a function-call trigger

Asynchronous

The Asynchronous Task Specification block, in combination with a
root-level Inport block, allows for an asynchronous function-call input
to a model reference.

To implement this feature, place this block at the output port of each
root-level Inport block that outputs a function-call trigger. On the
Signal Attributes pane of the Inport block, select Output function
call to specify that the Inport block accepts function-call signals.
Then use the Asynchronous Task Specification blocks to specify the
asynchronous task parameters associated with the respective Inport
blocks.

This specification does not apply to the Asynchronous Task Specification
block; the block accepts only function-call signals.

Asynchronous Task Specification

Parameters The Function Block Parameters dialog box of the Asynchronous

and Task Specification block appears as follows:
Dialog
Box E Function Block Parameters: Asynchronous Task Specification @

Asynchronous Task Specification

Specify the parameters of an asynchronous task associated with an Inport
block. Place this block at the output port of each root-level Inport block that
outputs a function-call trigger signal.

Parameters
Task priority:
10

" oK H Cancel || Help Apply

3-9

Asynchronous Task Specification

3-10

Task priority

Specifies the priority of the asynchronous task calling the destination
function-call subsystem. The priority must be a value that generates
relevant rate transition behaviors.

Settings
Default: 10

® You can enter an integer or [].

¢ If you specify an integer for an Asynchronous Task Specification
block that resides in a referenced model, the priority of the initiator
in the top model mustmatch the priority of that block.

¢ If you specify [] for an Asynchronous Task Specification block that
resides in a referenced model, the priority of the initiator in the top
model does not have to match the priority of that block. For this
case, the rate transition algorithm is conservative (not optimized),
assuming that the priority is unknown but static.

Command-Line Information
This block has only one parameter.

Parameter: TaskPriority
Value: integer
Configuration Parameters Settings

To create an asynchronous model reference containing a Function-Call
and an Asynchronous Task Specification block, you must follow the
procedure outlined in “Convert an Asynchronous Subsystem into a
Model Reference”. One of the steps requires that you make several
changes to configuration parameters.

Additional configuration parameters that require attention are the
solver Type and the Fixed step size (fundamental sample time) on
the Solver pane. Both the top model and the model reference must use
a fixed-step solver. Moreover, the submodel must have a fundamental
sample time that is an integer multiple of the fundamental sample
time of the top model.

Asynchronous Task Specification

Examples Asynchronous Function-Call Input to Model

This root-level model uses the Inport block with the Asynchronous
Task Specification block to allow a function-call input signal to a model
reference. The priority is set to 10.

o ex_async ref_model ™~
IR Pe{in1
]
Async Interrupt Outt > }1 —@
In2 I [Outt
Rate Transition2
= N Va
D N / Madel AN
In1 m mj AN
Rate Transiti:;n/1 AN
Y AN
Y N
y AN
y AN
y N
y; AN
N
(I}—p F: 10
In1
Asynchronous Task
Specification L 4
function)
In2 Out1
Functicn-Call
Subsystem

The Asynchronous Task Specification block must immediately follow the
Inport block. Also, a branch cannot emanate from the signal connecting
the Inport block to the Asynchronous Task Specification block.

3-11

Asynchronous Task Specification

Setting Priorities

20 HZ ISR Sim

E_

/Subsysteh
Copy
Out = SimIRQ IRG1 p{in1 Cutt B w1
| Coder s :llllllm outl
Environment Async Interrupt \ y Unprotected RT
Controller —

For this model, if the Asynchronous Task Specification block is set to
the default value of 10, the Async Interrupt block must also have a
priority of 10.

B Subsystem * [E=8(EER =
File Edit Wiew Simulation Format Teols Help
D =E & T | = » 10.
CO-+ ro oo |
In1
" Asynchronous Task *0
ificati - 1]
Specification -ca Out—@
Ouwit1
Count
Ri|100% ode3d

Whereas, if the priority of the Asynchronous Task Specification block
is set to the empty matrix, [], the priority of the Async Interrupt can
be a value other than 10.

3-12

Asynchronous Task Specification

-

=] Subsystem (== | ==
File Edit View Simulation Format Tools Help
D= &S v 1k | <2 » 10.
CO-—# eo fooi-- |
in1 o
Asynchronous Task
Specification f—call () i)
Cut1
Count
R 100% oded
L3 *
Characteristics Direct Feedthrough Yes

Sample Time

Inherited from the driving block

Scalar Expansion

N/A

Dimensionalized No
Multidimensionalized No
Zero-Crossing Detection No

See Also

“Handle Asynchronous Events

“Model Reference”
Inport block

Function-Call Subsystem block

”

3-13

Byte Pack

3-14

Purpose

Library

Description

Convert input signals to uint8 vector

Embedded Coder/ Embedded Targets/ Host Communication

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Target Communication

Simulink Coder/ Desktop Targets/ Host Communication

Byte Pack
Enyte P ack

Using the input port, the block converts data of one or more data types
into a single uint8 vector for output. With the options available, you
specify the input data types and the alignment of the data in the output
vector. Because UDP messages are in uint8 data format, use this block
before a UDP Send block to format the data for transmission using

the UDP protocol.

Byte Pack

Dialog
Box

Function Block Parameters: Byte Pack &3
Byte pack {mask) (link)

Pack input data into a single output vector of type uints. Insert before
3 UDP Send block to produce a uints byte wector from rultiple vectors
of varying data type.

Parameters

Input port data types (cell array):
{'double

Byte alignment: [1 -

[(014 H Cancel H Help J Apply

Input port data types (cell array)

Byte

Specify the data types for the different signals as part of the
parameters. The block supports all Simulink data types except
characters. Enter the data types as Simulink types in the cell
array, such as ’double’ or ’int32’. The order of the data type
entries in the cell array must match the order in which the data
arrives at the block input. This block determines the signal sizes
automatically. The block has at least one input port and only
one output port.

alignment
This option specifies how to align the data types to form the uint8
output vector. Select one of the values in bytes from the list.

Alignment can occur on 1, 2, 4, or 8-byte boundaries depending
on the value you choose. The value defaults to 1. Given the
alignment value, each signal data value begins on multiples of the
alignment value. The alignment algorithm s that each element
in the output vector begins on a byte boundary specified by the

3-15

Byte Pack

alignment value. Byte alignment sets the boundaries relative to
the starting point of the vector.

Selecting 1 for Byte alignment provides the tightest packing,
without holes between data types in the various combinations of
data types and signals.

Sometimes, you can have multiple data types of varying lengths. In
such cases, specifying a 2-byte alignment can produce 1-byte gaps
between uint8 or int8 values and another data type. In the pack
implementation, the block copies data to the output data buffer 1 byte
at a time. You can specify data alignment options with data types.

Example Use a cell array to enter input data types in the Input port data types
y p yp putp yp
parameter. The order of the data types you enter must match the order
of the data types at the block input.

Function Block Parameters: Byte Pack @
Byte pack {mask) (link)

Pack input data into a single output vector of type uint8. Insert before
a UDP Send block to produce a uintg byte wector from multiple vectors
of varying data type.

Parameters

Input port data types (cell array):
{'uint32', wint32", wint1a', 'double’, 'wints', 'double’, 'single'}

Byte alignment: |1 -

[Ok l| Cancel || Help | Apply

In the cell array, you provide the order in which the block expects to
receive data—uint32, uint32, uint16, double, uint8, double, and

3-16

Byte Pack

See Also

single. With this information, the block automatically provides the
number of block inputs.

Byte alignment equal to 2 specifies that each new value begins 2 bytes
from the previous data boundary.

The example shows the following data types:
{'uint32','uint32','uint16', 'double','uint8', 'double', 'single'}

When the signals are scalar values (not matrices or vectors in this
example), the first signal value in the vector starts at 0 bytes. Then,
the second signal value starts at 2 bytes, and the third at 4 bytes. Next,
the fourth signal value follows at 6 bytes, the fifth at 8 bytes, the sixth
at 10 bytes, and the seventh at 12 bytes. As the example shows, the
packing algorithm leaves a 1-byte gap between the uint8 data value
and the double value.

Byte Reversal, Byte Unpack

3-17

Byte Reversal

Purpose Reverse order of bytes in input word

Librclry Embedded Coder/ Embedded Targets/ Host Communication

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Target Communication

Simulink Coder/ Desktop Targets/ Host Communication

Byte Revarsal
Eyte Reverssl

Description

Byte reversal changes the order of the bytes in data you input to the
block. Use this block when your process communicates between targets
that use different endianness, such as between Intel® processors that
are little endian and others that are big endian. Texas Instruments™
processors are little-endian by default.

To exchange data with a processor that has different endianness, place
a Byte Reversal block just before the send block and immediately after
the receive block.

3-18

Byte Reversal

Function Block Parameters: Byte Reversal @
Byte Reversal (mask) (link)

Use Byte Rewversal block for communicating with a target processor
that is big-endian. Insert before the Byte Pack block or just after Byte
Unpack block to ensure that the data values are transmitied properly.

Parameters

Murnber of inputs:

1

[Ok H Cancel || Help Apply

Dialog
Box
Number of inputs
Specify the number of block inputs. The number of block inputs
adjusts automatically to match value so the number of outputs
equals the number of inputs.

When you use more than one input port, each input port maps
to the matching output port. Data entering input port 1 leaves

through output port 1, and so on.

Reversing the bytes does not change the data type. Input and
output retain matching data type.

The following model shows byte reversal in use. In this figure, the input
and output ports match for each path.

3-19

Byte Reversal

S234 ' ‘l GO0 00 T | ‘
Earstant i * o int1Gout
int16
234 » ,|| bir 420 1010 GOOG GGGG|
Constant? kir GCCC CCCC 27370 070 ™ Byte Reversal 1 uint 16out
Eyte Reversal
uint 16
234
Constent2 n T i e
|| hir GOCC GOGG COOOC GOOO GOGC G000 250 0 G” Pl bir ***0 *0*C COGG GOOC GOCC GOCG COnn GGGG|
uint22 uirt32out

See Also Byte Pack, Byte Unpack

3-20

Byte Unpack
|

Purpose Unpack UDP uint8 input vector into Simulink data type values

Librclry Embedded Coder/ Embedded Targets/ Host Communication

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Target Communication

Simulink Coder/ Desktop Targets/ Host Communication

Bryte Urpack
Eyte U'npack

Description

Byte Unpack is the inverse of the Byte Pack block. It takes a UDP
message from a UDP receive block as a uint8 vector, and outputs
Simulink data types in various sizes depending on the input vector.

The block supports all Simulink data types.

3-21

Byte Unpack

3-22

Dialog
Box

Function Block Parameters: Byte Unpack @
Byte Unpack (mask) (link)

Unpack a binary byte vector to exfract data. Insert after a UDP Recy
block to break-up a UDP packet into its constituent data vectors.

Parareters

Output port dimensions (cell array):
10T

COutput port data types (cell array):
{'double

Byte alignment: |1 -

E Ok H Cancel || Help | apply

Output port dimensions (cell array)

Containing a cell array, each element in the array specifies

the dimension that the MATLAB size function returns for the
corresponding signal. Usually you use the same dimensions

as you set for the corresponding Byte Pack block in the model.
Entering one value means that the block applies that dimension
to all data types.

Output port data types (cell array)

Specify the data types for the different input signals to the Pack
block. The block supports all Simulink data types—single,
double, int8, uint8, int16, uint16, int32, and uint32, and
Boolean. The entry here is the same as the Input port data types
parameter in the Byte Pack block in the model. You can enter one
data type and the block applies that type to all output ports.

Byte Unpack

Example

See Also

Byte Alignment
This option specifies how to align the data types to form the input
uint8 vector. Match this setting with the corresponding Byte
Pack block alignment value of 1, 2, 4, or 8 bytes.

This figure shows the Byte Unpack block that corresponds to the
example in the Byte Pack example. The Output port data types (cell
array) entry shown is the same as the Input port data types (cell
array) entry in the Byte Pack block

{'uint32','uint32','uint16', 'double', 'uint8', 'double’', 'single'}.

Function Block Parameters: Byte Unpack @
Byte Unpack (mask (link)

Unpack a binary byte vectar to exract data. Insert after a UDP Recy
block to break-up a UDP packet into its constifuent data vectors.

Parameters

COutput port dimensions (cell array):
{1,1,[2,4] [44].[2.2), 1,[3,3]}

Output port data types (cell array):

{'uint32', 'wint32', wintla', 'double’, 'wintd', 'double’, 'single’,}

Byte alignment: E2 -

[Ok l| Cancel || Help || apply |

In addition, the Byte alignment setting matches as well. Output port
dimensions (cell array) now includes scalar values and matrices to
show how to enter nonscalar values. The example for the Byte Pack
block assumed only scalar inputs.

Byte Pack, Byte Reversal

3-23

Generated S-Function

3-24

Purpose
Library

Description

Requirements

Represent model or subsystem as generated S-function code

S-Function Target

An instance of the Generated S-Function block represents code the
Simulink Coder software generates from its S-function target for a
model or subsystem. For example, you extract a subsystem from a
model and build a Generated S-Function block from it, using the
S-function target. This mechanism can be useful for

® Converting models and subsystems to application components
¢ Reusing models and subsystems

e Optimizing simulation — often, an S-function simulates more
efficiently than the original model

For details on how to create a Generated S-Function block from a
subsystem, see “Create S-Function Blocks from a Subsystem” in the
Simulink Coder documentation.

¢ The S-Function block must perform identically to the model or
subsystem from which it was generated.

¢ Before creating the block, explicitly specify Inport block signal
attributes, such as signal widths or sample times. The sole exception
to this rule concerns sample times, as described in “Sample Time
Propagation in Generated S-Functions”.

®* You must set the solver parameters of the Generated S-Function
block to be the same as those of the original model or subsystem.
The generated S-function code will operate identically to the

Generated S-Function

original subsystem (see Choice of Solver Type in the Simulink Coder
documentation for an exception to this rule).

Parameters Generated S-function name (model_sf)
The name of the generated S-function. The Simulink Coder
software derives the name by appending _sf to the name of the
model or subsystem from which the block is generated.

Show module list
If checked, displays modules generated for the S-function.

See Also “Create S-Function Blocks from a Subsystem” in the Simulink Coder
documentation

3-25

Linux Audio Capture

3-26

Purpose

Library

Description

Capture ALSA audio from sound card and output data

Embedded Coder/ Embedded Targets/ Operating Systems/ Embedded
Linux

Simulink Coder/ Desktop Targets/ Operating Systems/ Linux

LIMNLE
Ot f»

Audic Capture

Audic Capture

This block uses the ALSA driver framework to capture an audio stream
from a sound card. It outputs the left and right channels of the signal as
an [Nx2] frame of int16 values. N is the number of samples per frame.

Linux Audio Capture

Dialog

ALSA Audio Capture (mask) (link)

Capture an audio stream from the sound card using
ALSA driver framework. Output is a [MNx2], M being the
number of samples per frame, array of int16 values
representing the left and right channels of the sampled
signal.

Parameters

Device:

E Source Block Parameters: Audio Capture @

'default’

Sample rate (Hz):
44100
Queue duration (seconds):

0.5

Frame size (samples):

4096

oK || Cancel || Help

Device

Use the default ALSA device, or enter the name of a specific audio

output device.

Entering 'default’' selects the ALSA device specified by an
ALSA configuration file on your target Linux® system.

One of the following ALSA configuration files defines the default

device:

® /etc/asound.conf, which defines system-wide options for all

users

3-27

Linux Audio Capture

e ~/.asoundrc, which overrides /etc/asound.conf for the
current user

The entry that specifies the default device looks similar to this
example:

pcm. !default {
type hw
card 0
device 2

}

To enter the name of an alternate audio input device, review
the /proc/asound/cards file on your target Linux system. For
example, if /proc/asound/cards contained the following entries,
you could set the value of Device to 'AudioPCI' :

$ cat /proc/asound/cards

0 [Dummy]: Dummy - Dummy
Dummy 1

1 [VirMIDI]: VirMIDI - VirMIDI
Virtual MIDI Card 1

2 [AudioPCI]: ENS1371 - Ensoniq AudioPCI
Ensoniq AudioPCI ENS1371 at 0xe400, irq 11

The default value for Device is 'default’.

Sample rate (Hz)
Enter a value that matches the sample rate of the ALSA audio
output.

By default, the sample rate of the ALSA output equals the output

of the audio capture device. In this case, enter the sample rate of
the audio capture device.

3-28

Linux Audio Capture

The /etc/asound.conf and ~/.asoundrc files can configure
ALSA to downsample the signal from the audio capture device. In
this case, enter the downsample rate specified by the configuration
files. For example, if one of the configuration files contained the
following entry, you would set the value of Sample rate (Hz)

to 16000 :

pcm_slave.sl3 {
pcm ens1371
format S16_LE

channels 1
rate 16000
}
pcm.complex_convert {
type plug
slave s13
}

The default value for Sample rate (Hz) is 44100 Hz (44.1 kHz).
The maximum rate equals the sampling rate of the audio capture
device.

Queue duration (seconds)
Set the duration of the queue in seconds. This queue provides a
software-based frame buffer between the ALSA output and the
Linux Audio Capture block. The queue prevents dropped data
caused by temporary mismatches in the rate of data arriving and
leaving the queue. Higher values can handle more significant
mismatches, but such values also increase signal latency and
memory usage.

The default value for Queue duration (seconds) is 0.5 seconds.

Frame size (samples)
Set the number of samples per frame in the output this block
sends to your model. The default value for this parameter is
4096 samples.

3-29

Linux Audio Capture

3-30

References

See Also

http://www.alsa-project.org

http://www.alsa-project.org
Linux Audio Playback
Linux Task

http://www.alsa-project.org
http://www.alsa-project.org

Linux Audio Playback

Purpose

Library

Description

Send audio data stream to ALSA audio device output

Embedded Coder/ Embedded Targets/ Operating Systems/ Embedded
Linux (linuxlib)

Simulink Coder/ Desktop Targets/ Operating Systems/ Linux

LIMLE

Audio Playback

Audio Playback

This block takes a stream of audio data and sends it to the output jack
of an ALSA audio device. The block input, In, takes the left and right
channels of data as an [Nx2] frame of int16 values. N is the number of
samples per frame.

3-31

Linux Audio Playback

E Sink Block Parameters: Audio Playback @
ALSA Audio Playback (mask) (link)

Playback an audio stream using ALSA driver framework. Input is a
[Mx2], N being the number of samples per frame, array of int16
values representing the left and right channels of the sampled signal.

Farameters
Device:

'default’

Sample rate (Hz):

44100

Queue duration (seconds):

0.5
. oK | | Cancel | | Help Apply
Dialog
Device
Use the default ALSA device, or enter the name of a specific audio
device.

Entering 'default' selects the ALSA device specified by an
ALSA configuration file on your target Linux system.

One of the following ALSA configuration files defines the default
device:

® /etc/asound.conf, which defines system-wide options for all
users

e ~/.asoundrc, which overrides /etc/asound.conf for the
current user

3-32

Linux Audio Playback

The entry that specifies the default device looks like this
hypothetical example:

pcm. !default {
type hw
card 0
device 2

}

To enter the name of an alternate audio device, consult the
/proc/asound/cards file on your target Linux system. For
example, if /proc/asound/cards contained the following
hypothetical entries, you could set the value of Device to
"AudioPCI' :

$ cat /proc/asound/cards

0 [Dummy]: Dummy - Dummy
Dummy 1

1 [VirMIDI]: VirMIDI - VirMIDI
Virtual MIDI Card 1

2 [AudioPCI]: ENS1371 - Ensoniq AudioPCI
Ensoniq AudioPCI ENS1371 at 0xe400, irq 11

The default value for Device is 'default'.

Sample rate (Hz)
Enter a value that matches the sample rate of the ALSA audio

output.

By default, the sample rate of the ALSA output is the same as the
output of the audio capture device. In this case, enter the sample
rate of the audio capture device.

The /etc/asound.conf and ~/.asoundrc files can configure
ALSA to downsample the signal from the audio capture device. In

3-33

Linux Audio Playback

3-34

See Also

this case, enter the downsample rate specified by the configuration
files. For example, if one of the configuration files contained the
following hypothetical entry, you would set the value of Sample
rate (Hz) to 16000 :

pcm_slave.sl3 {
pcm ens1371
format S16_LE

channels 1
rate 16000
}
pcm.complex_convert {
type plug
slave s13
}

The default value for Sample rate (Hz) is 44100 Hz (44.1 kHz).
The maximum rate is the sampling rate of the audio capture
device.

Queue duration (seconds)

Set the duration of the queue in seconds. This queue provides a
software-based frame buffer between the ALSA audio device and
this block. The queue prevents dropped data caused by temporary
mismatches in the rate of data arriving and leaving the queue.
Higher values can handle more significant mismatches, but
increase signal latency and memory usage.

The default value for Queue duration (seconds) is 0.5 seconds.

http://www.alsa-project.org
Linux Audio Capture

Linux Task

http://www.alsa-project.org

Linux Task

Purpose

Library

Description

Spawn task function as separate Linux thread

Embedded Coder/ Embedded Targets/ Operating Systems/ Embedded
Linux

Simulink Coder/ Desktop Targets/ Operating Systems/ Linux

LIMLX

Task

Use this block to create a task function that spawns as a separate Linux
thread. The task function runs the code of the downstream function-call
subsystem. For example:

TZE

Tash

functioni)

0

DIP Switch > |]]]]]I tl]]]] ™

nl

Fate Transition Eeverberation

Algorithm
In order to use this block, set the System target file parameter to
idelink_ert.tlc or idelink_ert.tlc. The System target file
parameter is located on the Code Generation pane of the Model
Configuration Parameters dialog, which you can view by selecting your
model and pressing Ctrl+E.

3-35

Linux Task

E Source Block Parameters: Task @
Linux Task (mask) (link)

Creates a task function which is spawned as a separate
Linux thread. The task function runs the code of the
downstream function-call subsystem.

Farameters
Task name (32 characters or less):

Task0

Thread scheduling policy: |SCHED_FIFO -

Thread priority (1 to 99):
1

[OK H Cancel |E Help

Dialog

Task name
Assign a name to this task. You can enter up to 32 letters and
numbers. Do not use standard C reserved characters, such as the
/ and : characters.

Thread scheduling policy
Select the scheduling policy that applies to this thread. You can
choose from the following options:

® SCHED_FIFO enables a First In, First Out scheduling algorithm
that executes real-time processes without time slicing.
With FIFO scheduling, a higher-priority process preempts a
lower-priority process. The lower-priority process remains at
the top of the list for its priority and resumes execution when
the scheduler blocks all higher-priority processes.

For example, in the following image, task2 preempts taskl.
Then task3 preempts task2. When task3 completes, task2
resumes. When task2 completes, taskl resumes.

3-36

Linux Task

FIFO Scheduling

High
Priority
| taskz |
tazk? taskz2
Low tazkl tazkl
Priority
Time
Key: Preemption | Completion

Selecting SCHED_FIFO, displays the Thread priority
parameter, which you can set to a value from 1 to 99.

® SCHED_OTHER enables the default Linux time-sharing
scheduling algorithm. You can use this scheduling for
all processes except those requiring special static priority
real-time mechanisms. With this algorithm, the scheduler
chooses processes based on their dynamic priority within the
static priority O list. Each time the process is ready to run
and the scheduler denies it, the operating system increases
that process’s dynamic priority. Such prioritization helps the
scheduler serve the SCHED_OTHER processes.

Selecting SCHED _OTHER, hides the Thread priority parameter,
and sets the thread priority to O.

Thread priority (1 to 99)
When you set Thread scheduling policy to SCHED_FIFO, you
can set the priority of the thread from 1 to 99 (low-to-high).

Higher-priority tasks can preempt lower-priority tasks.

See Also Linux Audio Capture

3-37

Linux Task

Linux Audio Playback

3-38

Model Header

Purpose
Library

Description

Model
Header

Parameters

Example

See Also

Specify custom header code
Custom Code

The Model Header block adds user-specified custom code to the model.h
file that the code generator creates for the model that contains the block.

Note If you include this block in a submodel (model referenced by a
Model block), the Simulink Coder build process ignores the block for
simulation target builds, but includes any specified custom code in the
build process for other targets.

Top of Model Header
Code to be added near the top of the generated model header file,
in a user code (top of header file) section.

Bottom of Model Header
Code to be added at the bottom of the generated model header file,
in a user code (bottom of header file) section.

See “Embed Custom Code Directly Into MdIStart Function”.
Model Source, System Derivatives, System Disable, System Enable,
System Initialize, System Outputs, System Start, System Terminate,

System Update
“Insert Custom Code Blocks” in the Simulink Coder documentation

3-39

Model Source

Purpose Specify custom source code
Librclry Custom Code
Description The Model Source block adds user-specified custom code to the model.c

or model.cpp file that the code generator creates for the model that
contains the block.

Note If you include this block in a submodel (model referenced by a
Model block), the Simulink Coder build process ignores the block for
simulation target builds, but includes any specified custom code in the
build process for other targets.

Parameters Top of Model Source
Code to be added near the top of the generated model source file,
in a user code (top of source file) section.

Bottom of Model Source
Code to be added at the bottom of the generated model source file,
in a user code (bottom of source file) section.

Example See “Embed Custom Code Directly Into MdIStart Function”.
See Also Model Header, System Derivatives, System Disable, System Enable,
System Initialize, System Outputs, System Start, System Terminate,

System Update
“Insert Custom Code Blocks” in the Simulink Coder documentation

3-40

Protected RT
|

Purpose Handle transfer of data between blocks operating at different rates
and maintain data integrity

Library VxWorks (vx1ib1)

Description The Protected RT block is a Rate Transition block that is preconfigured

to maintain data integrity during data transfers. For more information,
see Rate Transition in the Simulink Reference.

3-41

System Derivatives

Purpose
Library

Description

Parameters

Example

See Also

3-42

Specify custom system derivative code
Custom Code

The System Derivatives block adds user-specified custom code to the
declaration, execution, and exit code sections of the SystemDerivatives
function that the code generator creates for the model or subsystem that
contains the block.

Note If you include this block in a submodel (model referenced by a
Model block), the Simulink Coder build process ignores the block for
simulation target builds, but includes any specified custom code in the
build process for other targets.

System Derivatives Function Declaration Code
Code to be added to the declaration section of the generated
SystemDerivatives function.

System Derivatives Function Execution Code
Code to be added to the execution section of the generated
SystemDerivatives function.

System Derivatives Function Exit Code
Code to be added to the exit section of the generated
SystemDerivatives function.

See “Embed Custom Code Directly Into MdIStart Function”.

Model Header, Model Source, System Disable, System Enable, System
Initialize, System Outputs, System Start, System Terminate, System
Update

“Insert Custom Code Blocks” in the Simulink Coder documentation

System Disable

Purpose
Library

Description

Parameters

Example

See Also

Specify custom system disable code
Custom Code

The System Disable block adds user-specified custom code to the
declaration, execution, and exit code sections of the SystemDisable
function that the code generator creates for the model or subsystem that
contains the block.

Note If you include this block in a submodel (model referenced by a
Model block), the Simulink Coder build process ignores the block for
simulation target builds, but includes any specified custom code in the
build process for other targets.

System Disable Function Declaration Code
Code to be added to the declaration section of the generated
SystemDisable function.

System Disable Function Execution Code
Code to be added to the execution section of the generated
SystemDisable function.

System Disable Function Exit Code
Code to be added to the exit section of the generated
SystemDisable function.

See “Embed Custom Code Directly Into MdIStart Function”.
Model Header, Model Source, System Derivatives, System Enable,
System Initialize, System Outputs, System Start, System Terminate,

System Update
“Insert Custom Code Blocks” in the Simulink Coder documentation

3-43

System Enable

Purpose
Library

Description

Parameters

Example

See Also

3-44

Specify custom system enable code
Custom Code

The System Enable block adds user-specified custom code to the
declaration, execution, and exit code sections of the SystemEnable
function that the code generator creates for the model or subsystem that
contains the block.

Note If you include this block in a submodel (model referenced by a
Model block), the Simulink Coder build process ignores the block for
simulation target builds, but includes any specified custom code in the
build process for other targets.

System Enable Function Declaration Code
Code to be added to the declaration section of the generated
SystemEnable function.

System Enable Function Execution Code
Code to be added to the execution section of the generated
SystemEnable function.

System Enable Function Exit Code
Code to be added to the exit section of the generated SystemEnable
function.

See “Embed Custom Code Directly Into MdIStart Function”.

Model Header, Model Source, System Derivatives, System Disable,
System Initialize, System Outputs, System Start, System Terminate,
System Update

“Insert Custom Code Blocks” in the Simulink Coder documentation

System Initialize

Purpose
Library

Description

Parameters

Example

See Also

Specify custom system initialization code
Custom Code

The System Initialize block adds user-specified custom code to the
declaration, execution, and exit code sections of the SystemInitialize
function that the code generator creates for the model or subsystem that
contains the block.

Note If you include this block in a submodel (model referenced by a
Model block), the Simulink Coder build process ignores the block for
simulation target builds, but includes any specified custom code in the
build process for other targets.

System Initialize Function Declaration Code
Code to be added to the declaration section of the generated
SystemInitialize function.

System Initialize Function Execution Code
Code to be added to the execution section of the generated
SystemInitialize function.

System Initialize Function Exit Code
Code to be added to the exit section of the generated
SystemInitialize function.

See “Embed Custom Code Directly Into MdIStart Function”.
Model Header, Model Source, System Derivatives, System Disable,
System Enable, System Outputs, System Start, System Terminate,

System Update
“Insert Custom Code Blocks” in the Simulink Coder documentation

3-45

System Outputs

Purpose
Library

Description

Parameters

Example

See Also

3-46

Specify custom system outputs code
Custom Code

The System Outputs block adds user-specified custom code to the
declaration, execution, and exit code sections of the SystemOutputs
function that the code generator creates for the model or subsystem that
contains the block.

Note If you include this block in a submodel (model referenced by a
Model block), the Simulink Coder build process ignores the block for
simulation target builds, but includes any specified custom code in the
build process for other targets.

System Outputs Function Declaration Code
Code to be added to the declaration section of the generated
SystemOutputs function.

System Outputs Function Execution Code
Code to be added to the execution section of the generated
SystemOutputs function.

System Outputs Function Exit Code
Code to be added to the exit section of the generated
SystemOutputs function.

See “Embed Custom Code Directly Into MdIStart Function”.

Model Header, Model Source, System Derivatives, System Disable,
System Enable, System Initialize, System Start, System Terminate,
System Update

“Insert Custom Code Blocks” in the Simulink Coder documentation

System Start

Purpose
Library

Description

Parameters

Example

See Also

Specify custom system startup code
Custom Code

The System Start block adds user-specified custom code to the
declaration, execution, and exit code sections of the SystemStart
function that the code generator creates for the model or subsystem that
contains the block.

Note If you include this block in a submodel (model referenced by a
Model block), the Simulink Coder build process ignores the block for
simulation target builds, but includes any specified custom code in the
build process for other targets.

System Start Function Declaration Code
Code to be added to the declaration section of the generated
SystemStart function.

System Start Function Execution Code
Code to be added to the execution section of the generated
SystemStart function.

System Start Function Exit Code
Code to be added to the exit section of the generated SystemStart
function.

See “Embed Custom Code Directly Into MdIStart Function”.
Model Header, Model Source, System Derivatives, System Disable,
System Enable, System Initialize, System Outputs, System Terminate,

System Update
“Insert Custom Code Blocks” in the Simulink Coder documentation

3-47

System Terminate

Purpose
Library

Description

Parameters

Example

See Also

3-48

Specify custom system termination code
Custom Code

The System Terminate block adds user-specified custom code to the
declaration, execution, and exit code sections of the SystemTerminate
function that the code generator creates for the model or subsystem that
contains the block.

Note If you include this block in a submodel (model referenced by a
Model block), the Simulink Coder build process ignores the block for
simulation target builds, but includes any specified custom code in the
build process for other targets.

System Terminate Function Declaration Code
Code to be added to the declaration section of the generated
SystemTerminate function.

System Terminate Function Execution Code
Code to be added to the execution section of the generated
SystemTerminate function.

System Terminate Function Exit Code
Code to be added to the exit section of the generated
SystemTerminate function.

See “Embed Custom Code Directly Into MdIStart Function”.

Model Header, Model Source, System Derivatives, System Disable,
System Enable, System Initialize, System Outputs, System Start,
System Update

“Insert Custom Code Blocks” in the Simulink Coder documentation

System Update

Purpose
Library

Description

Parameters

Example

See Also

Specify custom system update code
Custom Code

The System Update block adds user-specified custom code to the
declaration, execution, and exit code sections of the SystemUpdate
function that the code generator creates for the model or subsystem that
contains the block.

Note If you include this block in a submodel (model referenced by a
Model block), the Simulink Coder build process ignores the block for
simulation target builds, but includes any specified custom code in the
build process for other targets.

System Update Function Declaration Code
Code to be added to the declaration section of the generated
SystemUpdate function.

System Update Function Execution Code
Code to be added to the execution section of the generated
SystemUpdate function.

System Update Function Exit Code
Code to be added to the exit section of the generated SystemUpdate
function.

See “Embed Custom Code Directly Into MdIStart Function”.
Model Header, Model Source, System Derivatives, System Disable,
System Enable, System Initialize, System Outputs, System Start,

System Terminate
“Insert Custom Code Blocks” in the Simulink Coder documentation

3-49

Target Preferences (Removed)

3-50

Purpose

Library

Description

Configure model for specific IDE, tool chain, board, and processor

Simulink Coder/ Desktop Targets
Embedded Coder/ Embedded Targets

The Target Preferences block has been removed from the Simulink
block libraries. The contents of the Target Preferences block have
been moved to the Target Hardware Resources tab, located in the
Configuration Parameters dialog. For more information, see:

¢ “Hardware configuration relocation from Target Preferences block to
Configuration Parameters dialog”
e “Configure Target Hardware Resources”

¢ “Code Generation: Coder Target Pane” on page 4-293

Task Sync
|

Purpose Spawn VxWorks task to run code of downstream function-call
subsystem or Stateflow chart

Librclry Asynchronous / Interrupt Templates

Description The Task Sync block spawns a VxWorks task that calls a function-call

subsystem or Stateflow chart. Typically, you place the Task Sync block
between an Async Interrupt block and a function-call subsystem block
or Stateflow chart. Alternatively, you might connect the Task Sync
block to the output port of a Stateflow diagram that has an event,
Output to Simulink, configured as a function call.

Task
Taskld

S
-

The Task Sync block performs the following functions:

® Uses the VxWorks system call taskSpawn to spawn an independent
task. When the task is activated, it calls the downstream function-call
subsystem code or Stateflow chart. The block calls taskDelete to
delete the task during model termination.

® (Creates a semaphore to synchronize the connected subsystem with
execution of the block.

® Wraps the spawned task in an infinite for loop. In the loop, the
spawned task listens for the semaphore, using semTake. The first call
to semTake specifies NO_WAIT. This allows the task to determine
whether a second semGive has occurred prior to the completion of
the function-call subsystem or chart. This would indicate that the
interrupt rate is too fast or the task priority is too low.

® Generates synchronization code (for example, semGive ()). This code
allows the spawned task to run. The task in turn calls the connected
function-call subsystem code. The synchronization code can run at
interrupt level. This is accomplished through the connection between
the Async Interrupt and Task Sync blocks, which triggers execution
of the Task Sync block within an ISR.

® Supplies absolute time if blocks in the downstream algorithmic code
require it. The time is supplied either by the timer maintained by

3-51

Task Sync

3-52

Parameters

the Async Interrupt block, or by an independent timer maintained by
the task associated with the Task Sync block.

When you design your application, consider when timer and signal input
values should be taken for the downstream function-call subsystem that
1s connected to the Task Sync block. By default, the time and input
data are read when VxWorks activates the task. For this case, the data
(input and time) are synchronized to the task itself. If you select the
Synchronize the data transfer of this task with the caller task
option and the Task Sync block is driven by an Async Interrupt block,
the time and input data are read when the interrupt occurs (that is,
within the ISR). For this case, data is synchronized with the caller of
the Task Sync block.

Task name (10 characters or less)
The first argument passed to the VxWorks taskSpawn system call.
VxWorks uses this name as the task function name. This name
also serves as a debugging aid; routines use the task name to
identify the task from which they are called.

Simulink task priority (0-255)
The VxWorks task priority to be assigned to the function-call
subsystem task when spawned. VxWorks priorities range from 0
to 255, with O representing the highest priority.

Note The Simulink software does not simulate asynchronous
task behavior. The task priority of an asynchronous task is
for code generation purposes only and is not honored during
simulation.

Stack size (bytes)
Maximum size to which the task’s stack can grow. The stack size
is allocated when VxWorks spawns the task. Choose a stack size
based on the number of local variables in the task. You should

Task Sync

determine the size by examining the generated code for the task
(and functions that are called from the generated code).

Synchronize the data transfer of this task with the caller task
If not checked (the default),

¢ The block maintains a timer that provides absolute time values
required by the computations of downstream blocks. The timer
is independent of the timer maintained by the Async Interrupt
block that calls the Task Sync block.

¢ A Timer resolution option appears.

¢ The Timer size option specifies the word size of the time
counter.

If checked,

¢ The block does not maintain an independent timer, and does
not display the Timer resolution field.

¢ Downstream blocks that require timers use the timer
maintained by the Async Interrupt block that calls the Task
Sync block (see “Use Timers in Asynchronous Tasks” in the
Simulink Coder documentation). The timer value is read at the
time the asynchronous interrupt is serviced, and data transfers
to blocks called by the Task Sync block and execute within the
task associated with the Async Interrupt block. Therefore, data
transfers are synchronized with the caller.

Timer resolution (seconds)
The resolution of the block’s timer in seconds. This option appears
only if Synchronize the data transfer of this task with the
caller task is not checked. By default, the block gets the timer
value by calling the VxWorks tickGet function. The default
resolution is 1/60 second. The tickGet resolution for your BSP
might be different. You should determine the tickGet resolution
for your BSP and enter it in the Timer resolution field.

3-53

Task Sync

3-54

Inputs and
Outputs

See Also

Timer size
The number of bits to be used to store the clock tick for a hardware
timer. The size can be 32bits (the default), 16bits, 8bits, or
auto. If you select auto, the Simulink Coder software determines
the timer size based on the settings of Application lifespan
(days) and Timer resolution.

By default, timer values are stored as 32-bit integers. However,
when Timer size is auto, you can indirectly control the word
size of the counters by setting the Application lifespan (days)
option. If you set Application lifespan (days) to a value that
1s too large for the code generator to handle as a 32-bit integer of
the specified resolution, it uses a second 32-bit integer to address
overflows.

For more information, see “Control Memory Allocation for Time
Counters”. See also “Use Timers in Asynchronous Tasks”.

Input
A call from an Async Interrupt block.

Output
A call to a function-call subsystem.

Async Interrupt
“Handle Asynchronous Events” in the Simulink Coder documentation

UDP Receive

Purpose

Library

Description

Receive UDP packet

Embedded Coder/ Embedded Targets/ Host Communication

Embedded Coder/ Embedded Targets/ Operating Systems/ Embedded
Linux

Embedded Coder/ Embedded Targets/ Operating Systems/ VxWorks
Embedded Coder Support Package for Xilinx Zyng-7000 Platform
Simulink Coder/ Desktop Targets/ Host Communication

Windows (windowslib)

Note If your target system uses Linux or Windows, get the UDP block
from linuxlib or windowslib.

The UDP Receive block receives UDP packets from an IP network port
and saves them to its buffer. With each sample, the block output, emits
the contents of a single UDP packet as a data vector.

The generated code for this block relies on prebuilt .dll files. You can
run this code outside the MATLAB environment, or redeploy it, but be
sure to account for these extra .dll files when doing so. The packNGo
function creates a single zip file containing all of the pieces required to
run or rebuild this code. See packNGo for more information.

3-55

UDP Receive

3-56

Dialog

e

Source Block Parameters: UDP Receive @

UDP Receive (mask) (link)

Receive UDP packets on a given IP port.
This block receives a UDP packet from the network and emits that
data as a one-dimensional vector of the specified data type.

FParameters

Local IP port:

25000

Remote IP address ('0.0.0.0' to accept all):
'0.0.0.0'

Receive buffer size (bytes):

8192

Maximum length for Message:

255

Data type for Message: |uint8 w7

| Output variable-size signal
Blocking time (seconds):

inf

Sample time (seconds):

0.01

oK §| Cancel || Help Apply

Local IP port

Specify the IP port number upon to receive UDP packets. This
value defaults to 25000. The value can range 1-65535.

UDP Receive

Note On Linux, to set the IP port number below 1024, run
MATLAB with root privileges. For example, at the Linux
command line, enter:

sudo matlab

Remote IP address ('0.0.0.0' to accept all)
Specify the IP address from which to accept packets. Entering a
specific IP address blocks UDP packets from other addresses. To
accept packets from any IP address, enter '0.0.0.0"'. This value
defaults to '0.0.0.0".

Receive buffer size (bytes)
Make the receive buffer large enough to avoid data loss caused by
buffer overflows. This value defaults to 8192.

Maximum length for Message
Specify the maximum length, in vector elements, of the data
output vector. Set this parameter to a value equal or greater than
the data size of a UDP packet. The system truncates data that
exceeds this length. This value defaults to 255.

If you disable Output variable-size signal, the block outputs
a fixed-length output the same length as the Maximum length
for Message.

Data type for Message
Set the data type of the vector elements in the Message output.
Match the data type with the data input used to create the UDP
packets. This option defaults to uint8.

Output variable-size signal
If your model supports signals of varying length, enable the
Output variable-size signal parameter. This checkbox defaults
to selected (enabled). In that case:

UDP Receive

¢ The output vector varies in length, depending on the amount of
data in the UDP packet.

¢ The block emits the data vector from a single unlabeled output.

If your model does not support signals of varying length, disable
the Output variable-size signal parameter. In that case:

¢ The block emits a fixed-length output the same length as the
Maximum length for Message.

e [f the UDP packet contains less data than the fixed-length
output, the difference contains invalid data.

¢ The block emits the data vector from the Message output.

¢ The block emits the length of the valid data from the Length
output.

¢ The block dialog box displays the Data type for Length
parameter.

In both cases, the block truncates data that exceeds the

Maximum length for Message.

Data type for Length
Set the data type of the Length output. This option defaults to
double.

Blocking time (seconds)
For each sample, wait this length of time for a UDP packet before
returning control to the scheduler. This value defaults to inf,
which indicates to wait indefinitely.

Note This parameter appears only in the Embedded Coder UDP
Receive block.

Sample time (seconds)
Specify how often the scheduler runs this block. Enter a value
greater than zero. In real-time operation, setting this option to a

3-58

UDP Receive

See Also

large value reduces the likelihood of dropped UDP messages. This
value defaults to a sample time of 0.01 s.

Output port width

Specify the width of packets the block accepts. When you design
the transmit end of the UDP communication channel, you decide
the packet width. Set this option to a value as large or larger than
a packet you expect to receive.

Note This parameter appears only in a deprecated version of the
UDP Receive block. Replace the deprecated UDP Receive block
with a current UDP Receive block.

UDP receive buffer size (bytes)

Specify the size of the buffer to which the system stores UDP
packets. The default size is 8192 bytes. Make the buffer large
enough to store UDP packets that come in while your process
reads a packet from the buffer or performs other tasks. Specifying
the buffer size prevents the receive buffer from overflowing.

Note This parameter appears only in a deprecated version of the
UDP Receive block. Replace the deprecated UDP Receive block
with a current UDP Receive block.

Byte Pack, Byte Reversal, Byte Unpack, UDP Send

3-59

UDP Send

3-60

Purpose

Library

Description

Send UDP message

Embedded Coder/ Embedded Targets/ Host Communication

Embedded Coder/ Embedded Targets/ Operating Systems/ Embedded
Linux

Embedded Coder/ Embedded Targets/ Operating Systems/ VxWorks
Simulink Coder/ Desktop Targets/ Host Communication

Windows (windowslib)

Note If your target system uses Linux or Windows, get the UDP block
from linuxlib or windowslib.

UDP Send

UDF Send

The UDP Send block transmits an input vector as a UDP message over
an IP network port.

The generated code for this block relies on prebuilt .dll files. You can
run this code outside the MATLAB environment, or redeploy it, but be
sure to account for these extra .dll files when doing so. The packNGo
function creates a single zip file containing all of the pieces required to
run or rebuild this code. See packNGo for more information.

UDP Send

Dialog
Box

=] sink Block Parameters: UDP Send

—LUDP Send (mask) {ink)

Send a UDP packet to a network address identified by the remote IP address and
remote IP port parameters.

—Parameters

Remote IP address (255,255,255, 255 for broadcast):

l127.0.0.1

Remote IP port:

f 25000

Local IP port source: I.-'-\ub:mah'cally determine ;I

oK I Cancel | Help | Apply

IP address ('255.255.255.255"' for broadcast)

Specify the IP address or hostname to which the block sends
the message. To broadcast the UDP message, retain the default

value, '255.255.255.255".
Remote IP port

Specify the port to which the block sends the message. The value

defaults to 25000, but the values range from 1-65535.

Note On Linux, to set the IP port number below 1024, run
MATLAB with root privileges. For example, at the Linux

command line, enter:

sudo matlab

3-61

UDP Send

3-62

Local IP port source
To let the system automatically assign the port number, select
Assign automatically. To specify the IP port number using the
Local IP port parameter, select Specify.

Local IP port
Specify the IP port number from which the block sends the

message.

If the receiving address expects messages from a particular port
number, enter that number here.

Sample time
Sample time tells the block how long to wait before polling for
new messages.

Note This parameter only appears in a deprecated version of the
UDP Send block. Replace the deprecated UDP Send block with a
current UDP Send block.

See Also Byte Pack, Byte Reversal, Byte Unpack, UDP Receive

Unprotected RT

Purpose Handle transfer of data between blocks operating at different rates
and maintain determinism
Library VxWorks (vx1ib1)
Description The Unprotected RT block is a Rate Transition block that is
preconfigured to conduct deterministic data transfers. For more
b ;D b information, see Rate Transition in the Simulink Reference.
[[m

3-63

Windows

Task

3-64

Purpose

Library

Description

Spawn task function as separate Windows thread

Windows (windowslib)

This block spawns a task function as a separate Windows thread. The
task function runs the code of the downstream function-call subsystem.
For example:

T

Tash

functianil

H
- nl
m m

FRate Transition

DIPF Switch

Reverberation
Algorithm

In order to use this block, set the System target file parameter to

idelink_ert.tlc or idelink_ert.tlc. The System target file

parameter is located on the Code Generation pane of the Model

Configuration Parameters dialog, which you can view by selecting your

model and pressing Ctrl+E.

Thread priority in Windows operating systems ranges from 0 to 31
(low-to-high priority). The following two criteria determine the priority
of a given thread:

® Priority class

¢ Priority level within the priority class

Windows Task

The priority classes in Windows are as follows:

e IDLE_PRIORITY_CLASS
BELOW_NORMAL_PRIORITY_CLASS
NORMAL_PRIORITY_CLASS
ABOVE_NORMAL_PRIORITY_CLASS
HIGH_PRIORITY_CLASS
REALTIME_PRIORITY_CLASS

The Windows Task block uses a process priority of
NORMAL_PRIORITY_CLASS.

In the Windows Task block, you can use the Thread priority level
parameter specify the following the priority levels within in the
NORMAL_PRIORITY_CLASS:

THREAD_PRIORITY_LOWEST
THREAD_PRIORITY_BELOW_NORMAL
THREAD_PRIORITY_NORMAL
THREAD_PRIORITY_ABOVE_NORMAL
THREAD_PRIORITY_HIGHEST

3-65

Windows Task

Dialog

3-66

Windows Task (mask) (Jink)
Creates a task function which is spawned as a separate Windows

thread. The Task function runs the code of the downstream
function-call subsystem.

Parameters
Task name (32 characters or less):

TaskD

Thread priority level: |THREAD_PRIORITY_LOWEST w

[Z] Source Block Parameters: Task2 g|

| OK |[Cancel][Help

)

Task name

Assign a name to this task. You can enter up to 32 letters and
numbers. Do not use standard C reserved characters, such as the

/ and : characters.

Thread priority level

Set the priority for the thread.

lower-priority tasks.

Higher-priority tasks can preempt

Select one of the following five priority classes:

THREAD_PRIORITY_LOWEST
THREAD_PRIORITY_BELOW_NORMAL
THREAD_PRIORITY_NORMAL
THREAD_PRIORITY_ABOVE_NORMAL
THREAD_PRIORITY_HIGHEST

Configuration Parameters
for Stmulink Models

® “Code Generation Pane: General” on page 4-2

® “Code Generation Pane: Report” on page 4-43

® “Code Generation Pane: Comments” on page 4-69

¢ “Code Generation Pane: Symbols” on page 4-96

® “Code Generation Pane: Custom Code” on page 4-142

¢ “Code Generation Pane: Debug” on page 4-159

® “Code Generation Pane: Interface” on page 4-169

® “Code Generation Pane: RSim Target” on page 4-252

® “Code Generation Pane: S-Function Target” on page 4-258
® “Code Generation Pane: Tornado Target” on page 4-264
® “Code Generation: Coder Target Pane” on page 4-293

* “Parameter Reference” on page 4-329

4 Configuration Parameters for Simulink® Models

Code Generation Pane: General

The Code Generation pane includes the following parameters when
the Simulink Coder product is installed on your system and you select a
GRT-based target.

Target selection

System target file: grt.tlc Browse...

Language: [C v]

Build process

Compiler optimization level: [Dptimizations off (faster builds) "]

TLC options:

Makefile configuration
Generate makefile
Make command: make_rtw

Template makefile: grt_default_tmf

Code Generation Advisor

Select objective: [Unspeciﬁed "l

Check model before generating code: [DFF 'l ’ Check model ...]
[C] Generate code only [Build]
["] Package code and artifacts Zip file name:

The Code Generation pane includes additional parameters when the
Simulink Coder product is installed on your system and you select an
ERT-based target. ERT-based target parameters require an Embedded Coder
license when generating code.

Code Generation Pane: General

Target selection

System target file: ert.tlc

Language: C

Description: Embedded Coder

Build process

Compiler optimization level: | Optimizations off (faster builds) "]

TLC options:
Makefile configuration
Generate makefile

Make command: make_rtw

Template makefile: ert_default_tmf

Data specification override

[C] Ignare custom storage classes

Code Generation Advisor

Prioritized objectives: Unspecified

[C] 1gnare test point signals

[Set objectives ...

Check model before generating code: | Off

v] [Check maodel ...

[T Generate code only

[T Package code and artifacts

[Build

Zip file name:

4-3

4 Configuration Parameters for Simulink® Models

In this section...

“Code Generation: General Tab Overview” on page 4-5
“System target file” on page 4-6

“Browse” on page 4-8

“Language” on page 4-9

“Compiler optimization level” on page 4-11
“Custom compiler optimization flags” on page 4-13
“TLC options” on page 4-14

“Generate makefile” on page 4-16

“Make command” on page 4-18

“Template makefile” on page 4-20

“Ignore custom storage classes” on page 4-22
“Ignore test point signals” on page 4-24

“Select objective” on page 4-26

“Prioritized objectives” on page 4-28

“Set objectives” on page 4-29

“Set Objectives — Code Generation Advisor Dialog Box” on page 4-30
“Check model” on page 4-33

“Check model before generating code” on page 4-34
“Generate code only” on page 4-36
“Build/Generate code” on page 4-38

“Package code and artifacts” on page 4-39

“Zip file name” on page 4-41

Code Generation Pane: General

Code Generation: General Tab Overview

Set up general information about code generation for a model’s active
configuration set, including target selection, documentation, and build process
parameters.

See Also
“Code Generation Pane: General” on page 4-2

4 Configuration Parameters for Simulink® Models

System target file
Specify the system target file.

Settings
Default: grt.tlc

You can specify the system target file in these ways:

e Use the System Target File Browser. Click the Browse button, which lets
you select a preset target configuration consisting of a system target file,
template makefile, and make command.

® Enter the name of your system target file in this field.

Tips

® The System Target File Browser lists system target files found on the
MATLAB path. Some system target files require additional licensed
products, such as the Embedded Coder product.

® To configure your model for rapid simulation, select rsim.tlc.

® To configure your model for xPC Target™, select xpctarget.tlc or
xpctargetert.tlc.

Command-Line Information

Parameter: SystemTargetFile
Type: string

Value: valid system target file
Default: 'grt.tlc'

Recommended Settings

Application Setting
Debugging No impact
Traceability No impact

Code Generation Pane: General

Application Setting
Efficiency No impact
Safety precaution No impact (GRT)
ERT based (requires Embedded Coder
license)
See Also

“Available Targets”

4-7

4 Configuration Parameters for Simulink® Models

Browse

Open the System Target File Browser, which lets you select a preset target
configuration consisting of a system target file, template makefile, and make
command. The value you select is filled into “System target file” on page
4-6.

Tips

® The System Target File Browser lists system target files found on the
MATLAB path. Some system target files require additional licensed
products, such as the Embedded Coder product.

¢ To configure your model for rapid simulation, select rsim.tlc.

¢ To configure your model for xPC Target, select xpctarget.tlc or
xpctargetert.tlc.

See Also

e “Selecting a Target”
e “Available Targets”

Code Generation Pane: General

Language
Specify C or C++ code generation.

Settings
Default: C

C
Generates .c files and places the files in your build folder.

C++
Generates C++ compatible .cpp files and places the files in your build
folder.

C++ (Encapsulated)
Generates C++ encapsulated . cpp files and places the files in your build
folder. Selecting this value causes the build to generate a C++ class
interface to model code. The generated interface encapsulates required
model data into C++ class attributes and model entry point functions
into C++ class methods.

Note Using C++ (Encapsulated) for code generation requires

an Embedded Coder license and the ERT target. The value C++
(Encapsulated) appears in the Language menu if you select an ERT
target for your model, but you cannot use the ERT target and the C++
(Encapsulated) value for model building without an Embedded Coder
license.

Tip
You might need to configure the Simulink Coder software to use a compiler
before you build a system.

Command-Line Information

Parameter: TargetLang

Type: string

Value: 'C' | 'C++' | 'C++ (Encapsulated)'
Default: 'C'

4 Configuration Parameters for Simulink® Models

4-10

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Setting

No impact
No impact
No impact

No impact

See Also

“Choose and Configure a Compiler”

“Function Prototype Control”

“C++ Encapsulation Interface Control”

Code Generation Pane: General

Compiler optimization level

Control compiler optimizations for building generated code, using flexible,
generalized controls.

Settings
Default: Optimizations off (faster builds)

Optimizations off (faster builds)
Customizes compilation during the Simulink Coder makefile build
process to minimize compilation time.

Optimizations on (faster runs)
Customizes compilation during the Simulink Coder makefile build
process to minimize run time.

Custom
Allows you to specify custom compiler optimization flags to be applied
during the Simulink Coder makefile build process.

Tips

® Target-independent values Optimizations on (faster runs) and
Optimizations off (faster builds) allow you to easily toggle compiler
optimizations on and off during code development.

® Custom allows you to enter custom compiler optimization flags at Simulink
GUI level, rather than editing compiler flags into template makefiles
(TMFs) or supplying compiler flags to Simulink Coder make commands.

¢ If you specify compiler options for your Simulink Coder makefile build
using OPT_OPTS, MEX_OPTS (except MEX_OPTS="-v"), or MEX_OPT_FILE, the
value of Compiler optimization level is ignored and a warning is issued
about the ignored parameter.

4-11

4 Configuration Parameters for Simulink® Models

Dependencies
This parameter enables Custom compiler optimization flags.

Command-Line Information

Parameter: RTWCompilerOptimization
Type: string

Value: '0ff' | 'On' | 'Custom'
Default: 'Off"

Recommended Settings

Application Setting

Debugging Optimizations off (faster builds)

Traceability Optimizations off (faster builds)

Efficiency Optimizations on (faster runs)
(execution), No impact (ROM, RAM)

Safety precaution No impact

See Also

e “Custom compiler optimization flags” on page 4-13

® “Control Compiler Optimizations”

4-12

Code Generation Pane: General

Custom compiler optimization flags

Specify compiler optimization flags to be applied to building the generated
code for your model.

Settings
Default: '

Specify compiler optimization flags without quotes, for example, -02.

Dependency

This parameter is enabled by selecting the value Custom for the parameter
Compiler optimization level.

Command-Line Information

Parameter: RTWCustomCompilerOptimizations
Type: string

Value: '' | user-specified flags

Default: '

Recommended Settings
See “Compiler optimization level” on page 4-11.

See Also

® “Compiler optimization level” on page 4-11

® “Control Compiler Optimizations”

4-13

4 Configuration Parameters for Simulink® Models

TLC options

Specify Target Language Compiler (TLC) options for code generation.

Settings
Default: '

You can enter TLC command-line options and arguments.

Tips

¢ Specifying TLC options does not add flags to the Make command field.

® The summary section of the generated HTML report lists the TLC options
that you specify for the build in which you generate the report.

Command-Line Information

Parameter: TLCOptions
Type: string

Value: valid TLC argument
Default: ''

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact
See Also

e “Specify TLC Options”

¢ “Command-Line Arguments”

4-14

Code Generation Pane: General

e “Customize Build Process with STF _make_rtw_hook File”

e “Target Development and the Build Process”

4-15

4 Configuration Parameters for Simulink® Models

4-16

Generate makefile

Specify generation of a makefile.

Settings
Default: on
¥ On
Generates a makefile for a model during the build process.
" off
Suppresses the generation of a makefile. You must set up post code

generation build processing, including compilation and linking, as a
user-defined command.

Dependencies
This parameter enables:
* Make command

¢ Template makefile

Command-Line Information

Parameter: GenerateMakefile
Type: string

Value: 'on' | 'off'

Default: 'on'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

Code Generation Pane: General

See Also

® “Customize Post-Code-Generation Build Processing”
e “Customize Build Process with STF_make_rtw_hook File”

e “Target Development and the Build Process”

4-17

4 Configuration Parameters for Simulink® Models

Make command

Specify a make command and optionally append make command arguments.

Settings
Default: make_rtw

The make command, a high-level MATLAB command, invoked when you start
a build, controls the Simulink Coder build process.

e Each target has an associated make command, automatically supplied
when you select a target file using the System Target File Browser.

® Some third-party targets supply a make command. See the vendor’s
documentation.

® You can specify arguments in the Make command field which pass into
the makefile-based build process. Append the arguments after the make
command, as in the following example:

make_rtw OPTS="-DMYDEFINE=1"

The syntax for make command options differs slightly for different
compilers.

Tip

Most targets use the default command.

Dependency

This parameter is enabled by Generate makefile.

Command-Line Information

Parameter: MakeCommand

Type: string

Value: valid make command MATLAB language file
Default: 'make_rtw'

4-18

Code Generation Pane: General

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution make_rtw
See Also

¢ “Template Makefiles and Make Options”
e “Customize Build Process with STF_make_rtw_hook File”

® “Target Development and the Build Process”

4-19

4 Configuration Parameters for Simulink® Models

4-20

Template makefile
Specify a template makefile.

Settings
Default: grt_default tmf

The template makefile determines which compiler runs, during the make
phase of the build, to compile the generated code. You can specify template
makefiles in the following ways:

® Generate a value by selecting a target configuration using the System
Target File Browser.

¢ Explicitly enter a custom template makefile filename (including the
extension). The file must be on the MATLAB path.

Tips

¢ If you do not include a filename extension for a custom template makefile,
the code generator attempts to find and execute a MATLAB language file.

® You can customize your build process by modifying an existing template
makefile or by providing your own template makefile.

Dependency

This parameter is enabled by Generate makefile.

Command-Line Information

Parameter: TemplateMakefile

Type: string

Value: valid template makefile filename
Default: 'grt_default_tmf'

Code Generation Pane: General

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Setting

No impact
No impact
No impact

No impact

See Also

¢ “Template Makefiles and Make Options”

® “Available Targets”

4-21

4 Configuration Parameters for Simulink® Models

4-22

Ignore custom storage classes
Specify whether to apply or ignore custom storage classes.

Settings
Default: off

I7On

Ignores custom storage classes by treating data objects that have them
as if their storage class attribute is set to Auto. Data objects with an
Auto storage class do not interface with external code and are stored as
local or shared variables or in a global data structure.

I off
Applies custom storage classes as specified. You must clear this option
if the model defines data objects with custom storage classes.

Tips
¢ (Clear this parameter before configuring data objects with custom storage
classes.

e Setting for top-level and referenced models must match.

Dependencies

¢ This parameter only appears for ERT-based targets.
® (Clear this parameter to enable module packaging features.

® This parameter requires an Embedded Coder license when generating code.

Command-Line Information

Parameter: IgnoreCustomStorageClasses
Type: string

Value: 'on' | 'off

Default: 'off"

Code Generation Pane: General

Recommended Settings

Application
Debugging
Traceability
Efficiency

Safety precaution

Setting

No impact
No impact
No impact

No impact

See Also

“Custom Storage Classes” in the Embedded Coder documentation

4-23

4 Configuration Parameters for Simulink® Models

Ignore test point signals
Specify allocation of memory buffers for test points.

Settings
Default: Off

¥ On
Ignores test points during code generation, allowing optimal buffer
allocation for signals with test points, facilitating transition from
prototyping to deployment and avoiding accidental degradation of
generated code due to workflow artifacts.

I off
Allocates separate memory buffers for test points, resulting in a loss
of code generation optimizations such as reducing memory usage by
storing signals in reusable buffers.

Dependencies

® This parameter appears only for ERT-based targets.

¢ This parameter requires an Embedded Coder license when generating code.

Command-Line Information

Parameter: IgnoreTestpoints
Type: string

Value: 'on' | 'off'

Default: 'off'

Recommended Settings

Application Setting
Debugging Off
Traceability No impact

4-24

Code Generation Pane: General

Application Setting

Efficiency On

Safety precaution No impact
See Also

e “Signals with Test Points” in the Simulink Coder documentation
e “Test Points” in the Simulink documentation

® “Signals” in the Simulink Coder documentation

4-25

4 Configuration Parameters for Simulink® Models

4-26

Select objective
Select code generation objectives to use with the Code Generation Advisor.

Settings
Default: Unspecified

Unspecified
No objective specified. Do not optimize code generation settings using
the Code Generation Advisor.

Debugging
Specifies debugging objective. Optimize code generation settings for
debugging the code generation build process using the Code Generation
Advisor.

Execution efficiency
Specifies execution efficiency objective. Optimize code generation
settings to achieve fast execution time using the Code Generation
Advisor.

Tips

For more objectives, specify an ERT-based target.

Dependency
These parameters appear only for GRT-based targets.

Command-Line Information

Parameter: 'ObjectivePriorities'

Type: cell array of strings

Value: {''} | {'Debugging'} | {'Execution efficiency'}
Default: {''}

Code Generation Pane: General

Recommended Settings

Application Setting

Debugging Debugging

Traceability Not applicable for GRT-based targets

Efficiency Execution efficiency

Safety precaution Not applicable for GRT-based targets
See Also

® “Application Objectives” in the Embedded Coder documentation.

® “Application Objectives” in the Simulink Coder documentation.

4-27

4 Configuration Parameters for Simulink® Models

4-28

Prioritized objectives
List objectives that you specify by clicking the Set objectives button.

Dependencies
¢ This parameter appears only for ERT-based targets.

¢ This parameter requires an Embedded Coder license when generating code.

Command-Line Information

Command: get_param('model', 'ObjectivePriorities')

See Also

® “Application Objectives” in the Embedded Coder documentation.

® “Application Objectives” in the Simulink Coder documentation.

Code Generation Pane

: General

Set objectives
Open Configuration Set Objectives dialog box.

Dependency
This button appears only for ERT-based targets.

See Also

e “Application Objectives” in the Embedded Coder documentation.

® “Application Objectives” in the Simulink Coder documentation.

4-29

4 Configuration Parameters for Simulink® Models

Set Objectives — Code Generation Advisor Dialog
Box

Select and prioritize code generation objectives to use with the Code
Generation Advisor.

E Set Objectives - Code Generation Advisor @
Description

Select and prioritize your code generation objectives. You can add custom
objectives, for details, see the documentation.

Available objectives Selected objectives - prioritized

Execution efficiency

ROM efficiency . T
RAM efficiency

I+

Traceability

Safety precaution
Debugging

MISRA-C:2004 guidelines

+l

[+

OK || Cancel || Help

Settings
1 From the Available objectives list, select objectives.

2 Click the select button (arrow pointing right) to move the objectives that
you selected into the Selected objectives - prioritized list.

3 Click the higher priority (up arrow) and lower priority (down arrow)
buttons to prioritize the objectives.

Objectives. List of available objectives.

Execution efficiency — Configure code generation settings to achieve
fast execution time.

ROM efficiency — Configure code generation settings to reduce ROM
usage.

4-30

Code Generation Pane: General

RAM efficiency — Configure code generation settings to reduce RAM
usage.

Traceability — Configure code generation settings to provide mapping
between model elements and code.

Safety precaution — Configure code generation settings to increase
clarity, determinism, robustness, and verifiability of the code.
Debugging — Configure code generation settings to debug the code
generation build process.

MISRA-C:2004 guidelines — Configure code generation settings to
increase compliance with MISRA-C:2004 guidelines.

Note If you select the MISRA-C:2004 guidelines code generation objective,
the Code Generation Advisor checks:

¢ The model configuration settings for compliance with the MISRA-C:2004
configuration setting recommendations.

¢ For blocks that are not supported or recommended for MISRA-C:2004
compliant code generation.

Priorities. After you select objectives from the Available objectives
parameter, organize the objectives in the Selected objectives - prioritized
parameter with the highest priority objective at the top.

Dependency
This dialog box appears only for ERT-based targets.

Command-Line Information

Parameter: 'ObjectivePriorities'

Type: cell array of strings; combination of the available values

Value: {''} | {'Execution efficiency'} | {'ROM efficiency'} |
{'RAM efficiency'} | {'Traceability'} | {'Safety precaution'} |
{'Debugging'}| {'MISRA-C:2004 guidelines'}

Default: {''}

4-31

4 Configuration Parameters for Simulink® Models

See Also

® “Application Objectives” in the Embedded Coder documentation.

® “Application Objectives” in the Simulink Coder documentation.

4-32

Code Generation Pane: General

Check model

Run the Code Generation Advisor checks.

Settings

1 Specify code generation objectives using the Select objective parameter
(available with GRT-based targets) or in the Configuration Set Objectives

dialog box, by clicking Set objectives (available with ERT-based targets).

2 Click Check model. The Code Generation Advisor runs the code
generation objectives checks and provide suggestions for changing your
model to meet the objectives.

Dependency

You must specify objectives before checking the model.

See Also

e “Application Objectives” in the Embedded Coder documentation.

e “Application Objectives” in the Simulink Coder documentation.

4-33

4 Configuration Parameters for Simulink® Models

4-34

Check model before generating code
Choose whether to run Code Generation Advisor checks before generating

code.

Settings
Default: off

Off

Generates code without checking whether the model meets code
generation objectives. The code generation report summary and file
headers indicate the specified objectives and that the validation was
not run.

On (proceed with warnings)

Checks whether the model meets code generation objectives using the
Code Generation Objectives checks in the Code Generation Advisor.
If the Code Generation Advisor reports a warning, the Simulink
Coder software continues generating code. The code generation report
summary and file headers indicate the specified objectives and the
validation result.

On (stop for warnings)

Checks whether the model meets code generation objectives using the
Code Generation Objectives checks in the Code Generation Advisor. If
the Code Generation Advisor reports a warning, the Simulink Coder
software does not continue generating code.

Command-Line Information

Parameter: CheckMd1BeforeBuild
Type: string

Value: '0ff' | 'Warning' | 'Error'
Default: 'Off'

Code Generation Pane: General

Recommended Settings

Application Setting

Debugging On (proceed with warnings) or On
(stop for warnings)

Traceability On (proceed with warnings) or On
(stop for warnings)

Efficiency On (proceed with warnings) or On
(stop for warnings)

Safety precaution On (proceed with warnings) or On
(stop for warnings)

See Also

e “Application Objectives” in the Embedded Coder documentation.

® “Application Objectives” in the Simulink Coder documentation.

4-35

4 Configuration Parameters for Simulink® Models

4-36

Generate code only
Specify code generation versus an executable build.

Settings
Default: off

I7On

The caption of the Build/Generate code button becomes Generate
code. The build process generates code and a makefile, but it does not
invoke the make command.

" o
The caption of the Build/Generate code button becomes Build. The

build process generates and compiles code, and creates an executable
file.

Tip
Generate code only generates a makefile only if you select Generate
makefile.

Dependency

This parameter changes the function of the Build/Generate code button.

Command-Line Information

Parameter: GenCodeOnly
Type: string

Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting
Debugging Off
Traceability No impact

Code Generation Pane: General

Application Setting

Efficiency No impact

Safety precaution No impact
See Also

“Customize Post-Code-Generation Build Processing”

4-37

4 Configuration Parameters for Simulink® Models

Build/Generate code

Start the build or code generation process.

Tip
You can also start the build process by pressing Ctrl+B.

Dependency
When you select Generate code only, the caption of the Build button
changes to Generate code.

Command-Line Information

Command: rtwbuild
Type: string
Value: 'modelname'

Recommended Settings

Application Setting

Debugging Build

Traceability No impact

Efficiency No impact

Safety precaution No impact
See Also

“Initiate the Build Process”

4-38

Code Generation Pane: General

Package code and artifacts

Specify whether to automatically package generated code and artifacts for
relocation.

Settings
Default: off

¥ On
The build process runs the packNGo function after code generation to
package generated code and artifacts for relocation.

™ ofr

The build process does not run packNGo after code generation.

Dependency

Selecting this parameter enables Zip file name and clearing this parameter
disables Zip file name.

Command-Line Information

Parameter: PackageGeneratedCodeAndArtifacts
Type: string

Value: 'on' | 'off'

Default: 'off'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

4-39

4 Configuration Parameters for Simulink® Models

See Also

® “Relocate Code to Another Development Environment”

* “packNGo Function Limitations”

4-40

Code Generation Pane: General

Zip file name

Specify the name of the .zip file in which to package generated code and
artifacts for relocation.

Settings
Default: '

You can enter the name of the zip file in which to package generated code
and artifacts for relocation. The file name can be specified with or without
the .zip extension. If you specify no extension or an extension other than
.zip, the zip utility adds the .zip extension. If a value is not specified, the
build process uses the name model.zip, where model is the name of the top
model for which code is being generated.

Dependency

This parameter is enabled by Package code and artifacts.

Command-Line Information

Parameter: PackageName
Type: string

Value: valid name for a .zip file
Default: 'off'

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

4-41

4 Configuration Parameters for Simulink® Models

See Also

® “Relocate Code to Another Development Environment”

* “packNGo Function Limitations”

4-42

Code Generation Pane: Report

Code Generation Pane: Report

The Code Generation > Report pane includes the following parameters
when the Simulink Coder product is installed on your system and you select
a GRT-based target.

Create code generation report Open report automatically

The Code Generation > Report pane includes the following additional
parameters when the Simulink Coder product is installed on your system
and you select an ERT-based target. ERT-based target parameters require
an Embedded Coder license when generating code.

Mavigation
Code-to-model
Model-to-code Configure

Generate model Web view

Traceability Report Contents
Eliminated / virtual blocks
Traceable Simulink blocks
Traceable Stateflow objects

Traceable MATLAB functions

Metrics

Static code metrics

Summarize which blocks triggered code replacements

In this section...

“Code Generation: Report Tab Overview” on page 4-45

“Create code generation report” on page 4-46

“Open report automatically” on page 4-49

4-43

4 Configuration Parameters for Simulink® Models

In this section...

“Code-to-model” on page 4-51
“Model-to-code” on page 4-53

“Configure” on page 4-55

“Generate model Web view” on page 4-56
“Eliminated / virtual blocks” on page 4-57
“Traceable Simulink blocks” on page 4-59
“Traceable Stateflow objects” on page 4-61
“Traceable MATLAB functions” on page 4-63

“Static code metrics” on page 4-65

“Summarize which blocks triggered code replacements” on page 4-67

4-44

Code Generation Pane

: Report

Code Generation: Report Tab Overview

Control the code generation report that the Simulink Coder software
automatically creates.

Configuration

To create a code generation report during the build process, select the Create
code generation report parameter.

See Also

® “Generate a Code Generation Report”
e “Reports for Code Generation”

If you have an Embedded Coder license, see also “HTML Code Generation
Report Extensions”.

® “Code Generation Pane: Report” on page 4-43

4-45

4 Configuration Parameters for Simulink® Models

4-46

Create code generation report
Document generated code in an HTML report.

Settings
Default: Off

¥ On

Generates a summary of code generation source files in an HTML
report. Places the report files in an html subfolder within the build
folder. In the report,

The Summary section lists version and date information. The
Configuration Settings at the Time of Code Generation link
opens a noneditable view of the Configuration Parameters dialog that
shows the Simulink model settings, including TLC options, at the
time of code generation.

The Subsystem Report section contains information on nonvirtual
subsystems in the model.

The Code Interface Report section provides information about
the generated code interface, including model entry point functions
and input/output data (requires an Embedded Coder license and the
ERT target).

The Traceability Report section allows you to account for
Eliminated / Virtual Blocks that are untraceable, versus the listed
Traceable Simulink Blocks / Stateflow Objects / MATLAB
Scripts, providing a complete mapping between model elements and
code (requires an Embedded Coder license and the ERT target).

The Static Code Metrics Report section provides statistics of the
generated code. Metrics are estimated from static analysis of the
generated code.

The Code Replacements Report section allows you to account for
code replacement library (CRL) functions that were used during code
generation, providing a mapping between each replacement instance
and the Simulink block that triggered the replacement.

Code Generation Pane: Report

In the Generated Files section, you can click the names of source code
files generated from your model to view their contents in a MATLAB
Web browser window. In the displayed source code,

¢ Global variable instances are hyperlinked to their definitions.

¢ If you selected the traceability option Code-to-model, hyperlinks
within the displayed source code let you view the blocks or subsystems
from which the code was generated. Click on the hyperlinks to view
the relevant blocks or subsystems in a Simulink model window
(requires an Embedded Coder license and the ERT target).

¢ If you selected the traceability option Model-to-code, you can view
the generated code for a block in the model. To highlight a block’s
generated code in the HTML report, right-click the block and select
C/C++ Code > Navigate to C/C++ Code (requires an Embedded
Coder license and the ERT target).

¢ If you set the Code coverage tool parameter on the Code
Generation > Verification pane, you can view the code coverage
data and annotations in the generated code in the HTML Code
Generation Report (requires an Embedded Coder license and the
ERT target).

I ofr

Does not generate a summary of files.
Dependency

This parameter enables and selects

® “Open report automatically” on page 4-49

® “Code-to-model” on page 4-51 (ERT target)
This parameter enables

® “Model-to-code” on page 4-53 (ERT target)

¢ “Eliminated / virtual blocks” on page 4-57 (ERT target)
® “Traceable Simulink blocks” on page 4-59 (ERT target)
® “Traceable Stateflow objects” on page 4-61 (ERT target)

4-47

4 Configuration Parameters for Simulink® Models

4-48

® “Traceable MATLAB functions” on page 4-63 (ERT target)

Command-Line Information

Parameter: GenerateReport
Type: string

Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting
Debugging On
Traceability On
Efficiency No impact
Safety precaution On

See Also

“Reports for Code Generation”

If you have an Embedded Coder license, see also “HTML Code Generation
Report Extensions”.

If you have an Embedded Coder license, see also “Code Coverage in SIL and
PIL Simulations”.

Code Generation Pane: Report

Open report automatically

Specify whether to display code generation reports automatically.

Settings
Default: Off
3 On

Displays the code generation report automatically in a new browser
window.

I off
Does not display the code generation report, but the report is still
available in the html folder.

Dependency

This parameter is enabled and selected by Create code generation report.

Command-Line Information

Parameter: LaunchReport
Type: string

Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging On

Traceability On

Efficiency No impact

Safety precaution No impact
See Also

“Reports for Code Generation”

4-49

4 Configuration Parameters for Simulink® Models

If you have an Embedded Coder license, see also “HTML Code Generation
Report Extensions”.

4-50

Code Generation Pane: Report

Code-to-model

Include hyperlinks in the code generation report that link code to the
corresponding Simulink blocks, Stateflow objects, and MATLAB functions
in the model diagram.

Settings

Default: Off

¥ On
Includes hyperlinks in the code generation report that link code to
corresponding Simulink blocks, Stateflow objects, and MATLAB

functions in the model diagram. The hyperlinks provide traceability for
validating generated code against the source model.

I off
Omits hyperlinks from the generated report.

Tip
Clear this parameter to speed up code generation. For large models
(containing over 1000 blocks), generation of hyperlinks can be time consuming.

Dependencies

¢ This parameter only appears for ERT-based targets.
¢ This parameter requires an Embedded Coder license when generating code.

¢ This parameter is enabled and selected by Create code generation
report.

® You must select Include comments on the Code Generation >
Comments pane to use this parameter.

Command-Line Information

Parameter: IncludeHyperlinkInReport
Type: string

Value: 'on' | 'off

Default: 'off'

4-51

4 Configuration Parameters for Simulink® Models

Recommended Settings

Application Setting
Debugging On
Traceability On
Efficiency No impact
Safety precaution On

See Also

“HTML Code Generation Report Extensions”

4-52

Code Generation Pane: Report

Model-to-code

Link Simulink blocks, Stateflow objects, and MATLAB functions in a model
diagram to corresponding code segments in a generated HTML report so that
the generated code for a block can be highlighted on request.

Settings
Default: Off

¥ On
Includes model-to-code highlighting support in the code generation
report. To highlight the generated code for a Simulink block, Stateflow
object, or MATLAB script in the code generation report, right-click the
item and select C/C++ Code > Navigate to C/C++ Code.

I off
Omits model-to-code highlighting support from the generated report.

Tip
Clear this parameter to speed up code generation. For large models

(containing over 1000 blocks), generation of model-to-code highlighting
support can be time consuming.

Dependencies

¢ This parameter only appears for ERT-based targets.
¢ This parameter requires an Embedded Coder license when generating code.

¢ This parameter is enabled when you select Create code generation
report.

This parameter selects:

“Eliminated / virtual blocks” on page 4-57

“Traceable Simulink blocks” on page 4-59

“Traceable Stateflow objects” on page 4-61
= “Traceable MATLAB functions” on page 4-63

You must select the following parameters to use this parameter:

4-53

4 Configuration Parameters for Simulink® Models

= “Include comments” on page 4-73 on the Code Generation >
Comments pane

= At least one of the following:
“Eliminated / virtual blocks” on page 4-57
“Traceable Simulink blocks” on page 4-59
“Traceable Stateflow objects” on page 4-61
“Traceable MATLAB functions” on page 4-63

Command-Line Information

Parameter: GenerateTracelInfo
Type: Boolean

Value: on | off

Default: off

Recommended Settings

Application Setting
Debugging On
Traceability On
Efficiency No impact
Safety precaution On

See Also

“HTML Code Generation Report Extensions”

4-54

Code Generation Pane

: Report

Configure

Open the Model-to-code navigation dialog box. This dialog box provides a
way for you to specify a build folder containing previously-generated model
code to highlight. Applying your build folder selection will attempt to load
traceability information from the earlier build, for which Model-to-code
must have been selected.

Dependency

¢ This parameter only appears for ERT-based targets.
¢ This parameter requires an Embedded Coder license when generating code.

¢ This parameter is enabled by “Model-to-code” on page 4-53.

See Also
“HTML Code Generation Report Extensions”

4-55

4 Configuration Parameters for Simulink® Models

4-56

Generate model Web view

Include the model Web view in the code generation report to navigate between
the code and model within the same window. You can share your model

and generated code outside of the MATLAB environment. You must have a
Simulink Report Generator license to include a Web view of the model in

the code generation report.

Settings
Default: Off

¥ On

Include model Web view in the code generation report.

™ ofr

Omit model Web view in the code generation report.

Command-Line Information

Parameter: GenerateWebview
Type: string

Value: 'on' | 'off!'
Default: 'off'

Code Generation Pane: Report

Eliminated / virtual blocks

Include summary of eliminated and virtual blocks in code generation report.

Settings
Default: Off
0 On

Includes a summary of eliminated and virtual blocks in the code
generation report.

™ ofr

Does not include a summary of eliminated and virtual blocks.

Dependencies

¢ This parameter only appears for ERT-based targets.
¢ This parameter requires an Embedded Coder license when generating code.
® This parameter is enabled by Create code generation report.

® This parameter is selected by Model-to-code.

Command-Line Information

Parameter: GenerateTraceReport
Type: string

Value: 'on' | 'off'

Default: 'off'

Recommended Settings

Application Setting
Debugging On
Traceability On
Efficiency No impact
Safety precaution On

4-57

4 Configuration Parameters for Simulink® Models

See Also
“HTML Code Generation Report Extensions”

4-58

Code Generation Pane: Report

Traceable Simulink blocks

Include summary of Simulink blocks in code generation report.

Settings
Default: Off
0 On

Includes a summary of Simulink blocks and the corresponding code
location in the code generation report.

™ ofr

Does not include a summary of Simulink blocks.

Dependencies

This parameter only appears for ERT-based targets.

This parameter requires an Embedded Coder license when generating code.

This parameter is enabled by Create code generation report.

This parameter is selected by Model-to-code.

Command-Line Information

Parameter: GenerateTraceReportSl
Type: string

Value: 'on' | 'off'

Default: 'off'

Recommended Settings

Application Setting
Debugging On
Traceability On
Efficiency No impact
Safety precaution On

4-59

4 Configuration Parameters for Simulink® Models

See Also
“HTML Code Generation Report Extensions”

4-60

Code Generation Pane: Report

Traceable Stateflow objects

Include summary of Stateflow objects in code generation report.

Settings
Default: Off

IFOn

Includes a summary of Stateflow objects and the corresponding code
location in the code generation report.

I ofr

Does not include a summary of Stateflow objects.

Dependencies

This parameter only appears for ERT-based targets.

This parameter requires an Embedded Coder license when generating code.

This parameter is enabled by Create code generation report.

This parameter is selected by Model-to-code.

Command-Line Information

Parameter: GenerateTraceReportSf
Type: string

Value: 'on' | 'off'

Default: 'off'

Recommended Settings

Application Setting
Debugging On
Traceability On
Efficiency No impact
Safety precaution On

4-61

4 Configuration Parameters for Simulink® Models

See Also
“HTML Code Generation Report Extensions”

“Traceability of Stateflow Objects in Generated Code”

4-62

Code Generation Pane: Report

Traceable MATLAB functions

Include summary of MATLAB functions in code generation report.

Settings
Default: Off
¥ On

Includes a summary of MATLAB functions and corresponding code
locations in the code generation report.

™ ofr

Does not include a summary of MATLAB functions.

Dependencies

This parameter only appears for ERT-based targets.

This parameter requires an Embedded Coder license when generating code.

This parameter is enabled by Create code generation report.

This parameter is selected by Model-to-code.

Command-Line Information

Parameter: GenerateTraceReportEml
Type: string

Value: 'on' | 'off'

Default: 'off'

Recommended Settings

Application Setting
Debugging On
Traceability On
Efficiency No impact
Safety precaution On

4-63

4 Configuration Parameters for Simulink® Models

See Also
“HTML Code Generation Report Extensions”

4-64

Code Generation Pane: Report

Static code metrics

Include static code metrics report in the code generation report.

Settings
Default: Off
0 On

Include static code metrics report in the code generation report. The
static code metrics report does not support the C++ target language.

™ ofr

Omit static code metrics report from the code generation report.

Dependencies

¢ This parameter only appears for ERT-based targets.
¢ This parameter requires an Embedded Coder license when generating code.

® This parameter is enabled when you select Create code generation
report.

Command-Line Information

Parameter: GenerateCodeMetricsReport
Type: Boolean

Value: on | off

Default: off

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

4-65

4 Configuration Parameters for Simulink® Models

See Also
“Static Code Metrics”

4-66

Code Generation Pane: Report

Summarize which blocks triggered code
replacements

Include code replacement report summarizing replacement functions used
and their associated blocks in the code generation report.

Settings
Default: Off

IFOn

Include code replacement report in the code generation report.

Note Selecting this option also generates code replacement trace
information for viewing in the Trace Information tab of the Code
Replacement Viewer. The generated information can help you
determine why an expected code replacement did not occur.

I ofr

Omit code replacement report from the code generation report.

Dependencies

¢ This parameter only appears for ERT-based targets.

¢ This parameter requires an Embedded Coder license when generating code.

¢ This parameter is enabled when you select Create code generation
report.

Command-Line Information

Parameter: GenerateCodeReplacementReport
Type: Boolean

Value: on | off

Default: off

4-67

4 Configuration Parameters for Simulink® Models

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact
See Also

® Analyze Code Replacements in the Generated Code

e Trace Code Replacements Generated Using Your Code Replacement
Library

® Determine Why Code Replacement Functions Were Not Used

4-68

Code Generation Pane: Comments

Code Generation Pane: Comments

The Code Generation > Comments pane includes the following parameters
when the Simulink Coder product is installed on your system and you select
a GRT-based target.

Overall control

¥|