Embedded Coder®

Reference

R2013a

MATLAB&SIMULINK®

<+)} MathWorks:

LN N

How to Contact MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup

www . mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Embedded Coder® Reference
© COPYRIGHT 2011-2013 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www . mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www .mathworks.com/patents for more information.

Revision History

April 2011 Online only New for Version 6.0 (Release 2011a)
September 2011 Online only New for Version 6.1 (Release 2011b)
March 2012 Online only New for Version 6.2 (Release 2012a)
September 2012 Online only New for Version 6.3 (Release 2012b)

March 2013 Online only New for Version 6.4 (Release 2013a)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Check Bug Reports for Issues and Fixes

Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks

reports critical known bugs brought to its attention on its Bug Report system at

www . mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs tool
with the search phrase “Incorrect Code Generation” to obtain a report of known bugs that
produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies between
the actual behavior of a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

http://www.mathworks.com/support/bugreports/

Alphabetical List

Blocks — Alphabetical List

2

Configuration Parameters

3

Code Generation Pane: Verification 3-2
Code Generation: Verification Tab Overview 3-4
Measure task executiontime 3-5
Measure function execution times 3-7
Workspace variable 3-9
SaVE OPLIONS & vt vttt ittt e e 3-11
Code coverage toolc.uiiiiiiniinnnnn.. 3-13
Create blockottt i 3-15
Enable portable word sizes 3-17
Enable source-level debugging for SIL. 3-19

Code Generation Pane: Code Style 3-20
Code Generation: Code Style Tab Overview 3-21
Parentheseslevel i 3-22
Preserve operand order in expression 3-24
Preserve condition expression in if statement 3-25
Convert if-elseif-else patterns to switch-case statements .. 3-27
Preserve extern keyword in function declarations 3-29
Suppress generation of default cases for Stateflow switch

statements if unreachable 3-31

Code Generation Pane: Templates 3-33

Code Generation: Templates Tab Overview 3-34

Code templates: Source file (*.c) template 3-35
Code templates: Header file (*.h) template 3-36
Data templates: Source file (*.c) template 3-37
Data templates: Header file (*.h) template 3-38
File customization template 3-39
Generate an example main program 3-40
Target operating systemccuvvruuunnnn. 3-42
Code Generation Pane: Code Placement 3-44
Code Generation: Code Placement Tab Overview 3-45
Data definition i i 3-46
Data definition filename 3-48
Data declaration i 3-50
Data declaration filename 3-52
Use owner from data object for data definition
placement 3-54
#include file delimiter 3-54
Signal display level 3-55
Parameter tunelevel i, 3-57
File packaging format 3-59
Code Generation Pane: Data Type Replacement 3-61
Code Generation: Data Type Replacement Tab
OVEIVIEW ettt ittt et et e 3-62
Replace data type names in the generated code 3-63
Replacement Name: double 3-66
Replacement Name: single 3-68
Replacement Name: int32 3-70
Replacement Name: int1l6 3-72
Replacement Name: int8 3-74
Replacement Name: uint32 3-76
Replacement Name: uintl6é 3-78
Replacement Name: uint8 3-80
Replacement Name: boolean 3-82
Replacement Name: int 3-84
Replacement Name: uint 3-86
Replacement Name: char 3-88
Code Generation Pane: Memory Sections 3-90
Code Generation: Memory Sections Tab Overview 3-92
Package 3-93
Refresh packagelist 3-95

vi Contents

Initialize/Terminatecuiiiiiiineennnn.. 3-96

Execution e 3-97
Shared utility i, 3-98
Constants e 3-99
Inputs/Outputso 3-101
Internaldata 3-103
Parameters 3-105
Validationresults 3-107

Code Generation Pane: AUTOSAR Code Generation

OPptions i e e e 3-108
Code Generation: AUTOSAR Code Generation Options Tab
OVETVIEW ittt ettt et et et e e 3-109
Generate XML file from schema version 3-110
Maximum SHORT-NAME length 3-111
Use AUTOSAR compiler abstraction macros 3-112
Support root-level matrix I/O using one-dimensional
AT AYS & vttt et e ettt e e e 3-113
Configure AUTOSAR Interface 3-114
Code Generation: Coder Target Pane 3-115
Code Generation: Coder Target Pane Overview (previously
“IDE Link Tab Overview”)cc.... 3-117
Coder Target: Tool Chain Automation Tab Overview 3-118
Build format 3-120
Buildaction 3-122
Overrun notificationciiiiiiinne... 3-125
Functionname 0., 3-127
Configurationiitiiiiiiiiieeeeeeann 3-128
Compiler options stringciiiiiineneeennn. 3-130
Linker options string0 i, 3-132
System stack size MAUS) ...ttt 3-134
System heap size (MAUS) ...ttt 3-136
Profile real-time execution 3-138
Profileby 3-140
Number of profiling samplestocollect 3-142
Maximum time allowed to build project (s) 3-144
Maximum time allowed to complete IDE operation (s) 3-146
Export IDE link handle to base workspace 3-147
IDE link handlename 3-149
Source file replacement 3-150

Code Generation: Target Hardware Resources Pane .. 3-152

vii

viii

Contents

Code Generation: Coder Target Pane Overview (Target

Hardware Resources)ccoiiiiiieo... 3-154

Coder Target: Target Hardware Resources Tab
OVEIVIEW ittt ettt et et e e 3-155
IDE/Tool Chain0iiiiiiiiiiiinnnnnnnn 3-156
Target Hardware Resources: Board Tab 3-158
Target Hardware Resources: Memory Tab 3-162
Target Hardware Resources: SectionTab 3-165
Target Hardware Resources: DSP/BIOSTab 3-169
Target Hardware Resources: Peripherals Tab 3-172
ClocKking ..ot e 3-175
ADC e e 3-178
COMP .. e 3-182
eCAN_A,eCAN_ B i 3-183
eCAP e 3-185
ePWM e 3-186
12 e 3-188
SCI_A,SCI_B,SCI_.C i, 3-195
SPI_A,SPI_B,SPI.C,SPI.D 3-198
eQEP . e 3-201
Watchdogo 3-203
GPIO .. 3-205
Flash_loader 3-209
DMA _ch[#] ..o e e 3-211
LIN e e 3-225
Add Processor DialogBoxcciiiii.. 3-232
Target Hardware Resources: Linux Tab 3-234
Target Hardware Resources: VxWorks Tab 3-236
Parameter Reference 3-237
Recommended Settings Summary 3-237
Parameter Command-Line Information Summary 3-251
Index

Alphabetical List

activate

Purpose
Syntax
IDEs

Description

Input
Arguments

Mark file, project, or build configuration as active
IDE Obj.activate('objectname', 'type')

This function supports the following IDEs:
Analog Devices™ VisualDSP++®
Eclipse™ IDE

Green Hills® MULTI®

Texas Instruments™ Code Composer Studio™ v3

Use the IDE Obj.activate('objectname', 'type') method to make a
project file or build configuration active in the MATLAB session.

When you make a project, file, or build configuration active, methods
you invoke on the IDE handle object apply to that project, file, or build
configuration.

IDE_ODbj

For IDE 0Obj, enter the name of the IDE handle object you created using
a constructor function.

objectname

For objectname, enter the name of the project file or build configuration
to make active.

For project files, enter the full file name including the extension.

For build configurations, enter 'Debug', 'Release', or 'Custom'.
Before using the activate method on a build configuration, activate
the project that contains the build configuration. For more information
about configurations, see “Configuration” on page 3-128.

type

activate

Examples

See Also

For type, enter the type of object to make active. If you omit the type
argument, type defaults to 'project'. Enter one of the following
strings for type:

® 'project' — Makes a specified project active.

e 'puildcfg' — Make a specified build configuration active

IDE support for type

ccs Eclipse MULTI VisualDSP++
'project’ Yes Yes Yes Yes
'buildcfg' | Yes Yes Yes

After using a constructor to create the IDE handle object, h, open
several projects, make the first one active, and build the project:

.open('c:\temp\myproji')
.open('c:\temp\myproj2')
.open('c:\temp\myproj3"')
.activate('c:\temp\myproji', ‘project')
.build

O 3 5 5T

After making a project active, make the 'debug' configuration active:

h.activate('debug', 'buildcfg')

build | new | remove

cgv.CGV.activateConfigSet

Purpose
Syntax

Description

Examples

How To

Activate configuration set of model
cgvObj.activateConfigSet (configSetName)

cgvObj.activateConfigSet (configSetName) specifies the active
configuration set for the model, only while the model is executed by
cgvObj. cgvObj is a handle to a cgv.CGV object. configSetName is the
name of a configuration set object, Simulink.ConfigSet, which already
exists in the model. The original configuration set for the model is
restored after execution of the cgv.CGV object.

Before calling cgv.CGV.run on a cgv.CGV object for a model, the model
must already contain the named configuration set. After creating the
cgVv.CGV object for a model, you can use cgv.CGV.activateConfigSet
to activate a configuration set in the model when the cgv.CGV object
simulates the model.

configObj = Simulink.ConfigSet;
attachConfigSet('rtwdemo_cgv', configObj);
cgvObj = cgv.CGV('rtwdemo_cgv');
cgvObj.activateConfigSet (configObj.Name) ;

+ “About Model Configurations”

* “Programmatic Code Generation Verification”

add

Purpose
Syntax
IDEs

Description

Add files to active project in IDE
IDE Obj.add(filename,filetype)

This function supports the following IDEs:
® Analog Devices VisualDSP++

Eclipse IDE

Green Hills MULTI

Texas Instruments Code Composer Studio v3

Use IDE Obj.add(filename,filetype) to add an existing file to the
active project in the IDE. Using the add function is equivalent to
selecting Project > Add Files to Project in the IDE.

Before using add:

e Use the constructor function for your IDE to create an IDE handle
object, such as IDE Obj.

e (Create or open a project using the new or open methods.
® Make the project active in the IDE using the activate method.

You can add file types your IDE supports to your project. Consult the
documentation for your IDE for detailed information about supported
file types.

Supported File Types and Extensions

Extensions CCS IDE Project
File Type Supported Folder
C/C++ source files .C, .Cpp, .CC, .CXX, Source

.sa, .h,.hpp,.hxx

Assembly source files | .a*, .s* (excluding Source
.sa), .dsp

add

1-6

Input
Arguments

Supported File Types and Extensions (Continued)

Extensions CCS IDE Project
File Type Supported Folder
Object and library .0*, .1ib, .doj, .d1lb | Libraries
files
Linker command file | .cmd, .1ldf Project Name
VDK support file .vdk Not applicable
DSP/BIOS file (only .tef DSP/BIOS Config
with CCS IDE)

Note CCS IDE drops files in the project folder, indicated in the
right-most column of the preceding table.

add places the file specified by filename in the active project in the IDE.

IDE_Obj

IDE 0bj is a handle for an instance of the IDE. Before using a method,
the constructor function for your IDE to create IDE _0Obj.

filename

filename is the name of the file to add to the active IDE project.

If you supply a filename without a path or relative path, your coder
product searches the IDE working folder first. It then searches the
folders on your MATLAB® path. Add supported file types shown in
the preceding table.

filetype

filetype is an optional argument that specifies the file type. For
example, 'lib', 'src', 'header’'.

add

Examples

See Also

Start by creating an IDE handle object, such as IDE_Obj using the
constructor for your IDE. Then enter the following commands:

IDE_Obj.new('myproject', 'project'); % Create a new project.

IDE_Obj.add('sourcefile.c'); % Add a C source file.

activate | cd | new | open | remove

1-7

cgv.CGV.addBaseline

Purpose

Syntax

Description

Input
Arguments

Examples

Add baseline file for comparison

cgvObj .addBaseline(inputName,baselineFile)
cgvObj .addBaseline(inputName,baselineFile,toleranceFile)

cgvObj .addBaseline (inputName,baselineFile) associates a baseline
data file to an inputName in cgvObj. cgvObj is a handle to a cgv.CGV
object. If a baseline file is present, when you call cgv.CGV.run, cgvObj
automatically compares baseline data to the result data of the current
execution of cgvObj.

cgvObj .addBaseline(inputName,baselineFile,toleranceFile)
includes an optional tolerance file to apply when comparing the baseline
data to the result data of the current execution of cgvObj.

inputName

A unique numeric or character identifier assigned to the input
data associated with baselineFile

baselineFile
A MAT-file containing baseline data
tolerancefFile
File containing the tolerance specification, which is created using

cgv.CGV.createToleranceFile

A typical workflow for defining baseline data in a cgv.CGV object and
then comparing the baseline data to the execution data is as follows:

1 Create a cgv.CGV object for a model.

2 Add input data to the cgv.CGV object by calling
cgv.CGV.addInputData

3 Add the baseline file to the cgv.CGV object by calling
cgv.CGV.addBaseline. which associates the inputName for input

cgv.CGV.addBaseline

See Also

How To

data in the cgv.CGV object with input data stored in the cgv.CGV
object as the baseline data.

4 Run the cgv.CGV object by calling cgv.CGV.run, which automatically
compares the baseline data to the result data in this execution.

5 Call cgv.CGV.getStatus to determine the results of the comparison.

cgv.CGV.addInputData | cgv.CGV.run |
cgv.CGV.createToleranceFile | cgv.CGV.getStatus

+ “Verify Numerical Equivalence with CGV”

cgv.CGV.addHeaderReportFcn

Purpose
Syntax

Description

Examples

See Also

How To

1-10

Add callback function to execute before executing input data in object
cgvObj .addHeaderReportFcn(CallbackFcn)

cgvObj .addHeaderReportFcn(CallbackFcn) adds a callback function
to cgvObj. cgvObj is a handle to a cgv.CGV object. cgv.CGV.run calls
CallbackFcn before executing input data included in cgvObj. The
callback function signature is:

CallbackFcn(cgvObj)

The callback function, HeaderReportFcn, is added to cgv.CGV object,
cgvobj

cgvObj.addHeaderReportFcn(@HeaderReportFcn);

where HeaderReportFcn is defined as:

function HeaderReportFcn(cgvObj)
end
cgv.CGV.run

+ “Callbacks for Customized Model Behavior”

cgv.CGV.addPostExecFcn

Purpose
Syntax

Description

Examples

See Also

How To

Add callback function to execute after each input data file is executes
cgvObj .addPostExecFcn(CallbackFcn)

cgvObj .addPostExecFcn(CallbackFcn) adds a callback function to
cgvObj. cgvObj is a handle to a cgv.CGV object. cgv.CGV.run calls
CallbackFcn after each input data file is executed for the model. The
callback function signature is:

CallbackFcn(cgvObj, inputIndex)

inputIndex is a unique numerical identifier associated with input data
in the cgvObj.

The callback function, PostExecutionFcn, is added to cgv.CGV object,
cgvobj

cgvObj.addPostExecFcn(@PostExecutionFcn);

where PostExecutionFcn is defined as:

function PostExecutionFcn(cgvObj, inputIndex)
end
cgv.CGV.run

+ “Callbacks for Customized Model Behavior”

1-11

cgv.CGV.addPostExecReporiFcn

Purpose Add callback function to execute after each input data file executes
Syntax cgvObj .addPostExecReportFcn(CallbackFcn)
Descripl‘ion cgvObj .addPostExecReportFcn(CallbackFcn) adds a callback

function to cgvObj. cgvObj is a handle to a cgv.CGV object. cgv.CGV.run
calls CallbackFcn after each input data file is executed for the model.
The callback function signature is:

CallbackFcn(cgvObj, inputIndex)

inputIndex is a unique numeric identifier associated with input data
in the cgvObj.

Examples The callback function, PostExecutionReportFcn, is added to cgv.CGV
object, cgvObj

cgvObj.addPostExecReportFcn(@PostExecutionReportFcn);
where PostExecutionReportFcn is defined as
function PostExecutionReportFcn(cgvObj, inputIndex)

end

See Also cgv.CGV.run
How To + “Callbacks for Customized Model Behavior”

1-12

cgv.CGV.addPreExecFcn

Purpose
Syntax

Description

Examples

See Also

How To

Add callback function to execute before each input data file executes
cgvObj .addPreExecFcn(CallbackFcn)

cgvObj .addPreExecFcn(CallbackFcn) adds a callback function to
cgvObj. cgvObj is a handle to a cgv.CGV object. cgv.CGV.run calls
CallbackFcn before executing each input data file in cgvObj. The
callback function signature is:

CallbackFcn(cgvObj, inputIndex)

inputIndex is a unique numeric identifier associated with input data
in cgvObj.

The callback function, PreExecutionFcn, is added to cgv.CGV object,
cgvobj

cgvObj.addPreExecFcn(@PreExecutionFcn);

where PreExecutionFcn is defined as

function PreExecutionFcn(cgvObj, inputIndex)
end
cgv.CGV.run

+ “Callbacks for Customized Model Behavior”

1-13

cgv.CGV.addPreExecReportFcn

1-14

Purpose
Syntax

Description

Examples

See Also

How To

Add callback function to execute before each input data file executes
cgvObj .addPreExecReportFcn(CallbackFcn)

cgvObj .addPreExecReportFcn(CallbackFcn) adds a callback function
to cgvObj. cgvObj is a handle to a cgv.CGV object. cgv.CGV.run calls
CallbackFcn before executing each input data file in cgvObj. The
callback function signature is:

CallbackFcn(cgvObj, inputIndex)

inputIndex is a unique numerical identifier associated with input data
in cgvObj.

The callback function, PreExecutionReportFcn, is added to cgv.CGV
object, cgvObj

cgvObj.addPreExecReportFcn(@PreExecutionReportFcn);

where PreExecutionReportFcn is defined as

function PreExecutionReportFcn(cgvObj, inputIndex)

end

cgv.CGV.run

+ “Callbacks for Customized Model Behavior”

cgv.CGV.addTrailerReportFcn

Purpose
Syntax

Description

Examples

See Also

How To

Add callback function to execute after the input data executes
cgvObj .addTrailerReportFcn(CallbackFcn)

cgvObj.addTrailerReportFcn(CallbackFcn) adds a callback function
to cgvObj. cgvObj is a handle to a cgv.CGV object. cgv.CGV.run executes
the input data files in cgvObj and then calls CallbackFcn. The callback
function signature is:

CallbackFcn(cgvObj)

The callback function, TrailerReportFcn, is added to cgv.CGV object,
cgvobj

cgvObj.addTrailerReportFcn(@TrailerReportFcn);

where TrailerReportFcn is defined as

function TrailerReportFcn(cgvObj)
end
cgv.CGV.run

« “Callbacks for Customized Model Behavior”

1-15

Purpose

Syntax

IDEs

Description

1-16

Files and folders in current IDE window

IDE Obj .dir
d=IDE_Obj .dir

This function supports the following IDEs:
® Analog Devices VisualDSP++

* Eclipse IDE

® Green Hills MULTI

¢ Texas Instruments Code Composer Studio v3

IDE Obj .dir lists the files and folders in the IDE working folder, where
IDE_Obj is the object that references the IDE. IDE_Obj can be either

a single object, or a vector of objects. When IDE_0bj is a vector, dir
returns the files and folders referenced by each object.

d=IDE Obj.dir returns the list of files and folders as an M-by-1
structure in d with the fields for each file and folder shown in the
following table.

Field Name Description

name Name of the file or folder.

date Date of most recent file or folder modification.

bytes Size of the file in bytes. Folders return 0 for
the number of bytes.

isdirectory 0 if it is a file, 1 if it is a folder.

datenum The Eclipse IDE and Code Composer Studio

IDE also return the modification date as a
MATLAB serial date number.

To view the entries in structure d, use an index in the syntax at the
MATLAB prompt, as shown by the following examples.

® d(3) returns the third element in the structure.
® d(10) returns the tenth element in the structure d.

® d(4).date returns the date field value for the fourth structure
element.

See Also cd | open

1-17

addAdditionalHeaderFile

1-18

Purpose

Syntax

Arguments

Description

Examples

See Also

Add additional header file to array of additional header files for CRL
table entry

addAdditionalHeaderFile (hEntry, headerFile)

hEntry
Handle to a CRL table entry previously returned by instantiating
a CRL entry class, such as hEntry = RTW.TflCFunctionEntry or
hEntry = RTW.Tf1lCOperationEntry.

headerFile
String specifying an additional header file.

The addAdditionalHeaderFile function adds a specified additional
header file to the array of additional header files for a CRL table entry.

In the following example, the addAdditionalHeaderFile

function is used along with addAdditionallIncludePath,
addAdditionalSourceFile, and addAdditionalSourcePath to fully
specify additional header and source files for a CRL table entry.

% Path to external header and source files
libdir = fullfile('$(MATLAB_ROOT)','..', '..', 'lib');

op_entry = RTW.TflCOperationEntry;

addAdditionalHeaderFile(op_entry, 'all_additions.h');
addAdditionalIncludePath(op_entry, fullfile(libdir, 'include'));

addAdditionalSourceFile(op_entry, 'all_additions.c');
addAdditionalSourcePath(op_entry, fullfile(libdir, 'src'));

addAdditionalIncludePath | addAdditionalSourceFile
addAdditionalSourcePath

addAdditionalHeaderFile
|

How To + “Specify Build Information for Code Replacements”

+ “Introduction to Code Replacement Libraries”

1-19

addAdditionalincludePath

1-20

Purpose

Syntax

Arguments

Description

Examples

See Also

Add additional include path to array of additional include paths for
CRL table entry

addAdditionalIncludePath(hEntry, path)

hEntry
Handle to a CRL table entry previously returned by instantiating
a CRL entry class, such as hEntry = RTW.TflCFunctionEntry or
hEntry = RTW.Tf1lCOperationEntry.

path
String specifying the full path to an additional header file.

The addAdditionalIncludePath function adds a specified additional
include path to the array of additional include paths for a CRL table
entry.

In the following example, the addAdditionalIncludePath
function is used along with addAdditionalHeaderFile,
addAdditionalSourceFile, and addAdditionalSourcePath to fully
specify additional header and source files for a CRL table entry.

% Path to external header and source files
libdir = fullfile('$(MATLAB_ROOT)','..', '..', 'lib');

op_entry = RTW.TflCOperationEntry;

addAdditionalHeaderFile(op_entry, 'all_additions.h');
addAdditionalIncludePath(op_entry, fullfile(libdir, 'include'));

addAdditionalSourceFile(op_entry, 'all_additions.c');
addAdditionalSourcePath(op_entry, fullfile(libdir, 'src'));

addAdditionalHeaderFile | addAdditionalSourceFile
addAdditionalSourcePath

addAdditionalincludePath
|

How To + “Specify Build Information for Code Replacements”

+ “Introduction to Code Replacement Libraries”

1-21

addAdditionalLinkObij

Purpose

Syntax

Arguments

Description

Examples

See Also

How To

1-22

Add additional link object to array of additional link objects for CRL
table entry

addAdditionalLinkObj (hEntry, 1inkObj)

hEntry
Handle to a CRL table entry previously returned by instantiating
a CRL entry class, such as hEntry = RTW.TflCFunctionEntry or
hEntry = RTW.Tf1lCOperationEntry.

1inkObj
String specifying an additional link object.

The addAdditionallLinkObj function adds a specified additional link
object to the array of additional link objects for a CRL table entry.

In the following example, the addAdditionallLinkObj function is used
along with addAdditionallLinkObjPath to fully specify an additional
link object file for a CRL table entry.

% Path to external object files
libdir = fullfile('$(MATLAB_ROOT)','..', '..', 'lib');
op_entry = RTW.TflCOperationEntry;

addAdditionalLinkObj (op_entry, 'addition.o');
addAdditionalLinkObjPath(op_entry, fullfile(libdir, 'bin'));

addAdditionalLinkObjPath

+ “Specify Build Information for Code Replacements”

+ “Introduction to Code Replacement Libraries”

addAdditionalLinkObjPath
|

Purpose Add additional link object path to array of additional link object paths
for CRL table entry

Syntax addAdditionalLinkObjPath(hEntry, path)

Arguments hEntry

Handle to a CRL table entry previously returned by instantiating
a CRL entry class, such as hEntry = RTW.TflCFunctionEntry or
hEntry = RTW.Tf1lCOperationEntry.

path
String specifying the full path to an additional link object.

Description The addAdditionalLinkObjPath function adds a specified additional
link object path to the array of additional link object paths for a CRL
table entry.

Examples In the following example, the addAdditionallLinkObjPath function is
used along with addAdditionallLinkObj to fully specify an additional
link object file for a CRL table entry.

% Path to external object files
libdir = fullfile('$(MATLAB_ROOT)','..', '..', 'lib');

op_entry = RTW.TflCOperationEntry;

addAdditionallLinkObj (op_entry, 'addition.o');
addAdditionalLinkObjPath(op_entry, fullfile(libdir, 'bin'));

See Also addAdditionallLinkObj

How To + “Specify Build Information for Code Replacements”

+ “Introduction to Code Replacement Libraries”

1-23

addAdditionalSourceFile

1-24

Purpose

Syntax

Arguments

Description

Examples

See Also

Add additional source file to array of additional source files for CRL
table entry

addAdditionalSourceFile (hEntry, sourceFile)

hEntry
Handle to a CRL table entry previously returned by instantiating
a CRL entry class, such as hEntry = RTW.TflCFunctionEntry or
hEntry = RTW.Tf1lCOperationEntry.

sourcefFile
String specifying an additional source file.

The addAdditionalSourceFile function adds a specified additional
source file to the array of additional source files for a CRL table entry.

In the following example, the addAdditionalSourceFile

function is used along with addAdditionalHeaderFile,
addAdditionallIncludePath, and addAdditionalSourcePath to fully
specify additional header and source files for a CRL table entry.

% Path to external header and source files
libdir = fullfile('$(MATLAB_ROOT)','..', '..', 'lib');

op_entry = RTW.TflCOperationEntry;

addAdditionalHeaderFile(op_entry, 'all_additions.h');
addAdditionalIncludePath(op_entry, fullfile(libdir, 'include'));

addAdditionalSourceFile(op_entry, 'all_additions.c');
addAdditionalSourcePath(op_entry, fullfile(libdir, 'src'));

addAdditionalHeaderFile | addAdditionalIncludePath
addAdditionalSourcePath

addAdditionalSourceFile
|

How To + “Specify Build Information for Code Replacements”

+ “Introduction to Code Replacement Libraries”

1-25

addAdditionalSourcePath

1-26

Purpose

Syntax

Arguments

Description

Examples

See Also

Add additional source path to array of additional source paths for CRL
table entry

addAdditionalSourcePath(hEntry, path)

hEntry
Handle to a CRL table entry previously returned by instantiating
a CRL entry class, such as hEntry = RTW.TflCFunctionEntry or
hEntry = RTW.Tf1lCOperationEntry.

path
String specifying the full path to an additional source file.

The addAdditionalSourcePath function adds a specified additional
source file path to the array of additional source file paths for a CRL
table.

In the following example, the addAdditionalSourcePath

function is used along with addAdditionalHeaderFile,
addAdditionallIncludePath, and addAdditionalSourceFile to fully
specify additional header and source files for a CRL table entry.

% Path to external header and source files
libdir = fullfile('$(MATLAB_ROOT)','..', '..', 'lib');

op_entry = RTW.TflCOperationEntry;

addAdditionalHeaderFile(op_entry, 'all_additions.h');
addAdditionalIncludePath(op_entry, fullfile(libdir, 'include'));

addAdditionalSourceFile(op_entry, 'all_additions.c');
addAdditionalSourcePath(op_entry, fullfile(libdir, 'src'));

addAdditionalHeaderFile | addAdditionalIncludePath
addAdditionalSourceFile

addAdditionalSourcePath
|

How To + “Specify Build Information for Code Replacements”

+ “Introduction to Code Replacement Libraries”

1-27

RTW.ModelSpecificCPrototype.addArgConf

Purpose Add argument configuration information for Simulink model port to
model-specific C function prototype

Syntax addArgConf (obj, portName, category, argName, qualifier)

Descripl‘ion addArgConf (obj, portName, category, argName, qualifier)
method adds argument configuration information for a port in your
ERT-based Simulink® model to a model-specific C function prototype.
You specify the name of the model port, the argument category ('Value'
or 'Pointer'), the argument name, and the argument type qualifier
(for example, 'const').

The order of addArgConf calls determines the argument position for the
port in the function prototype, unless you change the order by other
means, such as the RTW.ModelSpecificCPrototype.setArgPosition
method.

If a port has an existing argument configuration, subsequent calls to
addArgConf with the same port name overwrite the previous argument
configuration of the port.

Input obj Handle to a model-specific C

Arguments prototype function control object
previously returned by obj =
RTW.ModelSpecificCPrototype or obj =
RTW.getFunctionSpecification(modelName).

portName String specifying the unqualified name of an
inport or outport in your Simulink model.

category String specifying the argument category,
either 'Value' or 'Pointer'.

argName String specifying a valid C identifier.

qualifier String specifying the argument type qualifier:
‘none', 'const', 'const *', or 'const *
const'.

1-28

RTW.ModelSpecificCPrototype.addArgConf

Examples

Alternatives

See Also

How To

In the following example, you use the addArgConf method to add
argument configuration information for ports Input and Output in

an ERT-based version of rtwdemo_counter. After executing these
commands, click the Configure Model Functions button on the
Interface pane of the Configuration Parameters dialog box to open the
Model Interface dialog box and confirm that the addArgConf commands
succeeded.

rtwdemo_counter
set_param(gcs, 'SystemTargetFile','ert.tlc')

%% Create a function control object
a=RTW.ModelSpecificCPrototype

%% Add argument configuration information for Input and Output ports
addArgConf(a, 'Input', 'Pointer', 'inputArg', 'const *')

addArgConf(a, 'Output', 'Pointer', 'outputArg', 'none')

%% Attach the function control object to the model
attachToModel (a,gcs)

You can specify the argument configuration information in the Model
Interface dialog box. See “Configure Function Prototypes Using
Graphical Interfaces” in the Embedded Coder® documentation.

RTW.ModelSpecificCPrototype.attachToModel

* “Function Prototype Control”

1-29

rtiw.codegenObjectives.Objective.addCheck

1-30

Purpose
Syntax

Description

Input
Arguments

Examples

See Also

How To

Add checks
addCheck(obj, checklID)

addCheck(obj, checkID) includes the check, checkID, in the Code
Generation Advisor. When a user selects the objective, the Code
Generation Advisor includes the check, unless another objective with a
higher priority excludes the check.

obj Handle to a code generation objective object
previously created.
checkID Unique identifier of the check that you add

to the new objective.

Add the Identify questionable code instrumentation (data I/O)
check to the objective.

addCheck(obj) 'mathworks.codegen .CodeInstrumentation') H
Simulink.ModelAdvisor

+ “Create Custom Objectives”

+ “About IDs”

addConceptualArg

Purpose

Syntax

Arguments

Description

Examples

Add conceptual argument to array of conceptual arguments for CRL
table entry

addConceptualArg(hEntry, arg)

hEntry
Handle to a CRL table entry previously returned by instantiating
a CRL entry class, such as hEntry = RTW.TflCFunctionEntry or
hEntry = RTW.Tf1lCOperationEntry.

arg
Argument, such as returned by arg =
getTflArgFromString(name, datatype), to be added to the
array of conceptual arguments for the CRL table entry.

The addConceptualArg function adds a specified conceptual argument
to the array of conceptual arguments for a CRL table entry.

In the following example, the addConceptualArg function is used to
add conceptual arguments for the output port and the two input ports
for an addition operation.

hLib = RTW.TflTable;

% Create entry for addition of built-in uint8 data type
op_entry = RTW.TflCOperationEntry;
op_entry.setTflCOperationEntryParameters(...

'Key', '"RTW_OP_ADD', ...

'Priority’', 90, ...

'SaturationMode’, "RTW_SATURATE_ON_OVERFLOW', ...
'RoundingModes’', {'RTW_ROUND_UNSPECIFIED'}, ...
'ImplementationName', 'u8_add_u8_u8', ..

‘ImplementationHeaderFile', 'u8_add_u8_u8.h', ...
‘ImplementationSourceFile', 'u8_add_u8_u8.c');

arg = hLib.getTflArgFromString('y1','uint8');
arg.IOType = 'RTW_IO_OUTPUT';

1-31

addConceptualArg

op_entry.addConceptualArg(arg);

arg = hLib.getTflArgFromString('ul','uint8');
op_entry.addConceptualArg(arg);

arg = hLib.getTflArgFromString('u2','uint8');
op_entry.addConceptualArg(arg);

op_entry.copyConceptualArgsToImplementation();
hLib.addEntry(op_entry);
See Also getTflArgFromString

How To + “Create Code Replacement Tables”

+ “Introduction to Code Replacement Libraries”

1-32

addDWorkArg

Purpose
Syntax

Arguments

Description

Examples

See Also

Add DWork argument for semaphore entry in CRL table
addDWorkArg (hEntry, arg)

hEntry
Handle to a CRL table entry previously returned by
instantiating a CRL semaphore entry class, using hEntry =
RTW.TflCSemaphoreEntry.

arg
Argument, such as returned by arg =
getTf1lDWorkFromString(name, datatype), to be added to the
arguments for the CRL table entry.

The addDWorkArg function adds a specified DWork argument to the
arguments for a semaphore entry in a CRL table.

In the following example, the addDWorkArg function is used to add a
DWork argument named d1 to the arguments for a semaphore entry
in a CRL table.

hLib = RTW.TflTable;
sem_entry = RTW.TflCSemaphoreEntry;

% DWork Arg

arg = hLib.getTflDWorkFromString('d1', 'void*"');
sem_entry.addDWorkArg(arg);

hLib.addEntry(sem_entry);

getTflDWorkFromString

1-33

addDWorkArg

How To + “Map Semaphore or Mutex Operations to Target-Specific
Implementations”

+ “Create Code Replacement Tables”

+ “Introduction to Code Replacement Libraries”

1-34

cgv.CGV.addConfigSet

Purpose

Syntax

Description

How To

Add configuration set

cgvObj .addConfigSet(configSet)

cgvObj .addConfigSet('configSetName')

cgvObj .addConfigSet('file', 'configSetFileName')

cgvObj.addConfigSet('file', 'configSetFileName', 'variable',
‘configSetName')

cgvObj .addConfigSet (configSet) is an optional method that adds the
configuration set to the object. cgvObj is a handle to a cgv.CGV object.
configSet is a variable that specifies a configuration set.

cgvObj .addConfigSet ('configSetName') is an optional method that
adds the configuration set to the object. configSetName is a string that
specifies the name of the configuration set in the workspace.

cgvObj .addConfigSet('file', 'configSetFileName') is an
optional method that adds the configuration set to the object.
configSetFileName is a string that specifies the name of the file that
contains only one configuration set.

cgvObj.addConfigSet('file', 'configSetFileName', 'variable’,
‘configSetName') is an optional method that adds the configuration
set to the object. The file contains one or more configuration sets.
Specify the name of the configuration set to use.

This method replaces the configuration parameter values in the model
with the values from the configuration set that you add. The object
applies the configuration set when you call the run method. You can
add only one configuration set for each cgv.CGV object.

* “Programmatic Code Generation Verification”

+ “About Model Configurations”

1-35

addEntry

Purpose Add table entry to collection of table entries registered in CRL table
Syntax addEntry (hTable, entry)
Arguments hTable

Handle to a CRL table previously returned by hTable =
RTW.TflTable.

entry
Handle to a function or operator entry that you have constructed
after calling hEntry = RTW.TflCFunctionEntry or hEntry =
RTW.TflCOperationEntry

Description The addEntry function adds a function or operator entry that you have
constructed to the collection of table entries registered in a CRL table.

Examples In the following example, the addEntry function is used to add an
operator entry to a CRL table after the entry is constructed.

hLib = RTW.TflTable;

% Create an entry for addition of built-in uint8 data type
op_entry = RTW.TflCOperationEntry;
op_entry.setTflCOperationEntryParameters(...

'Key', '"RTW_OP_ADD', ...

'Priority’', 90, ...

'SaturationMode’, "RTW_SATURATE_ON_OVERFLOW', ...
'RoundingModes’', {'RTW_ROUND_UNSPECIFIED'}, ...
‘ImplementationName', 'u8_add_u8_u8', ..

‘ImplementationHeaderFile', 'u8_add_u8_u8.h', ...
‘ImplementationSourceFile', 'u8_add_u8_u8.c');

arg = hLib.getTflArgFromString('y1','uint8');
arg.IOType = 'RTW_IO_OUTPUT';

op_entry.addConceptualArg(arg);

arg = hLib.getTflArgFromString('ul','uint8');

1-36

addEntry

How To

op_entry.addConceptualArg(arg);

arg = hLib.getTflArgFromString('u2', 'uint8');
op_entry.addConceptualArg(arg);

op_entry.copyConceptualArgsToImplementation();

addEntry(hLib, op_entry);

+ “Create Code Replacement Tables”

* “Introduction to Code Replacement Libraries”

1-37

RTW.Autosarinterface.addEventConf

1-38

Purpose

Syntax

Description

Input
Arguments

Add configured AUTOSAR event to model

autosarInterfaceObj.addEventConf ('TimingEvent', EventName,
ExecutionPeriod);

autosarInterfaceObj.addEventConf ('DataReceivedEvent',
EventName, SimulinkInportName) ;

autosarInterfaceObj.addEventConf ('TimingEvent', EventName,
ExecutionPeriod); adds a named TimingEvent with a specific
execution period.

autosarInterfaceObj.addEventConf ('DataReceivedEvent’,
EventName, SimulinkInportName); adds a named DataReceivedEvent
that triggers a runnable whenever there is a change in value at the
specified Simulink inport.

Each call adds a AUTOSAR RTEEvent to autosarInterfaceObj, a
model-specific RTW.AutosarInterface object.

TimingEvent

Periodic event that triggers execution of runnable by AUTOSAR
Runtime Environment

EventName

Name of AUTOSAR event, which is used in XML description file
ExecutionPeriod

Execution period for AUTOSAR runnable, for example, 0.001.
DataReceivedEvent

Event that triggers execution of runnable by AUTOSAR Runtime
Environment only when the value of a received data element is
updated.

SimulinkinportName

Simulink inport that receives trigger data

RTW.Autosarinterface.addEventConf
|

See Also RTW.AutosarInterface.removeEventConf

How To + “Configure the AUTOSAR Interface”

+ “Configure Multiple Runnables for DataReceived Events”

1-39

cgv.CGV.addInputData

Purpose Add input data
Syntax cgvObj.addInputData(inputName, inputDataFile)
Description cgvObj .addInputData(inputName, inputDataFile) adds an input

data file to cgvObj. cgvObj is a handle to a cgv.CGV object. inputName
is a unique identifier, which cgvObj associates with the input data
in inputDataFile.

Tips e When calling addInputData you can modify configuration parameters
by including their settings in the input file, inputDataFile.

¢ If you omit calling addInputData before executing the model, the
cgv.CGV object runs once using data in the base workspace.

® The cgvObj uses the inputName to identify the input data associated
with output data and output data files. cgvObj passes inputName
to a callback function to identify the input data that the callback
function uses.

Input inputName

Arguments inputName is a unique numeric or character identifier, which is

associated with the input data in inputDataFile.
inputDataFile

inputDataFile is an input data file, with or without the .mat
extension. cgvObj uses the input data when the model executes
during cgv.CGV.run. If the input file is in the working folder,
the cgvObj does not require the path. addInputData does not
qualify that the contents of inputDataFile relate to the inputs
of the model. Data that is not used by the model will not throw a
warning or error.

See Also cgv.CGV.run

How To + “Verify Numerical Equivalence with CGV”

1-40

RTW.Autosarinterface.addlOConf

Purpose

Syntax

Description

Input
Arguments

Add AUTOSAR I/0 configuration to model

autosarInterfaceObj.addIOConf (SimulinkPort, DataAccessMode,
autosarPort, InterfaceName, DataElement)

autosarInterfaceObj.addIOConf (SimulinkErrorStatusPort,
'ErrorStatus', CorrespondingSimulinkReceiverPort)

autosarInterfaceObj.addI0Conf (SimulinkBasicSoftwarePort,
‘BasicSoftwarePort', ServiceName, ServiceOperation,
ServicelInterfacePath)

You can designate inports and outports to be data sender/receiver ports,
error status receivers, or access points to AUTOSAR Basic Software
using the method addIOConf:

autosarInterfaceObj.addIOConf (SimulinkPort, DataAccessMode,
autosarPort, InterfaceName, DataElement)

autosarInterfaceObj .addI0Conf (SimulinkErrorStatusPort,
'"ErrorStatus', CorrespondingSimulinkReceiverPort)

autosarInterfaceObj .addI0Conf (SimulinkBasicSoftwarePort,
'BasicSoftwarePort', ServiceName, ServiceOperation,
ServicelnterfacePath)

Each call adds an AUTOSAR I/0O configuration to autosarInterfaceObj,
a model-specific RTW.AutosarInterface object.

SimulinkPort Inport/outport name
(string)
DataAccessMode Data access mode of the

port. You can designate
inports and outports to be
data sender/receiver
ports by specifying
DataAccessMode to be
one of the following:

1-41

RTW.Autosarinterface.addlOConf

1-42

autosarpPort

InterfaceName

DataElement

SimulinkErrorStatusPort

ErrorStatus

CorrespondingSimulinkReceiverPort

e ImplicitSend
e ImplicitReceive
® ExplicitSend

® ExplicitReceive

QueuedExplicitReceive

Use Implicit... where
data is buffered by the
run-time environment
(RTE), or Explicit...
where data is not
buffered and hence not
deterministic.

AUTOSAR port name
(string)

Interface name (string)

Data element name
(string)

The port you choose to
receive error status.

The data access mode for
ports chosen to be error
status receivers.

The port that is listened
to for error status. The
data access mode for
this port must be either
ImplicitReceive or
ExplicitReceive.

RTW.Autosarinterface.addlOConf

How To

SimulinkBasicSoftwarePort

BasicSoftwarePort

ServiceName

ServiceOperation

ServicelInterfacePath

The port that you specify
as an access point

to AUTOSAR Basic
Software.

The data access mode for
ports chosen to be access
points to AUTOSAR Basic
Software.

The service name you
specify. Must be a valid
AUTOSAR identifier.

The service operation you
specify. Must be a valid
AUTOSAR identifier.

The service interface
you specify. Must be a
valid path of the form

AUTOSAR/Service/servicename.

+ “Prepare a Model for AUTOSAR Code Generation”

1-43

rtw.codegenObjectives.Objective.addParam

1-44

Purpose
Syntax

Description

Input
Arguments

Examples

See Also

How To

Add parameters
addParam(obj, paramName, value)

addParam(obj, paramName, value) adds a parameter to the objective,
and defines the value of the parameter that the Code Generation
Advisor verifies in Check model configuration settings against
code generation objectives.

obj Handle to a code generation objective object
previously created.

paramName Parameter that you add to the objective.

value Value of the parameter.

Add Inlineparameters to the objective, and specify the parameter
value as on.

addParam(obj, 'InlineParams', 'on');

get_param

+ “Create Custom Objectives”

+ “Parameter Command-Line Information Summary”

cgv.CGV.addPostLoadFiles
|

Purpose Add files required by model
Syntax cgvObj .addPostLoadfiles({FileList})
Description cgvObj .addPostLoadfiles ({FileList}) is an optional method that

adds a list of MATLAB and MAT-files to the object. cgvObj is a handle
to a cgv.CGV object. cgvObj executes and loads the files after opening
the model and before running tests. FileList is a cell array of names
of MATLAB and MAT-files in the testing directory that the model
requires to run.

Note Subsequent cgvObj.addPostLoadFiles calls to the same
cgVv.CGV object replaces the list of MATLAB and MAT-files of that
object.

How To + “Verify Numerical Equivalence with CGV”
+ “Callbacks for Customized Model Behavior”

1-45

address

1-46

Purpose
Syntax

IDEs

Description

Input
Arguments

Memory address and page value of symbol in IDE
a = IDE Obj.address(symbol,scope)

This function supports the following IDEs:

Analog Devices VisualDSP++
Eclipse IDE
Green Hills MULTI

Texas Instruments Code Composer Studio v3

The a = IDE Obj.address(symbol,scope) method returns the
memory address of the first matching symbol in the symbol table of
the most recently loaded program.

Because the address method returns the address and page values as a
structure, your programs can use the values directly. For example, the
IDE Obj.read and IDE Obj.write can use a as an input.

If the address method does not find the symbol in the symbol table, it
generates a warning and returns a null value.

a

Use a as a variable to capture the return values from the address
method.

IDE_Obj

IDE 0bj is a handle for an instance of the IDE. Before using a method,
use the constructor function for your IDE to create IDE_0bj.

symbol

symbol is the name of the symbol for which you are getting the memory
address and page values.

Symbol names are case sensitive.

address

Output
Arguments

For address to return an address, the symbol must be a valid entry in
the symbol table. If the address method does not find the symbol, it
generates a warning and leaves a empty.

scope

Optionally, you set the scope of the address method. Enter 'local' or
'global'. Use 'local' when the current scope of the program is the
desired function scope. If you omit the scope argument, the address
method uses 'local' by default.

If the address method does not find the symbol, it generates a warning
and does not return a value for a.

The address method only returns address information for the first
matching symbol in the symbol table.

For Code Composer Studio

The return value, a, is a numeric array with the symbol’s address offset,
a(1), and page, a(2).

With TI C6000™ processors, the memory page value is O.
For Eclipse

With Eclipse IDE, the address method only returns the symbol address.
It does not return a value for page.

The return value, a, is the numeric value of the symbol address.

For MULTI

With MULTI, address requires a linker command file (Icf) in your
project.

The return value, a, is a numeric array with the symbol’s address offset,
a(1), and page, a(2).

For VisualDSP++

With VisualDSP++, address requires a linker command file (lcf) in
your project.

1-47

address

1-48

Examples

See Also

The return value a is a numeric array with the symbol’s start address,
a(1), and memory type, a(2).

After you load a program to your processor, address lets you read
and write to specific entries in the symbol table for the program. For
example, the following function reads the value of symbol 'ddat' from
the symbol table in the IDE.

ddatv = IDE_Obj.read(IDE_Obj.address('ddat'), 'double',4)

ddat is an entry in the current symbol table. address searches for the
string ddat and returns a value when it finds a match. read returns
ddat to MATLAB software as a double-precision value as specified by
the string 'double’.

To change values in the symbol table, use address with write:

IDE_Obj.write(IDE_Obj.address('ddat'),double([pi 12.3 exp(-1)...
sin(pi/4)1))

After executing this write operation, ddat contains double-precision

values for o, 12.3, e, and sin(nn/4). Use read to verify the contents
of ddat:

ddatv = IDE_Obj.read(IDE_Obj.address('ddat'), 'double’, 4)

MATLAB software returns

ddatv =

3.1416 12.3 0.3679 0.7071

load | read | symbol | write

adivdsp

Purpose

Syntax

IDEs

Description

Create handle object to interact with VisualDSP++ IDE

IDE_Obj = adivdsp

IDE_Obj = adivdsp('propnameil',propvaluei, 'propname2',propvalue2,
, 'timeout',value)

IDE_Obj = adivdsp('my_session')

Note The output object name (left side argument) you provide for
adivdsp cannot begin with an underscore, such as _IDE_0bj.

This function supports the following IDEs:
® Analog Devices VisualDSP++

If the IDE is not running, IDE_Obj = adivdsp opens the VisualDSP++
software for the most recent active session. After that, it creates an
object, IDE_Obj, that references the newly opened session. If the IDE
is running, adivdsp returns object IDE_Obj that connects to the active
session in the IDE.

adivdsp creates an interface between MATLAB software and Analog
Devices VisualDSP++ software. The first time you use adivdsp, supply
a session name as an input argument (refer to the next syntax).

IDE_Obj =
adivdsp('sessionname', 'name', 'procnum', ‘number’',...)
returns an object handle IDE_Obj that you use to interact with a
processor in the IDE from MATLAB.

Use the debug methods with this object to access memory and control
the execution of the processor.

The adivdsp function interprets input arguments as object property
definitions. Each property definition consists of a property name
followed by the desired property value (often called a PV, or property
name/property value, pair). Although you can define a number of
adivdsp object properties when you create the object, there are several
important properties that you must provide during object construction.

1-49

adivdsp

These properties must be delineated when you create the object. The
required input arguments are as follows:

® sessionname — Specifies the session to connect to. This session must
exist in the session list. adivdsp does not create new sessions. The
resulting object refers to a processor in sessionname. To see the list
of sessions, use listsessions at the MATLAB command prompt.

® procnum— Specifies the processor to connect to in sessionname. The
adivdsp object only supports connecting to processor 0. As such, the
default value for procnum is O for the first processor on the board.
If you omit the procnum argument, adivdsp connects to the first
processor.

After you build the adivdsp object IDE_Obj, you can review the object
property values with get, but you cannot modify the sessionname and
procnum property values.

To connect to the active session in IDE, omit the sessionname property
in the syntax. If you do not pass sessionname as an input argument,
the object defaults to the active session in the IDE.

Use listsessions to determine the number for the desired DSP
processor. If your IDE session is single processor or to connect to
processor zero, you can omit the procnum property definition. If you
omit the procnum argument, procnum defaults to 0 (zero-based).

IDE_Obj =

adivdsp('propnamel’',propvaluel, 'propname2',propvalue2,

, 'timeout',value) sets the global time-out value to value in IDE_Obj.
MATLAB waits for the specified time-out value to get a response from
the IDE application. If the IDE does not respond within the allotted
time-out period, MATLAB exits from the evaluation of this function.

If the session exists in the session list and the IDE is not already
running, IDE_Obj = adivdsp('my_session') connects to my session.
In this case, MATLAB starts VisualDSP++ IDE for the session named
my_session.

The following list shows some other possible cases and results of using
adivdsp to construct an object that refers to my_session.

1-50

adivdsp

Examples

See Also

® Ifmy_session does not exist in the session list and the IDE is not
already running, MATLAB returns an error stating that my_session
does not exist in the session list.

® When my_session is the current active session and the IDE is
already running, MATLAB connects to the IDE for this session.

® Ifmy_session is not the current active session, but exists in the
session list, and the IDE is already running, MATLAB displays a
dialog box asking if you want to switch to my_session. If you choose
to switch to my_session, the existing handles you have to other
sessions in the IDE become invalid. To connect to the other sessions
you use adivdsp to recreate the objects for those sessions.

® Ifmy_session does not exist in the session list and the IDE is already
running, MATLAB returns an error, explaining that the session
my_session does not exist in the session list.

These examples show some of the operation of adivdsp.
IDE_Obj = adivdsp('sessionname', 'my_session', 'procnum',0);
returns a handle to the first DSP processor for session my_session.

IDE_Obj = adivdsp without input arguments constructs the object
IDE_Obj with the default property values, returning a handle to the
first DSP processor for the active session in the IDE.

IDE_Obj = adivdsp('sessionname','my_session'); returns a handle
to the first DSP processor for the session my_session.

listsessions

1-51

adivdspsetup

Purpose Configure your coder product to interact with VisualDSP++ IDE
Syntax adivdspsetup
IDEs This function supports the following IDEs:

® Analog Devices VisualDSP++

Description Enter adivdspsetup at the MATLAB command line when you are setting
up your coder product to interact with VisualDSP++ for the first time.
This action displays a dialog box to specify where to install a plug-in for
VisualDSP++. The default value for Folder is the VisualDSP++ system
folder. You can specify folders for which you have write access. When
you click OK, the software adds the plug-in to the folder and registers
the plug-in with the VisualDSP++ IDE.

Examples 1 At the MATLAB command line, enter: adivdspsetup. This action
opens the following dialog box:

E! Embedded IDE Link Configuration for Analog Devices{R) ¥isualDs... m

Plugin Fegiskration

Folder: Iu::'l,pru:-gram files\analog devices|visualdsp 5.0\ syskem| Browse, .. |

(0] 4 Cancel | Help | anply

2 Click Browse, locate the system folder for VisualDSP++, and click
OK. This action registers the MathWorks plugin to the VisualDSP++
IDE.

See Also adivdsp

1-52

animate

Purpose
Syntax
IDEs

Description

See Also

Run application on processor to breakpoint
IDE Obj.animate

This function supports the following IDEs:

¢ Texas Instruments Code Composer Studio v3

IDE Obj.animate starts the processor application, which runs until it
encounters a breakpoint in the code. At the breakpoint, application
execution halts and CCS Debugger returns data to the IDE to update
the windows not connected to probe points. After updating the display,
the application resumes execution and runs until it encounters another
breakpoint. The run-break-resume process continues until you stop the
application from MATLAB software with the halt function or from
the IDE.

While running scripts or files in MATLAB software, you can use
animate to update the IDE with information as your script or program
runs.

Using animate with Multiprocessor Boards

When you use animate with a ticcs object IDE Obj that comprises
more than one processor, such as an OMAP processor, the method
applies to each processor in your IDE 0Obj object. This action causes
each processor to run a loaded program just as it does for the single
processor case.

halt | restart | run

1-53

arxml.importer

1-54

Purpose

Description

Construction

Methods

Control import of AUTOSAR components

You can use methods of the arxml.importer class to import AUTOSAR
components in a controlled manner. For example, you can parse an
AUTOSAR software component description file exported by DaVinci
System Architect (from Vector Informatik Gmbh), and import the
component into a Simulink model for subsequent configuration, code

generation, and export to XML.

arxml.importer

Construct arxml.importer object

createCalibrationComponentObjectdCreate Simulink calibration

createComponentAsModel

createComponentAsSubsystem

objects from AUTOSAR
calibration component

Create AUTOSAR atomic
software component as Simulink
model

Create AUTOSAR atomic
software component as Simulink
atomic subsystem

createOperationAsConfigurableSub&tatasconfigurable Simulink

getApplicationComponentNames

getCalibrationComponentNames
getClientServerInterfaceNames

getComponentNames

subsystem library for
client-server operation

Get list of application software
component names

Get calibration component names
Get list of client-server interfaces

Get application and
sensor/actuator software
component names

arxml.importer

getDependencies Get list of XML dependency files

getFile Return XML file name for
arxml.importer object

getSensorActuatorComponentName&ret list of sensor/actuator
software component names

setDependencies Set XML file dependencies

setFile Set XML file name for
arxml.importer object

Copy Handle. To learn how this affects your use of the class, see Copying
Semantics Objects in the MATLAB Programming Fundamentals documentation.

1-55

arxml.importer

Purpose

Syntax

Description

Input
Arguments

Output
Arguments

Examples

1-56

Construct arxml.importer object

importer_obj = arxml.importer(filename)
importer_obj = arxml.importer({filename1, filename2, ...,
filenameN})

importer_obj = arxml.importer(filename) constructs an
arxml.importer object and parses the atomic software component
described in the XML file specified by filename.

importer_obj = arxml.importer({filename1, filename2, ...,
filenameN}) constructs an arxml.importer object and parses the
atomic software component described in the XML files that are specified
in the cell array. The cell array format allows you to specify multiple
XML files that are required for an AUTOSAR component import
operation in one function call.

filename Name of XML file containing a
description of an atomic software
component.

{filename1, filename2, ..., Cell array of names of XML files

filenameN} containing a description of an atomic

software component and additional
required information.

importer_obj Handle to newly created arxml.importer
object.

Specify the set of XML files required for an AUTOSAR component
import in one function call:

x = arxml.importer({'AtomicSensorComponentTypes.arxml', ...
‘DataTypes.arxml', 'MiscDefs.arxml'})

arxml.importer

Specify the XML file containing the atomic software component. Use the
arxml.importer.getDependencies method to specify other required
XML files:

x = arxml.importer('AtomicSensorComponentTypes.arxml')
x.setDependencies({'DataTypes.arxml', 'MiscDefs.arxml'});

See Also arxml.importer.getDependencies

How To + “Import an AUTOSAR Software Component”

1-57

RTW.Autosarinterface.attachToModel

1-58

Purpose
Syntax

Description

Input
Arguments

How To

Attach RTW.AutosarInterface object to model
autosarInterfaceObj.attachToModel (modelName)

autosarInterfaceObj.attachToModel (modelName) attaches
autosarInterfaceObj, an RTW.AutosarInterface object, to a loaded
Simulink model with an ERT-based target.

modelName Name of a loaded Simulink model to which
the object is going to be attached (string).

+ “Modify and Validate an Existing AUTOSAR Interface”

RTW.ModelCPPClass.attachToModel

Purpose

Syntax

Description

Input
Arguments

Alternatives

How To

Attach model-specific C++ encapsulation interface to loaded ERT-based
Simulink model

attachToModel(obj, modelName)

attachToModel(obj, modelName) attaches a model-specific C++
encapsulation interface to a loaded ERT-based Simulink model.

obj Handle to a model-specific C++ encapsulation
interface control object, such as a
handle previously returned by obj
= RTW.ModelCPPArgsClass or obj =
RTW.ModelCPPVoidClass.

modelName String specifying the name of a loaded
ERT-based Simulink model to which the
object is going to be attached.

The Configure C++ Encapsulation Interface button on the
Interface pane of the Simulink Configuration Parameters dialog box
launches the Configure C++ encapsulation interface dialog box, where
you can flexibly control the C++ encapsulation interfaces that are
generated for your model. Once you validate and apply your changes,
you can generate code based on your C++ encapsulation interface
modifications. See “Configure C++ Encapsulation Interfaces Using
Graphical Interfaces” in the Embedded Coder documentation.

+ “Configure C++ Encapsulation Interfaces Programmatically”
+ “Configure the Step Method for a Model Class”

+ “C++ Encapsulation Interface Control”

1-59

RTW.ModelSpecificCPrototype.attachToModel

Purpose

Syntax

Description

Input

Arguments

Alternatives

How To

1-60

Attach model-specific C function prototype to loaded ERT-based
Simulink model

attachToModel(obj, modelName)

attachToModel(obj, modelName) attaches a model-specific C function
prototype to a loaded ERT-based Simulink model.

obj Handle to a model-specific C prototype
function control object previously returned by
obj = RTW.ModelSpecificCPrototype.

modelName String specifying the name of a loaded
ERT-based Simulink model to which the
object is going to be attached.

Click the Configure Model Functions button on the Code
Generation > Interface pane of the Configuration Parameters dialog
box for flexible control over the model function prototypes that are
generated for your model. Once you validate and apply your changes,
you can generate code based on your function prototype modifications.
See “Configure Function Prototypes Using Graphical Interfaces” in the
Embedded Coder documentation.

* “Function Prototype Control”

build

Purpose

Syntax

IDEs

Description

See Also

Build or rebuild current project

[result,numwarns]=IDE_Obj.build(timeout)
IDE Obj.build('all')

This function supports the following IDEs:
® Analog Devices VisualDSP++

* Eclipse IDE

® Green Hills MULTI

¢ Texas Instruments Code Composer Studio v3

[result,numwarns]=IDE Obj.build(timeout) incrementally builds
the active project. Incremental builds recompile only source files in
your project that you changed or added after the most recent build.
build uses the file time stamp to determine whether to recompile a file.
After recompiling the source files, build links the object files to make
a new program file.

The value of result is 1 when the build process completes. The value
of numwarns is the number of compilation warnings generated from
the build process.

The timeout argument defines the number of seconds MATLAB waits
for the IDE to complete the build process. If the IDE exceeds the
timeout period, this method returns a timeout error immediately. The
timeout error does not terminate the build process in the IDE. The IDE
continues the build process. The timeout error indicates that the build
process did not complete before the specified timeout period expired.

If you omit the timeout argument, the build method uses a default
value of 1000 seconds.

IDE Obj.build('all') rebuilds the files in the active project.

isrunning | open

1-61

ccsboardinfo

1-62

Purpose

Syntax

IDEs

Description

Information about boards and simulators known to IDE

ccsboardinfo
boards = ccsboardinfo

This function supports the following IDEs:

¢ Texas Instruments Code Composer Studio v3

ccsboardinfo returns configuration information about each board
and processor installed and recognized by CCS. When you issue the
function, ccsboardinfo returns the following information about each
board or simulator.

Installed Board Configuration

Configuration Data Item Name Description

Board number boardnum The number CCS assigns to the board or
simulator. Board numbering starts at 0 for
the first board. You also use boardnum when
you create a link to the IDE.

Board name boardname The name assigned to the board or simulator.

Usually, the name is the board model name,
such as TMS320C67xx evaluation module.
If you are using a simulator, the name tells
you which processor the simulator matches,
such as C67xx simulator. If you renamed
the board during setup, this item displays
the board name.

ccsboardinfo

Installed Board

Configuration

Configuration Data Item Name Description

Processor number

procnum The number assigned by CCS to the
processor on the board or simulator. When
the board contains more than one processor,
CCS assigns a number to each processor,
numbering from 0 for the first processor

on the first board. For example, when you
have two boards, the first processor on the
first board is procnum=0, and the first and
second processors on the second board are
procnum=1 and procnum=2. You also use this
property when you create a link to the IDE.

Processor name

procname Provides the name of the processor. Usually
the name is CPU, unless you assign a
different name.

Processor type

proctype Gives the processor model, such as
TMS320C6x1x for the C6xxx series
processors.

Each row in the table that you see displayed represents one digital
signal processor, either on a board or simulator. As a consequence,
you use the information in the table in the function ticcs to identify a
selected board in your PC.

boards = ccsboardinfo returns the configuration information about
your installed boards in a slightly different manner. Rather return the
table of the information, the method returns a list of board names and
numbers. In that list, each board has an structure named proc that
contains processor information. For example

boards = ccsboardinfo

returns

boards =

1-63

ccsboardinfo

1-64

Examples

name: 'C6xxx Simulator (Texas Instruments)'
number: 0
proc: [1x1 struct]

where the structure proc contains the processor information for the
C6xxx simulator board:

boards.proc
ans =

name: 'CPU'
number: 0
type: 'TMS320C6200'

Reviewing the output from both function syntaxes shows that the
configuration information is the same.

To connect with a specific board when you create an IDE handle object,
combine this syntax with the dot notation for accessing elements in a
structure. Use the boardnum and procnum properties in the boards
structure. For example, when you enter

boards = ccsboardinfo;

boards (1) .name returns the name of your second installed board and
boards(1).proc(2).name returns the name of the second processor on
the second board. To create a link to the second processor on the second
board, use

IDE_Obj = ticcs('boardnum',boards(1).number, 'procnum',...
boards(1).proc(2).name);

On a PC with both a simulator and a DSP Starter Kit (DSK) board
installed,

ccsboardinfo

ccsboardinfo

returns something like the following table. Your display may differ
slightly based on what you called your boards when you configured
them in CCS Setup Utility:

Board Board Proc Processor Processor
Num Name Num Name Type

1 C6xxx Simulator (Texas Instrum ..0 CPU TMS320C6200
0 DSK (Texas Instruments) 0 CPU_3 TMS320C6x1x

When you have one or more boards that have multiple CPUs,
ccsboardinfo returns the following table, or one like it:

Board Board Proc Processor Processor
Num Name Num Name Type

2 (C6xxx Simulator (Texas Instrum .0 CPU TMS320C6200
1 C6xxx EVM (Texas Instrum ... 1 CPU_Primary TMS320C6200
1 C6xxx EVM (Texas Instrum ... 0 CPU_Secondary TMS320C6200
0 C64xx Simulator (Texas Instru...0 CPU TMS320C64xx

In this example, board number 1 returns two defined CPUs:
CPU_Primary and CPU_Secondary. The C6xxx does not in fact have two
CPUs; a second CPU is defined for this example.

To show the boards = ccsboardinfo syntax, this example assumes a
PC with two boards installed, one of which has three CPUs.

Enter the following command:

ccsboardinfo

This command generates a list of boards. For example:

Board Board Proc Processor Processor
Num Name Num Name Type
1 C6xxx Simulator (Texas Instrum .0 CPU TMS320C6211

1-65

ccsboardinfo

1-66

0 C62xx DSK (Texas Instruments) 2 CPU_3 TMS320C6x1X
0 C62xx DSK (Texas Instruments) 1 CPU_4_1 TMS320C6x1x
0 C62xx DSK (Texas Instruments) 0 CPU_4.2 TMS320C6x1x

Now enter

boards = ccsboardinfo

MATLAB software returns

boards=
2x1 struct array with fields
name
number
proc
showing that you have two boards in your PC.

Use the dot notation to determine the names of the boards:

boards.name

returns

ans=
C6xxx Simulator (Texas Instruments)

ans=
C62xx DSK (Texas Instruments)

To identify the processors on each board, again use the dot notation to
access the processor information. You have two boards (numbered 0 and
1). Board 0 has three CPUs defined for it. To determine the type of the
second processor on board 0 (the board whose boardnum = 0), enter

boards(2).proc(1)

which returns

ccsboardinfo

See Also

ans=
name: 'CPU_3'
number: 1
type: 'TMS320C6x1x'

Recall that

boards(2).proc

gives you this information about the board

ans=

3x1 struct array with fields:
name
number

type

indicating that this board has three processors (the 3x1 array).

The dot notation is useful for accessing the contents of a structure
when you create a link to the IDE. When you use ticcs to create your
CCS link, you can use the dot notation to tell the IDE which processor
you are using.

IDE_Obj = ticcs('boardnum',boards(1).proc(1))

info | ticcs

1-67

cd

1-68

Purpose

Syntax

IDEs

Description

See Also

Set working folder in IDE

wd=IDE_Obj .cd

IDE Obj.cd(folder)

This function supports the following IDEs:
® Analog Devices VisualDSP++

¢ Green Hills MULTI

¢ Texas Instruments Code Composer Studio v3

wd=IDE Obj.cd assigns the IDE working folder to the variable, wd.
which you reference via the IDE handle object, IDE_Obj.

IDE Obj.cd(folder) sets the IDE working folder to 'folder'.
'folder' can be a path string relative to your working folder, or an
absolute path. The intended folder must exist. cd does not create a
folder. Setting the IDE folder does not change your MATLAB Current
Folder.

cd alters the default folder for open and load. Loading a new workspace
file also changes the working folder for the IDE.

dir | load | open

cgv.CGV

Purpose

Description

Construction

Verify numerical equivalence of results

Executes a model in different environments such as, simulation,
Software-In-the-Loop (SIL), or Processor-In-the-Loop (PIL) and stores
numerical results. Using the cgv.CGV class methods, you can create
a script to verify that the model and the generated code produce
numerically equivalent results.

cgv.CGV and cgv.Config use two of the same properties. Before
executing a cgv.CGV object, use cgv.Config to verify the model
configured for the mode of execution that you specify. If the top model
is set to normal simulation mode, referenced models set to PIL mode
are changed to Accelerator mode.

cgvObj = cgv.CGV(model name) creates a handle to a code generation
verification object using the default parameter values. model name is
the name of the model that you are verifying.

cgvObj = cgv.CGV(model name,Name,Value) constructs the object
using the parameter values, specified as Name ,Value pair arguments.
Parameter names and values are not case sensitive.

Input Arguments

model name
Name of the model that you are verifying.

Name-Value Pair Arguments

Optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can specify
several name-value pair arguments in a variety of orders, such as
Namei1,Valuel, ,NameN,ValueN.

ComponentType
Define the SIL or PIL approach

1-69

cgv.CGV

1-70

Value Description

topmodel (default) Top-model SIL or PIL
simulation and standalone
code interface mode.

modelblock Model block SIL or PIL
simulation and model
reference target code interface
mode.

If mode of execution is simulation (Connectivity is sim), choosing
either value for ComponentType does not alter simulation results.

Default: topmodel

Connectivity

Specify mode of execution

Value Description
sim or normal (default) Mode of execution is Normal
simulation.
sil Mode of execution is SIL.
pil Mode of execution is PIL.
Properties Description

Specify a description of the object.
Default: ' ' (null string)

Name

Specify a name for the object.

Default: ' ' (null string)

cgv.CGV

Methods

activateConfigSet

addBaseline
addConfigSet
addHeaderReportFcn

addInputData

addPostExecFcn

addPostExecReportFen

addPostLoadFiles

addPreExecFcn

addPreExecReportFcn

addTrailerReportFen

compare
copySetup

createToleranceFile

getOutputData
getSavedSignals

Activate configuration set of
model

Add baseline file for comparison
Add configuration set

Add callback function to execute
before executing input data in
object

Add input data

Add callback function to execute
after each input data file is
executes

Add callback function to execute
after each input data file executes

Add files required by model

Add callback function to execute
before each input data file
executes

Add callback function to execute
before each input data file
executes

Add callback function to execute
after the input data executes

Compare signal data
Create copy of object

Create file correlating tolerance
information with signal names

Get output data

Display list of signal names to
command line

1-71

cgv.CGV

1-72

Copy
Semantics

Examples

getStatus Return execution status

plot Create plot for signal or multiple
signals

run Execute CGV object

setMode Specify mode of execution

setOutputDir Specify folder

setOutputFile Specify output data file name

Handle. To learn how handle classes change copy operations, see
Copying Objects in the MATLAB Programming Fundamentals
documentation.

The general workflow for testing a model for numerical equivalence
using the cgv.CGV class is to:

1 Create a cgv.CGV object, cgvObj, for each mode of execution and
use the cgv.CGV set up methods to configure the model for each
execution. The set up methods are:

® addInputData

® addPostLoadFiles
® setOutputDir

® setOutputFile

® addCallBack

® addConfigSet

2 Run the model for each mode of execution using the cgvObj.run
method.

3 Use the cgv.CGV access methods to get and evaluate the data. The
access methods are:

® getOutputData

cgv.CGV
|

® getSavedSignals
® plot

® compare

An object should be run only once. After the object is run, the set up
methods are not used for that object. You then use the access methods
for verifying the numerical equivalence of the results.

See Also cgv.Config

How To + “Verify Numerical Equivalence with CGV”

+ Using Code Generation Verification

1-73

cgv.Config

1-74

Purpose

Description

Construction

Check and modify model configuration parameter values

Creates a handle to a cgv.Config object that supports checking and
optionally modifying models for compatibility with various modes of
execution that use generated code, such as, Software-In-the-Loop (SIL)
or Processor-In-the-Loop (PIL).

To execute the model in the mode that you specify, you might need to
make additional modifications to the configuration parameter values or
the model beyond those configured by the cgv.Config object.

By default, cgv.Config modifies configuration parameter values to the
values that it recommends, but does not save the model. Alternatively,
you can use cgv.Config parameters to modify the default specification.
For more information, see the properties, ReportOnly and SaveModel.

If you use cgv.Config to modify a model, do not use referenced
configuration sets in that model. If a model uses a referenced
configuration set, update the model with a copy of the configuration set,
by using the Simulink.ConfigSetRef.getRefConfigSet method.

If you use cgv.Config on a model that executes a callback function, the
callback function might modify configuration parameter values each
time the model loads. The callback function might revert changes that
cgv.Config made. If this change occurs, the model might not be set up
for SIL or PIL. For more information, see “Callbacks for Customized
Model Behavior”.

cfgObj = cgv.Config(model name) creates a handle to a cgv.Config
object, cfgObj, using default values for properties. model name is the
name of the model that you are checking and optionally configuring.

cfgObj = cgv.Config(model name, Name, Value) constructs the
object using options, specified as parameter name and value pairs.
Parameter names and values are not case sensitive.

Name can also be a property name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can specify
several name-value pair arguments in a variety of orders, such as
Namei1,Valuel, ,NameN,ValueN.

cgv.Config

Properties CheckOutports

Specify whether to compile the model and check that the model
outports configuration is compatible with the cgv.CGV object.
If your script fixes errors reported by cgv.Config, you can set
CheckOutports to off.

Value Description

on (default) Compile the model and
check the model outports
configuration

off Do not compile the model
or check the model outports
configuration

ComponentType

Define the SIL or PIL approach

If mode of execution is simulation (connectivity is sim), choosing
either value for ComponentType does not alter simulation results.
However, cgv.Config recommends configuration parameter
values based on the value of ComponentType.

Value Description

topmodel (default) Top-model SIL or PIL
simulation and standalone
code interface mode.

modelblock Model block SIL or PIL
simulation and model
reference target code interface
mode.

Connectivity

Specify mode of execution

1-75

cgv.Config

Value Description

sim (default) Mode of execution is
simulation. Recommends
changes to a subset of the
configuration parameters that
SIL and PIL targets require.

sil Mode of execution is SIL.
Requires that the system
target file is set to 'ert.tlc'
and that you do not use

your own external target.
Recommends changes to the
configuration parameters that
SIL targets require.

pil Mode of execution is PIL
with custom connectivity
that you provide using

the PIL Connectivity API.
Recommends changes to the
configuration parameters
that PIL targets with custom
connectivity require.

LogMode

Specify the Signal Logging and Output parameters on the Data
Import/Export pane of the Configuration Parameters dialog box.

1-76

cgv.Config

Value

Description

SignallLogging

Log signal data to a MATLAB
workspace variable during
execution.

This parameter

selects the Data
Import/Export > Signal
logging parameter in the
Configuration Parameters
dialog box.

SaveOutput

Save output data to a MATLAB
workspace variable during
execution.

This parameter selects Data
Import/Export > Output
parameter in the
Configuration Parameters
dialog box.

The Output parameter does
not save bus outputs.

ReportOnly

The ReportOnly property specifies whether cgv.Config modifies
the recommended values of the configuration parameters of the

model.

If you set ReportOnly to on, SaveModel must be off.

1-77

cgv.Config

1-78

Value

Description

off (default)

cgv.Config automatically
modifies the configuration
parameter values that it

recommends for the model.

on

cgv.Config does not modify
the configuration parameter
values that it recommends for
the model.

SaveModel

Specify whether to save the model with the configuration
parameter values recommended by cgv.Config.

If you set SaveModel to 'on', ReportOnly must be 'off"'.

Value Description
off (default) Do not save the model.
on Save the model in the working
folder.
Methods configModel Determine and change
configuration parameter values
displayReport Display results of comparing
configuration parameter values
getReportData Return results of comparing
configuration parameter values
Copy Handle. To learn how handle classes change copy operations, see
Semantics Copying Objects in the MATLAB Programming Fundamentals
documentation.

cgv.Config

Examples

See Also

How To

Configure the rtwdemo_iec61508 model for top-model SIL. Then view
the changes at the MATLAB Command Window:

% Create a cgv.Config object and configure the model for top-model SIL.

cgvCfg = cgv.Config('rtwdemo_iec61508', 'LogMode', 'SaveOutput’,
'connectivity', 'sil');

cgvCfg.configModel();

% Display the results of what the cgv.Config object changed.

cgvCfg.displayReport();

% Close the rtwdemo_iec61508 model.

bdclose('rtwdemo_iec61508"');

cgv.CGV

+ “Programmatic Code Generation Verification”

1-79

coder.replace

Purpose Replace current MATLAB function implementation with code
replacement library function in generated code

Syntax coder.replace()
coder.replace('-errorifnoreplacement')
coder.replace('-warnifnoreplacement')

Description coder.replace () replaces the current function implementation with a
code replacement library (CRL) function. If a match is not found in the
code replacement library, code is generated without a replacement for
the current function. coder.replace is a code generation function. It
does not alter MATLAB code or MEX function generation.

During code generation, if you include coder.replace in a MATLAB
function, fcn, it performs a code replacement library lookup for the
following function signature:

[y1_type, y2_type,..., yn_typel=fcn(x1_type, x2_type,...,xn_type)
y1_type, y2 type,..., yn_type are the data types of the outputs of
MATLAB function fcn. x1_type, x2_type,...,xn_type are the data

types of the inputs of fcn. coder.replace derives the output types of
the function based on the implementation in the MATLAB function. At
code generation, the contents of fcn are discarded and replaced with

a function call that is registered in the code replacement library as a
replacement for fcn.

coder.replace('-errorifnoreplacement') replaces the current
function implementation with a code replacement library function. If a
match is not found, code generation stops. An error message describing
the CRL lookup failure is generated.

coder.replace('-warnifnoreplacement') replaces the current
function implementation with a code replacement library function.
If match is not found, code is generated for the current function. A
warning describing the CRL lookup failure is generated during code
generation.

1-80

coder.replace

Tips

Examples

® coder.replace is a code generation function. It does not alter
MATLAB code or MEX function generation.

* Do not use multiple coder.replace statements inside a function.

® You cannot use coder.replace within conditional expressions and
loops.

e coder.replace does not support replacements that require data
alignment.

® varargin and varargout are not supported.

® You cannot use coder.replace to replace MATLAB functions that
have variable-size inputs.

® coder.replace requires an Embedded Coder license.

e coder.replace disregards saturation and rounding modes when
looking up function replacements in a code replacement library.

Replace a MATLAB function with custom code

Replace a MATLAB function with a custom implementation that is
registered in the code replacement library.

1 Write a MATLAB function, calculate, that you want to replace with
a custom implementation, replacement calculate impl.c, in the
generated code.

function y = calculate(x)
% Search in the code replacement library for replacement
% and use replacement function if available
% Error if not found
coder.replace('-errorifnoreplacement');
y = sqrt(x);
end

2 Write a MATLAB function, top_function, that calls calculate

function out = top_function(in)

1-81

coder.replace

p = calculate(in);
out = exp(p);
end

3 Create a file named crl_table_calculate.m that describes
the function entries for a Code Replacement Library table. The
replacement function replacement _calculate _impl.c and header
file replacement_calculate_impl.h must be on the path.

hLib

RTW.TflTable;

Smmmmmmmmm entry: calculate -----------
hEnt RTW.Tf1lCFunctionEntry;
hEnt.setTflCFunctionEntryParameters
'Key', 'calculate',
'"Priority', 100,
"ImplementationName', 'replacement_calculate_impl',
"ImplementationHeaderFile', 'replacement_calculate_impl.h',
"ImplementationSourceFile', 'replacement_calculate_impl.c')
% Conceptual Args

arg = hEnt.getTflArgFromString('y1', 'double');
arg.I0OType = 'RTW_IO_OUTPUT';
hEnt.addConceptualArg(arg);

arg = heEnt.getTflArgFromString('ul', 'double');
hEnt.addConceptualArg(arg);

% Implementation Args
arg = heEnt.getTflArgFromString('y1', 'double');
arg.I0OType = 'RTW_IO_OUTPUT';

hEnt.Implementation.setReturn(arg);

arg = heEnt.getTflArgFromString('ul', 'double');
hEnt.Implementation.addArgument(arg);

1-82

coder.replace

%arg = hEnt.getTflArgFromString('y1', 'double*"');
%arg.I0Type = 'RTW_IO_OUTPUT';
%ShEnt.Implementation.addArgument(arg);

hLib.addEntry(hEnt);

4 Create an rtwTargetInfo file:

function rtwTargetInfo(tr)

rtwTargetInfo function to register a code
replacement library (CRL)

for use with codegen

o® o

o°

% Register the CRL defined in local function locCrlRegFcn
tr.registerTargetInfo(@locCrlRegFcn);

end % End of RTWTARGETINFO

5 Create a locCrlRegFcn file:

function thisCrl = locCrlRegFcn

% Instantiate a CRL registry entry
thisCrl = RTW.TflRegistry;

% Define the CRL properties

thisCrl.Name = 'My calculate Example';

thisCrl.Description = 'Demonstration of function replacement';
thisCrl.TablelList = {'crl_table calculate'};

thisCrl.BaseTfl = 'C89/C90 (ANSI)';

thisCrl.TargetHWDeviceType = {'*'};

end % End of LOCCRLREGFCN

6 Refresh registration information. At the MATLAB command line,
enter:

RTW.TargetRegistry.getInstance('reset');

1-83

coder.replace

1-84

See Also

Related
Examples

Concepts

7

codegen

Create a code generation configuration object.

cfg =coder.config('lib');

Specify the name of the code replacement library to use.

cfg.CodeReplacementLibrary='My calculate Example';

Generate code for top_function specifying that input in is double.

codegen -report -config cfg top_function -args {double(10)}

Because the data type of x and y is double, coder.replace searches
for double = calculate(double) in the Code Replacement Library.
If it finds a match, codegen generates the following code:

real T top_function(real_T in)

{
real T p;
p = replacement_calculate_impl(in);
return exp(p);

}

In the generated code, the replacement function
replacement_calculate_impl replaces the MATLAB
function calculate.

“Replace MATLAB Function Block Code with Custom Code”
“Register CRL with MATLAB Coder™ Software (rtwTargetInfo)”
“Register CRL with Simulink Software (sl_customization)”
“Create Code Replacement Tables”

“Introduction to Code Replacement Libraries”
“Custom Code Substitution for MATLAB Functions Using Code

Replacement Libraries”

cgv.CGV.compare

Purpose

Syntax

Description

Input
Arguments

Compare signal data

[matchNames, matchFigures, mismatchNames,

mismatchFigures] = cgv.CGV.compare(data_set1t,
data_set2)

[matchNames, matchFigures, mismatchNames,
mismatchFigures] = cgv.CGV.compare(data_set1t,

data_set2, 'Plot', param_value)

[matchNames, matchFigures, mismatchNames,
mismatchFigures] = cgv.CGV.compare(data_set1t,
data_set2, 'Plot', 'none', 'Signals', signal_list,
‘ToleranceFile', file_name)

[matchNames, matchFigures, mismatchNames, mismatchFigures]

= cgv.CGV.compare(data_set1, data set2) compares data from two
data sets which have common signal names between both executions.
Possible outputs of the cgv.CGV.compare function are matched signal
names, figure handles to the matched signal names, mismatched signal
names, and figure handles to the mismatched signal names. By default,
cgv.CGV.compare looks at the signals which have a common name
between both executions.

[matchNames, matchFigures, mismatchNames, mismatchFigures]
= cgv.CGV.compare(data_set1, data_set2, 'Plot’,
param_value) compares the signals and plots the signals according to
param_value.

[matchNames, matchFigures, mismatchNames, mismatchFigures]
= cgv.CGV.compare(data_set1, data_set2, 'Plot', 'none',
‘Signals', signal_list, 'ToleranceFile', file_name) compares
only the given signals and does not produce plots.

data_set1, data_set2

Output data from a model. After running the model, use
the cgv.CGV.getOutputData function to get the data. The
cgv.CGV.getOutputData function returns a cell array of the
output signal names.

1-85

cgv.CGV.compare

varargin

Variable number of parameter name and value pairs.

varargin You can specify the following argument properties for the
Parameters cgv.CGV.compare function using parameter name and value argument
pairs. These parameters are optional.

Plot(optional)
Designates which comparison data to plot. The value of this
parameter must be one of the following:

® 'match': plot the comparison of the matched signals from the
two data sets

® 'mismatch'(default): plot the comparison of the mismatched
signals from the two datasets

®* 'none': do not produce a plot

Signals(optional)
A cell array of strings, where each string is a signal name in the
output data. Use cgv.CGV.getSavedSignals to view the list of
available signal names in the output data. signal list can
contain an individual signal or multiple signals. The syntax for
an individual signal name is:

signal_list = {'log_data.subsystem_name.Data(:,1)"'}
The syntax for multiple signal names is:

signal_list = {'log_data.block_name.Data(:,1)',...
'log_data.block_name.Data(:,2)"',...

'log_data.block_name.Data(:,3)"',...

‘log_data.block_name.Data(:,4)"'};

If a model component contains a space or newline character,
MATLAB adds parantheses and a single quote to the name of the
component. For example, if a section of the signal has a space,
"block name', MATLAB displays the signal name as:

1-86

cgv.CGV.compare

Output
Arguments

How To

log_data.('block name').Data(:,1)

To use the signal name as input to a CGV function, 'block name'
must have two single quotes. For example:

signal_list = {'log_data.(''block name'').Data(:,1)'}

If Signals is not present, the signals are compared.

Tolerancefile(optional)
Name for the file created by the cgv.CGV.createToleranceFile
function. The file contains the signal names and the associated
tolerance parameter name and value pair for comparing the data.

Depending on the data and the parameters, the following output
arguments might be empty.
match_names

Cell array of matching signal names.
match_figures

Array of figure handles for matching signals
mismatch_names

Cell array of mismatching signal names
mismatch_figures

Array of figure handles for mismatching signals

+ “Verify Numerical Equivalence with CGV”

1-87

cgv.Config.configModel

Purpose Determine and change configuration parameter values
Syntax cfgOobj .configModel()
Description cfgObj.configModel() determines the recommended values for

the configuration parameters in the model. cfgObj is a handle to a
cgv.Config object. The ReportOnly property of the object determines
whether configModel changes the configuration parameter values.

How To + “About Model Configurations”

* “Programmatic Code Generation Verification”

1-88

checkEnvSetup

Purpose
Syntax
IDEs

Description

Configure your coder product to interact with Code Composer Studio
checkEnvSetup(ide, boardproc, action)

This function supports the following IDEs:
¢ Texas Instruments Code Composer Studio v3
® Texas Instruments Code Composer Studio v4

¢ Texas Instruments Code Composer Studio v5

Before you use ticcs for the first time, use the checkEnvSetup function
to check for third-party tools and set environment variables.

Run checkEnvSetup again whenever you configure CCS IDE to interact
with a new board or processor, or upgrade the related third-party tools.

The syntax for this function is: checkEnvSetup (ide, boardproc,
action):

e For ide, enter the IDE you want to check:
= 'ccs' checks the setup for Code Composer Studio v3
= 'ccsv4' checks the setup for Code Composer Studio v4
= 'ccsv5' checks the setup for Code Composer Studio v5

* For boardproc, enter the name of a supported board or processor.
You can get these names from the Processor parameter on the
Target Hardware Resources tab.

For example, enter: 'F2812"', '¢5509', 'c6416dsk', 'F2808 eZdsp',
'dm6437evm’'.

® For action, enter the specific action you want this function to
perform:

= 'list' lists the required third-party tools with their version
numbers.

1-89

checkEnvSetup

1-90

Examples

= 'check' lists the required third-party tools and the ones on your
development system. If tools are missing, install them. If the
version numbers of the tools on your system are not high enough,
update the tools.

= 'setup' creates environment variables that point to the
installation folders of the third-party tools.

If your tools do not meet the requirements, the function advises
you. If path information is incomplete, the function prompts you
to enter path information for specific tools.

If you omit the action argument, the method defaults to 'setup"'.

If actionis 'list' or 'check', you can assign the third-party tool
information to a variable instead of displaying it on the MATLAB
command line. When action is 'setup', the statement does not return
an output argument.

To see the required third-party tools and version information for your
board, use 'list' as the action argument:

>> checkEnvSetup('ccs', 'F2808 ezZdsp', 'list')

1. CCS (Code Composer Studio)
Required version: 3.3.82.13
Required for : Automation and Code Generation

2. CGT (Texas Instruments C2000 Code Generation Tools)
Required version: 5.2.1
Required for : Code generation

3. DSP/BIOS (Real Time Operating System)
Required version: 5.33.05
Required for : Real-Time Data Exchange (RTDX)

4. Flash Tools (TMS320C2808 Flash APIs)
Required version: 3.02
Required for : Flash Programming

checkEnvSetup

Required environment variables (name, value):
(FLASH 2808 API_INSTALLDIR, "<Flash Tools (TMS320C2808 Flash APIs

To compare your versions of the tools with the required versions. Use
'check' as the action argument:

checkEnvSetup('ccs', 'c6416', 'check')

1.

CCS (Code Composer Studio)

Your version : 3.83.38.2
Required version: 3.3.82.13
Required for : Automation and Code Generation

. CGT (Code Generation Tools)

Your version : 6.0.8
Required version: 6.1.10
Required for : Code generation

DSP/BIOS (Real Time Operating System)
Your version

Required version: 5.33.05

Required for : Code generation

. Texas Instruments IMGLIB (TMS320C64x)

Your version :1.04
Required version: 1.04
Required for : CRL block replacement

C64X_IMGLIB_INSTALLDIR="E:\apps\TexasInstruments\C6400\imglib_v104|

Finally, set the environment variables your coder product requires to
use the CCS IDE and generate code for your board. Use 'setup' as the
action argument, or omit the action argument:

checkEnvSetup('ccs', 'dm6437evm')

1. Checking CCS (Code Composer Studio) version
Required version: 3.3.82.13
Required for : Automation and Code Generation

1-91

checkEnvSetup
|

Your Version : 3.3.38.13

2. Checking CGT (Code Generation Tools) version
Required version: 6.1.10
Required for : Code generation
Your Version 1 6.1.10

3. Checking DSP/BIOS (Real Time Operating System) version
Required version: 5.33.05
Required for : Code generation
Your Version : 5.33.05

4. Checking Texas Instruments IMGLIB (C64x+) version
Required version: 2.0.1
Required for : CRL block replacement
Your Version 1 2.0.1
Setting environment variable "C64XP_IMGLIB_INSTALLDIR"
to "E:\apps\TexasInstruments\C64Plus\imglib v201"

5. Checking DM6437EVM DVSDK (Digital Video Software Developers Kit) versi
Required version: 1.01.00.15
Required for : Code generation
Your Version :1.01.00.15
Setting environment variable "DVSDK_EVMDM6437_INSTALLDIR" to "C:\[.
Setting environment variable "CSLR_DM6437 INSTALLDIR" to "C:\dvsd[.
Setting environment variable "PSP_EVMDM6437_INSTALLDIR" to "C:\dv[.
Setting environment variable "NDK_INSTALL_DIR" to "C:\dvsdk_1_01_[.

Input
Arguments

1-92

close

Purpose
Syntax
IDEs

Description

Close project in IDE window
IDE Obj.close(filename, 'project')

This function supports the following IDEs:
® Analog Devices VisualDSP++

* Eclipse IDE

® Green Hills MULTI

¢ Texas Instruments Code Composer Studio v3

Use IDE Obj.close(filename, 'project') to close a specific project,
projects, or the active open project.

For the filename argument:
® To close the project files, enter 'all’.

® To close a specific project, enter the project file name, such as
"myProj'.If the file is not an open file in the IDE, MATLAB returns a
warning message.

® To close the active project, enter [].

With the VisualDSP++ IDE, to close the current project group (if
filename is 'all' or []), replace 'project'with 'projectgroup’.

Note
® The open method does not support the 'text' argument.

e Save changes to your files and projects in the IDE before you use
close. The close method does not save changes, nor does it prompt
you to save changes, before it closes the project.

1-93

close

1-94

Examples

See Also

To close the open project files:

IDE_Obj.close('all', 'project')

To close the open project, myProj:

IDE_Obj.close('myProj', 'project')

To close the active open project:

IDE_Obj.close([], 'project')

With the VisualDSP++ IDE, to close the open project groups:

IDE_Obj.close('all', 'projectgroup')

With the VisualDSP++ IDE, to close the active project group:

IDE_Obj.close([], 'projectgroup')

add | open | save

configure

Purpose

Syntax

IDEs

Description

Examples

Define size and number of RTDX channel buffers

configure(rx,length,num)

Note configure produces a warning on C5000™ processors and will
be removed from a future version of the software.

This function supports the following IDEs:

¢ Texas Instruments Code Composer Studio v3

configure(rx,length,num) sets the size of each main (host) buffer,
and the number of buffers associated with rx. Input argument lIength
is the size in bytes of each channel buffer and num is the number of
channel buffers to create.

Main buffers must be at least 1024 bytes, with the maximum defined
by the largest message. On 16-bit processors, the main buffer must
be 4 bytes larger than the largest message. On 32-bit processors, set
the buffer to be 8 bytes larger that the largest message. By default,
configure creates four, 1024-byte buffers. Independent of the value of
num, the IDE allocates one buffer for each processor.

Use CCS to check the number of buffers and the length of each one.

Create a default link to CCS and configure six main buffers of 4096
bytes each for the link.

IDE_Obj=ticcs % Create the CCS link with default values.

TICCS Object:

API version 1.0
Processor type : C67
Processor name : CPU
Running? : No
Board number : 0

Processor number : 0O

1-95

configure

1-96

See Also

Default timeout : 10.00 secs

RTDX channels : 0
rx=IDE_Obj.rtdx % Create an alias to the rtdx portion.
RTDX channels : 0

configure(rx,4096,6) % Use the alias rx to configure the length

%

s and number of buffers.

After you configure the buffers, use the RTDX™ tools in the IDE to
verify the buffers.

readmat | readmsg | write | writemsg

connect

Purpose

Syntax

IDEs

Description

Examples

See Also

Connect IDE to processor

IDE Obj.connect()
IDE Obj.connect(debugconnection)
IDE Obj.connect(...,timeout)

This function supports the following IDEs:
¢ Green Hills MULTI

IDE Obj.connect() connects the IDE to the processor hardware or
simulator. IDE_Obj is the IDE handle.

IDE Obj.connect(debugconnection) connects the IDE to the
processor using the debug connection you specify in debugconnection.
Enter debugconnection as a string enclosed in single quotation marks.
IDE_Obj is the IDE handle. Refer to Examples to see this syntax in use.

IDE Obj.connect(...,timeout) adds the optional parameter timeout
that defines how long, in seconds, MATLAB waits for the specified
connection process to complete. If the time-out period expires before the
process returns a completion message, MATLAB generates an error and
returns. Usually the program connection process works in spite of the
error message

The input argument stringdebugconnection specify the processor
to connect to with the IDE. This example connects to the
Freescale™ MPC5554 simulator. The debugconnection string is
simppc -fast -dec -rom_use_entry -cpu=ppc5554.

IDE_Obj.connect('simppc -fast -dec -rom_use_entry -cpu=ppc5554")

load | run

1-97

cgv.CGV.copySetup

Purpose
Syntax

Description

Tips

Examples

See Also

How To

1-98

Create copy of cgv.CGV object
cgvObj2 = cgvObj1.copySetup()

cgvObj2 = cgvObj1.copySetup() creates a copy of a cgv.CGV object,
cgvObj1. The copied object, cgvObj2, has the same configuration as
cgvObj 1, but does not copy results of the execution.

® You can use this method to make a copy of a cgv.CGV object
and then modify the object to run in a different mode by calling
cgv.CGV.setMode.

¢ If you have a cgv.CGV object, which reported errors or failed at
execution, you can use this method to copy the object and rerun it.
The copied object has the same configuration as the original object,
therefore you might want to modify the location of the output files
by calling cgv.CGV.setOutputDir. Otherwise, during execution, the
copied cgv.CGV object overwrites the output files.

Make a copy of a cgv.CGV object, set it to run in a different mode, then
run and compare the objects in a cgv.Batch object.

cgvModel = 'rtwdemo_cgv';

cgvObj1 = cgv.CGV(cgvModel, 'connectivity', 'sim');
cgvObjt1.run();

cgvObj2 = cgvObj1.copySetup()
cgvObj2.setMode('sil');

cgvObj2.run();

cgv.CGV.run

+ “Verify Numerical Equivalence with CGV”

copyConceptualArgsToimplementation

Purpose

Syntax

Arguments

Description

Examples

Copy conceptual argument specifications to matching implementation
arguments for CRL table entry

copyConceptualArgsToImplementation(hEntry)

hEntry
Handle to a CRL table entry previously returned by instantiating
a CRL entry class, such as hEntry = RTW.TflCFunctionEntry or
hEntry = RTW.Tf1lCOperationEntry.

The copyConceptualArgsToImplementation function provides a

quick way to copy conceptual argument specifications to matching
implementation arguments. This function can be used when the
conceptual arguments and the implementation arguments are the same
for a CRL table entry.

In the following example, the copyConceptualArgsToImplementation
function is used to copy conceptual argument specifications to matching
implementation arguments for an addition operation.

hLib = RTW.TflTable;

% Create an entry for addition of built-in uint8 data type
op_entry = RTW.TflCOperationEntry;
op_entry.setTflCOperationEntryParameters(...

'Key', '"RTW_OP_ADD', ...

'Priority’', 90, ...

'SaturationMode’, "RTW_SATURATE_ON_OVERFLOW', ...
'RoundingModes’', {'RTW_ROUND_UNSPECIFIED'}, ...
'ImplementationName', 'u8_add_u8_u8', ..

‘ImplementationHeaderFile', 'u8_add_u8_u8.h', ...
‘ImplementationSourceFile', 'u8_add_u8_u8.c');

arg = hLib.getTflArgFromString('y1','uint8');
arg.IOType = 'RTW_IO_OUTPUT';
op_entry.addConceptualArg(arg);

1-99

copyConceptualArgsToimplementation

arg = hLib.getTflArgFromString('ul','uint8');
op_entry.addConceptualArg(arg);

arg = hLib.getTflArgFromString('u2','uint8');
op_entry.addConceptualArg(arg);

op_entry.copyConceptualArgsToImplementation();

hLib.addEntry(op_entry);

How To + “Create Code Replacement Tables”

+ “Introduction to Code Replacement Libraries”

1-100

createAndAddConceptualArg

Purpose

Syntax

Input
Arguments

varargin
Parameters

Create conceptual argument from specified properties and add to
conceptual arguments for CRL table entry

arg = createAndAddConceptualArg(hEntry, argType, varargin)

hEntry
Handle to a CRL table entry previously returned by instantiating
a CRL entry class, such as hEntry = RTW.TflCFunctionEntry or
hEntry = RTW.Tf1lCOperationEntry.

argType
String specifying the argument type to create:
"RTW.Tf1lArgNumeric' for numeric or 'RTW.TflArgMatrix' for
matrix.

varargin
Parameter/value pairs for the conceptual argument. See varargin
Parameters.

The following argument properties can be specified to the
createAndAddConceptualArg function using parameter/value
argument pairs. For example,

createAndAddConceptualArg(..., 'DataTypeMode', 'double', ...);

Name
String specifying the argument name, for example, 'y1' or 'ul'.

I0Type
String specifying the I/O type of the argument: 'RTW_I0_ INPUT'
for input or 'RTW_IO_OUTPUT' for output. The default is
'RTW_IO_INPUT'.

IsSigned
Boolean value that, when set to true, indicates that the argument
is signed. The default is true.

1-101

createAndAddConceptualArg

1-102

WordLength

Integer specifying the word length, in bits, of the argument. The
default is 16.

CheckSlope

Boolean flag that, when set to true for a fixed-point argument,
causes CRL replacement request processing to check that the
slope value of the argument exactly matches the call-site slope
value. The default is true.

Specify true if you are matching a specific [slope bias] scaling
combination or a specific binary-point-only scaling combination on
fixed-point operator inputs and output. Specify false if you are
matching relative scaling or relative slope and bias values across
fixed-point operator inputs and output.

CheckBias

Boolean flag that, when set to true for a fixed-point argument,
causes CRL replacement request processing to check that the bias
value of the argument exactly matches the call-site bias value.
The default is true.

Specify true if you are matching a specific [slope bias] scaling
combination or a specific binary-point-only scaling combination on
fixed-point operator inputs and output. Specify false if you are
matching relative scaling or relative slope and bias values across
fixed-point operator inputs and output.

DataTypeMode

String specifying the data type mode of the argument: 'boolean’,
'double’, 'single’, 'Fixed-point: binary point scaling'
or 'Fixed-point: slope and bias scaling'. The default is
'Fixed-point: binary point scaling'

Note You can specify either DataType (with Scaling) or
DataTypeMode, but do not specify both.

createAndAddConceptualArg

DataType

String specifying the data type of the argument: 'boolean’,
'double', 'single’', or 'Fixed'. The default is 'Fixed'.

Scaling

Slope

String specifying the data type scaling of the argument:
'BinaryPoint' for binary-point scaling or 'SlopeBias' for slope
and bias scaling. The default is 'BinaryPoint"'.

Floating-point value specifying the slope of the argument, for
example, 15.0. The default is 1.

If you are matching a specific [slope bias] scaling combination
on fixed-point operator inputs and output, specify either this
parameter or a combination of the SlopeAdjustmentFactor and
FixedExponent parameters

SlopeAdjustmentFactor

Floating-point value specifying the slope adjustment factor (F)
part of the slope, F2E, of the argument. The default is 1.0.

If you are matching a specific [slope bias] scaling combination
on fixed-point operator inputs and output, specify either the
Slope parameter or a combination of this parameter and the
FixedExponent parameter.

FixedExponent

Bias

Integer value specifying the fixed exponent (E) part of the slope,
F2E, of the argument. The default is -15.

If you are matching a specific [slope bias] scaling combination
on fixed-point operator inputs and output, specify either the
Slope parameter or a combination of this parameter and the
SlopeAdjustmentFactor parameter.

Floating-point value specifying the bias of the argument, for
example, 2.0. The default is 0.0.

1-103

createAndAddConceptualArg

Output
Arguments

Description

Examples

1-104

Specify this parameter if you are matching a specific [slope bias]
scaling combination on fixed-point operator inputs and output.

FractionLength
Integer value specifying the fraction length for the argument, for
example, 3. The default is 15.

Specify this parameter if you are matching a specific
binary-point-only scaling combination on fixed-point operator
inputs and output.

BaseType
String specifying the base data type for which a matrix argument
1s valid, for example, 'double’.

DimRange
Dimensions for which a matrix argument is valid, for example,
[2 2]. You can also specify a range of dimensions specified
in the format [Dim1Min Dim2Min ... DimNMin; DimiMax
Dim2Max ... DimNMax]. For example, [2 2; inf inf] means a
two-dimensional matrix of size 2x2 or larger.

Handle to the created conceptual argument. Specifying the return
argument in the createAndAddConceptualArg function call is optional.

The createAndAddConceptualArg function creates a conceptual
argument from specified properties and adds the argument to the
conceptual arguments for a CRL table entry.

In the following example, thecreateAndAddConceptualArg function
is used to specify conceptual output and input arguments for a CRL
operator entry.

op_entry = RTW.TflCOperationEntry;

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

createAndAddConceptualArg

"Name ', 'y,
'I0Type', '"RTW_IO_OUTPUT',
'IsSigned’, true,

'WordLength', 32,
'FractionLength', 0);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric',...

"Name ', ‘ul',
'I0Type', "RTW_IO_INPUT',...
'IsSigned’, true,...

'WordLength', 32,
'FractionLength', 0);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric',...

'Name ', ‘u2',
'I0Type', "RTW_IO_INPUT',...
'IsSigned’, true,...

'WordLength', 32,
'FractionLength', 0);

The following examples show some common type specifications using
createAndAddConceptualArg.

% uint8:

createAndAddConceptualArg(hEntry, 'RTW.TflArgNumeric',
"Name ', ‘ul',
'I0Type', "RTW_IO_INPUT',
'IsSigned’, false,
'WordLength', 8,
'FractionLength', 0);

% single:

createAndAddConceptualArg(hEntry, 'RTW.TflArgNumeric',
"Name ', ‘ul',
'I0Type', "RTW_IO_INPUT',

'DataTypeMode', 'single');

1-105

createAndAddConceptualArg

% double:
createAndAddConceptualArg(hEntry, 'RTW.TflArgNumeric',
'Name ', ‘y1',
"I10Type', 'RTW_IO_OUTPUT',

'DataTypeMode', 'double’);

% boolean:

createAndAddConceptualArg(hEntry, 'RTW.TflArgNumeric',

'Name ',
"I0Type',

e,
"RTW_IO_INPUT',

'DataTypeMode', 'boolean');

%

s Fixed-point using binary-point-only scaling:

createAndAddConceptualArg(hEntry, 'RTW.TflArgNumeric',

‘Name', 'y1',

'I0Type', "RTW_IO_OUTPUT',

'CheckSlope’, true,

'CheckBias"', true,

'DataTypeMode’, 'Fixed-point: binary point scaling',
'IsSigned’, true,

'WordLength', 32,

'FractionLength', 28);

%

s Fixed-point using [slope bias] scaling:

createAndAddConceptualArg(hEntry, 'RTW.TflArgNumeric',

‘Name', 'y1',

'I0Type', "RTW_IO_OUTPUT',

'CheckSlope’, true,

'CheckBias', true,

'DataTypeMode’, 'Fixed-point: slope and bias scaling',
'IsSigned’, true,

'WordLength', 16,

'Slope’, 15,

'Bias’', 2);

For examples of fixed-point arguments that use relative scaling or
relative slope/bias values, see “Create Fixed-Point Operator Entries for

1-106

createAndAddConceptualArg
|

Relative Scaling (Multiplication and Division)” and “Create Fixed-Point
Operator Entries for Equal Slope and Zero Net Bias (Addition and
Subtraction)” in the Embedded Coder documentation.

How To + “Create Code Replacement Tables”

+ “Introduction to Code Replacement Libraries”

1-107

createAndAddimplementationArg

Purpose
Syntax

Input
Arguments

varargin
Parameters

1-108

Create implementation argument from specified properties and add to
implementation arguments for CRL table entry

arg = createAndAddImplementationArg(hEntry, argType,
varargin)

hEntry
Handle to a CRL table entry previously returned by instantiating
a CRL entry class, such as hEntry = RTW.TflCFunctionEntry or
hEntry = RTW.Tf1lCOperationEntry.

argType
String specifying the argument type to create:
"RTW.TflArgNumeric' for numeric.

varargin
Parameter/value pairs for the implementation argument. See
varargin Parameters.

The following argument properties can be specified to the
createAndAddImplementationArg function using parameter/value
argument pairs. For example,

createAndAddImplementationArg(..., 'DataTypeMode', 'double', ...);

Name
String specifying the argument name, for example, 'u1

I0Type
String specifying the I/O type of the argument: 'RTW_I0_ INPUT'
for input.

IsSigned
Boolean value that, when set to true, indicates that the argument
is signed. The default is true.

WordLength
Integer specifying the word length, in bits, of the argument. The
default is 16.

createAndAddimplementationArg

DataTypeMode
String specifying the data type mode of the argument: 'boolean’,
'double’, 'single’, 'Fixed-point: binary point scaling'
or 'Fixed-point: slope and bias scaling'. The default is
'Fixed-point: binary point scaling'

Note You can specify either DataType (with Scaling) or
DataTypeMode, but do not specify both.

DataType
String specifying the data type of the argument: 'boolean’,
'double’', 'single’', or 'Fixed'. The defaultis 'Fixed'.

Scaling
String specifying the data type scaling of the argument:
'BinaryPoint' for binary-point scaling or 'SlopeBias' for slope
and bias scaling. The default is 'BinaryPoint"'.

Slope
Floating-point value specifying the slope of the argument, for
example, 15.0. The default is 1.

You can optionally specify either this parameter or a combination
of the SlopeAdjustmentFactor and FixedExponent parameters,
but do not specify both.

SlopeAdjustmentFactor
Floating-point value specifying the slope adjustment factor (F)
part of the slope, F2E, of the argument. The default is 1.0.

You can optionally specify either the Slope parameter or a
combination of this parameter and the FixedExponent parameter,
but do not specify both.

FixedExponent
Integer value specifying the fixed exponent (E) part of the slope,
F2E, of the argument. The default is -15.

1-109

createAndAddimplementationArg

Output
Arguments

Description

1-110

You can optionally specify either the Slope parameter or a
combination of this parameter and the SlopeAdjustmentFactor
parameter, but do not specify both.

Bias
Floating-point value specifying the bias of the argument, for
example, 2.0. The default is 0.0.

FractionLength
Integer value specifying the fraction length of the argument, for
example, 3. The default is 15.

Value
Constant value specifying the initial value of the argument. The
default is 0.

Use this parameter only to set the value of injected constant input
arguments, such as arguments that pass fraction-length values
or flag values, in an implementation function signature. Do not
use it for standard generated input arguments such as u1, u2, and
so on. You can supply a constant input argument that uses this
parameter anywhere in the implementation function signature,
except as the return argument.

You can inject constant input arguments into the implementation
signature for CRL table entries, but if the argument values or
the number of arguments required depends on compile-time
information, you should use custom matching. For more
information, see “Refine Matching and Replacement Using
Custom Entries” in the Embedded Coder documentation.

Handle to the created implementation argument. Specifying the return
argument in the createAndAddImplementationArg function call is
optional.

The createAndAddImplementationArg function creates an
implementation argument from specified properties and adds the
argument to the implementation arguments for a CRL table entry.

createAndAddimplementationArg

Note Implementation arguments must describe fundamental numeric
data types, such as double, single, int32, int16, int8, uint32,
uint16, uint8, or boolean (not fixed point data types).

Examples In the following example, thecreateAndAddImplementationArg
function is used along with the createAndSetCImplementationReturn
function to specify the output and input arguments for an operator
implementation.

op_entry = RTW.TflCOperationEntry;

createAndSetCImplementationReturn(op_entry, 'RTW.TflArgNumeric',

'Name ', 'y1',
"I0Type', '"RTW_IO_OUTPUT',
'IsSigned’, true,

‘WordLength', 32,
'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

'Name ', ‘utl',
"I0Type', "RTW_IO_INPUT',...
'IsSigned’, true,...

'WordLength', 32,
'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

'Name ', ‘u2',
"I0Type', "RTW_IO_INPUT',...
'IsSigned’, true,...

‘WordLength', 32,
'FractionLength', 0);

1-111

createAndAddimplementationArg

The following examples show some common type specifications using
createAndAddImplementationArg.

% uint8:

createAndAddImplementationArg (hEntry, 'RTW.TflArgNumeric',
'Name ', ‘ul',
"I0Type', "RTW_IO_INPUT',
'IsSigned’, false,
'WordLength', 8,
'FractionLength', 0);

% single:

createAndAddImplementationArg (hEntry, 'RTW.TflArgNumeric',
'Name ', ‘ul',
"I0Type', "RTW_IO_INPUT',
'DataTypeMode', 'single');

% double:

createAndAddImplementationArg (hEntry, 'RTW.TflArgNumeric',
'Name ', ‘ul',
"I0Type', "RTW_IO_INPUT',

'DataTypeMode', 'double');

% boolean:

createAndAddImplementationArg (hEntry, 'RTW.TflArgNumeric',
'Name ', ‘ul',
"I0Type', "RTW_IO_INPUT',
'DataTypeMode', 'boolean');

See Also createAndSetCImplementationReturn

How To + “Create Code Replacement Tables”

1-112

createAndSetCimplementationReturn

Purpose
Syntax

Input
Arguments

varargin
Parameters

Create implementation return argument from specified properties and
add to implementation for CRL table entry

arg = createAndSetCImplementationReturn(hEntry, argType,
varargin)

hEntry
Handle to a CRL table entry previously returned by instantiating
a CRL entry class, such as hEntry = RTW.TflCFunctionEntry or
hEntry = RTW.Tf1lCOperationEntry.

argType
String specifying the argument type to create:
"RTW.TflArgNumeric' for numeric.

varargin
Parameter/value pairs for the implementation return argument.
See varargin Parameters.

The following argument properties can be specified to the
createAndSetCImplementationReturn function using parameter/value
argument pairs. For example,

createAndSetCImplementationReturn(..., 'DataTypeMode', 'double', ...);

Name
String specifying the argument name, for example, 'y1'.

I0Type
String specifying the I/O type of the argument: 'RTW_IO OUTPUT'
for output.

IsSigned
Boolean value that, when set to true, indicates that the argument
is signed. The default is true.

WordLength
Integer specifying the word length, in bits, of the argument. The
default is 16.

1-113

createAndSetCimplementationReturn

DataTypeMode
String specifying the data type mode of the argument: 'boolean’,
'double’, 'single’, 'Fixed-point: binary point scaling'
or 'Fixed-point: slope and bias scaling'. The default is
'Fixed-point: binary point scaling'

Note You can specify either DataType (with Scaling) or
DataTypeMode, but do not specify both.

DataType
String specifying the data type of the argument: 'boolean’,
'double', 'single', or 'Fixed'. The defaultis 'Fixed'.

Scaling
String specifying the data type scaling of the argument:
'BinaryPoint' for binary-point scaling or 'SlopeBias' for slope
and bias scaling. The default is 'BinaryPoint"'.

Slope
Floating-point value specifying the slope for a fixed-point
argument, for example, 15.0. The default is 1.

You can optionally specify either this parameter or a combination
of the SlopeAdjustmentFactor and FixedExponent parameters,
but do not specify both.

SlopeAdjustmentFactor
Floating-point value specifying the slope adjustment factor (F)
part of the slope, F2E, of the argument. The default is 1.0.

You can optionally specify either the Slope parameter or a
combination of this parameter and the FixedExponent parameter,
but do not specify both.

FixedExponent
Integer value specifying the fixed exponent (E) part of the slope,
F2E, of the argument. The default is -15.

1-114

createAndSetCimplementationReturn

Output
Arguments

Description

Examples

You can optionally specify either the Slope parameter or a
combination of this parameter and the SlopeAdjustmentFactor
parameter, but do not specify both.

Bias
Floating-point value specifying the bias of the argument, for
example, 2.0. The default is 0.0.

FractionLength
Integer value specifying the fraction length of the argument, for
example, 3. The default is 15.

Handle to the created implementation return argument. Specifying
the return argument in the createAndSetCImplementationReturn
function call is optional.

The createAndSetCImplementationReturn function creates an
implementation return argument from specified properties and adds
the argument to the implementation for a CRL table.

Note Implementation return arguments must describe fundamental
numeric data types, such as double, single, int32, int16, ints8,
uint32, uint16, uints8, or boolean (not fixed point data types).

In the following example, the createAndSetCImplementationReturn
function is used along with the createAndAddImplementationArg
function to specify the output and input arguments for an operator
implementation.

op_entry = RTW.TflCOperationEntry;

createAndSetCImplementationReturn(op_entry, 'RTW.TflArgNumeric', ...
'Name', y1', ...
'I0Type', 'RTW_IO_OUTPUT', ...

1-115

createAndSetCimplementationReturn

'IsSigned’, true,
'WordLength', 32,
'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

'Name ', ‘utl’,
"I0Type', "RTW_IO_INPUT',...
'IsSigned’, true,...

‘WordLength', 32,
'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

'Name ', ‘u2',
"I0Type', "RTW_IO_INPUT',...
'IsSigned’, true,...

‘WordLength', 32,
'FractionLength', 0);

The following examples show some common type specifications using
createAndSetCImplementationReturn

% uint8:

createAndSetCImplementationReturn(hEntry, 'RTW.TflArgNumeric',
'Name ', 'y1',
"10Type', 'RTW_IO_OUTPUT',
'IsSigned’, false,
'WordLength', 8,
'FractionLength', 0);

% single:

createAndSetCImplementationReturn(hEntry, 'RTW.TflArgNumeric',
'Name ', 'y1',
"10Type', 'RTW_IO_OUTPUT',
'DataTypeMode', 'single');

% double:

createAndSetCImplementationReturn(hEntry, 'RTW.TflArgNumeric',

1-116

createAndSetCimplementationReturn

'Name ', 'y, ..
"I0Type', '"RTW_IO_OUTPUT', ...
'DataTypeMode', 'double');

% boolean:

createAndSetCImplementationReturn(hEntry, 'RTW.TflArgNumeric',
'Name ', 'y, ..
"I0Type', 'RTW_IO_OUTPUT', ...
‘DataTypeMode', 'boolean');

See Also createAndAddImplementationArg

How To + “Create Code Replacement Tables”

+ “Introduction to Code Replacement Libraries”

1-117

arxml.importer.createCalibrationComponentObjects

Purpose

Syntax

Description

Input
Arguments

Output
Arguments

Examples

How To

1-118

Create Simulink calibration objects from AUTOSAR calibration
component

importerObj.createCalibrationComponentObjects (componentName)
[success] = createCalibrationComponentObjects(importerobj,
componentName, 'CreateSimulinkObject', true)

importerObj.createCalibrationComponentObjects (componentName)
creates Simulink calibration objects from an AUTOSAR calibration
component. This imports your parameters into the workspace and you
can then assign them to block parameters in your Simulink model.

componentName Absolute short name path of calibration
parameter component.

'CreateSimulink Optional property/value pair. The property
Object', true CreateSimulinkObject can be either true or
false (default is true). If it is true, then:

[success] =

createCalibrationComponentObjects (importerObj,
componentName, 'CreateSimulinkObject',

true) creates the Simulink.AliasType and
Simulink.NumericType corresponding to the
AUTOSAR data types described in the XML

file imported by importerobj.

success True if function is successful. False otherwise.

importer_obj.createCalibrationComponentObjects('/package/autosar_component2')

“Import an AUTOSAR Software Component”

arxml.importer.createComponentAsModel

Purpose

Syntax

Description

Input
Arguments

Create AUTOSAR atomic software component as Simulink model

[modelH, success] = importerObj.createComponentAsMo
del(ComponentName)
[modelH, success] = importerObj.createComponentAsMo

del(ComponentName, Propertyl, Valuel, Property2, Value2,
.)

[modelH, success] =
importerObj.createComponentAsModel (ComponentName) creates a
Simulink model corresponding to the AUTOSAR atomic software
component 'COMPONENT' described in the XML file imported by the
arxml.importer object importeroObj.

You can also specify optional property/value pairs when creating this
Simulink model:

[modelH, success] =
importerObj.createComponentAsModel (ComponentName,
Propertyi, Valuel, Property2, Value2, ...)

ComponentName Absolute short name path of the atomic
software component.

PropertyN, ValueN Optional property/value pairs. You can specify
values for the following properties:

'CreateSimulinkObject’
true (default) or false. If
true, then the function creates
the Simulink.AliasType and
Simulink.NumericType corresponding
to the AUTOSAR data types in the XML
file.

1-119

arxml.importer.createComponentAsModel

Output
Arguments

Examples

How To

1-120

'NameConflictAction'
‘overwrite' (default) or
‘'makenameunique' or 'error'.
Use this property to determine the
action if a Simulink model with the same
name as the component already exists.

"AutoSave’
true or false (default). If true, then
the function automatically saves the
generated Simulink model.

modelH Model handle.
success True if the function is successful. Otherwise,
it 1s false.

importer_obj.createComponentAsModel('/package/autosar_component2')

“Import an AUTOSAR Software Component”

arxml.importer.createComponentAsSubsystem

Purpose

Syntax

Description

Create AUTOSAR atomic software component as Simulink atomic
subsystem

[susbsysH, success] = importerObj.createComponentAsSu
bsystem(ComponentName)
[susbsysH, success] = importerObj.createComponentAsSu

bsystem(ComponentName, Propertyi1, Valuel, Property2,
Value2, ...)

[susbsysH, success] =
importerObj.createComponentAsSubsystem(ComponentName) creates
a Simulink subsystem corresponding to the AUTOSAR atomic software
component 'COMPONENT' described in the XML file imported by the
arxml.importer object importeroObj.

You can also specify optional property/value pairs when creating this
Simulink subsystem:

[susbsysH, success] =
importerObj.createComponentAsSubsystem(ComponentName,
Property1, Valuel, Property2, Value2, ...)

You can perform AUTOSAR configuration and code generation on
atomic subsystems or function call subsystems. These subsystems must
be convertible to model reference blocks by using the method:

Simulink.SubSystem.convertToModelReference

Note The AUTOSAR target automatically checks that the subsystem
meets this requirement when you perform a subsystem build.

You do not have to convert your subsystem to a model reference block; it
is optional. If you convert your subsystem to a referenced model, you
can configure AUTOSAR options within the referenced model.

You can export functions for a single function-call subsystem. First
configure your function-call subsystem AUTOSAR options (e.g., using

1-121

arxml.importer.createComponentAsSubsystem

the GUI from the Configuration Parameters dialog or by calling
autosar_ui_launch(subsystemName)). Then right-click the subsystem
and select C/C++ Code > Export Functions.

Input ComponentName Absolute short name path of the atomic
Arguments software component .

PropertyN, ValueN Optional property/value pairs. You can specify
values for the following properties:

'CreateSimulinkObject’
true or false (default is true).
If true, the function creates
the Simulink.AliasType and
Simulink.NumericType corresponding
to the AUTOSAR data types in the XML
file.

"NameConflictAction'
‘overwrite' (default),
‘makenameunique’ or 'error' .
Use this property to determine the
action to take if a Simulink model
with the same name as the component
already exists.

'"AutoSave’
true or false (default is false). If
true, the function automatically saves
the generated Simulink model.

2““’“' susbsysH Subsystem handle.

rguments . . .

9 success True if the function is successful. Otherwise,
it 1s false.

1-122

arxml.importer.createComponentAsSubsystem

Examples importer_obj.createComponentAsSubsystem('/package/autosar_component2')

How To + “Import an AUTOSAR Software Component”

1-123

arxml.importer.createOperationAsConfigurableSubsystems

Purpose

Syntax

Description

Input
Arguments

1-124

Create configurable Simulink subsystem library for client-server
operation

[modelH, success] = importerObj.createOperationAsCo
nfigurableSubsystems (interfaceName)
[modelH, success] = importerObj.createOperationAsCo

nfigurableSubsystems(InterfaceName, Propertyi, Valueft,
Property2, Value2, ...)

[modelH, success] =
importerObj.createOperationAsConfigurableSubsystems (interfaceName)
creates a configurable Simulink subsystem library corresponding to the
AUTOSAR client-server interface ' INTERFACE'. This interface is

described in the XML file imported by the arxml.importer

object importerobj.

You can also specify optional property/value pairs when creating this
Simulink subsystem library:

[modelH, success] =
importerObj.createOperationAsConfigurableSubsystems (InterfaceName,

Property1, Valuel, Property2, Value2, ...)
interfaceName Absolute short name path of the client-server
interface.

PropertyN, ValueN Optional property/value pairs. You can specify
values for the following properties:

'CreateSimulinkObject’
true (default) or false. If
true, then the function creates
the Simulink.AliasType and
Simulink.NumericType corresponding
to the AUTOSAR data types in the XML
file.

arxml.importer.createOperationAsConfigurableSubsysten

Output
Arguments

Examples

See Also

How To

'NameConflictAction'
‘overwrite' (default) or
‘'makenameunique' or 'error'.
Use this property to determine the
action if a Simulink model with the same
name as the component already exists.

"AutoSave'’
true or false (default). If true, then
the function automatically saves the
generated Simulink subsystem library.

'ForceClientBlkForBSP'
true or false (default). If true, an
Invoke AUTOSAR Server Operation
block is created for a single argument
operation that accesses Basic Software.

modelH Model handle.
success True if the function is successful. False
otherwise.

obj.createOperationAsConfigurableSubsystems('/PortInterface/csinterface')

arxml.importer.getClientServerInterfaceNames

+ “AUTOSAR Communication”
* “Import an AUTOSAR Software Component”

+ “Configure Client-Server Communication”

1-125

cgv.CGV.createToleranceFile

Purpose

Syntax

Description

Input
Arguments

1-126

Create file correlating tolerance information with signal names

cgvObj.createToleranceFile(file_name , signal_list,
tolerance_list)

cgvObj.createToleranceFile(file_name , signal_list,
tolerance_list) creates a MATLAB file, named file name,
containing the tolerance specification for each output signal name in
signal list. Each signal name in the signal_1ist corresponds
to the same location of a parameter name and value pair in the
tolerance_list.

file_name

Name for the file containing the tolerance specification for
each signal. Use this file as input to cgv.CGV.compare and
cgv.Batch.addTest.

signal_list

A cell array of strings, where each string is a signal name for data
from the model. Use cgv.CGV.getSavedSignals to view the list
of available signal names in the output data. signal_list can
contain an individual signal or multiple signals. The syntax for
an individual signal name is:

signal_list = {'log_data.subsystem_name.Data(:,1)"'}
The syntax for multiple signal names is:

signal_list = {'log_data.block_name.Data(:,1)"',...
'log_data.block_name.Data(:,2)',...
'log_data.block_name.Data(:,3)"
"log_data.block_name.Data(:,4)'};

To specify a global tolerance for the signals, include the reserved
signal name, 'global_tolerance', in signal_list. Assign a
global tolerance value in the associated tolerance_list. If
signal_list contains other signals, their associated tolerance

cgv.CGV.createToleranceFile

value overrides the global tolerance value. In this example, the
global tolerance is a relative tolerance of 0.02.

signal_list = {'global_tolerance’,...
'log_data.block_name.Data(:,1)"',...
"log_data.block_name.Data(:,2)"'};

tolerance_list = {{'relative', 0.02},...
{'relative', 0.015},{'absolute', 0.05}};

Note If a model component contains a space or newline character,
MATLAB adds parantheses and a single quote to the name of the
component. For example, if a substring of the signal name has a
space, 'block name', MATLAB displays the signal name as:

log_data.('block name').Data(:,1)

To use the signal name as input to a CGV function, 'block name'
must have two single quotes in the signal list. For example:

signal_list = {'log_data.(''block name'').Data(:,1)"'}

tolerance_list

Cell array of cell arrays. Each element of the outer cell array is
a cell array containing a parameter name and value pair for the
type of tolerance and its value. Possible parameter names are
'absolute' | 'relative' | 'function'. There is a one-to-one
mapping between each parameter name and value pair in the
tolerance_list and a signal name in the signal list. For
example, a tolerance_list for a signal_ list containing four
signals might look like the following:

tolerance_list = {{'relative', 0.02},{'absolute', 0.06},...
{'relative', 0.015},{'absolute', 0.05}};

1-127

cgv.CGV.createToleranceFile

How To + “Verify Numerical Equivalence with CGV”

1-128

disable

Purpose

Syntax

IDEs

Description

Examples

Disable RTDX interface, specified channel, or RTDX channels

Note Support for disable on C5000 processors will be removed in a
future version.

disable(rx, 'channel')

disable(rx, 'all')

disable(rx)

This function supports the following IDEs:

¢ Texas Instruments Code Composer Studio v3

disable(rx, 'channel') disables the open channel specified by the

string channel, for rx. Input argument rx represents the RTDX portion
of the associated link to the IDE.

disable(rx, 'all') disables the open channels associated with rx.

disable(rx) disables the RTDX interface for rx.

Important Requirements for Using disable

On the processor side, disable depends on RTDX to disable channels or
the interface. To use disable, meet the following requirements:

1 The processor must be running a program.
2 You enabled the RTDX interface.

3 Your processor program polls periodically.
When you have opened and used channels to communicate with a

processor, disable the channels and RTDX before ending your session.
Use disable to switch off open channels and disable RTDX, as follows:

disable(IDE_Obj.rtdx,'all') % Disable the open RTDX channels.

1-129

disable

disable(IDE_Obj.rtdx) % Disable RTDX interface.

See Also close | enable | open

1-130

display (IDE Object)
|

Purpose Properties of IDE handle
Syntax IDE _Obj.display()
IDEs This function supports the following IDEs:

® Analog Devices VisualDSP++
* Eclipse IDE
® Green Hills MULTI
¢ Texas Instruments Code Composer Studio v3
Description IDE Obj.display() displays the properties and property values of the
IDE handleIDE_Obj.

For example, after you creating IDE_0bj with a constructor, using the
display method with IDE_Obj returns a set of properties and values:

IDE_Obj.display

IDE Object:
Propertyi : valuea
Property2 : valueb
Property3 : valuec
Property4 : valued
See Also get

1-131

display

Purpose
Syntax

Description

See Also

How To

1-132

Generate message that describes how to open code execution profiling
report

myExecutionProfile
myExecutionProfile.display

myExecutionProfile or myExecutionProfile.display generates a
message that describes how you can open the code execution profiling
report.

myExecutionProfile is a workspace variable, specified through
the configuration parameter CodeExecutionProfileVariable and
generated by a simulation.

report

“Configure Code Execution Profiling”

“View and Compare Code Execution Times”

cgv.Config.displayReport
|

Purpose Display results of comparing configuration parameter values
Syntax cfgObj .displayReport()
Description cfgObj .displayReport () displays the results at the MATLAB

Command Window of comparing the configuration parameter values
for the model with the values that the object recommends. ¢fgObj is
a handle to a cgv.Config object.

How To + “Verify Numerical Equivalence Between Two Modes of Execution
of a Model”

1-133

eclipseide

Purpose

Syntax

IDEs

Description

1-134

Create handle object to interact with Eclipse IDE

IDE Obj = eclipseide
IDE Obj eclipseide('timeout', period)

This function supports the following IDEs:
* Eclipse IDE

Before using eclipseide for the first time:

¢ Install the versions of Eclipse IDE and related build tools described
in “Installing Third-Party Software for Eclipse”.

® Use the eclipseidesetup function to configure and install a plug-in
that enables your coder product to interact with Eclipse IDE.

Use IDE _Obj = eclipseide to create an IDE handle object, which you
can use to communicate with the Eclipse IDE and processors connected
to the Eclipse IDE. After creating the IDE handle object, you can use
the methods for the Eclipse IDE.

When you use eclipseide, your coder product uses the plug-in to open
a session with Eclipse. If Eclipse IDE is not already running, the
eclipseide function starts the Eclipse IDE. The session connects via
the IP port number and uses the workspace you specified previously
with eclipseidesetup.

When you build a model, the software uses eclipseide to create an
IDE handle object. In that case, the software gets the name of the IDE
handle object from the IDE link handle name parameter (default
value: IDE_Obj) in the configuration parameters for the model.

To assign a timeout period to the handle object, enter the following
command:

IDE Obj = eclipseide('timeout', period)

For period, enter the number of seconds that the handle object waits
for processor operations (such as load) to complete. Operations that

eclipseide

Examples

See Also

exceed the timeout period generate timeout errors. The default period
1s 10 seconds.

For example, to create an object handle with a 20-second timeout
period, enter:

>> IDE_Obj = eclipseide('timeout',20)
Starting Eclipse(TM) IDE...

ECLIPSEIDE Object:
Default timeout : 20.00 secs
Eclipse folder : C:\eclipse3.4\eclipse
Eclipse workspace: C:\WINNT\Profiles\rdlugyhe\workspace
Port number : 5555
Processor site : local

eclipseidesetup

1-135

eclipseidesetup

Purpose
Syntax
IDEs

Description

See Also

1-136

Configure your coder product to interact with Eclipse IDE
eclipseidesetup

This function supports the following IDEs:
* Eclipse IDE

Before using eclipseidesetup for the first time, install the versions of
Eclipse IDE and related build tools described in “Installing Third-Party
Software for Eclipse”.

To avoid potential build errors later on, close Eclipse IDE before you
run eclipseidesetup. For more information, see Build Errors.

Use eclipseidesetup at the MATLAB command line to set up your
coder product to interact with Eclipse IDE. This action displays a dialog
box which you use to configure and add a plugin to the Eclipse IDE. For
detailed instructions and examples, see “Configuring Your MathWorks®
Software to Work with Eclipse”.

When to use eclipseidesetup:
e After you install or reinstall the Eclipse IDE.
® Before you use the eclipseide constructor function to create an IDE

handle object for the first time.

eclipseide

enable

Purpose

Syntax

IDEs

Description

Enable RTDX interface, specified channel, or RTDX channels

Note Support for enable on C5000 processors will be removed in a
future version.

enable(rx, 'channel')

enable(rx, 'all')

enable(rx)

This function supports the following IDEs:

¢ Texas Instruments Code Composer Studio v3

enable(rx, 'channel') enables the open channel specified by the

string channel, for RTDX link rx. The input argument rx represents
the RTDX portion of the associated link to the IDE.

enable(rx, 'all') enables the open channels associated with rx.

enable(rx) enables the RTDX interface for rx.

Important Requirements for Using enable

On the processor side, enable depends on RTDX to enable channels. To
use enable, meet the following requirements:

1 The processor must be running a program when you enable the
RTDX interface. When the processor is not running, the state
defaults to disabled.

2 Enable the RTDX interface before you enable individual channels.
3 Channels must be open.
4 Your processor program must poll periodically.

5 Using code in the program running on the processor to enable
channels overrides the default disabled state of the channels.

1-137

enable

Examples

See Also

1-138

To use channels to RTDX, you must both open and enable the channels:

IDE_Obj = ticcs; % Create a new connection to the IDE.
enable(IDE_Obj.rtdx) % Enable the RTDX interface.
open(IDE_Obj.rtdx, 'inputchannel','w') % Open a channel for sending

% data to the processor.
enable(IDE_Obj.rtdx, 'inputchannel') % Enable the channel so you can use

°

% it.

disable | open

enableCPP

Purpose
Syntax

Arguments

Description

Examples

See Also

Enable C++ support for function entry in CRL table
enableCPP(hEntry)

hEntry
Handle to a CRL function entry previously returned by hEntry =
RTW.Tf1CFunctionEntry or hEntry = MyCustomFunctionEntry,
where MyCustomFunctionEntry is a class derived from
RTW.Tf1lCFunctionEntry.

The enableCPP function enables C++ support for a function entry in
a CRL table. This allows you to specify a C++ name space for the
implementation function defined in the entry (see the setNameSpace
function).

Note When you register a CRL containing C++ function entries, you
must specify the value {'C++"'} for the LanguageConstraint property
of the CRL registry entry. For more information, see “Register Code
Replacement Libraries”.

In the following example, the enableCPP function is used to enable C++
support, and then the setNameSpace function is called to set the name
space for the sin implementation function to std.

fcn_entry = RTW.TflCFunctionEntry;
fcn_entry.setTflCFunctionEntryParameters(...

'Key', 'sin', ...
'Priority’, 100, ...

'ImplementationName', 'sin', ..
'ImplementationHeaderFile', 'cmath');

fcn_entry.enableCPP();
fcn_entry.setNameSpace('std');

registerCPPFunctionEntry | setNameSpace

1-139

enableCPP

How To + “Map Math Functions to Target-Specific Implementations”
+ “Create Code Replacement Tables”

+ “Introduction to Code Replacement Libraries”

1-140

rtw.codegenObjectives.Objective.excludeCheck

Purpose
Syntax

Description

Input
Arguments

Examples

See Also

How To

Exclude checks
excludeCheck(obj, checkID)

excludeCheck(obj, checkID) excludes a check from the Code
Generation Advisor when a user specifies the objective. When a user
selects multiple objectives, if the user specifies an additional objective
that includes this check as a higher priority objective, the Code
Generation Advisor displays this check.

obj Handle to a code generation objective object
previously created.

checkID Unique identifier of the check that you exclude
from the new objective.

Exclude the Identify questionable code instrumentation (data
1/0) check from the objective.

excludeCheck (Obj) 'mathworks. codegen .CodeInstrumentation’) H
Simulink.ModelAdvisor

+ “Create Custom Objectives”

+ “About IDs”

1-141

flush

Purpose

Syntax

IDEs

Description

1-142

Flush data or messages from specified RTDX channels

Note flush support for C5000 processors will be removed in a future
version.

flush(rx,channel ,num,timeout)
flush(rx,channel ,num)
flush(rx,channel,[],timeout)
flush(rx,channel)

flush(rx, 'all')

This function supports the following IDEs:

¢ Texas Instruments Code Composer Studio v3

flush(rx,channel ,num,timeout) removes num oldest data messages
from the RTDX channel queue specified by channel in rx. To determine
how long to wait for the function to complete, flush uses timeout (in
seconds) rather than the global timeout period stored in rx. flush
applies the timeout processing when it flushes the last message in the
channel queue, because the flush function performs a read to advance
the read pointer past the last message. Use this calling syntax only
when you specify a channel configured for read access.

flush(rx,channel ,num) removes the num oldest messages from the
RTDX channel queue in rx specified by the string channel. flush uses
the global timeout period stored in rx to determine how long to wait
for the process to complete. Compare this to the previous syntax that
specifies the timeout period. Use this calling syntax only when you
specify a channel configured for read access.

flush(rx,channel,[],timeout) removes the data messages from
the RTDX channel queue specified by channel in rx. To determine
how long to wait for the function to complete, flush uses timeout (in
seconds) rather than the global timeout period stored in rx. flush
applies the timeout processing when it flushes the last message in the

flush

Examples

See Also

channel queue, because flush performs a read to advance the read
pointer past the last message. Use this calling syntax only when you
specify a channel configured for read access.

flush(rx,channel) removes the pending data messages from the
RTDX channel queue specified by channel in rx. Unlike the preceding
syntax options, you use this statement to remove messages for both
read-configured and write-configured channels.

flush(rx, 'all') removes the data messages from the RTDX channel
queues.

When you use flush with a write-configured RTDX channel, your
coder product sends the messages in the write queue to the processor.
For read-configured channels, flush removes one or more messages
from the queue depending on the input argument num you supply and
disposes of them.

To show how to use flush, this example writes data to the processor
over the input channel, then uses flush to remove a message from the
read queue for the output channel:

IDE_Obj = ticcs;

rx = IDE_Obj.rtdx;
open(rx, 'ichan', 'w');
enable(rx, 'ichan');
open(rx,‘ochan','r');
enable(rx, 'ochan');
indata = 1:10;
writemsg(rx, 'ichan',int16(indata));
flush(rx, 'ochan',1);

b

Now flush the remaining messages from the read channel:

flush(rx, 'ochan', 'all');

enable | open

1-143

arxml.importer.getApplicationComponentNames

Purpose

Syntax

Description

Output
Arguments

See Also

How To

1-144

Get list of application software component names

applicationSoftwareComponentNames =
importeroObj.getApplication
ComponentNames

applicationSoftwareComponentNames =
importerObj.getApplicationComponentNames returns the names
of application software component names found in the XML files
associated with importer0Obj, an arxml.importer object.
applicationSoftwareComponentNames

Cell array of strings. Each element is absolute short-name path of
corresponding application software component:

' /root_package_name[/sub_package_name] /component_short_name'

arxml.importer.getSensorActuatorComponentNames
arxml.importer.getComponentNames

“Import an AUTOSAR Software Component”

RTW.ModelCPPArgsClass.getArgCategory

Purpose

Syntax

Description

Input
Arguments

Output
Arguments

Alternatives

How To

Get argument category for Simulink model port from model-specific
C++ encapsulation interface

category = getArgCategory(obj, portName)

category = getArgCategory(obj, portName) gets the category —
'Value', 'Pointer', or 'Reference' — of the argument corresponding
to a specified Simulink model inport or outport from a specified
model-specific C++ encapsulation interface.

obj Handle to a model-specific C++ encapsulation
interface control object, such as a
handle previously returned by obj =
RTW.getEncapsulationInterfaceSpecification
(modelName).

portName String specifying the name of an inport or
outport in your Simulink model.

category String specifying the argument category —
'Value', 'Pointer', or 'Reference' — for
the specified Simulink model port.

To view argument categories in the Simulink Configuration Parameters
graphical user interface, go to the Interface pane and click the
Configure C++ Encapsulation Interface button. This button
launches the Configure C++ encapsulation interface dialog box, where
you can display and configure the step method for your model class.

In the I/0 arguments step method view of this dialog box, click the
Get Default Configuration button to display step method argument
categories. For more information, see “Configure Step Method for Your
Model Class” in the Embedded Coder documentation.

“Configure C++ Encapsulation Interfaces Programmatically”

1-145

RTW.ModelCPPArgsClass.getArgCategory

+ “Configure the Step Method for a Model Class”

+ “C++ Encapsulation Interface Control”

1-146

RTW.ModelSpecificCPrototype.getArgCategory
|

Purpose Get argument category for Simulink model port from model-specific
C function prototype

Syntax category = getArgCategory(obj, portName)

Descripl‘ion category = getArgCategory(obj, portName) gets the category,

'Value' or 'Pointer’', of the argument corresponding to a specified
Simulink model inport or outport from a specified model-specific C
function prototype.

Input obj Handle to a model-specific C prototype
Argumenfs function control object previously returned
by obj = RTW.getFunctionSpecification
(modelName).
portName String specifying the name of an inport or

outport in your Simulink model.

Output category String specifying the argument category,
Arguments 'Value' or 'Pointer', for the specified
Simulink model port.

Alternatives Click the Get Default Configuration button in the Model Interface
dialog box to get argument categories. See “Model Specific C Prototypes
View” in the Embedded Coder documentation.

How To * “Function Prototype Control”

1-147

RTW.ModelCPPArgsClass.getArgName

Purpose Get argument name for Simulink model port from model-specific C++
encapsulation interface

Syntax argName = getArgName(obj, portName)

Description argName = getArgName (obj, portName) gets the argument name
corresponding to a specified Simulink model inport or outport from a
specified model-specific C++ encapsulation interface.

Input obj Handle to a model-specific C++ encapsulation
Arguments interface control object, such as a
handle previously returned by obj =
RTW.getEncapsulationInterfaceSpecification
(modelName).

portName String specifying the name of an inport or
outport in your Simulink model.

OUTPUT argName String specifying the argument name for the
Arguments specified Simulink model port.
Alternatives To view argument names in the Simulink Configuration Parameters

graphical user interface, go to the Interface pane and click the
Configure C++ Encapsulation Interface button. This button
launches the Configure C++ encapsulation interface dialog box, where
you can display and configure the step method for your model class.
In the I/0 arguments step method view of this dialog box, click the
Get Default Configuration button to display step method argument
names. For more information, see “Configure Step Method for Your
Model Class” in the Embedded Coder documentation.

How To + “Configure C++ Encapsulation Interfaces Programmatically”
“Configure the Step Method for a Model Class”

1-148

RTW.ModelCPPArgsClass.getArgName

+ “C++ Encapsulation Interface Control”

1-149

RTW.ModelSpecificCPrototype.getArgName

Purpose

Syntax

Description

Input
Arguments

Output
Arguments

Alternatives

How To

1-150

Get argument name for Simulink model port from model-specific C

function prototype

argName

argName =

getArgName (obj, portName)

getArgName (obj, portName) gets the argument name

corresponding to a specified Simulink model inport or outport from a
specified model-specific C function prototype.

obj

portName

argName

Handle to a model-specific C prototype
function control object previously returned
by obj = RTW.getFunctionSpecification
(modelName).

String specifying the name of an inport or
outport in your Simulink model.

String specifying the argument name for the
specified Simulink model port.

Click the Get Default Configuration button in the Model Interface
dialog box to get argument names. See “Model Specific C Prototypes
View” in the Embedded Coder documentation.

+ “Function Prototype Control”

RTW.ModelCPPArgsClass.getArgPosition

Purpose

Syntax

Description

Input
Arguments

Output
Arguments

Alternatives

Get argument position for Simulink model port from model-specific
C++ encapsulation interface

position = getArgPosition(obj, portName)

position = getArgPosition(obj, portName) gets the position
— 1 for first, 2 for second, etc. — of the argument corresponding
to a specified Simulink model inport or outport from a specified
model-specific C++ encapsulation interface.

obj Handle to a model-specific C++ encapsulation
interface control object, such as a
handle previously returned by obj =
RTW.getEncapsulationInterfaceSpecification
(modelName).

portName String specifying the name of an inport or
outport in your Simulink model.

position Integer specifying the argument position — 1
for first, 2 for second, etc. — for the specified
Simulink model port. Without an argument
for the specified port, the function returns 0.

To view argument positions in the Simulink Configuration Parameters
graphical user interface, go to the Interface pane and click the
Configure C++ Encapsulation Interface button. This button
launches the Configure C++ encapsulation interface dialog box, where
you can display and configure the step method for your model class.
In the I/0 arguments step method view of this dialog box, click the
Get Default Configuration button to display step method argument
positions. For more information, see “Configure Step Method for Your
Model Class” in the Embedded Coder documentation.

1-151

RTW.ModelCPPArgsClass.getArgPosition

How To + “Configure C++ Encapsulation Interfaces Programmatically”
+ “Configure the Step Method for a Model Class”

* “C++ Encapsulation Interface Control”

1-152

RTW.ModelSpecificCPrototype.getArgPosition

Purpose Get argument position for Simulink model port from model-specific
C function prototype

Syntax position = getArgPosition(obj, portName)

Description position = getArgPosition(obj, portName) gets the position
— 1 for first, 2 for second, etc. — of the argument corresponding

to a specified Simulink model inport or outport from a specified
model-specific C function prototype.

Input obj Handle to a model-specific C prototype
Argumenfs function control object previously returned
by obj = RTW.getFunctionSpecification
(modelName).
portName String specifying the name of an inport or

outport in your Simulink model.

OUi‘pUi‘ position Integer specifying the argument position — 1

Arguments for first, 2 for second, etc. — for the specified
Simulink model port. Without an argument
for the specified port, the function returns 0.

Alternatives Click the Get Default Configuration button in the Model Interface
dialog box to get argument positions. See “Model Specific C Prototypes
View” in the Embedded Coder documentation.

How To * “Function Prototype Control”

1-153

RTW.ModelCPPArgsClass.getArgQualifier

Purpose

Syntax

Description

Input
Arguments

Output
Arguments

Alternatives

1-154

Get argument type qualifier for Simulink model port from model-specific
C++ encapsulation interface

qualifier = getArgQualifier(obj, portName)

qualifier = getArgQualifier(obj, portName) gets the type
qualifier — 'none', 'const', 'const *' 'const * const', or 'const
&' — of the argument corresponding to a specified Simulink model
inport or outport from a specified model-specific C++ encapsulation
interface.

obj Handle to a model-specific C++ encapsulation
interface control object, such as a
handle previously returned by obj =
RTW.getEncapsulationInterfaceSpecification
(modelName).

portName String specifying the name of an inport or
outport in your Simulink model.

qualifier String specifying the argument type qualifier
— 'none', 'const', 'const *', 'const *
const', or 'const &' — for the specified
Simulink model port.

To view argument qualifiers in the Simulink Configuration Parameters
graphical user interface, go to the Interface pane and click the
Configure C++ Encapsulation Interface button. This button
launches the Configure C++ encapsulation interface dialog box, where
you can display and configure the step method for your model class.

In the I/0 arguments step method view of this dialog box, click the
Get Default Configuration button to display step method argument
qualifiers. For more information, see “Configure Step Method for Your
Model Class” in the Embedded Coder documentation.

RTW.ModelCPPArgsClass.getArgQualifier
|

How To + “Configure C++ Encapsulation Interfaces Programmatically”
+ “Configure the Step Method for a Model Class”

+ “C++ Encapsulation Interface Control”

1-155

RTW.ModelSpecificCPrototype.getArgQualifier

Purpose Get argument type qualifier for Simulink model port from model-specific
C function prototype

Syntax qualifier = getArgQualifier(obj, portName)

Description qualifier = getArgQualifier(obj, portName) gets the type
qualifier — 'none', 'const', 'const *' or 'const * const'— of the

argument corresponding to a specified Simulink model inport or outport
from a specified model-specific C function prototype.

Input obj Handle to a model-specific C prototype
Argumenfs function control object previously returned
by obj = RTW.getFunctionSpecification
(modelName).
portName String specifying the name of an inport or

outport in your Simulink model.

OUi‘pUi‘ qualifier String specifying the argument type qualifier
Arguments — 'none’', 'const', 'const *', or 'const
* const'— for the specified Simulink model
port.

Alternatives Click the Get Default Configuration button in the Model Interface
dialog box to get argument qualifiers. See “Model Specific C Prototypes
View” in the Embedded Coder documentation.

How To + “Function Prototype Control”

1-156

RTW.Autosarinterface.getArxmlFilePackaging

Purpose Get AUTOSAR XML packaging format
Syntax arxmlPackaging = autosarInterfaceObj.getArxmlFilePackaging
Description arxmlPackaging = autosarInterfaceObj.getArxmlFilePackaging

returns the AUTOSAR XML packaging formatin autosarInterfaceObj,
a model-specific RTW.AutosarInterface object.

Output arxmlPackaging
Arguments Packaging format of AUTOSAR XML, which is one of the
following:.

e 'Modular' — XML descriptions in separate files

e 'Single file' — XML descriptions in single file
See Also RTW.AutosarInterface.setArxmlFilePackaging

How To + “Configure the AUTOSAR Interface”
+ “Export AUTOSAR Software Component”

1-157

getbuildopt

Purpose Generate structure of build tools and options

Syntax bt=IDE Obj.getbuildopt
cs=IDE_Obj.getbuildopt(file)

IDEs This function supports the following IDEs:
® Analog Devices VisualDSP++
¢ Green Hills MULTI

¢ Texas Instruments Code Composer Studio v3

Description bt=IDE Obj.getbuildopt returns an array of structures in bt. Each
structure includes an entry for each defined build tool. This list of
build tools comes from the active project and active build configuration.
Included in the structure is a string that describes the command-line
tool options. bt uses the following format for elements in the structures:

® bt(n).name — Name of the build tool.
® pbt(n).optstring — command-line switches for build tool in bt (n).

cs=IDE Obj.getbuildopt(file) returns a string of build options for
the source file specified by file. file must exist in the active project.
The resulting cs string comes from the active build configuration. The
type of source file (from the file extension) defines the build tool used
by the cs string.

1-158

arxml.importer.getCalibrationComponentNames

Purpose

Syntax

Description

Output
Arguments

How To

Get calibration component names

calibrationComponentNames = importerObj.getCalibrationComponen
tNames

calibrationComponentNames =
importerObj.getCalibrationComponentNames returns the list of
calibration component names found in the XML files associated with
the arxml. importer object, importerobj.

calibration Cell array of strings in which each element

ComponentNames is the absolute short name path of the
corresponding calibration parameter
component :

'/root_package_name[/sub_package_name]/component_short_name'

“Import an AUTOSAR Software Component”

1-159

RTW.ModelCPPClass.getClassName

Purpose
Syntax

Description

Input
Arguments

Output
Arguments

Alternatives

How To

1-160

Get class name from model-specific C++ encapsulation interface

clsName = getClassName(obj)

clsName = getClassName(obj) gets the name of the class described by
the specified model-specific C++ encapsulation interface.

obj Handle to a model-specific C++ encapsulation
interface control object, such as a
handle previously returned by obj =
RTW.getEncapsulationInterfaceSpecification
(modelName).

clsName A string specifying the name of the class
described by the specified model-specific C++
encapsulation interface.

To view the model class name in the Simulink Configuration
Parameters graphical user interface, go to the Interface pane and
click the Configure C++ Encapsulation Interface button. This
button launches the Configure C++ encapsulation interface dialog box,
which displays the model class name and allows you to display and
configure the step method for your model class. For more information,
see “Configure Step Method for Your Model Class” in the Embedded
Coder documentation.

+ “Configure C++ Encapsulation Interfaces Programmatically”
+ “Configure the Step Method for a Model Class”

+ “C++ Encapsulation Interface Control”

arxml.importer.getClientServerinterfaceNames

Purpose
Syntax

Description

Output
Arguments

See Also

How To

Get list of client-server interfaces

interfaceNames = importerObj.getClientServerInterfaceNames

interfaceNames = importerObj.getClientServerInterfaceNames
returns the names of client-server interfaces found in the XML files
associated with importer0Obj, an arxml.importer object.

interfaceNames

Cell array of strings. Each element is absolute short-name path of
corresponding client-server interface:

' /root_package_name[/sub_package_name]/client_server_interface_short_name'
arxml.importer.createOperationAsConfigurableSubsystems

“AUTOSAR Communication”
“Import an AUTOSAR Software Component”

“Configure Client-Server Communication”

1-161

RTW.Autosarinterface.getComponentName

Purpose
Syntax

Description

Output
Arguments

How To

1-162

Get XML component name
componentName = autosarInterfaceObj.getComponentName

componentName = autosarInterfaceObj.getComponentName gets the XML
component name of the model-specific RTW.AutosarInterface object
defined by autosarInterfaceObj.

componentName Name of XML component object defined by
autosarInterfaceObj.

+ “Configure the AUTOSAR Interface”

arxml.importer.getComponentNames

Purpose
Syntax

Description

Output
Arguments

See Also

How To

Get application and sensor/actuator software component names
componentNames = importerObj.getComponentNames

componentNames = importerObj.getComponentNames returns the list of
application and sensor/actuator software component names in the XML
file associated with the arxml.importer object, importerobj.

Note getComponentNames finds only the application and
sensor/actuator software components defined in the XML file specified
when constructing the arxml.importer object or the XML file specified
by the method setFile. The application software components and
sensor/actuator software components described in the XML file
dependencies are ignored.

componentNames Cell array of strings in which each element
is the absolute short name path of the
corresponding application software component
or sensor/actuator software component:

'/root_package_name[/sub_package_name]/component_short_name'

arxml.importer.getSensorActuatorComponentNames
arxml.importer.getApplicationComponentNames

* “Import an AUTOSAR Software Component”

1-163

RTW.Autosarinterface.getComponentType

Purpose
Syntax

Description

Output
Arguments

See Also

How To

1-164

Get type of software component
componentType = autosarInterfaceObj.getComponentType

componentType = autosarInterfaceObj.getComponentType returns
the type of the software component in autosarInterfaceObj, a
model-specific RTW.AutosarInterface object.

componentType

Type of software component. Either 'Application’' or 'Sensor
Actuator'.

RTW.AutosarInterface.setComponentType

+ “Configure the AUTOSAR Interface”

RTW.Autosarinterface.getDataTypePackageName

Purpose

Syntax

Description

Output
Arguments

See Also

How To

Get XML data type package name

dataTypePackageName = autosarInterfaceObj.getDataTypePackageNa
me

dataTypePackageName = autosarInterfaceObj.getDataTypePackageName
gets the XML data type package name of autosarInterfaceObj, a
model-specific RTW.AutosarInterface object.

dataTypePackageName
Name of data type package specified by autosarInterfaceObj

RTW.AutosarInterface.setDataTypePackageName

+ “Prepare a Model for AUTOSAR Code Generation”
+ “Generate AUTOSAR Code and Description Files”

1-165

RTW.Autosarinterface.getDefaultConf

Purpose
Syntax

Description

How To

1-166

Get default configuration
autosarInterfaceObj.getDefaultConf

autosarInterfaceObj.getDefaultConf gets the model’s default
configuration for autosarInterfaceObj, using information from the
model to which autosarInterfaceObj is attached.

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object. You must attach the object to a model using attachToModel
before calling getDefaultConf.

When you initially invoke getDefaultConf (or the GUI button
equivalent, Get Default Configuration in the Model Interface dialog),
the runnable names, XML properties, and I/O configuration are
initialized. If you invoke the command (or click the button) again, only
the I/O configurations are reset to default values.

* “Generating Code for AUTOSAR Software Components”

RTW.ModelCPPClass.getDefaultConf

Purpose

Syntax

Description

Input
Arguments

Alternatives

How To

Get default configuration information for model-specific C++
encapsulation interface from Simulink model

getDefaultConf (obj)

getDefaultConf (obj) initializes the specified model-specific C++
encapsulation interface to a default configuration, based on information
from the ERT-based Simulink model to which the interface is attached.
On the first invocation, class and step method names and step method
properties are set to default values. On subsequent invocations, only
step method properties are reset to default values.

Before calling this function, you must call attachToModel, to attach the
C++ encapsulation interface to a loaded model.

obj Handle to a model-specific C++ encapsulation
interface control object, such as a
handle previously returned by obj
= RTW.ModelCPPArgsClass or obj =
RTW.ModelCPPVoidClass.

To view C++ encapsulation interface default configuration information
in the Simulink Configuration Parameters graphical user interface, go
to the Interface pane and click the Configure C++ Encapsulation
Interface button. This button launches the Configure C++
encapsulation interface dialog box, where you can display and configure
the step method for your model class. In the I/0 arguments step
method view of this dialog box, click the Get Default Configuration
button to display default configuration information. In the void-void
step method view, you can see the default configuration information
without clicking a button. For more information, see “Configure Step
Method for Your Model Class” in the Embedded Coder documentation.

+ “Configure C++ Encapsulation Interfaces Programmatically”

+ “Configure the Step Method for a Model Class”

1-167

RTW.ModelCPPClass.getDefaultConf

+ “C++ Encapsulation Interface Control”

1-168

RTW.ModelSpecificCPrototype.getDefaultConf

Purpose

Syntax

Description

Input
Arguments

Alternatives

How To

Get default configuration information for model-specific C function
prototype from Simulink model

getDefaultConf (obj)

getDefaultConf (obj) invokes the specified model-specific C function
prototype to initialize the properties and the step function name of the
function argument to a default configuration based on information from
the ERT-based Simulink model to which it is attached. If you invoke
the command again, only the properties of the function argument are
reset to default values.

Before calling this function, you must call attachToModel, to attach the
function prototype to a loaded model.

obj Handle to a model-specific C prototype
function control object previously returned by
obj = RTW.ModelSpecificCPrototype.

Click the Get Default Configuration button in the Model Interface
dialog box to get the default configuration. See “Model Specific C
Prototypes View” in the Embedded Coder documentation.

* “Function Prototype Control”

1-169

arxml.importer.getDependencies

Purpose
Syntax

Description

Output
Arguments

How To

1-170

Get list of XML dependency files
Dependencies = importerObj.getDependencies()

Dependencies = importerObj.getDependencies() returns the list of
XML dependency files associated with the arxml.importer object,
importeroObj.

Dependencies Cell array of strings.

+ “Import an AUTOSAR Software Component”

RTW.Autosarinterface.getEventType

Purpose
Syntax

Description

Input
Arguments

Output
Arguments

See Also

How To

Get event type

EventType = autosarInterfaceObj.getEventType(EventName)

EventType = autosarInterfaceObj.getEventType(EventName)
returns the event type of EventName

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.

EventName

Name of event

EventType

Type of event, for example, TimingEvent or DataReceivedEvent

RTW.AutosarInterface.setEventType |
RTW.AutosarInterface.addEventConf

+ “Configure the AUTOSAR Interface”

+ “Configure Multiple Runnables for DataReceivedEvents”

1-171

RTW.Autosarinterface.getExecutionPeriod

Purpose

Syntax

Description

Input
Arguments

Output
Arguments

See Also

How To

1-172

Get runnable execution period

EP = autosarInterfaceObj.getExecutionPeriod
EP = autosarInterfaceObj.getExecutionPeriod(EventName)

EP autosarInterfaceObj.getExecutionPeriod returns the
execution period of the sole TimingEvent in the runnable.

EP = autosarInterfaceObj.getExecutionPeriod (EventName)
returns the execution period of a named event in the runnable.

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.

EventName

Name of TimingEvent

EP

Execution period of runnable

RTW.AutosarInterface.addEventConf |
RTW.AutosarInterface.setExecutionPeriod

+ “Configure the AUTOSAR Interface”

* “Configure Multiple Runnables for DataReceivedEvents”

arxml.importer.getFile

Purpose
Syntax

Description

Output
Arguments

How To

Return XML file name for arxml.importer object

filename = importerObj.getFile

filename = importerObj.getFile returns the name of the XML file
associated with the arxml. importer object, importeroObj.

filename XML file name

+ “Import an AUTOSAR Software Component”

1-173

RTW.ModelSpecificCPrototype.getFunctionName

Purpose
Syntax

Description

Input
Arguments

Output
Arguments

Alternatives

How To

1-174

Get function name from model-specific C function prototype
fcnName = getFunctionName(obj, fcnType)

fcnName = getFunctionName(obj, fcnType) gets the name of the
step or initialize function described by the specified model-specific C
function prototype.

obj Handle to a model-specific C
prototype function control object
previously returned by obj =
RTW.getFunctionSpecification(modelName).

fenType Optional string specifying which function
name to get. Valid strings are 'step' and
"init'. If fenType is not specified, gets the
step function name.

fcnName A string specifying the name of the function
described by the specified model-specific C
function prototype.

Click the Get Default Configuration button in the Model Interface
dialog box to get function names. See “Model Specific C Prototypes
View” in the Embedded Coder documentation.

+ “Function Prototype Control”

RTW.Autosarinterface.getimplementationName

Purpose

Syntax

Description

Output
Arguments

See Also

How To

Get name of XML implementation

implementationName = autosarInterfaceObj.getImplementationName

implementationName = autosarInterfaceObj.getImplementationName
returns the name of the XML implementation for autosarInterfaceObj,
a model-specific RTW.AutosarInterface object.

implementationName Name of XML implementation for
autosarInterfaceObj

RTW.AutosarInterface.setImplementationName

+ “Configure the AUTOSAR Interface”

1-175

RTW.Autosarinterface.getinitEventName

Purpose
Syntax

Description

Output
Arguments

How To

1-176

Get initial event name

initEventName = autosarInterfaceObj.getInitEventName

initEventName = autosarInterfaceObj.getInitEventName gets the
initial event name of autosarInterfaceObj, a model-specific
RTW.AutosarInterface object.

initEventName Name of the initial event specified by
autosarInterfaceObj.

+ “Configure the AUTOSAR Interface”

RTW.Autosarinterface.getinitRunnableName

Purpose Get initial runnable name
Syntax initRunnableName = autosarInterfaceObj.getInitRunnableName
Description initRunnableName = autosarInterfaceObj.getInitRunnableName gets

the initial runnable name of autosarInterfaceObj, a model-specific
RTW.AutosarInterface object.

OUtPUt initRunnableName Name of the initial runnable specified by
Arguments autosarInterfaceObj.
How To + “Configure the AUTOSAR Interface”

1-177

RTW.Autosarinterface.getinterfacePackageName

Purpose

Syntax

Description

Output
Arguments

See Also

How To

1-178

Get XML interface package name

interfacePkgName = autosarInterfaceObj.getInterfacePackageName

interfacePkgName = autosarInterfaceObj.getInterfacePackageName
gets the XML interface package name of autosarInterfaceObj, a
model-specific RTW.AutosarInterface object.

interfacePkgName Name of the interface package specified by
autosarInterfaceObj

RTW.AutosarInterface.setInterfacePackageName

+ “Configure the AUTOSAR Interface”

RTW.Autosarinterface.getinternalBehaviorName

Purpose
Syntax

Description

Output
Arguments

See Also

How To

Get name of XML file that specifies software component internal
behavior

internalBehaviorName = autosarInterfaceObj.getInternalBehavior
Name

internalBehaviorName
autosarInterfaceObj.getInternalBehaviorName gets the name of the
XML file that specifies the software component internal behavior
for autosarInterfaceObj.

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.

internalBehavior Name of XML file that specifies
Name software component internal behavior
for autosarInterfaceObj

RTW.AutosarInterface.setInternalBehaviorName

+ “Configure the AUTOSAR Interface”
+ “Export AUTOSAR Software Component”

1-179

RTW.Autosarinterface.getlOAutosarPortName

Purpose

Syntax

Description

Input
Arguments

Output
Arguments

How To

1-180

Get I/0 AUTOSAR port name

ioAutosarName = autosarInterfaceObj.getIOAutosarPortName(portN
ame)

ioAutosarName =

autosarInterfaceObj.getIOAutosarPortName (portName) gets
the I/O AUTOSAR port name in the configuration for the port
corresponding to portName.

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.

By default the AUTOSAR port name, data element name, and interface
name are the same as the Simulink port name.

portName Name of inport/outport name (string).

ioAutosarName AUTOSAR port name of portName

+ “Configure the AUTOSAR Interface”

RTW.Autosarinterface.getlODataAccessMode
|

Purpose Get I/O data access mode

Syntax dataAccessMode = autosarInterfaceObj.getIODataAccessMode(portN
ame)

Description dataAccesshMode =

autosarInterfaceObj.getIODataAccessMode (portName) returns the
data access mode of the I/O corresponding to portName, for
autosarInterfaceObj, a model-specific RTW.AutosarInterface object.

Input portName Name of inport/outport (string).
Arguments

OUtpUt dataAccessMode Data access mode of the given port. Can be
Arguments one of the following:

® ImplicitSend
e ImplicitReceive
® ExplicitSend
® ExplicitReceive

® QueuedExplicitReceived

How To + RTW.AutosarInterface.setIODataAccessMode
+ “Prepare a Model for AUTOSAR Code Generation”

1-181

RTW.Autosarinterface.getlODataElement

Purpose

Syntax

Description

Input
Arguments

Output
Arguments

How To

1-182

Get I/O data element name

ioDataElement = autosarInterfaceObj.getIODataElement (portName

)

ioDataElement = autosarInterfaceObj.getIODataElement (portName)
gets the I/O data element name in the configuration for the port
corresponding to portName.

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.

By default the AUTOSAR port name, data element name, and interface
name are the same as the Simulink port name.

portName Name of inport/outport (string).

ioDataElement Data element of the given port (string).

+ “Configure the AUTOSAR Interface”

RTW.Autosarinterface.getlOErrorStatusReceiver

Purpose
Syntax

Description

Input
Arguments

Output
Arguments

See Also

How To

Get name of error status receiver port

ESR = autosarInterfaceObj.getIOErrorStatusReceiver (PortName)

ESR = autosarInterfaceObj.getIOErrorStatusReceiver (PortName) gets
the receiver port name in the configuration for the port corresponding
to PortName .

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.

PortName Name of inport/outport (string)

ESR Name of receiver port for PortName

RTW.AutosarInterface.setIOErrorStatusReceiver

+ “Configure Ports for Basic Software and Error Status Receivers”

1-183

RTW.Autosarinterface.getlOInterfaceName

Purpose

Syntax

Description

Input
Arguments

Output
Arguments

How To

1-184

Get I/0O interface name

ioInterfaceName = autosarInterfaceObj.getIOInterfaceName(portN
ame)

ioInterfaceName =
autosarInterfaceObj.getIOInterfaceName (portName)

gets the I/0 interface name in the configuration for the port
corresponding to portName.

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.

By default the AUTOSAR port name, data element name, and interface
name are the same as the Simulink port name.

portName Name of the inport/outport (string).

ioInterfaceName Name of the I/0 interface for portName.

+ “Configure the AUTOSAR Interface”

RTW.Autosarinterface.getlOPortNumber

Purpose
Syntax

Description

Input
Arguments

Output
Arguments

How To

Get I/O AUTOSAR port number
IOPortNumber= autosarInterfaceObj.getIOPortNumber (PortName)

IOPortNumber= autosarInterfaceObj.getIOPortNumber (PortName) gets
the I/O AUTOSAR port number in the configuration for the port
corresponding to PortName.

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.

PortName Name of the inport/output (string).

IOPortNumber Port number of PortName.

* “Generating Code for AUTOSAR Software Components”

1-185

RTW.Autosarinterface.getlOServicelnterface

Purpose
Syntax

Description

Input
Arguments

Output
Arguments

See Also

How To

1-186

Get port I/0 service interface
SI = autosarInterfaceObj.getIOServicelnterface(PortName)

SI = autosarInterfaceObj.getIOServicelnterface(PortName) gets the
I/0 service interface in the configuration for the port corresponding
to PortName.

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.

PortName Name of the inport/outport (string)

SI I/O service interface of PortName

RTW.AutosarInterface.setIOServicelnterface

+ “Configure Ports for Basic Software and Error Status Receivers”

RTW.Autosarinterface.getlOServiceName

Purpose
Syntax

Description

Input
Arguments

Output
Arguments

See Also

How To

Get port I/0 service name
SN = autosarInterfaceObj.getIOServiceName (PortName)

SN = autosarInterfaceObj.getIOServiceName(PortName) gets the
I/0 service name in the configuration for the port corresponding to
PortName.

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.

PortName Name of the inport/outport (string)

SN Name of I/0 service for PortName

RTW.AutosarInterface.setIOServiceName

+ “Configure Ports for Basic Software and Error Status Receivers”

1-187

RTW.Autosarinterface.getlOServiceOperation

Purpose Get port I/0 service operation
Syntax SO = autosarInterfaceObj.getIOServiceOperation(PortName)
Description SO = autosarInterfaceObj.getIOServiceOperation(PortName) gets the

I/0 service operation in the configuration for the port corresponding
to PortName.

autosarInterfaceObj is a model-specific RTW.AutosarInterface

object.
Input PortName Inport/outport name (string).
Arguments
OUtpUt SO 1/0 service operation of PortName.
Arguments
See Also RTW.AutosarInterface.setIOServiceOperation
How To + “Configure Ports for Basic Software and Error Status Receivers”

1-188

RTW.Autosarinterface.getlsServerOperation

Purpose Determine whether server is specified

Syntax isServerOperation = autosarInterfaceObj.getIsServerOperation

Description isServerOperation = autosarInterfaceObj.getIsServerOperation
returns the value of the property 'isServerOperation' in
autosarInterfaceObj.
autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.

OUtPUt isServerOperation True or false. If true, a server is specified

Arguments in autosarInterfaceObj.

How To + “Configure Client-Server Communication”

1-189

Name

Purpose Get name of profiled code section
Syntax SectionName = NthSectionProfile.Name
Description SectionName = NthSectionProfile.Name returns the name that

identifies the profiled code section.

The software generates an identifier based on the model entity that
corresponds to the profiled section of code.

NthSectionProfile is a coder.profile.ExecutionTimeSection object
generated by the coder.profile.ExecutionTime property Sections.

Output SectionName

Arguments Name that identifies profiled code section

See Also Sections | TimerTicksPerSecond | display | report
| SamplePeriod | SampleOffset | Number | NumCalls |
MaximumExecutionTimeCallNum | MaximumSelfTimeCallNum
| ExecutionTimeInTicks | MaximumExecutionTimeInTicks
| TotalExecutionTimeInTicks | SelfTimeInTicks |
MaximumSelfTimeInTicks | TotalSelfTimeInTicks

How To + “Configure Code Execution Profiling”
“View and Compare Code Execution Times”

“Analyze Code Execution Data”

1-190

RTW.ModelCPPClass.getNumArgs
|

Purpose Get number of step method arguments from model-specific C++
encapsulation interface

Syntax num = getNumArgs(obj)

Description num = getNumArgs(obj) gets the number of arguments for the step
method described by the specified model-specific C++ encapsulation
interface.

Input obj Handle to a model-specific C++ encapsulation

Arguments interface control object, such as a

handle previously returned by obj =
RTW.getEncapsulationInterfaceSpecification
(modelName).
OUtPUt num An integer specifying the number of step
Arguments method arguments.

Alternatives To view the number of step method arguments in the Simulink
Configuration Parameters graphical user interface, go to the Interface
pane and click the Configure C++ Encapsulation Interface button.
This button launches the Configure C++ encapsulation interface dialog
box, where you can display and configure the step method for your
model class. In the I/0 arguments step method view of this dialog
box, click the Get Default Configuration button to display the step
method arguments. For more information, see “Configure Step Method
for Your Model Class” in the Embedded Coder documentation.

How To + “Configure C++ Encapsulation Interfaces Programmatically”
+ “Configure the Step Method for a Model Class”

+ “C++ Encapsulation Interface Control”

1-191

RTW.ModelSpecificCPrototype.getNumArgs

Purpose Get number of function arguments from model-specific C function
prototype
Syntax num = getNumArgs(obj)

Description num = getNumArgs(obj) gets the number of function arguments for the
function described by the specified model-specific C function prototype.

Input obj Handle to a model-specific C
Arguments prototype function control object

previously returned by obj =
RTW.getFunctionSpecification(modelName).

Output num An integer specifying the number of function
Arguments arguments.

Alternatives Click the Get Default Configuration button in the Model Interface
dialog box to get arguments. See “Model Specific C Prototypes View” in
the Embedded Coder documentation.

How To * “Function Prototype Control”

1-192

NumCalls

Purpose
Syntax

Description

Output
Arguments

See Also

How To

Total number of calls to profiled code section
TotalNumCalls = NthSectionProfile.NumCalls

TotalNumCalls = NthSectionProfile.NumCalls returns the total
number of calls to the profiled code section over the entire simulation.

NthSectionProfile is a coder.profile.ExecutionTimeSection object
generated by the coder.profile.ExecutionTime property Sections.

TotalNumCalls

Total number of calls

Sections | TimerTicksPerSecond | display | report

| Name | SamplePeriod | SampleOffset | Number |
MaximumExecutionTimeCallNum | MaximumSelfTimeCallNum
| ExecutionTimeInTicks | MaximumExecutionTimeInTicks
| TotalExecutionTimeInTicks | SelfTimeInTicks
MaximumSelfTimeInTicks | TotalSelfTimeInTicks

“Configure Code Execution Profiling”
“Configure Code Execution Profiling”

“View and Compare Code Execution Times”

1-193

cgv.CGV.getOutputData

Purpose
Syntax

Description

How To

1-194

Get output data

out = cgvObj.getOutputData(InputIndex)

out = cgvObj.getOutputData(InputIndex) is the method that you
use to retrieve the output data that the object creates during execution
of the model. out is the output data that the object returns. cgvObj

is a handle to a cgv.CGV object. InputIndex is a unique numeric
identifier that specifies which output data to retrieve. The InputIndex
is associated with specific input data.

+ “Verify Numerical Equivalence with CGV”

RTW.Autosarinterface.getPeriodicEventName

Purpose Get periodic event name
Syntax periodicEventName = autosarInterfaceObj.getPeriodicEventName
Description periodicEventName = autosarInterfaceObj.getPeriodicEventName

gets the periodic event name specified by the model-specific
RTW.AutosarInterface object, autosarInterfaceObj.

OUtPUt periodicEventName Name of the periodic event specified by
Arguments autosarInterfaceObj
Examples For multiple runnables, use the Children property to access each

individual runnable after building or GUI update, for example:

autosarInterfaceObj.Children(1).getPeriodicEventName()

How To + “Configure the AUTOSAR Interface”

1-195

RTW.Autosarinterface.getPeriodicRunnableName

Purpose

Syntax

Description

Output
Arguments

Examples

How To

1-196

Get periodic runnable name

periodicRunnableName = autosarInterfaceObj.getPeriodicRunnable
Name

periodicRunnableName =
autosarInterfaceObj.getPeriodicRunnableName gets the name of the
periodic runnable specified in autosarInterfaceObj, a model-specific
RTW.AutosarInterface object.

periodicRunnable Name of the periodic runnable specified by
Name autosarInterfaceObj.

For multiple runnables, use the Children property to access each
individual runnable after building or GUI update, for example:

autosarInterfaceObj.Children(1).getPeriodicRunnableName ()

+ “Configure the AUTOSAR Interface”

RTW.ModelSpecificCPrototype.getPreview

Purpose Get model-specific C function prototype code preview
Syntax preview = getPreview(obj, fcnType)
Description preview = getPreview(obj, fcnType) gets the model-specific C

function prototype code preview.

Input obj Handle to a model-specific C

Arguments prototype function control object
previously returned by obj =
RTW.getFunctionSpecification(modelName).

fenType Optional. String specifying which function
to preview. Valid strings are 'step' and
"init'. If fenType is not specified, previews
the step function.

OUtPUt preview String specifying the function prototype for
Arguments the step or initialization function.

Alternatives Use the Step function preview subpane in the Model Interface
dialog box to preview how your step function prototype is interpreted
in generated code. See “Model Specific C Prototypes View” in the
Embedded Coder documentation.

How To * “Function Prototype Control”

1-197

cgv.Config.getReportData

Purpose Return results of comparing configuration parameter values
Syntax rpt_data = cfgObj.getReportData()
Descripl‘ion rpt_data = cfgObj.getReportData() compares the original

configuration parameter values with the values that the object
recommends. ¢cfgObj is a handle to a cgv.Config object. Returns a
cell array of strings with the model, parameter, previous value, and
recommended or new value.

How To + “Verify Numerical Equivalence with CGV”

1-198

SampleOffset

Purpose
Syntax

Description

Output
Arguments

See Also

How To

Get sample offset associated with profiled task

SampleOffset = NthSectionProfile.SampleOffset

SampleOffset = NthSectionProfile.SampleOffset returns the
sample offset if the profiled code section is a task.

NthSectionProfile is a coder.profile.ExecutionTimeSection object
generated by the coder.profile.ExecutionTime property Sections.

SampleOffset

Sample offset associated with profiled task

Sections | TimerTicksPerSecond | display | report | Name |
SamplePeriod | Number | NumCalls | MaximumExecutionTimeCallNum
| MaximumSelfTimeCallNum | ExecutionTimeInTicks
MaximumExecutionTimeInTicks | TotalExecutionTimeInTicks

| SelfTimeInTicks | MaximumSelfTimeInTicks
TotalSelfTimeInTicks

“Configure Code Execution Profiling”
“View and Compare Code Execution Times”

“Analyze Code Execution Data”

1-199

SamplePeriod

Purpose
Syntax

Description

Output
Arguments

See Also

How To

1-200

Get sample time associated with profiled task

SampleTime = NthSectionProfile.SamplePeriod

SampleTime = NthSectionProfile.SamplePeriod returns the sample
time if the profiled code section is a task.

NthSectionProfileis a coder.profile.ExecutionTimeSection object
generated by the coder.profile.ExecutionTime property Sections.

SampleTime

Sample time associated with profiled task

Sections | TimerTicksPerSecond | display | report | Name |
SampleOffset | Number | NumCalls | MaximumExecutionTimeCallNum
| MaximumSelfTimeCallNum | ExecutionTimeInTicks
MaximumExecutionTimeInTicks | TotalExecutionTimeInTicks

| SelfTimeInTicks | MaximumSelfTimeInTicks
TotalSelfTimeInTicks

“Configure Code Execution Profiling”
“View and Compare Code Execution Times”

“Analyze Code Execution Data”

cgv.CGV.getSavedSignals

Purpose
Syntax

Description

Tips

How To

Display list of signal names to command line
signal_list = cgvObj.getSavedSignals(simulation_data)

signal_list = cgvObj.getSavedSignals(simulation_data) returns
a cell array, signal 1ist, of the output signal names of the data
elements from the input data set, simulation_data. simulation data
1s the output data stored in the CGV object, cgvObj, when you execute
the model.

e After executing your model, use the cgv.CGV.getOutputData
function to get the output data used as the input argument to the
cgv0Obj.getSavedSignals function.

¢ Use names from the output signal list at the command line
or as input arguments to other CGV functions, for example,
cgv.CGV.createToleranceFile, cgv.CGV.compare, and
cgv.CGV.plot.

* “Verify Numerical Equivalence with CGV”

1-201

Number

Purpose Get number that uniquely identifies profiled code section
Syntax SectionNumber = NthSectionProfile.Number
Description SectionNumber = NthSectionProfile.Number returns a number that

uniquely identifies the profiled code section, for example, in the code
execution profiling report.

NthSectionProfileis a coder.profile.ExecutionTimeSection object
generated by the coder.profile.ExecutionTime property Sections.

Output SectionNumber

Arguments Number of profiled code section

See Also Sections | TimerTicksPerSecond | display | report
| Name | SamplePeriod | SampleOffset | NumCalls |
MaximumExecutionTimeCallNum | MaximumSelfTimeCallNum
| ExecutionTimeInTicks | MaximumExecutionTimeInTicks
| TotalExecutionTimeInTicks | SelfTimeInTicks |
MaximumSelfTimeInTicks | TotalSelfTimeInTicks

How To + “Configure Code Execution Profiling”
“Configure Code Execution Profiling”

“View and Compare Code Execution Times”

1-202

Sections

Purpose
Syntax

Description

Input
Arguments

Output
Arguments

See Also

How To

Get array of coder.profile.ExecutionTimeSection objects for
profiled code sections

NthSectionProfile = myExecutionProfile.Sections(N)
No_of_Sections = length(myExecutionProfile.Sections)

NthSectionProfile = myExecutionProfile.Sections(N) returns
an coder.profile.ExecutionTimeSection object for the Nth profiled
code section.

No_of_Sections = length(myExecutionProfile.Sections) returns
the number of code sections for which profiling data is available.

myExecutionProfile is a workspace variable generated by a simulation.
Use coder.profile.ExecutionTimeSection methods to extract
profiling information from the returned object.

N

Index of code section for which profiling data is required

NthSectionProfile

coder.profile.ExecutionTimeSection object that contains profiling
information

No_of_Sections

Number of code sections with profiling data

TimerTicksPerSecond | display | report | Name

SamplePeriod | SampleOffset | Number | NumCalls |
MaximumExecutionTimeCallNum | MaximumSelfTimeCallNum

| ExecutionTimeInTicks | MaximumExecutionTimeInTicks

| TotalExecutionTimeInTicks | SelfTimeInTicks
MaximumSelfTimeInTicks | TotalSelfTimeInTicks

+ “Configure Code Execution Profiling”

1-203

Sections

+ “View and Compare Code Execution Times”

+ “Analyze Code Execution Data”

1-204

arxml.importer.getSensorActuatorComponentNames

Purpose

Syntax

Description

Output
Arguments

See Also

How To

Get list of sensor/actuator software component names

sensoractuatorSoftwareComponentNames =
importerObj.getSensorAc
tuatorComponentNames

sensoractuatorSoftwareComponentNames =
importerObj.getSensorActuatorComponentNames returns the names
of sensor/actuator software component names found in the XML files
associated with importer0Obj, an arxml.importer object.

sensoractuatorSoftwareComponentNames

Cell array of strings. Each element is absolute short-name path of
corresponding sensor/actuator software component:

' /root_package_name[/sub_package_name] /component_short_name'

arxml.importer.getApplicationComponentNames
arxml.importer.getComponentNames

“Import an AUTOSAR Software Component”

1-205

RTW.Autosarinterface.getServerinterfaceName

Purpose

Syntax

Description

Output
Arguments

How To

1-206

Get name of server interface

serverInterfaceName = autosarInterfaceObj.getServerInterfaceNa
me

serverInterfaceName = autosarInterfaceObj.getServerInterfaceName
returns the name of the server interface specified in
autosarInterfaceObj.

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.

serverInterfaceName Name of the server interface in
autosarInterfaceObj.

+ “Configure Client-Server Communication”

RTW.Autosarinterface.getServerOperationPrototype

Purpose

Syntax

Description

Output
Arguments

How To

Get server operation prototype

operation_prototype = autosarInterfaceObj.getServerOperationPr
ototype

operation_prototype =
autosarInterfaceObj.getServerOperationPrototype returns the server
operation prototype in autosarInterfaceObj.

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.

operation_prototype String with names of prototype and
arguments:

operation_name(diri datatypel
argil, dir2 datatype2 arg2, ...,
dirN datatypeN argN, ...)

® operation_name — Name of the
operation

e dirN — Either IN or OUT, which
indicates whether data is passed in
or out of the function.

e datatypeN — Data type, which can
be an AUTOSAR basic data type or
record, Simulink data type, or array.

® argN — Name of the argument

+ “Configure Client-Server Communication”

1-207

RTW.Autosarinterface.getServerPortName

Purpose
Syntax

Description

Output
Arguments

How To

1-208

Get server port name

serverPortName = autosarInterfaceObj.getServerPortName

serverPortName = autosarInterfaceObj.getServerPortName returns the
server port name of the model-specific RTW.AutosarInterface object
defined by autosarInterfaceObj.

serverPortName Name of the server port defined by
autosarInterfaceObj.

+ “Configure Client-Server Communication”

RTW.Autosarinterface.getServerType

Purpose
Syntax

Description

Output
Arguments

How To

Determine server type

serverType = autosarInterfaceObj.getServerType

serverType = autosarInterfaceObj.getServerType determines the type
of the server in autosarInterfaceObj, that is, whether it is application
software or Basic software.

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.

serverType Either 'Application software' or 'Basic
software'.

“Configure Client-Server Communication”

1-209

cgv.CGV.getStatus

Purpose Return execution status
Syntax status = cgvObj.getStatus()
status = cgvObj.getStatus(inputName)

Description status = cgvObj.getStatus() returns the execution status of cgvObj.
cgvObj is a handle to a cgv.CGV object.

status = cgvObj.getStatus(inputName) returns the status of a
single execution for inputName.

Input inputName

Arguments inputName is a unique numeric or character identifier associated

with input data, which is added to the cgv.CGV object using
cgv.CGV.addInputData.

OUTPUT status

Arguments If inputName is provided, status is the result of the execution

of input data associated with inputName.

Value Description

none Execution has not run.

pending Execution 1s currently
running.

completed Execution ran to completion

without errors and output data
1s available.

passed Baseline data was provided.
Execution ran to completion
and comparison to the baseline
data returned no differences.

1-210

cgv.CGV.getStatus

See Also

How To

Value Description
error Execution produced an error.
failed Baseline data was provided.

Execution ran to completion
and comparison to the baseline
data returned a difference.

If inputName is not provided, the following pseudocode describes
the return status:

if (all executions return 'passed')

status = 'passed’

else if (all executions return 'passed' or 'completed')
status = 'completed’

else if (an execution returns ‘error')
status = 'error'

else if (an execution returns 'failed')
status = 'failed'

else if (an execution returns 'none' or 'pending'’
status = 'none'’

cgv.CGV.addInputData | cgv.CGV.run | cgv.CGV.addBaseline

+ “Verify Numerical Equivalence with CGV”

1-211

RTW.ModelCPPClass.getStepMethodName

Purpose
Syntax

Description

Input
Arguments

Output
Arguments

Alternatives

How To

1-212

Get step method name from model-specific C++ encapsulation interface
fcnName = getStepMethodName (obj)

fcnName = getStepMethodName (obj) gets the name of the step method
described by the specified model-specific C++ encapsulation interface.

obj Handle to a model-specific C++ encapsulation
interface control object, such as a
handle previously returned by obj =
RTW.getEncapsulationInterfaceSpecification
(modelName).

fcnName A string specifying the name of the
step method described by the specified
model-specific C++ encapsulation interface.

To view the step method name in the Simulink Configuration
Parameters graphical user interface, go to the Interface pane and
click the Configure C++ Encapsulation Interface button. This
button launches the Configure C++ encapsulation interface dialog box,
which displays the step method name and allows you to display and
configure the step method for your model class. For more information,
see “Configure Step Method for Your Model Class” in the Embedded
Coder documentation.

+ “Configure C++ Encapsulation Interfaces Programmatically”
+ “Configure the Step Method for a Model Class”

+ “C++ Encapsulation Interface Control”

getTflArgFromString

Purpose
Syntax

Input
Arguments

Output
Arguments

Description

Create CRL argument based on specified name and built-in data type
arg = getTflArgFromString(hTable, name, datatype)

hTable
Handle to a CRL table previously returned by hTable =
RTW.TflTable.

name
String specifying the name to use for the CRL argument, for
example, 'y1'.

datatype

String specifying a built-in data type or a fixed-point data type
to use for the CRL argument:

e Valid built-in data types are 'int8', 'int16', 'int32",
'uint8', 'uint16', 'uint32', 'single', 'double', and
'boolean’.

® You can specify fixed-point data types using the fixdt
function from Fixed-Point Designer™ software; for example,
"Fixdt(1,16,2)".

Handle to the created CRL argument, which can be specified to the
addConceptualArg function. See the example below.

The getTflArgFromString function creates a CRL argument that is
based on a specified name and built-in data type.

Note The IOType property of the created argument defaults to
'"RTW_IO_INPUT', indicating an input argument. For an output
argument, you must change the I0Type value to 'RTW_IO OUTPUT' by
directly assigning the argument property. See the example below.

1-213

geiTflArgFromString

Examples

See Also

How To

1-214

In the following example, getTf1ArgFromString is used to create an
int16 output argument named y1, which is then added as a conceptual
argument for a CRL table entry.

hLib = RTW.TflTable;
op_entry = RTW.Tf1lCOperationEntry;

arg = hLib.getTflArgFromString('y1', 'int16');
arg.I0OType = 'RTW_IO_OUTPUT';
op_entry.addConceptualArg(arg);

addConceptualArg

+ “Create Code Replacement Tables”

+ “Introduction to Code Replacement Libraries”

getTfIDWorkFromString

Purpose

Syntax

Input
Arguments

Output
Arguments

Description

Examples

Create CRL DWork argument for semaphore entry based on specified
name and data type

arg = getTflDWorkFromString(hTable, name, datatype)

hTable
Handle to a CRL table previously returned by hTable =
RTW.TflTable.

name
String specifying the name to use for the CRL DWork argument,
for example, 'd1'.

datatype
String specifying a data type to use for the CRL DWork argument.
Currently, you must specify 'void*'.

Handle to the created CRL argument, which can be specified to the
addDWorkArg function. See the example below.

The getTf1DWorkFromString function creates a CRL DWork argument,
based on a specified name and data type, for a semaphore entry in a
CRL table.

In the following example, getTf1DworkFromString is used to create a
void* argument named d1. The argument is then added as a DWork
argument for a semaphore entry in a CRL table.

hLib = RTW.TflTable;
sem_entry = RTW.Tf1lCSemaphoreEntry;

o

% DWork Arg

arg = hLib.getTflDWorkFromString('d1','void*"');
sem_entry.addDWorkArg(arg);

1-215

getTfIDWorkFromString

hLib.addEntry(sem_entry);

See Also addDWorkArg
How To + “Map Semaphore or Mutex Operations to Target-Specific
Implementations”

+ “Create Code Replacement Tables”

+ “Introduction to Code Replacement Libraries”

1-216

Time

Purpose
Syntax

Description

Input
Arguments

Output
Arguments

Examples

Get simulation time for code section
SimTime = NthSectionProfile.Time

SimTime = NthSectionProfile.Time returns a simulation time vector
that corresponds to the execution time measurements for the code
section.

NthSectionProfile - coder.profile.ExecutionTimeSection
object

Object generated by the coder.profile.ExecutionTime property
Sections

SimTime - Simulation time
double

Simulation time, in seconds, for section of code. Returned as a vector.

Get Simulation Time for Code Section

Get simulation time for a code section.

Run a simulation with a model that is configured to generate a
workspace variable with execution time measurements. For example:

rtwdemo_sil_topmodel;
set_param('rtwdemo_sil_ topmodel’,...
‘CodeExecutionProfiling', 'on');
set_param('rtwdemo_sil_ topmodel’,...
‘SimulationMode', 'software-in-the-loop (SIL)');
set_param('rtwdemo_sil_ topmodel’,...
‘CodeProfilingInstrumentation', 'on');
set_param('rtwdemo_sil_ topmodel’,...
'CodeProfilingSaveOptions', 'AllData');
sim('rtwdemo_sil_topmodel');

1-217

Time

The simulation generates the workspace variable executionProfile
(default).

At the end of the simulation, get profile for the seventh code section:

SeventhSectionProfile = executionProfile.Sections(7);

Get vector representing simulation time for code section:

simulation_time_vector = SeventhSectionProfile.Time;

See Also Sections | ExecutionTimeInTicks | ExecutionTimeInSeconds

Concepts ¢ “Configure Code Execution Profiling”
® “Analyze Code Execution Data”

1-218

TimerTicksPerSecond

Purpose

Syntax

Description

Input
Arguments

Output
Arguments

See Also

How To

Get and set number of timer ticks per second

TimerTicksOneSecond =
myExecutionProfile.TimerTicksPerSecond
myExecutionProfile.TimerTicksPerSecond(TimerTicksOneSec)

TimerTicksOneSecond =
myExecutionProfile.TimerTicksPerSecond returns the number
of timer ticks per second. For example, if the timer runs at 1 MHz,
then the number of ticks per second is 10°.

myExecutionProfile.TimerTicksPerSecond(TimerTicksOneSec) sets
the number of timer ticks per second. Use this method if the “Create a
Connectivity Configuration for a Target” does not specify this value.

myExecutionProfile is a workspace variable generated by a simulation.

Tip You can calculate the execution time in seconds using the formula

ExecutionTimelInSecs = ExecutionTimelnTicks / TimerTicksPerSecond .

TimerTicksOneSec

Number of timer ticks per second

TimerTicksOneSecond

Number of timer ticks per second

Sections | display | report | Name | SamplePeriod
SampleOffset | Number | NumCalls | MaximumExecutionTimeCallNum
| MaximumSelfTimeCallNum | ExecutionTimeInTicks
MaximumExecutionTimeInTicks | TotalExecutionTimeInTicks

| SelfTimeInTicks | MaximumSelfTimeInTicks
TotalSelfTimeInTicks

+ “Configure Code Execution Profiling”

1-219

TimerTicksPerSecond

+ “View and Compare Code Execution Times”

+ “Analyze Code Execution Data”

1-220

RTW.Autosarinterface.getTriggerPortName

Purpose

Syntax

Description

Input
Arguments

Output
Arguments

See Also

How To

Get name of Simulink inport that provides trigger data for
DataReceivedEvent

SimulinkInportName =
autosarInterfaceObj.getTriggerPortName (Ev
entName)

SimulinkInportName =
autosarInterfaceObj.getTriggerPortName (EventName)
returns the name of the inport that provides trigger data for
EventName, a DataReceivedEvent.

autosarInterfaceObj is a model-specific RTW.AutosarInterface object.

EventName

Name of DataReceivedEvent

SimulinkinportName

Name of Simulink inport in model that provides trigger data for
EventName

RTW.AutosarInterface.addEventConf |
RTW.AutosarInterface.setTriggerPortName

+ “Configure the AUTOSAR Interface”

+ “Configure Multiple Runnables for DataReceivedEvents”

1-221

ghsmulti
|

Purpose Create handle object to interact with MULTI IDE

Syntax IDE_Obj = ghsmulti
IDE_Obj=ghsmulti('propertynamel’',propertyvaluel, 'propertyname2’,...
propertyvalue2, 'timeout',value)

Note The output object name you provide for ghsmulti cannot begin
with an underscore, such as IDE_Obj.

IDEs This function supports the following IDEs:
¢ Green Hills MULTI

Description IDE_Obj = ghsmulti returns object IDE_Obj that communicates with
a target processor. Before you use this command for the first time,
use ghsmulticonfig to configure your MULTI software installation
to identify the location of your MULTI software, your processor
configuration, your debug server, and the host name and port number
of the service.

ghsmulti creates an interface between MATLAB and Green Hills
MULTI.

The first time you use ghsmulti, supply the properties and property
values shown in following table as input arguments.

Property Default Value Description
Name
hostname localhost Specifies the name of the machine

hosting the service. The default
host name indicates that the
service 1s on the local PC. Replace
localhost with the name you

1-222

ghsmulti

Property Default Value Description
Name

entered as the Host name when
you ran ghsmulticonfig.

portnum 4444 Specifies the port to connect to
the service on the host machine.
Replace portnum with the number
you entered as the Port number
when you ran ghsmulticonfig.

When you invoke ghsmulti, it starts a service on your localhost. If
you selected the Show server status window option when you ran
ghsmulticonfig, the service appears in your Microsoft Windows task
bar. If you clear Show server status window, the service does not
appear.

Parameters that you pass as input arguments to ghsmulti are
interpreted as object property definitions. Each property definition
consists of a property name followed by the desired property value
(often called a PV, or property name/property value, pair).

IDE_Obj =

ghsmulti('hostname', 'name', 'portnum', 'number',...) returns a
ghsmulti object IDE_Obj that you use to interact with a processor in
the IDE from the MATLAB command prompt. If you enter a hostname
or portnum that are not the same as the ones you provided when

you configured your MULTI installation, the software returns

an error that it could not connect to the specified host and

port and does not create the object.

You use the debugging methods with this object to access memory
and control the execution of the processor. ghsmulti also enables you
to create an array of objects for a multiprocessor board, where each
object refers to one processor on the board. When IDE_Obj is an array
of objects, a method called with IDE_Obj as an input argument is sent
sequentially to the processors connected to the ghsmulti object. Green
Hills MULTTI provides the communication between the IDE and the
processor.

1-223

ghsmulti

After you build the ghsmulti object IDE_0bj, you can review the object
property values with get, but you cannot modify the hostname and
portnum property values. You can use set to change the value of other
properties.

IDE_Obj=ghsmulti('propertynamei’',propertyvaluel, 'propertyname2’,...
propertyvalue2, 'timeout',value) sets the global time-out value in
seconds to value in IDE_Obj. MATLAB waits for the specified time-out

period to get a response from the IDE application. If the IDE does not
respond within the allotted time-out period, MATLAB exits

from the evaluation of this function.

Examples This example shows how to use ghsmulti with default values.
IDE_Obj = ghsmulti('hostname', 'localhost’', 'portnum',4444);

returns a handle to the default host and port number—1localhost and
4444,

IDE_Obj = ghsmulti('hostname', 'localhost', 'portnum',4444)

MULTI Object:

Host Name : localhost

Port Num 1 4444

Default timeout : 10.00 secs

MULTI Dir : C:\ghs\multi500\ppc\
See Also ghsmulticonfig

1-224

ghsmulticonfig

Purpose
Syntax
IDEs

Description

Configure coder product to interact with MULTI IDE
ghsmulticonfig

This function supports the following IDEs:
¢ Green Hills MULTI

ghsmulticonfig launches the IDE Link Configuration for Green
Hills(R) MULTI(R) dialog to specify information about MULTI.

Use this dialog after installing support for Green Hills MULTI, as
described in “Install Support for Green Hills MULTI IDE”.

Note The configuration dialog box is the only place you set the host
name and port number configuration.

Enter values for each of parameters in the dialog box.

1-225

ghsmulticonfig

1-226

I

IDE Link Configuration for Green Hills(R) MULTI(R) ==
MULTT Installation

Directory: | Browse... |

Configuration: 'J

Debug server:

Senvice
Host name: localhost Port number: 4444
[¥] Show server status window
Ok] I Cancel] I Help Apply
Directory

Enter the full path to your Green Hills MULTI executable,
multi.exe. To search for the executable file, click Browse.

If you do not provide the path to the executable file, the software
returns an error message that it could not find multi.exe in the
specified folder.

Configuration
Select the primary processor family for which you develop projects
in MULTI. This corresponds to a .tgt file you select before you
can download and execute code. Select your family file from the
list. In many cases, the family standalone.tgt option is the best
choice. For example, if you develop on the MPC7400, you could
select ppc_standalone.tgt. The software stores your selection.

If you change processors, use ghsmultisetup to change this
setting.

ghsmulticonfig

Debug server

Enter the name of your debug connection. The software uses
this connection to specify options about the processor, such as
processor to use, board support library, and processor endianness.
For more information about the Debug server, refer to your Green
Hills MULTI documentation.

For example, if you are using the Freescale

MPC7448 simulator, you could enter the string

simppc -cpu=ppc7448 -dec -rom_use_entry. Valid

strings for specifying simulators in Debug server appear in the
following table.

Processor | Type Configuration Debug Server Parameter
String

ARM Simulator | arm_standalone.tgt simarm -cpu=arm9

MPC7400 Simulator ppc_standalone.tgt simppc -cpu=7400 -dec

BlackFin Simulator | bf_standalone.tgt simbf -cpu=bf537 -fast

537

Renesas Simulator | v800_standalone.tgt sim850 -cpu=v850

V850

Renesas Renesas v800_standalone.tgt 850eserv2 -minicube -noiop

V850 Minicube -df=C:/ghs/multi505/v850e/
df3707.800 -id ffffffffff

For information about using hardware in your development work,
refer to Connecting to Your Target in the MULTI documentation.
The string you specify for Debug server can be the name of the
connection if you have one configured in the Connection Organizer
in MULTI IDE.

Host name

Specify the name of the machine that runs the service. Enter
localhost if the service runs on your PC. localhost is the only
supported host name.

1-227

ghsmulticonfig

Port number
Specify the port the service uses to communicate with MULTI.
The default port number i1s 4444. If you change the port value,
verify that the port is available for use. If the port you assign
1s not available, the software returns an error when you try to
create a ghsmulti object.

Show server status window
Select this option to display the service status in the Microsoft®
Windows Task bar. Clearing the option removes the service
from the task bar. Best practice is to select this option. Keeping
this option selected enables the software to shut down the
communication services for Green Hills MULTI completely.

1-228

halt

Purpose

Syntax

IDEs

Description

Halt program execution by processor

IDE Obj.halt
IDE Obj.halt(timeout)

This function supports the following IDEs:
® Analog Devices VisualDSP++

* Eclipse IDE

® Green Hills MULTI

¢ Texas Instruments Code Composer Studio v3

IDE Obj.halt stops the program running on the processor. After you
issue this command, MATLAB waits for a response from the processor
that the processor has stopped. By default, the wait time is 10 seconds.
If 10 seconds elapses before the response arrives, MATLAB returns an
error. In this syntax, the timeout period defaults to the global timeout
period specified in IDE_Obj. Use IDE_Obj.get to determine the global
timeout period. However, the processor usually stops in spite of the
error message.

To resume processing after you halt the processor, use run. Also, the
IDE_Obj.read('pc') function can determine the memory address
where the processor stopped after you use halt.

IDE Obj.halt(timeout) immediately stops program execution by the
processor. After the processor stops, halt returns to the host. timeout
defines, in seconds, how long the host waits for the processor to stop
running. If the processor does not stop within the specified timeout
period, the routine returns with a timeout error.

Examples

Use one of the provided example programs to show how halt works.
Load and run one of the example projects. At the MATLAB prompt,
check whether the program is running on the processor.

IDE_Obj.isrunning

1-229

halt

ans =

IDE_Obj.isrunning % Alternate syntax for checking the run status.
ans =

1
IDE_Obj.halt % Stop the running application on the processor.

IDE_Obj.isrunning

ans =

Issuing the halt stops the process on the processor. Checking in the IDE
confirms that the process has stopped.

See Also isrunning | reset | run

1-230

info

Purpose

Syntax

IDEs

Description

Information about processor

adf=IDE _Obj.info
adf = IDE Obj.info
adf = info(rx)

adf IDE Obj.info
adf info(rx)

This function supports the following IDEs:

® Analog Devices VisualDSP++

® Green Hills MULTI

¢ Texas Instruments Code Composer Studio v3

adf=IDE 0Obj.info returns debugger or processor properties associated
with the IDE handle object, IDE_0bj.

Using info with Multiprocessor Boards

For multiprocessor targets, the info method returns properties for each
processor with the array.

Examples
Using info with IDE_Obj, which is associated with 1 processor:

oinfo = IDE_Obj.info;

Using info with IDE_Obj, which is associated with 2 processors:
oinfo = IDE_Obj.info; % Returns a 1x2 array of infor struct

Using info with MULTI IDE

Before using info, open a program in the MULTI IDE debugger. When
you use info with an IDE handle object for the MULTI IDE, the info
method returns the following information.

1-231

info

Structure Element | Data Type | Description

adf.CurBrkPt String When the debugger 1s stopped at a breakpoint, the
field reports the index of the breakpoint. Otherwise,
this value is-1.

adf.File String Name of the current file shown in the debugger
source pane.

adf.Line Integer Line number of the cursor position in the file in the
debugger source pane. If a file is not open in the
source pane, this value 1s -1.

adf .MultiDir String Full path to your IDE installation the root folder).
For example
'C:\ghs5_01"'

adf.PID Double Process ID from the debug server in the IDE.

adf.Procedure String Current procedure in the debugger source pane.

adf.Process Double Program number, defined by the IDE, of the current
program.

adf .Remote String Status of the remote connection, either Connected
or Not connected.

adf.Selection String The string highlighted in the debugger. If a string is

not highlighted, this value is 'null"'.

1-232

info

Structure Element

Data Type

Description

adf.State

String

State of the loaded program. The possible reported
states appear in the following list:
® About to resume

® Dying

® Just executed
® Just forked

® No child

® Running

® Stopped

® Zombied

For details about the states and their definitions,
refer to your IDE debugger documentation.

adf.Target

Double

Unique identifier the indicates the processor family
and variant.

adf.Target0S

Double

Real-time operating system on the processor if one
exists. Provides both the major and minor revision
information.

adf.TargetSeries

Double

Whether the processor belongs to a series of
processors. For details about the processor series,
refer to your IDE debugger documentation.

info returns valid information when the IDE debugger is connected to
processor hardware or a simulator.

Examples

On a PC with a simulator configured in the IDE, info returns the
following configuration information after stopping a running simulation:

adf=info(test_obj1)

1-233

info

adf =

CurBrkPt: 0

File: '...\Compute_Sum_and_Diff_multilink\Compute_Sum_and_Diff_main.c'
Line: 3

MultiDir: 'C:\ghs5_01'
PID: 2380

Procedure: 'main'
Process: 0

Remote: 'Connected’
Selection: '(null)’
State: 'Stopped’
Target: 4325392
TargetO0S: [2x1 double]
TargetSeries: 3

When you create an IDE handle, the response from info looks like the
following before you load a project.

adf=info(test_obj2)
test_obj2 =

CurBrkPt: []

File: []
Line: []
MultiDir: []
PID: []

Procedure: []
Process: []

Remote: []
Selection: []
State: []
Target: []

TargetO0S: []
TargetSeries: []

1-234

info

Using info with CCS IDE

adf = IDE Obj.info returns the property names and property values
associated with the processor accessed by IDE 0Obj. adf is a structure
containing the following information elements and values.

Structure Element

Data Type | Description

adf.procname

String Processor name as defined in the CCS setup utility.
In multiprocessor systems, this name reflects the
specific processor associated with IDE Obj.

adf.isbigendian

Boolean Value describing the byte ordering used by the
processor. When the processor is big-endian, this
value is 1. Little-endian processors return 0.

adf.family

Integer Three-digit integer that identifies the processor
family, ranging from 000 to 999. For example, 320
for Texas Instruments digital signal processors.

adf.subfamily

Decimal Decimal representation of the hexadecimal
1dentification value that TI assigns to the processor
to 1dentify the processor subfamily. IDs range
from 0x000 to 0x3822. Use dec2hex to convert the
value in adf.subfamily to standard notation. For
example

dec2hex(adf.subfamily)

produces '67' when the processor is a member of
the 67xx processor family.

adf.timeout

Integer Default timeout value MATLAB software uses when
transferring data to and from CCS. Functions that
use a timeout value have an optional timeout input
argument. When you omit the optional argument,
MATLAB software uses 10s as the default value.

adf = info(rx) returns info as a cell arraying containing the names of
your open RTDX channels.

1-235

info

1-236

Examples

On a PC with a simulator configured in CCS IDE, info returns the
configuration for the processor being simulated:

IDE_Obj.info

ans =

procname:
isbigendian:
family:
subfamily:
timeout:

‘CPU'
0
320
103
10

This example simulates the TMS320C62xx processor running in
little-endian mode. When you use CCS Setup Utility to change the
processor from little-endian to big-endian, info shows the change.

IDE_Obj.info

ans =

procname:
isbigendian:
family:
subfamily:
timeout:

‘CPU'
1

320
103
10

If you have two open channels, chan1 and chan2,

adf = info(rx)

returns

adf =
"chant'
'chan2'

info

where adf is a cell array. You can dereference the entries in adf to
manipulate the channels. For example, you can close a channel by
dereferencing the channel in adf in the close function syntax.

close(rx.adf{1,1})

Using info with VisualDSP++ IDE

adf = IDE Obj.info returns the property names and property values
associated with the processor accessed by IDE 0bj. The adf variable is
a structure containing the following information elements and values.

Structure Element

Data Type | Description

adf.procname

String Processor name as defined in the CCS setup utility.
In multiprocessor systems, this name reflects the
specific processor associated with IDE Obj.

adf.proctype

String String with the type of the DSP processor. The type
property 1s the processor type like "ADSP-21065L"
or "ADSP-2181".

adf.revision

String String with the silicon revision string of the
processor.

adf = info(rx) returns info as a cell arraying containing the names of
your open RTDX channels.

Examples
When you have an adivdsp object IDE_ODbj, info provides information
about the object:

IDE_Obj = adivdsp('sessionname', 'Testsession')

ADIVDSP Object:

Session name : Testsession
Processor name : ADSP-BF533
Processor type : ADSP-BF533

Processor number : 0O
Default timeout : 10.00 secs

1-237

info

objinfo = IDE_Obj.info

objinfo
procname: 'ADSP-BF533'
proctype: 'ADSP-BF533'

revision: ''

objinfo.procname

ans =
ADSP-BF533
See Also dec2hex | get | set

1-238

insert

Purpose

Syntax

IDEs

Description

Insert debug point in file

IDE Obj.insert(addr,type,timeout)

IDE Obj.insert(addr)

IDE Obj.insert(file,line,type,timeout)
This function supports the following IDEs:

® Analog Devices VisualDSP++

* Eclipse IDE

Green Hills MULTI

¢ Texas Instruments Code Composer Studio v3

IDE Obj.insert(addr,type,timeout) places a debug point at the
provided address of the processor. The IDE_Obj handle defines
the processor that will receive the new debug point. The debug
point location is defined by addr, the desired memory address. The
IDEs support several types of debug points. Refer to your IDE help
documentation for information on their respective behavior. The
following table shows which debug types each IDE supports.

CCS IDE Eclipse IDE | MULTI VisualDSP++
'break’ Yes Yes Yes Yes
(default)
'watch' Yes Yes
"probe’ Yes

The timeout parameter defines how long to wait (in seconds) for the
insert to complete. If this period is exceeded, the routine returns
immediately with a timeout error. In general the action (insert) still
occurs, but the timeout value gave insufficient time to verify the
completion of the action.

IDE Obj.insert(addr) same as the preceding example, except the
timeout value defaults to the timeout property specified by the IDE_ODbj

1-239

insert

See Also

1-240

object. Use IDE Obj.get('timeout') to examine this default timeout
value.

IDE Obj.insert(file,line,type,timeout) places a debug point at
the specified line in a source file of Eclipse. The FILE parameter gives
the name of the source file. LINE defines the line number to receive the
breakpoint. Eclipse IDE provides several types of debug points. Refer to
the previous list of supported debug point types. Refer to Eclipse IDE
documentation for information on their respective behavior.

IDE Obj.insert(file,line) same as the preceding example, except the
timeout value defaults to the timeout property specified by the IDE_Ob;
object. Use IDE Obj.get('timeout') to examine this default timeout
value.

address | run

isenabled

Purpose

Syntax

IDEs

Description

Determine whether RTDX link is enabled for communications

Note Support for isenabled on C5000 processors will be removed
in a future version.

isenabled(rx, 'channel")
isenabled(rx)

This function supports the following IDEs:

e Texas Instruments Code Composer Studio v3

isenabled(rx, 'channel') returns ans=1 when the RTDX

channel specified by string 'channel' is enabled for read or write
communications. When 'channel' has not been enabled, isenabled
returns ans=0.

isenabled(rx) returns ans=1 when RTDX has been enabled,
independent of a channel. When you have not enabled RTDX you get
ans=0 back.

Important Requirements for Using isenabled

On the processor side, isenabled depends on RTDX to determine and
report the RTDX status. Therefore the you must meet the following
requirements to use isenabled.

1 The processor must be running a program when you query the RTDX
interface.

2 You must enable the RTDX interface before you check the status of
individual channels or the interface.

3 Your processor program must be polling periodically for isenabled
to work.

1-241

isenabled

Examples

See Also

1-242

Note For isenabled to return valid results, your processor must

be running a loaded program. When the processor is not running,
isenabled returns a status that may not represent the true state of the
channels or RTDX.

With a program loaded on your processor, you can determine whether
RTDX channels are ready for use. Restart your program to be sure it is
running. The processor must be running for isenabled and enabled to
function. This example creates a ticcs object IDE_Obj to begin.

IDE_Obj.restart
IDE_Obj.run('run');
IDE_Obj.rtdx.enable('ichan');
IDE_Obj.rtdx.isenabled('ichan')

MATLAB software returns 1 indicating that your channel 'ichan'
is enabled for RTDX communications. To determine the mode for
the channel, use IDE_Obj.rtdxto display the properties of object
IDE_Obj . rtdx.

clear | disable | enable

isreadable

Purpose

Syntax

IDEs

Description

Determine whether specified memory block can read MATLAB software

Note Support for isreadable(rx, 'channel') on C5000 processors
will be removed in a future version.

IDE Obj.isreadable(address, 'datatype',count)
IDE Obj.isreadable(address, 'datatype')
isreadable(rx, 'channel')

This function supports the following IDEs:

¢ Texas Instruments Code Composer Studio v3

IDE Obj.isreadable(address, 'datatype',count) returns 1 if the
processor referred to by IDE_Obj can read the memory block defined
by the address, count, and datatype input arguments. When

the processor cannot read a portion of the specified memory block,
isreadable returns 0. You use the same memory block specification for
this function as you use for the read function.

The data block being tested begins at the memory location defined by
address. count determines the number of values to be read. datatype
defines the format of data stored in the memory block. isreadable
uses the datatype string to determine the number of bytes to read per
stored value. For details about each input parameter, read the following
descriptions.

address — isreadable uses address to define the beginning of the
memory block to read. You provide values for address as either decimal
or hexadecimal representations of a memory location in the processor.
The full address at a memory location consists of two parts: the offset
and the memory page, entered as a vector [location, page], a string,
or a decimal value.

When the processor has only one memory page, as is true for many
digital signal processors, the page portion of the memory address is 0.
By default, ticcs sets the page to 0 at creation if you omit the page

1-243

isreadable

1-244

property as an input argument. For processors that have one memory
page, setting the page value to 0 lets you specify memory locations in
the processor using the memory location without the page value.

Examples of Address Property Values

Property

Value Address Type | Interpretation

'1F" String Location is 31 decimal on
the page referred to by
IDE Obj .page

10 Decimal Address is 10 decimal on
the page referred to by
IDE Obj .page

[18,1] Vector Address location 10 decimal on
memory page 1 (IDE_Obj .page
= 1)

To specify the address in hexadecimal format, enter the address
property value as a string. isreadable interprets the string as the
hexadecimal representation of the desired memory location. To convert
the hex value to a decimal value, the function uses hex2dec. When you
use the string option to enter the address as a hex value, you cannot
specify the memory page. For string input, the memory page defaults to
the page specified by IDE Obj .page.

count — A numeric scalar or vector that defines the number of
datatype values to test for being readable. To produce parallel
structure with read, count can be a vector to define multidimensional
data blocks. This function tests a block of data whose size is the product
of the dimensions of the input vector.

datatype — A string that represents a MATLAB software data type.
The total memory block size is derived from the value of count and the
datatype you specify. datatype determines how many bytes to check
for each memory value. isreadable supports the following data types.

isreadable

datatype Number of

String Bytes/Value | Description

‘double’ 8 Double-precision floating point
values

'int8' 1 Signed 8-bit integers

'int16' 2 Signed 16-bit integers

'int32' 4 Signed 32-bit integers

'single' 4 Single-precision floating point data

'uint8' 1 Unsigned 8-bit integers

'uint16' 2 Unsigned 16-bit integers

'uint32' 4 Unsigned 32-bit integers

Like the iswritable, write, and read functions, isreadable checks for
valid address values. Illegal address values would be an address space
larger than the available space for the processor:

® 232 for the C6xxX series
e 216 for the CHxxx series

When the function identifies an illegal address, it returns an error
message stating that the address values are out of range.

IDE Obj.isreadable(address, 'datatype') returns 1 if the processor
referred to by IDE Obj can read the memory block defined by the
address, and datatype input arguments. When the processor cannot
read a portion of the specified memory block, isreadable returns

0. Notice that you use the same memory block specification for this
function as you use for the read function. The data block being tested
begins at the memory location defined by address. When you omit the
count option, count defaults to one.

isreadable(rx, 'channel') returns a 1 when the RTDX channel
specified by the string channel, associated with link rx, is configured
for read operation. When channel is not configured for reading,
isreadable returns 0.

1-245

isreadable

Examples

1-246

Like the iswritable, read, and write functions, isreadable checks for
valid address values. Illegal address values are address spaces larger
than the available space for the processor:

e 232 for the C6xxx series
e 216 for the ChHxxx series

When the function identifies an illegal address, it returns an error
message stating that the address values are out of range.

Note isreadable relies on the memory map option in the IDE. If
you did not define the memory map for the processor in the IDE,
isreadable does not produce useful results. Refer to your Texas
Instruments Code Composer Studio documentation for information on
configuring memory maps.

When you write scripts to run models in the MATLAB environment and
the IDE, the isreadable function is very useful. Use isreadable to
check that the channel from which you are reading is configured.

IDE_Obj = ticcs;
rx = IDE_Obj.rtdx;

% Define read and write channels to the processor linked by IDE_Obj.
open(rx, 'ichannel','r');s

open(rx, 'ochannel’,'w');

enable(rx, 'ochannel');

enable(rx, 'ichannel');

isreadable(rx, 'ochannel")
ans=

0

isreadable(rx, 'ichannel")
ans=

1

isreadable

Now that your script knows that it can read from ichannel, it proceeds
to read messages as required.

See Also hex2dec | iswritable | read

1-247

isrtdxcapable

Purpose

Syntax
IDEs

Description

Examples

1-248

Determine whether processor supports RTDX

Note Support for isrtdxcapable on C5000 processors will be removed
in a future version.

b=IDE Obj.isrtdxcapable

This function supports the following IDEs:

¢ Texas Instruments Code Composer Studio v3

b=IDE Obj.isrtdxcapable returns b=1 when the processor referenced
by object IDE_0Obj supports RTDX. When the processor does not support
RTDX, isrtdxcapable returns b=0.

Using isrtdxcapable with Multiprocessor Boards

When your board contains more than one processor, isrtdxcapable
checks each processor on the processor, as defined by the IDE 0Obj
object, and returns the RTDX capability for each processor on the
board. In the returned variable b, you find a vector that contains the
information for each accessed processor.

Create a link to your C6711 DSK. Test to see if the processor on the
board supports RTDX.

IDE_Obj=ticcs; %Assumes you have one board and it is the C6711 DSK.
b=IDE_Obj.isrtdxcapable
b =

1

isrunning

Purpose Determine whether processor is executing process
Syntax IDE Obj.isrunning
IDEs This function supports the following IDEs:

® Analog Devices VisualDSP++

* Eclipse IDE

® Green Hills MULTI

¢ Texas Instruments Code Composer Studio v3

Description IDE Obj.isrunning returns 1 when the processor is executing a
program. When the processor is halted, isrunning returns 0.

Examples isrunning lets you determine whether the processor is running. After
you load a program to the processor, use isrunning to verify that the
program is running.

IDE_Obj.load('program.exe', 'program')
IDE_Obj.run
IDE_Obj.isrunning
ans =
1
IDE_Obj.halt
IDE_Obj.isrunning

ans =

See Also halt | load | run

1-249

isvisible

Purpose
Syntax
IDEs

Description

Examples

1-250

Determine whether IDE appears on desktop
IDE Obj.isvisible

This function supports the following IDEs:
® Analog Devices VisualDSP++

¢ Texas Instruments Code Composer Studio v3

IDE Obj.isvisible returns 1 if the IDE is running on the desktop
and the window is open. If the IDE is not running or is running in the
background, this method returns 0.

First use a constructor to create an IDE handle object and start the
IDE. To determine if the IDE is visible:

IDE_Obj.isvisible #determine if the ide is visible
ans =

1
IDE_Obj.visible(0) #make the ide invisible
IDE_Obj.isvisible #determine if the ide is visible

ans =
0

Notice that the IDE is not visible on your desktop. Recall that MATLAB
software did not open the IDE. When you close MATLAB software
with the IDE in this invisible state, the IDE remains running in the
background. To close it, perform either of the following tasks:

¢ Open MATLAB software. Create a link to the IDE. Use the new link
to make the IDE visible. Close the IDE.

¢ Open Microsoft Windows® Task Manager. Click Processes. Find
and highlight IDE_Obj_app.exe. Click End Task.

isvisible

See Also info | visible

1-251

iswritable

Purpose

Syntax

IDEs

Description

1-252

Determine whether MATLAB can write to specified memory block

Note Support for iswritable(rx,'channel') on C5000 processors
will be removed in a future version.

IDE Obj.iswritable(address, 'datatype',count)
IDE Obj.iswritable(address, 'datatype')
iswritable(rx, 'channel')

This function supports the following IDEs:

¢ Texas Instruments Code Composer Studio v3

IDE Obj.iswritable(address, 'datatype',count) returns 1 if
MATLAB software can write to the memory block defined by the
address, count, and datatype input arguments on the processor
referred to by IDE_Obj. When the processor cannot write to a portion
of the specified memory block, iswritable returns 0. You use the
same memory block specification for this function as you use for the
write function.

The data block being tested begins at the memory location defined by
address. count determines the number of values to write. datatype
defines the format of data stored in the memory block. iswritable
uses the datatype parameter to determine the number of bytes to
write per stored value. For details about each input parameter, read
the following descriptions.

address — iswritable uses address to define the beginning of the
memory block to write to. You provide values for address as either
decimal or hexadecimal representations of a memory location in the
processor. The full address at a memory location consists of two parts:
the offset and the memory page, entered as a vector [Location, page], a
string, or a decimal value. When the processor has only one memory
page, as is true for many digital signal processors, the page portion

iswritable

of the memory address is 0. By default, ticcs sets the page to 0 at
creation if you omit the page property as an input argument.

For processors that have one memory page, setting the page value to 0
lets you specify memory locations in the processor using the memory
location without the page value.

Examples of Address Property Values

Property

Value Address Type Interpretation

1F String Location is 31 decimal on
the page referred to by
IDE_Obj.page

10 Decimal Address is 10 decimal on

the page referred to by
IDE_Obj.page
[18,1] Vector Address location 10

decimal on memory page
1 (IDE_Obj.page = 1)

To specify the address in hexadecimal format, enter the address
property value as a string. iswritable interprets the string as the
hexadecimal representation of the desired memory location. To convert
the hex value to a decimal value, the function uses hex2dec. When you
use the string option to enter the address as a hex value, you cannot
specify the memory page. For string input, the memory page defaults to
the page specified by IDE_0Obj.page.

count — A numeric scalar or vector that defines the number of
datatype values to test for being writable. To produce parallel
structure with write, count can be a vector to define multidimensional
data blocks. This function tests a block of data whose size is the total
number of elements in matrix specified by the input vector. If count is
the vector [10 10 10], then:

IDE_Obj.iswritable(31,[10 10 10])

1-253

iswritable

iswritable writes 1000 values (10¥10*10) to the processor. For a
two-dimensional matrix defined with count as

IDE_Obj.iswritable(31,[5 6])

iswritable writes 30 values to the processor.

datatype — a string that represents a MATLAB data type. The total
memory block size is derived from the value of count and the specified
datatype. datatype determines how many bytes to check for each
memory value. iswritable supports the following data types.

datatype String Description

'double’ Double-precision floating point values
'int8' Signed 8-bit integers

'int16' Signed 16-bit integers

'int32' Signed 32-bit integers

'single’ Single-precision floating point data
'uint8' Unsigned 8-bit integers

'uint16' Unsigned 16-bit integers

'uint32' Unsigned 32-bit integers

IDE Obj.iswritable(address, 'datatype') returns 1 if the processor
referred to by IDE_Obj can write to the memory block defined by the
address, and count input arguments. When the processor cannot write
a portion of the specified memory block, iswritable returns 0. Notice
that you use the same memory block specification for this function as
you use for the write function. The data block tested begins at the
memory location defined by address. When you omit the count option,
count defaults to one.

1-254

iswritable

Examples

Note iswritable relies on the memory map option in the IDE. If
you did not define the memory map for the processor in the IDE,

this function does not produce useful results. Refer to your Texas
Instruments Code Composer Studio documentation for information on
configuring memory maps.

Like the isreadable, read, and write functions, iswritable checks for
valid address values. Illegal address values would be an address space
larger than the available space for the processor:

e 232 for the C6xxx series
e 216 for the ChHxxx series

When the function identifies an illegal address, it returns an error
message stating that the address values are out of range.

iswritable(rx, 'channel') returns a Boolean value signifying
whether the RTDX channel specified by channel and rx, is configured
for write operations.

When you write scripts to run models in MATLAB software and the
IDE, the iswritable function is very useful. Use iswritable to check
that the channel to which you are writing to is indeed configured.

IDE_Obj = ticcs;
rx = IDE_Obj.rtdx;

% Define read and write channels to the processor linked by IDE_Obj.
open(rx, 'ichannel','r');

open(rx, 'ochannel’,'w');

enable(rx, 'ochannel');

enable(rx, 'ichannel');

iswritable(rx, 'ochannel')

ans=
1

1-255

iswritable

iswritable(rx, 'ichannel’)
ans=
0

Now that your script knows that it can write to 'ichannel', it proceeds
to write messages as required.

See Also hex2dec | isreadable | read

1-256

list

Purpose

Syntax

IDEs

Description

Information listings from IDE

IDE Obj.infolist = list('type')
IDE Obj.infolist list('type',typename)

This function supports the following IDEs:
¢ Green Hills MULTI

¢ Texas Instruments Code Composer Studio v3

Using list with MULTI

infolist = IDE Obj.list(type) reads information about your the
IDE project and returns it in infolist. Different types of information
and return formats are possible depending on the input arguments you
supply to the 1list function call.

Note 1list does not recognize or return information about variables
that you declare in your code but that are not used or initialized.

The type argument specifies which information listing to return. To
determine the information that 1ist returns, use one of the entries in
the following table.

type String Description

project Return information about the
current project in the IDE

variable Return information about one or
more embedded variables

function Return details about one or more
functions in your project

list returns dynamic the IDE information that you can alter. Returned
listings represent snapshots of the current the IDE configuration

1-257

list

1-258

only. Be aware that earlier copies of infolist might contain stale
information.

infolist = IDE Obj.list('project') returns a vector of structures
that contain project information in the format shown in the following
table.

infolist Structure Element Description
infolist(1).name Project file name (with path).
infolist(1).primary Configuration file used for the

project. For more information,
refer to new.

infolist(1).compileroptions | Compiler options string for the
project.

infolist(1).srcfiles Vector of structures that
describes project source files.
Each structure contains the

name and path for each source
file—infolist(1).srcfiles.name

infolist(1).type Shows the project type, either
project or projlib. For more
information, refer to new.

infolist(2)....

infolist(n)....

infolist = IDE Obj.list('variable') returns a structure of
structures that contains information on the local variables within scope.
The list also includes information on the global variables. If a local
variable has the same symbol name as a global variable, 1ist returns
the local variable information.

infolist = IDE Obj.list('variable',varname) returns information
about the specified variable varname.

list

infolist = IDE Obj.list('variable',varnamelist) returns
information about variables in a list specified by varnamelist. The
information returned in each structure follows the format in the
following table.

infolist Structure Element Description

infolist.varname(1).name Symbol name.

infolist.varname(1).isglobal| Indicates whether symbol is global
or local.

infolist.varname(1).location| Information about the location of
the symbol.

infolist.varname(1).size Size per dimension.

infolist.varname(1).uclass IDE handle class that matches the
type of this symbol.

infolist.varname(1).bitsize | Size in bits. More information is
added to the structure depending
on the symbol type.

infolist. (varnamel).type Data type of symbol.

infolist.varname(2)....

infolist.varname(n)....

list uses the variable name as the field name to refer to the structure
information for the variable.

infolist = IDE Obj.list('globalvar') returns a structure that
contains information on the global variables.

infolist = IDE Obj.list('globalvar',varname) returns a structure
that contains information on the specified global variable.

infolist = IDE Obj.list('globalvar',varnamelist) returns a
structure that contains information on global variables in the list.
The returned information follows the same format as the syntax

infolist = IDE_Obj.list('variable',...).

1-259

list

1-260

infolist = IDE Obj.list('function') returns a structure that
contains information on the functions in the embedded program.

infolist = IDE Obj.list('function',functionname) returns
a structure that contains information on the specified function
functionname.

infolist = IDE Obj.list('function',functionnamelist) returns
a structure that contains information on the specified functions in
functionnamelist. The returned information follows the following
format when you specify option type as function.

infolist Structure Element Description
infolist.functionname (1) .name Function name
infolist.functionname(1).filename Name of file where

function is defined

infolist.functionname(1).address Relevant address
information such as
start address and end

address
infolist.functionname(1).funcvar Variables local to the

function
infolist.functionname(1).uclass IDE handle class

that matches
the type of this
symbol—function

infolist.functionname(1).funcdecl Function
declaration—where
information such as
the function return
type is contained

infolist.functionname(1).islibfunc Determine if the
library is a function

list

infolist Structure Element Description

infolist.functionname(1).linepos Start and end line
positions of function

infolist.functionname(1).funcinfo Miscellaneous
information about
the function

infolist.functionname(2)...

infolist.functionname(n)...

To refer to the function structure information, 1ist uses the function
name as the field name.

IDE Obj.infolist = list('type') returns a structure that contains
information on the defined data types in the embedded program. This
method includes struct, enum and union data types and excludes
typedefs. The name of a defined type is its C struct tag, enum tag

or union tag. If the C tag is not defined, it is referred to by the IDE
compiler as '$faken' where n is an assigned number.

IDE Obj.infolist = list('type',typename) returns a structure that
contains information on the specified defined data type.

IDE Obj.infolist = list('type',typenamelist) returns a structure
that contains information on the specified defined data types in the
list. The returned information follows the following format when you
specify option type as type.

infolist Structure Element Description
infolist.typename(1).type Type name.
infolist.typename(1).size Size of this type
infolist.typename(1).uclass IDE handle class that

matches the type of
this symbol. Additional
information is added
depending on the type.

1-261

list

1-262

infolist Structure Element Description

infolist.typename(2)....

infolist.typename(n)....

For the field name, 1ist uses the type name to refer to the type
structure information.

The following list provides important information about variable and
field names:

® When a variable name, type name, or function name is not a valid
MATLAB structure field name, 1ist replaces or modifies the name
so it becomes valid.

® In field names that contain the invalid dollar character $, list
replaces the $ with DOLLAR.

¢ Changing the MATLAB field name does not change the name of the
embedded symbol or type.

Examples

This first example shows 1ist used with a variable, providing
information about the variable varname. Notice that the invalid field
name _with_underscore gets changed to Q_with_underscore. To make
the invalid name valid, 1ist inserts the character Q before the name.

varnamel = '_with_underscore'; % Invalid fieldname.
IDE_Obj.list('variable',varnamel);
ans =

Q_with_underscore : [varinfo]
ans. Q_with_underscore

ans=
name: '_with_underscore’
isglobal: O
location: [1x62 char]
size: 1

uclass: 'numeric'

list

type: 'int'
bitsize: 16

To show how to use 1ist with a defined C type, variable typename1
includes the type argument. Because valid field names cannot contain
the $ character, 1ist changes the $ to DOLLAR.
typenamel = '$fake3'; % Name of defined C type with no tag.
IDE_Obj.list('type',typenamel);
ans =

DOLLARfakeO : [typeinfo]
ans.DOLLARfakeO=

type: 'struct $fakeO'

size: 1
uclass: 'structure'
sizeof: 1

members: [1x1 struct]

When you request information about a project in the IDE, you see a
listing like the following that includes structures containing details
about your project.

projectinfo=IDE_Obj.list('project')
projectinfo =
name: 'D:\Work\c6711dskafxr_c6000_rtw\c6711dskafxr.pjt’
type: 'project'
targettype: 'TMS320C67XX'

srcfiles: [69x1 struct]
buildcfg: [3x1 struct]

1-263

list

1-264

Using list with CCS IDE

infolist = IDE Obj.list(type) reads information about your CCS
session and returns it in infolist. Different types of information and
return formats apply depending on the input arguments you supply to
the 1ist function call. The type argument specifies which information
listing to return. To determine the information that 1ist returns, use
one of the following as the type parameter string:

e project — Tell 1ist to return information about the current project
in CCS.

e variable — Tell 1ist to return information about one or more
embedded variables.

® globalvar — Tell 1ist to return information about one or more
global embedded variables.

® function — Tell 1ist to return details about one or more functions
in your project.

The 1list function returns dynamic CCS information that can be altered
by the user. Returned listings represent snapshots of the current CCS
configuration only. Be aware that earlier copies of infolist might
contain stale information.

Also, 1ist may report incorrect information when you make changes
to variables from MATLAB software. To report variable information,
list uses the CCS API, which only knows about variables in CCS.
Your changes from MATLAB software do not appear through the API
and list. For example, the following operations return incorrect or
old data information from list.

Suppose your original prototype is

unsigned short tgtFunction7(signed short signedShortArrayi[]);

After creating the function object fcnObj, perform a declare operation
with this string to change the declaration:

unsigned short tgtFunction7(unsigned short signedShortArrayi[]);

list

Now try using 1list to return information about signedShortArray1.

list(fcnObj, 'signedShortArrayt’)

address: [3442 1]
location: [1x66 char]
size: 1
bitsize: 16
reftype: 'short'
referent: [1x1 struct]
member_pts_to_same_struct: 0
name: 'signedShortArrayi’

You get this outcome because list uses the CCS API to query
information about a particular variable. As far as the API is concerned,
the first input variable is a short*. Changing the declaration does
not change anything.

When you specify option type as project, for example
infolist = IDE Obj.list('project'), the method returns a vector of
structures that contain project information in the following format.

infolist Structure Element Description
infolist(1).name Project file name (with path).
infolist(1).type Project type — project,projlib, or

projext, refer to new.

infolist(1).processortype | String description of processor CPU.

infolist(1).srcfiles Vector of structures that describes
project source files. Each
structure contains the name

and path for each source file —
infolist(1).srcfiles.name.

1-265

list

1-266

infolist Structure Element Description

infolist(1).buildcfg Vector of structures that describe
build configurations, each with the
following entries:

® infolist(1).buildcfg.name —
the build configuration name.

® infolist(1).buildcfg.outpath
— the default folder for storing
the build output.

infolist(2)....

infolist(n)....

infolist = IDE Obj.list('variable') returns a structure of
structures that contains information on the local variables within scope.
The list also includes information on the global variables. However,
that if a local variable has the same symbol name as a global variable,
list returns the information about the local variable.

infolist = IDE Obj.list('variable',varname) returns information
about the specified variable varname.

infolist = IDE Obj.list('variable',varnamelist) returns
information about variables in a list specified by varnamelist. The
information returned in each structure follows the following format
when you specify option type as variable.

infolist Structure Element Description

infolist.varname(1).name Symbol name.

infolist.varname(1).isglobal| Indicates whether symbol is global
or local.

infolist.varname(1).location| Information about the location of
the symbol.

infolist.varname(1).size Size per dimension.

list

infolist Structure Element Description

infolist.varname(1).uclass ticcs object class that matches
the type of this symbol.

infolist.varname(1).bitsize | Size in bits. More information is
added to the structure depending
on the symbol type.

infolist.varname(2)....

infolist.varname(n)....

list uses the variable name as the field name to refer to the structure
information for the variable.

infolist = IDE Obj.list('globalvar') returns a structure that
contains information on the global variables.

infolist = IDE Obj.list('globalvar',varname) returns a structure
that contains information on the specified global variable.

infolist = IDE Obj.list('globalvar',varnamelist) returns a
structure that contains information on global variables in the list.
The returned information follows the same format as the syntax

infolist = IDE_Obj.list('variable',...).

infolist = IDE Obj.list('function') returns a structure that
contains information on the functions in the embedded program.

infolist = IDE Obj.list('function',functionname) returns
a structure that contains information on the specified function
functionname.

infolist = IDE Obj.list('function',functionnamelist) returns
a structure that contains information on the specified functions in
functionnamelist. The returned information follows the following
format when you specify option type as function.

1-267

list

infolist Structure Element

Description

infolist.

functionname (1) .name

Function name

infolist.

functionname(1).filename

Name of file where
function is defined

infolist.

functionname (1) .address

Relevant address
information such as
start address and end
address

infolist.

functionname (1) .funcvar

Variables local to the
function

infolist.

functionname (1) .uclass

ticcs object class
that matches the
type of this symbol —
function

infolist.

functionname (1) .funcdecl

Function declaration
— where information
such as the function
return type is
contained

infolist.

functionname(1).islibfunc

Determine if the
library is a function

infolist.

functionname(1).linepos

Start and end line
positions of function

infolist.

functionname(1).funcinfo

Miscellaneous
information about
the function

infolist.

functionname(2)...

infolist.

functionname(n)...

To refer to the function structure information, 1ist uses the function
name as the field name.

1-268

list

The following list provides important information about variable and
field names:

® When a variable name, type name, or function name is not a valid
MATLAB software structure field name, 1ist replaces or modifies
the name so it becomes valid.

® In field names that contain the invalid dollar character $, list
replaces the $ with DOLLAR.

¢ Changing the MATLAB software field name does not change the
name of the embedded symbol or type.

Examples
To show how to use 1ist with a defined C type, variable typename1

includes the type argument. Because valid field names cannot contain
the $ character, 1ist changes the $ to DOLLAR.
typename1l = '$fake3'; % name of defined C type with no tag
IDE_Obj.list('type',typenamel);
ans =

DOLLARfakeO : [typeinfo]
ans.DOLLARfakeO=

type: 'struct $fakeO'

size: 1
uclass: 'structure'
sizeof: 1

members: [1x1 struct]
When you request information about a project in CCS, you see a listing

like the following that includes structures containing details about your
project.

projectinfo=IDE_Obj.list('project')

projectinfo =

1-269

list

name: 'D:\Work\c6711dskafxr_c6000_rtw\c6711dskafxr.pjt’
type: 'project’
processortype: 'TMS320C67XX'
srcfiles: [69x1 struct]
buildcfg: [3x1 struct]

See Also info

1-270

listsessions

Purpose List existing sessions
Syntax list = listsessions
list = listsessions('verbose')

IDEs This function supports the following IDEs:
® Analog Devices VisualDSP++

Description list = listsessions returns list that contains a listing of the
sessions by name currently in the development environment.

list = listsessions('verbose') adds the optional input argument
verbose. When you include the verbose argument, listsessions
returns a cell array that contains one row for each existing session.
Each row has three columns — processor type, platform name, and
processor name.

See Also adivdsp

1-271

load

Purpose
Syntax
IDEs

Description

1-272

Load program file onto processor
IDE_Obj.load(filename,timeout)

This function supports the following IDEs:
® Analog Devices VisualDSP++

* Eclipse IDE

® Green Hills MULTI

¢ Texas Instruments Code Composer Studio v3

IDE_Obj.load(filename,timeout) loads the file specified by the
filename argument to the processor.

The filename argument can include a full path to the file, or the name
of a file in the IDE working folder.

With the VisualDSP++, MULTI, and Code Composer Studio IDEs, you
can use the cd method to check or modify the IDE working folder.

For MULTI, you can add an option argument after filename to specify
options for the 'prepare_target' command in MULTI debugger. Refer
to the MULTI documentation for information on 'prepare_target'.

Only use load with program files created by the IDE build process.

The timeout argument defines the number of seconds MATLAB waits
for the load process to complete. If the time-out period expires before
the load process returns a completion message, MATLAB generates an
error and returns. Usually the program load process works in spite of
the error message.

If you omit the timeout argument, load uses the timeout
property of the IDE handle object, which you can get by entering
IDE_Obj.get('timeout').

Using load with Eclipse IDE

With Eclipse IDE:

load

Examples

See Also

® Before using load, use activate to make the project associated with
the executable file active.

* For the filename argument, use a relative or absolute path to specify
the executable file.

A relative path consists of:

project/configuration/executablefile

An absolute path consists of:

workspace/project/configuration/executablefile

If the workspace is not the active workspace when you use load, the
software generates errors.

If the project is not the active project when you use load, the software
makes the project active.

If the software generates socket server errors when you use methods
with a Eclipse IDE handle object, such as IDE_Obj:

1 Delete the handle object from the MATLAB workspace.

2 Reconnect to the Eclipse IDE using the eclipseide constructor.

IDE_Obj.load(programfile)
run(id)

cd | dir | open

1-273

ExecutionTimelnSeconds

Purpose
Syntax

Description

Input
Arguments

Output
Arguments

Examples

1-274

Get execution time in seconds for profiled section of code
ExecutionTimes = NthSectionProfile.ExecutionTimeInSeconds

ExecutionTimes = NthSectionProfile.ExecutionTimeInSeconds
returns a vector of execution times, measured in seconds, for the
profiled section of code. Each element of ExecutionTimes contains
the difference between the timer reading at the start and the end of
the section.

If you set the CodeProfilingSaveOptions parameter to 'SummaryOnly',
NthSectionProfile.ExecutionTimeInSeconds returns an empty
array. To change that parameter, open the Configuration Parameters
dialog box by pressing Ctrl+E, open the Verification pane under
Code Generation, and change the Save options parameter to A1l
measurement and analysis data

NthSectionProfile - coder.profile.ExecutionTimeSection
object
Object generated by the coder.profile.ExecutionTime property

Sections

ExecutionTimes - Execution time measurements
double

Execution times, in seconds, for section of code. Returned as a vector.

Get Vector of Code Execution Times

Get execution times for a code section.

Run a simulation with a model that is configured to generate a
workspace variable with execution time measurements. For example:

rtwdemo_sil_topmodel;
set_param('rtwdemo_sil_topmodel', 'CodeExecutionProfiling’,

‘on');

ExecutionTimelnSeconds

See Also

Concepts

set_param('rtwdemo_sil_ topmodel', 'SimulationMode', 'software-in-the-:
set_param('rtwdemo_sil_ topmodel', 'CodeProfilingInstrumentation', 'on
set_param('rtwdemo_sil_ topmodel', 'CodeProfilingSaveOptions', 'AllDat:

sim('rtwdemo_sil_topmodel');
The simulation generates the workspace variable executionProfile

(default).

At the end of the simulation, get profile for the seventh code section:

SeventhSectionProfile = executionProfile.Sections(7);

Get vector of execution times for code section:

time_vector = SeventhSectionProfile.ExecutionTimeInSeconds;

Sections | ExecutionTimeInTicks

¢ “Configure Code Execution Profiling”
® “Analyze Code Execution Data”

1-275

ExecutionTimelnTicks

Purpose
Syntax

Description

Output
Arguments

See Also

1-276

Get execution times in timer ticks for profiled section of code
ExecutionTimes = NthSectionProfile.ExecutionTimeInTicks

ExecutionTimes = NthSectionProfile.ExecutionTimeInTicks
returns a vector of execution times, measured in timer ticks, for the
profiled section of code. Each element of ExecutionTimes contains the
difference between the timer reading at the start and the end of the
section. The data type of the arrays is the same as the data type of
the timer used on the target, which allows you to infer the maximum
range of the timer measurements.

NthSectionProfile is a coder.profile.ExecutionTimeSection object
generated by the coder.profile.ExecutionTime property Sections.

If you set the CodeProfilingSaveOptions parameter to 'SummaryOnly',
NthSectionProfile.ExecutionTimeInTicks returns an empty array.
To change that parameter, open the Configuration Parameters dialog by
pressing Ctrl+E, open the Verification pane under Code Generation,
and change the Save options parameter to ALl measurement and
analysis data.

Tip You can calculate the execution time in seconds using the formula

ExecutionTimelInSecs = ExecutionTimelnTicks | TimerTicksPerSecond

ExecutionTimes

Vector of execution times, in timer ticks, for profiled section of code

SelfExecutionTimes

Vector of execution times, in timer ticks, for profiled section of code but
excluding time spent in child functions

Sections | TimerTicksPerSecond | display | report |
Name | SamplePeriod | SampleOffset | Number | NumCalls |

ExecutionTimelnTicks

MaximumExecutionTimeCallNum | MaximumSelfTimeCallNum
MaximumExecutionTimeInTicks | TotalExecutionTimeInTicks
| SelfTimeInTicks | MaximumSelfTimeInTicks
TotalSelfTimeInTicks

How To + “Configure Code Execution Profiling”
“Configure Code Execution Profiling”

“View and Compare Code Execution Times”

1-277

MaximumExecutionTimeCallNum

Purpose

Syntax

Description

Output
Arguments

See Also

How To

1-278

Get the call number at which maximum number of timer ticks occurred

MaxTicksCallNum =
NthSectionProfile.MaximumExecutionTimeCallNu
m

MaxTicksCallNum =
NthSectionProfile.MaximumExecutionTimeCallNum returns the call
number at which the maximum number of timer ticks was recorded in a
single invocation of the profiled code section during a simulation.

NthSectionProfile is a coder.profile.ExecutionTimeSection object
generated by the coder.profile.ExecutionTime property Sections.

MaxTicksCallNum

Call number at which the maximum number of timer ticks occurred for
a single invocation of the profiled code section

Sections | TimerTicksPerSecond | display | report | Name
| SamplePeriod | SampleOffset | ExecutionTimeInTicks

| Number | NumCalls | MaximumSelfTimeCallNum
ExecutionTimeInTicks | MaximumExecutionTimeInTicks

| TotalExecutionTimeInTicks | SelfTimeInTicks
MaximumSelfTimeInTicks | TotalSelfTimeInTicks

+ “Configure Code Execution Profiling”
+ “Configure Code Execution Profiling”

+ “View and Compare Code Execution Times”

MaximumExecutionTimelnTicks

Purpose

Syntax

Description

Output
Arguments

See Also

How To

Get maximum number of timer ticks for single invocation of profiled
code section

MaxTicks = NthSectionProfile.MaximumExecutionTimeInTicks

MaxTicks = NthSectionProfile.MaximumExecutionTimeInTicks
returns the maximum number of timer ticks recorded in a single
invocation of the profiled code section during a simulation.

NthSectionProfile is a coder.profile.ExecutionTimeSection object
generated by the coder.profile.ExecutionTime property Sections.

MaxTicks

Maximum number of timer ticks for single invocation of profiled code
section

Sections | TimerTicksPerSecond | display | report | Name
| SamplePeriod | SampleOffset | ExecutionTimeInTicks

| Number | NumCalls | MaximumExecutionTimeCallNum

| MaximumSelfTimeCallNum | ExecutionTimeInTicks

| TotalExecutionTimeInTicks | SelfTimeInTicks
MaximumSelfTimeInTicks | TotalSelfTimeInTicks

“Configure Code Execution Profiling”
“Configure Code Execution Profiling”

“View and Compare Code Execution Times”

1-279

TotalExecutionTimelnTicks

Purpose
Syntax

Description

Output
Arguments

See Also

How To

1-280

Get total number of timer ticks recorded for profiled code section

TotalTicks = NthSectionProfile.TotalExecutionTimeInTicks

TotalTicks NthSectionProfile.TotalExecutionTimeInTicks
returns the total number of timer ticks recorded for the profiled code
section over the entire simulation.

NthSectionProfileis a coder.profile.ExecutionTimeSection object
generated by the coder.profile.ExecutionTime property Sections.

TotalTicks

Total number of timer ticks for profiled code section

Sections | TimerTicksPerSecond | display | report
Name | SamplePeriod | SampleOffset | Number | NumCalls

| MaximumExecutionTimeCallNum | MaximumSelfTimeCallNum
| ExecutionTimeInTicks | MaximumExecutionTimeInTicks

| SelfTimeInTicks | MaximumSelfTimeInTicks
TotalSelfTimeInTicks

“Configure Code Execution Profiling”
“Configure Code Execution Profiling”

“View and Compare Code Execution Times”

SelfTimelnTicks

Purpose

Syntax

Description

Output
Arguments

See Also

How To

Get number of timer ticks recorded for profiled code section, excluding
time spent in child functions

SelfTicks = NthSectionProfile.SelfTimeInTicks

SelfTicks = NthSectionProfile.SelfTimeInTicks returns the
number of timer ticks recorded for the profiled code section. However,
this number excludes the time spent in calls to child functions.

NthSectionProfile is a coder.profile.ExecutionTimeSection object
generated by the coder.profile.ExecutionTime property Sections.

SelfTicks

Number of timer ticks for profiled code section, excluding periods in
child functions

Sections | TimerTicksPerSecond | display | report | Name
| SamplePeriod | SampleOffset | ExecutionTimeInTicks

| Number | NumCalls | MaximumExecutionTimeCallNum

| MaximumSelfTimeCallNum | ExecutionTimeInTicks
MaximumExecutionTimeInTicks | TotalExecutionTimeInTicks
MaximumSelfTimeInTicks | TotalSelfTimeInTicks

“Configure Code Execution Profiling”
“Configure Code Execution Profiling”

“View and Compare Code Execution Times”

1-281

MaximumSelfTimeCallNum

Purpose

Syntax

Description

Output
Arguments

See Also

How To

1-282

Get the call number at which the maximum number of timer ticks
occurred, excluding time spent in child functions

MaxSelfTicksCallNum = NthSectionProfile.MaxSelfTimeCallNum

MaxSelfTicksCallNum = NthSectionProfile.MaxSelfTimeCallNum
returns the call number at which the maximum number of self-time
ticks occurred for the profiled code section.

NthSectionProfile is a coder.profile.ExecutionTimeSection object
generated by the coder.profile.ExecutionTime property Sections.

MaxSelfTicksCallNum

Call number at which the maximum number of self-time ticks occurred
for profiled code section

Sections | TimerTicksPerSecond | display | report | Name
| SamplePeriod | SampleOffset | ExecutionTimeInTicks

| Number | NumCalls | MaximumExecutionTimeCallNum |
ExecutionTimeInTicks | MaximumExecutionTimeInTicks

| TotalExecutionTimeInTicks | SelfTimeInTicks
MaximumSelfTimeInTicks | TotalSelfTimeInTicks

“Configure Code Execution Profiling”
“Configure Code Execution Profiling”

“View and Compare Code Execution Times”

MaximumSelfTimelnTicks

Purpose

Syntax

Description

Output
Arguments

See Also

How To

Get the maximum number of timer ticks allowed to be recorded for
profiled code section, excluding time spent in child functions

MaxSelfTicks = NthSectionProfile.MaximumSelfTimeInTicks

MaxSelfTicks = NthSectionProfile.MaximumSelfTimeInTicks
returns the maximum number of timer ticks allowed to be recorded
for the profiled code section. This number excludes the time spent in
calls to child functions.

NthSectionProfile is a coder.profile.ExecutionTimeSection object
generated by the coder.profile.ExecutionTime property Sections.

MaxSelfTicks

Maximum number of timer ticks for profiled code section, excluding
periods in child functions

Sections | TimerTicksPerSecond | display | report | Name
| SamplePeriod | SampleOffset | ExecutionTimeInTicks

| Number | NumCalls | MaximumExecutionTimeCallNum

| MaximumSelfTimeCallNum | ExecutionTimeInTicks
MaximumExecutionTimeInTicks | TotalExecutionTimeInTicks
SelfTimeInTicks | TotalSelfTimeInTicks

“Configure Code Execution Profiling”
“Configure Code Execution Profiling”

“View and Compare Code Execution Times”

1-283

TotalSelfTimelnTicks

Purpose

Syntax

Description

Output
Arguments

See Also

How To

1-284

Get total number of timer ticks recorded for profiled code section,
excluding time spent in child functions

TotalSelfTicks = NthSectionProfile.TotalSelfTimeInTicks

TotalSelfTicks = NthSectionProfile.TotalSelfTimeInTicks
returns the total number of timer ticks recorded for the profiled code
section over the entire simulation. However, this number excludes the
time spent in calls to child functions.

NthSectionProfile is a coder.profile.ExecutionTimeSection object
generated by the coder.profile.ExecutionTime property Sections.

TotalSelfTicks

Total number of timer ticks for profiled code section, excluding periods
in child functions

Sections | TimerTicksPerSecond | display | report | Name
| SamplePeriod | SampleOffset | ExecutionTimeInTicks

| Number | NumCalls | MaximumExecutionTimeCallNum

| MaximumSelfTimeCallNum | ExecutionTimeInTicks
MaximumExecutionTimeInTicks | TotalExecutionTimeInTicks
SelfTimeInTicks | MaximumSelfTimeInTicks

“Configure Code Execution Profiling”
“Configure Code Execution Profiling”

“View and Compare Code Execution Times”

rtw.codegenObjectives.Objective.modifylnheritedParam

Purpose
Syntax

Description

Input
Arguments

Examples

See Also

How To

Modify inherited parameter values
modifyInheritedParam(obj, paramName, value)

modifyInheritedParam(obj, paramName, value) changes the value
of an inherited parameter that the Code Generation Advisor verifies in
Check model configuration settings against code generation
objectives. Use this method when you create a new objective from
an existing objective.

obj Handle to a code generation objective object
previously created.

paramName Parameter that you modify in the objective.

value Value of the parameter.

Change the value of Inlineparameters to off in the objective.

modifyInheritedParam(obj, 'InlineParams', 'off');

get_param

+ “Create Custom Objectives”

+ “Parameter Command-Line Information Summary”

1-285

msgcount

Purpose

Syntax
IDEs

Description

Examples

See Also

1-286

Number of messages in read-enabled channel queue

Note Support for msgcount on C5000 processors will be removed in a
future version.

msgcount (rx, 'channel')

This function supports the following IDEs:

¢ Texas Instruments Code Composer Studio v3

msgcount (rx, 'channel') returns the number of unread messages in
the read-enabled queue specified by channel for the RTDX interface rx.
You cannot use msgcount on channels configured for write access.

If you have created and loaded a program to the processor, you can
write data to the processor, then use msgcount to determine the number
of messages in the read queue.

1 Create and load a program to the processor.
2 Write data to the processor from MATLAB software.

indata=1:100;
writemsg(IDE_Obj.rtdx, 'ichannel', int32(indata));

3 Use msgcount to determine the number of messages available in
the queue.

num_of_msgs = msgcount(IDE_Obj.rtdx, 'ichannel')

read | readmat | readmsg

new

Purpose
Syntax
IDEs

Description

Create project, library, or build configuration in IDE
IDE_Obj.new('name', 'type')

This function supports the following IDEs:

Analog Devices VisualDSP++
Eclipse IDE
Green Hills MULTI

Texas Instruments Code Composer Studio v3

IDE_Obj.new('name','type') creates a project, library, or build
configuration in the IDE.

The name argument specifies the name of the new project, library, or
build configuration

The type argument specifies whether to create a project, library, or
build configuration. The options are:

®* 'project' — Executable project. Sometimes this file is called a
“DSP executable file”.

® 'projlib' — Library project.

* 'projext' — External make project. Only the CCS IDE supports
this option.

® 'buildcfg' — Build configuration in the active project. Only the
VisualDSP++ and CCS IDEs support this option.

When type is 'project' or 'projlib' , name can include the full path
to the new file. You can use the path to differentiate two files with
the same name. If you omit the path, the new method creates the file
or project in the current IDE working folder.

If you omit the type argument, and the name argument does not include
a file extension, type defaults to 'project’.

1-287

new

1-288

Examples

See Also

When type is 'buildcfg', use a unique name to differentiate the build
configuration from other build configurations in the active project.

The new method does not support 'text' as a type argument.

IDE_Obj.new('my_project', 'project') #Create an IDE project, 'my_project.gpj'
IDE_Obj.new('my_build_config', 'buildcfg') #Create a build configuration.

activate | close

open

Purpose

Syntax

IDEs

Description

Open project in IDE

IDE Obj.open(filename,filetype,timeout)
IDE_Obj.open(myproject)

This function supports the following IDEs:

® Analog Devices VisualDSP++

* Eclipse IDE

¢ Green Hills MULTI

¢ Texas Instruments Code Composer Studio v3

IDE Obj.open(filename,filetype,timeout) opens a project in the
IDE.

Use the filename argument to specify the file name, including the file
name extension. If the filename does not include a file name extension,
you can specify the file type using the filetype argument. If the file
does not exist in the current project or folder path, MATLAB returns a
warning and returns control to MATLAB.

For the optional filetype argument, you can specify the following
types.

1-289

open

CCS IDE Eclipse IDE | MULTI IDE | VisualDSP++

IDE

'project’ Yes Yes Yes Yes

— Project

files

'"ProjectGroupNo No No Yes

— Project

group files

"program' No. Use No Yes No

— Target load

program file | instead.

(executable)

If you omit the filetype argument, filetype defaults to 'project’.

The optional timeout argument determines the number of seconds
MATLAB waits for the IDE to finish opening the file before returning
an error. If you omit the timeout argument, the open method uses
the timeout property of the IDE handle object IDE_ODj) instead. The
timeout error does not terminate the loading process on the IDE.

Note The open method does not support the 'text', 'program', or
‘workspace' arguments.

Examples IDE_Obj.open(myproject) opens the myproject project in the IDE.

See Also cd | dir | load | new

1-290

cgv.CGV.plot

Purpose

Syntax

Description

Input
Arguments

Create plot for signal or multiple signals

[signal_names, signal_figures] = cgv.CGV.plot(data_set)
[signal_names, signal_figures] cgv.CGV.plot(data_set,
‘Signals', signal_list)

[signal_names, signal_figures] = cgv.CGV.plot(data_set)
create a plot for each signal in the data_set.

[signal_names, signal_figures] =

cgv.CGV.plot(data_set, 'Signals', signal list) create a plot
for each signal in the value of 'Signals' and return the names and
figure handles for the given signal names.

data_set

Output data from a model. After running the model, use
the cgv.CGV.getOutputData function to get the data. The
cgv.CGV.getOutputData function returns a cell array of the
output signal names.

’Signals’, signal_list

Parameter/value argument pair specifying the signal or signals
to plot. The value for this parameter can be an individual signal
name, or a cell array of strings, where each string is a signal
name in the data_set. Use cgv.CGV.getSavedSignals to view
the list of available signal names in the data_set. The syntax for
an individual signal name is:

signal_list = {'log_data.subsystem_name.Data(:,1)"'}

The syntax for a list of signal names is:

signal_list = {'log_data.block_name.Data(:,1)',...
'log_data.block_name.Data(:,2)',...
'log_data.block_name.Data(:,3)',...
"log_data.block_name.Data(:,4)'};

1-291

cgv.CGV.plot

If a component of your model contains a space or newline
character, MATLAB adds parantheses and a single quote to the
name of the component. For example, if a section of the signal has
a space, 'block name', MATLAB displays the signal name as:

log_data.('block name').Data(:,1)

To use the signal name as input to a CGV function, 'block name'
must have two single quotes. For example:

signal_list = {'log_data.(''block name'').Data(:,1)'}
OUi‘pUi‘ Depending on the data, one or more of the following parameters might
Arguments be empty:

signal_names
Cell array of signal names
signal_figures

Array of figure handles for signals

How To + “Verify Numerical Equivalence with CGV”

1-292

profile

Purpose
Syntax
IDEs

Description

Generate real-time execution or stack profiling report
IDE Obj.profile(type,action,timeout)

This function supports the following IDEs:

Analog Devices VisualDSP++
Eclipse IDE
Green Hills MULTI

Texas Instruments Code Composer Studio v3

Use IDE 0Obj.profile(type,action,timeout) to generate real-time
execution or stack profiling report.

Create the IDE _0Obj IDE handle object using a constructor function
before you use the profile method.

The type argument determines the type of profile to generate. The
following types are available for the IDEs specified.

CCS IDE | Eclipse MULTI IDE | VisualDSP++
IDE IDE
'execution' Yes Yes, with | Yes Yes
— Execution limitations.
profiling
‘stack'— Stack | Yes Yes
profiling

Currently, with the Eclipse IDE, you can only perform execution
profiling for ARM processors running Linux.

To get a real-time task execution profile report in HTML and graphical
plot forms, set the type argument to 'execution' and omit the action
argument, which defaults to 'report'. For more information, see
“Execution Profiling for Embedded Targets”.

1-293

profile

Examples

1-294

To prepare the stack memory on the processor for profiling, set the type
argument to 'stack', and set the action argument to 'setup'. This
action writes a repetitive series of known values to the stack memory.
For more information, see “Stack Profiling for Embedded Targets”.

After preparing the stack memory, to measure and report the
percentage of stack usage, set the type argument to 'stack', and set
the action argument to 'report’.

If you omit the action argument, action defaults to 'report'.

The optional timeout argument determines the number of seconds
MATLAB waits for the IDE to finish profiling before returning an error.
If you omit the timeout argument, the open method uses the timeout
property of the IDE handle object IDE_Obj) instead.

Note You can use real-time task execution profiling with hardware
only. Simulators do not support the profiling feature.

To use profile to assess how your program executes in real-time,
complete the following tasks with a Simulink model:

1 Open the model configuration parameters (Ctrl+ E).
2 Select the Coder Target pane.

3 Under the Tool Chain Automation tab, enable Profile real-time
execution.

4 Build your model.

IDE_Obj.build

5 Load your program to the processor.

IDE_Obj.load('c:\work\sumdiff.out"')

profile

6 For stack profiling, initialize the stack to a known state. (For
execution profiling, skip this step.)

IDE_Obj.profile('stack', 'setup')

With the setup input argument, profile writes a known pattern
into the addresses that compose the stack. For C6000 processors,
the pattern is A5. For C2000™ and C5000 processors, the pattern
is A5A5 to account for the address size. As long as your application
does not write the same pattern to the system stack, profile can
report the stack usage.

7 Run the program on the processor.
IDE_Obj.run
8 Stop the running program.
IDE_Obj.halt
9 To get the profiling reports enter one of the following commands:

IDE_Obj.profile('stack', 'report') #Get stack profiling report
IDE_Obj.profile('execution') #Get execution profiling report

The HTML report contains the sections described in the following table.

Section Heading Description
Worst case task Maximum task turnaround time for each
turnaround times task since model execution started.

Maximum number of | Maximum number of concurrent task
concurrent overruns overruns since model execution started.
for each task

Analysis of profiling | Profiling data was recorded over nnn seconds.
data recorded over The recorded data for task turnaround times
nnn seconds. and task execution times is presented in the

table following this heading.

1-295

profile

See Also

1-296

Task turnaround time is the elapsed time between starting and
finishing the task. If the task is not preempted, task turnaround time
equals the task execution time.

Task execution time is the time between task start and finish when the
task 1s actually running. It does not include time during which the task
may have been preempted by another task.

Note Task execution time cannot be measured directly. Task profiling
infers the execution time from the task start and finish times, and the
intervening periods during which the task was preempted by another
task.

The execution time calculations do not account for processor time
consumed by the scheduler while switching tasks. In cases where
preemption occurs, the reported task execution times overestimate the
true task execution time.

Task overruns occur when a timer task does not complete before the
same task is scheduled to run again. Depending on how you configure
the real-time scheduler, a task overrun may be handled as a real-time
failure. Alternatively, you might allow a small number of task overruns
to accommodate cases where a task occasionally takes longer than
normal to complete. If a task overrun occurs, and the same task is
scheduled to run again before the first overrun has been cleared,
concurrent task overruns are said to have occurred.

load | run

pwd

Purpose
Syntax
IDEs

Description

Examples

See Also

Working folder used by Eclipse
wd= IDE_Obj .pwd

This function supports the following IDEs:
* Eclipse IDE

Use wd= IDE Obj .pwd to get the working folder of the Eclipse IDE. This
value is the same as the Eclipse IDE workspace folder.

To get the Eclipse IDE working folder:

IDE_Obj = eclipseide;
wd = IDE_Obj.pwd

wd =

C:\WINNT\Profiles\rdlugyhe\workspace

dir

1-297

read

Purpose

Syntax

IDEs

Description

1-298

Read data from processor memory

mem=IDE_Obj.read(address)
mem=IDE_Obj.read(...,datatype)
mem=IDE_Obj.read(...,count)
mem=IDE_Obj.read(...,memorytype)
mem=IDE_Obj.read(...,timeout)

This function supports the following IDEs:
® Analog Devices VisualDSP++

* Eclipse IDE

® Green Hills MULTI

¢ Texas Instruments Code Composer Studio v3

mem=IDE Obj.read(address) returns a block of data values from
the memory space of the processor referenced by IDE_Obj. The block
to read begins from the DSP memory location given by the address
argument. The data is read starting from address without regard
to type-alignment boundaries in the processor. Conversely, the byte
ordering defined by the data type is automatically applied.

The address argument is a decimal or hexadecimal representation of
a memory address in the processor. The full memory address consist
of two parts:

® The start address

® The memory type

You can define the memory type value can be explicitly using a numeric
vector representation of the address.

Alternatively, the IDE_Obj object has a default memory type value that
is applied if the memory type value is not explicitly incorporated in
the passed address parameter. In DSP processors with only a single
memory type, it is possible to specify addresses using the abbreviated

read

(implied memory type) format by setting the IDE_0bj object memory
type value to zero.

Note You cannot read data from processor memory while the processor
1s running.

Provide the address argument either as a numerical value that is a
decimal representation of the DSP memory address, or as a string that
read converts to the decimal representation of the start address. (Refer
to function hex2dec in the MATLAB Function Reference. read uses
hex2dec to convert the hexadecimal string to a decimal value).

The examples in the following table show how read uses the address
parameter.

address Description
Parameter Value

131082 Decimal address specification. The memory
start address is 131082 and memory type is 0.
This action is the same as specifying [131082
0].

[131082 1] Decimal address specification. The memory
start address is 131082 and memory type is 1.

'2000A' Hexadecimal address specification provided as
a string entry. The memory start address is
131082 (converted to the decimal equivalent)
and memory type is 0.

It is possible to specify address as a cell array. You can use a
combination of numbers and strings for the start address and memory
type values. For example, the following are valid addresses from cell
array myaddress:

1-299

read

1-300

myaddress1 myaddressi1{1}=131072;
myadddressi{2}="'Program(PM) Memory';

myaddress2 myaddress2{1}='20000";
myadddress2{2}='Program(PM) Memory';

myaddress3 myaddress3{1}=131072; myaddress3{2}=0;

mem=IDE Obj.read(...,datatype) where the input argument datatype
defines the interpretation of the raw values read from DSP memory.
Parameter datatype specifies the data format of the raw memory
image. The data is read starting from address without regard to data
type alignment boundaries in the processor. The byte ordering defined
by the data type is automatically applied. This syntax supports the
following MATLAB data types.

MATLAB Data Type Description

double IEEE double-precision floating
point value

single IEEE single-precision floating
point value

uint8 8-bit unsigned binary integer
value

uint16 16-bit unsigned binary integer
value

uint32 32-bit unsigned binary integer
value

int8 8-bit signed two’s complement

integer value

int16 16-bit signed two’s complement
integer value

int32 32-bit signed two’s complement
integer value

read

The read method does not coerce data type alignment. Some
combinations of address and datatype will be difficult for the processor
to use.

mem=IDE Obj.read(...,count) adds the count input parameter that
defines the dimensions of the returned data block mem. To read a block
of multiple data values. Specify count to determine how many values
to read from address. count can be a scalar value that causes read

to return a column vector that has count values. You can perform
multidimensional reads by passing a vector for count. The elements in
the input vector of count define the dimensions of the returned data
matrix. The memory is read in column-major order. count defines the
dimensions of the returned data array mem as shown in the following
table.

® n — Read n values into a column vector.
® [m,n] — Read m-by-n values into m by n matrix in column-major order.

® [m,n,...] — Read a multidimensional matrix m-by-n-by...of values
into an m-by-n-by...array.

To read a block of multiple data values, specify the input argument
count that determines how many values to read from address.

mem=IDE Obj.read(...,memorytype) adds an optional input argument
memorytype. Object IDE_Obj has a default memory type value O that
read applies if the memory type value is not explicitly incorporated
into the passed address parameter.

In processors with only a single memory type, it is possible to specify
addresses using the implied memory type format by setting the
IDE_Objmemorytype property value to zero.

Using read with MULTI

Blackfin and SHARC use different memory types. Blackfin processors
have one memory type. SHARC processors provide five types. The
following table shows the memory types for both processor families.

1-301

read

Examples

See Also

1-302

String Entry for Numerical Entry for | Processor
memorytype memorytype Support
"program(pm) 0 Blackfin and
memory' SHARC
'data(dm) memory' 1 SHARC
‘data(dm) short 2 SHARC
word memory'

‘external data(dm) 3 SHARC
byte memory'

"boot (prom) 4 SHARC
memory'

mem=IDE Obj.read(...,timeout) adds the optional parameter timeout
that defines how long, in seconds, MATLAB waits for the specified read
process to complete. If the time-out period expires before the read
process returns a completion message, MATLAB returns an error and
returns. Usually the read process works in spite of the error message.

This example reads one 16-bit integer from memory on the processor.

mlvar = IDE_Obj.read(131072,'int16")

131072 is the decimal address of the data to read.

You can read more than one value at a time. This read command
returns 100 32-bit integers from the address 0x20000 and plots the
result in MATLAB.

data = IDE_Obj.read('20000',"'int32"',100)
plot(double(data))

write

readmat

Purpose

Syntax

IDEs

Description

Matrix of data from RTDX channel

Note Support for readmat on C5000 processors will be removed in a
future version.

data
data

readmat (rx,channelname, 'datatype’',siz,timeout)
readmat (rx,channelname, 'datatype’',siz)

This function supports the following IDEs:

e Texas Instruments Code Composer Studio v3

data = readmat(rx,channelname, 'datatype',siz,timeout) reads
a matrix of data from an RTDX channel configured for read access.
datatype defines the type of data to read, and channelname specifies
the queue to read. readmat reads the desired data from the RTDX link
specified by rx.

Before you read from a channel, open and enable the channel for read
access.

Replace channelname with the string you specified when you opened
the desired channel. channelname must identify a channel that you
defined in the program loaded on the processor.

You cannot read data from a channel you have not opened and
configured for read access. To determine which channels exist for the
loaded program, use the RTDX tools provided in the IDE.

data contains a matrix whose dimensions are given by the input
argument vector siz, where siz can be a vector of two or more elements.
To operate, the number of elements in the output matrix data must be
an integral number of channel messages.

When you omit the timeout input argument, readmat reads messages
from the specified channel until the output matrix is full or the global
timeout period specified in rx elapses.

1-303

readmat

Examples

1-304

Caution If the timeout period expires before the output data matrix is
fully populated, you lose the messages read from the channel to that
point.

MATLAB software supports reading five data types with readmat.

datatype String Data Format

'double’ Double-precision floating point values. 64 bits.
'int16' 16-bit signed integers

'int32' 32-bit signed integers

'single’ Single-precision floating point values. 32 bits.
'uint8' Unsigned 8-bit integers

data = readmat(rx,channelname, 'datatype',siz) reads a matrix
of data from an RTDX channel configured for read access. datatype
defines the type of data to read, and channelname specifies the queue
to read. readmat reads the desired data from the RTDX link specified
by rx.

In this data read and write example, you write data to the processor
through the IDE. You can then read the data back in two ways — either
through read or through readmsg.

To duplicate this example you need to have a program loaded on the
processor. The channels listed in this example, ichannel and ochannel,
must be defined in the loaded program. If the current program on the
processor defines different channels, replace the listed channels with
your current ones.

IDE_Obj = ticcs;

rx = IDE_Obj.rtdx;
open(rx, 'ichannel','w');
enable(rx, 'ichannel');

readmat

See Also

open(rx, 'ochannel','r');

enable(rx, 'ochannel');

indata = 1:25; % Set up some data.
IDE_Obj.write(0,indata,30);
outdata=IDE_Obj.read(0, 'double',25,10)

outdata =
Columns 1 through 13
1 2 3 4 5 6 7 8 9 10 11 12 13

Columns 14 through 25
14 15 16 17 18 19 20 21 22 23 24 25

Now use RTDX to read the data into a 5-by-5 array called out_array.

out_array = readmat('ochannel', 'double',[5 5])

readmsg | writemsg

1-305

readmsg

Purpose

Syntax

IDEs

Description

1-306

Read messages from specified RTDX channel

Note Support for readmsg on C5000 processors will be removed in a
future version.

data = readmsg(rx,channelname, 'datatype',siz,nummsgs,timeout)
data = readmsg(rx,channelname, 'datatype',siz,nummsgs)

data = readmsg(rx,channelname,datatype,siz)

data = readmsg(rx,channelname,datatype,nummsgs)

data = readmsg(rx,channelname,datatype)

This function supports the following IDEs:

¢ Texas Instruments Code Composer Studio v3

data = readmsg(rx,channelname, 'datatype',siz,nummsgs,timeout)
reads nummsgs from a channel associated with rx. channelname
identifies the channel queue, which must be configured for read access.
Each message is the same type, defined by datatype. nummsgs can be
an integer that defines the number of messages to read from the
specified queue, or all to read the messages present in the queue
when you call the readmsg function.

Each read message becomes an output matrix in data, with dimensions
specified by the elements in vector siz. For example, when siz is [m
n], reading 10 messages (nummsgs equal 10) creates 10 m-by-n matrices
in data. Each output matrix in data must have the same number of
elements (m x n) as the number of elements in each message.

You must specify the type of messages you are reading by including the
datatype argument. datatype supports strings that define the type of
data you are expecting, as shown in the following table.

readmsg

datatype String Specified Data Type

"double’ Floating point data, 64-bits
(double-precision).

'int16' Signed 16-bit integer data.

'int32' Signed 32-bit integers.

'single' Floating-point data, 32-bits

(single-precision).

'uint8' Unsigned 8-bit integers.

When you include the timeout input argument in the function, readmsg
reads messages from the specified queue until it receives nummsgs, or
until the period defined by timeout expires while readmsg waits for
more messages to be available.

When the desired number of messages is not available in the queue,
readmsg enters a wait loop and stays there until more messages become
available or timeout seconds elapse. The timeout argument overrides
the global timeout specified when you create rx.

data = readmsg(rx,channelname, 'datatype',siz,nummsgs) reads
nummsgs from a channel associated with rx. channelname identifies
the channel queue, which must be configured for read access. Each
message is the same type, defined by datatype. nummsgs can be an
integer that defines the number of messages to read from the specified
queue, or all to read the messages present in the queue when you call
the readmsg function.

Each read message becomes an output matrix in data, with dimensions
specified by the elements in vector siz. When siz is [m n], reading 10
messages (nummsgs equal 10) creates 10 n-by-m matrices in data.

Each output matrix in data must have the same number of elements (m
x n) as the number of elements in each message.

You must specify the type of messages you are reading by including the
datatype argument. datatype supports six strings that define the type
of data you are expecting.

1-307

readmsg

Examples

1-308

data = readmsg(rx,channelname,datatype,siz) reads one data
message because nummsgs defaults to one when you omit the input
argument. readmsgs returns the message as a row vector in data.

data = readmsg(rx,channelname,datatype,nummsgs) reads the
number of messages defined by nummsgs. data becomes a cell array of
row matrices, data = {msg1,msg2,...,msg(nummsgs)}, because siz
defaults to [1,nummsgs]; each returned message becomes one row
matrix in the cell array.

Each row matrix contains one element for each data value in the current
message msg# = [element(1), element(2),...,element(1l)] where
1 is the number of data elements in message. In this syntax, the read
messages can have different lengths, unlike the previous syntax options.

data = readmsg(rx,channelname,datatype) reads one data
message, returning a row vector in data. The optional input
arguments—nummsgs, siz, and timeout—use their default values.

In the calling syntaxes for readmsg, you can set siz and nummsgs to
empty matrices, causing them to use their default values—nummsgs = 1
and siz = [1,]], where 1 is the number of data elements in the read
message.

Caution If the timeout period expires before the output data matrix is
fully populated, you lose the messages read from the channel to that
point.

IDE_Obj = ticcs;

rx = IDE_Obj.rtdx;
open(rx, 'ichannel','w');
)5

w'
enable(rx, 'ichannel');
open(rx, 'ochannel','r'
enable(rx, 'ochannel');
indata = 1:25; % Set up some data.
IDE_Obj.write(0,indata,30);

outdata=IDE_Obj.read (0, 'double',25,10)

readmsg

See Also

outdata =
Columns 1 through 13
1 2 3 4 5 6 7 8 9 10 11 12 13
Columns 14 through 25
14 15 16 17 18 19 20 21 22 23 24 25

Now use RTDX to read the messages into a 4-by-5 array called
out_array.

number_msgs = msgcount(rx, 'ochannel') % Check number of msgs

% in read queue.

out_array = IDE_Obj.rtdx.readmsg('ochannel', 'double',[4 5])

read | readmat | writemsg

1-309

rtiw.codegenObjectives.Objective.register

Purpose
Syntax

Description

Input
Arguments

Examples

See Also

How To

1-310

Register objective
register(obj)

register(obj) registers obj Register and add obj to the end of the
list of available objectives that you can use with the Code Generation
Advisor.

obj Handle to a code generation objective object
previously created.

Register the objective:
register(obj);
DAStudio.CustomizationManager.ObjectiveCustomizer

+ “Create Custom Objectives”

+ “Registering Customizations”

registerCFunctionEntry

Purpose

Syntax

Input
Arguments

Create CRL function entry based on specified parameters and register
in CRL table

entry = registerCFunctionEntry(hTable, priority,
numInputs, functionName,
inputType, implementationName,
outputType, headerFile,
genCallback, genFileName)

hTable
Handle to a CRL table previously returned by hTable =
RTW.TflTable.

priority
Positive integer specifying the function entry’s search priority,
0-100, relative to other entries of the same function name and
conceptual argument list within this table. Highest priority
is 0, and lowest priority is 100. If the table provides two
implementations for a function, the implementation with the
higher priority will shadow the one with the lower priority.

numInputs
Positive integer specifying the number of input arguments.

functionName
String specifying the name of the function to be replaced. The
name must match one of the functions supported for replacement:

Math Functions

Note For detailed support information, see “Map Math
Functions to Target-Specific Implementations”.

abs acos acosh asin

asinh atan atan2 atanh

1-311

registerCFunctionEntry

ceil cos cosh exactrSqrt
exp fix floor frexp
hypot ldexp In log

log10 max min mod/fmod
pow rem round rsqrt
saturate sign sin sincos
sinh sqrt round tanh
Memory Utility Functions

memcmp memcpy memset memset2zero!
Nonfinite Support Utility Functions?

getInf getMinusInf | getNaN isInf?
isNaN3

Notes:

I Some target processors provide optimized memset functions
for use when performing a memory set to zero. The CRL API
supports replacing memset to zero functions with more efficient
target-specific functions.
2 Replacement of nonfinite functions is supported for Simulink
code generation (not for Stateflow® or MATLAB Coder code

generation).

3 Replacement of isInf and isNaN is supported only for complex
floating-point inputs.

inputType

String specifying the data type of the input arguments, for
example, 'double'. (This function requires that the input

arguments are of the same type.)

implementationName

String specifying the name of your implementation. For example,
if functionName is 'sqrt', implementationName can be 'sqrt'
or a different name of your choosing.

1-312

registerCFunctionEntry

Output
Arguments

Description

Examples

outputType
String specifying the data type of the return argument, for
example, 'double’.

headerFile
String specifying the header file in which the implementation
function is declared, for example, '<math.h>".

genCallback

String specifying ' ' or 'RTW.copyFileToBuildDir'. If you specify
'"RTW.copyFileToBuildDir', and if this function entry is matched
and used, the function RTW.copyFileToBuildDir will be called
after code generation to copy additional header, source, or object
files that you have specified for this function entry to the build
directory. For more information, see “Specify Build Information
for Code Replacements” in the Embedded Coder documentation.

genFileName
String specifying ' '. (This argument is for use only by MathWorks
developers.)

Handle to the created CRL function entry. Specifying the return
argument in the registerCFunctionEntry function call is optional.

The registerCFunctionEntry function provides a quick way to create
and register a CRL function entry. This function can be used only if
your CRL function entry meets the following conditions:

® The input arguments are of the same type.

® The input argument names and the return argument name follow the
default Simulink naming convention:

= For input argument names, ui, u2, ..., un

= For return argument, y1

In the following example, the registerCFunctionEntry function is
used to create a function entry for sqrt in a CRL table.

1-313

registerCFunctionEntry

hLib = RTW.TflTable;

hLib.registerCFunctionEntry (100, 1, 'sqrt', 'double', 'sqgrt', ...

'double', '<math.h>', "', '');

See Also registerCPromotableMacroEntry

How To + “Alternative Method for Creating Function Entries”
+ “Create Code Replacement Tables”

+ “Introduction to Code Replacement Libraries”

1-314

registerCPPFunctionEntry

Purpose

Syntax

Input
Arguments

Create CRL C++ function entry based on specified parameters and
register in CRL table

entry = registerCPPFunctionEntry(hTable, priority,
numInputs, functionName,
inputType, implementationName,
outputType, headerFile,
genCallback, genFileName,
nameSpace)

hTable
Handle to a CRL table previously returned by hTable =
RTW.TflTable.

priority
Positive integer specifying the function entry’s search priority,
0-100, relative to other entries of the same function name and
conceptual argument list within this table. Highest priority
is 0, and lowest priority is 100. If the table provides two
implementations for a function, the implementation with the
higher priority will shadow the one with the lower priority.

numInputs
Positive integer specifying the number of input arguments.

functionName
String specifying the name of the function to be replaced. The
name must match one of the functions supported for replacement:

Math Functions

Note For detailed support information, see “Map Math
Functions to Target-Specific Implementations”.

abs acos acosh asin

asinh atan atan2 atanh

1-315

registerCPPFunctionEntry

ceil cos cosh exactrSqrt
exp fix floor frexp
hypot ldexp In log

log10 max min mod/fmod
pow rem round rsqrt
saturate sign sin sincos
sinh sqrt round tanh
Memory Utility Functions

memcmp memcpy memset memset2zero!
Nonfinite Support Utility Functions?

getInf getMinusInf | getNaN isInf?
isNaN3

Notes:

I Some target processors provide optimized memset functions
for use when performing a memory set to zero. The CRL API
supports replacing memset to zero functions with more efficient
target-specific functions.
2 Replacement of nonfinite functions is supported for Simulink
code generation (not for Stateflow or MATLAB Coder code

generation).

3 Replacement of isInf and isNaN is supported only for complex
floating-point inputs.

inputType

String specifying the data type of the input arguments, for
example, 'double'. (This function requires that the input

arguments are of the same type.)

implementationName

String specifying the name of your implementation. For example,
if functionName is 'sqrt', implementationName can be 'sqrt'
or a different name of your choosing.

1-316

registerCPPFunctionEntry
|

outputType
String specifying the data type of the return argument, for
example, 'double’.

headerFile
String specifying the header file in which the implementation
function is declared, for example, '<math.h>".

genCallback

String specifying ' ' or 'RTW.copyFileToBuildDir'. If you specify
'"RTW.copyFileToBuildDir', and if this function entry is matched
and used, the function RTW.copyFileToBuildDir will be called
after code generation to copy additional header, source, or object
files that you have specified for this function entry to the build
directory. For more information, see “Specify Build Information
for Code Replacements” in the Embedded Coder documentation.

genFileName
String specifying ' '. (This argument is for use only by MathWorks

developers.)

nameSpace
String specifying the C++ name space in which the implementation
function is defined. If this function entry is matched, the software
emits the name space in the generated function code (for example,
std::sin(tfl _cpp_U.In1)). If you specify ' ', the software does
not emit a name space designation in the generated code.

OUi‘pUi‘ Handle to the created CRL C++ function entry. Specifying the return
Arguments argument in the registerCPPFunctionEntry function call is optional.
Description The registerCPPFunctionEntry function provides a quick way to

create and register a CRL C++ function entry. This function can be used
only if your CRL C++ function entry meets the following conditions:

¢ The input arguments are of the same type.

® The input argument names and the return argument name follow the
default Simulink naming convention:

1-317

registerCPPFunctionEntry

Examples

See Also

How To

1-318

= For input argument names, ui, u2, ..., un

= For return argument, y1

Note When you register a CRL containing C++ function entries, you
must specify the value {'C++'} for the LanguageConstraint property
of the CRL registry entry. For more information, see “Register Code
Replacement Libraries”.

In the following example, the registerCPPFunctionEntry function is
used to create a C++ function entry for sin in a CRL table.

hLib = RTW.TflTable;

hLib.registerCPPFunctionEntry(100, 1, 'sin', 'single', 'sin', ...

'single', 'cmath', '', '', 'std');

enableCPP | setNameSpace

+ “Alternative Method for Creating Function Entries”
+ “Create Code Replacement Tables”

+ “Introduction to Code Replacement Libraries”

registerCPromotableMacroEntry

Purpose Create CRL promotable macro entry based on specified parameters and
register in CRL table (for abs function replacement only)

Syntax entry = registerCPromotableMacroEntry(hTable, priority,
numInputs, functionName,
inputType, implementationName,
outputType, headerFile,
genCallback, genFileName)

Input hTable
Arguments Handle to a CRL table previously returned by hTable =
RTW.TflTable.

priority
Positive integer specifying the function entry’s search priority,
0-100, relative to other entries of the same function name and
conceptual argument list within this table. Highest priority
is 0, and lowest priority is 100. If the table provides two
implementations for a function, the implementation with the
higher priority will shadow the one with the lower priority.

numInputs
Positive integer specifying the number of input arguments.

functionName
String specifying the name of the function to be replaced. Specify
‘abs'. (This function should be used only for abs function
replacement.)

inputType
String specifying the data type of the input arguments, for
example, 'double'. (This function requires that the input
arguments are of the same type.)

implementationName
String specifying the name of your implementation. For example,
assuming functionName is 'abs', implementationName can be
'abs' or a different name of your choosing.

1-319

registerCPromotableMacroEntry

Output
Arguments

Description

1-320

outputType
String specifying the data type of the return argument, for
example, 'double’.

headerFile
String specifying the header file in which the implementation
function is declared, for example, '<math.h>".

genCallback

String specifying ' ' or 'RTW.copyFileToBuildDir'. If you specify
'"RTW.copyFileToBuildDir', and if this function entry is matched
and used, the function RTW.copyFileToBuildDir will be called
after code generation to copy additional header, source, or object
files that you have specified for this function entry to the build
directory. For more information, see “Specify Build Information
for Code Replacements” in the Embedded Coder documentation.

genFileName
String specifying ' '. (This argument is for use only by MathWorks
developers.)

Handle to the created CRL promotable macro entry. Specifying the
return argument in the registerCPromotableMacroEntry function
call is optional.

The registerCPromotableMacroEntry function creates a CRL
promotable macro entry based on specified parameters and registers
the entry in the CRL table. A promotable macro entry will promote the
output data type based on the target word size.

This function provides a quick way to create and register a CRL
promotable macro entry. This function can be used only if your CRL
function entry meets the following conditions:

¢ The input arguments are of the same type.

¢ The input argument names and the return argument name follow the
default Simulink naming convention:

= For input argument names, ui, u2, ..., un

registerCPromotableMacroEntry

Examples

See Also

How To

= For return argument, y1

Note This function should be used only for abs function
replacement. Other functions supported for replacement should use
registerCFunctionEntry

In the following example, the registerCPromotableMacroEntry
function is used to create a function entry for abs in a CRL table.

hLib = RTW.TflTable;

hLib.registerCPromotableMacroEntry(100, 1, 'abs', 'double', 'abs_prime', ...
‘double', '<math_prime.h>', '', '');

registerCFunctionEntry

+ “Alternative Method for Creating Function Entries”
+ “Create Code Replacement Tables”

+ “Introduction to Code Replacement Libraries”

1-321

regread

Purpose

Syntax

IDEs

Description

1-322

Values from processor registers

reg=IDE_Obj.regread('regname', 'represent’',timeout)
reg = IDE_Obj.regread('regname', 'represent')
reg = IDE_Obj.regread('regname')

This function supports the following IDEs:
¢ Green Hills MULTI

¢ Texas Instruments Code Composer Studio v3

reg=IDE_Obj.regread('regname', 'represent',timeout) reads the
data value in the regname register of the target processor and returns
the value in reg as a double-precision value. For convenience, regread
converts each return value to the MATLAB double datatype. Making
this conversion lets you manipulate the data in MATLAB. String
regname specifies the name of the source register on the target. The
IDE handle, IDE_Obj, defines the target to read from. Valid entries for
regname depend on your target processor.

Note regread does not read 64-bit registers, like the cycle register on
Blackfin processors.

Register names are not case-sensitive — a0 is the same as AO.

For example, MPC5500 processors provide the following register names
that are valid entries for regname.

Register Names Register Contents
‘acc' Accumulator A register
sprg0 through sprg7 SPR registers

For example, TMS320C6xxx processors provide the following register
names that are valid entries for regname.

regread

Register Names Register Contents

A0, A1, A2,..., Al15 General purpose A registers

BO, B1, B2,..., B15 General purpose B registers

PC, ISTP, IFR, IRP, NRP, AMR, Other general purpose 32-bit

CSR registers

A1:A0, A2:A1,..., B15:B14 64-bit general purpose register pairs

Note Use read (called a direct memory read) to read memory-mapped
registers.

The represent input argument defines the format of the data stored in
regname. Input argument represent takes one of three input strings.

represent String | Description

'2scomp’ Source register contains a signed integer value
in two’s complement format. This is the default
setting when you omit the represent argument.

"binary' Source register contains an unsigned binary
integer.
'ieee' Source register contains a floating point 32-bit or

64-bit value in IEEE floating-point format. Use
this only when you are reading from 32 and 64
bit registers on the target.

To limit the time that regread spends transferring data from the target
processor, the optional argument timeout tells the data transfer process
to stop after timeout seconds. timeout is defined as the number of
seconds allowed to complete the read operation. You might find this
useful for limiting prolonged data transfer operations. If you omit the
timeout argument, regread defaults to the global time-out defined

in IDE_Obj.

1-323

regread

Examples

1-324

reg = IDE _Obj.regread('regname', 'represent') does not set the
global time-out value. The time-out value in IDE_Obj applies.

reg = IDE_Obj.regread('regname') does not define the format of
the data in regname.

Reading and Writing Register Values

Register variables can be difficult to read and write because the
registers which hold their value are not dedicated to storing just the
variable values.

Registers are used as temporary storage locations during execution.
When this temporary storage process occurs, the value of the variable
1s temporarily stored somewhere on the stack and returned later.
Therefore, getting the values of register variables during program
execution may return unexpected answers.

Values that you write to register variables and local variables during
intermediate times in program operation may not get reflected in the
register.

To see if the result is consisten, write a line of code that uses the
variable. For example:

register int a = 100;
int b;

b =a+ 2;

Reading the register assigned to a may return an incorrect value for a
but if b returns the expected 102 result, nothing is wrong with the code
or the software.

For MULTI IDE

For the MPC5554 processor, most registers are memory-mapped and
consequently are available using read and write. However, use
regread to read the PC register. The following command shows how to
read the PC register. To identify the target, IDE_Obj is the IDE handle.

regread

IDE_Obj.regread('PC', 'binary"')

To tell MATLAB what data type you are reading, the string binary
indicates that the PC register contains a value stored as an unsigned
binary integer.

In response, MATLAB displays

ans =
33824

For processors in the Blackfin family, regread lets you access processor
registers directly. To read the value in general purpose register cycles,
type the following function.

treg = IDE_Obj.regread('cycles', '2scomp');

treg now contains the two’s complement representation of the value
in AO.

For CCS IDE

For the C5xxx processor family, most registers are memory-mapped

and consequently are available using read and write. However, use
regread to read the PC register. The following command shows how
to read the PC register. To identify the processor, IDE_Obj is a link

for CCS IDE.

IDE_Obj.regread('PC', 'binary"')

To tell MATLAB software what datatype you are reading, the string
binary indicates that the PC register contains a value stored as an
unsigned binary integer.

In response, MATLAB software displays

ans =

33824

1-325

regread

For processors in the C6xxx family, regread lets you access processor
registers directly. To read the value in general purpose register A0,
type the following function.

treg = IDE_Obj.regread('A0', '2scomp');

treg now contains the two’s complement representation of the value
in AO.

Now read the value stored in register B2 as an unsigned binary integer,
by typing
IDE_Obj.regread('B2', 'binary');

See Also read | regwrite | write

1-326

regwrite

Purpose

Syntax

IDEs

Description

Write data values to registers on processor

IDE Obj.regwrite('regname',value, 'represent',timeout)
IDE Obj.regwrite('regname',value, 'represent')
IDE Obj.regwrite('regname’',value,)

This function supports the following IDEs:
¢ Green Hills MULTI

¢ Texas Instruments Code Composer Studio v3

IDE Obj.regwrite('regname',value, 'represent',timeout) writes
the data in value to the regname register of the target processor.
regwrite converts value from its representation in the MATLAB
workspace to the representation specified by represent. The represent
input argument defines the format of the data when it is stored in
regname. Input argument represent takes one of three input strings.

represent String Description

'2scomp’ Write value to the destination register as

a signed integer value in two’s complement
format. This is the default setting when you
omit the represent argument.

"binary' Write value to the destination register as an
unsigned binary integer.

'ieee' Write value to the destination registers as a
floating point 32-bit or 64-bit value in IEEE
floating-point format. Use this only when
you are writing to 32- and 64-bit registers on
the target.

Note Use write to write memory-mapped registers. This action is
also called a direct memory write.

1-327

regwrite

String regname specifies the name of the destination register on the
target. IDE handle, IDE_Obj defines the target to write value to. Valid
entries for regname depend on your target processor. Register names
are not case-sensitive — a0 is the same as AOQ.

For example, MPC5500 processors provide the following register names
that are valid entries for regname.

Register Names Register Contents
‘acc' Accumulator A register
sprgo0 SPR registers

For example, C6xxx processors provide the following register names
that are valid entries for regname.

Register Names Register Contents

A0, A1, A2,..., A15 General purpose A registers

BO, B1, B2,..., B15 General purpose B registers

PC, ISTP, IFR, IRP, Other general purpose 32-bit registers
NRP, AMR, CSR

A1:A0, A2:A1,..., 64-bit general purpose register pairs
B15:B14

Other processors provide other register sets. Refer to the documentation
for your target processor to determine the registers for the processor.

To limit the time that regwrite spends transferring data to the target
processor, the optional argument timeout tells the data transfer process
to stop after timeout seconds. timeout is defined as the number of
seconds allowed to complete the write operation. You might find this
useful for limiting prolonged data transfer operations.

If you omit the timeout input argument in the syntax, regwrite
defaults to the global time-out defined in IDE_Obj. If the write operation
exceeds the time specified, regwrite returns with a time-out error.
Generally, time-out errors do not stop the register write process. The

1-328

regwrite

write process stops while waiting for the IDE to respond that the write
operation is complete.

IDE Obj.regwrite('regname',value, 'represent') omits the
timeout input argument and does not change the time-out value
specified in IDE_Obj.

IDE Obj.regwrite('regname',value,) omits the represent input
argument. Writing the data does not reformat the data written to
regname.

Reading and Writing Register Values

Register variables can be difficult to read and write because the
registers which hold their value are not dedicated to storing just the
variable values.

Registers are used as temporary storage locations during execution.
When this temporary storage process occurs, the value of the variable
1s temporarily stored somewhere on the stack and returned later.
Therefore, getting the values of register variables during program
execution may return unexpected answers.

Values that you write to register variables and local variables during
intermediate times in program operation may not get reflected in the
register.

To see if the result is consistent, write a line of code that uses the
variable. For example:

register int a = 100;
int b;

b =a+ 2;
Reading the register assigned to a may return an incorrect value for a

but if b returns the expected 102 result, nothing is wrong with the code
or the software.

1-329

regwrite

Examples

See Also

1-330

To write a new value to the PC register on a C5xxx family processor,
enter

IDE_Obj.regwrite('pc',hex2dec('100'), 'binary"')

specifying that you are writing the value 256 (the decimal value of
0x100) to register pc as binary data.

To write a 64-bit value to a register pair, such as B1:BO0, the following
syntax specifies the value as a string, representation, and target
registers.

IDE_Obj.regwrite('b1:b0',hex2dec('1010"'), 'ieee')

Registers B1:B0 now contain the value 4112 in double-precision format.

read | regread | write

reload

Purpose

Syntax

IDEs

Description

Reload most recent program file to processor signal processor

(7]
|

= IDE Obj.reload(timeout)
= IDE Obj.reload

(7]
|

This function supports the following IDEs:
* Eclipse IDE
¢ Green Hills MULTI

¢ Texas Instruments Code Composer Studio v3

s = IDE Obj.reload(timeout) resends the most recently loaded
program file to the processor. If you have not loaded a program file

in the current session (so there is no previously loaded file), reload
returns the null entry [] in s indicating that it could not load a file to
the processor. Otherwise, s contains the full path name to the program
file. After you reset your processor or after an event produces changes
In your processor memory, use reload to restore the program file to
the processor for execution.

To limit the time the IDE spends trying to reload the program file to the
processor, timeout specifies how long the load process can take. If the
load process exceeds the timeout limit, the IDE stops trying to load the
program file and returns an error stating that the time period expired.
Exceeding the allotted time for the reload operation usually indicates
that the reload was complete but the IDE did not receive confirmation
before the timeout period passed.

s = IDE Obj.reload reloads the most recent program file, using the
timeout value set when you created link IDE_Obj, the global timeout
setting.

Using reload with Multiprocessor Boards

When your board contains more than one processor, reload calls the
reloading function for each processor represented by IDE_Obj, reloading
the most recently loaded program on each processor.

1-331

reload

Examples

See Also

1-332

This action is the same as calling reload for each processor individually
through IDE handle objects for each one.

After you create an object that connects to the IDE, use the available
methods to reload your most recently loaded project. If you have not
loaded a project in this session, reload returns an error and an empty
value for s. Loading a project eliminates the error. First, create an IDE
handle object, such as IDE_ODbj, using the constructor for your IDE.

s=IDE_Obj.reload(23)
Warning: No action taken - load a valid Program file before
you reload...

IDE_Obj.open('D:\ti\tutorial\sim62xx\gelsolid\hellodsp.pjt', 'project')
IDE_Obj.build
IDE_Obj.load('hellodsp.pjt') #This file extension varies by IDE

IDE_Obj.halt
s=IDE_Obj.reload(23)

D:\ti\tutorial\sim62xx\gelsolid\Debug\hellodsp.out

cd | load | open

remoteBuild

Purpose Build Simulink-generated code on remote target running Linux

Syntax remoteBuild('modelname','targetrtwstartdir', 'targetipaddress’',
'username', 'passwd', 'putilsfolder')
remoteBuild(bd.buildInfo, 'targetrtwstartdir',
'targetipaddress', 'username','passwd', 'putilsfolder')

Description

Note Support for the remoteBuild method will end in a future release
of the Embedded Coder products. For more information, see “Support
ending for remoteBuild method in a future release”.

This function is only supported for generating code on a Windows host
computers, and then performing a remote build on an embedded Linux®
target.

Performing a remote build is a two-stage process. In the first stage, you
generate source files and a makefile from your Simulink model without
compiling and linking. In the second stage, you use remoteBuild

to download the source files and a makefile to the remote target.
There, the compiler and linker complete the build process. For more
information, see “Build on BeagleBoard Hardware”.

The remoteBuild function supports two different syntaxes, one simple,
the other a little more complex.

For the simple syntax, enter the model name as the first argument,
'modelname’. For example:

remoteBuild ('modelname','targetrtwstartdir', 'targetipaddress', 'usernam

For the more complex syntax, use the load function to create an object
with the build information structure of the model:

bd = load('path'\'filename'.mat')

Then supply that object and build information as the first argument,
bd.buildinfo. For example:

remoteBuild(bd.buildInfo, 'targetrtwstartdir', 'targetipaddress', 'usernai

1-333

remoteBuild

Tips

Input
Arguments

1-334

® The host must be running Windows. Install ssh and scp
utilities, such as plink.exe and pscp.exe, on this Windows host.
These utilities are available from the PuTTY download page at
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

® The remote target must be running Linux, with ssh and scp protocols
enabled and GCC-based compiler, linker, and archiver tools installed.

modelname

Specify the name of the model. For example, sd1_test beagle.

bd

Specify the object that contains the build information structure of the
model. For example, bd.buildInfo.

First, use the Simulink load command to create this object from the
buildInfo.mat file, located among the files you generated from your
model. For example,

bd = load('C:\Documents\MATLAB\foo_eclipseide\buildInfo.mat"')

targetrtwstartdir

The path of the destination folder on the remote Linux target to which
remoteBuild copies the generated source and header files. For example:
' /home/root/devel'’

If the destination folder does not exist, remoteBuild creates it.

targetipaddress

The IP address or the host name of the remote Linux target. For
example, '10.10.10.1"

username

The name of the user that runs ssh commands on the remote Linux
target. For example, 'root'

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

remoteBuild

Examples

References

See Also

passwd

Enter the password for username. If the username does not have a
password, provide empty quotes. For example '

putilsfolder

The path of the folder on the Windows host that contains plink.exe and
pscp.exe. For example, 'C:\putils'

Using the one-step approach, supply the model name as the first
argument:

remoteBuild('sdl_test_beagle','/home/root/devel','10.10.10.1',"'root"',"'", 'C:\putils")

Using the one-step approach, first create an object with the board
specification. Then supply that object as the first argument:

bd = load('C:\Documents\MATLAB\foo_eclipseide\buildInfo.mat"')
remoteBuild(bd.buildInfo,'/home/root/devel','10.10.10.1"', 'root',"'", 'C:\putils")

This stage requires using makefiles (Build format = Makefile), as
described in “Makefiles for Software Build Tool Chains”.

xmakefilesetup | load

1-335

remove

Purpose

Syntax

IDEs

Description

Input
Arguments

1-336

Remove file, project, or breakpoint

IDE Obj.remove
IDE Obj.remove
IDE Obj.remove
IDE Obj.remove

filename,filetype)
addr,debugtype,timeout)
filename,line,debugtype,timeout)
all,break)

—_~ e~~~

This function supports the following IDEs:
® Analog Devices VisualDSP++

* Eclipse IDE

® Green Hills MULTI

¢ Texas Instruments Code Composer Studio v3

IDE Obj.remove(filename,filetype) deletes a file from the active
project in the IDE or deletes the project.

IDE Obj.remove(addr,debugtype,timeout) removes a debug point
from an address in the program.

IDE Obj.remove(filename,line,debugtype,timeout) removes a
debug point from a line in a source file.

IDE Obj.remove(all,break) removes the breakpoints and waits for
completion.

IDE_Obj
Enter the name of the IDE link handle for your IDE. Create an IDE
link handle before you use the remove method. .

filename

Replace filename with the name of the file you are removing, or the
source file from which you are removing debug points. If the file is
not located in the active project, MATLAB returns a warning instead
of completing the action.

remove

Examples

filetype

To remove a project, enter 'project'. To remove a source file, enter
"text'.

Default: 'text'

addr

Enter the memory address of the debug point. Enter 'all' to remove
the breakpoints.

debugtype

Enter the type of debug point to remove. The IDE provide several types
of debug points. Refer to the IDE help documentation for information
on their respective behavior.

Default: 'break' (breakpoint)

line

Enter the line number of the debug point located in a file.

timeout

Enter a time limit, in seconds, for the method to complete an action.

After you have a project in the IDE, you can delete files from it using
remove from the MATLAB software command line. For example, build a
project and load the resulting . out file. With the project build complete,
load your .out file by typing

IDE_Obj.load('filename.out')

Now remove one file from your project

IDE_Obj.remove('filename')

You see in the IDE that the file no longer appears.

1-337

remove

See Also add | cd | open

1-338

RTW.Autosarinterface.removeEventConf

Purpose
Syntax

Description

Input
Arguments

See Also

How To

Remove AUTOSAR event from model
autosarInterfaceObj.removeEventConf (EventName)

autosarInterfaceObj.removeEventConf (EventName) removes
EventName from autosarInterfaceObj, a model-specific
RTW.AutosarInterface object.

EventName

Name of AUTOSAR RTEEvent
RTW.AutosarInterface.addEventConf

+ “Configure the AUTOSAR Interface”

+ “Configure Multiple Runnables for DataReceivedEvents”

1-339

rtw.codegenObjectives.Objective.removelnheritedCheck

Purpose Remove inherited checks
Syntax removeInheritedCheck(obj, checkID)
Description removelInheritedCheck(obj, checkID) removes an inherited check

from the objective definition. Use this method when you create a new
objective from an existing objective.

When the user selects multiple objectives, if another selected objective
includes this check, the Code Generation Advisor displays the check.

Input obj Handle to a code generation objective object
Arguments previously created.
checkID Unique identifier of the check that you remove

from the new objective.

Examples Remove the Identify questionable code instrumentation (data
1/0) check from the objective.

removeInheritedCheck(obj, 'mathworks.codegen.CodeInstrumentation');

)
See Also Simulink.ModelAdvisor
How To + “Create Custom Objectives”
« “About IDs”

1-340

rtw.codegenObjectives.Objective.removelnheritedParam

Purpose
Syntax

Description

Input
Arguments

Examples

See Also

How To

Remove inherited parameters
removeInheritedParam(obj, paramName)

removelInheritedParam(obj, paramName) removes an inherited
parameter from this objective. Use this method when you create a new
objective from an existing objective.

When the user selects multiple objectives, if another objective includes
the parameter, the Code Generation Advisor reviews the parameter
value using Check model configuration settings against code
generation objectives.

obj Handle to a code generation objective object
previously created.

paramName Parameter that you want to remove from the
objective.

Remove Inlineparameters from the objective.

removeInheritedParam(obj, 'InlineParams');

get_param

+ “Create Custom Objectives”

+ “Parameter Command-Line Information Summary”

1-341

report

Purpose

Syntax

Description

1-342

Open code execution profiling report and specify display of time
measurements.

myExecutionProfile.report
myExecutionProfile.report(Namel, Valueil,
Name2, Value2, ...)
myExecutionProfile.report('Units', 'Seconds',
'ScaleFactor',

'1e-06', 'NumericFormat', '%0.3f')

When you run a SIL or PIL simulation with code execution

profiling, the software generates the workspace variable
myExecutionProfile, specified in Configuration Parameters > Code
Generation > Verification > Workspace variable.

myExecutionProfile.report opens the code execution profiling report
using default display options.

myExecutionProfile.report(Namei, Valuel, Name2, Value2,
.) opens the report with display options specified by the name-value
string pairs.

For example, to display time in microseconds (10 seconds) with a
precision of three decimal places, use the following command:

myExecutionProfile.report('Units', 'Seconds', 'ScaleFactor',
"1e-06', 'NumericFormat', '%0.3f')

report

Name-Value Pair

Details

‘Units', 'Seconds' or
"Units', 'Ticks'

Time measurements displayed in seconds
or timer ticks.Default:

e SIL simulation on Windows — Seconds

e SIL simulation on non-Windows —
Timer ticks

¢ PIL simulation — Seconds, if number
of timer ticks per second has been
specified by the target connectivity
configuration. Otherwise, ticks.

'ScaleFactor', Value

Scale factor for displayed measurements.
For example, to display measurements in
microseconds, use the name-value pair
'ScaleFactor', '1e-6"'.Value must be a
string representation of a number that is
a power of 10. For example, '1', '1e-6",
or '1e-9'. Default valueis '1e-9'.

To specify the scale factor, you must also
specify 'Units', 'Seconds'.

'"NumericFormat', Numeric format for displayed
Convention measurements. Use the decimal
convention utilized by the ANSI® C
function sprintf, for example, '%1.2f".
Default is '%0.0f'.To specify the numeric
format, you must also specify 'Units’,
'Seconds’.
See Also display
How To “Configure Code Execution Profiling”

“View and Compare Code Execution Times”

1-343

reset

Purpose
Syntax
IDEs

Description

See Also

1-344

Stop program execution and reset processor
IDE Obj.reset(timeout)

This function supports the following IDEs:
® Analog Devices VisualDSP++
¢ Green Hills MULTI

¢ Texas Instruments Code Composer Studio v3

IDE Obj.reset(timeout) stops the program executing on the processor
and asynchronously performs a processor reset, returning the processor
register contents to their power-up settings. reset returns immediately
after the processor halt.

The optional timeout argument sets the number of seconds MATLAB
waits for the processor to halt. If you omit the timeout argument,
timeout defaults to the timeout value of the IDE handle object.

halt | load | run

restart

Purpose

Syntax

IDEs

Description

See Also

Reload most recent program file to processor signal processor

IDE Obj.restart
IDE Obj.restart(timeout)

This function supports the following IDEs:
* Eclipse IDE
¢ Green Hills MULTI

¢ Texas Instruments Code Composer Studio v3

IDE Obj.restart issues a restart command in the IDE debugger. The
behavior of the restart process depends on the processor. Refer to the
documentation for your IDE for details about using restart with various
processors.

When IDE_Obj is an array that contains more than one processor, each
processor calls restart in sequence.

IDE Obj.restart(timeout) adds the optional timeout input
argument. timeout defines an upper limit in seconds on the period
the restart routine waits for completion of the restart process. If the
time-out period is exceeded, restart returns control to MATLAB with a
time-out error. In general, restart causes the processor to initiate a
restart, even if the time-out period expires. The time-out error indicates
that the restart confirmation was not received before the time-out
period elapsed.

halt | isrunning | run

1-345

rtlOStreamClose

Purpose

Syntax

Arguments

Description

See Also

How To

1-346

Shut down communications channel with remote processor

int rtIOStreamClose(
int streamID

)

streamID
A handle to the stream that was returned by a previous call to
rtI0OStreamOpen.

int rtIOStreamClose(
int streamID

)

Call this function to shut down the communications channel and clean
up associated resources.

A return value of zero indicates success. RTIOSTREAM_ERROR indicates
an error.

RTIOSTREAM_ERROR is defined in rtiostream.h as:

#define RTIOSTREAM_ERROR (-1)

rtI0OStreamOpen | rtIOStreamSend | rtIOStreamRecv
rtiostream_wrapper

“Create a Connectivity Configuration for a Target”
rtwdemo_rtiostream_script

rtwdemo_custom_pil_script

rtlOStreamOpen

Purpose

Syntax

Arguments

Description

See Also

Initialize communications channel with remote processor

int rtIOStreamOpen (
int argc,
void * argv|[]

argc
Integer argument count, 1.e., the number of parameters in argv][]

argv/[]
An array of pointers to parameters; typically these are
null-terminated string parameters, however, this is allowed to
be implementation dependent.

int rtIOStreamOpen(
int argc,
void * argv][]

This function initializes a communication stream to allow exchange
of data between host and target.

The input parameters allows driver-specific parameters to be passed to
the communications driver.

If able to initialize a communication stream, the function returns a
nonnegative integer greater than zero, representing a stream handle. A
return value of RTIOSTREAM_ERROR indicates an error.

RTIOSTREAM_ERROR is defined in rtiostream.h as:

#define RTIOSTREAM_ERROR (-1)

rtIOStreamSend | rtIOStreamRecv | rtIOStreamClose |
rtiostream_wrapper

1-347

rtlOStreamOpen

How To + “Create a Connectivity Configuration for a Target”
* rtwdemo_rtiostream_script

* rtwdemo_custom_pil_script

1-348

rtlOStreamRecv

Purpose

Syntax

Arguments

Description

Receive data from remote processor

int rtIOStreamRecv(
int streamlD,
void * dst,
size_t size,
size_t * sizeRecvd

streamID
A handle to the stream that was returned by a previous call to
rtI0OStreamOpen.

size
Size of data to copy into the buffer. For byte-addressable
architectures, size is measured in bytes. Some DSP architectures
are not byte-addressable. In these cases, size is measured in
number of WORDs, where sizeof (WORD) ==

dst
A pointer to the start of the buffer where received data must be
copied.

sizeRecvd

The number of units of data received and copied into the buffer
dst (zero if data was not copied).

int rtIOStreamRecv(
int streamlID,
void * dst,
size_t size,
size_t * sizeRecvd

)

This function receives data over a communication channel with a
remote processor.

A return value of zero indicates success.RTIOSTREAM_ERROR indicates
an error.

1-349

rtlOStreamRecv

RTIOSTREAM_ERROR is defined in rtiostream.h as:

#define RTIOSTREAM_ERROR (-1)

See also rtiostreamSend for implementation and performance
considerations.

See Also rtI0OStreamSend | rtIOStreamOpen | rtIOStreamClose |
rtIOStream_wrapper

How To + “Create a Connectivity Configuration for a Target”
rtwdemo_rtiostream_script

rtwdemo_custom_pil_script

1-350

rflOStreamSend

Purpose

Syntax

Arguments

Description

Send data to remote processor

int rtIOStreamSend(
int streamlID,
const void * src,
size_t size,
size_t * sizeSent

streamID
A handle to the stream that was returned by a previous call to
rtI0OStreamOpen.

src
A pointer to the start of the buffer containing an array of data
to transmit

size
Size of data to transmit. For byte-addressable architectures,
size 1s measured in bytes. Some DSP architectures are not
byte-addressable. In these cases, size is measured in number of
WORDs, where sizeof (WORD) ==

sizeSent
Size of data actually transmitted (less than or equal to size), or
zero if data was not transmitted

int rtIOStreamSend(

int streamlID,
const void * src,
size_t size,
size_t * sizeSent

This function sends data over a communication stream with a remote
processor.

1-351

rtlOStreamSend

A return value of zero indicates success.RTIOSTREAM_ERROR indicates
an error.

RTIOSTREAM_ERROR is defined in rtiostream.h as:

#define RTIOSTREAM_ERROR (-1)

Implementation and Performance Considerations

The API for rtI0Stream functions is designed to be independent of the
physical layer across which the data is sent. Possible physical layers
include RS232, Ethernet, or Controller Area Network (CAN). The choice
of physical layer affects the achievable data rates for the host-target
communication.

For a processor-in-the-loop (PIL) application there is no minimum data
rate requirement. However, the higher the data rate, the faster the
simulation will run.

In general, a communications device driver will require additional
hardware-specific or channel-specific configuration parameters. For
example:

¢ A CAN channel may require specification of which available CAN
Node should be used.

e A TCP/IP channel may require a port or static IP address to be
configured.

¢ A CAN channel may require the CAN message ID and priority to
be specified.

It is the responsibility of the user who implements the rtI0Stream
driver functions to provide this configuration data, for example by
hard-coding it, or by supplying arguments to rtI0StreamOpen.

See Also rtI0StreamOpen | rtIOStreamClose | rtIOStreamRecv |
rtiostream_wrapper

How To + “Create a Connectivity Configuration for a Target”

1-352

rflOStreamSend

* rtwdemo_rtiostream_script

* rtwdemo_custom_pil_script

1-353

rtiostream_wrapper

Purpose

Syntax

Description

1-354

Test rtiostream shared library methods

STATION_ID = rtiostream_wrapper (SHARED LIB, 'open')
STATION_ID
rtiostream_wrapper (SHARED LIB, 'open',p1, v1, p2,
v2, ...)
[RES,SIZE SENT] = rtiostream_wrapper(SHARED LIB,'send',ID,
DATA, SIZE)
[RES, DATA RECVD,
SIZE RECVD] = rtiostream_wrapper(SHARED LIB,'recv',ID,
SIZE)
RES = rtiostream_wrapper (SHARED LIB, 'close',ID)
rtiostream_wrapper (SHARED LIB, 'unloadlibrary')

rtiostream_wrapper enables you to access the methods of an
rtiostream shared library from MATLAB code, for testing purposes.

STATION_ID = rtiostream_wrapper (SHARED LIB, 'open') opens an
rtiostream communication channel through a shared library, and
returns a handle to the channel.

STATION_ID = rtiostream_wrapper (SHARED LIB, 'open',p1, v1,
p2, v2, ...) opens an rtiostream communication channel through a
shared library. p7, v1, ... are additional parameter value pairs used
when opening an rtiostream communication channel through a shared
library. These arguments are implementation dependent, that is, they
are specific to the shared library being called.

[RES,SIZE _SENT] = rtiostream_wrapper(SHARED LIB, 'send',ID,
DATA, SIZE) sends DATA into the communication channel with handle
ID, and attempts to send SIZE bytes.

[RES, DATA RECVD, SIZE RECVD] =
rtiostream_wrapper (SHARED LIB, 'recv',ID, SIZE) receives up to
SIZE bytes of DATA from the communication channel with handle ID.

RES = rtiostream_wrapper (SHARED LIB, 'close',ID) closes the
communication channel with handle ID.

rtiostream_wrapper

Input
Arguments

rtiostream_wrapper (SHARED LIB, 'unloadlibrary') unloads the
SHARED L IB, clearing persistent data.
SHARED_LIB

Name of shared library that implements the required rtI0Stream
functions rtI0StreamOpen, rtI0StreamSend, rtI0OStreamRecv and
rtI0StreamClose. Must be on system path.

Shared library can be:

® 1ibTCPIP — For TCP/IP communication. Value depends on your
operating system. See rtwdemo_rtiostream_script.

e 'libmwrtiostreamserial.dll' — For serial communication.

open

Opens communication channel

send

Sends data into communication channel with handle ID

ID

Communication channel handle

DATA
Data to be sent

SIZE

Size of requested data in bytes

recv

Receives data from communication channel with handle ID

close

1-355

rtiostream_wrapper

1-356

Closes communication channel with handle ID

unloadlibrary

Unloads SHARED LIB

Name-Value Pair Arguments

p1,v1, ... are optional comma-separated pairs of Name,Value
arguments, where Name is the argument name and Value is the
corresponding value. Name must appear inside single quotes ('').
You can specify several name-value pair arguments in any order as
Namei1,Valuei, ,NameN,ValueN

’~client’

® 0 — Opens as TCP/IP server

® 1 — Opens as TCP/TP client

Shared library must be 1ibTcpip.

’-port’

Port number for TCP/IP or COM port string for serial communication.
If port is for serial communication, you must also specify bit rate using
-baud.

Shared library must be either 1ibTcpip or
‘libmwrtiostreamserial.dll’.

’-hostname’

Identifier for host computer, for example, 'localhost"'.

Shared library must be 1ibTcpip.

’-baud’
Bit rate for serial communication port.

Shared library must be 'libmwrtiostreamserial.dll"'.

rtiostream_wrapper

Output
Arguments

Examples

STATION_ID

Handle to communication channel. If attempt is unsuccessful, value
is -1.

RES

Error flag:

¢ .1 — Error occurred

® 0 — No error

SIZE_SENT

Number of bytes accepted by communication channel. May be less than
SIZE, that is, the requested number of bytes to send.

DATA_RECVD

Data received

SIZE_RECVD

Number of bytes actually received from channel. May be less than SIZE,
that is, the requested number of bytes to send.

The following examples open communication channels using supplied
TCP/TP and serial communication drivers.

The following command opens rtiostream channel stationA as a
TCP/TP server:

stationA = rtiostream_wrapper('libmwrtiostreamtcpip.dll', 'open',...
'-client', '0',...
'-port', port_number);

The following command opens the rtiostream channel StationB as a
TCP/IP client:

1-357

rtiostream_wrapper

See Also

How To

1-358

stationB = rtiostream_wrapper('libmwrtiostreamtcpip.dll’, 'open’,...
‘-client','1',...
'-port', port_number,...
'-hostname', 'localhost');

If you use the supplied host-side driver for serial communications (as
an alternative to the drivers for TCP/IP), you must specify the bit
rate when you open a channel with a specific port. Specify the option
'-baud' with a value for the bit rate. For example, the following
command opens COM1 with a bit rate of 9600:

stationA = rtiostream_wrapper('libmwrtiostreamserial.dll’, 'open’',...
'-port','COM1"',...
'-baud', '9600");

rtI0OStreamOpen | rtIOStreamSend | rtIOStreamRecv |
rtI0OStreamClose

“Create a Connectivity Configuration for a Target”
* rtwdemo_rtiostream_script

rtwdemo_custom_pil_script

RTW.Autosarinterface

Purpose

Description

Construction

Methods

Control and validate AUTOSAR configuration

You can use methods of the RTW.AutosarInterface class to configure
AUTOSAR code generation and XML import and export options.

RTW.AutosarInterface

addEventConf

addIOConf

attachToModel

getArxmlFilePackaging

getComponentName
getComponentType
getDataTypePackageName
getDefaultConf
getEventType
getExecutionPeriod
getImplementationName
getInitEventName
getInitRunnableName

getInterfacePackageName

Construct
RTW.AutosarInterface object

Add configured AUTOSAR event
to model

Add AUTOSAR I/O configuration
to model

Attach RTW.AutosarInterface
object to model

Get AUTOSAR XML packaging
format

Get XML component name

Get type of software component
Get XML data type package name
Get default configuration

Get event type

Get runnable execution period
Get name of XML implementation
Get initial event name

Get initial runnable name

Get XML interface package name

1-359

RTW.Autosarinterface

1-360

getInternalBehaviorName

getlOAutosarPortName
getlODataAccessMode
getlODataElement
getlOErrorStatusReceiver

getlOInterfaceName
getlOPortNumber
getlOServicelnterface
getlOServiceName
getlOServiceOperation

getIsServerOperation

getPeriodicEventName
getPeriodicRunnableName

getServerInterfaceName

getServerOperationPrototype

getServerPortName
getServerType
getTriggerPortName

removeEventConf

runValidation

Get name of XML file that
specifies software component
internal behavior

Get I/O AUTOSAR port name
Get I/0 data access mode
Get I/0 data element name

Get name of error status receiver
port

Get I/O interface name

Get I/0 AUTOSAR port number
Get port I/O service interface
Get port I/O service name

Get port I/0 service operation

Determine whether server is
specified

Get periodic event name

Get periodic runnable name
Get name of server interface
Get server operation prototype
Get server port name
Determine server type

Get name of Simulink inport
that provides trigger data for
DataReceivedEvent

Remove AUTOSAR event from
model

Validate RTW.AutosarInterface
object against model

RTW.Autosarinterface

setArxmlFilePackaging

setComponentName
setComponentType
setDataTypePackageName

setEventType

setExecutionPeriod

setImplementationName
setInitEventName
setInitRunnableName

setInterfacePackageName

setInternalBehaviorName

setlOAutosarPortName
setlODataAccessMode
setlODataElement

setlOErrorStatusReceiver

setlOInterfaceName
setIOServicelnterface
setlOServiceName
setIOServiceOperation
setIsServerOperation

setPeriodicEventName

Set AUTOSAR XML packaging
format

Set XML component name
Set type of software component

Specify XML package name for
data type

Set type for event

Specify execution period for
TimingEvent

Set name of XML implementation
Set initial event name
Set initial runnable name

Set name of XML interface
package

Set name of XML file for software
component internal behavior

Set AUTOSAR port name
Set I/0 data access mode
Set I/0 data element

Set name of error status receiver
port

Set I/O interface name

Set port I/0 service interface
Set port I/O service name

Set port I/O service operation
Indicate that server is specified

Set periodic event name

1-361

RTW.Autosarinterface

Copy
Semantics

How To

1-362

setPeriodicRunnableName
setServerInterfaceName
setServerOperationPrototype
setServerPortName
setServerType
setTriggerPortName

syncWithModel

Set periodic runnable name
Set name of server interface
Specify operation prototype
Set server port name
Specify server type

Specify Simulink inport that
provides trigger data for
DataReceivedEvent

Synchronize configuration with
model

Handle. To learn how this affects your use of the class, see Copying
Objects in the MATLAB Programming Fundamentals documentation.

+ “Configure the AUTOSAR Interface”

+ “Configure Ports for Basic Software and Error Status Receivers”

+ “Modify and Validate an Existing AUTOSAR Interface”

RTW.Autosarinterface

Purpose

Syntax

Description

Input
Arguments

Output
Arguments

How To

Construct RTW.AutosarInterface object

autosarInterfaceObject = RTW.AutosarInterface()
autosarInterfaceObject = RTW.AutosarInterface(model handle)
autosarInterfaceObject = RTW.AutosarInterface(object _name,
model_handle)

autosarInterfaceObject = RTW.AutosarInterface() creates an
RTW.AutosarInterface object without specifying a model, and returns
a handle to this object.

autosarInterfaceObject = RTW.AutosarInterface(model_ handle)
creates an RTW.AutosarInterface object with a model specified, and
returns a handle to this object. The software sets the name of the
RTW.AutosarInterface object to 'AutosarInterface’.

autosarInterfaceObject = RTW.AutosarInterface(object _name,
model_handle) creates an RTW.AutosarInterface object with a model
specified, and returns a handle to this object. The software sets the
name of the RTW.AutosarInterface object to object_name.

model_handle Handle to Simulink model
object_name Name of RTW.AutosarInterface object
autosarInterfaceObject Handle to newly created

RTW.AutosarInterface object.

+ “Generating Code for AUTOSAR Software Components”
* RTW.AutosarInterface.attachToModel

1-363

rtw.codegenObjectives.Objective

Purpose Customize code generation objectives

Description An rtw.codegenObjectives.Objective object creates a code
generation objective.

Construction rtw.codegenObjectives.Objective ~ Create custom code generation

objectives
Methods addCheck Add checks
addParam Add parameters
excludeCheck Exclude checks
modifyInheritedParam Modify inherited parameter
values
register Register objective
removelnheritedCheck Remove inherited checks
removelnheritedParam Remove inherited parameters
setObjectiveName Specify objective name
Copy Handle. To learn how this affects your use of the class, see Copying
Semantics Objects in the MATLAB Programming Fundamentals documentation.
Examples Create a custom objective named Reduce RAM Example. The following

code is the contents of the s1_customization.m file that you create.

function sl_customization(cm)
%SL_CUSTOMIZATION objective customization callback

objCustomizer = cm.ObjectiveCustomizer;

index = objCustomizer.addCallbackObjFcn(@addObjectives);
objCustomizer.callbackFcn{index}();

1-364

rtw.codegenObjectives.Objective

See Also

How To

end

function addObjectives

% Create the custom objective
obj = rtw.codegenObjectives.Objective('ex_ram_1");
setObjectiveName(obj, 'Reduce RAM Example');

% Add parameters to the objective
addParam(obj, 'InlineParams', 'on');
addParam(obj, 'BooleanDataType', 'on');
addParam(obj, 'OptimizeBlockIOStorage', 'on');
addParam(obj, 'EnhancedBackFolding', 'on');
addParam(obj, 'BooleansAsBitfields', 'on');

o0

Add additional checks to the objective

o0

The Code Generation Advisor automatically includes 'Check model

o0

configuration settings against code generation objectives' in every

o

s objective.
addCheck(obj, 'mathworks.design.UnconnectedLinesPorts');
addCheck(obj, 'mathworks.design.Update');

%Register the objective
register(obj);

end

DAStudio.CustomizationManager.ObjectiveCustomizer

+ “Create Custom Objectives”

1-365

rtw.codegenObjectives.Objective

Purpose Create custom code generation objectives
Syntax obj = rtw.codegenObjectives.Objective('objID")
obj = rtw.codegenObjectives.Objective('objID"',

‘base_objID")
Descripl‘ion obj = rtw.codegenObjectives.Objective('objID') creates an
objective object, obj.

obj = rtw.codegenObjectives.Objective('objID"',

'base_objID') creates an object, obj, for a new objective that is
identical to an existing objective. You can then modify the new objective
to meet your requirements.

Input objID A permanent, unique identifier for the
Arguments objective.

®* You must have
objID.
¢ The value of objID must remain constant.

® When you refresh your customizations, if
0bjID is not unique, Simulink generates
an error.

base objID The identifier of the objective that you want
to base the new objective on.

Examples Create a new objective:
obj = rtw.codegenObjectives.Objective('ex_ram_1');

Create a new objective based on the existing Execution efficiency
objective:

obj = rtw.codegenObjectives.Objective('ex_my_efficiency_1', 'Execution efficiency');

1-366

rtw.codegenObjectives.Objective

How To + “Create Custom Objectives”

1-367

RTW.configSubsystemBuild

Purpose Configure C function prototype or C++ encapsulation interface for
right-click build of specified subsystem

Syntax RTW.configSubsystemBuild (block)

Description RTW.configSubsystemBuild(block) opens a graphical user interface
where you can configure either C function prototype information or C++
encapsulation interface information for right-click builds of a specified
nonvirtual subsystem. A dialog box opens based on the Language
value selected for your model on the Code Generation pane of the
Configuration Parameters dialog box.

To configure and generate C++ encapsulation interfaces for a nonvirtual
subsystem, you must

® Select the system target file ert.tlc for the model.

® Select the Language parameter value C++ (Encapsulated) for the
model.

® Make sure that the subsystem is convertible to a Model block using
the function Simulink.SubSystem.convertToModelReference.
For referenced model conversion requirements, see the Simulink
reference page Simulink.SubSystem.convertToModelReference.

Input block String specifying the name of a nonvirtual

Arguments subsystem block in an ERT-based Simulink
model.

How To + “Configure Function Prototypes for Nonvirtual Subsystems”

* “Function Prototype Control”
+ “Configure C++ Encapsulation Interfaces for Nonvirtual Subsystems”

+ “C++ Encapsulation Interface Control”

1-368

rtw.connectivity.ComponentArgs

Purpose

Syntax

Description

Provide parameters to each target connectivity component

componentArgs = rtw.connectivity.ComponentArgs (componentPath,
componentCodePath, componentCodeName, applicationCodePath)

Syntax of constructor ComponentArgs:

componentArgs = rtw.connectivity.ComponentArgs
(componentPath, componentCodePath, componentCodeName,
applicationCodePath)

You can use the methods of this class to get information about the
source component (e.g., the referenced model under test) and the target
application (e.g., the PIL application).

For methods, see the following table.

Method Syntax and Description

getComponentPath componentPath =
obj.getComponentPath

Returns the Simulink system
path of the source component
(e.g., the path of the referenced
model that is under test).

getComponentCodePath componentCodePath =
obj.getComponentCodePath

Returns the Embedded Coder
code generation directory path
associated with the source
component (e.g., the code
generation directory of the
referenced model that is under
test).

1-369

rtw.connectivity.ComponentArgs

Method

Syntax and Description

getComponentCodeName

componentCodeName =
obj.getComponentCodeName

Returns the component name
used for code generation.

getApplicationCodePath

applicationCodePath =
obj.getApplicationCodePath

Returns the directory path
associated with the target
application (e.g., the path
associated with the PIL
application).

See rtw.connectivity.Config for more information.

See Also rtw.connectivity.Config

How To + “Create a Connectivity Configuration for a Target”

1-370

ritw.connectivity.Config

Purpose

Syntax

Description

Define connectivity implementation, comprising builder, launcher, and

communicator components

rtw.connectivity.Config(componentArgs, builder, launcher,

communicator)
Constructor Description
Config Wrapper for the connectivity

component classes builder,
launcher and communicator.

Constructor Arguments

componentArgs rtw.connectivity.ComponentArgs
object.

builder rtw.connectivity.Builder (e.g.
rtw.connectivity.MakefileBuilder)
object.

launcher rtw.connectivity.Launcher object.

communicator rtw.connectivity.Communicator

(e.g. rtw.connectivity.-
RtIOStreamHostCommunicator)
object.

Constructor syntax:

rtw.connectivity.Config(componentArgs, builder, launcher,

communicator)

To define a connectivity implementation:

1 You must create a subclass of rtw.connectivity.Config that
creates instances of your connectivity component classes:

® rtw.connectivity.MakefileBuilder

1-371

ritw.connectivity.Config

1-372

® rtw.connectivity.Launcher

® rtw.connectivity. RtIOStreamHostCommunicator

You can see an example ConnectivityConfig.m, used in
rtwdemo_custom_pil_script.

2 Define the constructor for your subclass as follows:

function this = MyConfig(componentArgs)

When Simulink creates an instance of your subclass of
rtw.connectivity.Config, it provides an instance of

the rtw.connectivity.ComponentArgs class as the only
constructor argument. If you want to test your subclass of
rtw.connectivity.Config manually, you may want to create an
rtw.connectivity.ComponentArgs object to pass as a constructor
argument.

3 After instantiating the builder, launcher and communicator
objects in your subclass, call the constructor of the superclass
rtw.connectivity.Config to define your complete target
connectivity configuration, as shown in this example.

% call super class constructor to register components
this@rtw.connectivity.Config(componentArgs,...
builder, launcher, communicator);

You will register your subclass name (e.g.
“MyPIL.ConnectivityConfig”) to Simulink by using the
class rtw.connectivity.ConfigRegistry. This uses the

sl customization.m mechanism to register your connectivity
configuration.

The PIL infrastructure instantiates your subclass as required. The
sl customization.m mechanism helps in specifying a suitable
connectivity configuration for use with a particular PIL component
(and its configuration set). It is also possible for the subclass to
do extra validation on construction. For example, you can use the

ritw.connectivity.Config

componentPath returned by the getComponentPath method of the
componentArgs constructor argument to query and validate parameters
associated with the PIL component under test.

For supported hardware implementation settings and other support
information, see “SIL and PIL Simulation Support and Limitations” in
the Embedded Coder documentation.

See Also rtw.connectivity.MakefileBuilder | rtw.connectivity.Launcher
| rtw.connectivity.RtIOStreamHostCommunicator |
rtw.connectivity.ComponentArgs

How To + “Create a Connectivity Configuration for a Target”

rtwdemo_custom_pil_script

1-373

ritw.connectivity.ConfigRegistry

Purpose

Syntax

Description

1-374

Register connectivity configuration

config = rtw.connectivity.ConfigRegistry
config rtw.connectivity.ConfigRegistry

Use this class to register your connectivity configuration with Simulink
by using the s1_customization.m mechanism. The connectivity
configuration is registered by a call to registerTargetInfo inside a
sl customization.m file.

Create or add to your s1_customization.m file as shown in the
“Examples” on page 1-376 section, and place the file on the MATLAB
path. Simulink software reads the s1_customization.m when it starts,
and registers your connectivity configuration. This step also defines
the set of Simulink models that the new connectivity configuration is
compatible with.

A connectivity configuration must have a unique name and be
associated with a connectivity implementation class (a subclass of
rtw.connectivity.Config). The properties of the configuration
(e.g. SystemTargetFile) define the set of Simulink models that the
connectivity implementation class is compatible with. The properties
are shown in the following table.

Properties of rtw.connectivity.ConfigRegistry

Property Name Description

ConfigName Unique string name for this
configuration

ConfigClass Full class name of the

connectivity implementation (e.g.
rtw.pil.myConnectivityConfig)
to register.

rtw.connectivity.ConfigRegistry

Properties of rtw.connectivity.ConfigRegistry (Continued)

Property Name

Description

SystemTargetFile

Cell array of strings listing
System Target Files that support
this ConfigRegistry.

An empty cell array matches any
System Target File.

The model’s
SystemTargetFileConfiguration
Parameter is validated against
this cell array to determine if this
ConfigRegistry is valid for use.

TemplateMakefile

Cell array of strings listing
Template Makefiles that support
this ConfigRegistry. An empty
cell array matches any Template
Makefile and nonmakefile based
targets (GenerateMakefile: off).
The model’s TemplateMakefile
Configuration Parameter is
validated against this cell array to
determine if this ConfigRegistry
is valid for use.

TargetHWDeviceType

Cell array of strings listing
Hardware Device Types that
support this ConfigRegistry.

An empty cell array matches any
Hardware Device Type.

The model’s
TargetHWDeviceTypeConfiguration
Parameter is validated against
this cell array to determine if this
ConfigRegistry is valid for use.

1-375

ritw.connectivity.ConfigRegistry

Exumples The following code shows an example s1_customization.m registration.
You must use the s1_customization.m file structure shown in the
example following. You must call the registerTargetInfo function
exactly as shown.

function sl_customization(cm)
SL_CUSTOMIZATION for PIL connectivity config:...
mypil.ConnectivityConfig

o°

o°

o°

Copyright 2008 The MathWorks, Inc.
% $Revision: 1.1.8.9 $

cm.registerTargetInfo(@loc_createConfig);

% local function
function config = loc_createConfig

config = rtw.connectivity.ConfigRegistry;
config.ConfigName = 'My PIL Example';
config.ConfigClass = 'mypil.ConnectivityConfig';

% match only ert.tlc
config.SystemTargetFile = {'ert.tlc'};
% match the standard ert TMF's
config.TemplateMakefile = {'ert_default_tmf'
‘ert_unix.tmf',
‘ert_vc.tmf',
‘ert_vcx64.tmf',
'ert_lcc.tmf'};
% match regular 32-bit machines and Custom for e.g.
% 64-bit Linux
config.TargetHWDeviceType = {'Generic->32-bit x86 ...
compatible’
'Generic->Custom'};

You must configure the file to perform the following steps when
Simulink software starts:

1-376

rtw.connectivity.ConfigRegistry
|

1 Create an instance of the rtw.connectivity.ConfigRegistry class.
For example,

config = rtw.connectivity.ConfigRegistry;

2 Assign a connectivity configuration name to the ConfigName property
of the object. For example,

config.ConfigName = 'My PIL Example';

3 Associate the connectivity configuration with the connectivity API
implementation (created in step 1). For example,

config.ConfigClass = 'mypil.ConnectivityConfig';

4 Define compatible models for this target connectivity configuration,
by setting the SystemTargetFile, TemplateMakefile and
TargetHWDeviceType properties of the object. For example,

% match only ert.tlc
config.SystemTargetFile = {'ert.tlc'};
% match the standard ert TMF's
config.TemplateMakefile = {'ert_default_tmf'
‘ert_unix.tmf',
‘ert_vc.tmf',
‘ert_vcx64.tmf',
‘ert_lcc.tmf'};
% match regular 32-bit machines and Custom for e.g.
% 64-bit Linux
config.TargetHWDeviceType = {'Generic->32-bit x86 ...
compatible'
'Generic->Custom'};

See Also rtw.connectivity.Config

How To + “Create a Connectivity Configuration for a Target”

rtwdemo_custom_pil_script

1-377

rtw.connectivity.Launcher

Purpose

Syntax

Description

1-378

Control downloading, starting and resetting of a target application

rtw.connectivity.Launcher (componentArgs)

Constructor Description
Launcher Controls execution of an application on target
hardware.

rtw.connectivity.Launcher (componentArgs) controls the download,
start and reset of an application, for example, a PIL application.

You can also use rtw.connectivity.Launcher (componentArgs,
builder), which provides the Launcher access to a Builder object
through the getBuilder method. However, support for this approach
will cease in a future release.

You must make a subclass and implement the startApplication and
stopApplication methods.

You can implement a destructor method that cleans up resources (for
example, a handle to a third-party download tool) when this object

is cleared from memory. There is significant flexibility in how the
startApplication and stopApplication methods can be implemented.

For methods, see the following table.

Method Syntax and Description

getComponentArgs | componentArgs = obj.getComponentArgs

Returns the
rtw.connectivity.ComponentArgs object
associated with the Launcher object.

setExe setExe (exe)

Specify the application to run on the target

rtw.connectivity.Launcher

Method

Syntax and Description

getExe

exe=getExe()

Returns the application running on the target

startApplication

obj.startApplication

Abstract method that you must implement in
a subclass.

Called by Simulink to start execution of the
target application.

Simulink calls the setExe method, which
specifies the target application to launch. To
obtain this application, use the getExe method.
For example:

exe = getExe()

The startApplication method must reset the
application to its initial state by ensuring that
external and static (global) variables are zero
initialized.

stopApplication

obj.stopApplication

Abstract method that you must implement in
a subclass.

Called by Simulink to stop execution of the
target application.

getBuilder

builder = obj.getBuilder

Returns the rtw.connectivity.Builder object
associated with the Launcher object.

How To + “Create a Connectivity Configuration for a Target”

* rtwdemo_custom_pil_script

1-379

rtw.connectivity.MakefileBuilder

Purpose Configure makefile-based build process

Syntax rtw.connectivity.MakefileBuilder (componentArgs,
targetApplicationFramework, exeExtension)

Description Constructor Description
MakefileBuilder Control makefile-based build
process.
Constructor Arguments
componentArgs rtw.connectivity.ComponentArgs

TargetApplicationFramework| rtw.pil. RtIOStream-
ApplicationFramework (e.g.
MyPIL.TargetFramework)

exeExtension Filename extension of an executable
for the target system.

The extension depends on the makefile
and compiler that are called by the
MakefileBuilder. These are defined
by the template makefile specified

by the source component (e.g., the
referenced model under test).

For an embedded target the extension
may be '.elf', '.abs', '.sre',
'.hex"', or others.

For a Windows host-based target the
extension is '.exe'.

For a UNIX® host-based target the
extension is empty, ''.

Constructor syntax:

rtw.connectivity.MakefileBuilder (componentArgs,
targetApplicationFramework, exeExtension)

1-380

rtw.connectivity.MakefileBuilder

MakefileBuilder controls the customizable makefile-based build process
supporting the creation of custom applications (e.g. a PIL application)
that interface with a Simulink component such as a referenced model
(represented as a collection of binary libraries).

To build the PIL application, you must provide a template makefile
that includes the target MAKEFILEBUILDER_TGT. You can use the
standard TMF files, e.g., ert_unix.tmf or ert_vc.tmf.

See Also rtw.pil.RtIOStreamApplicationFramework |
rtw.connectivity.ComponentArgs

How To + “Create a Connectivity Configuration for a Target”

* rtwdemo_custom_pil_script

1-381

rtw.connectivity.RHOStreamHostCommunicator

Purpose

Syntax

Description

1-382

Configure host-side communications

rtw.connectivity.RtIOStreamHostCommunicator (componentArgs,
launcher, rtiostreamLib)

Constructor Description

RtIOStreamHostCommunicator | Configure host-side
communications with the target
by loading and initializing a
shared library that implements
the rtiostream functions.

Constructor Arguments

componentArgs A
rtw.connectivity.ComponentArgs
object.

launcher A rtw.connectivity.Launcher
object.

rtiostreamLib An rtiostream shared library

that implements the host side of
host-target communications.

Constructor syntax:

rtw.connectivity.RtIOStreamHostCommunicator (componentArgs,
launcher, rtiostreamLib)

This class configures host-side communications with the target
by loading and initializing a shared library that implements the
rtiostream functions.

Embedded Coder provides an implementation of this shared library to
support TCP/IP communications between host and target, as well as
a version for serial communications. With TCP/IP or serial, you need
only supply the target-side drivers.

rtw.connectivity.RHOStreamHostCommunicator

For other communications protocols (e.g. USB), you must supply a
shared library for the host-side of the communications link as well as
the target-side drivers.

To create your instance of
rtw.connectivity.RtIOStreamHostCommunicator, you have two
options:

® Instantiate rtw.connectivity.RtIOStreamHostCommunicator
directly, providing custom arguments to supply to the rtiostream
shared library.

e Alternatively, create a subclass of
rtw.connectivity.RtIOStreamHostCommunicator. Consider this
when more complex configuration is required. For example, the
subclass rtw.connectivity.HostTCPIPCommunicator includes
additional code to determine the TCP/IP port number on which the
executable application is serving, or you could use a subclass to
specify a serial port number, or specify verbose or silent operation.

Methods

setTimeoutRecvSecs Sets the timeout value for reading data.

hostCommunicator.setTimeoutRecvSecs (timeout) configures data
reading to time out if no new data is received for a period of greater
than timeout seconds.

setInitCommsTimeout | Sets the timeout value for initial setup of the
communications channel.

hostCommunicator.setInitCommsTimeout (timeout) For some
targets you may need to set a timeout value for initial setup of the
communications channel. For example, the target processor may take
a few seconds before it is ready to open its side of the communications
channel. If you set a nonzero timeout value then the communicator
repeatedly tries to open the communications channel until the
timeout value is reached.

1-383

rtw.connectivity.RHOStreamHostCommunicator

See Also rtw.connectivity.ComponentArgs | rtw.connectivity.Launcher |
rtiostream_wrapper

How To + “Create a Connectivity Configuration for a Target”

* rtwdemo_custom_pil_script

1-384

RTW.getEncapsulationinterfaceSpecification

Purpose Get handle to model-specific C++ encapsulation interface control object

Syntax obj = RTW.getEncapsulationInterfaceSpecification(modelName)

Description obj = RTW.getEncapsulationInterfaceSpecification(modelName)
returns a handle to a model-specific C++ encapsulation interface control
object.

Input modelName String specifying the name of a loaded

Arguments ERT-based Simulink model.

OUtPUt obj Handle to the C++ encapsulation interface

Argumenfs control object associated with the specified
model. If the model does not have an
associated C++ encapsulation interface control
object, the function returns [].

Alternatives The Configure C++ Encapsulation Interface button on the
Interface pane of the Simulink Configuration Parameters dialog box
launches the Configure C++ encapsulation interface dialog box, where
you can flexibly control the C++ encapsulation interfaces that are
generated for your model. Once you validate and apply your changes,
you can generate code based on your C++ encapsulation interface
modifications. See “Configure C++ Encapsulation Interfaces Using
Graphical Interfaces” in the Embedded Coder documentation.

How To + “Configure C++ Encapsulation Interfaces Programmatically”
+ “Configure the Step Method for a Model Class”

+ “C++ Encapsulation Interface Control”

1-385

RTW.getFunctionSpecification

Purpose Get handle to model-specific C prototype function control object
Syntax obj = RTW.getFunctionSpecification(modelName)
Description obj = RTW.getFunctionSpecification(modelName) returns a handle

to the model-specific C function prototype control object.

Input modelName String specifying the name of a loaded
Arguments ERT-based Simulink model.

OUtPUt obj Handle to the model-specific C prototype
Arguments function control object associated with the

specified model. If the model does not have an
associated function control object, the function
returns [].

Alternatives The Configure Model Functions button on the Interface pane
of the Simulink Configuration Parameters dialog box launches the
Model Interface dialog box, which provides you flexible control over the
C function prototypes that are generated for your model. Once you
validate and apply your changes, you can generate code based on your C
function prototype modifications. See “Configure Function Prototypes
Using Graphical Interfaces” in the Embedded Coder documentation.

How To * “Function Prototype Control”

1-386

RTW.ModelCPPArgsClass
|

Superclasses ModelCPPClass

Purpose Control C++ encapsulation interfaces for models using I/O arguments
style step method

Description The ModelCPPArgsClass class provides objects that describe C++
encapsulation interfaces for models using an I/O arguments style step
method. Use the attachToModel method to attach a C++ encapsulation
interface to a loaded ERT-based Simulink model.

Construction RTW.ModelCPPArgsClass Create C++ encapsulation
interface object for configuring
model class with I/O arguments
style step method

Methods See the methods of the base class RTW.ModelCPPClass, plus the
following methods.

getArgCategory Get argument category for
Simulink model port from
model-specific C++ encapsulation
interface

getArgName Get argument name for Simulink
model port from model-specific
C++ encapsulation interface

getArgPosition Get argument position for
Simulink model port from
model-specific C++ encapsulation
interface

getArgQualifier Get argument type qualifier
for Simulink model port from
model-specific C++ encapsulation
interface

1-387

RTW.ModelCPPArgsClass

runValidation Validate model-specific C++
encapsulation interface against
Simulink model

setArgCategory Set argument category for
Simulink model port in
model-specific C++ encapsulation
interface

setArgName Set argument name for Simulink
model port in model-specific C++
encapsulation interface

setArgPosition Set argument position for
Simulink model port in
model-specific C++ encapsulation
interface

setArgQualifier Set argument type qualifier
for Simulink model port in
model-specific C++ encapsulation

interface
Copy Handle. To learn how this affects your use of the class, see Copying
Semantics Objects in the MATLAB Programming Fundamentals documentation.

Alternatives The Configure C++ Encapsulation Interface button on the
Interface pane of the Simulink Configuration Parameters dialog box
launches the Configure C++ encapsulation interface dialog box, where
you can flexibly control the C++ encapsulation interfaces that are
generated for your model. Once you validate and apply your changes,
you can generate code based on your C++ encapsulation interface
modifications. See “Configure C++ Encapsulation Interfaces Using
Graphical Interfaces” in the Embedded Coder documentation.

How To + “Configure C++ Encapsulation Interfaces Programmatically”
+ “Configure the Step Method for a Model Class”

1-388

RTW.ModelCPPArgsClass

+ “C++ Encapsulation Interface Control”

1-389

RTW.ModelCPPArgsClass

Purpose

Syntax

Description

Output
Arguments

Alternatives

How To

1-390

Create C++ encapsulation interface object for configuring model class
with I/O arguments style step method

obj RTW.ModelCPPArgsClass

obj RTW.ModelCPPArgsClass returns a handle, obj, to a newly
created object of class RTW.Mode1CPPArgsClass.

obj Handle to a newly created C++ encapsulation
interface object for configuring a model class
with an I/O arguments style step method. The
object has not yet been configured or attached
to an ERT-based Simulink model.

The Configure C++ Encapsulation Interface button on the
Interface pane of the Simulink Configuration Parameters dialog box
launches the Configure C++ encapsulation interface dialog box, where
you can flexibly control the C++ encapsulation interfaces that are
generated for your model. See “Configure C++ Encapsulation Interfaces
Using Graphical Interfaces” in the Embedded Coder documentation.

+ “Configure C++ Encapsulation Interfaces Programmatically”
+ “Configure the Step Method for a Model Class”

+ “C++ Encapsulation Interface Control”

RTW.ModelCPPClass

Purpose

Description

Construction

Methods

Control C++ encapsulation interfaces for models

The ModelCPPClass class is the base class for the classes
RTW.ModelCPPArgsClass and RTW.ModelCPPVoidClass, which provide
objects that describe C++ encapsulation interfaces for models using
either an I/O arguments style step method or a void-void style step
method. Use the attachToModel method to attach a C++ encapsulation
interface to a loaded ERT-based Simulink model.

To access the methods of this class, use the constructor for either
RTW.ModelCPPArgsClass or RTW.ModelCPPVoidClass.

attachToModel

getClassName

getDefaultConf

getNumArgs

getStepMethodName

Attach model-specific C++
encapsulation interface to loaded
ERT-based Simulink model

Get class name from
model-specific C++ encapsulation
interface

Get default configuration
information for model-specific
C++ encapsulation interface from
Simulink model

Get number of step method
arguments from model-specific
C++ encapsulation interface

Get step method name from
model-specific C++ encapsulation
interface

1-391

RTW.ModelCPPClass

1-392

Alternatives

How To

setClassName Set class name in model-specific
C++ encapsulation interface

setStepMethodName Set step method name in
model-specific C++ encapsulation
interface

The Configure C++ Encapsulation Interface button on the
Interface pane of the Simulink Configuration Parameters dialog box
launches the Configure C++ encapsulation interface dialog box, where
you can flexibly control the C++ encapsulation interfaces that are
generated for your model. Once you validate and apply your changes,
you can generate code based on your C++ encapsulation interface
modifications. See “Configure C++ Encapsulation Interfaces Using
Graphical Interfaces” in the Embedded Coder documentation.

+ “Configure C++ Encapsulation Interfaces Programmatically”
+ “Configure the Step Method for a Model Class”

+ “C++ Encapsulation Interface Control”

RTW.ModelCPPVoidClass

Superclasses

Purpose

Description

Construction

Methods

Copy
Semantics

Alternatives

ModelCPPClass

Control C++ encapsulation interfaces for models using void-void style
step method

The ModelCPPVoidClass class provides objects that describe C++
encapsulation interfaces for models using a void-void style step
method. Use the attachToModel method to attach a C++ encapsulation
interface to a loaded ERT-based Simulink model.

RTW.ModelCPPVoidClass Create C++ encapsulation
interface object for configuring
model class with void-void style
step method

See the methods of the base class RTW.ModelCPPClass, plus the
following method.

runValidation Validate model-specific C++
encapsulation interface against
Simulink model

Handle. To learn how this affects your use of the class, see Copying
Objects in the MATLAB Programming Fundamentals documentation.

The Configure C++ Encapsulation Interface button on the
Interface pane of the Simulink Configuration Parameters dialog box
launches the Configure C++ encapsulation interface dialog box, where
you can flexibly control the C++ encapsulation interfaces that are
generated for your model. Once you validate and apply your changes,
you can generate code based on your C++ encapsulation interface
modifications. See “Configure C++ Encapsulation Interfaces Using
Graphical Interfaces” in the Embedded Coder documentation.

1-393

RTW.ModelCPPVoidClass

How To + “Configure C++ Encapsulation Interfaces Programmatically”
+ “Configure the Step Method for a Model Class”

* “C++ Encapsulation Interface Control”

1-394

RTW.ModelCPPVoidClass

Purpose

Syntax

Description

Output
Arguments

Alternatives

How To

Create C++ encapsulation interface object for configuring model class
with void-void style step method

obj RTW.ModelCPPVoidClass

obj RTW.ModelCPPVoidClass returns a handle, obj, to a newly
created object of class RTW.ModelCPPVoidClass.

obj Handle to a newly created C++ encapsulation
interface object for configuring a model class
with a void-void style step method. The
object has not yet been configured or attached
to an ERT-based Simulink model.

The Configure C++ Encapsulation Interface button on the
Interface pane of the Simulink Configuration Parameters dialog box
launches the Configure C++ encapsulation interface dialog box, where
you can flexibly control the C++ encapsulation interfaces that are
generated for your model. See “Configure C++ Encapsulation Interfaces
Using Graphical Interfaces” in the Embedded Coder documentation.

+ “Configure C++ Encapsulation Interfaces Programmatically”
+ “Configure the Step Method for a Model Class”

+ “C++ Encapsulation Interface Control”

1-395

RTW.ModelSpecificCPrototype

Purpose Describe signatures of functions for model

Description A ModelSpecificCPrototype object describes the signatures of the
step and initialization functions for a model. You must use this in
conjunction with the attachToModel method.

Construction RTW.ModelSpecificCPrototype

Methods addArgConf

attachToModel

getArgCategory

getArgName

getArgPosition

getArgQualifier

1-396

Create model-specific C prototype
object

Add argument configuration
information for Simulink model
port to model-specific C function
prototype

Attach model-specific C function
prototype to loaded ERT-based
Simulink model

Get argument category for
Simulink model port from
model-specific C function
prototype

Get argument name for Simulink
model port from model-specific C
function prototype

Get argument position for
Simulink model port from
model-specific C function
prototype

Get argument type qualifier
for Simulink model port from
model-specific C function
prototype

RTW.ModelSpecificCPrototype

getDefaultConf Get default configuration
information for model-specific C
function prototype from Simulink

model

getFunctionName Get function name from
model-specific C function
prototype

getNumArgs Get number of function

arguments from model-specific C
function prototype

getPreview Get model-specific C function
prototype code preview

runValidation Validate model-specific C function
prototype against Simulink model

setArgCategory Set argument category for
Simulink model port in
model-specific C function
prototype

setArgName Set argument name for Simulink
model port in model-specific C
function prototype

setArgPosition Set argument position for
Simulink model port in
model-specific C function
prototype

setArgQualifier Set argument type qualifier
for Simulink model port in
model-specific C function
prototype

setFunctionName Set function name in
model-specific C function
prototype

1-397

RTW.ModelSpecificCPrototype

Copy Handle. To learn how this affects your use of the class, see Copying
Semantics Objects in the MATLAB Programming Fundamentals documentation.
Examples The code below creates a function control object, a, and uses it to add

argument configuration information to the model.

% Open the rtwdemo_counter model and specify the System Target File
rtwdemo_counter
set_param(gcs, 'SystemTargetFile', 'ert.tlc')

%% Create a function control object
a=RTW.ModelSpecificCPrototype

%% Add argument configuration information for Input and Output ports
addArgConf(a, 'Input', 'Pointer', 'inputArg', 'const *')

addArgConf(a, 'Output', 'Pointer', 'outputArg', 'none')

%% Attach the function control object to the model
attachToModel(a,gcs)

Alternatives You can create a function control object using the Model Interface

dialog box.
See Also RTW.ModelSpecificCPrototype.addArgConf
How To * “Function Prototype Control”

1-398

RTW.ModelSpecificCPrototype

Purpose
Syntax

Description

Output
Arguments

Examples

Alternatives

See Also

Create model-specific C prototype object

obj RTW.ModelSpecificCPrototype
obj = RTW.ModelSpecificCPrototype creates a handle, obj, to an
object of class RTW.ModelSpecificCPrototype.

obj Handle to model specific C prototype object.

Create a function control object, a, and use it to add argument
configuration information to the model:

% Open the rtwdemo_counter model and specify the System Target File
rtwdemo_counter
set_param(gcs, 'SystemTargetFile', 'ert.tlc')

%% Create a function control object
a=RTW.ModelSpecificCPrototype

%% Add argument configuration information for Input and Output ports
addArgConf(a, 'Input', 'Pointer', 'inputArg', 'const *')
addArgConf(a, 'Output', 'Pointer', 'outputArg', 'none')

%% Attach the function control object to the model
attachToModel(a,gcs)

The Configure Model Functions button on the Interface pane of the
Simulink Configuration Parameters dialog box launches the Model
Interface dialog box, which provides you flexible control over the C
function prototypes that are generated for your model. See “Configure
Function Prototypes Using Graphical Interfaces” in the Embedded
Coder documentation.

RTW.ModelSpecificCPrototype.addArgConf

1-399

RTW.ModelSpecificCPrototype

How To * “Function Prototype Control”

1-400

ritw.pil.RHIOStreamApplicationFramework

Purpose

Syntax

Description

Configure target-side communications

applicationFramework = rtw.pil.RtIOStreamApplicationFramework (
componentArgs)

Constructor Description

RtIOStreamApplicationFramework | Specify target-specific
libraries and source files
that are required to build the

executable.
Constructor Argument
componentArgs A
rtw.connectivity.ComponentArgs
object.

Constructor syntax:

applicationFramework =
rtw.pil.RtIOStreamApplicationFramework(componentArgs)

You must create a subclass of
rtw.pil.RtIOStreamApplicationFramework. The purpose of this
class is to specify target-specific libraries and source files that are
required to build the executable for the PIL application. These libraries
and source files must include the device drivers that implement

the target-side of the rtiostream communications channel. See

also rtiostream wrapper.

The class provides an RTW.BuildInfo object containing PIL-specific files
(including a PIL main) that will be combined with the PIL component
libraries, by the rtw.connectivity.MakefileBuilder, to create the
PIL application. You must make a subclass and add source files,
libraries, include paths and preprocessor macro definitions that are

1-401

ritw.pil.RHIOStreamApplicationFramework

1-402

required to implement the rtiostream target communications interface
to the RTW.BuildInfo object (access via getBuildInfo method).

The software uses only the following data in the RTW.BuildInfo object:

® Source file names returned by getSourceFiles

e Source file paths returned by getSourcePaths

® Include file names returned by getIncludeFiles

® Include file paths returned by getIncludePaths

e Libraries

® Preprocessor macro definitions returned by getDefines

e Linker options returned by getLinkFlags

The software ignores other data, such as template makefile (TMF)

tokens and compiler options.

For methods that belong to

rtw.pil.RtIOStreamApplicationFramework, see the following table.

Method

Syntax and Description

getComponentArgs

componentArgs =
obj.getComponentArgs

Returns the
rtw.connectivity.ComponentArgs
object associated with this object.

getBuildInfo

buildInfo = obj.getBuildInfo

Returns the RTW.BuildInfo
object associated with this object.

ritw.pil.RHIOStreamApplicationFramework

Method Syntax and Description
addPILMain obj.addPILMain(type)

To build the PIL application you
must specify a main.c file. Use
the addPILMain method to add
one of the two provided files to
the application framework.

Use the type argument to specify
'target' or 'host', depending
on which one of the following
example PIL main.c files you
want to use.

1) To specify a main.c adapted
for on-target PIL and suitable for
most PIL implementations, enter:

obj.addPILMain(target')

2) To specify a main.c adapted for
host-based PIL, for example, as
used in the mypil host example,
enter:

obj.addPILMain(host')

See Also rtw.connectivity.ComponentArgs | rtiostream _wrapper

How To + “Create a Connectivity Configuration for a Target”
* “Build Information Object”

* rtwdemo_custom_pil_script

1-403

cgv.CGV.run

Purpose Execute CGV object
Syntax result = cgvObj.run()
Description result = cgvObj.run() executes the model once for each input data

that you added to the object. result is a boolean value that indicates
whether the run completed without execution error. cgvObj is a handle
to a cgv.CGV object.

After each execution of the model, the object captures and writes the
following metadata to a file in the output folder:

ErrorDetails — If errors occur, the error information.
status — The execution status.

ver — Version information for MathWorks products.
hostname — Name of computer.

dateTime — Date and time of execution.

warnings — If warnings occur, the warning messages.
username — Name of user.

runtime — The amount of time that lapsed for the execution.

Tips ® Only call run once for each cgv.CGV object.

® The cgv.CGV methods that set up the object are ignored after a call
to run. See the cgv.CGV for details.

® You can call run once without first calling cgv.CGV.addInputData.
However, it is recommended that you first save the required data for
execution to a MAT-file, including the model inputs and parameters.
Then use cgv.CGV.addInputData to pass the MAT-file to the CGV
object before calling run.

® The cgv.CGV object supports callback functions that you can define
and add to the cgv.CGV object. These callback functions are called
during cgv.CGV.run() in the following order:

1-404

cgv.CGV.run

Callback function

Add to object using...

cgv.CGV.run() executes
callback function...

HeaderReportFcn cgv.CGV.addHeaderReportFcn Before executing input
data in cgv.CGV
PreExecReportFcn cgv.CGV.addPreExecReportFcn Before executing each
input data file in cgv.CGV
PreExecFcn cgv.CGV.addPreExecFcn Before executing each
input data file in cgv.CGV
PostExecReportFen | cgv.CGV.addPostExecReportFcn After executing each input
data file in cgv.CGV
PostExecFcn cgv.CGV.addPostExecFcn After executing each input
data file in cgv.CGV
TrailerReportFcn cgv.CGV.addTrailerReportFcn After the input data is
executed in cgv.CGV
How To + “Verify Numerical Equivalence with CGV”

1-405

RTW.Autosarinterface.runValidation

Purpose
Syntax

Description

1-406

Validate RTW.AutosarInterface object against model

[Status, Message]

[Status, Message]

= autosarInterfaceObj.runValidation

= autosarInterfaceObj.runValidation runs

a validation check for autosarInterfaceObj, a model-specific
RTW.AutosarInterface object. This check is made against the model
to which autosarInterfaceObj is attached.

Before calling runvalidation, you must call attachToModel.

The method runvalidation performs the checks described in the
following tables. The first table describes validation checks for the
AUTOSAR use cases, and the second table describes specific validation
checks when exporting multiple runnable entities.

Validation Checks

Group

Check

Valid names
and paths

Runnable names and event names must be
unique, and must be valid AUTOSAR short name
identifiers (see definition 1 following).

AUTOSAR port, interface, and data element names
must be valid AUTOSAR short name identifiers
(see definition 1 following).

AUTOSAR XML options for the component name,
internal behavior name, and implementation name
must be valid AUTOSAR path and short name
identifiers (see definition 2 following).

AUTOSAR XML options for the interface package
name and data type package name must be
valid AUTOSAR path identifiers (see definition 3
following).

RTW.Autosarinterface.runValidation

Validation Checks (Continued)

Group

Check

Valid names
and paths for
sender/receiver
ports

For sender/receiver ports (Implicit or explicit data
access mode):

® Simulink ports may have duplicated AUTOSAR
port names, however the AUTOSAR Interface
name must also be the same.

¢ A Simulink inport and an outport cannot have
the same AUTOSAR port name.

® For a duplicated AUTOSAR port name and
AUTOSAR Interface name, the Data element
names must be unique.

® Sender/receiver ports AUTOSAR port name
cannot be the same as the ServiceName of a
basic software port.

® Sender/receiver ports AUTOSAR port name and
Interface cannot be the same as the port name
or interface of a calibration object.

® Sender/receiver ports Interface plus XML
Option Interface package (e.g., of the form
AUTOSAR/Service/servicename) cannot be
the same as the ServicelInterface of a basic
software port.

1-407

RTW.Autosarinterface.runValidation

1-408

Validation Checks (Continued)

Group

Check

Valid names
and paths for
basic software
ports

For basic software ports:
e ServiceName and ServiceOperation must be
valid AUTOSAR short name identifiers (see
definition 1 following); and ServiceInterface
must be a valid AUTOSAR path identifier (see
definition 3 following).

¢ Simulink ports may have duplicated
ServiceName, however the ServiceInterface
must also be the same.

® For a duplicated ServiceName and
Servicelnterface, the ServiceOperation
must be unique.

¢ For duplicated ServiceOperation and
ServiceInterface, the ServiceName must be
unique.

® Basic software port ServiceName name and
ServiceInterface cannot be the same as the
port name or interface of a calibration object.

Unsupported
features

Model must not contain custom code blocks.

Model must not contain continuous time.

Model must not contain noninlined S-functions.

Model must not contain nonfinite numbers.

Model must not contain complex numbers.

Model must not contain multitasking

Model must not contain asynchronous rates

Storage class of root I/O ports must be auto.

I/O must be 1D or scalar.

RTW.Autosarinterface.runValidation

Validation Checks (Continued)

Group

Check

The sample time of a runnable must be a positive
real scalar. Sample times with offset, e.g. [2 1],
cause an error message.

Error status
validation

An error status inport cannot point to itself (i.e.,
cannot specify itself as the inport for which it
permits access to error status).

Error status inports can only be defined to
correspond to other inports that have Data Access
Mode set to ImplicitReceive or ExplicitReceive

Each receiver port can have only one error status
port designate it as its error status.

Multiple Runnable Validation Checks

Group

Check

Wrapper
subsystem
validation
when exporting
multiple
runnables.

The "wrapper
subsystem" is
the top diagram
runnables are
exported from.

“Top-level” function-call subsystems (that are in the
top diagram of the wrapper subsystem) must not be
reusable functions. The subsystem block parameter
Code Generation > Function packaging must
be set to Auto, Nonreusable function, or Inline.

Top-level function-call subsystems cannot emit
function calls.

The only subsystems allowed at the top diagram are
function-call subsystems, and empty subsystems
(e.g., subsystems that do not contain executable
blocks, which may be used to display text in the
model, or to double-click for help callback.)

1-409

RTW.Autosarinterface.runValidation

1-410

Multiple Runnable Validation Checks (Continued)

Group

Check

Top-level function-call subsystems cannot have
wide trigger ports.

A signal connected to an outport of the wrapper
subsystem cannot have multiple destinations. The
signal must have one destination that is uniquely a
sender, service, or interrunnable variable.

A signal connected to an outport of the wrapper
subsystem cannot have an inport of that subsystem
as its source.

The data store memory blocks referenced from
subsystems must be contained in the subsystems,
to prevent data integrity issues.

The lines must be contiguous. No line in the
wrapper subsystem can be an output of a virtual
Bus Creator or Mux block

Constant blocks are not allowed in the wrapper
subsystem.

Mux, or Demux blocks are not allowed in the
wrapper subsystem, because the signals being
passed via the runnable I/O must be contiguous
and have an address at the base of the array.

RTW.Autosarinterface.runValidation

Multiple Runnable Validation Checks (Continued)

Group

Check

Wrapper level
Merge block
validation

Merge blocks have some restrictions at wrapper

level:

® A merge block is only allowed in the wrapper
subsystem when the merge block output is
connected to a diagram outport (not another
Merge block).

¢ The input to a Merge block in the wrapper
subsystem must be connected to a function-call
subsystem outport.

¢ The input to a Merge block in the wrapper
subsystem does not need a label.

® A merge block in the wrapper subsystem cannot
merge signals of unequal widths.

¢ You cannot connect a Merge block in the wrapper
subsystem to more than one outport of a given
function-call subsystem.

Other multiple
runnable
validation
checks

The runnable names, event names, and
interrunnable variable names must be unique.
Lines representing interrunnable variables must
be labelled with valid AUTOSAR short name
identifiers. Goto-from pairs are not allowed because
then the signal label is not unique.

Interrunnable variables cannot be structs.
The interrunnable variables must be scalar,
noncomplex types. This is required by the
AUTOSAR specification.

Signal lines that connect two top-level function-call
subsystems represent interrunnable variables.

1-411

RTW.Autosarinterface.runValidation

Output
Arguments

Definitions

1-412

Multiple Runnable Validation Checks (Continued)

Group

Check

Function-call subsystem output cannot be
connected to its own input. An output of a
function-call subsystem inside the wrapper
subsystem cannot be connected to an input of same
subsystem.

The blocks in the top diagram of the wrapper
subsystem must not have unconnected ports.

A top-level input that is Explicit Receive, Error
Status, or Basic Software Service cannot be
connected to more than one inport of a given
function-call subsystem.

The sample time of the inport associated with an
error status must be the same sample time as its
corresponding data port.

Each function call subsystem being exported as
a runnable entity must specify an AUTOSAR
interface.

Status

Message

Status flag indicating whether the
configuration is valid. If valid, Status is true;
otherwise, it is false.

If Status is false, Message explains why the
configuration is invalid.

The following are requirements for identifiers:

1 AUTOSAR short name identifiers must be composed of at most
32 characters, must begin with a letter, and can contain only

RTW.Autosarinterface.runValidation

letters, numbers, and underscore characters. For example,
this_is_valid123.

2 AUTOSAR path and short name identifiers must contain at least
two path delimiter “/” characters, e.g., /path/shortname. Strings
in between the path delimiters must be composed of at most 32
characters, must begin with a letter, and can contain only letters,
numbers, and underscore characters.

3 AUTOSAR path identifiers must contain at least one path delimiter
“/” characters, e.g., /path. Strings in between the path delimiters
must be composed of at most 32 characters, must begin with a letter
and can contain only letters, numbers, and underscore characters.

How To + “Generating Code for AUTOSAR Software Components”

1-413

RTW.ModelCPPArgsClass.runValidation

Purpose Validate model-specific C++ encapsulation interface against Simulink
model

Syntax [status, msg] = runValidation(obj)

Descripl‘ion [status, msg] = runValidation(obj) runs a validation check of

the specified model-specific C++ encapsulation interface against the
ERT-based Simulink model to which it is attached.

Before calling this function, you must call either attachToModel,

to attach a function prototype to a loaded model, or
RTW.getEncapsulationInterfaceSpecification, to get the
handle to a function prototype previously attached to a loaded model.

Input obj Handle to a model-specific C++ encapsulation
Arguments interface control object, such as a
handle previously returned by obj
= RTW.ModelCPPArgsClass or obj =
RTW.getEncapsulationInterfaceSpecification
(modelName).

OUtPUt status Boolean value; true for a valid configuration,
Arguments false otherwise.

msg If status is false, msg contains a string of
information describing why the configuration
1s invalid.

Alternatives To validate a C++ encapsulation interface in the Simulink Configuration
Parameters graphical user interface, go to the Interface pane and click
the Configure C++ Encapsulation Interface button. This button
launches the Configure C++ encapsulation interface dialog box, where
you can display and configure the step method for your model class.
Click the Validate button to validate your current model step function

1-414

RTW.ModelCPPArgsClass.runValidation
|

configuration. The Validation pane displays status and an explanation
of failures. For more information, see “Configure Step Method for Your
Model Class” in the Embedded Coder documentation.

How To + “Configure C++ Encapsulation Interfaces Programmatically”
+ “Configure the Step Method for a Model Class”

+ “C++ Encapsulation Interface Control”

1-415

RTW.ModelCPPVoidClass.runValidation

Purpose Validate model-specific C++ encapsulation interface against Simulink
model

Syntax [status, msg] = runValidation(obj)

Descripl‘ion [status, msg] = runValidation(obj) runs a validation check of

the specified model-specific C++ encapsulation interface against the
ERT-based Simulink model to which it is attached.

Before calling this function, you must call either attachToModel,

to attach a function prototype to a loaded model, or
RTW.getEncapsulationInterfaceSpecification, to get the
handle to a function prototype previously attached to a loaded model.

Input obj Handle to a model-specific C++ encapsulation
Arguments interface control object, such as a
handle previously returned by obj
= RTW.ModelCPPVoidClass or obj =
RTW.getEncapsulationInterfaceSpecification
(modelName).

OUtPUt status Boolean value; true for a valid configuration,
Arguments false otherwise.

msg If status is false, msg contains a string of
information describing why the configuration
1s invalid.

Alternatives To validate a C++ encapsulation interface in the Simulink Configuration
Parameters graphical user interface, go to the Interface pane and click
the Configure C++ Encapsulation Interface button. This button
launches the Configure C++ encapsulation interface dialog box, where
you can display and configure the step method for your model class.
Click the Validate button to validate your current model step function

1-416

RTW.ModelCPPVoidClass.runValidation
|

configuration. The Validation pane displays status and an explanation
of failures. For more information, see “Configure Step Method for Your
Model Class” in the Embedded Coder documentation.

How To + “Configure C++ Encapsulation Interfaces Programmatically”
+ “Configure the Step Method for a Model Class”

+ “C++ Encapsulation Interface Control”

1-417

RTW.ModelSpecificCPrototype.runValidation

Purpose
Syntax

Description

Input
Arguments

Output
Arguments

Alternatives

How To

1-418

Validate model-specific C function prototype against Simulink model

[status, msg]

[status, msg]

runValidation(obj)

runValidation(obj) runs a validation check of the

specified model-specific C function prototype against the ERT-based
Simulink model to which it is attached.

Before calling this function, you must call either attachToModel,
to attach a function prototype to a loaded model, or
RTW.getFunctionSpecification, to get the handle to a
function prototype previously attached to a loaded model.

obj

status

msg

Handle to a model-specific C prototype
function control object previously returned
by obj = RTW.ModelSpecificCPrototype
or obj = RTW.getFunctionSpecification
(modelName).

True for a valid configuration; false otherwise.

If status is false, msg contains a string
explaining why the configuration is invalid.

Click the Validate button in the Model Interface dialog box to run a
validation check of the specified model-specific C function prototype
against the ERT-based Simulink model to which it is attached.
See “Model Specific C Prototypes View” in the Embedded Coder

documentation.

+ “Function Prototype Control”

RTW.ModelCPPArgsClass.setArgCategory

Purpose

Syntax

Description

Input
Arguments

Alternatives

Set argument category for Simulink model port in model-specific C++
encapsulation interface

setArgCategory(obj, portName, category)

setArgCategory(obj, portName, category) sets the category —
'Value', 'Pointer', or 'Reference' — of the argument corresponding
to a specified Simulink model inport or outport in a specified
model-specific C++ encapsulation interface.

obj Handle to a model-specific C++ encapsulation
interface control object, such as a
handle previously returned by obj
= RTW.ModelCPPArgsClass or obj =
RTW.getEncapsulationInterfaceSpecification

(modelName).
portName String specifying the unqualified name of an
inport or outport in your Simulink model.
category String specifying the argument category —
'Value', 'Pointer', or 'Reference' — to be

set for the specified Simulink model port.

Note If you change the argument category
for an outport from 'Pointer' to 'Value', the
change causes the argument to move to the
first argument position when attachToModel
or runValidation is called.

To set argument categories in the Simulink Configuration Parameters
graphical user interface, go to the Interface pane and click the
Configure C++ Encapsulation Interface button. This button
launches the Configure C++ encapsulation interface dialog box, where

1-419

RTW.ModelCPPArgsClass.setArgCategory

you can display and configure the step method for your model class.

In the I/0 arguments step method view of this dialog box, click the
Get Default Configuration button to display step method argument
categories that you can examine and modify. For more information, see
“Configure Step Method for Your Model Class” in the Embedded Coder
documentation.

How To + “Configure C++ Encapsulation Interfaces Programmatically”
+ “Configure the Step Method for a Model Class”

+ “C++ Encapsulation Interface Control”

1-420

RTW.ModelSpecificCPrototype.setArgCategory

Set argument category for Simulink model port in model-specific C

function prototype

setArgCategory(obj, portName, category)

setArgCategory(obj, portName, category) sets the category,
'Value' or 'Pointer’', of the argument corresponding to a specified
Simulink model inport or outport in a specified model-specific C

function prototype.

Purpose
Syntax
Description
In PU" obj
Arguments
portName
category
Alternatives

Handle to a model-specific C

prototype function control object

previously returned by obj =
RTW.ModelSpecificCPrototype or obj =
RTW.getFunctionSpecification(modelName).

String specifying the unqualified name of an
inport or outport in your Simulink model.

String specifying the argument category,
'Value' or 'Pointer', that you set for the
specified Simulink model port.

Note If you change the argument

category for an outport from 'Pointer' to
'Value', it causes the argument to move to

the first argument position when you call
RTW.ModelSpecificCPrototype.attachToModel
or
RTW.ModelSpecificCPrototype.runvValidation

Use the Step function arguments table in the Model Interface dialog

box to specify argument categories. See “Model Specific C Prototypes
View” in the Embedded Coder documentation.

1-421

RTW.ModelSpecificCPrototype.setArgCategory

How To * “Function Prototype Control”

1-422

RTW.ModelCPPArgsClass.setArgName

Purpose

Syntax

Description

Input
Arguments

Alternatives

How To

Set argument name for Simulink model port in model-specific C++
encapsulation interface

setArgName(obj, portName, argName)

setArgName (obj, portName, argName) sets the argument name
that corresponds to a specified Simulink model inport or outport in a
specified model-specific C++ encapsulation interface.

obj Handle to a model-specific C++ encapsulation
interface control object, such as a
handle previously returned by obj
= RTW.ModelCPPArgsClass or obj =
RTW.getEncapsulationInterfaceSpecification
(modelName).

portName String specifying the name of an inport or
outport in your Simulink model.

argName String specifying the argument name to set
for the specified Simulink model port. The
argument must be a valid C identifier.

To set argument names in the Simulink Configuration Parameters
graphical user interface, go to the Interface pane and click the
Configure C++ Encapsulation Interface button. This button
launches the Configure C++ encapsulation interface dialog box, where
you can display and configure the step method for your model class.
In the I/0 arguments step method view of this dialog box, click the
Get Default Configuration button to display step method argument
names that you can examine and modify. For more information, see
“Configure Step Method for Your Model Class” in the Embedded Coder
documentation.

+ “Configure C++ Encapsulation Interfaces Programmatically”

1-423

RTW.ModelCPPArgsClass.setArgName

+ “Configure the Step Method for a Model Class”

+ “C++ Encapsulation Interface Control”

1-424

RTW.ModelSpecificCPrototype.setArgName

Purpose

Syntax

Description

Input
Arguments

Alternatives

How To

Set argument name for Simulink model port in model-specific C
function prototype

setArgName(obj, portName, argName)

setArgName (obj, portName, argName) sets the argument name
corresponding to a specified Simulink model inport or outport in a
specified model-specific C function prototype.

obj Handle to a model-specific C prototype
function control object previously returned
by obj = RTW.ModelSpecificCPrototype
or obj = RTW.getFunctionSpecification
(modelName).

portName String specifying the name of an inport or
outport in your Simulink model.

argName String specifying the argument name to set
for the specified Simulink model port. The
argument must be a valid C identifier.

Use the Step function arguments table in the Model Interface dialog
box to specify argument names. See “Model Specific C Prototypes View”
in the Embedded Coder documentation.

* “Function Prototype Control”

1-425

RTW.ModelCPPArgsClass.setArgPosition

Purpose

Syntax

Description

Input
Arguments

Alternatives

1-426

Set argument position for Simulink model port in model-specific C++

encapsulation interface

setArgPosition(obj, portName, position)

setArgPosition(obj, portName, position) sets the position — 1
for first, 2 for second, etc. — of the argument that corresponds to a
specified Simulink model inport or outport in a specified model-specific
C++ encapsulation interface. The specified argument is then moved
to the specified position, and other arguments shifted by one position

accordingly.

obj

portName

position

Handle to a model-specific C++ encapsulation
interface control object, such as a

handle previously returned by obj

= RTW.ModelCPPArgsClass or obj =
RTW.getEncapsulationInterfaceSpecification
(modelName).

String specifying the name of an inport or
outport in your Simulink model.

Integer specifying the argument position

— 1 for first, 2 for second, etc. — to be set
for the specified Simulink model port. The
value must be greater than or equal to 1 and
less than or equal to the number of function
arguments.

To set argument positions in the Simulink Configuration Parameters
graphical user interface, go to the Interface pane and click the

RTW.ModelCPPArgsClass.setArgPosition
|

Configure C++ Encapsulation Interface button. This button
launches the Configure C++ encapsulation interface dialog box, where
you can display and configure the step method for your model class.
In the I/0 arguments step method view of this dialog box, click the
Get Default Configuration button to display step method argument
positions that you can examine and modify. For more information, see
“Configure Step Method for Your Model Class” in the Embedded Coder
documentation.

How To * “Configure C++ Encapsulation Interfaces Programmatically”
+ “Configure the Step Method for a Model Class”

+ “C++ Encapsulation Interface Control”

1-427

RTW.ModelSpecificCPrototype.setArgPosition

Purpose

Syntax

Description

Input
Arguments

Alternatives

How To

1-428

Set argument position for Simulink model port in model-specific C
function prototype

setArgPosition(obj, portName, position)

setArgPosition(obj, portName, position) sets the position —

1 for first, 2 for second, etc. — of the argument corresponding to a
specified Simulink model inport or outport in a specified model-specific
C function prototype. The specified argument moves to the specified
position, and other arguments shift by one position accordingly.

obj Handle to a model-specific C prototype
function control object previously returned
by obj = RTW.ModelSpecificCPrototype
or obj = RTW.getFunctionSpecification

(modelName).

portName String specifying the name of an inport or
outport in your Simulink model.

position Integer specifying the argument position
— 1 for first, 2 for second, etc. — to be set

for the specified Simulink model port. The
value must be greater than or equal to 1 and
less than or equal to the number of function
arguments.

Use the Step function arguments table in the Model Interface dialog
box to specify argument position. See “Model Specific C Prototypes
View” in the Embedded Coder documentation.

* “Function Prototype Control”

RTW.ModelCPPArgsClass.setArgQualifier

Purpose

Syntax

Description

Input
Arguments

Alternatives

Set argument type qualifier for Simulink model port in model-specific
C++ encapsulation interface

setArgQualifier(obj, portName, qualifier)

setArgQualifier(obj, portName, qualifier) sets the type qualifier
— 'none', 'const', 'const *', '‘const * const', or 'const &' — of

the argument that corresponds to a specified Simulink model inport or

outport in a specified model-specific C++ encapsulation interface.

obj

portName

qualifier

Handle to a model-specific C++ encapsulation
interface control object, such as a

handle previously returned by obj

= RTW.ModelCPPArgsClass or obj =
RTW.getEncapsulationInterfaceSpecification
(modelName).

String specifying the name of an inport or
outport in your Simulink model.

String specifying the argument type qualifier

— 'none’, 'const’', ‘const *', 'const *

const', or 'const &' — to be set for the
specified Simulink model port.

To set argument qualifiers in the Simulink Configuration Parameters
graphical user interface, go to the Interface pane and click the
Configure C++ Encapsulation Interface button. This button
launches the Configure C++ encapsulation interface dialog box, where
you can display and configure the step method for your model class.
In the I/0 arguments step method view of this dialog box, click the
Get Default Configuration button to display step method argument
qualifiers that you can examine and modify. For more information, see
“Configure Step Method for Your Model Class” in the Embedded Coder

documentation.

1-429

RTW.ModelCPPArgsClass.setArgQualifier

How To + “Configure C++ Encapsulation Interfaces Programmatically”
+ “Configure the Step Method for a Model Class”

* “C++ Encapsulation Interface Control”

1-430

RTW.ModelSpecificCPrototype.setArgQualifier

Purpose

Syntax

Description

Input
Arguments

Alternatives

How To

Set argument type qualifier for Simulink model port in model-specific

C function prototype

setArgQualifier(obj, portName, qualifier)

setArgQualifier(obj, portName, qualifier) sets the type qualifier
— 'none’', 'const’', 'const *',or 'const * const'— of the argument
corresponding to a specified Simulink model inport or outport in a
specified model-specific C function prototype.

obj

portName

qualifier

Handle to a model-specific C prototype
function control object previously returned
by obj = RTW.ModelSpecificCPrototype
or obj = RTW.getFunctionSpecification
(modelName).

String specifying the name of an inport or
outport in your Simulink model.

String specifying the argument type qualifier
— 'none', 'const’', '‘const *', or 'const *
const'— to be set for the specified Simulink
model port.

Use the Step function arguments table in the Model Interface dialog
box to specify argument qualifiers. See “Model Specific C Prototypes
View” in the Embedded Coder documentation.

* “Function Prototype Control”

1-431

RTW.Autosarinterface.setArxmliFilePackaging

Purpose Set AUTOSAR XML packaging format
Syntax autosarInterfaceObj.setArxmlFilePackaging(arxmlPackaging))
Description autosarInterfaceObj.setArxmlFilePackaging(arxmlPackaging))

sets the AUTOSAR XML packaging format in autosarInterfaceObj, a
model-specific RTW.AutosarInterface object.

Input arxmlPackaging
Arguments Packaging format of AUTOSAR XML. Specify one of the following:

e 'Modular' — XML descriptions in separate files

e 'Single file' — XML descriptions in single file
See Also RTW.AutosarInterface.getArxmlFilePackaging

How To + “Configure the AUTOSAR Interface”
+ “Export AUTOSAR Software Component”

1-432

RTW.ModelCPPClass.setClassName

Purpose
Syntax

Description

Input
Arguments

Alternatives

How To

Set class name in model-specific C++ encapsulation interface
setClassName(obj, clsName)

setClassName (obj, clsName) sets the class name in the specified
model-specific C++ encapsulation interface.

obj Handle to a model-specific C++ encapsulation
interface control object, such as a
handle previously returned by obj
= RTW.ModelCPPArgsClass, obj =
RTW.ModelCPPVoidClass, or obj =
RTW.getEncapsulationInterfaceSpecification
(modelName).

clsName String specifying a new name for the class
described by the specified model-specific C++
encapsulation interface. The argument must
be a valid C/C++ identifier.

To set the model class name in the Simulink Configuration Parameters
graphical user interface, go to the Interface pane and click the
Configure C++ Encapsulation Interface button. This button
launches the Configure C++ encapsulation interface dialog box, where
you can display and configure the step method for your model class. In
the I/0 arguments step method view of this dialog box, click the Get
Default Configuration button to display the model class name, which
you can examine and modify. In the void-void step method view, you
can examine and modify the model class name without having to click
a button. For more information, see “Configure Step Method for Your
Model Class” in the Embedded Coder documentation.

“Configure C++ Encapsulation Interfaces Programmatically”

“Configure the Step Method for a Model Class”

1-433

RTW.ModelCPPClass.setClassName

+ “C++ Encapsulation Interface Control”

1-434

RTW.Autosarinterface.setComponentName

Purpose
Syntax

Description

Input
Arguments

Set XML component name
autosarInterfaceObj .setComponentName (componentName)

autosarInterfaceObj.setComponentName (componentName) sets the
XML component name of autosarInterfaceObj, a model-specific
RTW.AutosarInterface object.

componentName XML component name for
autosarInterfaceObj

See Also
RTW.AutosarInterface.getComponentName

“Generating Code for AUTOSAR Software Components”

1-435

RTW.Autosarinterface.setComponentType

Purpose
Syntax

Description

Input
Arguments

See Also

How To

1-436

Set type of software component
autosarInterfaceObj.setComponentType (componentType)

autosarInterfaceObj.setComponentType (componentType) sets
the type of the software component in autosarInterfaceObj, a
model-specific RTW.AutosarInterface object.

componentType

Type of software component. Either 'Application’' or 'Sensor
Actuator'.

RTW.AutosarInterface.getComponentType

+ “Configure the AUTOSAR Interface”

RTW.Autosarinterface.setDataTypePackageName

Purpose

Syntax

Description

Input
Arguments

See Also

How To

Specify XML package name for data type

autosarInterfaceObj .setDataTypePackageName (dataTypePackageName
)

autosarInterfaceObj.setDataTypePackageName (dataTypePackageName)
specifies the name of the XML data type package for
autosarInterfaceObj, a model-specific RTW.AutosarInterface object.

dataTypePackageName
Name of data type package

RTW.AutosarInterface.getDataTypePackageName

+ “Prepare a Model for AUTOSAR Code Generation”
+ “Generate AUTOSAR Code and Description Files”

1-437

arxml.importer.setDependencies

Purpose Set XML file dependencies
Syntax importeroObj.setDependencies (dependencies)
Description importerObj.setDependencies (dependencies) sets the XML file

dependencies associated with the arxml.importer object, importerobj.

Input dependencies Can be:
Arguments ¢ a cell array of strings (for a list of
dependencies)

® a char array (for a single dependency)

¢ or the empty array [] (for removing a
dependency)

Note The atomic software components
described in the XML file dependencies are
ignored.

How To * “Import an AUTOSAR Software Component”

1-438

RTW.Autosarinterface.setEventType

Purpose
Syntax

Description

Input
Arguments

See Also

How To

Set type for event
autosarInterfaceObj.setEventType (EventName, EventType)

autosarInterfaceObj.setEventType (EventName, EventType) sets
the event type for EventName, an event found in autosarInterfaceObj.

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.
EventName
Name of event
EventType

Type of event, for example, TimingEvent or DataReceivedEvent
RTW.AutosarInterface.addEventConf

+ “Configure the AUTOSAR Interface”

+ “Configure Multiple Runnables for DataReceivedEvents”

1-439

RTW.Autosarinterface.setExecutionPeriod

Purpose

Syntax

Description

Input
Arguments

See Also

How To

1-440

Specify execution period for TimingEvent

autosarInterfaceObj.setExecutionPeriod (EP)
autosarInterfaceObj.setExecutionPeriod(EventName, EP)

autosarInterfaceObj.setExecutionPeriod(EP) specifies the
execution period for the sole TimingEvent in a runnable.

autosarInterfaceObj.setExecutionPeriod(EventName, EP) allows
you to specify the execution period for a named TimingEvent in a
runnable.

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.
EP

Execution period in seconds
EventName

Name of TimingEvent
RTW.AutosarInterface.addEventConf |
RTW.AutosarInterface.getTriggerPortName

“Configure the AUTOSAR Interface”

“Configure Multiple Runnables for DataReceivedEvents”

arxml.importer.setFile

Purpose
Syntax

Description

Input
Arguments

How To

Set XML file name for arxml.importer object
importerObj.setFile(filename)

importerObj.setFile(filename) sets the name of the XML file
associated with the arxml. importer object, importerObj.

filename XML file name. Only atomic software
components described in this file can be
imported.

* “Import an AUTOSAR Software Component”

1-441

RTW.ModelSpecificCPrototype.setFunctionName

Purpose Set function name in model-specific C function prototype
Syntax setFunctionName (obj, fcnName, fcnType)
Descripl‘ion setFunctionName(obj, fcnName, fcnType) sets the step or

initialization function name in the specified function control object.

Input obj Handle to a model-specific C

Argumenfs prototype function control object
previously returned by obj =
RTW.ModelSpecificCPrototype or obj =
RTW.getFunctionSpecification(modelName).

fcnName String specifying a new name for the function
described by the function control object. The
argument must be a valid C identifier.

fenType Optional. String specifying which function to
name. Valid strings are 'step' and 'init'. If
fcnType is not specified, sets the step function
name.

Alternatives Use the Initialize function name and Step function name fields in
the Model Interface dialog box to specify function names. See “Model
Specific C Prototypes View” in the Embedded Coder documentation.

How To * “Function Prototype Control”

1-442

RTW.Autosarinterface.setimplementationName

Purpose
Syntax

Description

Input
Arguments

See Also

How To

Set name of XML implementation
autosarInterfaceObj.setImplementationName (implementationName)

autosarInterfaceObj.setImplementationName (implementationName)
specifies the name of the XML implementation for

autosarInterfaceObj, a model-specific RTW.AutosarInterface object.

implementationName

Name of XML implementation for autosarInterfaceObj
RTW.AutosarInterface.getImplementationName

“Configure the AUTOSAR Interface”
“Export AUTOSAR Software Component”

1-443

RTW.Autosarinterface.setlnitEventName

Purpose Set initial event name
Syntax autosarInterfaceObj.setInitEventName (initEventName)
Description autosarInterfaceObj.setInitEventName (initEventName) sets the

initial event name for autosarInterfaceObj, a model-specific
RTW.AutosarInterface object.

Input initEventName Initial event name for autosarInterfaceObj
Arguments
How To + RTW.AutosarInterface.getInitEventName

+ “Configure the AUTOSAR Interface”

1-444

RTW.Autosarinterface.setlnitRunnableName

Purpose Set initial runnable name
Syntax autosarInterfaceObj.setInitRunnableName (initRunnableName)
Description autosarInterfaceObj.setInitRunnableName (initRunnableName) sets

the initial runnable name for autosarInterfaceObj, a model-specific
RTW.AutosarInterface object.

InPUt initRunnableName Initial runnable name for
Arguments autosarInterfaceObj.
How To « RTW.AutosarInterface.getInitRunnableName

+ “Configure the AUTOSAR Interface”

1-445

RTW.Autosarinterface.setinterfacePackageName

Purpose
Syntax

Description

Input
Arguments

See Also

How To

1-446

Set name of XML interface package
autosarInterfaceObj.setInterfacePackageName (interfacePkgName)

autosarInterfaceObj.setInterfacePackageName (interfacePkgName)
specifies the name of the XML interface package for
autosarInterfaceObj, a model-specific RTW.AutosarInterface object.

interfacePkgName

Name of interface package for autosarInterfaceObj
RTW.AutosarInterface.getInterfacePackageName

+ “Configure the AUTOSAR Interface”

RTW.Autosarinterface.setinternalBehaviorName

Purpose

Syntax

Description

Input
Arguments

See Also

How To

Set name of XML file for software component internal behavior

autosarInterfaceObj.setInternalBehaviorName (internalBehaviorNa
me)

autosarInterfaceObj.setInternalBehaviorName (internalBehaviorName)
specifies the name of the XML file with the software component internal
behavior for autosarInterfaceObj.

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.

internalBehaviorName

Name of XML file that specifies software component internal
behavior for autosarInterfaceObj

RTW.AutosarInterface.getInternalBehaviorName

“Configure the AUTOSAR Interface”
“Export AUTOSAR Software Component”

1-447

RTW.Autosarinterface.setlOAvutosarPortName

Purpose

Syntax

Description

Input
Arguments

How To

1-448

Set AUTOSAR port name

autosarInterfaceObj.setIOAutosarPortName (portName,
autosarPort)

autosarInterfaceObj.setIOAutosarPortName (portName,autosarPort)
updates the AUTOSAR port name in the configuration for the specified
port.

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.

By default the AUTOSAR port name, data element name, and interface
name are the same as the Simulink port name.

portName Name of inport/outport (string)

autosarPort AUTOSAR port name for portName (string).

+ “Configure the AUTOSAR Interface”

RTW.Autosarinterface.setlODataAccessMode

Purpose

Syntax

Description

Input
Arguments

How To

Set I/0 data access mode

autosarInterfaceObj.setIODataAccessMode (portName,

dataAccessMode)

autosarInterfaceObj.setIODataAccessMode (portName,dataAccessMode)
sets the data access mode in the configuration for the specified port.

autosarInterfaceObj is a model-specific RTW.AutosarInterface

object.

portName Name of inport/outport (string).

dataAccessMode Data access mode (string). Can be one of the
following:

ImplicitSend
ImplicitReceive
ExplicitSend
ExplicitReceive

QueuedExplicitReceived

RTW.AutosarInterface.getIODataAccessMode
“Prepare a Model for AUTOSAR Code Generation”

1-449

RTW.Autosarinterface.setlODataElement

Purpose
Syntax

Description

Input
Arguments

How To

1-450

Set I/0 data element
autosarInterfaceObj.setIODataElement (portName,dataElement)

autosarInterfaceObj.setIODataElement (portName,dataElement)
updates the name of the I/O data element in the configuration for the
specified port.

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.

By default the AUTOSAR port name, data element name, and interface
name are the same as the Simulink port name.

portName Name of the inport/outport (string).
dataElement Name of the I/0O data element for portName
(string).

“Configure the AUTOSAR Interface”

RTW.Autosarinterface.setlOErrorStatusReceiver

Purpose
Syntax

Description

Input
Arguments

See Also

How To

Set name of error status receiver port
autosarInterfaceObj.setIOErrorStatusReceiver (PortName,ESR)

autosarInterfaceObj.setIOErrorStatusReceiver (PortName,ESR)
sets the receiver port name in the configuration for the port
corresponding to PortName .

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.

PortName
Name of inport/outport (string)
ESR

Name of receiver port for PortName (string)
RTW.AutosarInterface.getIOErrorStatusReceiver

“Configure Ports for Basic Software and Error Status Receivers”

1-451

RTW.Autosarinterface.setlOInterfaceName

Purpose

Syntax

Description

Input
Arguments

How To

1-452

Set I/0 interface name

autosarInterfaceObj.setIOInterfaceName(portName,
interfaceName)

autosarInterfaceObj.setIOInterfaceName (portName,interfaceName)
updates the I/O interface name in the configuration for the specified
port.

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.

By default the AUTOSAR port name, data element name, and interface
name are the same as the Simulink port name.

portName Name of inport/outport (string).

interfaceName Name of I/O interface for portName (string).

“Configure the AUTOSAR Interface”

RTW.Autosarinterface.setlOServicelnterface

Purpose
Syntax

Description

Input
Arguments

See Also

How To

Set port I/0 service interface
autosarInterfaceObj.setIOServicelInterface(PortName, SI)

autosarInterfaceObj.setI0ServiceInterface(PortName, SI) specifies
the I/O service interface in the configuration for the port corresponding
to PortName.

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.

PortName
Name of the inport/outport (string)
SI

I/0 service interface of PortName (string)
RTW.AutosarInterface.getIOServicelnterface

“Configure Ports for Basic Software and Error Status Receivers”

1-453

RTW.Autosarinterface.setlOServiceName

Purpose
Syntax

Description

Input
Arguments

See Also

How To

1-454

Set port I/O service name
autosarInterfaceObj.setI0ServiceName (PortName, SN)

autosarInterfaceObj.setI0ServiceName (PortName, SN) specifies the
I/0 service name in the configuration for the port corresponding to
PortName.

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.
PortName
Name of the inport/outport (string)
SN

Name of I/O service for PortName (string)
RTW.AutosarInterface.getIOServiceName

“Configure Ports for Basic Software and Error Status Receivers”

RTW.Autosarinterface.setlOServiceOperation

Purpose Set port I/O service operation
Syntax autosarInterfaceObj.setI0OServiceOperation(PortName, SO)
Description autosarInterfaceObj.setI0ServiceOperation(PortName, SO) sets the

I/0 service operation in the configuration for the port corresponding
to PortName.

autosarInterfaceObj is a model-specific RTW.AutosarInterface

object.
Input PortName
Arguments Inport/outport name (string)
SO
I/0 service operation for PortName
See Also RTW.AutosarInterface.getIOServiceOperation
How To + “Configure Ports for Basic Software and Error Status Receivers”

1-455

RTW.AutosarInterface.setlsServerOperation

Purpose Indicate that server is specified
Syntax autosarInterfaceObj.setIsServerOperation(isServerOperation)
Description autosarInterfaceObj.setIsServerOperation(isServerOperation)
sets the value of the property 'isServerOperation' in
autosarInterfaceObj.
autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.
InPUt isServerOperation True or false (default). If true, indicates that
Argumenfs a server is specified in autosarInterfaceObj.
How To + “Configure Client-Server Communication”

1-456

cgv.CGV.setMode

Purpose
Syntax

Description

Input
Arguments

Examples

See Also

How To

Specify mode of execution
cgvObj.setMode(connectivity)

cgvObj.setMode (connectivity) specifies the mode of execution for
the cgv.CGV object, cgvObj. The default value for the execution mode is
set to either normal or sim.

connectivity

Specify mode of execution

Value Description

sim or normal (default) Mode of execution is normal
simulation.

sil Mode of execution is SIL.

pil Mode of execution is PIL.

After running a cgv.CGV object, copy the object. Before rerunning the
object, call setMode to change the execution mode to sil for an existing
cgv.CGV object.

cgvModel = 'rtwdemo_cgv';

cgvObj1 = cgv.CGV(cgvModel, 'connectivity', 'sim');
cgvOobjt.run();

cgvObj2 = cgvObj1.copySetup()
cgvObj2.setMode('sil');

cgvobj2.run();

cgv.CGV.run | cgv.CGV.copySetup

+ “Verify Numerical Equivalence with CGV”

1-457

setNameSpace

Purpose
Syntax

Arguments

Description

Examples

1-458

Set name space for C++ function entry in CRL table
setNameSpace (hEntry, nameSpace)

hEntry
Handle to a CRL function entry previously returned by one of
the following:

® hEntry = RTW.TflCFunctionEntry

® hEntry = MyCustomFunctionEntry, where
MyCustomFunctionEntry is a class derived from
RTW.Tf1lCFunctionEntry

e A call to the registerCPPFunctionEntry function

nameSpace
String specifying the name space in which the implementation
function for the C++ function entry is defined.

The setNameSpace function specifies the name space for a C++ function
entry in a CRL table. During code generation, if the CRL function
entry is matched, the software emits the name space in the generated
function code (for example, std::sin(tfl cpp_U.In1)).

If you created the function entry using hEntry =
RTW.Tf1CFunctionEntry or hEntry = MyCustomFunctionEntry (that
1s, not using registerCPPFunctionEntry), then, before calling the
setNameSpace function, you must enable C++ support for the function
entry by calling the enableCPP function.

In the following example, the setNameSpace function is used to set the
name space for the sin implementation function to std.

fcn_entry = RTW.TflCFunctionEntry;
fcn_entry.setTflCFunctionEntryParameters(...

'Key', 'sin', ...
'Priority’, 100, ...
'ImplementationName’, 'sin', ..

setNameSpace

'ImplementationHeaderFile', 'cmath');
fcn_entry.enableCPP();
fcn_entry.setNameSpace('std');
See Also enableCPP | registerCPPFunctionEntry
How To + “Map Math Functions to Target-Specific Implementations”

“Create Code Replacement Tables”

“Introduction to Code Replacement Libraries”

1-459

rtw.codegenObjectives.Objective.setObjectiveName

Purpose
Syntax

Description

Input
Arguments

Examples

How To

1-460

Specify objective name
setObjectiveName(obj, objName)

setObjectiveName (obj, objName) specifies a name for the objective.
The Configuration Set Objectives dialog box displays the name of the
objective.

obj Handle to a code generation objective object
previously created.

objName Optional string that indicates the name of the
objective. If you do not specify an objective
name, the Configuration Set Objectives dialog
box displays the objective ID for the objective
name.

Name the objective Reduce RAM Example:

setObjectiveName(obj, 'Reduce RAM Example');

+ “Create Custom Objectives”

cgv.CGV.setOutputDir

Purpose

Syntax

Description

How To

Specify folder

cgvObj .setOutputDir('path')
cgvObj .setOutputDir('path', 'overwrite', 'on')

cgvObj .setOutputDir('path') is an optional method that specifies

a location where the object writes the output and metadata files for
execution. cgvObj is a handle to a cgv.CGV object. path is the absolute
or relative path to the folder. If the path does not exist, the object
attempts to create the folder. If you do not call setOutputDir, the object
uses the current working folder.

cgvObj .setOutputDir('path', 'overwrite', 'on') includes the
property and value pair to allow read-only files in the working directory
to be overwritten. The default value for 'overwrite' is 'off"'.

+ “Verify Numerical Equivalence with CGV”

1-461

cgv.CGV.setOutpuiFile

Purpose Specify output data file name
Syntax cgvObj .setOutputFile (InputIndex,OutputFile)
Description cgvObj .setOutputFile (InputIndex,OutputFile) is an optional

method that changes the default file name for the output data. cgvObj
is a handle to a cgv.CGV object. InputIndex is a unique numeric
identifier that specifies which output data to write to the file. The
InputIndex is associated with specific input data.OutputFile is the
name of the file, with or without the .mat extension.

How To + “Verify Numerical Equivalence with CGV”

1-462

RTW.Autosarinterface.setPeriodicEventName

Purpose Set periodic event name
Syntax autosarInterfaceObj.setPeriodicEventName (periodicEventName)
Description autosarInterfaceObj.setPeriodicEventName (periodicEventName)

sets the name of the periodic event for autosarInterfaceObj, a
model-specific RTW.AutosarInterface object.

Input periodicEventName Name of the periodic event for
Arguments autosarInterfaceObj.
How To + RTW.AutosarInterface.getPeriodicEventName

+ “Configure the AUTOSAR Interface”

1-463

RTW.Autosarinterface.setPeriodicRunnableName

Purpose

Syntax

Description

Input
Arguments

How To

1-464

Set periodic runnable name

autosarInterfaceObj.setPeriodicRunnableName (periodicRunnableNa
me)

autosarInterfaceObj.setPeriodicRunnableName (periodicRunnableName)
sets the name of the periodic runnable for autosarInterfaceObj, a
model-specific RTW.AutosarInterface object.

periodicRunnable Name of periodic runnable for
Name autosarInterfaceObj.

* RTW.AutosarInterface.getPeriodicRunnableName
+ “Configure the AUTOSAR Interface”

setReservedldentifiers

Purpose Register specified reserved identifiers to be associated with CRL table
Syntax setReservedIdentifiers(hTable, 1ds)
Arguments hTable

Handle to a CRL table previously returned by hTable =
RTW.TflTable.

ids
Structure specifying reserved keywords to be registered in the
CRL table. The structure must contain the following:

e LibraryName element, a string that specifies a CRL name:
"ANSI', 'ISO','GNU', or a CRL name of your choice.

® HeaderInfos element, a structure or cell array of structures
containing

— HeaderName element, a string that specifies the header file
in which the identifiers are declared

— ReservedIds element, a cell array of strings that specifies
the names of the identifiers to be registered as reserved
keywords

For example,

d{1}.LibraryName = 'ANSI';
d{1}.HeaderInfos{1}.HeaderName = 'math.h';
d{1}.HeaderInfos{1}.ReservedIds = {'y0', 'y1'};

Description In a CRL table, each function implementation name defined by a table
entry will be registered as a reserved identifier. You can register
additional reserved identifiers for the table on a per-header-file basis.
Providing additional reserved identifiers can help prevent duplicate
symbols and other identifier-related compile and link issues.

The setReservedIdentifiers function allows you to register up to
four reserved identifier structures in a CRL table. One set of reserved
identifiers can be associated with an arbitrary CRL, while the other

1-465

setReservedldentifiers

Examples

1-466

three (if present) must be associated with ANSI', ISO®?, or GNU®?
libraries.

For information about generating a list of reserved identifiers for the
CRL that you are using to generate code, see “Simulink Coder Code
Replacement Library Keywords” in the Simulink Coder documentation.

In the following example, setReservedIdentifiers is used to register
four reserved identifier structures, for 'ANSI', 'ISO','GNU', and 'My
Custom CRL', respectively.

hLib = RTW.TflTable;

% Create and register CRL entries here

% Create and register reserved identifiers
d{1}.LibraryName = 'ANSI';
d{1}.HeaderInfos{1}.HeaderName = 'math.h';
d{1}.HeaderInfos{1}.ReservedIds = {'a', 'b'};
d{1}.HeaderInfos{2}.HeaderName = 'foo.h';
d{1}.HeaderInfos{2}.ReservedIds = {'c', 'd'};

d{2}.LibraryName = 'ISO';
d{2}.HeaderInfos{1}.HeaderName = 'math.h';
d{2}.HeaderInfos{1}.ReservedIds = {'a', 'b'};
d{2}.HeaderInfos{2}.HeaderName = 'foo.h';
d{2}.HeaderInfos{2}.ReservedIds = {'c', 'd'};

1. ANSI®is a registered trademark of the American National Standards Institute, Inc.

2. ISOP is a registered trademark of the International Organization for
Standardization.

3. GNU?is a registered trademark of the Free Software Foundation.

setReservedldentifiers

How To

d{3}.LibraryName = 'GNU';
d{3}.HeaderInfos{1}.HeaderName = 'math.h';
d{3}.HeaderInfos{1}.ReservedIds = {'a', 'b'};
d{3}.HeaderInfos{2}.HeaderName = 'foo.h';
d{3}.HeaderInfos{2}.ReservedIds = {'c', 'd'};

d{4}.LibraryName = 'My Custom CRL';
d{4}.HeaderInfos{1}.HeaderName = 'my_math_lib.h"';
d{4}.HeaderInfos{1}.ReservedIds = {'y1', 'ul'};
d{4}.HeaderInfos{2}.HeaderName = 'my_oper_lib.h';
d{4}.HeaderInfos{2}.ReservedIds = {'foo', 'bar'};

setReservedIdentifiers(hLib, d);

* “Introduction to Code Replacement Libraries”

+ “Add Code Replacement Library Reserved Identifiers”

1-467

RTW.Autosarinterface.setServerinterfaceName

Purpose Set name of server interface

Syntax autosarInterfaceObj.setServerInterfaceName(ServerInterfaceName
)

Description autosarInterfaceObj.setServerInterfaceName (ServerInterfaceName)

sets the name of the server interface specified in autosarInterfaceObj

autosarInterfaceObj is a model-specific RTW.AutosarInterface

object.
Input ServerInterfaceName Server interface name for
Arguments autosarInterfaceObj.
How To + “Configure Client-Server Communication”

1-468

RTW.Autosarinterface.setServerOperationPrototype

Purpose

Syntax

Description

Input
Arguments

How To

Specify operation prototype

autosarInterfaceObj.setServerOperationPrototype(operation prot
otype)

autosarInterfaceObj.setServerOperationPrototype(operation_prototype)

defines the server operation prototype for autosarInterfaceObj.

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.

operation_prototype String with names of prototype and
arguments:

operation_name(diri datatypel
argil, dir2 datatype2 arg2, ...,
dirN datatypeN argN, ...)

® operation_name — Name of
operation

e dirN — Either IN or OUT, which
indicates whether data is passed in
or out of the function.

® datatypeN — Data type, which can
be an AUTOSAR basic data type or
record, Simulink data type, or array.

® argN — Name of the argument

Prototype and argument names must be
valid AUTOSAR short-name identifiers.

+ “Configure Client-Server Communication”

1-469

RTW.Autosarinterface.setServerPortName

Purpose Set server port name
Syntax autosarInterfaceObj.setServerPortName (serverPortName)
Description autosarInterfaceObj.setServerPortName (serverPortName) sets the

server port name for the model-specific RTW.AutosarInterface object
defined by autosarInterfaceObj.

Input serverPortName Name for server port of autosarInterfaceObj
Arguments
How To + “Configure Client-Server Communication”

1-470

RTW.AutosarInterface.setServerType

Purpose
Syntax

Description

Input
Arguments

How To

Specify server type
autosarInterfaceObj.setServerType(serverType)

autosarInterfaceObj.setServerType (serverType) specifies whether the
server in autosarInterfaceObj is application software or AUTOSAR
Basic Software.

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.

serverType Either 'Application software' or 'Basic
software'

“Configure Client-Server Communication”

1-471

RTW.ModelCPPClass.setStepMethodName

Purpose
Syntax

Description

Input
Arguments

Alternatives

How To

1-472

Set step method name in model-specific C++ encapsulation interface
setStepMethodName (obj, fcnName)

setStepMethodName (obj, fcnName) sets the step method name in the
specified model-specific C++ encapsulation interface.

obj Handle to a model-specific C++ encapsulation
interface control object, such as a
handle previously returned by obj
= RTW.ModelCPPArgsClass, obj =
RTW.ModelCPPVoidClass, or obj =
RTW.getEncapsulationInterfaceSpecification
(modelName).

fcnName String specifying a new name for the
step method described by the specified
model-specific C++ encapsulation interface.
The argument must be a valid C/C++
identifier.

To set the step method name in the Simulink Configuration Parameters
graphical user interface, go to the Interface pane and click the
Configure C++ Encapsulation Interface button. This button
launches the Configure C++ encapsulation interface dialog box, where
you can display and configure the step method for your model class. In
the I/0 arguments step method view of this dialog box, click the Get
Default Configuration button to display the step method name, which
you can examine and modify. In the void-void step method view, you
can examine and modify the step method name without having to click
a button. For more information, see “Configure Step Method for Your
Model Class” in the Embedded Coder documentation.

“Configure C++ Encapsulation Interfaces Programmatically”

“Configure the Step Method for a Model Class”

RTW.ModelCPPClass.setStepMethodName

+ “C++ Encapsulation Interface Control”

1-473

setTflICFunctionEntryParameters

Purpose
Syntax

Arguments

varargin
Parameters

1-474

Set specified parameters for function entry in CRL table
setTflCFunctionEntryParameters(hEntry, varargin)

hEntry
Handle to a CRL function entry previously returned by hEntry =
RTW.Tf1CFunctionEntry or hEntry = MyCustomFunctionEntry,
where MyCustomFunctionEntry is a class derived from
RTW.TflCFunctionEntry.

varargin
Parameter/value pairs for the function entry. See varargin
Parameters.

The following function entry parameters can be specified to the
setTf1CFunctionEntryParameters function using parameter/value
argument pairs. For example,

setTflCFunctionEntryParameters(..., 'Key', 'sqrt', ...);

Key
String specifying the name of the function to be replaced. The
name must match one of the functions supported for replacement:

Math Functions

Note For detailed support information, see “Map Math
Functions to Target-Specific Implementations”.

abs acos acosh asin

asinh atan atan2 atanh

ceil cos cosh exactrSqrt
exp fix floor frexp
hypot ldexp In log

setTflICFunctionEntryParameters

log10 max min mod/fmod
pow rem round rsqrt
saturate sign sin sincos
sinh sqrt round tanh

Memory Utility Functions

memcmp memcpy memset memset2zero!
Nonfinite Support Utility Functions?

getInf getMinusInf | getNaN isInf?
isNaN3

Notes:

I Some target processors provide optimized memset functions
for use when performing a memory set to zero. The CRL API
supports replacing memset to zero functions with more efficient
target-specific functions.

2 Replacement of nonfinite functions is supported for Simulink
code generation (not for Stateflow or MATLAB Coder code
generation).

3 Replacement of isInf and isNaN is supported only for complex
floating-point inputs.

GenCallback

String specifying '' or 'RTW.copyFileToBuildDir'. The
default is ''. If you specify 'RTW.copyFileToBuildDir',
and if this function entry is matched and used, the function
RTW.copyFileToBuildDir will be called after code generation
to copy additional header, source, or object files that you have
specified for this function entry to the build directory. For
more information, see “Specify Build Information for Code
Replacements” in the Embedded Coder documentation.

Priority

Positive integer specifying the function entry’s search priority,
0-100, relative to other entries of the same function name and
conceptual argument list within this table. Highest priority is 0,

1-475

setTflICFunctionEntryParameters

1-476

and lowest priority is 100. The default is 100. If the table provides
two implementations for a function, the implementation with the
higher priority will shadow the one with the lower priority.

ImplType
Specifies the type of entry: FCN_IMPL_FUNCT for function or
FCN_IMPL_MACRO for macro. The default is FCN_IMPL_FUNCT.

ImplementationName
String specifying the name of the implementation function, for
example, 'sqrt', which can match or differ from the Key name.
The default is ''.

ImplementationHeaderFile
String specifying the name of the header file that declares the
implementation function, for example, '<math.h>"'. The default
is [

ImplementationHeaderPath

String specifying the full path to the implementation header file.
The default is ''.

ImplementationSourceFile
String specifying the name of the implementation source file. The
default is ' '.

ImplementationSourcePath
String specifying the full path to the implementation source file.
The default is ''.

Note To supply additional build information for the

function entry, you can use CRL table entry functions
addAdditionalHeaderFile, addAdditionalIncludePath
addAdditionallLinkObj, addAdditionalLinkObjPath,
addAdditionalSourceFile, and addAdditionalSourcePath,
and CRL table entry properties AdditionalCompileFlags,
AdditionallLinkFlags, and OtherFiles. For more information.
see “Specify Build Information for Code Replacements”.

setTflICFunctionEntryParameters

AcceptExprInput
Boolean value used to flag the code generator that the
implementation function described by this entry should accept
expression inputs. The default value is true if ImplType equals
FCN_IMPL_FUNCT and false if ImplType equals FCN_IMPL_MACRO.

If the value is true, expression inputs are integrated into the
generated code in a form similar to the following:

rtY.Out1 = mySin(rtU.In1 + rtU.In2);

If the value is false, a temporary variable is generated for the
expression input, as follows:

real T rtb_Sum;

rtb_Sum = rtU.In1 + rtu.In2;
rtY.out1 = mySin(rtb_Sum);

SideEffects
Boolean value used to flag the code generator that the
implementation function described by this entry should not be
optimized away. This parameter applies to implementation
functions that return void but should not be optimized away,
such as a memcpy implementation or an implementation function
that accesses global memory values. For those implementation
functions only, you must include this parameter and specify the
value true. The default is false.

StoreFcnReturnInLocalvar
Boolean value used to flag the code generator that the return
value of the implementation function described by this entry must
be stored in a local variable regardless of other expression folding
settings. If the value is false (the default), other expression
folding settings determine whether the return value is folded.
Storing function returns in a local variable can increase the
clarity of generated code. For example, here is an example of code
generated with expression folding:

1-477

setTflICFunctionEntryParameters

void sw_step(void)

{

if (ssub(sadd(sw_U.In1, sw_U.In2), sw _U.In3) <=

smul(ssub(sw_U.In4, sw _U.In5),sw U.In6)) {
sw_Y.Out1 = sw_U.In7;
} else {
sw_Y.Out1l = sw_U.In8;

}

}

With StoreFcnReturnInLocalVar set to true, the generated code
potentially is easier to understand and debug:

void sw_step(void)
{
real32_T rtb_Switch;
real32_T hoistedExpr;
rtb_Switch = sadd(sw_U.In1, sw_U.In2);
rtb_Switch = ssub(rtb_Switch, sw_U.In3);
hoistedExpr = ssub(sw_U.In4, sw U.In5);
hoistedExpr = smul(hoistedExpr, sw_U.In6);
if (rtb_Switch <= hoistedExpr) {
sw_Y.Out1 = sw_U.In7;
} else {
sw_Y.Out1l = sw_U.In8;

}

EntryInfoAlgorithm
String specifying a computation or approximation method,
configured for the specified math function, that must be matched
in order for function replacement to occur. CRLs support function
replacement based on computation or approximation method
for the math functions rSqrt, sin, cos, and sincos. The valid
arguments for each supported function are:

1-478

setTflICFunctionEntryParameters

Description

Examples

How To

Function

Argument

Meaning

rsqrt

RTW_DEFAULT

Match the default
computation method, Exact

RTW_NEWTON_RAPHSON

Match the Newton-Raphson
computation method

RTW_UNSPECIFIED

Match a computation method

sin
cos
sincos

RTW_CORDIC

Match the CORDIC
approximation method

RTW_DEFAULT

Match the default
approximation method,
None

RTW_UNSPECIFIED

Match an approximation
method

The setTflCFunctionEntryParameters function sets specified
parameters for a function entry in a CRL table.

In the following example, the setTf1CFunctionEntryParameters
function is used to set specified parameters for a CRL function entry

for sqrt.

fcn_entry = RTW.TflCFunctionEntry;
fcn_entry.setTflCFunctionEntryParameters(...

'Key', ‘sgqrt', ...
'Priority', 100, ...
'ImplementationName', 'sqrt', ...
'ImplementationHeaderFile', '<math.h>');

+ “Introduction to Code Replacement Libraries”

+ “Map Math Functions to Target-Specific Implementations”

+ “Create Code Replacement Tables”

1-479

setTflICOperationEntryParameters

Purpose
Syntax

Arguments hEntry

Set specified parameters for operator entry in CRL table

setTflCOperationEntryParameters(hEntry, varargin)

Handle to a CRL table entry previously returned by one of the
following class instantiations:

hEntry = RTW.TflCOperationEntry;

hEntry = RTW.TflCOperationEntry-
Generator;

hEntry = RTW.TflCOperationEntry-
Generator_NetSlope;

hEntry = RTW.TflBlasEntry-
Generator;

hEntry = RTW.TflCBlasEntry-
Generator;

hEntry = MyCustomOperationEntry;
(where MyCustomOperationEntry

1s a class derived from
RTW.Tf1lCOperationEntry)

1-480

Supports operator replacement, described

in “Map Scalar Operators to Target-Specific
Implementations” and “Map Nonscalar Operators
to Target-Specific Implementations”

Provides relative scaling factor (RSF)
fixed-point parameters, described in “Map
Fixed-Point Operators to Target-Specific
Implementations”, that are not available in
RTW.Tf1lCOperationEntry

Provides net slope parameters, described in
“Map Fixed-Point Operators to Target-Specific
Implementations”, that are not available in
RTW.Tf1lCOperationEntry

Supports replacement of nonscalar operators
with MathWorks BLAS functions, described in
“Map Nonscalar Operators to Target-Specific
Implementations”

Supports replacement of nonscalar operators
with ANSI/ISO C BLAS functions, described in
“Map Nonscalar Operators to Target-Specific
Implementations”

Supports operator replacement using custom
CRL table entries, described in “Refine Matching
and Replacement Using Custom Entries”

setTflICOperationEntryParameters

varargin
Parameters

Note If you want to specify one of the parameters
SlopesMustBeTheSame, MustHaveZeroNetBias,
RelativeScalingFactorF, or RelativeScalingFactorE

for your operator entry, instantiate your table entry

using hEntry = RTW.TflCOperationEntryGenerator

rather than hEntry = RTW.TflCOperationEntry. If

you want to use NetSlopeAdjustmentFactor and
NetFixedExponent, instantiate your table entry using hEntry =
RTW.Tf1lCOperationEntryGenerator_NetSlope

varargin
Parameter/value pairs for the operator entry. See varargin
Parameters.

The following operator entry parameters can be specified to the
setTflCOperationEntryParameters function using parameter/value
argument pairs. For example,

setTflCOperationEntryParameters(..., 'Key', 'RTW_OP_ADD', ...);
Key

String specifying the operator to be replaced, among the operators
supported for replacement:

1-481

setTflICOperationEntryParameters

1-482

Operator Key

Addition (+) RTW_OP_ADD
Subtraction (-) RTW_OP_MINUS
Multiplication (*) RTW_OP_MUL
Division (/) RTW_OP_DIV
Data type conversion (cast) | RTW_OP_CAST
Shift left (<<) RTW_OP_SL

Shift right (>>)

RTW_OP_SRA (arithmetic)!
RTW_OP_SRL (logical)

Element-wise matrix
multiplication (. *)

RTW_OP_ELEM_MULZ

Matrix right division (/)

RTW_OP_RDIV3

Matrix left division (\)

RTW_OP_LDIV?3

Matrix inversion (inv)

RTW_OP_INV3

Complex conjugation

RTW_OP_CONJUGATE

Transposition (. ")

RTW_OP_TRANS

Hermitian (complex
conjugate) transposition

(")

RTW_OP_HERMITIAN

Multiplication with
transposition

RTW_OP_TRMUL

Multiplication with
Hermitian transposition

RTW_OP_HMMUL

Notes:

I CRLs that provide arithmetic shift right implementations
should also provide logical shift right implementations, because
some arithmetic shift rights are converted to logical shift rights

during code generation.

2 For scalar multiplication, use RTW_OP_MUL.
3 Matrix division and inversion are supported for Simulink
code generation (not for Stateflow or MATLAB Coder code

generation).

setTflICOperationEntryParameters

The default is 'RTW_OP_ADD'.

GenCallback
String specifying '' or 'RTW.copyFileToBuildDir'. The
default i1s ' '. If you specify 'RTW.copyFileToBuildDir"',
and if this operator entry is matched and used, the function
RTW.copyFileToBuildDir will be called after code generation
to copy additional header, source, or object files that you have
specified for this operator entry to the build directory. For
more information, see “Specify Build Information for Code
Replacements” in the Embedded Coder documentation.

Priority
Positive integer specifying the operator entry’s search priority,
0-100, relative to other entries of the same operator name and
conceptual argument list within this table. Highest priority is 0,
and lowest priority is 100. The default is 100. If the table provides
two implementations for an operator, the implementation with
the higher priority will shadow the one with the lower priority.

RoundingModes
Cell array of strings specifying one or more rounding modes
supported by the implementation function, among the following:
'RTW_ROUND_FLOOR', 'RTW_ROUND_CEILING', 'RTW_ROUND_ZERO',
'RTW_ROUND_NEAREST', 'RTW_ROUND_NEAREST ML',
'RTW_ROUND_SIMPLEST', 'RTW_ROUND_CONV',
and 'RTW_ROUND_UNSPECIFIED'. The default is
{'RTW_ROUND_UNSPECIFIED'}.

SaturationMode
String specifying the saturation mode supported by the
implementation function: 'RTW_SATURATE_ON_OVERFLOW',
"RTW_WRAP_ON_OVERFLOW', or 'RTW_SATURATE_UNSPECIFIED'.
The default is 'RTW_SATURATE_UNSPECIFIED'.

SlopesMustBeTheSame
Boolean flag that, when set to true, indicates that CRL
replacement request processing must check that the slopes of the
arguments (input and output) are equal. The default is false.

1-483

setTflICOperationEntryParameters

This parameter and MustHaveZeroNetBias can be used for
fixed-point addition and subtraction replacement. Set both
parameters to true to disregard specific slope and bias values and
map relative slope and bias values to a replacement function.

To use this parameter, you must instantiate your table entry
using hEntry = RTW.TflCOperationEntryGenerator rather
than hEntry = RTW.Tf1lCOperationEntry.

MustHaveZeroNetBias
Boolean flag that, when set to true, indicates that CRL
replacement request processing must check that the net bias of
the arguments is zero. The default is false.

This parameter and SlopesMustBeTheSame can be used for
fixed-point addition and subtraction replacement. Set both
parameters to true to disregard specific slope and bias values and
map relative slope and bias values to a replacement function.

To use this parameter, you must instantiate your table entry
using hEntry = RTW.TflCOperationEntryGenerator rather
than hEntry = RTW.Tf1lCOperationEntry.

RelativeScalingFactorF
Floating-point value specifying the slope adjustment factor (F)
part of the relative scaling factor, F2£, for relative scaling CRL
entries. The default is 1.0.

This parameter and RelativeScalingFactorE can be used for
fixed-point multiplication and division replacement. Specify
both parameters to map a range of slope and bias values to a
replacement function.

To use this parameter, you must instantiate your table entry

using hEntry = RTW.TflCOperationEntryGenerator rather
than hEntry = RTW.Tf1lCOperationEntry.

1-484

setTflICOperationEntryParameters

RelativeScalingFactorE
Floating-point value specifying the fixed exponent (E) part of the
relative scaling factor, F2E, for relative scaling CRL entries. For
example, -3.0. The default is 0.

This parameter and RelativeScalingFactorF can be used for
fixed-point multiplication and division replacement. Specify
both parameters to map a range of slope and bias values to a
replacement function.

To use this parameter, you must instantiate your table entry
using hEntry = RTW.TflCOperationEntryGenerator rather
than hEntry = RTW.Tf1lCOperationEntry.

isRSF
Boolean value specifying that the operator entry is a relative
scaling factor (RSF) entry. Specify true if the values of
RelativeScalingFactorF and RelativeScalingFactorE equal
their defaults, 1.0 and 0, but the entry nonetheless should be
interpreted by the code generation process as an RSF entry.

NetSlopeAdjustmentFactor
Floating-point value specifying the slope adjustment factor (F)
part of the net slope, F2E, for net slope CRL entries. The default
is 1.0.

This parameter and NetFixedExponent can be used for fixed-point
multiplication and division replacement. Specify both parameters
to map a range of slope and bias values to a replacement function.

To use this parameter, you must instantiate your table entry
using hEntry = RTW.TflCOperationEntryGenerator NetSlope
rather than hEntry = RTW.TflCOperationEntry.

NetFixedExponent
Floating-point value specifying the fixed exponent (E) part of the
net slope, F2E, for net slope CRL entries. For example, -3.0. The
default is 0.

1-485

setTflICOperationEntryParameters

1-486

This parameter and NetSlopeAdjustmentFactor can be used
for fixed-point multiplication and division replacement. Specify
both parameters to map a range of slope and bias values to a
replacement function.

To use this parameter, you must instantiate your table entry
using hEntry = RTW.TflCOperationEntryGenerator NetSlope
rather than hEntry = RTW.TflCOperationEntry.

ImplementationName
String specifying the name of the implementation function, for
example, 's8 add s8 s8'. The defaultis '"'.

ImplementationHeaderFile
String specifying the name of the header file that declares the
implementation function, for example, 's8 add s8 s8.h'. The
default is ' .

ImplementationHeaderPath
String specifying the full path to the implementation header file.
The default is ''.

ImplementationSourceFile
String specifying the name of the implementation source file, for
example, 's8 add s8 s8.c'. The defaultis ''.

ImplementationSourcePath
String specifying the full path to the implementation source file.
The default is ''.

setTflICOperationEntryParameters

Note To supply additional build information for the

operator entry, you can use CRL table entry functions
addAdditionalHeaderFile, addAdditionalIncludePath
addAdditionallLinkObj, addAdditionalLinkObjPath,
addAdditionalSourceFile, and addAdditionalSourcePath,
and CRL table entry properties AdditionalCompileFlags,
AdditionallLinkFlags, and OtherFiles. For more information.
see “Specify Build Information for Code Replacements”.

AcceptExprInput
Boolean value used to flag the code generator that the
implementation function described by this entry should accept
expression inputs. If the value is true (the default), expression
inputs are integrated into the generated code in a form similar to
the following:

rtY.Out1 = u8_add_u8_u8(u8_add_u8_u8(rtU.In1, rtU.In2), rtU.In3);

If the value i1s false, a temporary variable is generated for the
expression input, as follows:

uint8_T tempVar;

tempVar = u8_add_u8_u8(rtU.Int, rtuU.In2);
rtY.Out1 = u8_add_u8_u8(tempVar, rtuU.In3);

SideEffects
Boolean value used to flag the code generator that the
implementation function described by this entry should not be
optimized away. This parameter applies to implementation
functions that return void but should not be optimized away,
such as an implementation function that accesses global memory
values. For those implementation functions only, you must
include this parameter and specify the value true. The default is
false.

1-487

setTflICOperationEntryParameters

1-488

StoreFcnReturnInLocalVar

Boolean value used to flag the code generator that the return
value of the implementation function described by this entry must
be stored in a local variable regardless of other expression folding
settings. If the value is false (the default), other expression
folding settings determine whether the return value is folded.
Storing function returns in a local variable can increase the
clarity of generated code. For example, here is an example of code
generated with expression folding:

void sw_step(void)

{

if (ssub(sadd(sw_U.In1, sw_U.In2), sw _U.In3) <=

smul(ssub(sw_U.In4, sw _U.In5),sw U.In6)) {
sw_Y.Out1 = sw_U.In7;
} else {
sw_Y.Out1l = sw_U.In8;

}

}

With StoreFcnReturnInLocalVar set to true, the generated code
potentially is easier to understand and debug:

void sw_step(void)
{
real32_T rtb_Switch;
real32_T hoistedExpr;
rtb_Switch = sadd(sw_U.In1, sw_U.In2);
rtb_Switch ssub(rtb_Switch, sw_U.In3);
hoistedExpr = ssub(sw_U.In4, sw_U.In5);
hoistedExpr = smul(hoistedExpr, sw_U.In6);
if (rtb_Switch <= hoistedExpr) {
sw_Y.Out1 = sw_U.In7;
} else {
sw_Y.Out1

sw_U.In8;
}

setTflICOperationEntryParameters

Description The setTflCOperationEntryParameters function sets specified
parameters for an operator entry in a CRL table.

Examples In the following example, the setTf1COperationEntryParameters
function is used to set parameters for a CRL operator entry for uint8
addition.

op_entry = RTW.TflCOperationEntry;
op_entry.setTflCOperationEntryParameters(

'Key ', '"RTW_OP_ADD"',

'Priority’', 90,

'SaturationMode’, 'RTW_SATURATE_UNSPECIFIED',
'RoundingModes’', {'RTW_ROUND_UNSPECIFIED'},
'ImplementationName', 'u8_add_u8_u8',

'ImplementationHeaderFile', 'u8_add_u8 u8.h',
'ImplementationSourceFile', 'u8_add_u8 u8.c');

In the following example, the setTf1COperationEntryParameters
function is used to set parameters for a CRL operator entry for
fixed-point int16 division. The table entry specifies a relative scaling
between the operator inputs and output in order to map a range of slope
and bias values to a replacement function.

op_entry = RTW.TflCOperationEntryGenerator;
op_entry.setTflCOperationEntryParameters(

"Key', 'RTW_OP_DIV',
'Priority’', 90,

'SaturationMode’, '"RTW_WRAP_ON_OVERFLOW',
'RoundingModes', {'RTW_ROUND_CEILING'},
'RelativeScalingFactorF', 1.0,
'RelativeScalingFactorE"', -3.0,

'ImplementationName’, 's16_div_s16_s16_rsfop125',

'ImplementationHeaderFile', 's16_div_s16_s16_rsfOp125.h',
'ImplementationSourceFile', 's16_div_s16_s16_rsfOp125.c');

In the following example, the setTf1COperationEntryParameters
function is used to set parameters for a CRL operator entry for
fixed-point uint16 addition. The table entry specifies equal slope and

1-489

setTflICOperationEntryParameters

zero net bias across operator inputs and output in order to map relative
slope and bias values (rather than a specific slope and bias combination)
to a replacement function.

op_entry = RTW.TflCOperationEntryGenerator;
op_entry.setTflCOperationEntryParameters(

'Key', "RTW_OP_ADD',
'Priority’', 90,
'SaturationMode’, '"RTW_WRAP_ON_OVERFLOW"',
'RoundingModes’', {'RTW_ROUND_UNSPECIFIED'},
'SlopesMustBeTheSame', true,
'MustHaveZeroNetBias', true,
'ImplementationName', 'u16_add_SameSlopeZeroBias',
'ImplementationHeaderFile', 'u16_add_SameSlopeZeroBias.h',
'ImplementationSourceFile', 'u16_add_SameSlopeZeroBias.c');
How To + “Map Scalar Operators to Target-Specific Implementations”

+ “Map Fixed-Point Operators to Target-Specific Implementations”

+ “Create Code Replacement Tables”

1-490

setTflCSemaphoreEntryParameters

Purpose
Syntax

Arguments

varargin
Parameters

Set specified parameters for semaphore entry in CRL table
setTflCSemaphoreEntryParameters (hEntry, varargin)

hEntry
Handle to a CRL semaphore entry previously returned by hEntry
= RTW.TflCSemaphoreEntry;.

varargin
Parameter/value pairs for the semaphore entry. See varargin
Parameters.

The following semaphore entry parameters can be specified to the
setTf1CSemaphoreEntryParameters function using parameter/value
argument pairs. For example,

setTflCSemaphoreEntryParameters(..., 'Key', 'RTW_SEM_INIT', ...);

Key
String specifying the semaphore or mutex operation to be
replaced, among the semaphore and mutex operations supported
for replacement:

Operation Key

Mutex Destroy RTW_MUTEX_DESTROY
Mutex Init RTW_MUTEX_INIT
Mutex Lock RTW_MUTEX_LOCK
Mutex Unlock RTW_MUTEX_UNLOCK
Semaphore Destroy RTW_SEM_DESTROY
Semaphore Init RTW_SEM_INIT
Semaphore Post RTW_SEM_POST
Semaphore Wait RTW_SEM_WAIT

1-491

setTflICSemaphoreEntryParameters

1-492

GenCallback
String specifying '' or 'RTW.copyFileToBuildDir'. The
default is ' '. If you specify 'RTW.copyFileToBuildDir', and
if this semaphore entry is matched and used, the function
RTW.copyFileToBuildDir is called after code generation to copy
additional header, source, or object files that you have specified for
this semaphore entry to the build directory. For more information,
see “Specify Build Information for Code Replacements” in the
Embedded Coder documentation.

Priority

Positive integer specifying the semaphore entry’s search priority,
0-100, relative to other entries of the same name and conceptual
argument list within this table. Highest priority is 0, and lowest
priority is 100. The default is 100. If the table provides two
implementations for a semaphore operation, the implementation
with the higher priority will shadow the one with the lower
priority.

ImplementationName
String specifying the name of the implementation function, for
example, 'mySemCreate"'.

ImplementationHeaderFile
String specifying the name of the header file that declares the
implementation function, for example, 'mySem.h'. The default
is !

ImplementationHeaderPath
String specifying the full path to the implementation header file.
The default is ''.

ImplementationSourceFile
String specifying the name of the implementation source file, for
example, 'mySem.c'. The defaultis '"'.

ImplementationSourcePath
String specifying the full path to the implementation source file.
The default is ''.

setTflCSemaphoreEntryParameters

Note To supply additional build information for the
semaphore entry, you can use CRL table entry functions
addAdditionalHeaderFile, addAdditionalIncludePath,
addAdditionallLinkObj, addAdditionalLinkObjPath,
addAdditionalSourceFile, and addAdditionalSourcePath,
and CRL table entry properties AdditionalCompileFlags,
AdditionallLinkFlags, and OtherFiles. For more information.
see “Specify Build Information for Code Replacements”.

SideEffects
Boolean value used to flag the code generator that the
implementation function described by this entry should not be
optimized away. This parameter applies to implementation
functions that return void but should not be optimized away,
such as an implementation function that accesses global memory
values. For those implementation functions only, you must
include this parameter and specify the value true. The default is
false.

Description The setTflCSemaphoreEntryParameters function sets specified
parameters for a semaphore entry in a CRL table.

Examples In the following example, the setTf1CSemaphoreEntryParameters
function is used to set specified parameters for a CRL table entry for a
semaphore initialization replacement.

sem_entry = RTW.TflCSemaphoreEntry;
sem_entry.setTflCSemaphoreEntryParameters(...

'Key', 'RTW_SEM_INIT', ...
'Priority', 100, ...
'ImplementationName', 'mySemCreate', ..
'ImplementationHeaderFile', 'mySem.h', ...
'ImplementationSourceFile', 'mySem.c', ...

'GenCallback', 'RTW.copyFileToBuildDir', ...
'SideEffects', true);

1-493

setTflICSemaphoreEntryParameters

How To + “Map Semaphore or Mutex Operations to Target-Specific
Implementations”

+ “Create Code Replacement Tables”

+ “Introduction to Code Replacement Libraries”

1-494

RTW.Autosarinterface.setTriggerPortName

Purpose
Syntax

Description

Input
Arguments

See Also

How To

Specify Simulink inport that provides trigger data for
DataReceivedEvent

autosarInterfaceObj.setTriggerPortName (EventName,
SimulinkInportName)

autosarInterfaceObj.setTriggerPortName (EventName,
SimulinkInportName) specifies the inport that provides trigger data
for EventName, a DataReceivedEvent.

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.
EventName

Name of DataReceivedEvent
SimulinkinportName

Name of Simulink inport in model that provides trigger data
RTW.AutosarInterface.addEventConf |
RTW.AutosarInterface.getTriggerPortName
+ “Configure the AUTOSAR Interface”

+ “Configure Multiple Runnables for DataReceivedEvents”

1-495

RTW.Autosarinterface.syncWithModel

Purpose
Syntax

Description

How To

1-496

Synchronize configuration with model
autosarInterfaceObj .syncWithModel

autosarInterfaceObj.syncWithModel synchronizes the configuration
with the model for the RTW.AutosarInterface class.
autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.

* “Generating Code for AUTOSAR Software Components”

run

Purpose

Syntax

IDEs

Description

Execute program loaded on processor

IDE Obj.run
IDE Obj.run('runopt')
IDE Obj.run(...,timeout)

This function supports the following IDEs:
® Analog Devices VisualDSP++

* Eclipse IDE

® Green Hills MULTI

¢ Texas Instruments Code Composer Studio v3

IDE Obj.run runs the program file loaded on the referenced processor,
returning immediately after the processor starts running. Program
execution starts from the location of program counter (PC). Usually, the
program counter is positioned at the top of the executable file. However,
if you stopped a running program with halt, the program counter may
be anywhere in the program. run starts the program from the program
counter current location.

If IDE_Obj references more the one processor, each processors calls
run in sequence.

IDE Obj.run('runopt') includes the parameter runopt that defines
the action of the run method. The options for runopt are listed in the
following table.

1-497

run

1-498

runopt string Description

‘run' Executes the run and waits to confirm that
the processor is running, and then returns to
MATLAB.

'runtohalt’ Executes the run but then waits until the

processor halts before returning. The halt can
be the result of the PC reaching a breakpoint,

or by direct interaction with the IDE, or by the
normal program exit process.

"tohalt' Waits until the running program has halted.
Unlike the other options, this selection does not
execute a run, it simply waits for the running
program to halt.

'main' This option resets the program and executes a
run until the start of function 'main'.

"tofunc' This option must be followed by an extra
parameter funname, the name of the function
to run to:

IDE_Obj.run('tofunc', funcname)

This executes a run from the present PC location
until the start of function funcname is reached.
If funcname is not along the program’s normal
execution path, funcname is not reached and the
method times out.

In the 'run' and 'runtohalt’' cases, a halt can be caused by a
breakpoint, a direct interaction with the IDE, or by a normal program
exit.

The following table shows the availability of the runopt options by IDE.

run

See Also

CCS IDE Eclipse IDE | MULTI IDE | VisualDSP++
IDE
‘run' Yes Yes Yes Yes
'runtohalt'| Yes Yes Yes Yes
'tohalt' Yes Yes
'main' Yes Yes
"tofunc' Yes Yes

IDE Obj.run(...,timeout) adds input argument timeout, to allow you
to set the time out to a value different from the global timeout value.
The timeout value specifies how long, in seconds, MATLAB waits for
the processor to start executing the loaded program before returning.

Most often, the 'run' and 'runtohalt’' options cause the processor
to initiate execution, even when a timeout is reached. The timeout
indicates that the confirmation was not received before the timeout

period elapsed.

halt | load | reset

1-499

save

Purpose
Syntax
IDEs

Description

Examples

1-500

Save file
IDE Obj.save(filename,filetype)

This function supports the following IDEs:
® Analog Devices VisualDSP++

¢ Texas Instruments Code Composer Studio v3

Use IDE 0Obj.save(filename,filetype) to save open files in the IDE
project.

The filename argument defines the name of the file to save. When
entering the file name, include the file extension.

The optional filetype argument defines the type of file to save. If
you omit the filetype argument, filetype defaults to 'project’.
Except with VisualDSP++ IDE, 'project' is the only supported option.
Therefore, you can omit the filetype argument in most cases.

CCS IDE Eclipse IDE | MULTI IDE | VisualDSP++
IDE
'project’ Yes Yes Yes Yes
"projectgroupNo No No Yes

Note The open method does not support the 'text' argument.

To save the project files:

IDE_Obj.save('all')

To save the myproject project:

IDE_Obj.save('myproject')

save

See Also

To save the active project:

IDE_Obj.save([])

For VisualDSP++ IDE, to save the projects in the project groups:

IDE_Obj.save('all', 'projectgroup')

For VisualDSP++ IDE, to save the myg.dpg project group:

IDE_Obj.save('myg.dpg', 'projectgroup’)

For VisualDSP++ IDE, to save the active project in the project groups:

IDE_Obj.save([], 'projectgroup')

adivdsp | close | load

1-501

setbuildopt

Purpose

Syntax

IDEs

Description

See Also

1-502

Set active configuration build options

IDE Obj.setbuildopt(tool,ostr)
IDE Obj.setbuildopt(file,ostr)

This function supports the following IDEs:
® Analog Devices VisualDSP++
¢ Green Hills MULTI

¢ Texas Instruments Code Composer Studio v3

Use IDE 0Obj.setbuildopt(tool,ostr) to set the build options for a
specific build tool in the current configuration. This replaces the switch
settings that are applied when you invoke the command line tool. For
example, a build tool could be a compiler, linker or assembler. To define
the tool argument, first use the getbuildopt command to read a list of
defined build tools.

If the VisualDSP++ and Code Composer Studio IDEs do not recognize
the ostr argument, setbuildopt sets the switch settings to the default
values for the build tool specified by tool.

If the MULTI IDE does not recognize the ostr argument, the IDE does
not load the project.

Use IDE 0Obj.setbuildopt(file,ostr) to configure the build options
for a file you specify with the file argument. The source file must
exist in the active project.

activate | getbuildopt

symbol

Purpose Program symbol table from IDE
Syntax s = IDE_Obj.symbol
IDEs This function supports the following IDEs:

® Analog Devices VisualDSP++
¢ Green Hills MULTI

¢ Texas Instruments Code Composer Studio v3

Description s = IDE 0Obj.symbol returns the symbol table for the program loaded
in the processor associated with the IDE handle object, IDE_Obj. The
symbol method only applies after you load a processor program file.

s 1s an array of structures where each row in s presents the symbol
name and address in the table. Therefore, s has two columns; one is the
symbol name, and the other is the symbol address and symbol page.

For CCS IDE, this table shows a few possible elements of s, and their

interpretation.
s Structure Field Contents of the Specified Field
s(1) .name String reflecting the symbol entry name.
s(1).address (1) Address or value of symbol entry.
s(1).address(2) Memory page for the symbol entry. For TI
C6xxx processors, the page is 0.

For MULTI IDE, this table shows a few possible elements of s and their

interpretation.
s Structure Field Contents of the Specified Field
s(1) .name String reflecting the symbol entry name.
s(1).address Address or value of symbol entry.
s(1) .address Address or value of symbol entry in hex.

1-503

symbol

Examples

See Also

1-504

You can use field address in s as the address input argument to read
and write.

It you use symbol and the symbol table does not exist, s returns empty
and you get a warning message.

Symbol tables are a portion of a COFF object file that contains
information about the symbols that are defined and used by the file.
When you load a program to the processor, the symbol table resides in
the IDE. While the IDE may contain more than one symbol table at a
time, symbol accesses the symbol table belonging to the program you
last loaded on the processor.

Build and load a example program on your processor. Then use symbol
to return the entries stored in the symbol table in the processor.

s = IDE_Obj.symbol;

s contains the symbols and their addresses, in a structure you can
display with the following code:

for k=1:1length(s),disp(k),disp(s(k)),end;

MATLAB software lists the symbols from the symbol table in a column.

load | run

tices

Purpose

Syntax

IDEs

Description

Create handle object to interact with Code Composer Studio IDE

IDE_Obj = ticcs
IDE_Obj ticcs('propertyname', 'propertyvalue',...)

Note The output argument name you provide for ticcs cannot begin
with an underscore, such as IDE_Obj.

This function supports the following IDEs:

e Texas Instruments Code Composer Studio v3

IDE_Obj = ticcs returns a tices object in IDE_Obj that MATLAB
software uses to communicate with the default processor. If you do

not use input arguments, ticcs constructs the object with default
values for the properties. the IDE handles the communications between
MATLAB software and the selected CPU. When you use the function,
ticcs starts the IDE if it is not running. If ticcs opened an instance of
the IDE when you issued the ticcs function, the IDE becomes invisible
after your coder product creates the new object.

Note When ticcs creates the object IDE_Obj, it sets the working folder
for the IDE to be the same as your MATLAB Current Folder. When
you create files or projects in the IDE, or save files and projects, this
working folder affects where you store the files and projects.

Each object that accesses the IDE comprises two objects—a ticcs object
and an rtdx object—that include the following properties.

1-505

tices

Object Property Name | Property | Default Description
ticcs 'apiversion' API version | N/A Defines the API version
used to create the link.
"proctype’ Processor N/A Specifies the kind of
Type processor on the board.
'procname' Processor CPU Name given to the
Name processor on the board
to which this object links.
'status' Running No Status of the program
currently loaded on the
processor.
"boardnum' Board 0 Number that CCS assigns
Number to the board. Used to
identify the board.
"procnum' Processor 0 Number the CCS assigns
number to a processor on a board.
"timeout’ Default 10.0 s Specifies how long
timeout MATLAB software waits

for a response from CCS
after issuing a request.
This also applies when
you try to construct a
ticcs object. The create
process waits for this
timeout period for the
connection to the processor
to complete. If the timeout
period expires, you get an
error message that the
connection to the processor
failed and MATLAB
software could not create
the ticcs object.

1-506

tices

Object

Property Name | Property | Default Description

rtdx

'timeout' Timeout 10.0 s Specifies how long CCS

waits for a response
from the processor after
requesting data.

'numchannels’ Number 0 The number of open
of open channels using this link.
channels
IDE_Obj = ticcs('propertyname', 'propertyvalue',...) returns a

handle in IDE_Obj that MATLAB software uses to communicate with
the specified processor. CCS handles the communications between the
MATLAB environment and the CPU.

MATLAB software treats input parameters to ticcs as property
definitions. Each property definition consists of a property
name/property value pair.

Two properties of the ticcs object are read only after you create the
object:

e ‘'poardnum' — The identifier for the installed board selected from
the active boards recognized by CCS. If you have one board, use the
default property value 0 to access the board.

e 'procnum' — The identifier for the processor on the board defined by
boardnum. On boards with more than one processor, use this value to
specify the processor on the board. On boards with one processor, use
the default property value O to specify the processor.

Given these two properties, the most common forms of the ticcs
method are

IDE_Obj = ticcs('boardnum',value)
IDE_Obj = ticcs('boardnum',value,'procnum',value)

IDE_Obj = ticcs(...,'timeout',value)

which specify the board, and processor in the second example, as the
processor.

1-507

tices

1-508

The third example adds the timeout input argument and value to allow
you to specify how long MATLAB software waits for the connection to
the processor or the response to a command to return completed.

You do not need to specify the boardnum and procnum properties when
you have one board with one processor installed. The default property
values refer to the processor on the board.

Note Simulators are considered boards. If you defined both boards and
simulators in the IDE, specify the boardnum and procnum properties

to connect to specific boards or simulators. Use ccsboardinfo to
determine the values for the boardnum and procnum properties.

Because these properties are read only after you create the handle,
you must set these property values as input arguments when you use
ticcs. You cannot change these values after the handle exists. After
you create the handle, use the get function to retrieve the boardnum
and procnum property values.

Using ticcs with Multiple Processor Boards

When you create ticcs objects that access boards that contain more
than one processor, such as the OMAP1510 platform, ticcs behaves
a little differently.

For each of the ticcs syntaxes, the result of the method changes in the
multiple processor case, as follows.

IDE_Obj = ticcs
IDE_Obj = ticcs('propertyname',propertyvalue)
IDE_Obj = ticcs('propertyname',propertyvalue, 'propertyname’,...

propertyvalue)

In the case where you do not specify a board or processor:

IDE_Obj = ticcs
Array of TICCS Objects:

tices

API version 1.2

Board name : OMAP 3.0 Platform Simulator [Texas
Instruments]

Board number 0

Processor 0 (element 1): TMS470R2127 (MPU, Not Running)
Processor 1 (element 2): TMS320C5500 (DSP, Not Running)

Where you choose to identify your processor as an input argument to
ticcs, for example, when your board contains two processors:

IDE_Obj = ticcs('boardnum',2)
Array of TICCS Objects:

API version 1.2
Board name : OMAP 3.0 Platform Simulator [Texas Instruments]
Board number 2

Processor 0 (element 1) : TMS470R2127 (MPU, Not Running)
Processor 1 (element 2) : TMS320C5500 (DSP, Not Running)

IDE_Obj returns a two element object handle with IDE_Obj (1)
corresponding to the first processor and IDE_Obj (2) corresponding to
the second.

You can include both the board number and the processor number in
the ticcs syntax. For example:

IDE_Obj = ticcs('boardnum',2,'procnum',[0 1])
Array of TICCS Objects:

API version 1.2

Board name : OMAP 3.0 Platform Simulator [Texas
Instruments]

Board number 2

Processor 0 (element 1) : TMS470R2127 (MPU, Not Running)
Processor 1 (element 2) : TMS320C5500 (DSP, Not Running)

Enter procnum as either a single processor on the board (a single value

in the input arguments to specify one processor) or a vector of processor
numbers, as shown in the example, to select two or more processors.

1-509

tices

1-510

Support Coemulation and OMAP

Coemulation, defined by Texas Instruments to mean simultaneous
debugging of two or more CPUs, allows you to coordinate your
debugging efforts between two or more processors within one device.
Efficient development with OMAP™ hardware requires coemulation
support. Instead of creating one IDE_0bj object when you issue the
following command

IDE_Obj = ticcs

or your hardware that has multiple processors, the resulting IDE_0bj
object comprises a vector of IDE_Obj objects IDE_Obj (1), IDE_Obj(2),
and so on, each of which accesses one processor on your device, say

an OMAP1510. When your processor has one processor, IDE_0bj is a
single object. With a multiprocessor board, the IDE_0bj object returns
the new vector of objects. For example, for board 2 with two processors,

IDE_Obj = ticcs
returns the following information about the board and processors:

IDE_Obj = ticcs('boardnum',2)
Array of TICCS Objects:

API version 1.2

Board name : OMAP 3.0 Platform Simulator [Texas
Instruments]

Board number 2

Processor 0 (element 1) : TMS470R2127 (MPU, Not Running)
Processor 1 (element 2) : TMS320C5500 (DSP, Not Running)

Checking the existing boards shows that board 2 does have two
processors:

ccsboardinfo
Board Board Proc Processor Processor
Num Name Num Name Type

tices

2 OMAP 3.0 Platform Simulator [T ... O MPU TMS470R2x
2 OMAP 3.0 Platform Simulator [T ... 1 DSP TMS320C550
1 MGS3 Simulator [Texas Instruments] O CPU TMS320C5500
0 ARM925 Simulator [Texas Instru ... O CPU TMS470R2x

Examples On a system with three boards, where the third board has one processor
and the first and second boards have two processors each, the following
function:

IDE_Obj = ticcs('boardnum',1, 'procnum',0);

returns an object that accesses the first processor on the second board.
Similarly, the function

IDE_Obj = ticcs('boardnum',0, 'procnum',1);
returns an object that refers to the second processor on the first board.
To access the processor on the third board, use

IDE_Obj = ticcs('boardnum',2);

which sets the default property value procnum= 0 to connect to the
processor on the third board.

IDE_Obj = ticcs
TICCS Object:

API version 1.2
Processor type : TMS320C6711
Processor name : CPU_1
Running? : No

Board number HE

Processor number : 0

Default timeout : 10.00 secs

RTDX channels : 0

1-511

tices

Defined types : Void, Float, Double, Long, Int, Short, Char

See Also ccsboardinfo | set

1-512

visible

Purpose
Syntax
IDEs

Description

Examples

Set whether IDE window appears while IDE runs
IDE Obj.visible(state)

This function supports the following IDEs:
® Analog Devices VisualDSP++

¢ Texas Instruments Code Composer Studio v3

Use IDE 0Obj.visible(state) to make the IDE visible on the desktop
or make it run in the background.

To run the IDE in the background so it is not visible on the desktop,
enter '0' for the state argument.

To make the IDE visible on your system desktop, enter '1' for the
state argument.

You can use methods to interact with a IDE handle object, such as
IDE_Obj, while the IDE is in both states, visible and not visible. You
can interact with the IDE GUI while the IDE is visible.

On the Microsoft Windows platform, if you make the IDE visible and
look at the Windows Task Manager:

e While the IDE is visible (state is 1), the IDE appears on the
Applications page of Task Manager, and the IDE_Obj_app.exe
process shows up on the Processes page as a running process.

e While the IDE is not visible (state is 0), the IDE disappears from
the Applications page, but remains on the Processes page, with a
process ID (PID), using CPU and memory resources.

In MATLAB, use the constructor function to create a IDE handle
object for your IDE. The constructor function creates a handle, such
as IDE_Obj, and starts the IDE.

To get the visiblity status of IDE_Obj, enter:

IDE_Obj.isvisible

1-513

visible

See Also

1-514

ans =
0

Now, change the visibility of the IDE to 1, and check its visibility again.

IDE_Obj.visible(1)
IDE_Obj.isvisible

ans =
1

If you close MATLAB software while the IDE is not visible, the IDE
remains running in the background. To close it, perform either of the
following tasks:

e Start MATLAB software. Create a link to the IDE. Use the new link
to make the IDE visible. Close the IDE.

® Open Microsoft Windows Task Manager. Click Processes. Find and
highlight IDE_0Obj app.exe. Click End Task.

isvisible | load

write

Purpose

Syntax

IDEs

Description

Write data to processor memory block

mem=IDE_Obj.write(address,data)
mem=write(...,datatype)
mem=IDE_Obj.write(...,memorytype)
mem=IDE_Obj.write(...,timeout)

This function supports the following IDEs:
® Analog Devices VisualDSP++

* Eclipse IDE

® Green Hills MULTI

¢ Texas Instruments Code Composer Studio v3

mem=IDE Obj.write(address,data) writes data, a collection of values,
to the memory space of the DSP processor referenced by IDE_Obj.

The data argument is a scalar, vector, or array of values to write to
the memory of the processor. The block to write begins from the DSP
memory location given by the input parameter address.

The method writes the data starting from address without regard to
type-alignment boundaries in the DSP. Conversely, the byte ordering of
the data type 1s automatically applied.

Note You cannot write data to processor memory while the processor
1s running.

The address argument is a decimal or hexadecimal representation of a
memory address in the processor. The full memory address consist of
two parts: the start address and the memory type. The memory type
value can be explicitly defined using a numeric vector representation
of the address.

1-515

write

Alternatively, the IDE_0bj object has a default memory type value
which is applied if the memory type value is not explicitly incorporated
into the passed address parameter. In DSP processors with only a
single memory type, by setting the IDE_Obj object memory type value
to zero 1t is possible to specify the addresses using the abbreviated
(implied memory type) format.

You provide the address argument either as a numerical value that is
a decimal representation of the DSP memory address, or as a string
that write converts to the decimal representation of the start address.
(Refer to function hex2dec in the MATLAB Function Reference that
read uses to convert the hexadecimal string to a decimal value).

The following examples show how write uses the address argument.

address Description

Parameter

Value

131082 Decimal address specification. The memory start

address is 131082 and memory type is 0. This action is
the same as specifying [131082 0].

[131082 1] | Decimal address specification. The memory start
address is 131082 and memory type is 1.

'2000A' Hexadecimal address specification provided as a string
entry. The memory start address is 131082 (converted
to the decimal equivalent) and memory type is O.

It is possible to specify address as cell array, in which case you can use
a combination of numbers and strings for the start address and memory
type values. For example, the following are valid addresses from cell
array myaddress

myaddressi myaddressi{1}
"Program(PM) Memory';

131072; myadddressi{2} =

myaddress2 myaddress2{1}
"Program(PM) Memory';

'20000'; myadddress2{2} =

1-516

write

myaddress3 myaddress3{1} = 131072; myaddress3{2} = 0;

mem=write(...,datatype) where the datatype argument defines the
interpretation of the raw values written to DSP memory. The datatype
argument specifies the data format of the raw memory image. The
data is written starting from address without regard to data type
alignment boundaries in the DSP. The byte ordering of the data type

is automatically applied. The following MATLAB data types are
supported.

MATLAB Data Type Description

double IEEE double-precision floating
point value

single IEEE single-precision floating
point value

uint8 8-bit unsigned binary integer
value

uinti6 16-bit unsigned binary integer
value

uint32 32-bit unsigned binary integer
value

int8 8-bit signed two’s complement

integer value

int16 16-bit signed two’s complement
integer value

int32 32-bit signed two’s complement
integer value

write does not coerce data type alignment. Some combinations of
address and datatype will be difficult for the processor to use.

mem=IDE Obj.write(...,memorytype) adds an optional memorytype
argument. Object IDE_Obj has a default memory type value O that
write applies if the memory type value is not explicitly incorporated

1-517

write

Examples

1-518

into the passed address parameter. In processors with only a single
memory type, it is possible to specify the addresses using the implied
memory type format by setting the value of the IDE_Obj memorytype
property to zero.

mem=IDE Obj.write(...,timeout) adds the optional timeout argument,
which the number of seconds MATLAB waits for the write process to
complete. If the timeout period expires before the write process returns
a completion message, MATLAB throws an error and returns. Usually
the process works in spite of the error message.

Using write with VisualDSP++ IDE

Blackfin and SHARC use different memory types. Blackfin processors
have one memory type. SHARC processors provide five types. The
following table shows the memory types for both processor families.

String Entry for Numerical Entry Processor Support
memorytype for memorytype

‘program(pm) 0 Blackfin and SHARC
memory'

"data(dm) 1 SHARC

memory'

'data(dm) short 2 SHARC

word memory'

'external 3 SHARC

data(dm) byte

memory'

"boot (prom) 4 SHARC

memory'

Example with VisualDSP++ IDE

These three syntax examples show how to use write in some common
ways. In the first example, write an array of 16-bit integers to location
[131072 1].

write

IDE_Obj.write([131072 1],int16([1:100]));

Now write a single-precision IEEE floating point value (32-bits) at
address 2000A(Hex).

IDE_Obj.write('2000A',single(23.5));

For the third example, write a 2-D array of integers in row-major format
(standard C programming format) at address 131072 (decimal).

mlarr = int32([1:10;101:110]);
IDE_Obj.write(131072,mlarr');

See Also hex2dec | read

1-519

writemsg

Purpose

Syntax

IDEs

Description

Examples

1-520

Write messages to specified RTDX channel

Note Support for writemsg on C5000 processors will be removed in a
future version.

data = writemsg(rx,channelname,data)
data writemsg(rx,channelname,data,timeout)

This function supports the following IDEs:

¢ Texas Instruments Code Composer Studio v3

data = writemsg(rx,channelname,data) writes data to a channel
associated with rx. channelname identifies the channel queue, which
you must configure for write access beforehand. The messages must be
the same type for a single write operation. writemsg takes the elements
of matrix data in column-major order.

In data = writemsg(rx,channelname,data,timeout), the optional
argument, timeout, limits the time writemsg spends transferring
messages from the processor. timeout is the number of seconds allowed
to complete the write operation. You can use timeout limit prolonged
data transfer operations. If you omit timeout, writemsg applies the
global timeout period defined for the IDE handle object IDE_Obj.

writemsg supports the following data types: uint8, int16, int32,
single, and double.

After you load a program to your processor, configure a link in RTDX
for write access and use writemsg to write data to the processor. Recall
that the program loaded on the processor must define ichannel and the
channel must be configured for write access.

IDE_Obj=ticcs;
rx = IDE_Obj.rtdx;
open(rx, 'ichannel','w'); % Could use rx.open('ichannel','w")

writemsg

See Also

enable(rx, 'ichannel');
inputdata(1:25);
writemsg(rx, 'ichannel’,int16(inputdata));

As a further illustration, the following code snippet writes the messages
in matrix indata to the write-enabled channel specified by ichan.

The code in this example processes only when ichan is defined by the
program on the processor and enabled for write access.

indata = [1 4 7; 2 5 8; 3 6 9];
writemsg(IDE_Obj.rtdx, 'ichan',indata);

The matrix indata is written by column to ichan. The preceding
function syntax is equivalent to

writemsg(IDE_Obj.rtdx, 'ichan',[1:9]);

readmat | readmsg | write

1-521

xmakefilesetup

Purpose Configure your coder product to generate makefiles
Syntax xmakefilesetup
IDEs This function supports the following IDEs:

Analog Devices VisualDSP++
Eclipse IDE
Green Hills MULTI

Texas Instruments Code Composer Studio v3

Texas Instruments Code Composer Studio v4

Texas Instruments Code Composer Studio v5

Description You can configure your coder product to generate and build your
software using makefiles. This process can use the software build
toolchains, such as compilers and linkers, associated with the preceding
list of IDEs. However, the makefile build process does not use the
graphical user interface of the IDE directly.

Enter xmakefilesetup at the MATLAB command line to configure
how to generate makefiles.

Use this function:
¢ Before you build your software using makefiles for the first time.
¢ [f you change the software build toolchain or processor family.

For more instructions and examples, see “Makefiles for Software Build
Tool Chains”.

The xmakefile function displays the following dialog box, which
prompts you for information about your make utility and software
build toolchain.

1-522

xmakefilesetup

See Also

] xMakefile User Configuration |

Active
Template:
Configuration: w| ¥ Display operational configurations only New... Delete

User Templates: |H: \Documents\MATLABY Browse...
User Configurations: [H:\Documents!MATLABY Browse...

make Utlity | compler | Lnker | Archiver | Prebuid | Postbuld | Execute | Tool Directories |
Make utility: |c: \Work\Sandboxes'R 2010a,01.05\matlzbpin\win32igmake Browse, ..
Arguments: I F "I MW _XMK_GENERATED_FILE MAME[RT]|[]™ [11TMW_XMK_ACTIVE BUILD_ACTION_REF(|]]

Optional indude: | Browse. ..

OK | Cancel | Help | Apply |

“Build format” on page 3-120 | “Build action” on page 3-122

1-523

targetinstaller

Purpose

Syntax

Description

1-524

Open Target Installer and install support for third-party hardware
or software

targetinstaller

The targetinstaller function opens Target Installer at the “Install or
update target” screen. Then use Target Installer to install support for
third-party hardware or software to MathWorks products.

W Target Installer o [@]=

Install or update target
Where do you want to install or update from?

@ Internet (recommended)

() Folder

I Next > || Cancel H Help

The term target is given to each collection of features and capabilities
for a specific type third-party hardware or software.

The term support package is given to the zip file Target Installer uses to
install a target.

targetinstaller

When a target requires a specific firmware version on the hardware,
Target Installer gives you the option to update the firmware
automatically.

If you need to update the firmware on multiple pieces of hardware, use
the targetupdater function. The targetupdater function bypasses the
target installation process and opens Target Installer at the “Update
firmware” screen.

See Also “Working with Green Hills MULTI IDE” |

1-525

targetinstaller

1-526

Blocks — Alphabetical List

Blackfin537 bf537 adc

2-2

Purpose

Library

Description

Configure ADC to collect data from analog jacks and output digital data

Embedded Coder/ Embedded Targets/ Processors/ Analog Devices
Blackfin/ ADSP-BF537 EZ-KIT Lite

Bladfin537
Cutp
bf537_adc
bfE37_adc

Configure AD1871 audio ADC on ADI BF537 EZ-KIT Lite board to
capture audio stream from the Line In jack of BF537 board. This block
uses a sampling rate of 48 kHz. It outputs the sampled signal as [Nx2],
where N indicates number of samples per frame in an array of int32
values.

This block allocates static ADC/DAC buffers, and does not use heap
memory.

Blackfin537 bf537 adc

x

—bf537_adc (mask) {ink)

ConfigureAD 1371 audio ADC on ADI BF537 EZ-KIT Lite board to
capture audio stream from the Line In jack of BF537 board. The
samping rate is 48 kHz.Output is a [Mx2], M being the number of
samples per frame, array of int32 values representing the
sampled signal.

—Parameters

Samples per frame:

&4
i

oK Cancel Help

Dialog
Box

Samples per frame
Set the number of samples the ADC buffers internally before it
sends the digitized signals, as a frame vector, to the next block
in the model. This value defaults to 64 samples per frame. The
frame rate depends on the sample rate and frame size. The
sample rate of the ADI BF537 EZ-KIT Lite board is 48 kHz. If you
set Samples per frame to 64, the resulting frame rate is 750
frames per second (48000/64 = 750).

Inherit sample time
Select whether the block inherits the sample time from the
model base rate or from the Simulink base rate. You can locate
the Simulink base rate in the Solver options in Configuration
Parameters. Selecting Inherit sample time directs the block
to use the specified rate in model configuration. Entering -1
configures the block to accept the sample rate from the upstream
Interrupt, Task, or Triggered Task blocks.

2-3

Blackfin537 bf537 adc

References ADSP-BF537 EZ-KIT Lite® Evaluation System Manual, Part Number
82-000865-01, available from the Analog Devices Web site.

See Also Blackfin537 bf537_dac

2-4

Blackfin537 bf537 dac
|

Purpose Convert a stream of digital data to an analog signal and send it to the

output jack
Librclry Embedded Coder/ Embedded Targets/ Processors/ Analog Devices

Blackfin/ ADSP-BF537 EZ-KIT Lite

Blaofin27
In
bf53T_dac

Description £f527_dac

Configure AD1854 audio DAC on ADI BF537 EZ-KIT Lite board to
capture audio stream from the Line In jack of BF537 board. This block
uses a sampling rate of 48 kHz. It outputs the sampled signal as [Nx2],
where N indicates number of samples per frame in an array of int32
values.

This block allocates static ADC/DAC buffers, and does not use heap
memory.

2-5

Blackfin537 bf537 dac

Dialog
Box

References

See Also

2-6

E! Sink Block Parameters: bf537_dac il

—bf537_dac (mask) {ink)

Configure AD 1854 audio DAC on ADI BF537 EZ-KIT Lite board to capture audio
stream from the Line In jack of BF537 board. The sampling rate is 48 kHz.Output is
a [MxZ2], M being the number of samples per frame, array of int32 values
representing the sampled signal.

—Parameters

Samples per frame:

o4

Cancel Help Apply

Samples per frame
Set the number of samples per data input frame. Match this value
with the value of the block creating the data frames. This value
defaults to 64 samples per frame.

ADSP-BF537 EZ-KIT Lite® Evaluation System Manual, Part Number
82-000865-01, available from the Analog Devices Web site.

Blackfin537 bf537_adc

Blackfin537 bf537_uart_config

Purpose

Library

Description

Configure UART transceiver to capture data from UART port

Embedded Coder/ Embedded Targets/ Processors/ Analog Devices
Blackfin/ ADSP-BF537 EZ-KIT Lite

Bladfin537
bfE37_uart_config
bf537_uart_config

Configure UART transceiver on ADI BF537 based board to capture
data stream from the UART port of BF537 board. Your model can only
contain one configuration block per UART port.

If the memory allocation for this block fails, the software generates an
error that guides you to increase heap size or reduce data length. To
change the heap size, use the System heap size (MAUs) parameter,
located in the model Configuration Parameters under Code Generation
> IDE Link.

2-7

Blackfin537 bf537_uart_config

2-8

Dialog
Box

E! Block Parameters: bf537_uart_config il

—bf537_uart_config (mask) {ink)

Configure UART tranceiver on ADI BF537 based board to capture data stream from
the UART port of BF537 board.

—Parameters

UART port: JUARTO

Baud rate: |57600

Data bits: |3

Parity: IH:::nE

KN S K K K K

Stop bits: |1

Cancel Help | Apply |

UART port

Select which UART port this block configures. UARTO uses

processor pins PFO (UARTO transmit) and PF1 (UARTO receive).
UART1 uses processor pins PF2 (Push button SW13) and PF3
(Push button SW12). These pins have multiple GPIO functions
that depend on the configuration of the processor. For more

information, see the “Programmable Flags (PFs)” section of the
ADSP-BF537 EZ-KIT Lite® Evaluation System Manual.

Baud rate

Configure the rate at which the UART transfers bits per second.
The bits include the start bit, the data bits, the parity bit (if
enabled), and the stop bits. Configure both the sending and
receiving devices to the same baud rate.

Blackfin537 bf537_uart_config

References

See Also

Data bits
Set the number of data bits per data frame to 5, 6, 7, or 8. The
UART transmits the least significant bit sent first. Use the
default value, 8 bits, unless your system requires a lower value.
Configure both the sending and receiving devices to the same
data bit value.

Parity

Set type of parity checking to be none, even, or odd. When you set
Parity to none, the UART does not perform parity checking and
does not transmit a parity bit. When you set Parity to even, the
UART sets the parity bit to 1 to obtain an even number of ones in
the data word. When you set Parity to odd, the UART sets the
parity bit to 1 to obtain an odd number of ones in the data word.
Parity checking can detect errors of 1 bit only. An error in 2 bits
can cause the data to have a seemingly valid parity. Configure
both the sending and receiving devices to the same parity value.

Stop bits
Set the number of bits used to indicate the end of a byte. When you
set Stop bits to 1, the UART transmits 1 bit to signal the end of a
transmission. When you set Stop bits to 1.5, the UART extends
the length of time it transmits the 1-bit stop bit by half. Configure
both the sending and receiving devices to the same stop bit value.

ADSP-BF537 EZ-KIT Lite® Evaluation System Manual, Part Number
82-000865-01, available from the Analog Devices Web site.

Blackfin537 bf537_uart_rx, Blackfin537 bf537_uart_tx

Blackfin537 bf537 uart rx

Purpose Receive data stream from UART port
Librclry Embedded Coder/ Embedded Targets/ Processors/ Analog Devices
Blackfin/ ADSP-BF537 EZ-KIT Lite
EI_=c>:fi"'.=‘2'-:H[
ofE37_uart oo ius
Description SRR _uar o

Configure UART receiving on ADI BF537-based board to receive
data stream from the UART port on the board. This block outputs
[Nx1], where N indicates the data length in an array of uint8 values
representing the ASCII characters. Your model can only contain one
receive block per UART port.

If the memory allocation for this block fails, the software generates an
error that guides you to increase heap size or reduce data length. To
change the heap size, use the System heap size (MAUs) parameter,
located in the model Configuration Parameters under Code Generation
> IDE Link.

2-10

Blackfin537 bf537 uart rx

Dialog
Box

E! Source Block Parameters: bf537_uart_ il

—bf537_uart_rx (mask) {Jink)

ASII characters,

Configure UART receiving on ADI BF537-based board to receive
data stream from the UART port on the board. Qutputis a [Mx1],
M being the data length, array of uints values representing the

—Parameters

UART port: [UARTO

Data length:

=l

f 15
[~ Enable blocking mode
™ Enable software buffer

Sample time:

f1

Cancel Help

UART port

Select which UART port from which this block receives data.

Data length

Set the data length, in bytes, of the Out port. This block outputs
the number of bytes the Data length parameter specifies.

Enable blocking mode

When you enable blocking mode, this block waits until it receives
enough data before writing the data to the Out port.

When you disable blocking mode:

2-11

Blackfin537 bf537 uart rx

e If the receive buffer contains the number of bytes specified by
Data length, the block writes the data to the Out port and
also sends a positive number on the Status port. This positive
number indicates valid data on the Out port.

e If the receive buffer does not contain the number of bytes
specified by Data length, the block does not write the data to
the Out port and instead sends a 0 to the Status port. This 0
indicates invalid data on the out port.

Enable software buffer
Use a software-managed buffer, in addition to hardware FIFO,
to handle incoming data.

Software buffer size factor
If you enable the software buffer, set the size of Software buffer
size factor to handle expected bursts in the incoming data.

Sample time
Specify the time interval between samples. To inherit sample
time from the upstream block, set this parameter to -1.

References ADSP-BF537 EZ-KIT Lite® Evaluation System Manual, Part Number
82-000865-01, available from the Analog Devices Web site.

See Also Blackfin537 bf537_uart_config, Blackfin537 bf537_uart_tx

2-12

Blackfin537 bf537 uvart tx

Purpose

Library

Description

Transmit data stream from UART port

Embedded Coder/ Embedded Targets/ Processors/ Analog Devices
Blackfin/ ADSP-BF537 EZ-KIT Lite

BladfinE37
I--
bf537_uart_tx
bfE37_uart_te

Configure UART transmission on ADI BF537 based board to send data
stream through the UART port of the board. The block requires an
input of [Nx1], where N indicates the data length, in an array of uint8
values representing the ASCII characters. Your model can only contain
one transmit block per UART port.

If the memory allocation for this block fails, the software generates an
error that guides you to increase heap size or reduce data length. To
change the heap size, use the System heap size (MAUs) parameter,
located in the model Configuration Parameters under Code Generation
> IDE Link.

2-13

Blackfin537 bf537 uart tx

Dialog
Box

References

See Also

2-14

E! Sink Block Parameters: bf537_uvart_tx il

—bf537_uart_tx (mask) {Jink)

Configure UART transmission on ADI BF537 based board to send data stream
through the UART port of the board. Inputis a [Mx1], M being the data length,
array of uint8 values representing the ASII characters.

—Parameters

UART part: |UARTD |

Data length:

16

Cancel Help Apply

UART port
Select the UART port the transmit block uses to send data.

Data length
Set the data length, in data words, of each transmission. Match
this value to the data size on the In port.

ADSP-BF537 EZ-KIT Lite® Evaluation System Manual, Part Number
82-000865-01, available from the Analog Devices Web site.

Blackfin537 bf537_uart_config, Blackfin537 bf537_uart_rx

Blackfin Hardware Interrupt

Purpose

Library

Description

Generate Interrupt Service Routine

Embedded Coder/ Embedded Targets/ Processors/ Analog Devices
Blackfin/ Scheduling

Embedded Coder Support Package for Green Hills MULTI IDE/ Analog
Devices Blackfin/ Scheduling

Bladkfin
IRCM B

Hardware Intemupt

Hardware Intemupt

Create interrupt service routines (ISR) in the software generated by the
build process. When you incorporate this block in your model, code
generation results in ISRs on the processor that run the processes
that are downstream from this block or an Idle Task block connected
to this block. Core interrupts trigger the ISRs. System interrupts
trigger the core interrupts. In the following figure, you see the mapping
possibilities between system interrupts and core interrupts.

Interrupts

Blackfin processors support the interrupt numbers shown in the
following table. Some Blackfin processors do not support all of the
system interrupts.

Interrupt Valid Range in Parameter
Description

Core interrupt 7 to 13 and 15

numbers

System interrupt | O to 63 (The upper end value depends on the
numbers processor. May be less than 63.)

2-15

Blackfin Hardware Interrupt

2-16

Dialog
Box

E! Source Block Parameters: Hardware Int

x|

— Blackfin [nterrupt Block [mazk]

Create Intermupt Service Routing which will erecute the downstream
subsyztemn.

— Parameter

Core |nterupt numbers:

[[1012]

Syztem interrupt numbers:

[19 28]

Simulink, tazk prioities:;

[16057]

Preemption flags: preemptable-1, non-preemptable-0

J[01]

[Enable simulation input

ok Cancel Help

Core interrupt numbers

Specify a vector of one or more interrupt numbers for the interrupt
service routines (ISR) to install. The valid range is 7 to 13, and 15,
where 7 through 13 are hardware driven, 15 is software driven.
Both Green Hills MULTI and Analog Devices VisualDSP++ use
core interrupt 14 to service synchronous rates. Core interrupts
numbered O to 6 are reserved and cannot be entered in this field.

The width of the block output signal corresponds to the number of
interrupt values you specify in this field. Triggering of each ISR
depends on the core interrupt value, the system interrupt value,
and the preemption flag you enter for each interrupt. These three

Blackfin Hardware Interrupt

values define how the code and processor respond to interrupts
during asynchronous scheduler operations.

System interrupt numbers
System interrupt numbers identify system interrupts to map to
core interrupts. Enter one or more values as a vector. The valid
range depends on your processor. Some processors do not support
the full range of 64 system interrupts. The software does not
test for valid system interrupt values. You must verify that your
values are valid for your processor. You must specify at least one
system interrupt number to use asynchronous scheduling.

The block maps the first interrupt value in this field to the first
core interrupt value you enter in Core interrupt numbers,

it maps the second system interrupt value to the second core
interrupt value, and so on until it has mapped all of the system
interrupt values to core interrupt values. You cannot map more
than one system interrupt to the same core interrupt. Therefore,
you can enter one system interrupt value in this field and map it
to more than one core interrupt. You cannot enter more than one
value in this field and map the values to one core interrupt.

When you trigger one of the system interrupts in this field, the
block triggers the ISR associated with the core interrupt that is
mapped to the system interrupt.

Simulink task priorities
Each output of the Hardware Interrupt block drives a downstream
block (for example, a function call subsystem). Simulink task
priority specifies the Simulink priority of the downstream blocks.
Specify an array of priorities corresponding to the interrupt
numbers entered in Interrupt numbers.

Code generation requires rate transition code (see Rate
Transitions and Asynchronous Blocks). The task priority values
absolute time integrity when the asynchronous task must obtain
real time from its base rate or its caller. Typically, assign

2-17

Blackfin Hardware Interrupt

2-18

priorities for these asynchronous tasks that are higher than the
priorities assigned to periodic tasks.

Preemption flags: preemptable — 1, non-preemptable — 0

Higher priority interrupts can preempt interrupts that have lower
priority. To control this preemption, use the preemption flags to
specify whether an interrupt can be preempted.

¢ Entering 1 indicates the corresponding core interrupt can be
preempted.

¢ Entering 0 indicates the corresponding interrupt cannot be
preempted.

When Core interrupt numbers contains more than one
interrupt priority, you can assign different preemption flags to
each interrupt by entering a vector of preemption flag values
that correspond to the order of the interrupts in Core interrupt
numbers. If Core interrupt numbers contains more than one
interrupt, and you enter only one flag value in this field, that
status applies to all interrupts.

For example, the default settings [0 1]indicate that the interrupt
with value 10 in Core interrupt numbers is not preemptible
and the value 12 interrupt can be preempted.

Enable simulation input

When you select this option, Simulink adds an input port to the
Hardware Interrupt block. This port receives input only during
simulation. Connect one or more simulated interrupt sources to
the simulation input.

Byte Pack

Purpose

Library

Description

Convert input signals to uint8 vector

Embedded Coder/ Embedded Targets/ Host Communication

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Target Communication

Simulink Coder/ Desktop Targets/ Host Communication

Byte Pack
Enyte P ack

Using the input port, the block converts data of one or more data types
into a single uint8 vector for output. With the options available, you
specify the input data types and the alignment of the data in the output
vector. Because UDP messages are in uint8 data format, use this block
before a UDP Send block to format the data for transmission using

the UDP protocol.

2-19

Byte Pack

Function Block Parameters: Byte Pack &3
Byte pack {mask) (link)

Pack input data into a single output vector of type uints. Insert before
3 UDP Send block to produce a uints byte wector from rultiple vectors
of varying data type.

Parameters

Input port data types (cell array):
{'double

Byte alignment: [1 -

[(014 H Cancel H Help J Apply

Dialog
Box

Input port data types (cell array)
Specify the data types for the different signals as part of the
parameters. The block supports all Simulink data types except
characters. Enter the data types as Simulink types in the cell
array, such as ’double’ or ’int32’. The order of the data type
entries in the cell array must match the order in which the data
arrives at the block input. This block determines the signal sizes
automatically. The block has at least one input port and only
one output port.

Byte alignment
This option specifies how to align the data types to form the uint8
output vector. Select one of the values in bytes from the list.

Alignment can occur on 1, 2, 4, or 8-byte boundaries depending
on the value you choose. The value defaults to 1. Given the
alignment value, each signal data value begins on multiples of the
alignment value. The alignment algorithm s that each element
in the output vector begins on a byte boundary specified by the

2-20

Byte Pack
|

alignment value. Byte alignment sets the boundaries relative to
the starting point of the vector.

Selecting 1 for Byte alignment provides the tightest packing,
without holes between data types in the various combinations of
data types and signals.

Sometimes, you can have multiple data types of varying lengths. In
such cases, specifying a 2-byte alignment can produce 1-byte gaps
between uint8 or int8 values and another data type. In the pack
implementation, the block copies data to the output data buffer 1 byte
at a time. You can specify data alignment options with data types.

Example Use a cell array to enter input data types in the Input port data types
y p yp putp yp
parameter. The order of the data types you enter must match the order
of the data types at the block input.

Function Block Parameters: Byte Pack @
Byte pack {mask) (link)

Pack input data into a single output vector of type uint8. Insert before
a UDP Send block to produce a uintg byte wector from multiple vectors
of varying data type.

Parameters

Input port data types (cell array):
{'uint32', wint32", wint1a', 'double’, 'wints', 'double’, 'single'}

Byte alignment: |1 -

[Ok l| Cancel || Help | Apply

In the cell array, you provide the order in which the block expects to
receive data—uint32, uint32, uint16, double, uint8, double, and

2-21

Byte Pack

2-22

See Also

single. With this information, the block automatically provides the
number of block inputs.

Byte alignment equal to 2 specifies that each new value begins 2 bytes
from the previous data boundary.

The example shows the following data types:
{'uint32','uint32','uint16', 'double','uint8', 'double', 'single'}

When the signals are scalar values (not matrices or vectors in this
example), the first signal value in the vector starts at 0 bytes. Then,
the second signal value starts at 2 bytes, and the third at 4 bytes. Next,
the fourth signal value follows at 6 bytes, the fifth at 8 bytes, the sixth
at 10 bytes, and the seventh at 12 bytes. As the example shows, the
packing algorithm leaves a 1-byte gap between the uint8 data value
and the double value.

Byte Reversal, Byte Unpack

Byte Reversal

Purpose

Library

Description

Reverse order of bytes in input word

Embedded Coder/ Embedded Targets/ Host Communication

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Target Communication

Simulink Coder/ Desktop Targets/ Host Communication

Byte Revarsal
Eyte Reverssl

Byte reversal changes the order of the bytes in data you input to the
block. Use this block when your process communicates between targets
that use different endianness, such as between Intel® processors that
are little endian and others that are big endian. Texas Instruments
processors are little-endian by default.

To exchange data with a processor that has different endianness, place
a Byte Reversal block just before the send block and immediately after
the receive block.

2-23

Byte Reversal

Function Block Parameters: Byte Reversal @
Byte Reversal (mask) (link)

Use Byte Rewversal block for communicating with a target processor
that is big-endian. Insert before the Byte Pack block or just after Byte
Unpack block to ensure that the data values are transmitied properly.

Parameters

Murnber of inputs:

1

[Ok H Cancel || Help Apply

Dialog
Box
Number of inputs
Specify the number of block inputs. The number of block inputs
adjusts automatically to match value so the number of outputs
equals the number of inputs.

When you use more than one input port, each input port maps
to the matching output port. Data entering input port 1 leaves

through output port 1, and so on.

Reversing the bytes does not change the data type. Input and
output retain matching data type.

The following model shows byte reversal in use. In this figure, the input
and output ports match for each path.

2-24

Byte Reversal

Constant

234 ' ‘l GO0 00 T | ‘

intGout

int 16

T 0 00 CORD OGOD
234 > —p|| bir G0 o oooe uuuul

Constart? bin GCCGC CGCC 770 G710 ™ Byte Reversal . uint1Gout
Eyte Reversal

234

Constent2
- GO0 GOOE OO BEOD GOGC OOOE 0 00 T TTIC TP REC LG OLOC GORE CELE CTrT
bir GOCC GOGG GO0 GOOO GOGC G000 490 *070 SIE 000 0000 COOC GOOC GOCG G000 COOO

uint22 uirt32out

See Also Byte Pack, Byte Unpack

2-25

Byte Unpack

Purpose Unpack UDP uint8 input vector into Simulink data type values

Librclry Embedded Coder/ Embedded Targets/ Host Communication

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Target Communication

Simulink Coder/ Desktop Targets/ Host Communication

Bryte Urpack
Eyte U'npack

Description

Byte Unpack is the inverse of the Byte Pack block. It takes a UDP
message from a UDP receive block as a uint8 vector, and outputs
Simulink data types in various sizes depending on the input vector.

The block supports all Simulink data types.

2-26

Byte Unpack

Dialog
Box

Function Block Parameters: Byte Unpack @
Byte Unpack (mask) (link)

Unpack a binary byte vector to exfract data. Insert after a UDP Recy
block to break-up a UDP packet into its constituent data vectors.

Parareters

Output port dimensions (cell array):
10T

COutput port data types (cell array):
{'double

Byte alignment: |1 -

E Ok H Cancel || Help | apply

Output port dimensions (cell array)

Containing a cell array, each element in the array specifies

the dimension that the MATLAB size function returns for the
corresponding signal. Usually you use the same dimensions

as you set for the corresponding Byte Pack block in the model.
Entering one value means that the block applies that dimension
to all data types.

Output port data types (cell array)

Specify the data types for the different input signals to the Pack
block. The block supports all Simulink data types—single,
double, int8, uint8, int16, uint16, int32, and uint32, and
Boolean. The entry here is the same as the Input port data types
parameter in the Byte Pack block in the model. You can enter one
data type and the block applies that type to all output ports.

2-27

Byte Unpack

Byte Alignment
This option specifies how to align the data types to form the input
uint8 vector. Match this setting with the corresponding Byte
Pack block alignment value of 1, 2, 4, or 8 bytes.

Example This figure shows the Byte Unpack block that corresponds to the
example in the Byte Pack example. The Output port data types (cell
array) entry shown is the same as the Input port data types (cell
array) entry in the Byte Pack block

{'uint32','uint32','uint16', 'double', 'uint8', 'double’', 'single'}.

Function Block Parameters: Byte Unpack @
Byte Unpack (mask (link)

Unpack a binary byte vectar to exract data. Insert after a UDP Recy
block to break-up a UDP packet into its constifuent data vectors.

Parameters
COutput port dimensions (cell array):
{1,1,[2,4] [44].[2.2), 1,[3,3]}

Output port data types (cell array):

{'uint32', 'wint32', wintla', 'double’, 'wintd', 'double’, 'single’,}

Byte alignment: E2 -

[Ok l| Cancel || Help || apply |

In addition, the Byte alignment setting matches as well. Output port
dimensions (cell array) now includes scalar values and matrices to
show how to enter nonscalar values. The example for the Byte Pack
block assumed only scalar inputs.

See Also Byte Pack, Byte Reversal

2-28

C2000 Absolute IQGN

Purpose

Library

Description

Dialog
Box

References

Absolute value

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ Optimization/ C28x IQmath

ICQmath

T

IQMabs
Absolute IQN

W

This block computes the absolute value of an IQ number input. The
output is also an 1Q number.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“Using the IQmath Library” for more information.

Block Parameters: Absolute IQN |

Absolute QN [mask] (link)

Thiz block computes the abzolute value of an [0 number. Both the input
and the output are zsigned 32-bit fied-point numberz. The respective
|0Mabs function iz selected bazed on the [walue.

QK I Cancel Help Apply

For detailed information on the IQmath library, see the user’s guide for
the C28x IQmath Library - A Virtual Floating Point Engine, Literature
Number SPRC087, available at the Texas Instruments Web site. The
user’s guide is included in the zip file download that also contains the
IQmath library (registration required).

2-29

C2000 Absolute IQN

2-30

See Also

¢2000 Arctangent IQN, C2000 Division IQN, C2000 Float to IQN, C2000
Fractional part IQN, C2000 Fractional part IQN x int32, C2000 Integer
part IQN, C2000 Integer part IQN x int32, C2000 IQN to Float, C2000
IQN x int32, C2000 IQN x IQN, C2000 IQN1 to IQN2, C2000 IQN1 x
IQN2, C2000 Magnitude IQN, C2000 Saturate IQN, C2000 Square Root
IQN, C2000 Trig Fen IQN

C2000 Arctangent IQN

Purpose

Library

Description

Dialog
Box

Four-quadrant arc tangent

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ Optimization/ C28x IQmath

[Qmath

A
Y
B

IQNatanz
Arctangent 1GN

The Arctangent IQN block computes the four-quadrant arc tangent of
the IQ number inputs and produces IQ number output.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“Using the IQmath Library” for more information.

Block Parameters: Arctangent IQN |
— Arctangent AN [mazk] (link)

Thiz block computes the 4-quadrant arctangent for o |0 numbers given
in the zame [format. All inputs and outputs are signed 32-bit fiked-paint
riumberz. Depending on the selected option, the output of the block i
either in radians and wvaries from pi - to +pi or in per unit [PU] and varies
between -1 and + 1. The respective I0Matan function is selected by the
input data type.

— Parameters

QK. I Cancel Help Spply

Function
Type of arc tangent to calculate:

2-31

C2000 Arctangent IQN

2-32

References

See Also

¢ atan2 — Compute the four-quadrant arc tangent with output
in radians with values from -pi to +pi.

® atan2PU — Compute the four-quadrant arc tangent
per unit. If atan2(B,A) is greater than or equal to O,
atan2PU(B,A) = atan2(B,A)/2*pi. Otherwise, atan2PU(B,A)
= atan2(B,A)/2*pi+1. The output is in per-unit radians with
values from 0 to 2*pi radians.

Note The order of the inputs to the Arctangent IQN block correspond
to the Texas Instruments convention, with argument ’A’ at the top and
B’ at bottom.

For detailed information on the IQmath library, see the user’s guide for
the C28x IQmath Library - A Virtual Floating Point Engine, Literature
Number SPRC087, available at the Texas Instruments Web site. The
user’s guide is included in the zip file download that also contains the
IQmath library (registration required).

C2000 Absolute IQN, C2000 Division IQN, C2000 Float to IQN, C2000
Fractional part IQN, C2000 Fractional part IQN x int32, C2000 Integer
part IQN, C2000 Integer part IQN x int32, C2000 IQN to Float, C2000
IQN x int32, C2000 IQN x IQN, C2000 IQN1 to IQN2, C2000 IQN1 x
IQN2, C2000 Magnitude IQN, C2000 Saturate IQN, C2000 Square Root
IQN, C2000 Trig Fen IQN

C280x/C28x3x ADC

Purpose

Library

Description

Analog-to-Digital Converter (ADC)
Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C280x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C28x3x

L2 T2

A

ADC
ADC

The ADC block configures the ADC to perform analog-to-digital
conversion of signals connected to the selected ADC input pins. The
ADC block outputs digital values representing the analog input signal
and stores the converted values in the result register of your digital
signal processor. You use this block to capture and digitize analog
signals from external sources such as signal generators, frequency
generators, or audio devices. With the C28x3x, you can configure

the ADC to use the processor’s DMA module to move data directly to
memory without using the CPU. This frees the CPU to perform other
tasks and increases overall system capacity.

Output

The output of the ADC is a vector of uint16 values. The output values
are in the range 0 to 4095 because the ADC is 12-bit converter.

Modes

The ADC block supports ADC operation in dual and cascaded modes. In
dual mode, either module A or module B can be used for the ADC block,
and two ADC blocks are allowed in the model. In cascaded mode, both
module A and module B are used for a single ADC block.

2-33

C280x/C28x3x ADC

Dialog ADC Control Pane

Box

x|

Configures the ADC to output a constant stream of data collected

|7C280xfC2833x ADC {mask) {ink)

from the ADC pins on the C280x%/C2833x DSP.

ADC Control | Input Channels I

Module: IA LI

Conversion mode: ISequentiaI LI

Start of conversion: IS-:uﬁ'f'-.'are LI

Sample time:

0.001

Data type: Iuint 16 LI

[w | Postinterrupt at the end of conversion

DMA Channel: |1 ;I
oK Cancel | Help |

Module
Specifies which DSP module to use:

® A — Displays the ADC channels in module A (ADCINAO

through ADCINAT).

® B — Displays the ADC channels in module B (ADCINBO

through ADCINB?Y).

® A and B — Displays the ADC channels in both modules A
and B (ADCINAO through ADCINA7 and ADCINBO through

ADCINBY).

2-34

C280x/C28x3x ADC

Conversion mode
Type of sampling to use for the signals:

® Sequential — Samples the selected channels sequentially.

e Simultaneous — Samples the corresponding channels of
modules A and B at the same time.

Start of conversion
Type of signal that triggers conversions to begin:

e Software — Signal from software. Conversion values are
updated at each sample time.

® ePWMxA / ePWMxB / ePWMxA_ePWMxB — Start of conversion is
controlled by user-defined PWM events.

® XINT2_ADCSOC — Start of conversion is controlled by the
XINT2_ADCSOC external signal pin.

The choices available in Start of conversion depend on the
Module setting. The following table summarizes the available
choices. For each set of Start of conversion choices, the default
is given first.

Module Start of Conversion Choices

Setting

A Software, ePWMxA, XINT2_ADCSOC

B ePWMxB, Software

A and B Software, ePWMxA, ePWMxB, ePWMxA_ePWMxB,
XINT2_ADCSOC

Sample time
Time in seconds between consecutive sets of samples that are
converted for the selected ADC channel(s). This is the rate at
which values are read from the result registers. To execute this
block asynchronously, set Sample Time to -1, check the Post
interrupt at the end of conversion box, and refer to “” for a
discussion of block placement and other settings.

2-35

C280x/C28x3x ADC

To set different sample times for different groups of ADC
channels, you must add separate ADC blocks to your model and
set the desired sample times for each block.

Data type
Date type of the output data. Valid data types are auto, double,
single, int8, uint8, int16, uint16, int32, or uint32.

Post interrupt at the end of conversion
Select this check box to post an asynchronous interrupt at the
end of each conversion. The interrupt is posted at the end of
conversion. To execute this block asynchronously, set Sample
Time to -1, and refer to “’ for a discussion of block placement
and other settings.

Use DMA (with C28x3x)
Enable the Direct Memory Access (DMA) to transfer data directly
from the ADC to memory, bypassing the CPU and improving
overall system capacity. This feature is only valid with a C28x3x
target.

When enabled, this setting applies the following settings to the
channel specified by the DMA Channel parameter. Disable

the corresponding channel in the Coder Target -> Target
Hardware Resources by selecting Peripherals and DMA_ch#.
Modifications to DMA_ch# do not apply or override the following
settings:

¢ Enable DMA channel: Enabled for channel specified by the
ADC block DMA Channel parameter.

® Data size: 16 bit

¢ Interrupt source: If the ADC block Module is Aor A and B,
Interrupt source is SEQ1INT. If the ADC block Module is B,
Interrupt source is SEQ2INT.

¢ Generate interrupt: Generate interrupt at end of
transfer

e Size

2-36

C280x/C28x3x ADC

— Burst: The value assigned to Burst equals the ADC block
Number of conversions (NOC) multiplied by a value for
the ADC block Conversion mode (CVM). To summarize,
Burst = NOC * CVM.

If Conversion mode is Sequential, CVM = 1. If
Conversion mode is Simultaneous, CVM = 2.

For example, Burst is 6 when NOC is 3 and CVM is 2.
— Transfer: 1
— SRC wrap: 65536
— DST wrap: 65536
* Source

— Begin address: The value of Begin address is 0xB0O if
the ADC block Module is A or A and B. The value of Begin
address is 0xB08 if the ADC block Module is B.

— Burst step: 1
— Transfer step: 0
— Wrap step: 0

¢ Destination

— Begin address: The value of Begin address is the
ADC buffer address minus the ADC block Number of
conversions.

If the target is F28232 or F28332, the ADC buffer address is
0xDFFC (57340). For other C28x3x targets, the ADC buffer
address is 0xFFFC (65532).

For example, with a F28232 target, the Begin address is
0xDFF9 (567337) because the ADC buffer address, 57340
(0xDFFC), minus 3 conversions equals 57337 (0xDFF9).

— Burst step: 1

— Transfer step: 1

2-37

C280x/C28x3x ADC

— Wrap step: 0
* Mode
— Enable one shot mode: disabled
— Sync enable: disabled
— Enable continuous mode: enabled
— Enable DST sync mode: disabled
— Set channel 1 to highest priority: disabled

— Enable overflow interrupt: disabled

For more information, consult TMS320x2833x, 2823x Direct
Memory Access (DMA) Module Reference Guide, Literature
Number: SPRUFBSA, available at the Texas Instruments Web
site.

DMA Channel
When the Use DMA parameter is enabled, select a channel for
the DMA module to use for data transfers. To prevent channel
conflicts, the same channel number must remain disabled in
Coder Target -> Target Hardware Resources, otherwise the
software will generate an error message.

2-38

C280x/C28x3x ADC

Input Channels Pane

E! Source Block Parameters: ADC il
C280x,/C2833x ADC (rask) (link)

Configures the ADC o output a constant stream of data
collected from the ADC pins on th C280x/AC2833x DSP.

ADC Control

Murmnber of conversions: |3

Conversion no. 1|ADCINAD

Conversion na. 2|ADCINA1

Lef Lef L] Lo

Conversion no. 3|ADCINA2

™ Use multiple output ports

[0]4 Cancel | Help |

Number of conversions
Number of ADC channels to use for analog-to-digital conversions.

Conversion no.
Specific ADC channel to associate with each conversion number.

In oversampling mode, a signal at a given ADC channel can be
sampled multiple times during a single conversion sequence.
To oversample, specify the same channel for more than one
conversion. Converted samples are output as a single vector.

Use multiple output ports
If more than one ADC channel is used for conversion, you can use
separate ports for each output and show the output ports on the

2-39

C280x/C28x3x ADC

block. If you use more than one channel and do not use multiple
output ports, the data is output in a single vector.

See Also “ADC-PWM Synchronization via ADC Interrupt”
C280x/C2802x/C2803x/C2806x/C28x3x/c2834x ePWM
C28x Hardware Interrupt
“Configuring Acquisition Window Width for ADC Blocks”
“ADC” on page 3-178

2-40

C28x CAN Calibration Protocol

Purpose

Library

Description

Implement CAN Calibration Protocol (CCP) standard

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2803x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2806x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C280x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C281x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2834x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C28x3x

L2 T2 8

CCF
CAN Calibration Protocol

The CAN Calibration Protocol block provides an implementation of a
subset of the CAN Calibration Protocol (CCP) Version 2.1. CCP is a
protocol for communicating between the target processor and the host
machine over CAN. In particular, a calibration tool (see “Compatibility
with Calibration Packages” on page 2-47) running on the host can
communicate with the target, allowing remote signal monitoring and
parameter tuning.

This block processes a Command Receive Object (CRO) and outputs
the resulting Data Transmission Object (DTO) and Data Acquisition
(DAQ) messages.

For more information on CCP, refer to ASAM Standards: ASAM MCD:
MCD 1a on the Association for Standardization of Automation and
Measuring Systems (ASAM) Web site at http://www.asam.de.

2-41

http://www.asam.de

C28x CAN Calibration Protocol

2-42

Note With the 32-bit version of MATLAB software, you can use the
CAN Calibration Protocol block to perform External mode simulations.

Using the DAQ Output

Note The CCP Data Acquisition (DAQ) List mode of operation is only
supported with Embedded Coder. If Embedded Coder is not available
then custom storage classes canlib.signal are ignored during code
generation: this means that the CCP DAQ Lists mode of operation
cannot be used.

You can use the CCP Polling mode of operation with or without
Embedded Coder.

The DAQ output is the output for CCP Data Acquisition (DAQ) lists
that have been set up. You can use the ASAP2 file generation feature of
the Real-Time (RT) target to

® Set up signals to be transmitted using CCP DAQ lists.

® Assign signals in your model to a CCP event channel automatically
(see “Generate an ASAP2 File”).

Once these signals are set up, event channels then periodically fire
events that trigger the transmission of DAQ data to the host. When this
occurs, CAN messages with the CCP/DAQ data appear on the DAQ
output, along with an associated function call trigger.

The calibration tool (see “Compatibility with Calibration Packages” on
page 2-47) must use CCP commands to assign an event channel and
data to the available DAQ lists, and interpret the synchronous response.

Using DAQ lists for signal monitoring has the following advantages
over the polling method:

C28x CAN Calibration Protocol

® The host does not need to poll for the data. Network traffic is halved.

® The data is transmitted at the update rate that matches the signal,
reducing network traffic.

® Data is consistent. The transmission takes place after the signals
have been updated, reducing interruptions while sampling the signal.

Note Embedded Coder software does not currently support event
channel prescalers.

2-43

C28x CAN Calibration Protocol

2-44

Dialog
Box

E] Block Parameters: CAN Calibration Protocol

—C280x/C2833x CAN Calibration Protocol {mask) (link)

Irmplements CAMN Calibration Protocol (CCP) on the target processor,

This block processes Command Receive Ohject (CRO) messages and outputs the
resulting Data Transmission Object (DTO) and Data Acquisition (DAQ) messages.

—Parameters

CCP station address (16-hit integer):

I hexz2dec('1"

CAN module: [2CAN_A

CaN message identifier (CROY:

I hex2dec('6Fa"

CAN message type (CRO): |Extended (29-hit identifier)
CAN message identifier (DTCO/DAD):

| hex2dec('6FB"

CAN message type (DTODAQY: |Extended (29-hit identifier)
Total Nurnber of Object Descriptor Tables (ODTs):

B

CRO sample time:

fo.1

0K | Cancel |

Help | Apply |

CCP station address (16-bit integer)

The station address of the target. The station address is
interpreted as a uint16. It is used to distinguish between
different targets. By assigning unique station addresses to targets
sharing the same CAN bus, it is possible for a single host to
communicate with multiple targets.

CAN module

If your processor has more than one module, select the module

this block configures.

C28x CAN Calibration Protocol

CAN message identifier (CRO)
Specify the CAN message identifier for the Command Receive
Object (CRO) message you want to process.

CAN message type (CRO)
The incoming message type. Select either Standard(11-bit
identifier) or Extended(29-bit identifier).

CAN message identifier (DTO/DAQ)
The message identifier is the CAN message ID used for Data
Transmission Object (DTO) and Data Acquisition (DAQ) message
outputs.

CAN message type (DTO/DAQ)
The message type to be transmitted by the DTO and DAQ
outputs. Select either Standard(11-bit identifier) or
Extended(29-bit identifier).

Total Number of Object Descriptor Tables (ODTSs)
The default number of Object Descriptor Tables (ODTSs) is 8.
These ODTs are shared equally between all available DAQ lists.
You can choose a value between 0 and 254, depending on how
many signals you log simultaneously. You must make sure you
allocate at least 1 ODT per DAQ list, or your build will fail. The
calibration tool will give an error message if there are too few
ODTs for the number of signals you specify for monitoring. Be
aware that too many ODTs can make the sample time overrun.

If you choose more than the maximum number of ODTs (254),
the build will fail.

A single ODT uses 56 bytes of memory. Using all 254 ODTs would
require over 14 KB of memory, a large proportion of the available
memory on the target. To conserve memory on the target, the
default number is low, allowing DAQ list signal monitoring with
reduced memory overhead and processing power.

As an example, if you have five different rates in a model, and

you are using three rates for DAQ, then this will create three
DAQ lists and you must make sure you have at least three ODTs.

2-45

C28x CAN Calibration Protocol

2-46

ODTs are shared equally among DAQ lists and, therefore, you will
end up with one ODT per DAQ list. With less than three ODTs,
you get zero ODTs per DAQ list and the behavior is undefined.

Taking this example further, say you have three DAQ lists with

one ODT each, and start trying to monitor signals in a calibration
tool. If you try to assign too many signals to a particular DAQ list
(that is, signals requiring more space than seven bytes (one ODT)
in this case), then the calibration tool will report this as an error.

CRO sample time
The sample time for CRO messages.

Supported CCP Commands
The following CCP commands are supported by the CAN Calibration
Protocol block:

® CONNECT

® DISCONNECT

® DNLOAD

* DNLOAD_6

® EXCHANGE_ID

® GET_CCP_VERSION

e GET_DAQ_SIZE

e GET_S_STATUS

e SET_DAQ_PTR

e SET_MTA

e SET_S_STATUS

® SHORT_UP

® START_STOP

e START_STOP_all

C28x CAN Calibration Protocol

® TEST
® UPLOAD
e WRITE_DAQ

Compatibility with Calibration Packages

The above commands support:

® Synchronous signal monitoring via calibration packages that use
DAQ lists

® Asynchronous signal monitoring via calibration packages that poll
the target

® Asynchronous parameter tuning via CCP memory programming

This CCP implementation has been tested with Vector-Informatik
CANape calibration package running in both DAQ list and polling mode.

See Also “CAN Calibration Protocol and External Mode”

2-47

C28x eCAN Receive

2-48

Purpose

Library

Description

Enhanced Control Area Network receive mailbox

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2803x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2806x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C280x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C28x3x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2834x

LY

=g
eCAN RCW

eCAN Receive

The C280x/C2803x/C28x3x enhanced Control Area Network (eCAN)
Receive block generates source code for receiving eCAN messages
through an eCAN mailbox. The eCAN modules on the DSP chip provide
serial communication capability and have 32 mailboxes configurable for
receive or transmit. The C280x/C2803x/C28x3x supports eCAN data
frames in standard or extended format.

The eCAN Receive block has up to two and, optionally, three output
ports.

¢ The first output port is the function call port, and a function call
subsystem should be connected to this port. When a new message is
received, this subsystem is executed.

® The second output port is the message data port. The received data is
output in the form of a vector of elements of the selected data type.
The length of the vector is 8 bytes. The message data port will output
data. When the block is used in polling mode, if a new message is not

C28x eCAN Receive

created between the consecutive executions of the block, then the old
or existing message, is repeated.

e The third output port is optional and appears only if Output
message length is selected.

To use the eCAN Receive block with the eCAN Pack block in the
canmsglib, set Data type to CAN_MESSAGE_TYPE.

2-49

C28x eCAN Receive

=] Source Block Parameters: eCAN Receive E|
C280x/C2833x eCAN Receive (mask) (ink)

Configures an eCAN mailbox to receive messages from the eCAN
bus pins on the C280x/C2833x DSP. When the messaqge is
received, emits the function call to the connected function-call
subsystem as well a5 outputs the message data in selected format
and the message data length in bytes,

Parameters
Chip family |C280x v|
Module: |ECAN_.-5. vl

Mailbox number:
0 |

Message identifier:

|bin2dec(111000111) |

Message type: |Standard (11-bit identifier) vl

Sample time:
! |

Data type: |Uint1s v|

Initial output:
0 |

Output message length

Post interrupt when message is received

Interrupt line: |0 w

| oK |[Cancel][Help]

Dialog
Box

Chip family
Select the processor that has the eCAN module.

2-50

C28x eCAN Receive

Module
Determines which of the two eCAN modules is being configured
by this instance of the eCAN Receive block. Options are eCAN_A
and eCAN_B.

This parameter is not visible when you set Chip family to C2803x.

Mailbox number
Sets the value of the mailbox number register (MBNR). For
standard CAN controller (SCC) mode, enter a unique number
from 0 to 15. For high-end CAN controller (HECC) mode enter a
unique number from 0 to 31 . In SCC mode, transmissions from
the mailbox with the highest number have the highest priority. In
HECC mode, the mailbox number only determines priority if the
Transmit priority level (TPL) of two mailboxes is equal.

Message identifier
Sets the value of the message identifier register (MID). The
message identifier is 11 bits long for standard frame size or 29 bits
long for extended frame size in decimal, binary, or hex format.
For the binary and hex formats, use bin2dec(' ') or hex2dec('
'), respectively, to convert the entry.

Message type
Select Standard (11-bit identifier) or Extended (29-bit
identifier).

Sample time
Frequency with which the mailbox is polled to determine if a new
message has been received. A new message causes a function
call to be emitted from the mailbox. If you want to update the
message output only when a new message arrives, then the
block needs to be executed asynchronously. To execute this
block asynchronously, set Sample Time to -1, check the Post
interrupt when message is received box, and refer to “” for a
discussion of block placement and other settings.

2-51

C28x eCAN Receive

2-52

Note For information about setting the timing parameters of
the CAN module, see “Configuring Timing Parameters for CAN

Blocks”.

Data type

Select one of the following options:

® uint8 (vector length = 8 elements)

® uint16 (vector length = 4 elements)

® uint32 (vector length = 2 elements)

® CAN_MESSAGE_TYPE (Select this option to use the eCAN receive
block with the CAN Unpack block.)

The length of the vector for the received message is at most 8
bytes. If the message is less than 8 bytes, the data buffer bytes
are right-aligned in the output. The data are unpacked as follows
using the data buffer, which i1s 8 bytes.

For uint8 data, eCAN Receive reads each unit of 8 bytes in the
registers, and outputs 8-bit data to 8 elements (using the lower
part of the 16-bit memory):

Output[O]
Output[1]
Output[2]
Output[3]
Output[4]
Output[5]
Output[6]
Output[7]

data_buffer[0];
data_buffer[1];
data_buffer[2];
data_buffer[3];
data_buffer[4];
data_buffer[5];
data_buffer[6];
data_buffer[7];

For uint16 data,

Output[O]
Output[1]

data_buffer[1..0];
data_buffer[3..2];

C28x eCAN Receive

Output[2]
Output[3]

data_buffer[5..4];
data_buffer[7..6];

For uint32 data,

Output[0] = data_buffer[3..0];
Output[1] data_buffer[7..4];

For example, if the received message has two bytes:

data_buffer[0] = Ox21
data_buffer[1] 0x43

The uint16 output would be:

OQutput[0] = 0x4321
Output[1] = 0x0000
Output[2] = 0x0000
Output[3] = 0x0000

When you select CAN_MESSAGE_TYPE, the block outputs the
following struct data (defined in can_message.h):

struct {

/* Is Extended frame */

uint8_T Extended;

/* Length */
uint8_T Length;

/* RTR */

uint8_T Remote;

/* Error */

uint8_T Error;

2-53

C28x eCAN Receive

/* CAN ID */
uint32_T 1ID;

/*
TIMESTAMP_NOT_REQUIRED is a macro that will be defined by Target teams
PIL, xPC if they do not require the timestamp field during code
generation. By default, timestamp is defined. If the targets do not require
the timestamp field, they should define the macro TIMESTAMP_NOT_REQUIRED before
including this header file for code generation.
*/
#ifndef TIMESTAMP_NOT_REQUIRED
/* Timestamp */
double Timestamp;

#endif

/* Data field */
uint8_T Data[8];

b

Initial output
Set the value the eCAN node outputs to the model before it has
received data. The default value is 0.

Output message length
Select to output the message length in bytes to the third output
port. If not selected, the block has only two output ports.

Post interrupt when message is received
Select this check box to post an asynchronous interrupt when a
message 1s received.

Interrupt line
Select the interrupt line the asynchronous interrupt uses. This
action sets bit 2 (GIL) in the Global Interrupt Mask Register
(CANGIM):

¢ 1 maps the global interrupts to the ECAN1INT line.

2-54

C28x eCAN Receive

References

See Also

¢ 0 maps the global interrupts to the ECANOINT line.

For detailed information on the eCAN module, visit ti.com and search
for the documentation related to your processor. The following materials
are available at the Texas Instruments Web site:

o TMS320F2833x, 2823x Enhanced Controller Area Network (eCAN)
Reference Guide, Literature Number SPRUEU1

o TMS320x280x/2801x Enhanced Controller Area Network (eCAN)
Reference Guide, Literature Number SPRUEUO

o TMS320x2803x Piccolo Enhanced Controller Area Network (eCAN)
Reference Guide, Literature Number: SPRUGL7

“CAN-Based Control of PWM Duty Cycle”

C28x eCAN Transmit

C28x Hardware Interrupt
“eCAN_A, eCAN_B” on page 3-183

2-55

C28x eCAN Transmit

2-56

Purpose

Library

Description

Enhanced Control Area Network transmit mailbox

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2803x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2806x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C280x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C28x3x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2834x

LB T2y

=g

AN XM T
eCAN Transmit

The C280x/C2803x/C28x3x enhanced Control Area Network (eCAN)
Transmit block generates source code for transmitting eCAN messages
through an eCAN mailbox. The eCAN modules on the Board chip
provide serial communication capability and have 32 mailboxes
configurable for receive or transmit. The C280x/C2803x/C28x3x
supports eCAN data frames in standard or extended format.

Note Fixed-point inputs are not supported for this block.

Data Vectors

The length of the vector for each transmitted mailbox message is 8
bytes. Input data are right-aligned in the message data buffer. Only
uint16 (vector length = 4 elements) or uint32 (vector length = 2
elements) data are accepted. The following examples show how the
different types of input data are aligned in the data buffer:

C28x eCAN Transmit

For input of type uint32,

inputdata [0] = 0x12345678

the data buffer is:

data
data
data
data
data
data
data
data

buffer[0]
buffer[1]
buffer[2]
buffer[3]
buffer[4]
buffer([5]
buffer([6]
buffer([7]

0x78
0x56
0x34
0x12
0x00
0x00
0x00
0x00

For input of type uint16,

inputdata [0]

the data buffer is:

data
data
data
data
data
data
data
data

buffer[0]
buffer[1]
buffer[2]
buffer[3]
buffer[4]
buffer[5]
buffer([6]
buffer[7]

0x1234

0x34
0x12
0x00
0x00
0x00
0x00
0x00
0x00

For input of type uint16[2], which is a two-element vector,

inputdata [O]
inputdata [1]

the data buffer is:

0x1234
0x5678

data buffer[0] = 0x34

2-57

C28x eCAN Transmit

data buffer[1] = 0x12
data buffer[2] = 0x78
data buffer[3] = 0x56
data buffer[4] = 0x00
data buffer[5] = 0x00
data buffer[6] = 0x00
data buffer[7] = 0x00

Eﬁink Block Parameters: eCAN Transmit @
C281x eCAN Transmit (mask) (link)

Configures an eCAN mailbox to transmit message to the CAN bus pins
on the c281x DSR.

FParameters
Mailbox number:

1

Message identifier:

bin2dec('111000111")

Message type: |Standard (11-bit identifier) -

Enable blocking mode

V| Post interrupt when message is transmitted

Interrupt line: |D v|

[OK H Cancel || Help || Apply |

Dialog
Box

Module
Determines which of the two eCAN modules is being configured
by this instance of the eCAN Transmit block. Options are eCAN_A
and eCAN_B.

2-58

C28x eCAN Transmit

Mailbox number
Unique number from 0 to 15 for standard or from 0 to 31 for
enhanced CAN mode. It refers to a mailbox area in RAM. In
standard mode, the mailbox number determines priority.

Message identifier
Identifier of length 11 bits for standard frame size or length 29
bits for extended frame size in decimal, binary, or hex. If in binary
or hex, use bin2dec(' ') or hex2dec(' '), respectively, to
convert the entry. The message identifier is coded into a message
that is sent to the CAN bus.

Note CAN messages use the value of the Message identifier
parameter in C28x CAN Transmit block for transmission even
when you use the CAN Pack block to create the CAN message.

Message type
Select Standard (11-bit identifier) or Extended (29-bit
identifier).

Enable blocking mode
If selected, the CAN block code waits indefinitely for a transmit
(XMT) acknowledge. If not selected, the CAN block code does not
wait for a transmit (XMT) acknowledge, which is useful when the
hardware might fail to acknowledge transmissions.

Post interrupt when message is transmitted
If selected, an asynchronous interrupt will be posted when data
1s transmitted.

Interrupt Line
Select the interrupt line the asynchronous interrupt uses. This
action sets bit 2 (GIL) in the Global Interrupt Mask Register
(CANGIM):

* 1 maps the global interrupts to the ECAN1INT line.
® 0 maps the global interrupts to the ECANOINT line.

2-59

C28x eCAN Transmit

Note For information about setting the timing parameters of the CAN
module, see “Configuring Timing Parameters for CAN Blocks”.

References For detailed information on the eCAN module, see the following
materials, available at the Texas Instruments Web site:

o TMS320F2833x, 2823x Enhanced Controller Area Network (eCAN)
Reference Guide, Literature Number SPRUEU1
o TMS320x2803x Piccolo Enhanced Controller Area Network (eCAN)
Reference Guide, Literature Number: SPRUGL7
See Also “CAN-Based Control of PWM Duty Cycle”
C28x eCAN Receive

C28x Hardware Interrupt
“eCAN_A, eCAN_B” on page 3-183

2-60

C28x eCAP

Purpose

Library

Description

Dialog
Box

Receive and log capture input pin transitions or configure auxiliary
pulse width modulator

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2802x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2803x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2806x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C280x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C28x3x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2834x

C28x

The eCAP block dialog box provides configuration parameters on four
tabbed panes:

¢ General—Set the operating mode for the block (whether the block
performs eCAP or APWM processes, assign the pin associated, and
set the sample time

¢ eCAP—Configure eCAP functions such as prescaler value, capture
pin, and mode control

¢ APWM—Configure waveform and duty cycle values for the pulse
width modulation capability

2-61

C28x eCAP

¢ Interrupt—Specify when the block posts interrupts

You can add up to six eCAP blocks to your model, one block for each
capture pin. For example, you can have one block configured for eCAP
mode with eCAP1 pin selected and five blocks configured for APWM
mode with assigned pins eCAP2 through eCAP6. Or six blocks configured
for eCAP mode with each block assigned a different eCAP pin. You
cannot assign the same eCAP pin to two eCAP blocks in one model.

Block Input and Output Ports

The eCAP block has optional input and output ports as shown in the
following table.

Port Description and When the
Port is Enabled

Input port SI Synchronization input for

input value from software.
Enabled when you select Enable
software forced counter
synchronizing input in either
operating mode.

Input port RA One-shot arming starts the
one-shot sequence. Enabled when
you set the mode control to One
shot.

Output port TS When you enable the reset
counter, this option resets the
capture event counter after
capturing the event time stamp.
Enabled when you select Enable
reset counter after capture
event 1 time-stamp.

2-62

C28x eCAP

Port Description and When the
Port is Enabled

Output port CF This port reports the status of the
capture event. Enabled when you
select Enable capture event
status flag output.

Output port OF Enabled when you select Enable
overflow status flag output.

Note The outputs of this block can be vectorized.

2-63

C28x eCAP

2-64

General Pane

P

C28x eCAP (mask) (link)

Configure the settings of the
C280x/C2033%/C2034%/C2802%/C2803%/C2806x DSP for aCAP
{Enhanced Capture)

General | eCap | APV | Interrupt

Source Block Parameters: eCAP @

Cperating mode: [eCf-‘-.F'

eCAPXpin: [BCAP1

Counter phase offset value (0 ~ 4294957295);
a

Enable counter Sync-In mode

["| Enable software-forced counter synchronizing input

Sync output selection: |CTR=PRD

Sample time:

0,001

(84 H Cancel H Help][Apply

C28x eCAP

Operating mode
When you select eCAP, the block captures and logs pin transitions
for each capture unit to a FIFO buffer. When you select APWM,
the block generates asymmetric pulse width modulation (APWM)
waveforms for driving downstream systems.

eCAPx pin
The capture unit includes the following features:

¢ One pin for each capture unit. For example, eCAP1, eCAP2,
and so on.

¢ Four maskable interrupt flags, one for each capture unit.

e Ability to specify the transition detection—rising edge, falling
edge, or both edges.

Counter phase offset value (0~4294967295)
The value you enter here provides the time base for event
captures, clocked by the system clock. A phase register is used to
synchronize with other counters via the software or hardware
forced sync (refer to Enable counter Sync-In mode). This is
particularly useful in APWM mode when you need a phase offset
between capture modules. Enter the phase offset as an integer
from 0 to 42949667295 (2%2) counts.

Enable counter Sync-In mode
Select this to enable the TSCTR counter to load from the TSCTR
register when the block receives either the SYNC1 signal or a
software force event (refer to Enable software-forced counter
synchronizing input).

Enable software-forced counter synchronizing input
This option provides a convenient software method for
synchronizing one or more eCAP time bases.

Sync output selection
Select one of the list entries Pass through, CTR=PRD, or Disabled
to synchronize with other counters.

2-65

C28x eCAP

Sample time
Set the sample time for the block in seconds.

eCAP Pane

To enable the configuration parameters on this pane, select eCAP from
the Operating mode list on the General pane.

2-66

C28x eCAP

-

Source Block Parameters: eCAP
C28x eCAP (mask) (link)

Configure the settings of the

C280%/C2833%C2834%/CoB 02 T2803x/ C28 06 DSP for eCAP

{Enhanced Capture)

General | eCAP | APWM | Interrupt |

Bvent prescaler {integer fram 0 to 31
a

Select mode confral: [One-Sth

["] Enable One-Shot re-arming control input

Stop value after: [Capt_Jre Event 1

["] Enable reset counter after capture event 1 time-stamp

Select capture event 1 polarity: [Rising Edge

Time-Stamp counter data type: [uintBE

Enable capture event status flag output

Capture flag data type: ’uintlE-

Enable overflow status flag oufput

Cwerflow flag data type: [uintlﬁ

[(8]4 H Cancel H Help

| [eppty |

2-67

C28x eCAP

2-68

Event prescaler (integer from 0 to 31)
Multiply the input signal, called a pulse train, by this value.
Entering a 0 bypasses the input prescaler, leaving the input
capture signal unchanged.

Select mode control
Continuous performs continuous timestamp captures using a
circular buffer to capture events 1 through 4.

One-Shot disables continuous mode and enables the Enable
one-shot rearming control via input port option so you can
select 1it.

Enable one-shot rearming control via input port
Select this option to arm the one-shot sequence:

1 Reset the Mod4 counter to zero.
2 Unfreeze the Mod4 counter.

3 Enable capture register loading.

Stop value after
Specifies the number of capture events after which to stop the
capture.

Enable reset counter after capture event 1 timestamp
Enables a reset after capture event 1 and creates an Qutput port
TS. When you select this option, the eCAP process resets the
counters after receiving a capture event 1 timestamp.

Select capture event 1 polarity
Start the capture event on a Rising edge or Falling edge.

Time-Stamp counter data type
Select the data type of the counter. The list includes integer
and unsigned 8-, 16-, and 32-bit data types, double, single, and
Boolean.

C28x eCAP

Enable capture event status flag output
Output the capture event status flag on the Output port CF.
The block outputs a 0 until the event capture. After the event,
the flag value is 1.

Overflow capture event flag data type
Select the data type to represent the capture event flag. The
list includes integer and unsigned 8-, 16-, and 32-bit data types,
double, single, and Boolean.

Enable overflow status flag output
Output the status of the elements of the FIFO buffer on the
Output port OF. After you select this option, set the data type
for the flag in Overflow flag data type.

Overflow flag data type
Select the data type to represent the status flag. The list includes
integer and unsigned 8-, 16-, and 32-bit data types, double, single,
and Boolean.

APWM Pane

To enable the configuration parameters on this pane, select APWM from
the Operating mode list on the General pane.

2-69

C28x eCAP

-

Source Block Parameters: eCAP @
C28x eCAP (mask) (link)

Configure the settings of the
C280%/C2833%C2834%/CoB 02 T2803x/ C28 06 DSP for eCAP
{Enhanced Capture)

| General | eCAP | APWM | Interrupt

Wiaverform period units: ISEEDﬂdS *]

Waveform period source: [Speciﬁ.r via dialog ']

Wiwveform period.

0.001
Duty cycle units: [F'eru:entages *]
Duty cycle source: [Speciﬁ.r via dialog *]
Duty cycle:

50

Cutput polarity select: [ﬂu:tixre High -

(8]4][Cancel H Help apply

2-70

C28x eCAP

Waveform period units
Set the units for measuring the waveform period. Clock cycles
uses the high-speed peripheral clock cycles of the DSP chip, or
Seconds. Changing these units changes the Waveform period
value and the Duty cycle value and Duty cycle units selection.

Waveform period source
Source from which the waveform period value is obtained. Select
Specify via dialog to enter the value in Waveform period or
select Input port to use a value from the input port.

Waveform period
Period of the PWM waveform measured in clock cycles or in
seconds, as specified in the Waveform period units.

Note The term clock cycles refers to the high-speed peripheral
clock on the F2812 chip. This clock is 75 MHz by default because
the high-speed peripheral clock prescaler is set to 2 (150 MHz/2).

Duty cycle units
Units for the duty cycle. Select Clock cycles or Percentages
from the list. Changing these units changes the Duty cycle
value, the Waveform period value, and Waveform period
units selection.

Duty cycle source
Source from which the duty cycle for the specific PWM pair is
obtained. Select Specify via dialog to enter the value in Duty
cycle or select Input port to use a value from the input port.

Duty cycle
Ratio of the PWM waveform pulse duration to the PWM waveform
period expressed in Duty cycle units.

Output polarity select
Set the active level for the output. Choose Active High or Active
Low from the list. When you select Active High, the compare

2-71

C28x eCAP

value defines the high time. Selecting Active Low directs the
compare value to define the low time.
Interrupt Pane

In the following figure, you see the interrupt options when you put
the block in eCAP mode by setting Operating mode on the General
pane to eCAP.

2-72

C28x eCAP

- =

Source Block Parameters: eCAP @
C28x eCAP (mask) (link)
Configure the settings of the

C280%/C2833%C2834%/CoB 02 T2803x/ C28 06 DSP for eCAP
{Enhanced Capture)

| Gereral | ecaP | aPwM | Interrupt

"] Paost interrupt on capture event 1

"] Past interrupt on counter overflow

(84 H Cancel H Help][Apply

2-73

C28x eCAP

Post interrupt on capture event 1
Enables capture event 1 as an interrupt source. You can use the
(C28x Hardware Interrupt block to react to this interrupt.

Post interrupt on counter overflow
Enables counter overflow as an interrupt source.

The next figure presents the interrupt options when you put the block in
APWM mode by setting Operating mode on the General pane to APWM.

2-74

C28x eCAP

-

Source Block Parameters: eCAP @
C28x eCAP (mask) (link)
Configure the settings of the
C280%/C2833%C2834%/CoB 02 T2803x/ C28 06 DSP for eCAP
{Enhanced Capture)

| Gereral | ecaP | aPwM | Interrupt

"] Past interrupt on counter equal period match

"] Past interrupt on counter equal compare match

(84] [Cancel] [Help apply

2-75

C28x eCAP

Post interrupt on counter equal period match
Post an interrupt when the value of the counter is the same as the
value of the period register (CTR=PRD).

Post interrupt on counter equal compare match
Post an interrupt when the value of the counter is the same as the
value of the compare register (CTR=CMP).

References For detailed information about interrupt processing, see TMS320x28xx,
28xxx Enhanced Capture (eCAP) Module Reference Guide, SPRUS07B,
available at the Texas Instruments Web site.

See Also “eCAP” on page 3-185

2-76

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

Purpose

Library

Description

Configure Event Manager to generate Enhanced Pulse Width Modulator
(ePWM) waveforms

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2802x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2803x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2806x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C280x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C28x3x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2834x

C2B00C203x

Pkl
e P

Configures the Event Manager of the C280x/C2802x/C2803x/C28x3x
DSP to generate ePWM waveforms. These DSPs contain multiple
ePWM modules. Each module has two outputs, ePWMA and ePWMB.
You can use the ePWM block to configure up to six ePWM modules.

When you enable the High-Resolution Pulse Width Modulator
(HRPWM), the ePWM block uses the Scale Factor Optimizing Software
Version 5 library (SFO_TI_Build_V5.1ib). SFO_TI_Build_V5.1ib can
“dynamically determine the number of MEP steps per SYSCLKOUT
period.” For more information, consult TMS320x28xx, 28xxx
High-Resolution Pulse Width Modulator (HRPWM) Reference Guide,
Literature Number SPRU924, available at the Texas Instruments Web
site.

2-77

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

Dialog General Pane
Box

Configures the Event Manager of the C2802:/C2803»/C2806x DSP to generate ePWM waveforms.
The number of available eP'WM modules (ePWM1-ePWMB8) vary between C2000 processors.

General | ePWMA | ePWMB I Deadband unit | Event Trigger | PWM chopper control | Trip Zone unit | Digital Compare |

Module: |ePWM1

Timer period units: |Clock cycles

Specify timer period via: |Specify via dialog

Timer period:

64000

Reload for time base period register (PRDLD): |C0unter equals to zero

Counting mode: IUp—Down

Synchronization action: [Disab}e

[T specify software synchronization via input port (SWFSYNC)
[] Enable digital compare A eventl synchronization (DCAEVT1)

[”] Enable digital compare B eventl synchrenization (DCBEVT1)

Synchronization output (SYNCO): IDisabIe

Block Parameters: ePWML | ==
C2802x%/03x/06x ePWM (mask] (link) i

»

m

Time base clock (TBCLK) prescaler divider: |1

High speed time base clock (HSPCLKDIV) prescaler divider: |1

[”] Enable swap module A and B
[] Enable high resolution PWM (HRPWM -Period)
[] Enable high resolution PWM [HRPWIM -CMP)

[oK][Cancel H Help Apply

2-78

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

Allow use of 16 HRPWMs (for C28044) instead of 6 PWMs
Enable all 16 High-Resolution PWM modules (HRPWM) on the
(C28044 digital signal controller when the PWM resolution is too
low.

For example, the Spectrum Digital eZdsp™ F28044 board

has a system clock of 100 MHz (200-kHz switching). At

these frequencies, conventional PWM resolution is too
low—approximately 9 bits or 10 bits. By comparison, the HRPWM
resolution for the same board is 14.8 bits.

All the C280x/C2802x/C2803x/C2806x/C28x3x/c2834x ePWM
blocks in your model become HRPWM blocks, Thus, when you
enable this parameter:

e Use the HRPWM parameters under the ePWMA tab to make
additional configuration changes.

® Most of the configuration parameters under the ePWMB tab
are unavailable.

¢ Your model can contain up to 16 C280x/C2803x/C28x3x ePWM
blocks, provided you configure each one for a separate module.
(For example, Module is ePWM1, ePWM2, and so on.)

For processors other than the C28044, deselect (disable) Allow
use of 16 HRPWMs (for C28044) instead of 6 PWMs. To
enable HRPWM for other processors, first determine how many
HRPWM modules are available. Consult the Texas Instruments
documentation for your processor, and then use the HRPWM
parameters under the ePWMA tab to enable and configure
HRPWM.

For additional information about the C28044 and HRPWM,
consult the “References” on page 2-114 section.

Module
Specify which target ePWM module to use.

2-79

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

2-80

Timer period units

Specify the units of the Timer period or Timer initial period
as Clock cycles (the default) or Seconds. When Timer period
units is Seconds, the software down-converts the Timer period
or Timer initial period, a double for the period register to a
uint16. For best results, select Clock cycles. Doing so reduces
calculations and rounding errors.

Note If you set Timer period units to Seconds, enable
support for floating-point numbers. In the model window,
select Simulation > Model Configuration Parameters.

In the Configuration Parameters dialog box, select Code
Generation > Interface. Under Software Environment, enable
floating-point numbers.

Specify timer period via

Configure the source of the timer period value. Selecting Specify
via dialog changes the following parameter to Timer period.
Selecting Input port changes the following parameter to Timer
initial period and creates a timer period input port, T, on the
block.

Timer period

Set the period of the PWM waveform in clock cycles or in seconds,
as determined by the Timer period units parameter. When
you enable HRMWM, you can enter a high-precision floating
point value. The Time-Base Period High Resolution Register
(TBPRDHR) stores the high-resolution portion of the timer period
value.

Note The term clock cycles refers to the Time-base Clock on
the DSP. See the TB clock prescaler divider topic for an
explanation of Time-base Clock speed calculations.

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

Timer initial period
The period of the waveform from the time the PWM peripheral
starts operation until the ePWM input port, T, receives a new
value for the period. Use Timer period units to measure the
period in clock cycles or in seconds.

Note The term clock cycles refers to the Time-base Clock on
the DSP. See the TB clock prescaler divider topic for an
explanation of Time-base Clock speed calculations.

Reload for time base period register (PRDLD)
The time at which the counter period is reset.

e Counter equals to zero The counter period refreshes when
the value of the counter is 0.

e Immediate without using shadow The counter period
refreshes immediately.

Counting mode
Specify the counting mode in which to operate. This PWM module
can operate in three distinct counting modes: Up, Down, and
Up-Down. The Down option is not compatible with HRPWM. To
avoid an error when you build the model, do not set the Counting
mode parameter to Down and select the Enable HRPWM
(Period) parameter checkbox.

The following illustration shows the waveforms that correspond
to these three modes:

2-81

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

Down Up-Down

Pulse width value

Synchronization action
Specify the source of a phase offset to apply to the Time-base
synchronization input signal, EPWMxSYNCI from the SYNC
input port. Selecting Set counter to phase value specified
via dialog creates the Phase offset value parameter. Selecting
Set counter to phase value specified via input port
creates a phase input port, PHS, on the block. Selecting Disable,
the default value prevents the application of phase offsets to the
TB module.

Counting direction after phase synchronization
This parameter appears when Counting mode is Up-Down and
Synchronization action is Set counter to phase value
specified via dialog or Input port. Configure the timer to
count up from zero, or down to zero, following synchronization.
This parameter corresponds to the PHSDIR field of the Time-base
Control Register (TBCTL).

Phase offset value (TBPHS)
This field appears when you select Set counter to phase value
specified via dialog in Synchronization action.

Configure the phase offset (delay) between the following events:

¢ The arrival of the Time-base synchronization input signal
(EPWMxSYNCI) on the SYNC input port

¢ The moment the Time-base (TB) submodule synchronizes the
ePWM module.

2-82

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

Note Enter the Phase offset value (TBPHS) in TBCLK cycles,
from 0 to 65535. Do not use fractional seconds.

This parameter corresponds to the Time-Base Phase Register
(TBPHS).

Specify software synchronization via input port (SWFSYNC)
Create an input port, SYNC, for a Time-base synchronization
input signal, EPWM=xSYNCI. You can use this option to achieve
precise synchronization across multiple ePWM modules by
daisy-chaining multiple Time-base (TB) submodules.

Enable digital compare A eventl synchronization (DCAEVT1)
This parameter only appears in the C2802x and C2803x ePWM
blocks.

Synchronize the ePWM time base to a DCAEVT1 digital compare
event. Use this feature to synchronize this PWM module to the
time base of another PWM module. Fine-tune the synchronization
between the two modules using the Phase offset value. This
option is not compatible with HRPWM. Enabling HRPWM
disables this option.

Enable digital compare B eventl synchronization (DCBEVT1)
This parameter only appears in the C2802x and C2803x ePWM
blocks.

Synchronize the ePWM time base to a DCBEVT1 digital compare
event. Use this feature to synchronize this PWM module to the
time base of another PWM module. Fine-tune the synchronization
between the two modules using the Phase offset value. This
option is not compatible with HRPWM. Enabling HRPWM
disables this option.

Synchronization output (SYNCO)
This parameter corresponds to the SYNCOSEL field in the
Time-Base Control Register (TBCTL).

2-83

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

2-84

Use this parameter to specify the event that generates a
Time-base synchronization output signal, EPWMxSYNCO, from
the Time-base (TB) submodule.

The available choices are:

® Pass through (EPWMxSYNCI or SWFSYNC) — a
Synchronization input pulse or Software forced synchronization
pulse, respectively. You can use this option to achieve precise
synchronization across multiple ePWM modules by daisy
chaining multiple Time-base (TB) submodules.

e Counter equals to zero (CTR=Zero) — Time-base counter
equal to zero (TBCTR = 0x0000)

e Counter equals to compare B (CTR=CMPB) — Time-base
counter equal to counter-compare B (TBCTR = CMPB)

® Disable — Disable the EPWMxSYNCO output (the default)

Time base clock (TBCLK) prescaler divider

Use the Time base clock (TBCLK) prescaler divider
(CLKDIV) and the High speed time base clock
(HSPCLKDIVYV) prescaler divider (HSPCLKDIV) to configure
the Time-base clock speed (TBCLK) for the ePWM module.
Calculate TBCLK using the following equation:

TBCLK = SYSCLKOUT/(HSPCLKDIV * CLKDIV)

For example, the default values of both CLKDIV and HSPCLKDIV
are 1, and the default frequency of SYSCLKOUT is 100 MHz, so:

TBCLK = 100 MHz = 100 MHz/(1 * 1)

The choices for the Time base clock (TBCLK) prescaler
divider are: 1, 2, 4, 8, 16, 32, 64, and 128.

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

The Time block clock (TBCLK) prescaler divider parameter
corresponds to the CLKDIV field of the Time-base Control
Register (TBCTL).

Note The frequency of SYSCLKOUT depends on the oscillator
frequency and the configuration of PLL-based clock module.
Changing the values of the PLL Control Register (PLLCR) affects
the timing of all ePWM modules.

For more information, consult the “PLL-Based Clock Module”
section of the data manual for your specific target (see
“References” on page 2-114).

High speed time base clock (HSPCLKDIV) prescaler divider
See the Time base clock (TBCLK) prescaler divider topic for
an explanation of the role of this value in setting the speed of the
Time-base Clock. Choices are to divide by 1, 2, 4, 6, 8, 10, 12, and
14. Selecting Enable high resolution PWM (HRPWM-Period)
forces this option to 1.

This parameter corresponds to the HSPCLKDIV field of the
Time-base Control Register (TBCTL).

Enable swap module A and B
This parameter only appears in the C2802x and C2803x ePWM
blocks.

Swap the e PWMA and ePWMB outputs. This option outputs the
ePWMA signals on the ePWMB outputs and the ePWMB signals
on the ePWMA outputs.

Enable high resolution PWM (HRPWM - Period)
This parameter only appears in the C2802x and C2803x ePWM
blocks.

2-85

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

When the effective resolution for conventionally generated PWM
1s insufficient, consider using High Resolution PWM (HRPWM).
The resolution of PWM is normally dependent upon the PWM
frequency and the underlying system clock frequency. To address
this limitation, HRPWM usesMicro Edge Positioner (MEP) ™
technology to position edges more finely by dividing each coarse
system clock. The accuracy of the subdivision is on the order of
150ps. The following figure shows the relationship between one
system clock and edge position in terms of MEP steps:

——————————— M CPU Cycles (PWH Parlod)

—— PWMDuty —

MEP Shep —&! — . S

Coarse Shep
(100 MHz CPU ghves 10 ns)

MEP s@le facior = Mumbar of MEP steps In one coarss shep

Enable HRPWM mode and control it via the Extension Register
for HRPWM Period (TBPRDHR) register. When you enable this
parameter, you can enter an 8-bit floating point value in for the
Timer period parameter. This parameter enables the Enable
high resolution PWM (HRPWM - CMP) option, and displays
the HRPWM loading mode, HRPWM control mode, and
HRPWM edge control mode options. Also configure HRPWM
control mode.

Selecting Enable HRPWM (Period) forces TB clock prescaler
divider and High Speed TB clock prescaler divider to 1.
These settings match the HRPWM time base clock with the
SYSCLKOUT frequency.

2-86

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

The Down option in the Counting mode parameter is not
compatible with HRPWM. To avoid an error when you build the
model, do not set the Counting mode parameter to Down and
select the Enable HRPWM (Period) parameter checkbox.

Enable high resolution PWM (HRPWM - CMP)

This parameter only appears in the C2802x and C2803x ePWM
blocks.

Enable HRPWM mode and control it via the Extension Register

for HRPWM Duty (CMPAHR) register. Also configure HRPWM
control mode.

High resolution PWM (HRPWM) loading mode
This parameter appears only when theEnable high resolution
PWM (HRPWM - Period) is selected. Determine when to
transfer the value of the CMPAHR shadow to the active register:

¢ Counter equals to zero (CTR=ZERO) Transfer the value when
the time base counter equals zero (TBCTR = 0x0000).

¢ Counter equals to period (CTR=PRD) Transfer the value when
the time base counter equals the period (TBCTR = TBPRD).

Counter equals to either zero or period (CTR=ZERO or
CTR=PRD) Transfer the value when either case is true.

This option configures the HRLOAD “Shadow Mode Bit” in the
HRPWM Configuration Register (HRCNFG).

High resolution PWM (HRPWM) control mode
This parameter appears only when the Enable high resolution
PWM (HRPWM - CMP) is selected. Select which register
controls the Micro Edge Positioner (MEP) step size. The High

resolution PWM (HRPWM) Control mode option configures
the CTLMODE “Control Mode Bits”.

® Duty control mode uses the Extension Register for HRPWM
Duty (CMPAHR) or the Extension Register for HRPWM Period
(TBPRDHR) to control the MEP edge position.

2-87

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

2-88

e Select Phase control mode to use the Time Base Period
High-Resolution Register (TBPRDHR) to control the MEP edge
position.

The High resolution PWM (HRPWM) control mode option
configures the CTLMODE “Control Mode Bits” in the HRPWM
Configuration Register (HRCNFG).

High resolution PWM (HRPWM) edge control mode

Swap the ePWMA and ePWMB outputs. This parameter sets the
SWAPAB field in the HRPWM Configuration Register (HRCNFG).

Use scale factor optimizer (SFO) software

This parameter is enabled only if the Enable high resolution
PWM (HRPWM - CMP) is selected. Enable scale factor
optimizing (SFO) software with HRPWM. This software
dynamically determines the scaling factor for the Micro Edge
Positioner (MEP) step size. The step size varies depending on
operating conditions such as temperature and voltage. The SFO
software reduces variability due to these conditions. For more
information, see the “Scale Factor Optimizing Software (SFO)”
section of the TMS320x2802x, 2803x Piccolo High Resolution
Pulse Width Modulator (HRPWM) Reference Guide, Literature
Number: SPRUGES.

Enable auto convert

This parameter only appears if the Enable high resolution
PWM (HRPWM - CMP) is selected for the C2802x, C2803x ,
and C2806x ePWM blocks.

Apply the scaling factor calculated by the SFO software to the
controlling period or duty cycle. (Use the HRPWM control mode
to select controlling period or duty cycle.) This parameter sets
the AUTOCONYV field in the HRPWM Configuration Register
(HRCNFG).

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

ePWMA and ePWMB panes

Each ePWM module has two outputs, ePWMA and ePWMB. The
ePWMA output pane and ePWMB output pane include the same
settings, although the default values vary in some cases, as noted.

2-89

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

Block Parameters: ePWM |_EIZj
C280x/C2833x ePWM (mask) (link)

Configures the Event Manager of the C280x/C2833x DSP to generate ePWM waveforms.

| General | ePWMA | ePWMB | Deadband unit | Event Trigger | PWM chopper control | Trip Zone unit
[¥] Enable ePWM1A

CMPA units: IPercentages ']
Specify CMPA via: ISpecify via dialog ']
CMPA value:

50

Reload for compare A Register (SHDWAMODE): |Counter equals to zero - |
Action when counter=ZERO: IDO nothing = |
Action when counter=period (PRD): |Clear - |
Action when counter=CMPA on up-count (CAU): ISet - |
Action when counter=CMPA on down-count (CAD): |Do nothing - |
Action when counter=CMPB on up-count (CBU): [Do nothing - |
Action when counter=CMPB on down-count (CBD): |Do nothing - |
Compare value reload condition: ILoad on counter equals to zero (CTR=Zero) - |

[7] Add continuous software force input port

Coentinuous software force logic: [Forcing disable ']

Reload condition for software force: |Zero ']

[¥] Enable high resolution PWM (HRPWM)

High resolution PWM (HRPWM) loading mode: |Counter equals to zero (CTR=ZERO) v|
High resolution PWM (HRPWM) control mode: IPhase control mode v|
High resolution PWM (HRPWM) edge control mode: IEoth edge v|

[¥] Use scale factor optimizer (SFO) software

[0K ” Cancel |[Help]| Apply

2-90

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

Block Parameters: ePWM
C280x/C2833x ePWM (mask) (link)

Configures the Event Manager of the C280x/C2833x DSP to generate ePWM waveforms.

| General | ePWMA | ePWMB | Deadband unit | Event Trigger | PWM chopper control

Trip Zone unit

=]

[¥] Enable ePWM1B

CMPB units: ICIock cycles

Specify CMPB via: |Specify via dialog

CMPB value:
32000

Reload for compare B Register (SHDWBMODE): |Counter equals to zero

Action when counter=ZERO: IDO nothing

Action when counter=perod (PRD): |Set

Action when counter=CMPA on up-count (CAU): IDO nothing

Action when counter=CMPA on down-count (CAD): |Do nothing

Action when counter=CMPB on up-count (CBU): [Clear

Action when counter=CMPB on down-count (CBD): |Do nothing

Compare value reload condition: ILoad on counter equals to zero (CTR=Zero)

[Z] Add continuous software force input port

Coentinuous software force logic: [Forcing disable

Reload condition for software force: |Zero

OK

” Cancel |[

Help

| [Apply

2-91

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

Enable ePWMxA

Enable ePWMxB
Enables the ePWMA and/or ePWMB output signals for the ePWM
module identified on the General pane. By default, Enable
ePWMXxA is enabled, and Enable e PWMxB is disabled.

Note To Enable ePWMxA or Enable e PWMxB, also enable
support for floating-point numbers: In the model window,
select Code > C/C++ Code > Code Generation Options.

In the Configuration Parameters dialog box, select Code
Generation > Interface. Under Software Environment, enable
floating-point numbers.

CMPA units

CMPB units
Specify the units used by the compare register: Percentages (the
default) or Clock cycles.

Notes

¢ The term clock cycles refers to the Time-base Clock on the DSP.
See the TB clock prescaler divider topic for an explanation
of Time-base Clock speed calculations.

¢ Percentages use additional computation time in generated code
and can decrease results.

e If you set CMPA units or CMPB units to Percentages,
also enable support for floating-point numbers: In the
model window, select Simulation > Model Configuration
Parameters. In the Configuration Parameters dialog
box, select Code Generation > Interface. Under Software
Environment, enable floating-point numbers.

2-92

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

Specify CMPA via

Specify CMPB via
Specify the source of the pulse width. If you select Specify via
dialog (the default), enter a value in the CMPA value or CMPB
value field. If you select Input port, set the value using an input
port, WA or WB, on the block. If you select Input port also set
CMPA initial value or CMPB initial value.

CMPA value

CMPB value
This field appears when you choose Specify via dialog in
CMPA source or CMPB source. Enter a value that specifies
the pulse width, in the units specified in CMPA units or CMPB
units.

CMPA initial value

CMPB initial value
This field appears when you set CMPA source or CMPB source
to Input port. Enter the initial pulse width of CMPA or CMPB
the PWM peripheral uses when it starts operation. Subsequent
inputs to the WA or WB ports change the CMPA or CMPB pulse
width.

Reload for compare A Register (SHDWAMODE)
Reload for compare B Register (SHDWBMODE)
The time at which the counter period is reset.

e Select Counter equals to zero the counter period refreshes
when the value of the counter is 0.

e Select Immediate without using shadow the counter period
refreshes immediately.

2-93

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

2-94

Action when counter=ZERO

Action when counter=period (PRD)

Action when counter=CMPA on up-count (CAU)

Action when counter=CMPA on down-count (CAD)

Action when counter=CMPB on up-count (CBU)

Action when counter=CMPB on down-count (CBD)
These settings, along with the other remaining settings in the
ePWMA output and ePWMB output panes, determine the
behavior of the Action Qualifier (AQ) submodule. The AQ module
determines which events are converted into various action types,
producing the required switched waveforms of the ePWMxA and
ePWMxB output signals.

For each of these four fields, the available choices are Do nothing,
Clear, Set, and Toggle.

The default values for these fields vary between the ePWMA
output and ePWMB output panes.

The following table shows the defaults for each of these panes
when you set Counting mode to Up or Up-Down:

Action when ePWMA output ePWMB output
counter =... pane pane
ZERO Do nothing Do nothing
PRD Clear Set

CMPA on up-count Set Do nothing
(CAU)

CMPA on Do nothing Do nothing
down-count (CAD)

CMPB on up-count Do nothing Clear
(CBU)

CMPB on Do nothing Do nothing

down-count (CBD)

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

The following table shows the defaults for each of these panes
when you set Counting mode to Down:

Action when ePWMA output ePWMB output
counter =... pane pane

ZERO Do nothing Do nothing
period (PRD) Clear Set

CMPA on Do nothing Do nothing
down-count (CAD)

CMPB on Do nothing Do nothing

down-count (CBD)

For a detailed discussion of the AQ submodule, consult the
TMS320x280x Enhanced Pulse Width Modulator (ePWM) Module
Reference Guide (SPRU791), available on the Texas Instruments
Web site.

Compare value reload condition

Add continuous software force input port

Continuous software force logic

Reload condition for software force
These four settings determine how the action-qualifier (AQ)
submodule handles the S/W force event, an asynchronous event
initiated by software (CPU) via control register bits.

Compare value reload condition determines if and when to
reload the Action-qualifier S/W Force Register from a shadow
register. Choices are Load on counter equals to zero
(CTR=Zero) (the default), Load on counter equals to period
(CTR=PRD), Load on either, and Freeze.

Add continuous software force input port creates an input
port, SFA, which you can use to control the software force logic.
Send one of the following values to SFA as an unsigned integer
data type:

e 0 =Forcing disable: Do nothing. The default option.

2-95

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

2-96

® 1 =Forcing low: Clear low
® 2 =Forcing high: Set high
If you did not create the SFA input port, you can use Continuous

software force logic to select which type of software force logic
to apply. The choices are:

® Forcing disable: Do nothing. The default.
e Forcing low: Clear low
® Forcing high: Set high

Reload condition for software force — Choices are Zero (the
default), Period, Either period or zero, and Immediate.

Inverted version of ePWMxA

Only the ePWMB pane on the C2802x and C2803x blocks displays
this option. Invert the ePWMxA signal and output it on the
ePWMxB outputs. This parameter sets the SELOUTB field in the
HRPWM Configuration Register (HRCNFG).

Enable high resolution PWM (HRPWM)

This parameter appears at this position in the C280x and C2833x
ePWM blocks.

Select to enable High Resolution PWM settings. When the
effective resolution for conventionally generated PWM is
insufficient, consider High Resolution PWM (HRPWM). The
resolution of PWM is normally dependent upon the PWM
frequency and the underlying system clock frequency. To address
this limitation, HRPWM usesMicro Edge Positioner (MEP)
technology to position edges more finely by dividing each coarse
system clock. The accuracy of the subdivision is on the order of
150ps. The following figure shows the relationship between one
system clock and edge position in terms of MEP steps:

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

44— MCPU Cycles (PWH Pericd) —————=

—— PWM DUty ——

MEP Step — & id— . .

Coarse Shep
[100 MHz CPU ghves 10 ns)

MEF s=l& factor = Mumber of MEP sheps In One coarss shep

High resolution PWM (HRPWM) loading mode

This parameter appears at this position in the C280x and C2833x
ePWM blocks.

Determine when to transfer the value of the CMPAHR shadow to
the active register:

¢ Counter equals to zero (CTR=ZERO): Transfer the value when
the time base counter equals zero (TBCTR = 0x0000).

¢ Counter equals to period (CTR=PRD): Transfer the value when
the time base counter equals the period (TBCTR = TBPRD).

e CTR=Zero or CTR=PRD Transfer the value when either case
1s true.

High resolution PWM (HRPWM) control mode

This parameter appears at this position in the C280x and C2833x
ePWM blocks.

Select which register controls the Micro Edge Positioner (MEP)
step size. The High resolution PWM (HRPWM) control mode
option configures the CTLMODE “Control Mode Bits”.

2-97

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

® Duty control mode uses the Extension Register for HRPWM
Duty (CMPAHR) or the Extension Register for HRPWM Period
(TBPRDHR) to control the MEP edge position.

e Select Phase control mode to use the Time Base Period
High-Resolution Register (TBPRDHR) to control the MEP edge

position.

The High resolution PWM (HRPWM) control mode option
configures the CTLMODE “Control Mode Bits” in the HRPWM
Configuration Register (HRCNFG).

High resolution (HRPWM) edge control mode
This parameter appears at this position in the C280x and C2833x
ePWM blocks.

Swap the ePWMA and ePWMB outputs. This parameter sets the
SWAPAB field in the HRPWM Configuration Register (HRCNFG).

Use scale factor optimizer (SFO) software
Enable scale factor optimizing (SFO) software with HRPWM. This
software dynamically determines the scaling factor for the Micro
Edge Positioner (MEP) step size. The step size varies depending
on operating conditions such as temperature and voltage. The
SFO software reduces variability due to these conditions. For
more information, see the “Scale Factor Optimizing Software
(SFO)” section of the TMS320x2802x, 2803x Piccolo High
Resolution Pulse Width Modulator (HRPWM) Reference Guide,
Literature Number: SPRUGES.

Deadband Unit Pane

The Deadband unit pane lets you specify parameters for the
Dead-Band Generator (DB) submodule.

2-98

€280x/C€2802x/C2803x/C2806x/C28x3x/c2834x
ePWM
|

Block Parameters: ePWM

C2802x/03x/06x ePWM (mask) (link)

Configures the Event Manager of the C2802x/C2803x/C2806x DSP to generate ePWM waveforms.
The number of available ePWM modules (ePWM1-ePWM8) vary between C2000 processors.

| General | ePWMA | ePWMB | Deadband unit | Event Trigger

PWM chopper control | Trip Zone unit | Digital Compare
Use deadband for ePWM1A

Use deadband for ePWM1B
Enable half-cycle clocking

Deadband polarity: [Active high (AH)

Signal source for rising edge (RED): [eF’WMxA

Signal source for falling edge (FED): [eF’WMxA

Deadband period source: [Specify via dialog

Rising edge (RED) deadband period (0~1023):
0

Falling edge (FED) deadband period (0~1023):
0

m

0K][Cancel H Help H Apply

2-99

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

Use deadband for e PWMxA

Use deadband for e PWMxB
Enables a deadband area of without signal overlap between pairs
of ePWM output signals. This check box is cleared by default.

Enable half-cycle clocking
This parameter only appears in the C2802x and C2803x ePWM
blocks.

To double the deadband resolution, enable half-cycle clocking.
This option clocks the deadband counters at TBCLK*2. When you
disable this option, the deadband counters use full-cycle clocking
(TBCLK*1).

Deadband polarity
Configure the deadband polarity as Active high (AH) (the
default option), Active low (AL) ,Active high complementary
(AHC) or Active low complementary (ALC)

Signal source for rising edge (RED)
This field appears only when you select Use deadband for
ePWMxA in the ePWMA output pane. Enter a value from 0 to
1023 to specify a rising edge delay.

Signal source for falling edge (FED)
This field appears only when you select Use deadband for
ePWMxB in the e PWMB output pane. Enter a value from 0 to
1023 to specify a falling edge delay.

Deadband period source
Specify the source of the control logic. Choose Specify via
dialog (the default) to enter explicit values, or Input port to
use a value from the input port.

Rising edge (RED) deadband period (0~1023)
This field appears when you select the check boxUse deadband

for ePWMxA. The value you enter in the field specifies the dead
band delay in time-base clock (TBCLK) cycles.

2-100

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

Falling edge (FED) deadband period (0~1023)

This field appears when you select the check box Use deadband
for ePWMxB. The value you enter in the field specifies the dead
band delay in time-base clock (TBCLK) cycles.

Event Trigger Pane

Configure ADC Start of Conversion (SOC) by one or both of the ePWMA
and ePWMB outputs.

Block Parameters: ePWM @
C2802x/03x/06x ePWM (mask) (link) -
Configures the Event Manager of the C2802x/C2803x/C2806x DSP to generate ePWM waveforms.

The number of available ePWM modules (ePWM1-ePWM8) vary between C2000 processors.

| General | ePWMA | ePWMB | Deadband unit | Event Trigger | PWM chopper control | Trip Zone unit | Digital Compare |

Enable ADC start of conversion for module A
Number of event for start of conversion A (SOCA) to be generated: IFirst event ']

Start of conversion for module A event selection: IDigitaI Compare Module A Event 1 start of conversion (DCAEVT1.s0c) ']

Enable ADC start of conversion for module B

Number of event for start of conversion B (SOCB) to be generated: |First event ']

Start of conversion for module B event selection: IDigitaI Compare Module B Event 1 start of conversion (DCBEVT 1.s0c) ']

Enable ePWM interrupt

Number of event for interrupt to be generated: IFirst event ']

Interrupt counter match event condition: ICounter equals to zero (CTR=Zero) ']
[0K] I Cancel I I Help I I Apply

Enable ADC start of conversion for module A

When you select this option, ePWM starts the Analog-to-Digital
Conversion (ADC) for module A. By default, the software clears
(disables) this option.

2-101

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

2-102

Number of event for start of conversion for Module A (SOCA) to

be generated
When you select Enable ADC start of conversion for module
A, this field specifies the number of the event that triggers ADC
Start of Conversion for Module A (SOCA): First event triggers
ADC start of conversion with every event (the default). Second
event triggers ADC start of conversion with every second event.
Third event triggers ADC start of conversion with every third
event.

Start of conversion for module A event selection
When you select Enable ADC start of conversion for module
A, this field specifies the counter match condition that triggers an
ADC start of conversion event. The choices are:

Digital Compare Module A Event 1 start of conversion (DCAEVT1.soc)
and Digital Compare Module B Event 1 start of conversion
(DCBEVT1.s0c)
(For C2802x and C2803x only) When the ePWM asserts a
DCAEVT1 or DCBEVT1 digital compare event. Use this feature
to synchronize this PWM module to the time base of another
PWM module. Fine-tune the synchronization between the two
modules using the Phase offset value.

Counter equals to zero (CTR=Zero)
When the ePWM counter reaches zero (the default).

Counter equals to period (CTR=PRD)
When the ePWM counter reaches the period value.

Counter equals to zero or period (CTR=Zero or CTR=PRD)
When the time base counter equals zero (TBCTR = 0x0000) or
when the time base counter equals the period (TBCTR = TBPRD).

Counter is incrementing and equals to the compare A register
(CTRU=CMPA)
When the ePWM counter reaches the compare A value on the
way up.

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

Counter is decrementing and equals to the compare A register
(CTRD=CMPA)
When the ePWM counter reaches the compare A value on the
way down.

Counter is incrementing and equals to the compare B register
(CTRU=CMPB)
When the ePWM counter reaches the compare B value on the
way up.

Counter is decrementing and equals to the compare B register
(CTRD=CMPB)
When the ePWM counter reaches the compare B value on the
way down.

Enable ADC start of conversion for module B
When you select this option, ePWM starts the Analog-to-Digital
Conversion (ADC) for module B. By default, the software clears
(disables) this option.

Number of event for start of conversion for Module B (SOCB) to

be generated
When you select Enable ADC start module B, this field specifies
the number of the event that triggers ADC start of conversion:
First event triggers ADC start of conversion with every event
(the default), Second event triggers ADC start of conversion
with every second event, and Third event triggers ADC start of
conversion with every third event.

Start of conversion for module B event selection
When you select Enable ADC start of conversion for module
B, this field specifies the counter match condition that triggers an
ADC start of conversion event. The choices are the same as for
Module A counter match event condition.

Enable ePWM interrupt
Select this option to generate interrupts based on different events
defined by Number of event for interrupt to be generated
and Interrupt counter match event condition. By default,
the software clears (disables) this option.

2-103

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

Number of event for interrupt to be generated
When you select Enable ePWM interrupt, this field specifies the
number of the event that triggers the ePWM interrupt: First
event triggers ePWM interrupt with every event (the default),
Second event triggers ePWM interrupt with every second event,
and Third event triggers ePWM interrupt with every third event.

Interrupt counter match event condition
When you select Enable ePWM interrupt, this field specifies
the counter match condition that triggers ePWM interrupt. The
choices are the same as for Module A counter match event
condition.

PWM Chopper Control Pane

The PWM chopper control pane lets you specify parameters
for the PWM-Chopper (PC) submodule. The PC submodule uses
a high-frequency carrier signal to modulate the PWM waveform
generated by the AQ and DB modules.

Block Parameters: ePWM @
C2802x/03x/06x ePWM (mask) (link) -

Configures the Event Manager of the C2802x/C2803x/C2806x DSP to generate ePWM waveforms.
The number of available ePWM modules (ePWM1-ePWM8) vary between C2000 processors.

m

| General | ePWMA | ePWMB | Deadband unit | Event Trigger | PWM chopper control | Trip Zone unit | Digital Compare |

| Chopper module enable
Chopper frequency divider: |1 - |
Chopper clock cycles width of first pulse: 1 - |
Chopper pulse duty cycle: |12.5% - |

[0K] | Cancel | | Help | | Apply |

2-104

Chopper module enable
Select to enable the chopper module. Use of the chopper module is
optional, so this check box is cleared by default.

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

Chopper frequency divider
Set the prescaler value that determines the frequency of the
chopper clock. The system clock speed is divided by this value to
determine the chopper clock frequency. Choose an integer value
from 1 to 8.

Chopper clock cycles width of first pulse
Choose an integer value from 1 to 16 to set the width of the first
pulse. This feature provides a high-energy first pulse for a hard
and fast power switch turn on.

Chopper pulse duty cycle
The duty cycles of the second and subsequent pulses are also
programmable. Choices are 12.5%, 25%, 37.5%, 50%, 62.5%, 75%,
and 87.5%.

Trip Zone Unit Pane

The Trip Zone unit pane lets you specify parameters for the Trip-zone
(TZ) submodule. Each ePWM module receives six TZ signals (TZ1 to
TZ6) from the GPIO MUX. These signals indicate external fault or trip
conditions. Use the settings in this pane to program the EPWM outputs
to respond when faults occur.

2-105

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

Block Parameters: ePWM
C2802x/03x/06x ePWM (mask) (link)

Configures the Event Manager of the C2802x/C2803x/C2806x DSP to generate ePWM waveforms.

The number of available ePWM modules (ePWM1-ePWM8) vary between C2000 processors.

| General | ePWMA | ePWMB | Deadband unit | Event Trigger

PWM chopper control

Trip Zone unit | Digital Compare

Trip zone source: [Specify via dialog

[7] Enable one-shat trip-zonel (TZ1)

[7] Enable one-shat trip-zone2 (TZ2)

[7] Enable one-shat trip-zone3 (TZ3)

[7] Enable one-shot digital compare A event 1 (DCAEVT1)
[7] Enable one-shot digital compare B event 1 (DCBEVT1)
[7] Enable cyclic trip-zonel (TZ1)

[7] Enable cyclic trip-zone2 (TZ2)

[7] Enable cyclic trip-zone3 (TZ3)

[7] Enalbe cyclic digital compare A event 2 (DCAEVT2)

[7] Enalbe cyclic digital compare B event 2 (DCBEVT2)

[7] Enable trip-zone one-shot interrupt (OST)

[7] Enable trip-zone cycle-by-cycle interrupt (CBC)

[7] Digital comparator output A event 1 interrupt enable (DCAEVT1)

[7] Digital comparator output B event 1 interrupt enable

(

[7] Digital comparator output A event 2 interrupt enable (DCAEVTZ2)
(DCBEVT1
(

)
[7] Digital comparator output B event 2 interrupt enable (DCBEVT2)

ePWM1A forced (TZ) to: [No action

ePWM1B forced (TZ) to: [No action

ePWM1A forced (DCAEVT1) to: [No action

ePWM1B forced (DCBEVT1) to: [No action

ePWM1A forced (DCAEVTZ2) to: [No action

ePWM1B forced (DCBEVT2) to: [No action

0K][Cancel H

Help

| [Apply

2-106

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

Trip zone source
Specify the source of the control logic to enable or disable the TZ
Interrupts (One shot TZ1-TZ6 and Cyclic TZ1-TZ6). Select
Specify via dialog (the default) to enable specific Trip-zone
signals in the block dialog. Choose Input port to enable specific
Trip-zone signals using a block input port, TZSEL.

If you select Input port, use the following bit operation to
determine the value of the 16-bit integer to send to the TZSEL
input port:

TZSEL INPUT VALUE = (OSHT6*2'® + OSHT5*2'2 + QSHT4*2'"
+ OSHT3*2'0 + OSHT2*2% + QOSHT1*2% + CBC6*25 + CBC5*2% +
CBC4*23 + CBC3*22 + CBC2*2' + CBC1+*2°)

The software uses the higher 8 bits for the One shot TZ1-TZ6
and the lower 8 bits for Cyeclic TZ1-TZ6. You can set up a group
of TZ sources (1~6), use a bit operation to combine them into an
integer, and then feed the integer to TZSEL.

For example, to enable One Shot TZ6 (OSHT6) and One Shot TZ5
(OSHTS5) as trip zone sources, set OSHT6 and OSHTS5 to “1” and
leave the remaining values as “0”.

TZSEL INPUT VALUE = (1*213 + 1*212 + 0*211)

TZSEL INPUT VALUE = (8192 + 4096 + 0 ...)

TZSEL INPUT VALUE = 12288

When the block receives this value, it applies it to the TZSEL
register as a binary value: 11000000000000.

For more information, see the "Trip-Zone Submodule Control and
Status Registers” section of the TMS320x28xx, 28xxx Enhanced
Pulse Width Modulator (ePWM) Module Reference Guide,
Literature Number: SPRU791 on www.ti.com

2-107

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

2-108

Enable One-Shot Trip zonel (TZ1)

Enable One-Shot Trip zone2 (TZ2)

Enable One-Shot Trip zone3 (TZ3)

Enable One-Shot Trip zone4 (TZ4)

Enable One-Shot Trip zone5 (TZ5)

Enable One-Shot Trip zone6 (TZ6)
Select these check boxes to enable the corresponding Trip-zone
signal in One-Shot Mode. In this mode, when the trip event is
active, the software performs the corresponding action on the
EPWMxA/B output immediately and latches the condition. You
can unlatch the condition using software control.

Enable one-shot digital compare A event 1 (DCAEVT1)

Enable one-shot digital compare B event 1 (DCBEVT1)
Select these check boxes to enable the corresponding event signal
as a OST trip source for event 1. In this mode, if the digital
compare A or digital compare B event 1 is active, the software
performs the corresponding action on the EPWM1A/B output
immediately and latches the condition. You can unlatch the
condition using the software control.

Enable Cyclic Trip zonel (TZ1)

Enable Cyclic Trip zone2 (TZ2)

Enable Cyclic Trip zone3 (TZ3)

Enable Cyclic Trip zone4 (TZ4)

Enable Cyclic Trip zoneb (TZ5)

Enable Cyclic Trip zone6 (TZ6)
Select these check boxes to enable the corresponding Trip-zone
signal in Cycle-by-Cycle Mode. In this mode, when the trip event
is active, the software performs the corresponding action on
the EPWMxA/B output immediately and latches the condition.
In Cycle-by-Cycle Mode, the software automatically clears
condition when the PWM Counter reaches zero. Therefore, in
Cycle-by-Cycle Mode, every PWM cycle resets or clears the trip
event.

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

Enable cyclic digital compare A event 2 (DCAEVT2)

Enable cyclic digital compare B event 2 (DCBEVT2)
Select these check boxes to enable the corresponding event signal
as a cyclic trip source for event 2. In this mode, if the digital
compare A or digital compare B event 2 is active, the software
performs the corresponding action on the EPWM2A/B output
immediately and latches the condition. You can unlatch the
condition using the software control.

Enable Trip-zone One-Shot interrupt (OST)
Generate an interrupt when the one shot (OST) triggering event
occurs.

Enable Trip-zone Cycle-by-Cycle interrupt (CBC)
Generate an interrupt when the cyclic or cycle-by-cycle (CBC)
triggering event occurs.

Digital comparator output A event x interrupt enable
(DCAEVTx)
Digital comparator output B event x interrupt enable
(DCBEVTX)
Generate an interrupt when Digital Comparator Output A or
Digital Comparator Output B for event 1 or 2 occurs.

ePWMxA forced (TZ) to

ePWMxB forced (TZ) to

ePWMxA forced (DCAEVTX) to

ePWMxB forced (DCBEVTx) to
Upon a fault condition, the software overrides and forces the
ePWMxA and/or ePWMxB (TZ or DCAEVTX) output to one of
the following states: No action (the default), High, Low, or Hi-Z
(High Impedance).

Digital Compare

Use the Digital Compare pane to configure the Digital Compare (DC)
submodule.

Each digital compare (DC) submodule receives three TZ signals (TZ1 to
TZ3) from the GPIO MUX, and three COMP signals from the COMP.

2-109

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

2-110

These signals indicate fault or trip conditions that are external to the
PWM submodule. Use the settings in this pane to output specific DC
events in response to those external signals. These DC events feed

directly into the Time-base, Trip-zone, and Event-trigger submodules.

For more information, see the “Digital Compare (DC) Submodule”
section of the TMS320x2802x, 2803x Piccolo Enhanced Pulse Width
Modulator (ePWM) Module Reference Guide, Literature Number:
SPRUGEDS9.

€280x/C€2802x/C2803x/C2806x/C28x3x/c2834x
ePWM
|

Block Parameters: ePWM lﬂ
C2802x/03x/06x ePWM (mask) (link) -

Configures the Event Manager of the C2802x/C2803x/C2806x DSP to generate ePWM waveforms.
The number of available ePWM modules (ePWM1-ePWM8) vary between C2000 processors.

| General | ePWMA | ePWMB | Deadband unit | Event Trigger | PWM chopper control | Trip Zone unit | Digital Compare

Source for digital compare A high signal (DCAH): [Trip Zone 1 input (TZ1) ']
Source for digital compare A low signal (DCAL): [Trip Zone 1 input (TZ1) ']
Source for digital compare B high signal (DCBH): [Trip Zone 1 input (TZ1) ']
/|| Source for digital compare B low signal (DCBL): [Trip Zone 1 input (TZ1) ']
; Digital compare output A event 1 selection (DCAEVT1): [DCAL:high and DCAH=low ']
Digital compare output A event 2 selection (DCAEVT2): [DCAL:high and DCAH=low ']
Digital compare output B event 1 selection (DCBEVT1): [DCEL:high and DCBH=low ']
Digital compare cutput B event 2 selection (DCBEVT2): [DCEL:high and DCBH=low ']
| DCAEVT1 source select: [DCEV‘I’F]]_T with sync '] 1
DCAEVT2 source select: [DCAEV‘I’Z with sync ']
DCBEVT1 source select: [DCEEV‘I’l with sync ']
DCBEVT2 source select: [DCEEV‘I’Z with sync ']
Pulse select: | Counter equals to period (CTR=PRD) ']

[7] Blanking window inverted
Blanking window offset

0

Blanking window width

0

Filter source select: |Filtered version of DCAEVT1 (DCAEVT1FILT) -

[7] Enable counter capture

0K H Cancel H Help H Apply

2-111

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

Source for digital compare A high signal (DCAH), Source for
digital compare B high signal (DCBH)
If the TZ or COMP event you select occurs, assert a high
signal. Qualify this signal using the DCAEVT# source select,
DCBEVT# source select options.

Source for digital compare A low signal (DCAL), Source for
digital compare B low signal (DCBL)
If the TZ or COMP event you select occurs, assert a low
signal. Qualify this signal using the DCAEVT# source select,
DCBEVT# source select options.

Digital compare output A event # selection (DCAEVT#), Digital

Compare output B event # selection (DCBEVT#)
Qualify the signals that generate DC events, such as DCAEVT#
or DCBEVT#. Select the states of Source for digital compare
A high signal DCAH, Source for digital compare B high
signal DCBH, Source for digital compare A low signal
(DCAL), and Source for digital compare B low signal
(DCBL) that generate the event. To disable this feature, choose
the Event disabled option.

DCAEVT# source select, DCBEVT# source select
This parameter controls two separate aspects of triggering DC
events:

¢ Triggering filtered or unfiltered DC event. (Configures
DCACTL[EVT1SRCSEL] or DCACTL[EVT2SRCSEL].)

® Trigger the DC event synchronously or asynchronously.
(Configures DCACTL[EVT1FRCSYNCSEL] or
DCACTL[EVT2FRCSYNCSEL].)

Filtering

¢ Options that begin with DCAEVT# with sync or DCAEVT# with
async do not apply filtering to DC events. Qualified signals
trigger DC events.

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

¢ Options that begin with DCEVTFILT sync apply filtering to
DC events. Qualified signals pass through filtering circuits
before triggering DC events. This filtering is not configurable
in the ePWM block. For more information, refer to the
“Event Filtering” section of the TMS320x2802x, 2803x Piccolo
Enhanced Pulse Width Modulator (ePWM) Module Reference
Guide, Literature Number: SPRUGE9.

Synchronizing

¢ Options that end with async trigger DC events asynchronously.
When the qualified or filtered signals exist, the DC submodule
triggers the DC event immediately.

¢ Options that end with sync trigger DC events synchronously.
Once the qualified or filtered signals exist, the DC submodule
triggers the DC event in sync with the TBCLK signal.

Note The following fields appear when you select DCEVTFILT
with sync or DCEVTFILT with async for the DCAEVTX
source select or DCBEVTX source select.

For more details about the following parameters, refer to the
sections: TMS320x2806x Piccolo processor: 3.2.9.3.2 (Event
Filtering) and Table 56 of Technical Reference Manual
(SPRUH18C). TMS320x2802x/03x Piccolo processors : 2.9.3.2
(Event Filtering) and Table 56 of Enhanced Pulse Width
Modulator (ePWM) Module Reference Guide (SPRUGE9E) for
TMS320x2802x and TMS320x2803x Piccolo processors.

Pulse select
The blanking window which filters out event occurrences on the
signal while active, is aligned to either a CTR = PRD pulse or
a CTR = 0 pulse.

2-113

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

References

2-114

Blanking window inverted
The option that allows you to Enable or Disable the Inverted
Blanking window.

Blanking window offset
The number of TBCLK cycles required from the blanking window
reference to the point when the blanking window is applied.

Blanking window width
The duration of the blanking window in terms of TBCLK.

Filter source select
The option that allows you to select a source for Filtering.
The available options are:
¢ Filtered version of DCAEVT1 (DCAEVTI1FILT)
¢ Filtered version of DCAEVT2 (DCAEVT2FILT)
¢ Filtered version of DCBEVT1 (DCBEVT1FILT)
¢ Filtered version of DCBEVT2 (DCBEVT2FILT)

Enable counter capture
The option that allows you to Enable or Disable the time-base
counter capture.

For more information, consult the following references, available at
the Texas Instruments Web site:

o TMS320x28xx, 28xxx Enhanced Pulse Width Modulator (ePWM)
Module Reference Guide, literature number SPRU791

o TMS320x280x, 2801x, 2804x High Resolution Pulse Width Modulator
Reference Guide, literature number SPRU924E

o TMS320x2802x, 2803x Piccolo Enhanced Pulse Width Modulator
(ePWM) Module Reference Guide, literature number SPRUGE9

o TMS320x2802x, 2803x Piccolo High Resolution Pulse Width
Modulator (HRPWM) Reference Guide, literature number SPRUGES

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

See Also

e Using the ePWM Module for 0% - 100% Duty Cycle Control
Application Report, literature number SPRU791

® Configuring Source of Multiple ePWM Trip-Zone Events, literature
number SPRAAR4

o TMS320F2809, TMS320F2808, TMS320F2806 TMS320F2802,
TMS320F2801 TMS320C2802, TMS320C2801, and TMS320F2801x
DSPs Data Manual, literature number SPRS230

o TMS320F28044 Digital Signal Processor Data Manual, literature
number SPRS357

o TMS320F28335/28334/28332 TMS320F28235/28234/28232
Digital Signal Controllers (DSCs) Data Manual, literature number
SPRS439

“CAN-Based Control of PWM Duty Cycle”
“SPI-Based Control of PWM Duty Cycle”
“ADC-PWM Synchronization via ADC Interrupt”

C280x/C28x3x ADC
“ePWM” on page 3-186

2-115

C28x eQEP

Purpose Quadrature encoder pulse circuit

Librclry Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2803x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2806x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C280x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C28x3x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2834x

L2 T2 8

qposcnt

eJEF

Description =0EF

The enhanced quadrature encoder pulse (eQEP) module is used for
direct interface with a linear or rotary incremental encoder to get
position, direction, and speed information from a rotating machine for
use in motion and position-control systems.

2-116

C28x eQEP

Dialog General Pane

Box
E] Source Block Parameters: eJEP il

C280x,/C2833x eQER (mask) {link)

The enhanced quadrature encoder pulze (e0EF) module is used for direct interface
with & linear ar rotary incremental encoder to get position, direction, and speed
information from a rotating machine for use in a high-performance motion and

position-control system.
The eQEP inputs include two pins for quadrature-clock mode or direction-count mode,

an index (or O mrker), and a strobe input,

General | Fosition countar I Speed calculation | Compare output | Watchdog 4|’

Module:
Position counter mode: |QuadraU.Jre—c0unt j
Positive rotation: ICIDckW =] j

™ Quadrature direction flag output port
I Invert input QEPx& polarity

I Invert input QEPxE polarity

I Invert input QEPI polarity

™ Invert input QEPxS polarity

I Index pulse gating option

Sample time:
{0.0001

oK I Cancel | Help |
Module

If more than one eQEP module is available on your processor,
select the module this block configures.

Position counter mode
The input signals QEPA and QEPB are processed by the

Quadrature Decoder Unit (QDU) to produce clock (QCLK) and
direction (QDIR) signals. Choose the position counter mode
that matches the way the input to the eQEP module is encoded.

2-117

C28x eQEP

Choices are Quadrature-count (the default), Direction-count,
Up-count, and Down-count.

Positive rotation
This field appears only when you choose Quadrature-count in
Position counter mode. Choose the direction that represents
positive rotation: Clockwise (the default) or Counterclockwise.

External clock rate
This field appears only when you choose Direction-count,
Up-count, or Down-count in Position counter mode. In these
cases, you can program clock generation to the position counter to
occur on both rising and falling edges of the QEPA input or on the
rising edge only. Choosing the former increases the measurement
resolution by a factor of 2. Choices are 2x resolution: Count
the rising/falling edge (the default) or 1x resolution:
Count the rising edge only.

Quadrature direction flag output port
This check box appears only when you choose Quadrature-count
in Position counter mode. Select this check box if you want to
create a port on the block that gives access to the direction flag of
the quadrature module.

Invert input QEPxA polarity

Invert input QEPxB polarity

Invert input QEPxI polarity

Invert input QEPxS polarity
Select these check boxes to invert the polarity of the respective
eQEP input signal.

Index pulse gating option
Select this check box to enable gating of the index pulse.

Sample time
Enter the sample time in seconds.

2-118

C28x eQEP

Position Counter Pane

E] Source Block Parameters: eQEP il
—C280%/C2833x eQER (mask) (link)

The enhanced quadrature encoder pulse (BQEP) module is used for direct interface
with a linear or rotary incremental encoder to get position, direction, and speed
information from a rotating machine for use in a high-performance motion and
position-contral systam.

The eQEF inputs include two pins for guadrature-clock mode or direction-count mode,
an index {or O mrker), and a strobe input.

General Speed calculation | Compare output | Watchdog 4 ¥

¥ Output position counter
Maxirum position counter value (0-~4204967205):
4294367295

[Enable set to init value on index event
[Enable set to init value on strobe event

™ Enable software initialization

Position counter reset mode: |Reset on an index event j

r Output position counter error flag

[0]4 Cancel | Help |

Output position counter
This check box is selected by default. Leave it selected to output
the position counter signal PCSOUT from the position counter
and control unit (PCCU).

2-119

C28x eQEP

2-120

Maximum position counter value
Enter a maximum value for the position counter. Enter a value
from 0 to 4294967295. The value defaults to the maximum
allowed value of 4294967295.

Enable set to init value on index event
Select to set the position counter to its initialization value on an
index event. This check box is cleared by default.

Set to init value on index event
This field appears only when Enable set to init value on
index event is selected. Choose to set the position counter to
its initialization value on the Rising edge (the default) or the
Falling edge of the index input.

Enable set to init value on strobe event
Select to set the position counter to its initialization value on a
strobe event. This check box is cleared by default.

Set to init value on strobe event
This field appears only when Enable set to init value on strobe
event is selected. Rising edge, the default option, sets the
position counter to its initialization value on the rising edge of the
strobe input. In the forward direction, Depending on direction
sets the position counter to its initialization value on the rising
edge of the strobe input. In the reverse direction, Depending on
direction sets the position counter to its initialization value on
the falling edge of the strobe input.

Enable software initialization
Select to allow the position counter to be set to its initialization
value via software. This check box is cleared by default.

Software initialization source
This field appears only when Enable software initialization is
selected. Choose Set to init value at start up (the default)
or Input port to receive the control logic through the input port.

C28x eQEP

Initialization value
This field appears only when Enable set to init value on
index event, Enable set to init value on strobe event, or
Enable software initialization check box is selected. Enter the
initialization value for the position counter. Enter a value from 0
to 4294967295. The value defaults to 2147483648.

Position counter reset mode
Choose a position counter reset mode, depending on the nature
of the system the eQEP module is working with: Reset on an
index event (the default), Reset on the maximum position,
Reset on the first index event, or Reset on a time unit
event.

Output position counter error flag
This check box appears only when Position counter reset mode
s set to Reset on an index event. Select this check box to
output the position counter error flag on error.

Output latch position counter on index event
This check box appears only when Position counter reset mode
is set to Reset on the maximum position or Reset on the
first index event. The eQEP index input can be configured
to latch the position counter (QPOSCNT) into QPOSILAT on
occurrence of a definite event on this pin. Select this check box to
latch the position counter on each index event.

Index event latch of position counter
This field appears only when the Output latch position
counter on index event check box is selected. Choose one of the
following events to configure the eQEP position counter to latch
on that event: Rising edge, Falling edge, or Software index
marker via input port.

Output latch position counter on strobe event
This check box appears only when Position counter reset mode
is set to Reset on the maximum position or Reset on the
first index event. The eQEP strobe input can be configured
to latch the position counter (QPOSCNT) into QPOSSLAT on

2-121

C28x eQEP

occurrence of a definite event on this pin. Select this check box to
latch the position counter on each strobe event.

Strobe event of latched position counter
This field appears only when the Output latch position counter
on strobe event check box is selected. Choose Rising edge to
latch on the rising edge of the strobe event input, or Depending
on direction to latch on the rising edge in the forward direction
and the falling edge in the reverse direction.

2-122

C28x eQEP

Speed Calculation Pane

5] source Block Parameters: eQEP X|
—C2B0y/C2833x% eQER (mask) (link)

The enhanced quadrature encoder pulse (EQEP) module is used for direct interface
with a linear or rotary incremental encoder to get position, direction, and speed
information from a rotating machine for use in a high-performance motion and
position-contral systam.

The eQEF inputs include two pins for guadrature-clock mode or direction-count mode,
an index {or O mrker), and a strobe input.

General | Position counter Speed calculation | Compare output | Watchdog *l'
v :Enable eQEP capture |
™ Output capture timer

™ output capture period timer

eQEP capture timer prescaler: |128 j

Lnit position event prescaler: |12EI j

™ Enable and output overflow error flag

™ Enable and output direction change error flag

Capture timer and position: IOn position counter read j
™ Output capture timer latched value

™ output capture timer period latched value

™ Output position counter latched value

[0]4 Cancel Help

Enable QEP capture
The eQEP peripheral includes an integrated edge capture unit
to measure the elapsed time between the unit position events.
Check this check box to enable the edge capture unit. This check
box is cleared by default.

2-123

C28x eQEP

2-124

Output capture timer
Select this check box to output the capture timer into the capture
period register. This check box is cleared by default.

Output capture period timer
Select this check box to output the capture period into the capture
period register. This check box is cleared by default.

eQEP capture timer prescaler
The eQEP capture timer runs from prescaled SYSCLKOUT. The
capture timer period is the value of SYSCLKOUT divided by
the value you choose in this field. Choices are 1, 2, 4, 8, 16, 32,
64, and 128 (the default).

Unit position event prescaler
The timing of the unit position event is determined by prescaling
the quadrature-clock (QCLK). QCLK is divided by the value you
choose in this popup. Choices are 4, 8, 16, 32, 64, 128, 256, 512,
1024, and 2048 (the default).

Enable and output overflow error flag
Select this check box to enable and output the eQEP overflow
error flag in the event of capture timer overflow between unit
position events.

Enable and output direction change error flag
Select this check box to enable and output the direction change
error flag.

Capture timer and position
Choose the event that triggers the latching of the capture timer
and capture period register: On position counter read (the
default) or On unit time-out event.

Unit timer period
This field appears only when you choose On unit time-out
event in Capture timer and position. Enter a value for the
unit timer period from 0 to 4294967295. The value defaults to
100000000.

C28x eQEP

Output capture timer latched value
Select this check box to output the capture timer latched value
from the QCTMRLAT register.

Output capture timer period latched value
Select this check box to output the capture timer period latched
value from the QCPRDLAT register.

Output position counter latched value
Select this check box to output the position counter latched value
from the QPOSLAT register.

2-125

C28x eQEP

2-126

=] source Block Parameters: eQEP

Compare Output Pane

—C2B0y/C2833x% eQER (mask) (link)

The enhanced quadrature encoder pulse (EQEP) module is used for direct interface
with a linear or rotary incremental encoder to get position, direction, and speed
information from a rotating machine for use in a high-performance motion and
position-contral systam.

The eQEF inputs include two pins for guadrature-clock mode or direction-count mode,
an index {or O mrker), and a strobe input.

General | Position counter | Speed calculation Cormpare output | Watchdog *l'

W;Enable position-compare sync signal Dquuté

Sync output pin selection: IIndex pin is used for sync output j
Compare value source: ISpeciFy via dialog j
Position cormpare shadow load mode: |LDad on QPOSCHT =0 j

Position compare value (D~42949672957:
[4294967295

Sync output pulse width (1~40967:
1

Polarity of sync output: |Active high j

[0]4 Cancel Help

Enable position-compare sync signal output

The eQEP peripheral includes a position-compare unit that is
used to generate the position-compare sync signal on compare

match between the position counter register (QPOSCNT) and the
position-compare register (QPOSCMP). Select this check box to

C28x eQEP

enable the position-compare sync signal output. This check box is
cleared by default.

Sync output pin selection
Choose which pin is used for the sync signal output. Choices are
Index pin is used for sync output (the default) and Strobe
pin is used for sync output.

Compare value source
Choose the source of the value to use in the position comparison.
Choose Specify via dialog (the default) to specify a fixed value
or Input port to read the value from the input port.

Position compare shadow load mode
This field lets you enable or disable shadow mode for use in
generating the position-compare sync signal (shadow mode is
enabled by default). When shadow mode is enabled, you can also
choose an event to trigger the loading of the shadow register value
into the active register.

Choose Disable shadow mode to disable shadow mode. Choose
Load on QPOSCNT=0 (the default) to load on the position-counter
zero event. Choose Load on QPOSCNT=QPOSCMP to load on compare
match.

Position compare value
This field appears only when you choose Specify via dialogin
Compare value source. Enter a value from 0 to 4294967295.
The value defaults to 4294967295. This value is loaded into the
position-compare register (QPOSCMP).

Sync output pulse width
The pulse stretcher logic in the position-compare unit generates
a programmable position-compare sync pulse output on the
position-compare match.

Enter a value from 1 to 4096 to determine the pulse width of the
position-compare sync output signal. The value defaults to 1.

2-127

C28x eQEP

Polarity of sync output
Choose a value to determine the polarity of the sync output signal:
Active high (the default) or Active low.

Watchdog Unit Pane

E] Source Block Parameters: eQEP il
—C280%/C2833x eQER (mask) (link)

The enhanced quadrature encoder pulse (BQEP) module is used for direct interface
with a linear or rotary incremental encoder to get position, direction, and speed
information from a rotating machine for use in a high-performance motion and
position-contral systam.

The eQEF inputs include two pins for guadrature-clock mode or direction-count mode,
an index {or O mrker), and a strobe input.

zral | Position counter | Speed calculation | Compare output Watchdog unit | 4|k

v ‘Watchdog timer enable:
Wiatchdog tirmer (0~65535):
| 65535

[0]4 Cancel | Help |

2-128

C28x eQEP

Enable watchdog time out flag via output port
The eQEP peripheral contains a watchdog timer that monitors
the quadrature-clock to indicate that the motion-control system
is operating. Select this check box to enable the watchdog time
out flag.

Watchdog timer
Enter the time-out value for the watchdog timer. Enter a value
from 0 to 65535 (the default).

2-129

C28x eQEP

Signal Data Types Pane

5] source Block Parameters: eQEP X|
—C2B0y/C2833x% eQER (mask) (link)
The enhanced quadrature encoder pulse (EQEP) module is used for direct interface
with a linear or rotary incremental encoder to get position, direction, and speed
information from a rotating machine for use in a high-performance motion and
position-contral systam.
The eQEF inputs include two pins for guadrature-clock mode or direction-count mode,
an index {or O mrker), and a strobe input.
| Speed calculation | Compare output | Wiatchdog unit Slgnaldatat\,rpesl Ir4 | »
Position counter value data type: Iautu j
(o] Cancel | Help |

The image above shows the default condition of the Signal data types
pane. Choosing a number of options in other panes of the eQEP dialog
box causes a corresponding popup to appear in the Signal data types
pane.

The following table summarizes the options for which you can set the
data type in the Signal data types pane:

2-130

C28x eQEP

Pane
General

Position
counter

Speed
calculation

Watchdog unit

Option

Quadrature direction flag output port
Output position counter (selected by default)
Output position counter error flag

Output latch position counter on index event
Output latch position counter on strobe event
Output capture timer

Output capture period timer

Enable and output overflow error flag
Enable and output direction change error flag
Output capture timer latched value

Output capture timer period latched value
Output position counter latched value

Enable watchdog time out flag via output port

The fields that appear on the Signal data types pane are named
similarly to these options. For example, Position counter value
data type on the Signal data types pane corresponds to the Output
position counter option on the Position counter pane.

For all data type fields, valid data types are auto, double, single,
int8, uint8, int16, uint16, int32, uint32, and boolean

2-131

C28x eQEP

2-132

Interrupt Pane

E] Source Block Parameters: eQEP il

C280x/C2833% eQER (mask) (link)

The enhanced quadrature encoder pulse (20EF) rmodule is used for direct interface
with & linear or rotary incremental encoder to get position, direction, and speed
infarmation from a rotating machine for use in a high-performance mation and
position-contral system.
The eQEP inputs include twao pins for quadrature-clock mode or direction-count made,
an index (or O rarker), and a strobe input,

[EIE

calculation I Cormpare output | Watchdog unit | Signal data types
™ Position counter error interrupt enable

™ Quadrature phase error interrupt enable

™ Quadrature direction change interrupt enable
™ \watchdog time out interrupt enable

I Position counter underflow interrupt enable
™ Position counter averflow interrupt enable

™ Position-compare ready interrupt enable

™ Position-compare match interrupt enable

™ Strobe event latch interrupt enable

I Index event latch interrupt enable

™ Unit time out interrupt enable

oK I Cancel | Help

The image above shows the default condition of the Interrupt pane.
Interrupts corresponding to specific events are enabled or disabled

based on the settings in this pane.

Position counter error interrupt enable

Check this box to enable position counter error interrupts. This

checkbox is cleared by default.

C28x eQEP

Quadrature phase error interrupt enable
Check this box to enable quadrature phase error interrupts. This
checkbox is cleared by default.

Quadrature direction change interrupt enable
Check this box to enable quadrature direction change interrupts
for changes in the counting direction. This checkbox is cleared
by default.

Watchdog timeout interrupt enable
The eQEP Peripheral contains a watchdog timer that monitors
the quadrature clock. Check this box to enable watchdog timeout
interrupts. This checkbox is cleared by default.

Position counter underflow interrupt enable
Check this box to enable position counter underflow interrupts.
This checkbox is cleared by default.

Position counter overflow interrupt enable
Check this box to enable position counter overflow interrupts.
This checkbox is cleared by default.

Position-compare ready interrupt enable
Check this box to enable position-compare ready interrupts. This
checkbox is cleared by default.

Position-compare match interrupt enable
Check this box to enable position-compare match interrupts. This
checkbox is cleared by default.

Strobe event latch interrupt enable
Check this box to enable strobe event latch interrupts. This
checkbox is cleared by default.

Index event latch interrupt enable
Check this box to enable index event latch interrupts. This
checkbox is cleared by default.

Unit timeout interrupt enable
Check this box to enable unit timeout interrupts. This checkbox is
cleared by default.

2-133

C28x eQEP

References

See Also

2-134

For more information on the QEP module, consult the following
documents, available at the Texas Instruments Web site:

o TMS320x280x, 2801x, 2804x Enhanced Quadrature Encoder Pulse
(eQEP) Module Reference Guide, Literature Number SPRU790

e Using the Enhanced Quadrature Encoder Pulse (eQEP) Module in
TMS320x280x, 28xxx as a Dedicated Capture Application Report,
Literature Number SPRAAH1

“eQEP” on page 3-201

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x

GPIO Digital Input

Purpose

Library

Description

Configure general-purpose input pins
Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2802x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2803x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2806x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C280x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C28x3x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2834x

C280x C2E02x/ 2803 C28x3x
GRI0 B GRI0: B PO
GRIO D] GRIO D GRIO D]
Crigital Inputi Cigital Input Ligital Input2

This block configures the general-purpose I/0 (GPIO) MUX registers
that control the operation of GPIO shared pins for digital input. Each
I/0 port has one MUX register that selects peripheral operation or
digital I/O operation (the default). When a pin is configured for digital
input, it becomes unavailable for digital output or peripheral operation.
You can configure the Input qualification type for individual digital
input pins. To do so, use the Peripheral tab of Coder Target -> Target
Hardware Resources for your processor type.

Each processor has a different number of available GPIO pins:

e (C280x has 35 GPIO pins
e (C2802x has 22 GPIO pins, even though GPIO group lists 35

2-135

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
GPIO Digital Input

e (C2803x has 45 GPIO pins
® (C28x3x has 64 GPIO pins

Note To avoid losing new settings, click Apply before changing the
GPIO Group parameter.

E] Source Block Parameters: Digi il
—IC280x GPIO Digital Input {rmask) (link}

Configures GPIC inputs for the specified pins with
qualification type settings.

—PFarameters

GFID Group: feienfreimr
v GPIOD
v GPIO1
[~ GPIDZ2
[~ GPID3
[~ GPID4
[~ GPIOS
[~ GPIDA
[~ GPIO7

Sample fime:
[o.1

Data type: Iaub: j

[0]4 Cancel | Help |

Dialog
Box

The dialog boxes for the C2802x and C28x3x processors are similar to
that of the C280x, shown in the preceding figure.

2-136

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x

GPIO Digital Input

See Also

GPIO Group
Select the group of GPIO pins you want to view or configure.
For a table of GPIO pins and peripherals, refer to the Texas
Instruments documentation for your specific target.

Sample time
Specify the time interval between output samples. To inherit
sample time from the upstream block, set this parameter to -1.
For more information, refer to the section on “Specify Sample
Time” in the Simulink documentation.

Data type
Specify the data type of the input. The input is read as 16-bit
integer, and then cast to the selected data type. Valid data types
are auto, double, single, int8, uint8, int16, uint16, int32,
uint32 or boolean.

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x GPIO Digital Output
“GPIO” on page 3-205

2-137

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
GPIO Digital Output

Purpose

Library

Description

2-138

Configure general-purpose input/output pins as digital outputs
Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2802x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2803x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2806x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C280x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C28x3x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2834x

—

C28x
N GPICx

GPIO DO
Drigital Cutput

Configure individual general-purpose input/output (GPIO) pins to
operate as digital outputs. When a pin is configured for digital output,
it cannot operate as a digital input or connect to peripheral I/O signals.
When you select a pin for digital output, the user interface presents a
Toggle option that inverts the output signal on the pin.

Each processor has a different number of available GPIO pins:

C280x has 35 GPIO pins

C2802x has 22 GPIO pins, even though GPIO group lists 35
C2803x has 45 GPIO pins

C28x3x has 64 GPIO pins

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
GPIO Digital Output

Dialog
Box

Note To avoid losing new settings, click Apply before changing the

GPIO Group parameter.

E! Sink Block Parameters: Digital Dutpuk

—LC280x GPIO Digital Dutput [maszk] [link]

Configures GPID outputs for the specified pinz.

Ir regular mode a walue of True at the input of the block will pull the GRIO pin high. &
walues of Falze will ground the: pin.

Ir toggle mode, a walue of True at the input of the block will switch the actual output
level of the GPIO pin. A value of Falze has no effect on the output level of the GPID
pin.

—Parameter

GPIO Group: [{ERNRE R
[v GFIOD

[~ Toggle GRIOD

[~ GPIO1

[~ GPIO2

[~ GFIO3

[GFIO4

[~ GFIOS

[GFIOB

[~ GFIO7?

QK I Cancel | Help | Apply

The dialog boxes for the C2802x and C28x3x processors are similar to
that of the C280x, shown in the preceding figure.

GPIO Group

Select the group of GPIO pins you want to view or configure.

GPIO pins for output

To configure a GPIO pin for digital output, select the checkbox
next to it. Refer to the block for a table of all available peripherals

for each pin.

2-139

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
GPIO Digital Output

A value of True at the input of the block drives the selected GPIO
pin high. A value of False at the input of the block grounds the
selected GPIO pin.

Toggle GPIO[bit#]
For each pin selected for output, you can elect to toggle the signal
of that pin. In Toggle mode, a value of True at the input of the
block switches the GPIO pin output level. Thus, if the GPIO pin
was driven high, in Toggle mode, with the value of True at the
input, the pin output level is driven low. If the GPIO pin was
driven low, in Toggle mode, with the value of True at the input of
the block, the same pin output level is driven high. If the input of
the block is False, the GPIO pin output level is unaffected.

Note The outputs of this block can be vectorized.

See Also C280x/C2802x/C2803x/C2806x/C28x3x/c2834x GPIO Digital Input
“GPIO” on page 3-205

2-140

C28x Hardware Interrupt

Purpose

Library

Description

Interrupt Service Routine to handle hardware interrupt on C28x
processors

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ Scheduling

Intemrupt
C28x Hardw are Intemupt

Execution scheduling models based on timer interrupts do not meet
the requirements of some real-time applications to respond to external
events. The C28x Hardware Interrupt block addresses this problem by
allowing asynchronous processing of interrupts triggered by events
managed by other blocks in the C280x/C28x3x DSP Chip Support
Library.

The following C28x blocks can generate an interrupt for asynchronous
processing:

e ADC

¢ ¢CAN Receive

e SCI Receive

e SCI Transmit

e SPI Receive

e SPI Transmit

Only one Hardware Interrupt block can be used in a model. To handle

multiple interrupts, place a Demux block at the output of the Hardware
Interrupt block to direct function calls to the function-call subsystems.

Vectorized Output

The output of this block is a function call. The size of the function call
line equals the number of interrupts the block is set to handle. Each

2-141

C28x Hardware Interrupt

2-142

interrupt is represented by four parameters shown on the dialog box of
the block. These parameters are a set of four vectors of equal length.
Each interrupt is represented by one element from each parameter (four
elements total), one from the same position in each of these vectors.

Each interrupt is described by:

CPU interrupt numbers

PIE interrupt numbers

Task priorities

® Preemption flags

So one interrupt is described by a CPU interrupt number, a PIE
Iinterrupt number, a task priority, and a preemption flag.

The CPU and PIE interrupt numbers together uniquely specify a single
interrupt for a single peripheral or peripheral module.

The following table shows a super set of Peripheral Interrupts
Expansion (PIE) matrices for c28x (except c281x) processors. Some
peripheral interrupts may not be available on a particular device;
refer to the corresponding literature listed below for an exact PIE
representation of your processor. In the table, the row headers 1-12
represent the CPU values and the column headers 1-8 represent the
PIE values.

PIE table for all ¢28x processors except c281x follows:

PIE 8 7 6 5 4 3 2 1

"CRU

WAKEINTNTO | ADCINTIXINT2 | XINT1| Reserve SEQ2IN'BEQIINT
1 | (LPM/WDIMER (ADC) (ADC) | (ADC)
0)

2 | EPWM SMMLEWBWFEPWM S_EMWMFLEFWVMBEEENML_W_TZINT
TZINT

C28x Hardware Interrupt

PIE 8 7 6 5 4 3 2 1

CPRU

3 | EPWM8 HRWM[7 HRWMBEPWMS HRWMUEIRWMB HRWM2 HRWM1 INT
INT

4 | HRCARHBRUOAPIENP6| BECAP5] ECAP4 ICAP3 ECAP2)| INDAP1_INT
5 | ReservedReservedReservedH RCARAHBUAPRdNTve EQEP2| INJEP1_INT

6 | SPITXINSHIRXINSPITXINSFOR X INSFCTX INSPBR X INNPBT X INGAYRXINTA
(SPI-D)| (SPI-D) (SPI-C) (SPI-C)| (SPI-B) (SPI-B) (SPI-A)| (SPI-A)

/ / / /
MXINTAMRINTAMXINTBIRINTB
(McBSP-AJcBSKR-AlcBSPB)cBSP-B)

7 | ReservedReserved INTCHSINTCHBINTCHANTCH3INTCHRINTCH1
(DMAG6) (DMA5) (DMA4) (DMA3) (DMA2) (DMA1)
8 | ReservedReservedB CITXINTTRXINRECerveReserved2CINTRIRZCINT1A
(SCI-C) (SCI-C)
9 | ECAN1INCBNQINTAN I INTANOINCA X IMTBR X NTBIXINSIRXINTA
(CAN-B)(CAN-B)(CAN-A)(CAN-A)(SCI-B) (SCI-B) (SCI-A)| (SCI-A)

/ /
LINA_INTINA_INTO

10| ADCINTADCINTAD CINTSD CINTAD CINTAD CINTADCINTTADCINT1
/ / / / / / / /

11| CLA1_INTgA1 INTA1 INT6\1 INTA1T INTA1 INTA1 INTRA1 BNTZINT
/ / / / / / / /
EPWM I &PNWM EREWMI ERWM | ERPWM[1 AWM | ERWM | EPWIM9 _INT7

12| LUF | LVF | ReserveXINT7 | XINT6| XINT5| XINT4 | XINT3

PIE table for ¢281x processor follows:

2-143

C28x Hardware Interrupt

2-144

CP

PIE 8 7 6 5

U

WAKEINTINTO | ADCINITXINT2
(LPM/WUJIMER (ADC)
0)

XINT1

Reserve®DPIN

(EV-B)

I'BDPINTA
(EV-A)

Reserved1OFINT1UFINT1CIN/
(EN_A) | (EN/_A) | (EX/_A)

['T1PIN']
(EX/-A)

' CMP3I
(EN_A)

(EN/-A)

NECMP2INCMP1INT

(EN/-A)

ReservedCAPINTGAPINTEAPIN|
(EV-A) | (EV-A)| (EV-A)

TT20F1
(EV-A)

NT2UTFI]
(EV-A)

(EV-A)

NT2CINT T2PINT

(EV-A)

Reserved'3OFINT3UFINT3CIN/
(EV-B)| (EV-B)| (EV-B)

['T3PIN']
(EV-B)

' CMP61
(EV-B)

(EV-B)

NEMP5SINCMP4INT

(EV-B)

ReservedCAPINTGAPIN[I'GAPIN
(EV-B) | (EV-B)| (EV-B)

THE4OF1X
(EV-B)

NT4UFI]
(EV-B)

(EV-B)

NT4CINT T4PINT

(EV-B)

ReservedReservedVIXIN'T MRIN']
McBSP)McBSI

Reservg

)

rReserve

(SPI)

e BPITXINGRARXINTA

(SPI)

ReservedReservedReservedReservy

cReserv

rReserv

rReservedReserved

ReservaedReservedReservedReservy

cReserve

rReserve

sReservedReserved

ReservedReservedECAN1INTAN(
(CAN) | (CAN)

ISUITX]
(SCI-B

MNIBRX]
(SCI-B

(SCI-A)

NUBIXINSKARXINTA

(SCI-A)

10

ReservaedReservedReservedReservy

cReserve

rReserve

sReservedReserved

11

ReservedReservedReservedReservy

cReserve

rReserve

sdReservedReserved

12

ReservédReservedReservedReserveReserve

rReserve

sReservedReserved

Processor

Literature Number at ti.com

280x and 28044

SPRU712

C2833x

SPRUFBO

C2834x

SPRUFN1

C28x Hardware Interrupt

Processor Literature Number at ti.com
C2802x SPRUFN3
C2803x SPRUGLS
C2806x SPRUH18

The task priority indicates the relative importance tasks associated with
the asynchronous interrupts. If an interrupt triggers a higher-priority
task while a lower-priority task is running, the execution of the
lower-priority task will be suspended while the higher-priority task is
executed. The lowest value represents the highest priority. The default
priority value of the base rate task is 40, so the priority value for each
asynchronously triggered task must be less than 40 for these tasks to
suspend the base rate task.

The preemption flag determines whether a given interrupt is
preemptable. Preemption overrides prioritization, such that
a preemptable task of higher priority can be preempted by a
non-preemptable task of lower priority.

2-145

C28x Hardware Interrupt

Source Block Parameters: C28x Hardware Interrupt

C28x Interrupt Block (mask) (link)

Create Interrupt Service Routine which will execute the downstream subsystem.
NOTE : The default Simulink 'sample time priority' value is 40. This value can be changed by

and the required value can be specified in 'Sample time properties' edit box.
Parameters

CPU interrupt numbers:

changing Periodic sample time constraint: (Simulation->Configuration Parameters) to 'Specified'

PIE interrupt numbers:
[41]

Simulink task priorities:

[3033]

Preemption flags: preemptible-1, non-preemptible-0
[01]

[T Enable simulation input

OK H Cancel H Help

Dialog |

Apply

Box
CPU interrupt numbers

Enter a vector of CPU interrupt numbers for the interrupts you
want to process asynchronously.

PIE interrupt numbers

Enter a vector of PIE interrupt numbers for the interrupts you
want to process asynchronously.

2-146

C28x Hardware Interrupt

References

See Also

Simulink task priorities
Enter a vector of task priorities for the interrupts you want to
process asynchronously.

See the discussion of this block’s “Vectorized Output” on page
2-141 for an explanation of task priorities.

Preemption flags
Enter a vector of preemption flags for the interrupts you want to
process asynchronously.

See the discussion of this block’s “Vectorized Output” on page
2-141 for an explanation of preemption flags.

Enable simulation input
Select this check box if you want to be able to test asynchronous
interrupt processing in the context of your Simulink software
model.

Note Select this check box to enable you to test asynchronous
interrupt processing behavior in Simulink software.

Detailed information about interrupt processing is in TMS320x280x
DSP System Control and Interrupts Reference Guide, Literature
Number SPRU712B, available at the Texas Instruments Web site.

The following links refer to topics that require the Embedded Coder
software.

“Asynchronous Scheduling”

C28x Software Interrupt Trigger,Idle Task

2-147

C28x 12C Receive

Purpose

Library

Description

2-148

Configure inter-integrated circuit (I2C) module to receive data from
12C bus

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2802x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2803x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2806x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C280x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C28x3x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2834x

C2B0: T2 8

RL [

12C RCW
I2C Recejve

Configure the I2C module to receive data from the two-wire 12C serial
bus.

C28x 12C Receive

Dialog
Box

5] Source Block Parameters: I12C Receive
C280x/C2833x 12C Receive (mask) (ink)

Configures the I2C module to receive data from the I2C bus.

Parameters

Addressing format: |I-"-Bit addressing

Slave address source: |Speci1"y via dialog

Slave address register:

80

Bit count: |8

Read data length:

E

Initial output:

o

[] set MaCK bit
["] Enable stop condition
[] output receiving status

Sample time:

|0.001

Data type: |int8

| o

H Cancel ” Help

|

Addressing format

The I2C receive block supports the 7-Bit addressing, 10-Bit
addressing, and Free data format. The default setting is 7-Bit

addressing.

Slave address source

Select the method for setting the slave address register of the
12C slave. Selecting Specify via dialog displays Slave address

2-149

C28x 12C Receive

register parameter. Selecting Input port enables definition
of the address register via the input port. The default setting
is Specify via dialog.

Slave address register
When you select Specify via dialog, enter a value for the Slave
address register. The default value is 80. This field takes a
decimal value.

Bit Count
Set the bit count to 1 through 8. The default setting is 8.

Read data length
Set the length of the read data. The default value is 1.

Initial output
Set the value the I2C node outputs to the model before it has
received data.

The default value is 0.

NACK bit generation
Select this parameter to generate a no-acknowledge bit (NACK)
during the I2C acknowledge cycle and ignore new bits from
the transmitting I2C node. The default setting i1s disabled (not
selected).

Enable stop condition
Enable the I2C Receive Block in master mode to send a STOP
message to the I2C Transmit block while it is in slave mode. The
default setting is disabled (not selected).

Output receiving status
Selecting this parameter creates a status output that indicates
when the I2C receive block is receiving a message. The default
setting is disabled (not selected).

Sample time
Set the sample time for the block’s input sampling. To execute
this block asynchronously, set Sample Time to -1, and refer to

2-150

C28x 12C Receive

References

See Also

“’ for a discussion of block placement and other settings. The
default value 1s 0.001.

Data type
Type of data in the data vector. The length of the vector for the
received message 1s at most 8 bytes. If the message is less than 8
bytes, the data buffer bytes are right-aligned in the output. You
can set this parameter to int8, uint8, int16, uintl6, int32, or
uint32. The default setting is int8.

For detailed information on the I2C module, see:

® The TMS320x28xx, 28xxx Inter-Integrated Circuit (I2C) Module
Reference Guide, Literature Number SPRU721, available at the
Texas Instruments Web site, www.ti.com.

e The Philips Semiconductors Inter-IC bus (I2C-bus) specification
version 2.1 is available on the Philips Semiconductors Web site at
http://www.nxp.com/acrobat_download/literature/9398/39340011.pdf.

“Using the I2C Bus to Access a Connected EEPROM”
C28x I2C Transmit
“I2C” on page 3-188

2-151

http://www.ti.com/
http://www.nxp.com/acrobat_download/literature/9398/39340011.pdf

C28x 12C Transmit

Purpose

Library

Description

2-152

Configure inter-integrated circuit (I2C) module to transmit data to 12C
bus

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2802x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2803x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2806x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C280x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C28x3x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2834x

C2B0:/C28x3x

WAL

125 2T
I2C Tran=mit

Configure the I2C module to transmit data to the two-wire 12C serial
bus.

Note You can use this block to configure the I12C settings under the
Peripherals tab of the Coder Target > Target Hardware Resources for
the F2808 eZdsp, and F28335 eZdsp boards.

C28x 12C Transmit

Dialog
Box

E! Sink Block Parameters: I2C Transmit x|

— C280:,/C2833x 12C Tranzmit [mazk] [link]

Configures the 120 module to tranzmit data on the 120 bus,

— Parameters
Addrezzing format: I 7-Bit addrezzing LI
Slave address source: I Specify via dialog LI
Salve address register:
Eq
Bit count: I 5 :I

™ Enable stop condition
[~ Enable repeat mode
[~ Output transmitting status

OF. I LCancel Help Apply

Addressing format
The I2C transmit block supports the 7-Bit addressing, 10-Bit
addressing, and Free data format. The default setting is 7-Bit
addressing.

Slave address source
Select the method for setting the slave address register of the
12C slave. Selecting Specify via dialog displays Slave address
register parameter . Selecting Input port enables definition
of the address register via the input port. The default setting
is Specify via dialog.

Slave address register
When you select Specify via dialog, enter a value for the Slave
address register. The default value is 80.

Bit Count
Set the bit count to 1 through 8. The default setting is 8.

2-153

C28x 12C Transmit

Enable stop condition
Selecting this parameter enables the transmitter to accept a
STOP condition from the C28x I2C Receive block. The default
setting is disabled (not selected).

Enable repeat mode
When you enable repeat mode, the I2C module retransmits the
same data until it detects a stop or start condition. If you use this
mode, also consider selecting Enable stop condition.

If you disable repeat mode, the I2C module operates in standard
mode, sending a specific number of data values once.
The default setting is disabled (not selected).

Output transmitting status
Selecting this parameter creates a status output that indicates
when the I2C transmit block is transmitting a message. The
default setting is disabled (not selected).

References For detailed information on the I2C module, see:

® The TMS320x28xx, 28xxx Inter-Integrated Circuit (I2C) Module
Reference Guide, Literature Number SPRU721, available at the
Texas Instruments Web site, www.ti.com.

e The Philips Semiconductors Inter-IC bus (I2C-bus) specification
version 2.1 is available on the Philips Semiconductors Web site at
http://www.nxp.com/acrobat_download/literature/9398/39340011.pdf.

See Also “Using the I2C Bus to Access a Connected EEPROM”

C28x I2C Receive

“I2C” on page 3-188

2-154

http://www.ti.com/
http://www.nxp.com/acrobat_download/literature/9398/39340011.pdf

C28x SCI Receive

Purpose

Library

Description

Receive data on target via serial communications interface (SCI) from
host

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2802x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2803x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2806x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C280x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C281x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2834x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C28x3x

C28x

Crata p

SCIRCY

SC 1 Recee

The SCI Receive block supports asynchronous serial digital
communications between the target and other asynchronous

peripherals. This block receives scalar or vector data using the specified

SCI hardware module.

2-155

C28x SCI Receive

2-156

Note A model can only contain one SCI Receive block per module.
There are a maximum of 3 SCI modules on the ¢28x processor, A, B,
and C, which can be configured through Code Generation-> Coder
Target-> Target Hardware Resources-> Peripherals. Verify that
these settings meet the requirements of your application.

C28x SCI Receive

Source Block Parameters: SCI Receive '_.

===

C28x SCI Receive (mask) (link)

This enables asynchronous serial digital communications between the MCU and other connected
peripherals.

Parameters

Configures Serial Communication Interface (SCI) of the C2000 MCUs to receive data from SCIRXD pin.

SCI module: |A

Additional package header:
g
Additional package terminator:

=

Data type: |uinte

Data length:
1
Initial output:
]

Action taken when connection times out: | Output the last received value

Sample time:

0.1
[T Dutput receiving status
Enable receive FIFO interrupt

Receive FIFO interrupt level (maximum 4 for Piccolo devices): [1

3

oK H Cancel][Help ” Apply]

Dialog L

Box
SCI module

SCI module to be used for communications.

Additional package header

This field specifies the data located at the front of the received
data package, which is not part of the data being received, and

C28x SCI Receive

generally indicates start of data. The additional package header
must be an ASCII value. You can use a string or number (0-255).
You must put single quotes around strings entered in this field,
but the quotes are not received nor are they included in the total
byte count. To specify a null value (no package header), enter
two single quotes alone.

Note Match additional package headers or terminators with
those specified in the host SCI Transmit block.

Additional package terminator
This field specifies the data located at the end of the received
data package, which is not part of the data being received,
and generally indicates end of data. The additional package
terminator must be an ASCII value. Use a string or number
(0—-255). You must put single quotes around strings entered in
this field, but the quotes are not received nor are they included
in the total byte count. To specify a null value (no package
terminator), enter two single quotes alone.

Data type
Data type of the output data. Available options are single, int8,
uint8, int16, uint16, int32, or uint32.

Data length
How many of Data type the block will receive (not bytes).
Anything more than 1 is a vector. The data length is inherited
from the input (the data length originally input to the host-side
SCI Transmit block).

Initial output
Default value from the SCI Receive block. This value is used,
for example, if a connection time-out occurs and the Action
taken when connection timeout field is set to “Output the last
received value”, but nothing yet has been received.

2-158

C28x SCI Receive

Action taken when connection times out
Specify what to output if a connection time-out occurs. If Output
the last received value is selected, the block outputs the last
received value. If a value has not been received, the block outputs
the Initial output value.

If you select Output custom value, use the Output value when
connection times out field to set the custom value.

Sample time
Sample time, T, for the block’s input sampling. To execute this
block asynchronously, set Sample Time to -1, and refer to
“Asynchronous Scheduling” for a discussion of block placement
and other settings.

Output receiving status
Selecting this checkbox creates a Status block output that
provides the status of the transaction.
The error status may be one of the following values:

® 0: No errors

® 1: A time-out occurred while the block was waiting to receive
data

2: There 1s an error in the received data (checksum error)

3: SCI parity error flag — Occurs when a character is received
with a mismatch

4: SCI framing error flag — Occurs when an expected stop bit
is not found

Enable receive FIFO interrupt
If this option is selected, an interrupt is posted when FIFO is full,
allowing the subsystem to take some sort of action (for example,
read data as soon as it is received). If this option is cleared, the
block stays in polling mode. If the block is in polling mode and
not blocking, it checks the FIFO for data. If data is present, the
block reads and outputs the data. If data is not present, the block

2-159

C28x SCI Receive

References

See Also

2-160

continues. If the block is in polling mode and blocking, it waits
until data is available to read (after data length is reached).

Receive FIFO interrupt level (maximum 4 for Piccolo devices)
This parameter is enabled when the Enable receive FIFO
interrupt option is selected. Select an interrupt level from 0 to
16. The default level is 0.

For detailed information on the SCI module, see TMS320x281x, 280x
DSP Serial Communication Interface (SCI) Reference Guide, Literature
Number SPRU051B, available at the Texas Instruments Web site.
“HIL Verification of IIR Filter via SCI”

C28x SCI Transmit, C28x Hardware Interrupt

“SCI_A, SCI_B, SCI_C” on page 3-195

C28x SCI Transmit

Purpose

Library

Description

Transmit data from target via serial communications interface (SCI)
to host

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2802x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2803x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2806x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C280x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C281x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2834x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C28x3x

C25x

M [rata

SC1AMT
SCI Transmit

The SCI Transmit block transmits scalar or vector data using the

specified SCI hardware module. The sampling rate and data type are
inherited from the input port. The data type of the input port must be
one of the following: single, int8, uint8, int16, uint16, int32, uint32. If

the data type is not specified, the default data type is uint8.

2-161

C28x SCI Transmit

2-162

Note A model can only contain one SCI Transmit block per module.

There are a maximum of 3 SCI modules on the c28x processor, A, B

and C, which can be configured through Code Generation-> Coder
Target-> Target Hardware Resources -> Peripherals.

Verify that these settings meet the requirements of your application.
Fixed-point inputs are not supported for this block but you can use a

Data Type Conversion block with "Stored Integer" to pass the native
data type of your fixed-point format.

C28x SCI Transmit

Dialog
Box

Sink Block Parameters: 5CI Transmit ﬁ

C28x SCI Transmit (mask) (link)

Configures Serial Communication Interface (SCI) of the C2000 MCUs to
transmit data via SCITXD pin. This enables asynchronous serial digital
communications between the MCU and other connected peripherals.

Farameters

SCI module: |A -

Additional package header:
ISI

Additional package terminator:
IEI
Enable transmit FIFO interrupt

Transmit FIFO interrupt level {maximum 4 for Piccolo devices):

[OK][Cancel H Help H Apply l

SCI module
SCI module to be used for communications.

Additional package header
This field specifies the data located at the front of the sent data
package, which is not part of the data being transmitted, and
generally indicates start of data. The additional package header
must be an ASCII value. Use a string or number (0-255). You
must put single quotes around strings entered in this field, but
the quotes are not sent nor are they included in the total byte
count. To specify a null value (no package header), enter two
single quotes alone.

2-163

C28x SCI Transmit

Note Match additional package headers or terminators with
those specified in the host SCI Receive block.

Additional package terminator
This field specifies the data located at the end of the sent
data package, which is not part of the data being transmitted,
and generally indicates end of data. The additional package
terminator must be an ASCII value. Use a string or number
(0—255). You must put single quotes around strings entered in
this field, but the quotes are not sent nor are they included in the
total byte count. To specify a null value (no package terminator),
enter two single quotes alone.

Enable transmit FIFO interrupt
If checked, an interrupt is posted when FIFO is full, allowing the
subsystem to take some sort of action.

Transmit FIFO interrupt level (maximum 4 for Piccolo devices)
This parameter is enabled when the Enable transmit FIFO
interrupt option is selected. Select an interrupt level from 0 to
16. The default level is 0.

References For detailed information on the SCI module, see TMS320x281x, 280x
DSP Serial Communication Interface (SCI) Reference Guide, Literature
Number SPRU051B, available at the Texas Instruments Web site.

See Also “HIL Verification of IIR Filter via SCI”
C28x SCI Receive
C28x Hardware Interrupt
“SCI_A, SCI_B, SCI_C” on page 3-195

2-164

C28x Software Interrupt Trigger

Purpose

Library

Description

Generate software triggered nonmaskable interrupt

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2802x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2803x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2806x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C280x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C281x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2834x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C28x3x

C28x
MFIEIFR7.INTS

Sun Int Trigger
Softare Interrupt Trigger

When you add this block to a model, the block polls the input port for
the input value. When the input value is greater than the value in
Trigger software interrupt when input value is greater than, the
block posts the interrupt to a Hardware Interrupt block in the model.

To use this block, add a Hardware Interrupt block to your model

to process the software triggered interrupt from this block into an
Interrupt service routine on the processor. Set the interrupt number
in the Hardware Interrupt block to the value you set here in CPU
interrupt number.

2-165

C28x Software Interrupt Trigger

2-166

The CPU and PIE interrupt numbers together specify a single interrupt
for a single peripheral or peripheral module. The following table maps
CPU and PIE interrupt numbers to these peripheral interrupts. The
row numbers are CPU values and the column numbers are the PIE
values.

Note Fixed-point inputs are not supported for this block.

C28x Software Interrupt Trigger

p

Software Interrupt Trigger {mask) (link)

Triggers a hardware interrupt in software.
contraller,

react on the triggered interrupt.

Farameters

CPU interrupt number
7

PIE interrupt number:
a

0

Sink Black Pararmeters: Softuare Interrupt Trigger

Use this block to trigger any interrupt line available in the on-chip PIE

Use this block in combination with the Hardware Interrupt block 1o

Trigger software interrupt when input value is greater than:

-

=

)4 i| Cancel ||

Help Apply

Dialog

Box
CPU interrupt number

Specify the interrupt to which the block responds. Interrupt
numbers are integers ranging from 1 to 12.

PIE interrupt number

Enter an integer value from 1 to 8 to set the Peripheral Interrupt

Expansion (PIE) interrupt number.

2-167

C28x Software Interrupt Trigger

References

See Also

2-168

Trigger software interrupt when input value is greater than:
Sets the value above which the block posts an interrupt. Enter
the value for the level that indicates that the interrupt is asserted
by a requesting routine.

For detailed information about interrupt processing, see TMS320x280x
DSP System Control and Interrupts Reference Guide, SPRU712B,
available at the Texas Instruments Web site.

C28x Hardware Interrupt

C28x SPI Receive

Purpose

Library

Description

Receive data via serial peripheral interface (SPI) on target

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2802x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2803x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2806x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C280x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C281x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2834x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C28x3x

2
Fix [

SFI RCW
5Pl Receive

The SPI Receive block supports synchronous, serial peripheral
input/output port communications between the Board controller and
external peripherals or other controllers. The block can run in either
slave or master mode.

In master mode, the SPISIMO pin transmits data and the SPISOMI pin
receives data. When master mode is selected, the SPI initiates the data
transfer by sending a serial clock signal (SPICLK), which is used for the
entire serial communications link. Data transfers are synchronized to
this SPICLK, which enables both master and slave to send and receive
data simultaneously. The maximum for the clock is one quarter of the
DSP controller’s clock frequency.

2-169

C28x SPI Receive

A model can only contain one SPI Receive block per module. There are
two modules, A and B, which can be configured through Coder Target ->
Target Hardware Resources.

Note Many SPI-specific settings are in the Board section of Coder
Target -> Target Hardware Resources. Verify that these settings meet
the requirements of your application.

2-170

C28x SPI Receive

Dialog
Box

-

C28x SPI Receive {mask) (link)

C28x SPI Feceive block receives data {only supported uwintlé data

type) from SPISOMOx and SPISIMIx pin when running in slave and
master mode, respectively.

Parameters

Source Block Pararneters: SPI Receive @

Select module: |5F‘I_ﬁ-‘«

Data length | 1

Initial output:
0

Output receive error status

Enable blacking mode

Enable Rx interrupt
Sample time:

1

Ok,]| Cancel || Help || Apply

.

Select module
Select the SPI module to be used for communications. Each
processor has a different number of modules.

2-171

C28x SPI Receive

Data length

Specify how many uint16s are expected to be received. Select
1 through 16.

Initial output
Set the value the SPI node outputs to the model before it has
received data.

The default value is 0.

Enable blocking mode

If this option is selected, system waits until data is received before
continuing processing.

Output receive error status
Selecting this checkbox creates a Status block output that
provides the status of the transaction.

Error status may be one of the following values:

® 0: No errors

¢ 1: Data loss occurred, (Overrun: when FIFO disabled, Overflow
when FIFO enabled)

e 2: Data not ready, a time out occurred while the block was
waiting to receive data

Post interrupt when data is received
Check this check box to post an asynchronous interrupt when
data 1is received.

Sample time
Sample time, T, for the block’s input sampling. To execute this
block asynchronously, set Sample Time to -1, check the Post
interrupt when message is received box, and refer to “” for a
discussion of block placement and other settings.

See Also “SPI-Based Control of PWM Duty Cycle”
C28x SPI Transmit

2-172

C28x SPI Receive

C28x Hardware Interrupt
“SPI_A, SPI_B, SPI_C, SPI_D” on page 3-198

2-173

C28x SPI Transmit

Purpose

Library

Description

2-174

Transmit data via serial peripheral interface (SPI) to host

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2802x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2803x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2806x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C280x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C281x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2834x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C28x3x

28

SPI T
SPI Transmit

The SPI Transmit supports synchronous, serial peripheral input/output

port communications between the Board controller and external
peripherals or other controllers. The block can run in either slave or
master mode. In master mode, the SPISIMO pin transmits data and

the SPISOMI pin receives data. When master mode is selected, the SPI

Initiates the data transfer by sending a serial clock signal (SPICLK),

which is used for the entire serial communications link. Data transfers

are synchronized to this SPICLK, which enables both master and slave
to send and receive data simultaneously. The maximum for the clock is
one quarter of the Board controller’s clock frequency.

C28x SPI Transmit

The sampling rate is inherited from the input port. The supported data
type 1s uint16.

Note A model can only contain one SPI Transmit block per module.
There are two modules, A and B, which can be configured through
Coder Target -> Target Hardware Resources.

Many SPI-specific settings are in the Board section of Coder Target
-> Target Hardware Resources. Verify that these settings meet the
requirements of your application.

2-175

C28x SPI Transmit

-

-

Sink Black Pararmeters: SPI Transmit @
C28x SPI Transmit {mask) (link)

C28x SPI Transmit block fransmits data (only supported uintls data
type) to SPISOMIx and SPISIMO: pin when running in slave and
master made, respectively.

Farameters

Select module: |5F'I_f-‘« -

Output fransmit error status
Enable blocking in slave mode

Enable Tx interrupt

8]]| icancel || Help || Apply

Dialog
Box

Select module

Select the SPI module to be used for communications. Each
processor has a different number of modules.

Output transmit error status

Selecting this check box creates a Status block output that
provides the status of the transaction.

Error status may be one of the following values:

® 0: No errors

® 1: A time-out occurred while the block was transmitting data

2-176

C28x SPI Transmit
|

e 2: There is an error in the transmitted data (for example,
header or terminator don’t match, length of data expected is too
big or too small)

Enable blocking mode

If this option is selected, system waits until data is sent before
continuing processing.

Post interrupt when data is transmitted
Check this check box to post an asynchronous interrupt when
data is transmitted.
See Also “SPI-Based Control of PWM Duty Cycle”
C28x SPI Receive
C28x Hardware Interrupt
“SPI_A, SPI_B, SPI_C, SPI_D” on page 3-198

2-177

C2802x/C2803x/C2806x COMP

Purpose

Library

Description

2-178

Compare two input voltages on comparator pins

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2802x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2803x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2806x

C2o02 T2303:

COMP
COMP

Configures the COMP to output a constant data from the comparator
pins on the DSP.

€2802x/C2803x/C2806x COMP
|

r ™
tre T —
Block Parameters: COMP ﬁ

C2802x/03x/06% COMP (mask) (link)

Configures the COMP to output a constant data from the comparator pins on
the C2802x/C2803x»/C2806x DSP.

Parameters
Comparator module: lComparator 1 V]
Second input: ICDMP):E V]

[C] Inverter comparator output

Synchronization: ’Synchronous V]
Qualification period: ’Passed through V]
Sample time:
0.001
. [OK] l Cancel] [Help] [Apply
Dialog .)

Box
Comparator module

Select the comparator module to which the block configures. Use
only one block per module.

Second input
Select COMPxB to compare the voltage of Input Pin A with Input
Pin B

Select Internal DAC to compare the voltage of Input Pin A
with the output of a DAC reference located in the comparator.
For more information, see the “DAC Reference” section of the
TMS320x2802x, 2803x Piccolo Analog-to-Digital Converter (ADC)
and Comparator.

2-179

C2802x/C2803x/C2806x COMP

References

2-180

The comparator source outputs 1, if Input Pin A has a value
greater than Input Pin B or the 10-bit DAC reference. Otherwise,
it outputs 0.

Inverter comparator output
Select this check box to apply a logical NOT to the output of the
comparator source. For example, when the comparator source
outputs 1, the inverter circuit changes it to 0.

Synchronization
Select Asynchronous to pass the asynchronous version of the
comparator output. Select Synchronous to pass the synchronous
version of the comparator output. Selecting Synchronous enables
the Qualification period option.

Qualification period

Qualify changes in the comparator output before passing
them along. The Passed through setting passes changes in
the comparator value along without qualifying them. The
consecutive clocks settings pass changes in the comparator
value along after receiving the specified number of consecutive
samples with the same value. Use this setting to prevent
intermittent and spurious changes in the comparator output.

Sample time
Specify the time interval between samples. To inherit sample
time from the upstream block, set this parameter to -1.

TMS320x2802x, 2803x Piccolo Analog-to-Digital Converter (ADC)
and Comparator, Literature Number: SPRUGES, from the Texas
Instruments Web site.

C2802x/C2803x/C2806x ADC

Purpose

Library

Description

Examples

Configure ADC to sample analog pins and output digital data

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2802x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2803x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2806x

C2802=/C22803x

A0

ADC
ADC

Configures the ADC to output a constant stream of data collected from
the ADC pins on the DSP.

An ADC block allows for reading one ADC channel. Use multiple ADC
blocks to read multiple ADC channels.

Synchronize ADC with PWM

Use a hardware interrupt to synchronize changes to the PWM duty
cycle with ADC conversion.

This example demonstrates the use of the ADC block and PWM blocks.
The generated DSP code produces the pulse waveform whose duty
cycle is changing as the voltage applied to ADC input changes. The
waveform period is kept constant. The example also shows the use of
the Hardware Interrupt block to synchronize the update of the PWM
duty cycle with the ADC conversion.

This model uses the ADC block to sample an analog voltage and the
PWM block to generate a pulse waveform. The analog voltage controls
the duty cycle of the PWM waveform. Duty cycle changes can be
observed on the oscilloscope. "Hardware Interrupt" installs an Interrupt
Service Routine (ISR) for ADC interrupt and schedules the execution of

2-181

C2802x/C2803x/C2806x ADC

2-182

the connected subsystem (ADC-PWM Subsystem) when ADC interrupt
(ADCINT) is received.

"ADC-PWM Subsystem" consists of an ADC driving the duty cycle input
port of the PWM. PWM is configured to trigger ADC start of conversion
(SOC0).

Required Hardware:

® Spectrum Digital F2812/F2808/F28335 eZdsp boards or F28027
controlSTICK

® QOscilloscope and probes

® Function generator

Hardware Connections: Connect the function generator output to the

ADC input ADCINAO on the board. Connect the output of the PWMI1 to
the analog input of the oscilloscope.

To run the example on on the DSP Board:
1 Open the model.

2 Click "Incremental build" to generate, build, load and run the DSP
code.

3 Observe the change of the PWM waveform on the oscilloscope.

C2802x/C2803x/C2806x ADC

Dialog
Box

E! Source Block Parameters: ADC E

23022803 ADC {mask) (ink)

Configures the ADC ko output a constant stream of data collected
from the ADC pins on the CZE02x)C28035: DSP

| Input Channels I

Sampling mode |Single sample mode LI

SOC krigger number ISOCD |

SOCyx acquisition window

7
S0Cx Erigger source ISDFtware ;I
ADCIMT will trigger SOCx [l ADCINT |
Sample time:
|0.001
Data bvpe: Idnuble LI

¥ Past interrupk at EOC Erigger

Interrupt selection IADCINTI ;I

¥ ADCINTI continuous mode

QK Cancel Help

Sampling mode

Select Single sample mode to sample two signals sequentially.
Select Simultaneous sample mode to sample the two signals
with a minimal delay between the samples.

SOC trigger number
Identify the start-of-conversion trigger by number. In single
sampling mode, you can select an individual trigger. In
simultaneous sampling mode, you can select triggers in pairs.

2-183

C2802x/C2803x/C2806x ADC

SOCx acquisition window

Define the length of the acquisition period, the acquisition
window, in sample cycles. The minimal value for this parameter is
7 cycles. For more information, see the “ADC Acquisition (Sample
and Hold) Window” section of the TMS320x2802x, 2803x Piccolo
Analog-to-Digital Converter (ADC) and Comparator Reference
Guide.

SOCx trigger source

Select the source that triggers the start of conversion. The
following types of inputs are available:

* Software

¢ CPU Timers 0/1/2 interrupts
e XINT2 SOC

¢ ¢ePWM1-7 SOCA and SOCB

If you set SOCx trigger source to XINT2_XINT2SOC, use the
XINT2SOC external pin parameter in the Coder Target ->
Target Hardware Resources to define the external GPIO pin that
triggers the start of conversion. XINT2SOC external pin is
located under the Coder Target -> Target Hardware Resources of
the Peripherals tab, on the ADC pane.

ADCINT will trigger SOCx

At the end of conversion, use the ADCINT1 or ADCINT2 interrupt to
trigger a start of conversion (SOC). This loop creates a continuous
sequence of conversions. The default selection, No ADCINT
disables this parameter.

Sample time

Specify the time interval between samples. To inherit sample
time from the upstream block, set this parameter to -1.

Data type

Select the data type of the digital output data. You can choose
from the options double, single, int8, uint8, int16, uint16,
int32, and uint32.

C2802x/C2803x/C2806x ADC

Post interrupt at EOC trigger
Post interrupts when the ADC triggers EOC pulses. When
you select this option, the dialog box displays the Interrupt
selection and ADCINT# continuous mode options. For more
information, see the “EOC and Interrupt Operation” section of the
TMS320x2802x, 2803x Piccolo Analog-to-Digital Converter (ADC)
and Comparator Reference Guide.

Interrupt selection
Select which interrupt the ADC posts after triggering an EOC
pulse.

ADCINT1 continuous mode

ADCINT?2 continuous mode
When the ADC generates an end of conversion (EOC) signal,
generate an ADCINT# interrupt whether the previous interrupt
flag has been acknowledged or not.

Input Channels — Conversion channel
Select the input channel to which this ADC conversion applies.

2-185

C2802x/C2803x/C2806x ADC

E! Source Block Parameters: ADC E

23022803 ADC {mask) (ink)

Configures the ADC ko output a constant stream of data collected
from the ADC pins on the CZE02x)C28035: DSP

SO Trigger Input Channels

Conversion channel |ADCINACD LI

Cancel Help |

References TMS320x2802x, 2803x Piccolo Analog-to-Digital Converter (ADC)
and Comparator, Literature Number: SPRUGES, from the Texas
Instruments Web site.

See Also “ADC-PWM Synchronization via ADC Interrupt”
C280x/C2802x/C2803x/C2806x/C28x3x/c2834x ePWM
C28x Hardware Interrupt

2-186

C2802x/C2803x/C2806x ADC

“Configuring Acquisition Window Width for ADC Blocks”
“ADC” on page 3-178

2-187

C2802x/C2803x/C2806x AnaloglO Input

Purpose

Library

Description

2-188

Configure pin, sample time, and data type for analog input

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2802x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2803x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2806x

C2E02:/TEa05y

Al

A0
AnaloglO Input

Use this block to sample the Analog IO input pins on the C2802x
processor for a positive voltage and output the results.

C2802x/C2803x/C2806x AnaloglO Input
|

E! Source Block Parameters: AnalogI0 Input m

—C2802xC2803x AnaloglO Input (mask) (link)

Configures AIO inputs For the specified pins with qualification bype
sethings.

—Parameters

[a104

[alos
™ amoio
[a1z
[a4

Sample time:

{0.001

Data bype: Iautn LI

. oK Zancel | Help |
Dialog
Box
Parameters (Input pins)
Select the input pins to sample.
Sample time
Specify the time interval between samples. To inherit sample
time from the upstream block, set this parameter to -1.
Data type
Select the data type of the digital output data. If you select auto,
the block automatically selects the data type for your model. You
can also manually select a data type. You can choose from the
options double, single, int8, uint8, int16, uint16, int32, and
uint32.
See Also (2802x/C2803x/C2806x AnalogIO Output

2-189

C2802x/C2803x/C2806x AnaloglO Output

Purpose Configure Analog IO to output analog signals on specific pins

Librclry Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2802x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2803x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2806x

C2B02:MC2803x

Al

AlD DO

Description AnaloglD Dutput

Configures the Analog 10 output pins for the specified pins. In regular
mode, a value of True at the input of the block pulls the Analog 10
pin high. A value of False grounds the pin. In toggle mode, a value

of True at the input of the block switches the actual output level of
the Analog IO pin. A value of False does not alter the output level of
the Analog 10 pin.

2-190

C2802x/C2803x/C2806x AnaloglO Output

Dialog
Box

See Also

E! Sink Block Parameters: Analogl0 Output m

—C2802xC2803x AnaloglO Output (mask) (link)

Configures AI0 outputs For the specified pins,

In regular mode a value of True at the input of the block will pull the IO pin high, A
walues of False will ground the pin. In toggle mode, a walue of True at the input of
the block will switch the actual oukput level of the AID pin. A value of False has no
effect on the output level of the AIO pin,

—Parameters
W A102.
[~ Toggle a10Z

[~ a104
I~ a1o6
[~ amo10
™ a1z

[~ a1o14

ok Cancel | Help Anply

Parameters (Output Pins)
Select the analog output pins that express the value of the digital
input on AIOx. Selecting Toggle inverts the output voltage
levels of the pins.

C2802x/C2803x/C2806x AnaloglO Input

2-191

C2803x LIN Receive

Purpose

Library

Description

2-192

Receive data via local interconnect network (LIN) module on target

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2803x

C28032x
Cata p
Rz ID Mask
Status p
LIN RCW
LIM Receive

The Local Interconnect Network (LIN) bus implements a serial
communications protocol for distributed automotive and industrial
applications. In particular, LIN serves low cost applications that do not
require the bandwidth or robustness provided by the CAN protocol. For
more information about LIN, see http://www.lin-subbus.org/.

The LIN Receive block configures the target to receive scalar or vector
data from the LINRX or LINTX pins.

Each C2803x target has one LIN module. Your model can only contain
one LIN Transmit and one LIN Receive block per module.

The C2803x LIN Transmit block takes three inputs:

e ID: Set the value of the LIN ID for the LIN transmit node.

e Tx ID Mask: Set the value of the LIN ID mask for the LIN transmit
node.

e Data: Connect this input to the data source.
For more information and examples, see:

e “Configuring LIN Communications”

¢ LIN-Based Control of PWM Duty Cycle (example)

http://www.lin-subbus.org/

C2803x LIN Receive

Note Many LIN-specific settings are located under Peripherals > LIN
in Coder Target -> Target Hardware Resources for your model. Verify
that these settings meet the requirements of your application.

L= Function Block Parameters: LIN Receive
C2803x LIN Receive {mask) {link)

Configures the C2803x LIN port to receive messages from the Local Interconnect
Metwork (LIM).

Parameters

Data type: [int1s v

Data length:
1 |
Initial cutput:
lo |

Action taken when connection times out: |Output the last received value v|

[] Enable blocking mode
[verify checksum
|:| Qutput receiving status

Receive buffer interrupt: |Disabled v|
Checksum error Interrupt: |Disabled v|
Framing error interrupt: |Disabled v|
Overrun error interrupt: |Disabled v|
ID parity error interrupt; |Disabled v|
ID match interrupt: |Disabled v|
Sample time:

lo.1 |

Diqlog oK [Cancel J[Help] Apply

Box
Data type

Select the data type the LIN block outputs to the model. Available
options are single, int8, uint8, int16, uint16, int32, or uint32.

2-193

C2803x LIN Receive

To interpret the data, the data type and data length must match
those of the data input to transmitting LIN node.

The default value is int16.

Data length
Set the length of the data the LIN block outputs to the model. This
value is measured in multiples of the Data type. For example,
if Data type is int16 and Data length is int16, the LIN block
outputs the data to the model in lengths of

1 x intl6

If you set the Data length to a value greater than 1, the block
outputs the data as vectors.

To interpret the data, the data type and data length must match
those of the data input to transmitting LIN node.

The default value is 1.

Note In a loopback configuration, the maximum data length
cannot exceed 8 bytes. If the sum of the incoming and the outgoing
data exceeds the hardware buffer length of the LIN module, the
module discards incoming bytes of data.

Initial output
Set the initial value the DATA port outputs to the model before
the LIN node has received data.

The default value is 0.

Action taken when connection times out
Specify what the LIN block outputs on the DATA port in response
to a connection time-out. The choices are:

2-194

C2803x LIN Receive

e Qutput the last received value — the DATA port outputs
the last data value the LIN node received.

® Qutput custom value — the DATA port outputs the value
defined by Output value when connection times out.

The default value is Output the last received value.

If the LIN node has not received data, and you set this parameter
to Output the last received value, the DATA port outputs
the Initial output value.

Output value when connection times out
Specify the custom value the DATA port outputs when Action
taken when connection times out is set to Output custom
value and a connection timeout occurs.

Enable blocking mode
If you enable (select) this checkbox, the target application stops
and waits for the LIN node to receive data before continuing. If
you disable this option, the application continues running and
does not wait for data to arrive.

The default value is disabled (deselected).

Verify checksum
If you enable (select) this option, the LIN node verifies the
checksum it receives.

The default value is disabled (deselected).

Output receiving status
Enabling (selecting) this checkbox adds a status output to the
LIN Receive block, as shown in the following figure.

The status output reports the following values for each message
the LIN node receives:

® 0: No error.

2-195

C2803x LIN Receive

® -1: A time-out occurred while the block was waiting to receive
data.

e -2: Unable to receive.

¢ Other status values represent the highest 8 bits of the SCI
Flags Register. Convert these values from decimal to binary.
Then determine the meaning of these values by referring to
“Table 14. SCI Flags Register (SCIFLR) Field Descriptions”
in TMS320F2803x Piccolo Local Interconnect Network (LIN)
Module, Literature Number SPRUGEZ2, available at the Texas
Instruments Web site.

Receive buffer interrupt
If you enable this option, the SCI node generates an interrupt
after it receives a complete frame. The default value is Disabled.

Checksum error interrupt
If you enable this option, the LIN block generates an interrupt
when the incoming message contains an invalid checksum.

The default value is Disabled.

The TXRX Error Detector Checksum Calculator verifies
checksums for incoming messages. With the classic LIN
implementation, the checksum only covers the data fields. For
LIN 2.0—compliant messages, the checksum includes both the ID
field and the data fields. If you enable this option, the Checksum
Calculator generates interrupts when it detects checksum errors,
such as those caused by LIN message collisions.

Framing error interrupt
If you enable this option, the LIN module generates interrupts
when framing errors occur.

The default value is Disabled.

Overrun error interrupt
If you enable this option, the LIN module generates interrupt
when overrun errors occur.

2-196

C2803x LIN Receive

References

See Also

The default value is Disabled.

ID parity error interrupt
If you enable this option, the LIN module generates an ID-Parity
interrupt when it receives an invalid ID.

The default value is Disabled.
If you enable this option, also enable Parity mode in Coder

Target -> Target Hardware Resources.

ID match interrupt
If you enable this option, the LIN module generates an interrupt
when the LIN node validates the ID in messages it receives.
The default value is Disabled.
Sample time
Set the block’s input sample time, T..

The default value is 0.1 seconds.

For detailed information on the LIN module, see TMS320F2803x
Piccolo Local Interconnect Network (LIN) Module, Literature Number
SPRUGEZ2, available at the Texas Instruments Web site.

C2803x LIN Transmit (block reference)
“LIN” on page 3-225
“Configuring LIN Communications”

LIN-Based Control of PWM Duty Cycle (example)

2-197

C2803x LIN Transmit

Purpose

Library

Description

2-198

Transmit data from target via serial communications interface (SCI)
to host

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2803x

I CZEOEx

T 1D Mask

Dsts | T

LIN Transmit

The Local Interconnect Network (LIN) bus implements a serial
communications protocol for distributed automotive and industrial
applications. In particular, LIN serves low cost applications that do not
require the bandwidth or robustness provided by the CAN protocol. For
more information about LIN, see http://www.lin-subbus.org/.

The C2803x LIN Transmit block takes three inputs:

e ID: Set the value of the LIN ID for the LIN transmit node.

e Tx ID Mask: Set the value of the LIN ID mask for the LIN transmit
node.

e Data: Connect this input to the data source.
For more information and examples, see:

e “Configuring LIN Communications”

e LIN-Based Control of PWM Duty Cycle (example)

Note Many LIN-specific settings are located under Peripherals > LIN
in Coder Target -> Target Hardware Resources for your model. Verify
that these settings meet the requirements of your application.

http://www.lin-subbus.org/

C2803x LIN Transmit

Dialog
Box

L= Sink Block Parameters: LIN Transmit
C2803x LIN Transmit (mask) (ink)

Configures the C2803x LIN port to transmit messages to the Local Interconnect
Network (LIN).

Farameters

Physical bus error interrupt: |Disabled v

Bit error interrupt: |Disabled A

Transmit buffer interrupt: |Disabled v
[oK] [Cancel] [Help Apply

Send checksum
Select this checkbox to include a checksum in the last data field of
the checkbyte. LIN 2.0 implementations require this checksum.

The default value is unchecked (disabled).

Physical bus error interrupt
The LIN master node detects when the physical bus cannot
convey a valid message. For example, if the bus had a short circuit
to ground or to Vg, This raises a physical bus error flag in all
of the LIN nodes on the network. If you enable Physical bus
error interrupt, the LIN transmit node generates an interrupt
in response to a physical bus error flag.

Bit error interrupt
If you enable this option, the LIN node compares the data it
transmits and the data on the LIN bus.

The default value is Disabled.
The TXRX Error Detector Bit Monitor compares data bits on the

LIN transmit (LINTX) and receive (LINRX) pins. If the data
do not match, the Bit Monitor raises a bit-error flag. When you

2-199

C2803x LIN Transmit

References

See Also

2-200

enable this option, the bit-error flag also produces a bit-error
interrupt.

Transmit buffer interrupt
If you enable this option, the LIN node generates an interrupt
while it is generating a checksum and setting the Transmitter
buffer register ready flag.

The default value is Disabled.

For detailed information on the SCI module, see TMS320F2803x
Piccolo Local Interconnect Network (LIN) Module, Literature Number
SPRUGEZ2, available at the Texas Instruments Web site.

C2803x LIN Receive (block reference)
“LIN” on page 3-225

“Configuring LIN Communications”

LIN-Based Control of PWM Duty Cycle (example)

C281x ADC

Purpose

Library

Description

Analog-to-digital converter (ADC)

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C281x

C281x
A

ADC
ADC

The C281x ADC block configures the C281x ADC to perform
analog-to-digital conversion of signals connected to the selected ADC
input pins. The ADC block outputs digital values representing the
analog input signal and stores the converted values in the result
register of your digital signal processor. You use this block to capture
and digitize analog signals from external sources such as signal
generators, frequency generators, or audio devices.

Triggering

The C281x ADC trigger mode depends on the internal setting of the
source start-of-conversion (SOC) signal. In unsynchronized mode the
ADC is usually triggered by software at the sample time intervals
specified in the ADC block. For more information on configuring the
specific parameters for this mode, see “Configuring Acquisition Window

Width for ADC Blocks”.

In synchronized mode, the Event (EV) Manager associated with the
same module as the ADC triggers the ADC. In this case, the ADC
is synchronized with the pulse width modulator (PWM) waveforms
generated by the same EV unit via the ADC Start Event signal
setting. The ADC Start Event is set in the C281x PWM block. See
that block for information on the settings.

Note The ADC cannot be synchronized with the PWM if the ADC is in
cascaded mode (see below).

2-201

C281x ADC

Output

The output of the C281x ADC is a vector of uint16 values. The output
values are in the range 0 to 4095 because the C281x ADC is 12-bit
converter.

Modes

The C281x ADC block supports ADC operation in dual and cascaded
modes. In dual mode, either module A or module B can be used for the
ADC block, and two ADC blocks are allowed in the model. In cascaded
mode, both module A and module B are used for a single ADC block.

Dialog ADC Control Pane
Box

E] Source Block Parameters: ADC il
C281x ADC (mask) {link)

Configures the ADC o output a constant stream of data
collected from the ADC pins on the c281x DSP.

Module: IA

Conversion mode: ISequentiaI

LelLef e

Start of conversion: ISthware

Sample time:
{0,001

Data type: |uint15 |

I Past interrupt at the end of corversion

[0]4 Cancel | Help |

Module
Specify which DSP module to use:

2-202

C281x ADC

¢ A — Displays the ADC channels in module A (ADCINAO
through ADCINAT7).

¢ B — Displays the ADC channels in module B (ADCINBO
through ADCINB?7).

® A and B — Displays the ADC channels in both modules A
and B (ADCINAO through ADCINA7 and ADCINBO through
ADCINB7)

Then, use the check boxes to select the desired ADC channels.

Conversion mode
Type of sampling to use for the signals:

® Sequential — Samples the selected channels sequentially

e Simultaneous — Samples the corresponding channels of
modules A and B at the same time

Start of conversion
Specify the type of signal that triggers the conversion:

e Software — Signal from software

e EVA — Signal from Event Manager A (only for Module A)
e EVB — Signal from Event Manager B (only for Module B)
® External — Signal from external hardware

Sample time
Time in seconds between consecutive sets of samples that are
converted for the selected ADC channel(s). This is the rate at
which values are read from the result registers. See“Scheduling
and Timing” for more information on timing. To execute this
block asynchronously, set Sample Time to -1, check the Post
interrupt at the end of conversion box, and refer to “” for a
discussion of block placement and other settings.

2-203

C281x ADC

2-204

To set different sample times for different groups of ADC
channels, you must add separate C281x ADC blocks to your model
and set the desired sample times for each block.

Data type
Date type of the output data. Valid data types are auto, double,
single, int8, uint8, int16, uint16, int32, or uint32.

Post interrupt at the end of conversion
Check this check box to post an asynchronous interrupt at the
end of each conversion. The interrupt is posted at the end of
conversion.

Input Channels Pane

E] Source Block Parameters: ADC il
C281x ADC (mask) {link)

Configures the ADC o output a constant stream of data
collected from the ADC pins on the c281x DSP.

Murmnber of conversions: |1 j

Conversion o, 1 IADCINAD j

I~ Use multiple output ports

[0]4 Cancel Help

Number of conversions

Number of ADC channels to use for analog-to-digital conversions.

C281x ADC

See Also

Conversion no.
Specific ADC channel to associate with each conversion number.

In oversampling mode, a signal at a given ADC channel can be
sampled multiple times during a single conversion sequence.
To oversample, specify the same channel for more than one
conversion. Converted samples are output as a single vector.

Use multiple output ports
If more than one ADC channel is used for conversion, you can use
separate ports for each output and show the output ports on the
block. If you use more than one channel and do not use multiple
output ports, the data is output in a single vector.

“ADC-PWM Synchronization via ADC Interrupt”
C281x PWM

C28x Hardware Interrupt

“ADC” on page 3-178

2-205

C281x CAP

Purpose Receive and log capture input pin transitions

Librclry Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C281x

G281
cnt

. ° SAP
Description GAP

The C281x CAP module provides input capture functionality for
systems where precise timing of external events is important. The
C281x CAP block sets parameters for the capture units (CAPs) of the
Event Manager (EV) module. The capture units log transitions detected
on the capture unit pins by recording the times of the input signal
transitions into a two-level deep FIFO stack. You can set the capture
unit pins to detect rising edge, falling edge, either type of transition,

or no transition. The cnt output of the block gives the captured value
of the EV running timer.

The C281x chip has six capture units — three associated with each
EV module. Capture units 1, 2, and 3 are associated with EVA and
capture units 4, 5, and 6 are associated with EVB. Each capture unit is
associated with a capture input pin.

Each group of EV module capture units can use one of two
general-purpose (GP) timers on the target board. EVA capture units
can use GP timer 1 or 2. EVB capture units can use GP timer 3 or 4.
When a transition occurs, the module stores the value of the selected
timer in the two-level deep FIFO stack.

The C281x CAP module shares GP Timers with other C281 blocks. For
more information and guidance on sharing timers, see “Sharing General
Purpose Timers between C281x Peripherals”.

Note You can have up to two C281x CAP blocks in a model—one block
for each EV module.

2-206

C281x CAP

Outputs

This block has up to two outputs: a cnt (count) output and an optional,
FIFO status flag output. The cnt output holds the value of the EV
timer captured during the detected transitions. The cnt output gives
the captured values of the running counter based on the value set in
Output data format parameter. The status flag outputs are:

¢ 0 — The FIFO is empty. Either no captures have occurred or the
previously stored captures have been read from the stack. (The
binary version of this flag is 00.)

¢ 1 — The FIFO has one entry in the top register of the stack. (The
binary version of this flag is 01.)

e 2 — The FIFO has two entries in the stack registers. (The binary
version of this flag is 10.)

e 3 — The FIFO has two entries in the stack registers and one or
more captured values have been lost. This occurs because another
capture occurred before the FIFO stack was read. This means that
the FIFO stack is read when you execute the block as specified by
your scheduling scheme synchronously, if a sample time is used or
asynchronously, if triggered by an interrupt or an idle task. The new
value is placed in the bottom register. The bottom register value 1s
pushed to the top of the stack and the top value is pushed out of the
stack. (The binary version of this flag is 11.)

2-207

C281x CAP

Dialog
Box

2-208

Data Format Pane

E] Source Block Parameters: CAP

C281x CAP (mask) (link)

Configures the Event Manager of the C281x DSP for CAP

{capture).

Module: IA

| cap1 | cap2 | cars3 |

r Dutput overrun status flag

[

Cutput data format: ISend 2 elements (FIFC Buffer)

Sample time:

[

{0,001

Data type: Iauh:u

[

[0]4 Cancel |

Help |

Module

Select the Event Manager (EV) module to use:

e A— Use CAPs 1, 2, and 3.
e B— Use CAPs 4, 5, and 6.

Output overrun status flag

Select to output the status of the elements in the FIFO. The data

type of the status flag is uint16.

Output data format

The type of data to output:

e Send 2 elements (FIFO Buffer) — Sends the latest two
values. The output is updated when there are two elements
in the FIFO, which is indicated by bit 13 or 11 or 9 being

sent (CAP x FIFO). If the CAP

is polled when fewer than two

C281x CAP

elements are captures, old values are repeated. The CAP
registers are read as follows:

1 The CAP x FIFO status bits are read and the value is stored
in the status flag.

2 The top value of the FIFO is read and stored in the output
at index 0.

3 The new top value of the FIFO (the previously stored bottom
stack value) is read and stored in the output at index 1.

e Send 1 element (oldest) — Sends the older of the two most
recent values. The output is updated when there is at least one
element in the FIFO, which is indicated by the bits 13:12, or
11:10, or 9:8 being sent. The CAP registers are read as follows:

4 The CAP x FIFO status bits are read and the value is stored
in the status flag.

5 The top value of the FIFO is read and stored in the output.

e Send 1 element (latest) — Sends the most recent value.
The output is updated when there is at least one element in
the FIFO, which is indicated by the bits 13:12, or 11:10, or 9:8
being sent. The CAP registers are read as follows:

6 The CAP x FIFO status bits are read and the value is stored
in the status flag.

7 If the FIFO buffer contains two entries, the bottom value is
read and stored in the output. If the FIFO buffer contains
one entry, the top value is read and stored in the output.

Sample time
Time between outputs from the FIFO. If new data is not available,
the previous data is sent.

Data type
Data type of the output data. Available options are auto, double,
single, int8, uint8, int16, uint16, int32, uint32, and boolean.
The auto option uses the data type of a connected block that

2-209

C281x CAP

outputs data to this block. If this block does not receive an input,
auto sets the data type to double.

Note The output of the C281x CAP block can be vectorized.

CAP Panes

x

|7C28 1x CAP (mask) (ink)

Configures the Event Manager of the C281x DSP for CAP
{capture).

Data Format | capt | capz
I Enable CaP3

Edge detection: IRising Edge LI
Time base: I'I'lrner 2 LI
Clock source: IInternaI LI
Counting mode: IUp LI
Timer prescaler: |1,f'128 LI
Timer period source: ISpecify via dialog ;I
Timer period:

{85535

[Post interrupt on CAP3

oK Cancel Help

The CAP panes set parameters for individual CAPs. The particular
CAP affected by a CAP pane depends on the EV module you selected:

e CAP1 controls CAP 1 or CAP 4, for EV module A or B, respectively.

2-210

C281x CAP

e CAP2 controls CAP 2 or CAP 5, for EV module A or B, respectively.
e CAP3 controls CAP 3 or CAP 6, for EV module A or B, respectively.

Enable CAP
Select to use the specified capture unit pin.

Edge Detection
Type of transition detection to use for this CAP. Available
types are Rising Edge, Falling Edge, Both Edges, and No
transition.

Time Base
Select which target board GP timer the CAP uses as a time base.
CAPs 1, 2, and 3 can use Timer 1 or Timer 2. CAPs 4, 5, and 6
can use Timer 3 or Timer 4.

Clock source
This option is available only for the CAP 3 pane. You can select
Internal to use the internal time base. Also configure the
Counting mode, Timer prescaler, and Timer period source
for the internal time base.

Select QEP circuit to generate the input clock from the
quadrature encoder pulse (QEP) submodule.

Counting mode
Select Up to generate an asymmetrical waveform output, or
Up-down to generate a symmetrical waveform output, as shown in
the following illustration.

2-211

C281x CAP

period

-Compare

Mode: Up/Asymmetric

S LT

Resulting waveform

Mode: Up-dovm/Symmetric

I e

Resulting waveform

The Counting mode is for the internal timer settings.

When you specify the Counting mode as Up (asymmetric) the
waveform:

e Starts low

® Goes high when the rising period counter value matches the
Compare value

¢ Goes low at the end of the period

When you specify the Counting mode as Up-down (symmetric)
the waveform:

® Starts low

2-212

C281x CAP

® Goes high when the increasing period counter value matches
the Compare value

® Goes low when the decreasing period counter value matches
the Compare value

Counting mode becomes unavailable when you set Clock
source to QEP circuit.

Timer Prescaler
Clock divider factor by which to prescale the selected GP timer
to produce the desired timer counting rate. Available options are
none, 1/2,1/4,1/8,1/16, 1/32, 1/64, and 1/128. The following
table shows the rates that result from selecting each option.

Scaling Resulting Rate (ps)
none 0.01334
1/2 0.02668
1/4 0.05336
1/8 0.10672
1/16 0.21344
1/32 0.42688
1/64 0.85376
1/128 1.70752

Note These rates assume a 75 MHz input clock.

Timer period source
Select Specify via dialog to enable the Timer period
parameter. Select Input port to create a block input, T1, that
accepts the timer period value.

2-213

C281x CAP

2-214

Timer period

Set the length of the timer period in clock cycles. Enter a value
from 0 to 65535. The value defaults to 65535.

If you know the length of a clock cycle, you can easily calculate
how many clock cycles to set for the timer period. The following
calculation determines the length of one clock cycle:

Sysclk(150MHz) — HISPCLK(1/2) — InputClock Prescaler(1/128)

In this calculation, you divide the System clock frequency of 150
MHz by the high-speed clock prescaler of 2. Then, you divide the
resulting value by the timer control input clock prescaler, 128.
The resulting frequency is 0.586 MHz. Thus, one clock cycle is
1/.586 MHz, which is 1.706 ps.

Post interrupt on CAP

Check this check box to post an asynchronous interrupt on CAP.

See Also

C28x Hardware Interrupt

C281x GPIO Digital Input

Purpose

Library

Description

General-purpose I/0 pins for digital input

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C281x

G281

GPIC D
Cigital Input

This block configures the general-purpose I/0 (GPIO) registers that
control the GPIO shared pins for digital input. Each I/O port has one
MUX register, which is used to select peripheral operation or digital
1/0 operation.

Note To avoid losing new settings, click Apply before changing the
I0 Port parameter.

2-215

C281x GPIO Digital Input

=] source Block Parameters: Digit X|
—CZ2B81x GPID Digital Input {mask) (link

The digital I/0 ports module provides a flexible method
for controlling both dedicated 140 and shared pin
functions. All 10 and shared pin functions are controlled
using nine 16-bit registers.

—PFarameters

10 Port: [ejgiier
v Bito
[~ Bit1
[~ itz
[~ pit3
I~ Bit4
[~ Bits
I~ Bite
[~ Bit?
[~ pita
[~ pitg
[~ Bit 10
I~ it 11
I~ it 12
I~ it 12
I~ Bit 14
I~ Bit 15

Sample time:
{0,001

Data type: Iaub: j

[0]4 Cancel | Help |

Dialog
Box
10 Port
Select the input/output port to use: GPIOPA, GPIOPB, GPIOPD,
GPIOPE, GPIOPF, or GPIOPG and select the I/O Port bits to enable
for digital input. (There is no GPIOPC port on the C281x.) If you

2-216

C281x GPIO Digital Input

The following tables show the shared pins.

select multiple bits, vector input is expected. Cleared bits are
available for peripheral functionality. Multiple GPIO DI blocks

cannot share the same I/0 port.

Note The input function of the digital I/O and the input path to
the related peripheral are enabled on the board. If you configure a
pin as digital I/0O, the corresponding peripheral function cannot

be used.

GPIO A MUX
Peripheral Name GPIO Name
Bit (Bit =1) (Bit = 0)
0 PWM1 GPIOAO
1 PWM2 GPIOA1
2 PWM3 GPIOA2
3 PWM4 GPIOA3
4 PWM5 GPIOA4
5 PWM6 GPIOA5
8 QEP1/CAP1 GPIOAS
9 QEP2/CAP2 GPIOA9
10 CAP3 GPIOA10

2-217

C281x GPIO Digital Input

See Also

2-218

GPIO B MUX
Peripheral Name GPIO Name
Bit (Bit =1) (Bit = 0)
0 PWM7 GPIOBO
1 PWMS8 GPIOB1
2 PWM9 GPIOB2
3 PWM10 GPIOB3
4 PWM11 GPIOB4
5 PWM12 GPIOB5
8 QEP3/CAP4 GPIOBS
9 QEP4/CAP5 GPIOB9
10 CAP6 GPIOB10

Sample time

Time interval, in seconds, between consecutive input from the
pins.

Data type

Data type of the data to obtain from the GPIO pins. The data is
read as 16-bit integer data and then cast to the selected data type.
Valid data types are auto, double, single, int8, uint8, int16,
uint16, int32, uint32 or boolean.

Note The width of the vectorized data output by this block
is determined by the number of bits selected in the Block
Parameters dialog box.

C281x GPIO Digital Output
“GPIO” on page 3-205

C281x GPIO Digital Output

Purpose

Library

Description

General-purpose I/0 pins for digital output

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C281x

C281x

GRIO DO
Digital Output

This block configures the general-purpose I/0 (GPIO) registers that
control the GPIO shared pins for digital output. Each I/O port has one
MUX register, which is used to select peripheral operation or digital
1/0O operation.

Note Fixed-point inputs are not supported for this block.

Note To avoid losing new settings, click Apply before changing the
I0 Port parameter.

2-219

C281x GPIO Digital Output

i) sink Block Parameters: Digital Output X|

—C281x GPIO Digital Cutput {mask) {link)

The digital I/0 ports module provides a flexible method for controlling
both dedicated 170 and shared pin functions, All 10 and shared pin
functions are controlled using nine 16-bit registers.

—PRarameters

10 Port: [ejgiier
v Bito
[~ Bit1
[~ itz
[~ pit3
I~ Bit4
[~ Bits
I~ Bite
[~ Bit?
[~ pita
[~ pitg
[~ Bit 10
I~ it 11
[~ pit 12
[~ it 13
I~ Bit 14
[~ it 15

(014 Zancel Help Apply

Dialog
Box

10 Port
Select the input/output port to use: GPIOPA, GPIOPB, GPIOPD,
GPIOPE, GPIOPF, or GPIOPG and select the I/O Port bits to enable

2-220

C281x GPIO Digital Output

The following tables show the shared pins.

for digital input. (There is no GPIOPC port on the C281x.) If you
select multiple bits, vector input is expected. Cleared bits are
available for peripheral functionality. Multiple GPIO DO blocks

cannot share the same I/0O port.

Note The input function of the digital I/O and the input path to
the related peripheral are enabled on the board. If you configure a
pin as digital I/0O, the corresponding peripheral function cannot

be used.

GPIO A MUX
Peripheral Name GPIO Name
Bit (Bit =1) (Bit = 0)
0 PWM1 GPIOAO
1 PWM2 GPIOA1
2 PWM3 GPIOA2
3 PWM4 GPIOAS3
4 PWM5 GPIOA4
5 PWM6 GPIOA5
8 QEP1/CAP1 GPIOAS
9 QEP2/CAP2 GPIOA9
10 CAP3 GPIOA10

2-221

C281x GPIO Digital Output

See Also

2-222

GPIO B MUX
Peripheral Name GPIO Name
Bit (Bit =1) (Bit = 0)
0 PWM7 GPIOBO
1 PWMS8 GPIOB1
2 PWM9 GPIOB2
3 PWM10 GPIOB3
4 PWM11 GPIOB4
5 PWM12 GPIOB5
8 QEP3/CAP4 GPIOBS
9 QEP4/CAP5 GPIOB9
10 CAP6 GPIOBI10

C281x GPIO Digital Input
“GPIO” on page 3-205

C281x PWM

Purpose

Library

Description

Pulse width modulators (PWMs)

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C281x

CEE1x

Pt
Pl

F2812 DSPs include a suite of pulse width modulators (PWMs) used
to generate various signals. This block provides options to set the A
or B module Event Managers to generate the waveforms you require.
The twelve PWMs are configured in six pairs, with three pairs in each
module.

The C281x PWM module shares GP Timers with other C281 blocks. For
more information and guidance on sharing timers, see “Sharing General
Purpose Timers between C281x Peripherals”.

Note All inputs to the C281x PWM block must be scalar values.

2-223

C281x PWM

Dialog Timer Pane

Box
x|

’rCZB 1x PVWM {mask) {ink)

Configures the Event Manager of the C2581x DSP to generate PWM waveforms.

Timer | Outputs I Logic I Deadband I ADC Control I

ociie: [

Waveform period source: ISpecif‘y via dialog LI

Waveform period:

|0.0001
Waveform type{counting mode): IAsymmetric {Up) LI
Waveform period units: ISEconds LI
Timer prescaler: |1,f'128 LI
oK I Cancel Help | Apply |
Module

Specify which target PWM pairs to use:

¢ A — Displays the PWMs in module A (PWM1/PWM2,
PWM3/PWM4, and PWM5/PWMS6).

® B — Displays the PWMs in module B (PWM7/PWMS,
PWM9/PWM10, and PWM11/PWM12).

Note PWMs in module A use Event Manager A, Timer 1, and
PWDMs in module B use Event Manager B, Timer 3.

2-224

C281x PWM

Waveform period source
Source from which the waveform period value is obtained. Select
Specify via dialog to enter the value in Waveform period or
select Input port to use a value from the input port.

Note All inputs to the C281x PWM block must be scalar values.

Waveform period
Period of the PWM waveform measured in clock cycles or in
seconds, as specified in the Waveform period units.

Note The term clock cycles refers to the high-speed peripheral
clock on the F2812 chip. This clock is 75 MHz by default because
the high-speed peripheral clock prescaler is set to 2 (150 MHz/2).

Waveform type (counting mode)
Type of waveform to be generated by the PWM pair. The F2812
PWDMs can generate two types of waveforms: Asymmetric (Up)
and Symmetric (Up-down). The following illustration shows the
difference between the two types of waveforms.

2-225

C281x PWM

Asymmetric wirve bem
Waveform

R
metric m’h

aveform

Waveform period units
Units in which to measure the waveform period. Options are
Clock cycles, which refer to the high-speed peripheral clock
on the F2812 chip (75 MHz), or Seconds. Changing these units
changes the Waveform period value and the Duty cycle value
and Duty cycle units selection.

Timer prescaler
Divide the clock input to produce the desired timer counting rate.

2-226

C281x PWM

Outputs Pane

x

’7(:28 L PWM (mask) {Jink)

Configures the Event Manager of the C281x DSP to generate PWM waveforms,

Timer Quiputs | Logic I Deadband ADC Control
¥ Enable PWM1/PWMZ

Duty cyde source; ISpeciﬁ' via dialog ;I

Duty cycle:

|50
[~ Enable PwM3/PiiM4
™ Enable PWMSFWME

Duty cydle units: IPercentages LI

oK Cancel | Help | Apply |

Enable PWM#/PWM#
Check to activate the PWM pair. PWM1/PWM2 are activated
via the Output 1 pane, PWM3/PWM4 are on Output 2, and
PWM5/PWMSG6 are on Output 3.

Duty cycle source
Select Specify via dialog to use the dialog box to enter a Duty
cycle value for the pair of PWM outputs. Select Input port to
use the input port, W#, to enter a Duty cycle value for the pair
of PWM outputs.

The input port W1 corresponds to PWM1/PWM2. W2 corresponds
to PWM3/PWM4. W3 corresponds to PWM5/6.

2-227

C281x PWM

Note All inputs to the C281x PWM block must be scalar values.

Duty cycle
Set the ratio of the PWM waveform pulse duration to the PWM
Waveform period.

Duty cycle units
Units for the duty cycle. Valid choices are Clock cycles and
Percentages. Changing these units changes the Duty cycle
value, and the Waveform period value and Waveform period
units selection.

Note Using percentages can cause some additional computation
time in generated code. This may or may not be noticeable in
your application.

2-228

C281x PWM

Logic Pane

E! Block Parameters: PWM » |
C281x PWM (mask) (ink)
’7C0nﬁgures the Event Manager of the C281x DSP to generate PWM waveforms,
Timer I Qutputs Logic | Deadband ADC Control
Control logic source: ISpecif‘y via dialog LI
PWM1 control logic: IActive high LI
PWM2 contral logic: IActive low LI
oK Cancel Help gpply -----------

Control logic source
Configure the control logic for all PWMs enabled on the Outputs
tab. Valid settings are Specify via dialog (default setting) or
to Input port.

Specify via Dialog enables PWM control lo