
Embedded Coder®

Reference

R2013a

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Embedded Coder® Reference

© COPYRIGHT 2011–2013 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
April 2011 Online only New for Version 6.0 (Release 2011a)
September 2011 Online only New for Version 6.1 (Release 2011b)
March 2012 Online only New for Version 6.2 (Release 2012a)
September 2012 Online only New for Version 6.3 (Release 2012b)
March 2013 Online only New for Version 6.4 (Release 2013a)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Check Bug Reports for Issues and Fixes

Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks
reports critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs tool
with the search phrase ‘‘Incorrect Code Generation’’ to obtain a report of known bugs that
produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies between
the actual behavior of a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

http://www.mathworks.com/support/bugreports/

Contents

Alphabetical List

1

Blocks — Alphabetical List

2

Configuration Parameters

3
Code Generation Pane: Verification 3-2
Code Generation: Verification Tab Overview 3-4
Measure task execution time . 3-5
Measure function execution times . 3-7
Workspace variable . 3-9
Save options . 3-11
Code coverage tool . 3-13
Create block . 3-15
Enable portable word sizes . 3-17
Enable source-level debugging for SIL 3-19

Code Generation Pane: Code Style 3-20
Code Generation: Code Style Tab Overview 3-21
Parentheses level . 3-22
Preserve operand order in expression 3-24
Preserve condition expression in if statement 3-25
Convert if-elseif-else patterns to switch-case statements . . 3-27
Preserve extern keyword in function declarations 3-29
Suppress generation of default cases for Stateflow switch
statements if unreachable . 3-31

Code Generation Pane: Templates 3-33

v

Code Generation: Templates Tab Overview 3-34
Code templates: Source file (*.c) template 3-35
Code templates: Header file (*.h) template 3-36
Data templates: Source file (*.c) template 3-37
Data templates: Header file (*.h) template 3-38
File customization template . 3-39
Generate an example main program 3-40
Target operating system . 3-42

Code Generation Pane: Code Placement 3-44
Code Generation: Code Placement Tab Overview 3-45
Data definition . 3-46
Data definition filename . 3-48
Data declaration . 3-50
Data declaration filename . 3-52
Use owner from data object for data definition
placement . 3-54

#include file delimiter . 3-54
Signal display level . 3-55
Parameter tune level . 3-57
File packaging format . 3-59

Code Generation Pane: Data Type Replacement 3-61
Code Generation: Data Type Replacement Tab
Overview . 3-62

Replace data type names in the generated code 3-63
Replacement Name: double . 3-66
Replacement Name: single . 3-68
Replacement Name: int32 . 3-70
Replacement Name: int16 . 3-72
Replacement Name: int8 . 3-74
Replacement Name: uint32 . 3-76
Replacement Name: uint16 . 3-78
Replacement Name: uint8 . 3-80
Replacement Name: boolean . 3-82
Replacement Name: int . 3-84
Replacement Name: uint . 3-86
Replacement Name: char . 3-88

Code Generation Pane: Memory Sections 3-90
Code Generation: Memory Sections Tab Overview 3-92
Package . 3-93
Refresh package list . 3-95

vi Contents

Initialize/Terminate . 3-96
Execution . 3-97
Shared utility . 3-98
Constants . 3-99
Inputs/Outputs . 3-101
Internal data . 3-103
Parameters . 3-105
Validation results . 3-107

Code Generation Pane: AUTOSAR Code Generation
Options . 3-108
Code Generation: AUTOSAR Code Generation Options Tab
Overview . 3-109

Generate XML file from schema version 3-110
Maximum SHORT-NAME length . 3-111
Use AUTOSAR compiler abstraction macros 3-112
Support root-level matrix I/O using one-dimensional
arrays . 3-113

Configure AUTOSAR Interface . 3-114

Code Generation: Coder Target Pane 3-115
Code Generation: Coder Target Pane Overview (previously
“IDE Link Tab Overview”) . 3-117

Coder Target: Tool Chain Automation Tab Overview 3-118
Build format . 3-120
Build action . 3-122
Overrun notification . 3-125
Function name . 3-127
Configuration . 3-128
Compiler options string . 3-130
Linker options string . 3-132
System stack size (MAUs) . 3-134
System heap size (MAUs) . 3-136
Profile real-time execution . 3-138
Profile by . 3-140
Number of profiling samples to collect 3-142
Maximum time allowed to build project (s) 3-144
Maximum time allowed to complete IDE operation (s) 3-146
Export IDE link handle to base workspace 3-147
IDE link handle name . 3-149
Source file replacement . 3-150

Code Generation: Target Hardware Resources Pane . . 3-152

vii

Code Generation: Coder Target Pane Overview (Target
Hardware Resources) . 3-154

Coder Target: Target Hardware Resources Tab
Overview . 3-155

IDE/Tool Chain . 3-156
Target Hardware Resources: Board Tab 3-158
Target Hardware Resources: Memory Tab 3-162
Target Hardware Resources: Section Tab 3-165
Target Hardware Resources: DSP/BIOS Tab 3-169
Target Hardware Resources: Peripherals Tab 3-172
Clocking . 3-175
ADC . 3-178
COMP . 3-182
eCAN_A, eCAN_B . 3-183
eCAP . 3-185
ePWM . 3-186
I2C . 3-188
SCI_A, SCI_B, SCI_C . 3-195
SPI_A, SPI_B, SPI_C, SPI_D . 3-198
eQEP . 3-201
Watchdog . 3-203
GPIO . 3-205
Flash_loader . 3-209
DMA_ch[#] . 3-211
LIN . 3-225
Add Processor Dialog Box . 3-232
Target Hardware Resources: Linux Tab 3-234
Target Hardware Resources: VxWorks Tab 3-236

Parameter Reference . 3-237
Recommended Settings Summary . 3-237
Parameter Command-Line Information Summary 3-251

Index

viii Contents

1

Alphabetical List

activate

Purpose Mark file, project, or build configuration as active

Syntax IDE_Obj.activate('objectname','type')

IDEs This function supports the following IDEs:

• Analog Devices™ VisualDSP++®

• Eclipse™ IDE

• Green Hills® MULTI®

• Texas Instruments™ Code Composer Studio™ v3

Description Use the IDE_Obj.activate('objectname','type') method to make a
project file or build configuration active in the MATLAB session.

When you make a project, file, or build configuration active, methods
you invoke on the IDE handle object apply to that project, file, or build
configuration.

Input
Arguments

IDE_Obj

For IDE_Obj, enter the name of the IDE handle object you created using
a constructor function.

objectname

For objectname, enter the name of the project file or build configuration
to make active.

For project files, enter the full file name including the extension.

For build configurations, enter 'Debug', 'Release', or 'Custom'.
Before using the activate method on a build configuration, activate
the project that contains the build configuration. For more information
about configurations, see “Configuration” on page 3-128.

type

1-2

activate

For type, enter the type of object to make active. If you omit the type
argument, type defaults to 'project'. Enter one of the following
strings for type:

• 'project' — Makes a specified project active.

• 'buildcfg'— Make a specified build configuration active

IDE support for type

CCS Eclipse MULTI VisualDSP++

'project' Yes Yes Yes Yes

'buildcfg' Yes Yes Yes

Examples After using a constructor to create the IDE handle object, h, open
several projects, make the first one active, and build the project:

h.open('c:\temp\myproj1')
h.open('c:\temp\myproj2')
h.open('c:\temp\myproj3')
h.activate('c:\temp\myproj1', 'project')
h.build

After making a project active, make the 'debug' configuration active:

h.activate('debug','buildcfg')

See Also build | new | remove

1-3

cgv.CGV.activateConfigSet

Purpose Activate configuration set of model

Syntax cgvObj.activateConfigSet(configSetName)

Description cgvObj.activateConfigSet(configSetName) specifies the active
configuration set for the model, only while the model is executed by
cgvObj. cgvObj is a handle to a cgv.CGV object. configSetName is the
name of a configuration set object, Simulink.ConfigSet, which already
exists in the model. The original configuration set for the model is
restored after execution of the cgv.CGV object.

Examples Before calling cgv.CGV.run on a cgv.CGV object for a model, the model
must already contain the named configuration set. After creating the
cgv.CGV object for a model, you can use cgv.CGV.activateConfigSet
to activate a configuration set in the model when the cgv.CGV object
simulates the model.

configObj = Simulink.ConfigSet;
attachConfigSet('rtwdemo_cgv', configObj);
cgvObj = cgv.CGV('rtwdemo_cgv');
cgvObj.activateConfigSet(configObj.Name);

How To • “About Model Configurations”

• “Programmatic Code Generation Verification”

1-4

add

Purpose Add files to active project in IDE

Syntax IDE_Obj.add(filename,filetype)

IDEs This function supports the following IDEs:

• Analog Devices VisualDSP++

• Eclipse IDE

• Green Hills MULTI

• Texas Instruments Code Composer Studio v3

Description Use IDE_Obj.add(filename,filetype) to add an existing file to the
active project in the IDE. Using the add function is equivalent to
selecting Project > Add Files to Project in the IDE.

Before using add:

• Use the constructor function for your IDE to create an IDE handle
object, such as IDE_Obj.

• Create or open a project using the new or open methods.

• Make the project active in the IDE using the activate method.

You can add file types your IDE supports to your project. Consult the
documentation for your IDE for detailed information about supported
file types.

Supported File Types and Extensions

File Type
Extensions
Supported

CCS IDE Project
Folder

C/C++ source files .c, .cpp, .cc, .cxx,
.sa, .h,.hpp,.hxx

Source

Assembly source files .a*, .s* (excluding
.sa), .dsp

Source

1-5

add

Supported File Types and Extensions (Continued)

File Type
Extensions
Supported

CCS IDE Project
Folder

Object and library
files

.o*, .lib, .doj, .dlb Libraries

Linker command file .cmd, .ldf Project Name

VDK support file .vdk Not applicable

DSP/BIOS file (only
with CCS IDE)

.tcf DSP/BIOS Config

Note CCS IDE drops files in the project folder, indicated in the
right-most column of the preceding table.

Input
Arguments

add places the file specified by filename in the active project in the IDE.

IDE_Obj

IDE_Obj is a handle for an instance of the IDE. Before using a method,
the constructor function for your IDE to create IDE_Obj.

filename

filename is the name of the file to add to the active IDE project.

If you supply a filename without a path or relative path, your coder
product searches the IDE working folder first. It then searches the
folders on your MATLAB® path. Add supported file types shown in
the preceding table.

filetype

filetype is an optional argument that specifies the file type. For
example, 'lib', 'src', 'header'.

1-6

add

Examples Start by creating an IDE handle object, such as IDE_Obj using the
constructor for your IDE. Then enter the following commands:

IDE_Obj.new('myproject','project'); % Create a new project.

IDE_Obj.add('sourcefile.c'); % Add a C source file.

See Also activate | cd | new | open | remove

1-7

cgv.CGV.addBaseline

Purpose Add baseline file for comparison

Syntax cgvObj.addBaseline(inputName,baselineFile)
cgvObj.addBaseline(inputName,baselineFile,toleranceFile)

Description cgvObj.addBaseline(inputName,baselineFile) associates a baseline
data file to an inputName in cgvObj. cgvObj is a handle to a cgv.CGV
object. If a baseline file is present, when you call cgv.CGV.run, cgvObj
automatically compares baseline data to the result data of the current
execution of cgvObj.

cgvObj.addBaseline(inputName,baselineFile,toleranceFile)
includes an optional tolerance file to apply when comparing the baseline
data to the result data of the current execution of cgvObj.

Input
Arguments

inputName

A unique numeric or character identifier assigned to the input
data associated with baselineFile

baselineFile

A MAT-file containing baseline data

toleranceFile

File containing the tolerance specification, which is created using
cgv.CGV.createToleranceFile

Examples A typical workflow for defining baseline data in a cgv.CGV object and
then comparing the baseline data to the execution data is as follows:

1 Create a cgv.CGV object for a model.

2 Add input data to the cgv.CGV object by calling
cgv.CGV.addInputData.

3 Add the baseline file to the cgv.CGV object by calling
cgv.CGV.addBaseline. which associates the inputName for input

1-8

cgv.CGV.addBaseline

data in the cgv.CGV object with input data stored in the cgv.CGV
object as the baseline data.

4 Run the cgv.CGV object by calling cgv.CGV.run, which automatically
compares the baseline data to the result data in this execution.

5 Call cgv.CGV.getStatus to determine the results of the comparison.

See Also cgv.CGV.addInputData | cgv.CGV.run |
cgv.CGV.createToleranceFile | cgv.CGV.getStatus

How To • “Verify Numerical Equivalence with CGV”

1-9

cgv.CGV.addHeaderReportFcn

Purpose Add callback function to execute before executing input data in object

Syntax cgvObj.addHeaderReportFcn(CallbackFcn)

Description cgvObj.addHeaderReportFcn(CallbackFcn) adds a callback function
to cgvObj. cgvObj is a handle to a cgv.CGV object. cgv.CGV.run calls
CallbackFcn before executing input data included in cgvObj. The
callback function signature is:

CallbackFcn(cgvObj)

Examples The callback function, HeaderReportFcn, is added to cgv.CGV object,
cgvObj

cgvObj.addHeaderReportFcn(@HeaderReportFcn);

where HeaderReportFcn is defined as:

function HeaderReportFcn(cgvObj)
...
end

See Also cgv.CGV.run

How To • “Callbacks for Customized Model Behavior”

1-10

cgv.CGV.addPostExecFcn

Purpose Add callback function to execute after each input data file is executes

Syntax cgvObj.addPostExecFcn(CallbackFcn)

Description cgvObj.addPostExecFcn(CallbackFcn) adds a callback function to
cgvObj. cgvObj is a handle to a cgv.CGV object. cgv.CGV.run calls
CallbackFcn after each input data file is executed for the model. The
callback function signature is:

CallbackFcn(cgvObj, inputIndex)

inputIndex is a unique numerical identifier associated with input data
in the cgvObj.

Examples The callback function, PostExecutionFcn, is added to cgv.CGV object,
cgvObj

cgvObj.addPostExecFcn(@PostExecutionFcn);

where PostExecutionFcn is defined as:

function PostExecutionFcn(cgvObj, inputIndex)
...
end

See Also cgv.CGV.run

How To • “Callbacks for Customized Model Behavior”

1-11

cgv.CGV.addPostExecReportFcn

Purpose Add callback function to execute after each input data file executes

Syntax cgvObj.addPostExecReportFcn(CallbackFcn)

Description cgvObj.addPostExecReportFcn(CallbackFcn) adds a callback
function to cgvObj. cgvObj is a handle to a cgv.CGV object. cgv.CGV.run
calls CallbackFcn after each input data file is executed for the model.
The callback function signature is:

CallbackFcn(cgvObj, inputIndex)

inputIndex is a unique numeric identifier associated with input data
in the cgvObj.

Examples The callback function, PostExecutionReportFcn, is added to cgv.CGV
object, cgvObj

cgvObj.addPostExecReportFcn(@PostExecutionReportFcn);

where PostExecutionReportFcn is defined as:

function PostExecutionReportFcn(cgvObj, inputIndex)
...
end

See Also cgv.CGV.run

How To • “Callbacks for Customized Model Behavior”

1-12

cgv.CGV.addPreExecFcn

Purpose Add callback function to execute before each input data file executes

Syntax cgvObj.addPreExecFcn(CallbackFcn)

Description cgvObj.addPreExecFcn(CallbackFcn) adds a callback function to
cgvObj. cgvObj is a handle to a cgv.CGV object. cgv.CGV.run calls
CallbackFcn before executing each input data file in cgvObj. The
callback function signature is:

CallbackFcn(cgvObj, inputIndex)

inputIndex is a unique numeric identifier associated with input data
in cgvObj.

Examples The callback function, PreExecutionFcn, is added to cgv.CGV object,
cgvObj

cgvObj.addPreExecFcn(@PreExecutionFcn);

where PreExecutionFcn is defined as:

function PreExecutionFcn(cgvObj, inputIndex)
...
end

See Also cgv.CGV.run

How To • “Callbacks for Customized Model Behavior”

1-13

cgv.CGV.addPreExecReportFcn

Purpose Add callback function to execute before each input data file executes

Syntax cgvObj.addPreExecReportFcn(CallbackFcn)

Description cgvObj.addPreExecReportFcn(CallbackFcn) adds a callback function
to cgvObj. cgvObj is a handle to a cgv.CGV object. cgv.CGV.run calls
CallbackFcn before executing each input data file in cgvObj. The
callback function signature is:

CallbackFcn(cgvObj, inputIndex)

inputIndex is a unique numerical identifier associated with input data
in cgvObj.

Examples The callback function, PreExecutionReportFcn, is added to cgv.CGV
object, cgvObj

cgvObj.addPreExecReportFcn(@PreExecutionReportFcn);

where PreExecutionReportFcn is defined as:

function PreExecutionReportFcn(cgvObj, inputIndex)
...
end

See Also cgv.CGV.run

How To • “Callbacks for Customized Model Behavior”

1-14

cgv.CGV.addTrailerReportFcn

Purpose Add callback function to execute after the input data executes

Syntax cgvObj.addTrailerReportFcn(CallbackFcn)

Description cgvObj.addTrailerReportFcn(CallbackFcn) adds a callback function
to cgvObj. cgvObj is a handle to a cgv.CGV object. cgv.CGV.run executes
the input data files in cgvObj and then calls CallbackFcn. The callback
function signature is:

CallbackFcn(cgvObj)

Examples The callback function, TrailerReportFcn, is added to cgv.CGV object,
cgvObj

cgvObj.addTrailerReportFcn(@TrailerReportFcn);

where TrailerReportFcn is defined as:

function TrailerReportFcn(cgvObj)
...
end

See Also cgv.CGV.run

How To • “Callbacks for Customized Model Behavior”

1-15

dir

Purpose Files and folders in current IDE window

Syntax IDE_Obj.dir
d=IDE_Obj.dir

IDEs This function supports the following IDEs:

• Analog Devices VisualDSP++

• Eclipse IDE

• Green Hills MULTI

• Texas Instruments Code Composer Studio v3

Description IDE_Obj.dir lists the files and folders in the IDE working folder, where
IDE_Obj is the object that references the IDE. IDE_Obj can be either
a single object, or a vector of objects. When IDE_Obj is a vector, dir
returns the files and folders referenced by each object.

d=IDE_Obj.dir returns the list of files and folders as an M-by-1
structure in d with the fields for each file and folder shown in the
following table.

Field Name Description

name Name of the file or folder.

date Date of most recent file or folder modification.

bytes Size of the file in bytes. Folders return 0 for
the number of bytes.

isdirectory 0 if it is a file, 1 if it is a folder.

datenum The Eclipse IDE and Code Composer Studio
IDE also return the modification date as a
MATLAB serial date number.

To view the entries in structure d, use an index in the syntax at the
MATLAB prompt, as shown by the following examples.

1-16

dir

• d(3) returns the third element in the structure.

• d(10) returns the tenth element in the structure d.

• d(4).date returns the date field value for the fourth structure
element.

See Also cd | open

1-17

addAdditionalHeaderFile

Purpose Add additional header file to array of additional header files for CRL
table entry

Syntax addAdditionalHeaderFile(hEntry, headerFile)

Arguments hEntry
Handle to a CRL table entry previously returned by instantiating
a CRL entry class, such as hEntry = RTW.TflCFunctionEntry or
hEntry = RTW.TflCOperationEntry.

headerFile
String specifying an additional header file.

Description The addAdditionalHeaderFile function adds a specified additional
header file to the array of additional header files for a CRL table entry.

Examples In the following example, the addAdditionalHeaderFile
function is used along with addAdditionalIncludePath,
addAdditionalSourceFile, and addAdditionalSourcePath to fully
specify additional header and source files for a CRL table entry.

% Path to external header and source files

libdir = fullfile('$(MATLAB_ROOT)','..', '..', 'lib');

op_entry = RTW.TflCOperationEntry;

.

.

.

addAdditionalHeaderFile(op_entry, 'all_additions.h');

addAdditionalIncludePath(op_entry, fullfile(libdir, 'include'));

addAdditionalSourceFile(op_entry, 'all_additions.c');

addAdditionalSourcePath(op_entry, fullfile(libdir, 'src'));

See Also addAdditionalIncludePath | addAdditionalSourceFile |
addAdditionalSourcePath

1-18

addAdditionalHeaderFile

How To • “Specify Build Information for Code Replacements”

• “Introduction to Code Replacement Libraries”

1-19

addAdditionalIncludePath

Purpose Add additional include path to array of additional include paths for
CRL table entry

Syntax addAdditionalIncludePath(hEntry, path)

Arguments hEntry
Handle to a CRL table entry previously returned by instantiating
a CRL entry class, such as hEntry = RTW.TflCFunctionEntry or
hEntry = RTW.TflCOperationEntry.

path
String specifying the full path to an additional header file.

Description The addAdditionalIncludePath function adds a specified additional
include path to the array of additional include paths for a CRL table
entry.

Examples In the following example, the addAdditionalIncludePath
function is used along with addAdditionalHeaderFile,
addAdditionalSourceFile, and addAdditionalSourcePath to fully
specify additional header and source files for a CRL table entry.

% Path to external header and source files

libdir = fullfile('$(MATLAB_ROOT)','..', '..', 'lib');

op_entry = RTW.TflCOperationEntry;

.

.

.

addAdditionalHeaderFile(op_entry, 'all_additions.h');

addAdditionalIncludePath(op_entry, fullfile(libdir, 'include'));

addAdditionalSourceFile(op_entry, 'all_additions.c');

addAdditionalSourcePath(op_entry, fullfile(libdir, 'src'));

See Also addAdditionalHeaderFile | addAdditionalSourceFile |
addAdditionalSourcePath

1-20

addAdditionalIncludePath

How To • “Specify Build Information for Code Replacements”

• “Introduction to Code Replacement Libraries”

1-21

addAdditionalLinkObj

Purpose Add additional link object to array of additional link objects for CRL
table entry

Syntax addAdditionalLinkObj(hEntry, linkObj)

Arguments hEntry
Handle to a CRL table entry previously returned by instantiating
a CRL entry class, such as hEntry = RTW.TflCFunctionEntry or
hEntry = RTW.TflCOperationEntry.

linkObj
String specifying an additional link object.

Description The addAdditionalLinkObj function adds a specified additional link
object to the array of additional link objects for a CRL table entry.

Examples In the following example, the addAdditionalLinkObj function is used
along with addAdditionalLinkObjPath to fully specify an additional
link object file for a CRL table entry.

% Path to external object files

libdir = fullfile('$(MATLAB_ROOT)','..', '..', 'lib');

op_entry = RTW.TflCOperationEntry;

...

addAdditionalLinkObj(op_entry, 'addition.o');

addAdditionalLinkObjPath(op_entry, fullfile(libdir, 'bin'));

See Also addAdditionalLinkObjPath

How To • “Specify Build Information for Code Replacements”

• “Introduction to Code Replacement Libraries”

1-22

addAdditionalLinkObjPath

Purpose Add additional link object path to array of additional link object paths
for CRL table entry

Syntax addAdditionalLinkObjPath(hEntry, path)

Arguments hEntry
Handle to a CRL table entry previously returned by instantiating
a CRL entry class, such as hEntry = RTW.TflCFunctionEntry or
hEntry = RTW.TflCOperationEntry.

path
String specifying the full path to an additional link object.

Description The addAdditionalLinkObjPath function adds a specified additional
link object path to the array of additional link object paths for a CRL
table entry.

Examples In the following example, the addAdditionalLinkObjPath function is
used along with addAdditionalLinkObj to fully specify an additional
link object file for a CRL table entry.

% Path to external object files

libdir = fullfile('$(MATLAB_ROOT)','..', '..', 'lib');

op_entry = RTW.TflCOperationEntry;

...

addAdditionalLinkObj(op_entry, 'addition.o');

addAdditionalLinkObjPath(op_entry, fullfile(libdir, 'bin'));

See Also addAdditionalLinkObj

How To • “Specify Build Information for Code Replacements”

• “Introduction to Code Replacement Libraries”

1-23

addAdditionalSourceFile

Purpose Add additional source file to array of additional source files for CRL
table entry

Syntax addAdditionalSourceFile(hEntry, sourceFile)

Arguments hEntry
Handle to a CRL table entry previously returned by instantiating
a CRL entry class, such as hEntry = RTW.TflCFunctionEntry or
hEntry = RTW.TflCOperationEntry.

sourceFile
String specifying an additional source file.

Description The addAdditionalSourceFile function adds a specified additional
source file to the array of additional source files for a CRL table entry.

Examples In the following example, the addAdditionalSourceFile
function is used along with addAdditionalHeaderFile,
addAdditionalIncludePath, and addAdditionalSourcePath to fully
specify additional header and source files for a CRL table entry.

% Path to external header and source files

libdir = fullfile('$(MATLAB_ROOT)','..', '..', 'lib');

op_entry = RTW.TflCOperationEntry;

.

.

.

addAdditionalHeaderFile(op_entry, 'all_additions.h');

addAdditionalIncludePath(op_entry, fullfile(libdir, 'include'));

addAdditionalSourceFile(op_entry, 'all_additions.c');

addAdditionalSourcePath(op_entry, fullfile(libdir, 'src'));

See Also addAdditionalHeaderFile | addAdditionalIncludePath |
addAdditionalSourcePath

1-24

addAdditionalSourceFile

How To • “Specify Build Information for Code Replacements”

• “Introduction to Code Replacement Libraries”

1-25

addAdditionalSourcePath

Purpose Add additional source path to array of additional source paths for CRL
table entry

Syntax addAdditionalSourcePath(hEntry, path)

Arguments hEntry
Handle to a CRL table entry previously returned by instantiating
a CRL entry class, such as hEntry = RTW.TflCFunctionEntry or
hEntry = RTW.TflCOperationEntry.

path
String specifying the full path to an additional source file.

Description The addAdditionalSourcePath function adds a specified additional
source file path to the array of additional source file paths for a CRL
table.

Examples In the following example, the addAdditionalSourcePath
function is used along with addAdditionalHeaderFile,
addAdditionalIncludePath, and addAdditionalSourceFile to fully
specify additional header and source files for a CRL table entry.

% Path to external header and source files

libdir = fullfile('$(MATLAB_ROOT)','..', '..', 'lib');

op_entry = RTW.TflCOperationEntry;

.

.

.

addAdditionalHeaderFile(op_entry, 'all_additions.h');

addAdditionalIncludePath(op_entry, fullfile(libdir, 'include'));

addAdditionalSourceFile(op_entry, 'all_additions.c');

addAdditionalSourcePath(op_entry, fullfile(libdir, 'src'));

See Also addAdditionalHeaderFile | addAdditionalIncludePath |
addAdditionalSourceFile

1-26

addAdditionalSourcePath

How To • “Specify Build Information for Code Replacements”

• “Introduction to Code Replacement Libraries”

1-27

RTW.ModelSpecificCPrototype.addArgConf

Purpose Add argument configuration information for Simulink model port to
model-specific C function prototype

Syntax addArgConf(obj, portName, category, argName, qualifier)

Description addArgConf(obj, portName, category, argName, qualifier)
method adds argument configuration information for a port in your
ERT-based Simulink® model to a model-specific C function prototype.
You specify the name of the model port, the argument category ('Value'
or 'Pointer'), the argument name, and the argument type qualifier
(for example, 'const').

The order of addArgConf calls determines the argument position for the
port in the function prototype, unless you change the order by other
means, such as the RTW.ModelSpecificCPrototype.setArgPosition
method.

If a port has an existing argument configuration, subsequent calls to
addArgConf with the same port name overwrite the previous argument
configuration of the port.

Input
Arguments

obj Handle to a model-specific C
prototype function control object
previously returned by obj =
RTW.ModelSpecificCPrototype or obj =
RTW.getFunctionSpecification(modelName).

portName String specifying the unqualified name of an
inport or outport in your Simulink model.

category String specifying the argument category,
either 'Value' or 'Pointer'.

argName String specifying a valid C identifier.

qualifier String specifying the argument type qualifier:
'none', 'const', 'const *', or 'const *
const'.

1-28

RTW.ModelSpecificCPrototype.addArgConf

Examples In the following example, you use the addArgConf method to add
argument configuration information for ports Input and Output in
an ERT-based version of rtwdemo_counter. After executing these
commands, click the Configure Model Functions button on the
Interface pane of the Configuration Parameters dialog box to open the
Model Interface dialog box and confirm that the addArgConf commands
succeeded.

rtwdemo_counter

set_param(gcs,'SystemTargetFile','ert.tlc')

%% Create a function control object

a=RTW.ModelSpecificCPrototype

%% Add argument configuration information for Input and Output ports

addArgConf(a,'Input','Pointer','inputArg','const *')

addArgConf(a,'Output','Pointer','outputArg','none')

%% Attach the function control object to the model

attachToModel(a,gcs)

Alternatives You can specify the argument configuration information in the Model
Interface dialog box. See “Configure Function Prototypes Using
Graphical Interfaces” in the Embedded Coder® documentation.

See Also RTW.ModelSpecificCPrototype.attachToModel

How To • “Function Prototype Control”

1-29

rtw.codegenObjectives.Objective.addCheck

Purpose Add checks

Syntax addCheck(obj, checkID)

Description addCheck(obj, checkID) includes the check, checkID, in the Code
Generation Advisor. When a user selects the objective, the Code
Generation Advisor includes the check, unless another objective with a
higher priority excludes the check.

Input
Arguments

obj Handle to a code generation objective object
previously created.

checkID Unique identifier of the check that you add
to the new objective.

Examples Add the Identify questionable code instrumentation (data I/O)
check to the objective.

addCheck(obj, 'mathworks.codegen.CodeInstrumentation');

See Also Simulink.ModelAdvisor

How To • “Create Custom Objectives”

• “About IDs”

1-30

addConceptualArg

Purpose Add conceptual argument to array of conceptual arguments for CRL
table entry

Syntax addConceptualArg(hEntry, arg)

Arguments hEntry
Handle to a CRL table entry previously returned by instantiating
a CRL entry class, such as hEntry = RTW.TflCFunctionEntry or
hEntry = RTW.TflCOperationEntry.

arg
Argument, such as returned by arg =
getTflArgFromString(name, datatype), to be added to the
array of conceptual arguments for the CRL table entry.

Description The addConceptualArg function adds a specified conceptual argument
to the array of conceptual arguments for a CRL table entry.

Examples In the following example, the addConceptualArg function is used to
add conceptual arguments for the output port and the two input ports
for an addition operation.

hLib = RTW.TflTable;

% Create entry for addition of built-in uint8 data type

op_entry = RTW.TflCOperationEntry;

op_entry.setTflCOperationEntryParameters(...

'Key', 'RTW_OP_ADD', ...

'Priority', 90, ...

'SaturationMode', 'RTW_SATURATE_ON_OVERFLOW', ...

'RoundingModes', {'RTW_ROUND_UNSPECIFIED'}, ...

'ImplementationName', 'u8_add_u8_u8', ...

'ImplementationHeaderFile', 'u8_add_u8_u8.h', ...

'ImplementationSourceFile', 'u8_add_u8_u8.c');

arg = hLib.getTflArgFromString('y1','uint8');

arg.IOType = 'RTW_IO_OUTPUT';

1-31

addConceptualArg

op_entry.addConceptualArg(arg);

arg = hLib.getTflArgFromString('u1','uint8');

op_entry.addConceptualArg(arg);

arg = hLib.getTflArgFromString('u2','uint8');

op_entry.addConceptualArg(arg);

op_entry.copyConceptualArgsToImplementation();

hLib.addEntry(op_entry);

See Also getTflArgFromString

How To • “Create Code Replacement Tables”

• “Introduction to Code Replacement Libraries”

1-32

addDWorkArg

Purpose Add DWork argument for semaphore entry in CRL table

Syntax addDWorkArg(hEntry, arg)

Arguments hEntry
Handle to a CRL table entry previously returned by
instantiating a CRL semaphore entry class, using hEntry =
RTW.TflCSemaphoreEntry.

arg
Argument, such as returned by arg =
getTflDWorkFromString(name, datatype), to be added to the
arguments for the CRL table entry.

Description The addDWorkArg function adds a specified DWork argument to the
arguments for a semaphore entry in a CRL table.

Examples In the following example, the addDWorkArg function is used to add a
DWork argument named d1 to the arguments for a semaphore entry
in a CRL table.

hLib = RTW.TflTable;

sem_entry = RTW.TflCSemaphoreEntry;

.

.

.

% DWork Arg

arg = hLib.getTflDWorkFromString('d1','void*');

sem_entry.addDWorkArg(arg);

hLib.addEntry(sem_entry);

See Also getTflDWorkFromString

1-33

addDWorkArg

How To • “Map Semaphore or Mutex Operations to Target-Specific
Implementations”

• “Create Code Replacement Tables”

• “Introduction to Code Replacement Libraries”

1-34

cgv.CGV.addConfigSet

Purpose Add configuration set

Syntax cgvObj.addConfigSet(configSet)
cgvObj.addConfigSet('configSetName')
cgvObj.addConfigSet('file','configSetFileName')
cgvObj.addConfigSet('file','configSetFileName','variable',

'configSetName')

Description cgvObj.addConfigSet(configSet) is an optional method that adds the
configuration set to the object. cgvObj is a handle to a cgv.CGV object.
configSet is a variable that specifies a configuration set.

cgvObj.addConfigSet('configSetName') is an optional method that
adds the configuration set to the object. configSetName is a string that
specifies the name of the configuration set in the workspace.

cgvObj.addConfigSet('file','configSetFileName') is an
optional method that adds the configuration set to the object.
configSetFileName is a string that specifies the name of the file that
contains only one configuration set.

cgvObj.addConfigSet('file','configSetFileName','variable',
'configSetName') is an optional method that adds the configuration
set to the object. The file contains one or more configuration sets.
Specify the name of the configuration set to use.

This method replaces the configuration parameter values in the model
with the values from the configuration set that you add. The object
applies the configuration set when you call the run method. You can
add only one configuration set for each cgv.CGV object.

How To • “Programmatic Code Generation Verification”

• “About Model Configurations”

1-35

addEntry

Purpose Add table entry to collection of table entries registered in CRL table

Syntax addEntry(hTable, entry)

Arguments hTable
Handle to a CRL table previously returned by hTable =
RTW.TflTable.

entry
Handle to a function or operator entry that you have constructed
after calling hEntry = RTW.TflCFunctionEntry or hEntry =
RTW.TflCOperationEntry

Description The addEntry function adds a function or operator entry that you have
constructed to the collection of table entries registered in a CRL table.

Examples In the following example, the addEntry function is used to add an
operator entry to a CRL table after the entry is constructed.

hLib = RTW.TflTable;

% Create an entry for addition of built-in uint8 data type

op_entry = RTW.TflCOperationEntry;

op_entry.setTflCOperationEntryParameters(...

'Key', 'RTW_OP_ADD', ...

'Priority', 90, ...

'SaturationMode', 'RTW_SATURATE_ON_OVERFLOW', ...

'RoundingModes', {'RTW_ROUND_UNSPECIFIED'}, ...

'ImplementationName', 'u8_add_u8_u8', ...

'ImplementationHeaderFile', 'u8_add_u8_u8.h', ...

'ImplementationSourceFile', 'u8_add_u8_u8.c');

arg = hLib.getTflArgFromString('y1','uint8');

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.addConceptualArg(arg);

arg = hLib.getTflArgFromString('u1','uint8');

1-36

addEntry

op_entry.addConceptualArg(arg);

arg = hLib.getTflArgFromString('u2','uint8');

op_entry.addConceptualArg(arg);

op_entry.copyConceptualArgsToImplementation();

addEntry(hLib, op_entry);

How To • “Create Code Replacement Tables”

• “Introduction to Code Replacement Libraries”

1-37

RTW.AutosarInterface.addEventConf

Purpose Add configured AUTOSAR event to model

Syntax autosarInterfaceObj.addEventConf('TimingEvent', EventName,
ExecutionPeriod);

autosarInterfaceObj.addEventConf('DataReceivedEvent',
EventName, SimulinkInportName);

Description autosarInterfaceObj.addEventConf('TimingEvent', EventName,
ExecutionPeriod); adds a named TimingEvent with a specific
execution period.

autosarInterfaceObj.addEventConf('DataReceivedEvent',
EventName, SimulinkInportName); adds a named DataReceivedEvent
that triggers a runnable whenever there is a change in value at the
specified Simulink inport.

Each call adds a AUTOSAR RTEEvent to autosarInterfaceObj, a
model-specific RTW.AutosarInterface object.

Input
Arguments

TimingEvent

Periodic event that triggers execution of runnable by AUTOSAR
Runtime Environment

EventName

Name of AUTOSAR event, which is used in XML description file

ExecutionPeriod

Execution period for AUTOSAR runnable, for example, 0.001.

DataReceivedEvent

Event that triggers execution of runnable by AUTOSAR Runtime
Environment only when the value of a received data element is
updated.

SimulinkInportName

Simulink inport that receives trigger data

1-38

RTW.AutosarInterface.addEventConf

See Also RTW.AutosarInterface.removeEventConf

How To • “Configure the AUTOSAR Interface”

• “Configure Multiple Runnables for DataReceivedEvents”

1-39

cgv.CGV.addInputData

Purpose Add input data

Syntax cgvObj.addInputData(inputName, inputDataFile)

Description cgvObj.addInputData(inputName, inputDataFile) adds an input
data file to cgvObj. cgvObj is a handle to a cgv.CGV object. inputName
is a unique identifier, which cgvObj associates with the input data
in inputDataFile.

Tips • When calling addInputData you can modify configuration parameters
by including their settings in the input file, inputDataFile.

• If you omit calling addInputData before executing the model, the
cgv.CGV object runs once using data in the base workspace.

• The cgvObj uses the inputName to identify the input data associated
with output data and output data files. cgvObj passes inputName
to a callback function to identify the input data that the callback
function uses.

Input
Arguments

inputName

inputName is a unique numeric or character identifier, which is
associated with the input data in inputDataFile.

inputDataFile

inputDataFile is an input data file, with or without the .mat
extension. cgvObj uses the input data when the model executes
during cgv.CGV.run. If the input file is in the working folder,
the cgvObj does not require the path. addInputData does not
qualify that the contents of inputDataFile relate to the inputs
of the model. Data that is not used by the model will not throw a
warning or error.

See Also cgv.CGV.run

How To • “Verify Numerical Equivalence with CGV”

1-40

RTW.AutosarInterface.addIOConf

Purpose Add AUTOSAR I/O configuration to model

Syntax autosarInterfaceObj.addIOConf(SimulinkPort, DataAccessMode,
autosarPort, InterfaceName, DataElement)

autosarInterfaceObj.addIOConf(SimulinkErrorStatusPort,
'ErrorStatus', CorrespondingSimulinkReceiverPort)

autosarInterfaceObj.addIOConf(SimulinkBasicSoftwarePort,
'BasicSoftwarePort', ServiceName, ServiceOperation,
ServiceInterfacePath)

Description You can designate inports and outports to be data sender/receiver ports,
error status receivers, or access points to AUTOSAR Basic Software
using the method addIOConf:

autosarInterfaceObj.addIOConf(SimulinkPort, DataAccessMode,
autosarPort, InterfaceName, DataElement)

autosarInterfaceObj.addIOConf(SimulinkErrorStatusPort,
'ErrorStatus', CorrespondingSimulinkReceiverPort)

autosarInterfaceObj.addIOConf(SimulinkBasicSoftwarePort,
'BasicSoftwarePort', ServiceName, ServiceOperation,
ServiceInterfacePath)

Each call adds an AUTOSAR I/O configuration to autosarInterfaceObj,
a model-specific RTW.AutosarInterface object.

Input
Arguments

SimulinkPort Inport/outport name
(string)

DataAccessMode Data access mode of the
port. You can designate
inports and outports to be
data sender/receiver
ports by specifying
DataAccessMode to be
one of the following:

1-41

RTW.AutosarInterface.addIOConf

• ImplicitSend

• ImplicitReceive

• ExplicitSend

• ExplicitReceive

• QueuedExplicitReceive

Use Implicit... where
data is buffered by the
run-time environment
(RTE), or Explicit...
where data is not
buffered and hence not
deterministic.

autosarPort AUTOSAR port name
(string)

InterfaceName Interface name (string)

DataElement Data element name
(string)

SimulinkErrorStatusPort The port you choose to
receive error status.

ErrorStatus The data access mode for
ports chosen to be error
status receivers.

CorrespondingSimulinkReceiverPort The port that is listened
to for error status. The
data access mode for
this port must be either
ImplicitReceive or
ExplicitReceive.

1-42

RTW.AutosarInterface.addIOConf

SimulinkBasicSoftwarePort The port that you specify
as an access point
to AUTOSAR Basic
Software.

BasicSoftwarePort The data access mode for
ports chosen to be access
points to AUTOSAR Basic
Software.

ServiceName The service name you
specify. Must be a valid
AUTOSAR identifier.

ServiceOperation The service operation you
specify. Must be a valid
AUTOSAR identifier.

ServiceInterfacePath The service interface
you specify. Must be a
valid path of the form
AUTOSAR/Service/servicename.

How To • “Prepare a Model for AUTOSAR Code Generation”

1-43

rtw.codegenObjectives.Objective.addParam

Purpose Add parameters

Syntax addParam(obj, paramName, value)

Description addParam(obj, paramName, value) adds a parameter to the objective,
and defines the value of the parameter that the Code Generation
Advisor verifies in Check model configuration settings against
code generation objectives.

Input
Arguments

obj Handle to a code generation objective object
previously created.

paramName Parameter that you add to the objective.

value Value of the parameter.

Examples Add Inlineparameters to the objective, and specify the parameter
value as on.

addParam(obj, 'InlineParams', 'on');

See Also get_param

How To • “Create Custom Objectives”

• “Parameter Command-Line Information Summary”

1-44

cgv.CGV.addPostLoadFiles

Purpose Add files required by model

Syntax cgvObj.addPostLoadfiles({FileList})

Description cgvObj.addPostLoadfiles({FileList}) is an optional method that
adds a list of MATLAB and MAT-files to the object. cgvObj is a handle
to a cgv.CGV object. cgvObj executes and loads the files after opening
the model and before running tests. FileList is a cell array of names
of MATLAB and MAT-files in the testing directory that the model
requires to run.

Note Subsequent cgvObj.addPostLoadFiles calls to the same
cgv.CGV object replaces the list of MATLAB and MAT-files of that
object.

How To • “Verify Numerical Equivalence with CGV”

• “Callbacks for Customized Model Behavior”

1-45

address

Purpose Memory address and page value of symbol in IDE

Syntax a = IDE_Obj.address(symbol,scope)

IDEs This function supports the following IDEs:

• Analog Devices VisualDSP++

• Eclipse IDE

• Green Hills MULTI

• Texas Instruments Code Composer Studio v3

Description The a = IDE_Obj.address(symbol,scope) method returns the
memory address of the first matching symbol in the symbol table of
the most recently loaded program.

Because the address method returns the address and page values as a
structure, your programs can use the values directly. For example, the
IDE_Obj.read and IDE_Obj.write can use a as an input.

If the address method does not find the symbol in the symbol table, it
generates a warning and returns a null value.

Input
Arguments

a

Use a as a variable to capture the return values from the address
method.

IDE_Obj

IDE_Obj is a handle for an instance of the IDE. Before using a method,
use the constructor function for your IDE to create IDE_Obj.

symbol

symbol is the name of the symbol for which you are getting the memory
address and page values.

Symbol names are case sensitive.

1-46

address

For address to return an address, the symbol must be a valid entry in
the symbol table. If the address method does not find the symbol, it
generates a warning and leaves a empty.

scope

Optionally, you set the scope of the address method. Enter 'local' or
'global'. Use 'local' when the current scope of the program is the
desired function scope. If you omit the scope argument, the address
method uses 'local' by default.

Output
Arguments

If the address method does not find the symbol, it generates a warning
and does not return a value for a.

The address method only returns address information for the first
matching symbol in the symbol table.

For Code Composer Studio

The return value, a, is a numeric array with the symbol’s address offset,
a(1), and page, a(2).

With TI C6000™ processors, the memory page value is 0.

For Eclipse

With Eclipse IDE, the addressmethod only returns the symbol address.
It does not return a value for page.

The return value, a, is the numeric value of the symbol address.

For MULTI

With MULTI, address requires a linker command file (lcf) in your
project.

The return value, a, is a numeric array with the symbol’s address offset,
a(1), and page, a(2).

For VisualDSP++

With VisualDSP++, address requires a linker command file (lcf) in
your project.

1-47

address

The return value a is a numeric array with the symbol’s start address,
a(1), and memory type, a(2).

Examples After you load a program to your processor, address lets you read
and write to specific entries in the symbol table for the program. For
example, the following function reads the value of symbol 'ddat' from
the symbol table in the IDE.

ddatv = IDE_Obj.read(IDE_Obj.address('ddat'),'double',4)

ddat is an entry in the current symbol table. address searches for the
string ddat and returns a value when it finds a match. read returns
ddat to MATLAB software as a double-precision value as specified by
the string 'double'.

To change values in the symbol table, use address with write:

IDE_Obj.write(IDE_Obj.address('ddat'),double([pi 12.3 exp(-1)...

sin(pi/4)]))

After executing this write operation, ddat contains double-precision
values for π, 12.3, e-1, and sin(π/4). Use read to verify the contents
of ddat:

ddatv = IDE_Obj.read(IDE_Obj.address('ddat'),'double',4)

MATLAB software returns

ddatv =

3.1416 12.3 0.3679 0.7071

See Also load | read | symbol | write

1-48

adivdsp

Purpose Create handle object to interact with VisualDSP++ IDE

Syntax IDE_Obj = adivdsp
IDE_Obj = adivdsp('propname1',propvalue1,'propname2',propvalue2,
,'timeout',value)
IDE_Obj = adivdsp('my_session')

Note The output object name (left side argument) you provide for
adivdsp cannot begin with an underscore, such as _IDE_Obj.

IDEs This function supports the following IDEs:

• Analog Devices VisualDSP++

Description If the IDE is not running, IDE_Obj = adivdsp opens the VisualDSP++
software for the most recent active session. After that, it creates an
object, IDE_Obj, that references the newly opened session. If the IDE
is running, adivdsp returns object IDE_Obj that connects to the active
session in the IDE.

adivdsp creates an interface between MATLAB software and Analog
Devices VisualDSP++ software. The first time you use adivdsp, supply
a session name as an input argument (refer to the next syntax).

IDE_Obj =
adivdsp('sessionname','name','procnum','number',...)
returns an object handle IDE_Obj that you use to interact with a
processor in the IDE from MATLAB.

Use the debug methods with this object to access memory and control
the execution of the processor.

The adivdsp function interprets input arguments as object property
definitions. Each property definition consists of a property name
followed by the desired property value (often called a PV, or property
name/property value, pair). Although you can define a number of
adivdsp object properties when you create the object, there are several
important properties that you must provide during object construction.

1-49

adivdsp

These properties must be delineated when you create the object. The
required input arguments are as follows:

• sessionname— Specifies the session to connect to. This session must
exist in the session list. adivdsp does not create new sessions. The
resulting object refers to a processor in sessionname. To see the list
of sessions, use listsessions at the MATLAB command prompt.

• procnum— Specifies the processor to connect to in sessionname. The
adivdsp object only supports connecting to processor 0. As such, the
default value for procnum is 0 for the first processor on the board.
If you omit the procnum argument, adivdsp connects to the first
processor.

After you build the adivdsp object IDE_Obj, you can review the object
property values with get, but you cannot modify the sessionname and
procnum property values.

To connect to the active session in IDE, omit the sessionname property
in the syntax. If you do not pass sessionname as an input argument,
the object defaults to the active session in the IDE.

Use listsessions to determine the number for the desired DSP
processor. If your IDE session is single processor or to connect to
processor zero, you can omit the procnum property definition. If you
omit the procnum argument, procnum defaults to 0 (zero-based).

IDE_Obj =
adivdsp('propname1',propvalue1,'propname2',propvalue2,
,'timeout',value) sets the global time-out value to value in IDE_Obj.
MATLAB waits for the specified time-out value to get a response from
the IDE application. If the IDE does not respond within the allotted
time-out period, MATLAB exits from the evaluation of this function.

If the session exists in the session list and the IDE is not already
running, IDE_Obj = adivdsp('my_session') connects to my_session.
In this case, MATLAB starts VisualDSP++ IDE for the session named
my_session.

The following list shows some other possible cases and results of using
adivdsp to construct an object that refers to my_session.

1-50

adivdsp

• If my_session does not exist in the session list and the IDE is not
already running, MATLAB returns an error stating that my_session
does not exist in the session list.

• When my_session is the current active session and the IDE is
already running, MATLAB connects to the IDE for this session.

• If my_session is not the current active session, but exists in the
session list, and the IDE is already running, MATLAB displays a
dialog box asking if you want to switch to my_session. If you choose
to switch to my_session, the existing handles you have to other
sessions in the IDE become invalid. To connect to the other sessions
you use adivdsp to recreate the objects for those sessions.

• If my_session does not exist in the session list and the IDE is already
running, MATLAB returns an error, explaining that the session
my_session does not exist in the session list.

Examples These examples show some of the operation of adivdsp.

IDE_Obj = adivdsp('sessionname','my_session','procnum',0);

returns a handle to the first DSP processor for session my_session.

IDE_Obj = adivdsp without input arguments constructs the object
IDE_Obj with the default property values, returning a handle to the
first DSP processor for the active session in the IDE.

IDE_Obj = adivdsp('sessionname','my_session'); returns a handle
to the first DSP processor for the session my_session.

See Also listsessions

1-51

adivdspsetup

Purpose Configure your coder product to interact with VisualDSP++ IDE

Syntax adivdspsetup

IDEs This function supports the following IDEs:

• Analog Devices VisualDSP++

Description Enter adivdspsetup at the MATLAB command line when you are setting
up your coder product to interact with VisualDSP++ for the first time.
This action displays a dialog box to specify where to install a plug-in for
VisualDSP++. The default value for Folder is the VisualDSP++ system
folder. You can specify folders for which you have write access. When
you click OK, the software adds the plug-in to the folder and registers
the plug-in with the VisualDSP++ IDE.

Examples 1 At the MATLAB command line, enter: adivdspsetup. This action
opens the following dialog box:

2 Click Browse, locate the system folder for VisualDSP++, and click
OK. This action registers the MathWorks plugin to the VisualDSP++
IDE.

See Also adivdsp

1-52

animate

Purpose Run application on processor to breakpoint

Syntax IDE_Obj.animate

IDEs This function supports the following IDEs:

• Texas Instruments Code Composer Studio v3

Description IDE_Obj.animate starts the processor application, which runs until it
encounters a breakpoint in the code. At the breakpoint, application
execution halts and CCS Debugger returns data to the IDE to update
the windows not connected to probe points. After updating the display,
the application resumes execution and runs until it encounters another
breakpoint. The run-break-resume process continues until you stop the
application from MATLAB software with the halt function or from
the IDE.

While running scripts or files in MATLAB software, you can use
animate to update the IDE with information as your script or program
runs.

Using animate with Multiprocessor Boards

When you use animate with a ticcs object IDE_Obj that comprises
more than one processor, such as an OMAP processor, the method
applies to each processor in your IDE_Obj object. This action causes
each processor to run a loaded program just as it does for the single
processor case.

See Also halt | restart | run

1-53

arxml.importer

Purpose Control import of AUTOSAR components

Description You can use methods of the arxml.importer class to import AUTOSAR
components in a controlled manner. For example, you can parse an
AUTOSAR software component description file exported by DaVinci
System Architect (from Vector Informatik Gmbh), and import the
component into a Simulink model for subsequent configuration, code
generation, and export to XML.

Construction arxml.importer Construct arxml.importer object

Methods createCalibrationComponentObjectsCreate Simulink calibration
objects from AUTOSAR
calibration component

createComponentAsModel Create AUTOSAR atomic
software component as Simulink
model

createComponentAsSubsystem Create AUTOSAR atomic
software component as Simulink
atomic subsystem

createOperationAsConfigurableSubsystemsCreate configurable Simulink
subsystem library for
client-server operation

getApplicationComponentNames Get list of application software
component names

getCalibrationComponentNames Get calibration component names

getClientServerInterfaceNames Get list of client-server interfaces

getComponentNames Get application and
sensor/actuator software
component names

1-54

arxml.importer

getDependencies Get list of XML dependency files

getFile Return XML file name for
arxml.importer object

getSensorActuatorComponentNamesGet list of sensor/actuator
software component names

setDependencies Set XML file dependencies

setFile Set XML file name for
arxml.importer object

Copy
Semantics

Handle. To learn how this affects your use of the class, see Copying
Objects in the MATLAB Programming Fundamentals documentation.

1-55

arxml.importer

Purpose Construct arxml.importer object

Syntax importer_obj = arxml.importer(filename)
importer_obj = arxml.importer({filename1, filename2, ...,

filenameN})

Description importer_obj = arxml.importer(filename) constructs an
arxml.importer object and parses the atomic software component
described in the XML file specified by filename.

importer_obj = arxml.importer({filename1, filename2, ...,
filenameN}) constructs an arxml.importer object and parses the
atomic software component described in the XML files that are specified
in the cell array. The cell array format allows you to specify multiple
XML files that are required for an AUTOSAR component import
operation in one function call.

Input
Arguments

filename Name of XML file containing a
description of an atomic software
component.

{filename1, filename2, ...,
filenameN}

Cell array of names of XML files
containing a description of an atomic
software component and additional
required information.

Output
Arguments

importer_obj Handle to newly created arxml.importer
object.

Examples Specify the set of XML files required for an AUTOSAR component
import in one function call:

x = arxml.importer({'AtomicSensorComponentTypes.arxml', ...

'DataTypes.arxml', 'MiscDefs.arxml'})

1-56

arxml.importer

Specify the XML file containing the atomic software component. Use the
arxml.importer.getDependencies method to specify other required
XML files:

x = arxml.importer('AtomicSensorComponentTypes.arxml')

x.setDependencies({'DataTypes.arxml', 'MiscDefs.arxml'});

See Also arxml.importer.getDependencies

How To • “Import an AUTOSAR Software Component”

1-57

RTW.AutosarInterface.attachToModel

Purpose Attach RTW.AutosarInterface object to model

Syntax autosarInterfaceObj.attachToModel(modelName)

Description autosarInterfaceObj.attachToModel(modelName) attaches
autosarInterfaceObj, an RTW.AutosarInterface object, to a loaded
Simulink model with an ERT-based target.

Input
Arguments

modelName Name of a loaded Simulink model to which
the object is going to be attached (string).

How To • “Modify and Validate an Existing AUTOSAR Interface”

1-58

RTW.ModelCPPClass.attachToModel

Purpose Attach model-specific C++ encapsulation interface to loaded ERT-based
Simulink model

Syntax attachToModel(obj, modelName)

Description attachToModel(obj, modelName) attaches a model-specific C++
encapsulation interface to a loaded ERT-based Simulink model.

Input
Arguments

obj Handle to a model-specific C++ encapsulation
interface control object, such as a
handle previously returned by obj
= RTW.ModelCPPArgsClass or obj =
RTW.ModelCPPVoidClass.

modelName String specifying the name of a loaded
ERT-based Simulink model to which the
object is going to be attached.

Alternatives The Configure C++ Encapsulation Interface button on the
Interface pane of the Simulink Configuration Parameters dialog box
launches the Configure C++ encapsulation interface dialog box, where
you can flexibly control the C++ encapsulation interfaces that are
generated for your model. Once you validate and apply your changes,
you can generate code based on your C++ encapsulation interface
modifications. See “Configure C++ Encapsulation Interfaces Using
Graphical Interfaces” in the Embedded Coder documentation.

How To • “Configure C++ Encapsulation Interfaces Programmatically”

• “Configure the Step Method for a Model Class”

• “C++ Encapsulation Interface Control”

1-59

RTW.ModelSpecificCPrototype.attachToModel

Purpose Attach model-specific C function prototype to loaded ERT-based
Simulink model

Syntax attachToModel(obj, modelName)

Description attachToModel(obj, modelName) attaches a model-specific C function
prototype to a loaded ERT-based Simulink model.

Input
Arguments

obj Handle to a model-specific C prototype
function control object previously returned by
obj = RTW.ModelSpecificCPrototype.

modelName String specifying the name of a loaded
ERT-based Simulink model to which the
object is going to be attached.

Alternatives Click the Configure Model Functions button on the Code
Generation > Interface pane of the Configuration Parameters dialog
box for flexible control over the model function prototypes that are
generated for your model. Once you validate and apply your changes,
you can generate code based on your function prototype modifications.
See “Configure Function Prototypes Using Graphical Interfaces” in the
Embedded Coder documentation.

How To • “Function Prototype Control”

1-60

build

Purpose Build or rebuild current project

Syntax [result,numwarns]=IDE_Obj.build(timeout)
IDE_Obj.build('all')

IDEs This function supports the following IDEs:

• Analog Devices VisualDSP++

• Eclipse IDE

• Green Hills MULTI

• Texas Instruments Code Composer Studio v3

Description [result,numwarns]=IDE_Obj.build(timeout) incrementally builds
the active project. Incremental builds recompile only source files in
your project that you changed or added after the most recent build.
build uses the file time stamp to determine whether to recompile a file.
After recompiling the source files, build links the object files to make
a new program file.

The value of result is 1 when the build process completes. The value
of numwarns is the number of compilation warnings generated from
the build process.

The timeout argument defines the number of seconds MATLAB waits
for the IDE to complete the build process. If the IDE exceeds the
timeout period, this method returns a timeout error immediately. The
timeout error does not terminate the build process in the IDE. The IDE
continues the build process. The timeout error indicates that the build
process did not complete before the specified timeout period expired.
If you omit the timeout argument, the build method uses a default
value of 1000 seconds.

IDE_Obj.build('all') rebuilds the files in the active project.

See Also isrunning | open

1-61

ccsboardinfo

Purpose Information about boards and simulators known to IDE

Syntax ccsboardinfo
boards = ccsboardinfo

IDEs This function supports the following IDEs:

• Texas Instruments Code Composer Studio v3

Description ccsboardinfo returns configuration information about each board
and processor installed and recognized by CCS. When you issue the
function, ccsboardinfo returns the following information about each
board or simulator.

Installed Board
Configuration Data

Configuration
Item Name Description

Board number boardnum The number CCS assigns to the board or
simulator. Board numbering starts at 0 for
the first board. You also use boardnum when
you create a link to the IDE.

Board name boardname The name assigned to the board or simulator.
Usually, the name is the board model name,
such as TMS320C67xx evaluation module.
If you are using a simulator, the name tells
you which processor the simulator matches,
such as C67xx simulator. If you renamed
the board during setup, this item displays
the board name.

1-62

ccsboardinfo

Installed Board
Configuration Data

Configuration
Item Name Description

Processor number procnum The number assigned by CCS to the
processor on the board or simulator. When
the board contains more than one processor,
CCS assigns a number to each processor,
numbering from 0 for the first processor
on the first board. For example, when you
have two boards, the first processor on the
first board is procnum=0, and the first and
second processors on the second board are
procnum=1 and procnum=2. You also use this
property when you create a link to the IDE.

Processor name procname Provides the name of the processor. Usually
the name is CPU, unless you assign a
different name.

Processor type proctype Gives the processor model, such as
TMS320C6x1x for the C6xxx series
processors.

Each row in the table that you see displayed represents one digital
signal processor, either on a board or simulator. As a consequence,
you use the information in the table in the function ticcs to identify a
selected board in your PC.

boards = ccsboardinfo returns the configuration information about
your installed boards in a slightly different manner. Rather return the
table of the information, the method returns a list of board names and
numbers. In that list, each board has an structure named proc that
contains processor information. For example

boards = ccsboardinfo

returns

boards =

1-63

ccsboardinfo

name: 'C6xxx Simulator (Texas Instruments)'
number: 0

proc: [1x1 struct]

where the structure proc contains the processor information for the
C6xxx simulator board:

boards.proc

ans =

name: 'CPU'
number: 0

type: 'TMS320C6200'

Reviewing the output from both function syntaxes shows that the
configuration information is the same.

To connect with a specific board when you create an IDE handle object,
combine this syntax with the dot notation for accessing elements in a
structure. Use the boardnum and procnum properties in the boards
structure. For example, when you enter

boards = ccsboardinfo;

boards(1).name returns the name of your second installed board and
boards(1).proc(2).name returns the name of the second processor on
the second board. To create a link to the second processor on the second
board, use

IDE_Obj = ticcs('boardnum',boards(1).number,'procnum',...
boards(1).proc(2).name);

Examples On a PC with both a simulator and a DSP Starter Kit (DSK) board
installed,

ccsboardinfo

1-64

ccsboardinfo

returns something like the following table. Your display may differ
slightly based on what you called your boards when you configured
them in CCS Setup Utility:

Board Board Proc Processor Processor

Num Name Num Name Type

--- ---------------------------------- --- ---------------

1 C6xxx Simulator (Texas Instrum ..0 CPU TMS320C6200

0 DSK (Texas Instruments) 0 CPU_3 TMS320C6x1x

When you have one or more boards that have multiple CPUs,
ccsboardinfo returns the following table, or one like it:

Board Board Proc Processor Processor

Num Name Num Name Type

-- ---------------------------------- --- -------------------

2 C6xxx Simulator (Texas Instrum .0 CPU TMS320C6200

1 C6xxx EVM (Texas Instrum ... 1 CPU_Primary TMS320C6200

1 C6xxx EVM (Texas Instrum ... 0 CPU_Secondary TMS320C6200

0 C64xx Simulator (Texas Instru...0 CPU TMS320C64xx

In this example, board number 1 returns two defined CPUs:
CPU_Primary and CPU_Secondary. The C6xxx does not in fact have two
CPUs; a second CPU is defined for this example.

To show the boards = ccsboardinfo syntax, this example assumes a
PC with two boards installed, one of which has three CPUs.

Enter the following command:

ccsboardinfo

This command generates a list of boards. For example:

Board Board Proc Processor Processor

Num Name Num Name Type

--- ---------------------------------- --- ------------

1 C6xxx Simulator (Texas Instrum .0 CPU TMS320C6211

1-65

ccsboardinfo

0 C62xx DSK (Texas Instruments) 2 CPU_3 TMS320C6x1x

0 C62xx DSK (Texas Instruments) 1 CPU_4_1 TMS320C6x1x

0 C62xx DSK (Texas Instruments) 0 CPU_4_2 TMS320C6x1x

Now enter

boards = ccsboardinfo

MATLAB software returns

boards=
2x1 struct array with fields

name
number
proc

showing that you have two boards in your PC.

Use the dot notation to determine the names of the boards:

boards.name

returns

ans=
C6xxx Simulator (Texas Instruments)

ans=
C62xx DSK (Texas Instruments)

To identify the processors on each board, again use the dot notation to
access the processor information. You have two boards (numbered 0 and
1). Board 0 has three CPUs defined for it. To determine the type of the
second processor on board 0 (the board whose boardnum = 0), enter

boards(2).proc(1)

which returns

1-66

ccsboardinfo

ans=
name: 'CPU_3'
number: 1
type: 'TMS320C6x1x'

Recall that

boards(2).proc

gives you this information about the board

ans=
3x1 struct array with fields:

name
number
type

indicating that this board has three processors (the 3x1 array).

The dot notation is useful for accessing the contents of a structure
when you create a link to the IDE. When you use ticcs to create your
CCS link, you can use the dot notation to tell the IDE which processor
you are using.

IDE_Obj = ticcs('boardnum',boards(1).proc(1))

See Also info | ticcs

1-67

cd

Purpose Set working folder in IDE

Syntax wd=IDE_Obj.cd
IDE_Obj.cd(folder)

IDEs This function supports the following IDEs:

• Analog Devices VisualDSP++

• Green Hills MULTI

• Texas Instruments Code Composer Studio v3

Description wd=IDE_Obj.cd assigns the IDE working folder to the variable, wd.
which you reference via the IDE handle object, IDE_Obj.

IDE_Obj.cd(folder) sets the IDE working folder to 'folder'.
'folder' can be a path string relative to your working folder, or an
absolute path. The intended folder must exist. cd does not create a
folder. Setting the IDE folder does not change your MATLAB Current
Folder.

cd alters the default folder for open and load. Loading a new workspace
file also changes the working folder for the IDE.

See Also dir | load | open

1-68

cgv.CGV

Purpose Verify numerical equivalence of results

Description Executes a model in different environments such as, simulation,
Software-In-the-Loop (SIL), or Processor-In-the-Loop (PIL) and stores
numerical results. Using the cgv.CGV class methods, you can create
a script to verify that the model and the generated code produce
numerically equivalent results.

cgv.CGV and cgv.Config use two of the same properties. Before
executing a cgv.CGV object, use cgv.Config to verify the model
configured for the mode of execution that you specify. If the top model
is set to normal simulation mode, referenced models set to PIL mode
are changed to Accelerator mode.

Construction cgvObj = cgv.CGV(model_name) creates a handle to a code generation
verification object using the default parameter values. model_name is
the name of the model that you are verifying.

cgvObj = cgv.CGV(model_name,Name,Value) constructs the object
using the parameter values, specified as Name,Value pair arguments.
Parameter names and values are not case sensitive.

Input Arguments

model_name

Name of the model that you are verifying.

Name-Value Pair Arguments
Optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (''). You can specify
several name-value pair arguments in a variety of orders, such as
Name1,Value1, ,NameN,ValueN.

ComponentType

Define the SIL or PIL approach

1-69

cgv.CGV

Value Description

topmodel (default) Top-model SIL or PIL
simulation and standalone
code interface mode.

modelblock Model block SIL or PIL
simulation and model
reference target code interface
mode.

If mode of execution is simulation (Connectivity is sim), choosing
either value for ComponentType does not alter simulation results.

Default: topmodel

Connectivity

Specify mode of execution

Value Description

sim or normal (default) Mode of execution is Normal
simulation.

sil Mode of execution is SIL.

pil Mode of execution is PIL.

Properties Description

Specify a description of the object.

Default: ' ' (null string)

Name

Specify a name for the object.

Default: ' ' (null string)

1-70

cgv.CGV

Methods activateConfigSet Activate configuration set of
model

addBaseline Add baseline file for comparison

addConfigSet Add configuration set

addHeaderReportFcn Add callback function to execute
before executing input data in
object

addInputData Add input data

addPostExecFcn Add callback function to execute
after each input data file is
executes

addPostExecReportFcn Add callback function to execute
after each input data file executes

addPostLoadFiles Add files required by model

addPreExecFcn Add callback function to execute
before each input data file
executes

addPreExecReportFcn Add callback function to execute
before each input data file
executes

addTrailerReportFcn Add callback function to execute
after the input data executes

compare Compare signal data

copySetup Create copy of object

createToleranceFile Create file correlating tolerance
information with signal names

getOutputData Get output data

getSavedSignals Display list of signal names to
command line

1-71

cgv.CGV

getStatus Return execution status

plot Create plot for signal or multiple
signals

run Execute CGV object

setMode Specify mode of execution

setOutputDir Specify folder

setOutputFile Specify output data file name

Copy
Semantics

Handle. To learn how handle classes change copy operations, see
Copying Objects in the MATLAB Programming Fundamentals
documentation.

Examples The general workflow for testing a model for numerical equivalence
using the cgv.CGV class is to:

1 Create a cgv.CGV object, cgvObj, for each mode of execution and
use the cgv.CGV set up methods to configure the model for each
execution. The set up methods are:

• addInputData

• addPostLoadFiles

• setOutputDir

• setOutputFile

• addCallBack

• addConfigSet

2 Run the model for each mode of execution using the cgvObj.run
method.

3 Use the cgv.CGV access methods to get and evaluate the data. The
access methods are:

• getOutputData

1-72

cgv.CGV

• getSavedSignals

• plot

• compare

An object should be run only once. After the object is run, the set up
methods are not used for that object. You then use the access methods
for verifying the numerical equivalence of the results.

See Also cgv.Config

How To • “Verify Numerical Equivalence with CGV”

• Using Code Generation Verification

1-73

cgv.Config

Purpose Check and modify model configuration parameter values

Description Creates a handle to a cgv.Config object that supports checking and
optionally modifying models for compatibility with various modes of
execution that use generated code, such as, Software-In-the-Loop (SIL)
or Processor-In-the-Loop (PIL).

To execute the model in the mode that you specify, you might need to
make additional modifications to the configuration parameter values or
the model beyond those configured by the cgv.Config object.

By default, cgv.Config modifies configuration parameter values to the
values that it recommends, but does not save the model. Alternatively,
you can use cgv.Config parameters to modify the default specification.
For more information, see the properties, ReportOnly and SaveModel.

If you use cgv.Config to modify a model, do not use referenced
configuration sets in that model. If a model uses a referenced
configuration set, update the model with a copy of the configuration set,
by using the Simulink.ConfigSetRef.getRefConfigSet method.

If you use cgv.Config on a model that executes a callback function, the
callback function might modify configuration parameter values each
time the model loads. The callback function might revert changes that
cgv.Config made. If this change occurs, the model might not be set up
for SIL or PIL. For more information, see “Callbacks for Customized
Model Behavior”.

Construction cfgObj = cgv.Config(model_name) creates a handle to a cgv.Config
object, cfgObj, using default values for properties. model_name is the
name of the model that you are checking and optionally configuring.

cfgObj = cgv.Config(model_name, Name, Value) constructs the
object using options, specified as parameter name and value pairs.
Parameter names and values are not case sensitive.

Name can also be a property name and Value is the corresponding
value. Name must appear inside single quotes (''). You can specify
several name-value pair arguments in a variety of orders, such as
Name1,Value1, ,NameN,ValueN.

1-74

cgv.Config

Properties CheckOutports

Specify whether to compile the model and check that the model
outports configuration is compatible with the cgv.CGV object.
If your script fixes errors reported by cgv.Config, you can set
CheckOutports to off.

Value Description

on (default) Compile the model and
check the model outports
configuration

off Do not compile the model
or check the model outports
configuration

ComponentType

Define the SIL or PIL approach

If mode of execution is simulation (connectivity is sim), choosing
either value for ComponentType does not alter simulation results.
However, cgv.Config recommends configuration parameter
values based on the value of ComponentType.

Value Description

topmodel (default) Top-model SIL or PIL
simulation and standalone
code interface mode.

modelblock Model block SIL or PIL
simulation and model
reference target code interface
mode.

Connectivity

Specify mode of execution

1-75

cgv.Config

Value Description

sim (default) Mode of execution is
simulation. Recommends
changes to a subset of the
configuration parameters that
SIL and PIL targets require.

sil Mode of execution is SIL.
Requires that the system
target file is set to 'ert.tlc'
and that you do not use
your own external target.
Recommends changes to the
configuration parameters that
SIL targets require.

pil Mode of execution is PIL
with custom connectivity
that you provide using
the PIL Connectivity API.
Recommends changes to the
configuration parameters
that PIL targets with custom
connectivity require.

LogMode

Specify the Signal Logging and Output parameters on the Data
Import/Export pane of the Configuration Parameters dialog box.

1-76

cgv.Config

Value Description

SignalLogging Log signal data to a MATLAB
workspace variable during
execution.

This parameter
selects the Data
Import/Export > Signal
logging parameter in the
Configuration Parameters
dialog box.

SaveOutput Save output data to aMATLAB
workspace variable during
execution.

This parameter selects Data
Import/Export > Output
parameter in the
Configuration Parameters
dialog box.

The Output parameter does
not save bus outputs.

ReportOnly

The ReportOnly property specifies whether cgv.Config modifies
the recommended values of the configuration parameters of the
model.

If you set ReportOnly to on, SaveModel must be off.

1-77

cgv.Config

Value Description

off (default) cgv.Config automatically
modifies the configuration
parameter values that it
recommends for the model.

on cgv.Config does not modify
the configuration parameter
values that it recommends for
the model.

SaveModel

Specify whether to save the model with the configuration
parameter values recommended by cgv.Config.

If you set SaveModel to 'on', ReportOnly must be 'off'.

Value Description

off (default) Do not save the model.

on Save the model in the working
folder.

Methods configModel Determine and change
configuration parameter values

displayReport Display results of comparing
configuration parameter values

getReportData Return results of comparing
configuration parameter values

Copy
Semantics

Handle. To learn how handle classes change copy operations, see
Copying Objects in the MATLAB Programming Fundamentals
documentation.

1-78

cgv.Config

Examples Configure the rtwdemo_iec61508 model for top-model SIL. Then view
the changes at the MATLAB Command Window:

% Create a cgv.Config object and configure the model for top-model SIL.

cgvCfg = cgv.Config('rtwdemo_iec61508', 'LogMode', 'SaveOutput', ...

'connectivity', 'sil');

cgvCfg.configModel();

% Display the results of what the cgv.Config object changed.

cgvCfg.displayReport();

% Close the rtwdemo_iec61508 model.

bdclose('rtwdemo_iec61508');

See Also cgv.CGV

How To • “Programmatic Code Generation Verification”

1-79

coder.replace

Purpose Replace current MATLAB function implementation with code
replacement library function in generated code

Syntax coder.replace()
coder.replace('-errorifnoreplacement')
coder.replace('-warnifnoreplacement')

Description coder.replace() replaces the current function implementation with a
code replacement library (CRL) function. If a match is not found in the
code replacement library, code is generated without a replacement for
the current function. coder.replace is a code generation function. It
does not alter MATLAB code or MEX function generation.

During code generation, if you include coder.replace in a MATLAB
function, fcn, it performs a code replacement library lookup for the
following function signature:

[y1_type, y2_type,..., yn_type]=fcn(x1_type, x2_type,...,xn_type)

y1_type, y2_type,..., yn_type are the data types of the outputs of
MATLAB function fcn. x1_type, x2_type,...,xn_type are the data
types of the inputs of fcn. coder.replace derives the output types of
the function based on the implementation in the MATLAB function. At
code generation, the contents of fcn are discarded and replaced with
a function call that is registered in the code replacement library as a
replacement for fcn.

coder.replace('-errorifnoreplacement') replaces the current
function implementation with a code replacement library function. If a
match is not found, code generation stops. An error message describing
the CRL lookup failure is generated.

coder.replace('-warnifnoreplacement') replaces the current
function implementation with a code replacement library function.
If match is not found, code is generated for the current function. A
warning describing the CRL lookup failure is generated during code
generation.

1-80

coder.replace

Tips • coder.replace is a code generation function. It does not alter
MATLAB code or MEX function generation.

• Do not use multiple coder.replace statements inside a function.

• You cannot use coder.replace within conditional expressions and
loops.

• coder.replace does not support replacements that require data
alignment.

• varargin and varargout are not supported.

• You cannot use coder.replace to replace MATLAB functions that
have variable-size inputs.

• coder.replace requires an Embedded Coder license.

• coder.replace disregards saturation and rounding modes when
looking up function replacements in a code replacement library.

Examples Replace a MATLAB function with custom code

Replace a MATLAB function with a custom implementation that is
registered in the code replacement library.

1 Write a MATLAB function, calculate, that you want to replace with
a custom implementation, replacement_calculate_impl.c, in the
generated code.

function y = calculate(x)
% Search in the code replacement library for replacement
% and use replacement function if available
% Error if not found

coder.replace('-errorifnoreplacement');
y = sqrt(x);

end

2 Write a MATLAB function, top_function, that calls calculate

function out = top_function(in)

1-81

coder.replace

p = calculate(in);
out = exp(p);

end

3 Create a file named crl_table_calculate.m that describes
the function entries for a Code Replacement Library table. The
replacement function replacement_calculate_impl.c and header
file replacement_calculate_impl.h must be on the path.

hLib = RTW.TflTable;

%---------- entry: calculate -----------
hEnt = RTW.TflCFunctionEntry;
hEnt.setTflCFunctionEntryParameters(...

'Key', 'calculate', ...
'Priority', 100, ...
'ImplementationName', 'replacement_calculate_impl', ...
'ImplementationHeaderFile', 'replacement_calculate_impl.h', ...
'ImplementationSourceFile', 'replacement_calculate_impl.c')

% Conceptual Args

arg = hEnt.getTflArgFromString('y1','double');
arg.IOType = 'RTW_IO_OUTPUT';
hEnt.addConceptualArg(arg);

arg = hEnt.getTflArgFromString('u1','double');
hEnt.addConceptualArg(arg);

% Implementation Args

arg = hEnt.getTflArgFromString('y1','double');
arg.IOType = 'RTW_IO_OUTPUT';
hEnt.Implementation.setReturn(arg);

arg = hEnt.getTflArgFromString('u1','double');
hEnt.Implementation.addArgument(arg);

1-82

coder.replace

%arg = hEnt.getTflArgFromString('y1','double*');
%arg.IOType = 'RTW_IO_OUTPUT';
%hEnt.Implementation.addArgument(arg);

hLib.addEntry(hEnt);

4 Create an rtwTargetInfo file:

function rtwTargetInfo(tr)
% rtwTargetInfo function to register a code
% replacement library (CRL)
% for use with codegen

% Register the CRL defined in local function locCrlRegFcn
tr.registerTargetInfo(@locCrlRegFcn);

end % End of RTWTARGETINFO

5 Create a locCrlRegFcn file:

function thisCrl = locCrlRegFcn

% Instantiate a CRL registry entry
thisCrl = RTW.TflRegistry;

% Define the CRL properties
thisCrl.Name = 'My calculate Example';
thisCrl.Description = 'Demonstration of function replacement';
thisCrl.TableList = {'crl_table_calculate'};
thisCrl.BaseTfl = 'C89/C90 (ANSI)';
thisCrl.TargetHWDeviceType = {'*'};

end % End of LOCCRLREGFCN

6 Refresh registration information. At the MATLAB command line,
enter:

RTW.TargetRegistry.getInstance('reset');

1-83

coder.replace

7 Create a code generation configuration object.

cfg =coder.config('lib');

8 Specify the name of the code replacement library to use.

cfg.CodeReplacementLibrary='My calculate Example';

9 Generate code for top_function specifying that input in is double.

codegen -report -config cfg top_function -args {double(10)}

Because the data type of x and y is double, coder.replace searches
for double = calculate(double) in the Code Replacement Library.
If it finds a match, codegen generates the following code:

real_T top_function(real_T in)
{

real_T p;
p = replacement_calculate_impl(in);
return exp(p);

}

In the generated code, the replacement function
replacement_calculate_impl replaces the MATLAB
function calculate.

See Also codegen

Related
Examples

• “Replace MATLAB Function Block Code with Custom Code”
• “Register CRL with MATLAB Coder™ Software (rtwTargetInfo)”
• “Register CRL with Simulink Software (sl_customization)”
• “Create Code Replacement Tables”

Concepts • “Introduction to Code Replacement Libraries”
• “Custom Code Substitution for MATLAB Functions Using Code
Replacement Libraries”

1-84

cgv.CGV.compare

Purpose Compare signal data

Syntax [matchNames, matchFigures, mismatchNames,
mismatchFigures] = cgv.CGV.compare(data_set1,
data_set2)

[matchNames, matchFigures, mismatchNames,
mismatchFigures] = cgv.CGV.compare(data_set1,
data_set2, 'Plot', param_value)

[matchNames, matchFigures, mismatchNames,
mismatchFigures] = cgv.CGV.compare(data_set1,
data_set2, 'Plot', 'none', 'Signals', signal_list,
'ToleranceFile', file_name)

Description [matchNames, matchFigures, mismatchNames, mismatchFigures]
= cgv.CGV.compare(data_set1, data_set2) compares data from two
data sets which have common signal names between both executions.
Possible outputs of the cgv.CGV.compare function are matched signal
names, figure handles to the matched signal names, mismatched signal
names, and figure handles to the mismatched signal names. By default,
cgv.CGV.compare looks at the signals which have a common name
between both executions.

[matchNames, matchFigures, mismatchNames, mismatchFigures]
= cgv.CGV.compare(data_set1, data_set2, 'Plot',
param_value) compares the signals and plots the signals according to
param_value.

[matchNames, matchFigures, mismatchNames, mismatchFigures]
= cgv.CGV.compare(data_set1, data_set2, 'Plot', 'none',
'Signals', signal_list, 'ToleranceFile', file_name) compares
only the given signals and does not produce plots.

Input
Arguments

data_set1, data_set2

Output data from a model. After running the model, use
the cgv.CGV.getOutputData function to get the data. The
cgv.CGV.getOutputData function returns a cell array of the
output signal names.

1-85

cgv.CGV.compare

varargin

Variable number of parameter name and value pairs.

varargin
Parameters

You can specify the following argument properties for the
cgv.CGV.compare function using parameter name and value argument
pairs. These parameters are optional.

Plot(optional)
Designates which comparison data to plot. The value of this
parameter must be one of the following:

• 'match': plot the comparison of the matched signals from the
two data sets

• 'mismatch'(default): plot the comparison of the mismatched
signals from the two datasets

• 'none': do not produce a plot

Signals(optional)
A cell array of strings, where each string is a signal name in the
output data. Use cgv.CGV.getSavedSignals to view the list of
available signal names in the output data. signal_list can
contain an individual signal or multiple signals. The syntax for
an individual signal name is:

signal_list = {'log_data.subsystem_name.Data(:,1)'}

The syntax for multiple signal names is:

signal_list = {'log_data.block_name.Data(:,1)',...
'log_data.block_name.Data(:,2)',...

'log_data.block_name.Data(:,3)',...
'log_data.block_name.Data(:,4)'};

If a model component contains a space or newline character,
MATLAB adds parantheses and a single quote to the name of the
component. For example, if a section of the signal has a space,
'block name', MATLAB displays the signal name as:

1-86

cgv.CGV.compare

log_data.('block name').Data(:,1)

To use the signal name as input to a CGV function, 'block name'
must have two single quotes. For example:

signal_list = {'log_data.(''block name'').Data(:,1)'}

If Signals is not present, the signals are compared.

Tolerancefile(optional)
Name for the file created by the cgv.CGV.createToleranceFile
function. The file contains the signal names and the associated
tolerance parameter name and value pair for comparing the data.

Output
Arguments

Depending on the data and the parameters, the following output
arguments might be empty.

match_names

Cell array of matching signal names.

match_figures

Array of figure handles for matching signals

mismatch_names

Cell array of mismatching signal names

mismatch_figures

Array of figure handles for mismatching signals

How To • “Verify Numerical Equivalence with CGV”

1-87

cgv.Config.configModel

Purpose Determine and change configuration parameter values

Syntax cfgObj.configModel()

Description cfgObj.configModel() determines the recommended values for
the configuration parameters in the model. cfgObj is a handle to a
cgv.Config object. The ReportOnly property of the object determines
whether configModel changes the configuration parameter values.

How To • “About Model Configurations”

• “Programmatic Code Generation Verification”

1-88

checkEnvSetup

Purpose Configure your coder product to interact with Code Composer Studio

Syntax checkEnvSetup(ide, boardproc, action)

IDEs This function supports the following IDEs:

• Texas Instruments Code Composer Studio v3

• Texas Instruments Code Composer Studio v4

• Texas Instruments Code Composer Studio v5

Description Before you use ticcs for the first time, use the checkEnvSetup function
to check for third-party tools and set environment variables.

Run checkEnvSetup again whenever you configure CCS IDE to interact
with a new board or processor, or upgrade the related third-party tools.

The syntax for this function is: checkEnvSetup(ide, boardproc,
action):

• For ide, enter the IDE you want to check:

- 'ccs' checks the setup for Code Composer Studio v3

- 'ccsv4' checks the setup for Code Composer Studio v4

- 'ccsv5' checks the setup for Code Composer Studio v5

• For boardproc, enter the name of a supported board or processor.
You can get these names from the Processor parameter on the
Target Hardware Resources tab.

For example, enter: 'F2812', 'c5509', 'c6416dsk', 'F2808 eZdsp',
'dm6437evm'.

• For action, enter the specific action you want this function to
perform:

- 'list' lists the required third-party tools with their version
numbers.

1-89

checkEnvSetup

- 'check' lists the required third-party tools and the ones on your
development system. If tools are missing, install them. If the
version numbers of the tools on your system are not high enough,
update the tools.

- 'setup' creates environment variables that point to the
installation folders of the third-party tools.

If your tools do not meet the requirements, the function advises
you. If path information is incomplete, the function prompts you
to enter path information for specific tools.

If you omit the action argument, the method defaults to 'setup'.

If action is 'list' or 'check', you can assign the third-party tool
information to a variable instead of displaying it on the MATLAB
command line. When action is 'setup', the statement does not return
an output argument.

Examples To see the required third-party tools and version information for your
board, use 'list' as the action argument:

>> checkEnvSetup('ccs', 'F2808 eZdsp', 'list')

1. CCS (Code Composer Studio)
Required version: 3.3.82.13
Required for : Automation and Code Generation

2. CGT (Texas Instruments C2000 Code Generation Tools)
Required version: 5.2.1
Required for : Code generation

3. DSP/BIOS (Real Time Operating System)
Required version: 5.33.05
Required for : Real-Time Data Exchange (RTDX)

4. Flash Tools (TMS320C2808 Flash APIs)
Required version: 3.02
Required for : Flash Programming

1-90

checkEnvSetup

Required environment variables (name, value):
(FLASH_2808_API_INSTALLDIR, "<Flash Tools (TMS320C2808 Flash APIs)

To compare your versions of the tools with the required versions. Use
'check' as the action argument:

checkEnvSetup('ccs', 'c6416', 'check')

1. CCS (Code Composer Studio)
Your version : 3.3.38.2
Required version: 3.3.82.13
Required for : Automation and Code Generation

2. CGT (Code Generation Tools)
Your version : 6.0.8
Required version: 6.1.10
Required for : Code generation

3. DSP/BIOS (Real Time Operating System)
Your version :
Required version: 5.33.05
Required for : Code generation

4. Texas Instruments IMGLIB (TMS320C64x)
Your version : 1.04
Required version: 1.04
Required for : CRL block replacement
C64X_IMGLIB_INSTALLDIR="E:\apps\TexasInstruments\C6400\imglib_v104b

Finally, set the environment variables your coder product requires to
use the CCS IDE and generate code for your board. Use 'setup' as the
action argument, or omit the action argument:

checkEnvSetup('ccs', 'dm6437evm')

1. Checking CCS (Code Composer Studio) version
Required version: 3.3.82.13
Required for : Automation and Code Generation

1-91

checkEnvSetup

Your Version : 3.3.38.13

2. Checking CGT (Code Generation Tools) version
Required version: 6.1.10
Required for : Code generation
Your Version : 6.1.10

3. Checking DSP/BIOS (Real Time Operating System) version
Required version: 5.33.05
Required for : Code generation
Your Version : 5.33.05

4. Checking Texas Instruments IMGLIB (C64x+) version
Required version: 2.0.1
Required for : CRL block replacement
Your Version : 2.0.1
Setting environment variable "C64XP_IMGLIB_INSTALLDIR"
to "E:\apps\TexasInstruments\C64Plus\imglib_v201"

5. Checking DM6437EVM DVSDK (Digital Video Software Developers Kit) versi
Required version: 1.01.00.15
Required for : Code generation
Your Version : 1.01.00.15

Setting environment variable "DVSDK_EVMDM6437_INSTALLDIR" to "C:\[.
Setting environment variable "CSLR_DM6437_INSTALLDIR" to "C:\dvsd[.
Setting environment variable "PSP_EVMDM6437_INSTALLDIR" to "C:\dv[.
Setting environment variable "NDK_INSTALL_DIR" to "C:\dvsdk_1_01_[.

Input
Arguments

1-92

close

Purpose Close project in IDE window

Syntax IDE_Obj.close(filename,'project')

IDEs This function supports the following IDEs:

• Analog Devices VisualDSP++

• Eclipse IDE

• Green Hills MULTI

• Texas Instruments Code Composer Studio v3

Description Use IDE_Obj.close(filename,'project') to close a specific project,
projects, or the active open project.

For the filename argument:

• To close the project files, enter 'all'.

• To close a specific project, enter the project file name, such as
'myProj'.If the file is not an open file in the IDE, MATLAB returns a
warning message.

• To close the active project, enter [].

With the VisualDSP++ IDE, to close the current project group (if
filename is 'all' or []), replace 'project'with 'projectgroup'.

Note

• The open method does not support the 'text' argument.

• Save changes to your files and projects in the IDE before you use
close. The close method does not save changes, nor does it prompt
you to save changes, before it closes the project.

1-93

close

Examples To close the open project files:

IDE_Obj.close('all','project')

To close the open project, myProj:

IDE_Obj.close('myProj','project')

To close the active open project:

IDE_Obj.close([],'project')

With the VisualDSP++ IDE, to close the open project groups:

IDE_Obj.close('all','projectgroup')

With the VisualDSP++ IDE, to close the active project group:

IDE_Obj.close([],'projectgroup')

See Also add | open | save

1-94

configure

Purpose Define size and number of RTDX channel buffers

Syntax configure(rx,length,num)

Note configure produces a warning on C5000™ processors and will
be removed from a future version of the software.

IDEs This function supports the following IDEs:

• Texas Instruments Code Composer Studio v3

Description configure(rx,length,num) sets the size of each main (host) buffer,
and the number of buffers associated with rx. Input argument length
is the size in bytes of each channel buffer and num is the number of
channel buffers to create.

Main buffers must be at least 1024 bytes, with the maximum defined
by the largest message. On 16-bit processors, the main buffer must
be 4 bytes larger than the largest message. On 32-bit processors, set
the buffer to be 8 bytes larger that the largest message. By default,
configure creates four, 1024-byte buffers. Independent of the value of
num, the IDE allocates one buffer for each processor.

Use CCS to check the number of buffers and the length of each one.

Examples Create a default link to CCS and configure six main buffers of 4096
bytes each for the link.

IDE_Obj=ticcs % Create the CCS link with default values.

TICCS Object:

API version : 1.0

Processor type : C67

Processor name : CPU

Running? : No

Board number : 0

Processor number : 0

1-95

configure

Default timeout : 10.00 secs

RTDX channels : 0

rx=IDE_Obj.rtdx % Create an alias to the rtdx portion.

RTDX channels : 0

configure(rx,4096,6) % Use the alias rx to configure the length

% and number of buffers.

After you configure the buffers, use the RTDX™ tools in the IDE to
verify the buffers.

See Also readmat | readmsg | write | writemsg

1-96

connect

Purpose Connect IDE to processor

Syntax IDE_Obj.connect()
IDE_Obj.connect(debugconnection)
IDE_Obj.connect(...,timeout)

IDEs This function supports the following IDEs:

• Green Hills MULTI

Description IDE_Obj.connect() connects the IDE to the processor hardware or
simulator. IDE_Obj is the IDE handle.

IDE_Obj.connect(debugconnection) connects the IDE to the
processor using the debug connection you specify in debugconnection.
Enter debugconnection as a string enclosed in single quotation marks.
IDE_Obj is the IDE handle. Refer to Examples to see this syntax in use.

IDE_Obj.connect(...,timeout) adds the optional parameter timeout
that defines how long, in seconds, MATLAB waits for the specified
connection process to complete. If the time-out period expires before the
process returns a completion message, MATLAB generates an error and
returns. Usually the program connection process works in spite of the
error message

Examples The input argument stringdebugconnection specify the processor
to connect to with the IDE. This example connects to the
Freescale™ MPC5554 simulator. The debugconnection string is
simppc -fast -dec -rom_use_entry -cpu=ppc5554.

IDE_Obj.connect('simppc -fast -dec -rom_use_entry -cpu=ppc5554')

See Also load | run

1-97

cgv.CGV.copySetup

Purpose Create copy of cgv.CGV object

Syntax cgvObj2 = cgvObj1.copySetup()

Description cgvObj2 = cgvObj1.copySetup() creates a copy of a cgv.CGV object,
cgvObj1. The copied object, cgvObj2, has the same configuration as
cgvObj1, but does not copy results of the execution.

Tips • You can use this method to make a copy of a cgv.CGV object
and then modify the object to run in a different mode by calling
cgv.CGV.setMode.

• If you have a cgv.CGV object, which reported errors or failed at
execution, you can use this method to copy the object and rerun it.
The copied object has the same configuration as the original object,
therefore you might want to modify the location of the output files
by calling cgv.CGV.setOutputDir. Otherwise, during execution, the
copied cgv.CGV object overwrites the output files.

Examples Make a copy of a cgv.CGV object, set it to run in a different mode, then
run and compare the objects in a cgv.Batch object.

cgvModel = 'rtwdemo_cgv';
cgvObj1 = cgv.CGV(cgvModel, 'connectivity', 'sim');
cgvObj1.run();
cgvObj2 = cgvObj1.copySetup()
cgvObj2.setMode('sil');
cgvObj2.run();

See Also cgv.CGV.run

How To • “Verify Numerical Equivalence with CGV”

1-98

copyConceptualArgsToImplementation

Purpose Copy conceptual argument specifications to matching implementation
arguments for CRL table entry

Syntax copyConceptualArgsToImplementation(hEntry)

Arguments hEntry
Handle to a CRL table entry previously returned by instantiating
a CRL entry class, such as hEntry = RTW.TflCFunctionEntry or
hEntry = RTW.TflCOperationEntry.

Description The copyConceptualArgsToImplementation function provides a
quick way to copy conceptual argument specifications to matching
implementation arguments. This function can be used when the
conceptual arguments and the implementation arguments are the same
for a CRL table entry.

Examples In the following example, the copyConceptualArgsToImplementation
function is used to copy conceptual argument specifications to matching
implementation arguments for an addition operation.

hLib = RTW.TflTable;

% Create an entry for addition of built-in uint8 data type

op_entry = RTW.TflCOperationEntry;

op_entry.setTflCOperationEntryParameters(...

'Key', 'RTW_OP_ADD', ...

'Priority', 90, ...

'SaturationMode', 'RTW_SATURATE_ON_OVERFLOW', ...

'RoundingModes', {'RTW_ROUND_UNSPECIFIED'}, ...

'ImplementationName', 'u8_add_u8_u8', ...

'ImplementationHeaderFile', 'u8_add_u8_u8.h', ...

'ImplementationSourceFile', 'u8_add_u8_u8.c');

arg = hLib.getTflArgFromString('y1','uint8');

arg.IOType = 'RTW_IO_OUTPUT';

op_entry.addConceptualArg(arg);

1-99

copyConceptualArgsToImplementation

arg = hLib.getTflArgFromString('u1','uint8');

op_entry.addConceptualArg(arg);

arg = hLib.getTflArgFromString('u2','uint8');

op_entry.addConceptualArg(arg);

op_entry.copyConceptualArgsToImplementation();

hLib.addEntry(op_entry);

How To • “Create Code Replacement Tables”

• “Introduction to Code Replacement Libraries”

1-100

createAndAddConceptualArg

Purpose Create conceptual argument from specified properties and add to
conceptual arguments for CRL table entry

Syntax arg = createAndAddConceptualArg(hEntry, argType, varargin)

Input
Arguments

hEntry
Handle to a CRL table entry previously returned by instantiating
a CRL entry class, such as hEntry = RTW.TflCFunctionEntry or
hEntry = RTW.TflCOperationEntry.

argType
String specifying the argument type to create:
'RTW.TflArgNumeric' for numeric or 'RTW.TflArgMatrix' for
matrix.

varargin
Parameter/value pairs for the conceptual argument. See varargin
Parameters.

varargin
Parameters

The following argument properties can be specified to the
createAndAddConceptualArg function using parameter/value
argument pairs. For example,

createAndAddConceptualArg(..., 'DataTypeMode', 'double', ...);

Name
String specifying the argument name, for example, 'y1' or 'u1'.

IOType
String specifying the I/O type of the argument: 'RTW_IO_INPUT'
for input or 'RTW_IO_OUTPUT' for output. The default is
'RTW_IO_INPUT'.

IsSigned
Boolean value that, when set to true, indicates that the argument
is signed. The default is true.

1-101

createAndAddConceptualArg

WordLength
Integer specifying the word length, in bits, of the argument. The
default is 16.

CheckSlope
Boolean flag that, when set to true for a fixed-point argument,
causes CRL replacement request processing to check that the
slope value of the argument exactly matches the call-site slope
value. The default is true.

Specify true if you are matching a specific [slope bias] scaling
combination or a specific binary-point-only scaling combination on
fixed-point operator inputs and output. Specify false if you are
matching relative scaling or relative slope and bias values across
fixed-point operator inputs and output.

CheckBias
Boolean flag that, when set to true for a fixed-point argument,
causes CRL replacement request processing to check that the bias
value of the argument exactly matches the call-site bias value.
The default is true.

Specify true if you are matching a specific [slope bias] scaling
combination or a specific binary-point-only scaling combination on
fixed-point operator inputs and output. Specify false if you are
matching relative scaling or relative slope and bias values across
fixed-point operator inputs and output.

DataTypeMode
String specifying the data type mode of the argument: 'boolean',
'double', 'single', 'Fixed-point: binary point scaling',
or 'Fixed-point: slope and bias scaling'. The default is
'Fixed-point: binary point scaling'.

Note You can specify either DataType (with Scaling) or
DataTypeMode, but do not specify both.

1-102

createAndAddConceptualArg

DataType
String specifying the data type of the argument: 'boolean',
'double', 'single', or 'Fixed'. The default is 'Fixed'.

Scaling
String specifying the data type scaling of the argument:
'BinaryPoint' for binary-point scaling or 'SlopeBias' for slope
and bias scaling. The default is 'BinaryPoint'.

Slope
Floating-point value specifying the slope of the argument, for
example, 15.0. The default is 1.

If you are matching a specific [slope bias] scaling combination
on fixed-point operator inputs and output, specify either this
parameter or a combination of the SlopeAdjustmentFactor and
FixedExponent parameters

SlopeAdjustmentFactor
Floating-point value specifying the slope adjustment factor (F)
part of the slope, F2E, of the argument. The default is 1.0.

If you are matching a specific [slope bias] scaling combination
on fixed-point operator inputs and output, specify either the
Slope parameter or a combination of this parameter and the
FixedExponent parameter.

FixedExponent
Integer value specifying the fixed exponent (E) part of the slope,
F2E, of the argument. The default is -15.

If you are matching a specific [slope bias] scaling combination
on fixed-point operator inputs and output, specify either the
Slope parameter or a combination of this parameter and the
SlopeAdjustmentFactor parameter.

Bias
Floating-point value specifying the bias of the argument, for
example, 2.0. The default is 0.0.

1-103

createAndAddConceptualArg

Specify this parameter if you are matching a specific [slope bias]
scaling combination on fixed-point operator inputs and output.

FractionLength
Integer value specifying the fraction length for the argument, for
example, 3. The default is 15.

Specify this parameter if you are matching a specific
binary-point-only scaling combination on fixed-point operator
inputs and output.

BaseType
String specifying the base data type for which a matrix argument
is valid, for example, 'double'.

DimRange
Dimensions for which a matrix argument is valid, for example,
[2 2]. You can also specify a range of dimensions specified
in the format [Dim1Min Dim2Min ... DimNMin; Dim1Max
Dim2Max ... DimNMax]. For example, [2 2; inf inf] means a
two-dimensional matrix of size 2x2 or larger.

Output
Arguments

Handle to the created conceptual argument. Specifying the return
argument in the createAndAddConceptualArg function call is optional.

Description The createAndAddConceptualArg function creates a conceptual
argument from specified properties and adds the argument to the
conceptual arguments for a CRL table entry.

Examples In the following example, thecreateAndAddConceptualArg function
is used to specify conceptual output and input arguments for a CRL
operator entry.

op_entry = RTW.TflCOperationEntry;

.

.

.

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric', ...

1-104

createAndAddConceptualArg

'Name', 'y1', ...

'IOType', 'RTW_IO_OUTPUT', ...

'IsSigned', true, ...

'WordLength', 32, ...

'FractionLength', 0);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric',...

'Name', 'u1', ...

'IOType', 'RTW_IO_INPUT',...

'IsSigned', true,...

'WordLength', 32, ...

'FractionLength', 0);

createAndAddConceptualArg(op_entry, 'RTW.TflArgNumeric',...

'Name', 'u2', ...

'IOType', 'RTW_IO_INPUT',...

'IsSigned', true,...

'WordLength', 32, ...

'FractionLength', 0);

The following examples show some common type specifications using
createAndAddConceptualArg.

% uint8:

createAndAddConceptualArg(hEntry, 'RTW.TflArgNumeric', ...

'Name', 'u1', ...

'IOType', 'RTW_IO_INPUT', ...

'IsSigned', false, ...

'WordLength', 8, ...

'FractionLength', 0);

% single:

createAndAddConceptualArg(hEntry, 'RTW.TflArgNumeric', ...

'Name', 'u1', ...

'IOType', 'RTW_IO_INPUT', ...

'DataTypeMode', 'single');

1-105

createAndAddConceptualArg

% double:

createAndAddConceptualArg(hEntry, 'RTW.TflArgNumeric', ...

'Name', 'y1', ...

'IOType', 'RTW_IO_OUTPUT', ...

'DataTypeMode', 'double');

% boolean:

createAndAddConceptualArg(hEntry, 'RTW.TflArgNumeric', ...

'Name', 'u1', ...

'IOType', 'RTW_IO_INPUT', ...

'DataTypeMode', 'boolean');

% Fixed-point using binary-point-only scaling:

createAndAddConceptualArg(hEntry, 'RTW.TflArgNumeric', ...

'Name', 'y1', ...

'IOType', 'RTW_IO_OUTPUT', ...

'CheckSlope', true, ...

'CheckBias', true, ...

'DataTypeMode', 'Fixed-point: binary point scaling', ...

'IsSigned', true, ...

'WordLength', 32, ...

'FractionLength', 28);

% Fixed-point using [slope bias] scaling:

createAndAddConceptualArg(hEntry, 'RTW.TflArgNumeric', ...

'Name', 'y1', ...

'IOType', 'RTW_IO_OUTPUT', ...

'CheckSlope', true, ...

'CheckBias', true, ...

'DataTypeMode', 'Fixed-point: slope and bias scaling', ...

'IsSigned', true, ...

'WordLength', 16, ...

'Slope', 15, ...

'Bias', 2);

For examples of fixed-point arguments that use relative scaling or
relative slope/bias values, see “Create Fixed-Point Operator Entries for

1-106

createAndAddConceptualArg

Relative Scaling (Multiplication and Division)” and “Create Fixed-Point
Operator Entries for Equal Slope and Zero Net Bias (Addition and
Subtraction)” in the Embedded Coder documentation.

How To • “Create Code Replacement Tables”

• “Introduction to Code Replacement Libraries”

1-107

createAndAddImplementationArg

Purpose Create implementation argument from specified properties and add to
implementation arguments for CRL table entry

Syntax arg = createAndAddImplementationArg(hEntry, argType,
varargin)

Input
Arguments

hEntry
Handle to a CRL table entry previously returned by instantiating
a CRL entry class, such as hEntry = RTW.TflCFunctionEntry or
hEntry = RTW.TflCOperationEntry.

argType
String specifying the argument type to create:
'RTW.TflArgNumeric' for numeric.

varargin
Parameter/value pairs for the implementation argument. See
varargin Parameters.

varargin
Parameters

The following argument properties can be specified to the
createAndAddImplementationArg function using parameter/value
argument pairs. For example,

createAndAddImplementationArg(..., 'DataTypeMode', 'double', ...);

Name
String specifying the argument name, for example, 'u1'.

IOType
String specifying the I/O type of the argument: 'RTW_IO_INPUT'
for input.

IsSigned
Boolean value that, when set to true, indicates that the argument
is signed. The default is true.

WordLength
Integer specifying the word length, in bits, of the argument. The
default is 16.

1-108

createAndAddImplementationArg

DataTypeMode
String specifying the data type mode of the argument: 'boolean',
'double', 'single', 'Fixed-point: binary point scaling',
or 'Fixed-point: slope and bias scaling'. The default is
'Fixed-point: binary point scaling'.

Note You can specify either DataType (with Scaling) or
DataTypeMode, but do not specify both.

DataType
String specifying the data type of the argument: 'boolean',
'double', 'single', or 'Fixed'. The default is 'Fixed'.

Scaling
String specifying the data type scaling of the argument:
'BinaryPoint' for binary-point scaling or 'SlopeBias' for slope
and bias scaling. The default is 'BinaryPoint'.

Slope
Floating-point value specifying the slope of the argument, for
example, 15.0. The default is 1.

You can optionally specify either this parameter or a combination
of the SlopeAdjustmentFactor and FixedExponent parameters,
but do not specify both.

SlopeAdjustmentFactor
Floating-point value specifying the slope adjustment factor (F)
part of the slope, F2E, of the argument. The default is 1.0.

You can optionally specify either the Slope parameter or a
combination of this parameter and the FixedExponent parameter,
but do not specify both.

FixedExponent
Integer value specifying the fixed exponent (E) part of the slope,
F2E, of the argument. The default is -15.

1-109

createAndAddImplementationArg

You can optionally specify either the Slope parameter or a
combination of this parameter and the SlopeAdjustmentFactor
parameter, but do not specify both.

Bias
Floating-point value specifying the bias of the argument, for
example, 2.0. The default is 0.0.

FractionLength
Integer value specifying the fraction length of the argument, for
example, 3. The default is 15.

Value
Constant value specifying the initial value of the argument. The
default is 0.

Use this parameter only to set the value of injected constant input
arguments, such as arguments that pass fraction-length values
or flag values, in an implementation function signature. Do not
use it for standard generated input arguments such as u1, u2, and
so on. You can supply a constant input argument that uses this
parameter anywhere in the implementation function signature,
except as the return argument.

You can inject constant input arguments into the implementation
signature for CRL table entries, but if the argument values or
the number of arguments required depends on compile-time
information, you should use custom matching. For more
information, see “Refine Matching and Replacement Using
Custom Entries” in the Embedded Coder documentation.

Output
Arguments

Handle to the created implementation argument. Specifying the return
argument in the createAndAddImplementationArg function call is
optional.

Description The createAndAddImplementationArg function creates an
implementation argument from specified properties and adds the
argument to the implementation arguments for a CRL table entry.

1-110

createAndAddImplementationArg

Note Implementation arguments must describe fundamental numeric
data types, such as double, single, int32, int16, int8, uint32,
uint16, uint8, or boolean (not fixed point data types).

Examples In the following example, thecreateAndAddImplementationArg
function is used along with the createAndSetCImplementationReturn
function to specify the output and input arguments for an operator
implementation.

op_entry = RTW.TflCOperationEntry;

.

.

.

createAndSetCImplementationReturn(op_entry, 'RTW.TflArgNumeric', ...

'Name', 'y1', ...

'IOType', 'RTW_IO_OUTPUT', ...

'IsSigned', true, ...

'WordLength', 32, ...

'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

'Name', 'u1', ...

'IOType', 'RTW_IO_INPUT',...

'IsSigned', true,...

'WordLength', 32, ...

'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

'Name', 'u2', ...

'IOType', 'RTW_IO_INPUT',...

'IsSigned', true,...

'WordLength', 32, ...

'FractionLength', 0);

1-111

createAndAddImplementationArg

The following examples show some common type specifications using
createAndAddImplementationArg.

% uint8:

createAndAddImplementationArg(hEntry, 'RTW.TflArgNumeric', ...

'Name', 'u1', ...

'IOType', 'RTW_IO_INPUT', ...

'IsSigned', false, ...

'WordLength', 8, ...

'FractionLength', 0);

% single:

createAndAddImplementationArg(hEntry, 'RTW.TflArgNumeric', ...

'Name', 'u1', ...

'IOType', 'RTW_IO_INPUT', ...

'DataTypeMode', 'single');

% double:

createAndAddImplementationArg(hEntry, 'RTW.TflArgNumeric', ...

'Name', 'u1', ...

'IOType', 'RTW_IO_INPUT', ...

'DataTypeMode', 'double');

% boolean:

createAndAddImplementationArg(hEntry, 'RTW.TflArgNumeric', ...

'Name', 'u1', ...

'IOType', 'RTW_IO_INPUT', ...

'DataTypeMode', 'boolean');

See Also createAndSetCImplementationReturn

How To • “Create Code Replacement Tables”

1-112

createAndSetCImplementationReturn

Purpose Create implementation return argument from specified properties and
add to implementation for CRL table entry

Syntax arg = createAndSetCImplementationReturn(hEntry, argType,
varargin)

Input
Arguments

hEntry
Handle to a CRL table entry previously returned by instantiating
a CRL entry class, such as hEntry = RTW.TflCFunctionEntry or
hEntry = RTW.TflCOperationEntry.

argType
String specifying the argument type to create:
'RTW.TflArgNumeric' for numeric.

varargin
Parameter/value pairs for the implementation return argument.
See varargin Parameters.

varargin
Parameters

The following argument properties can be specified to the
createAndSetCImplementationReturn function using parameter/value
argument pairs. For example,

createAndSetCImplementationReturn(..., 'DataTypeMode', 'double', ...);

Name
String specifying the argument name, for example, 'y1'.

IOType
String specifying the I/O type of the argument: 'RTW_IO_OUTPUT'
for output.

IsSigned
Boolean value that, when set to true, indicates that the argument
is signed. The default is true.

WordLength
Integer specifying the word length, in bits, of the argument. The
default is 16.

1-113

createAndSetCImplementationReturn

DataTypeMode
String specifying the data type mode of the argument: 'boolean',
'double', 'single', 'Fixed-point: binary point scaling',
or 'Fixed-point: slope and bias scaling'. The default is
'Fixed-point: binary point scaling'.

Note You can specify either DataType (with Scaling) or
DataTypeMode, but do not specify both.

DataType
String specifying the data type of the argument: 'boolean',
'double', 'single', or 'Fixed'. The default is 'Fixed'.

Scaling
String specifying the data type scaling of the argument:
'BinaryPoint' for binary-point scaling or 'SlopeBias' for slope
and bias scaling. The default is 'BinaryPoint'.

Slope
Floating-point value specifying the slope for a fixed-point
argument, for example, 15.0. The default is 1.

You can optionally specify either this parameter or a combination
of the SlopeAdjustmentFactor and FixedExponent parameters,
but do not specify both.

SlopeAdjustmentFactor
Floating-point value specifying the slope adjustment factor (F)
part of the slope, F2E, of the argument. The default is 1.0.

You can optionally specify either the Slope parameter or a
combination of this parameter and the FixedExponent parameter,
but do not specify both.

FixedExponent
Integer value specifying the fixed exponent (E) part of the slope,
F2E, of the argument. The default is -15.

1-114

createAndSetCImplementationReturn

You can optionally specify either the Slope parameter or a
combination of this parameter and the SlopeAdjustmentFactor
parameter, but do not specify both.

Bias
Floating-point value specifying the bias of the argument, for
example, 2.0. The default is 0.0.

FractionLength
Integer value specifying the fraction length of the argument, for
example, 3. The default is 15.

Output
Arguments

Handle to the created implementation return argument. Specifying
the return argument in the createAndSetCImplementationReturn
function call is optional.

Description The createAndSetCImplementationReturn function creates an
implementation return argument from specified properties and adds
the argument to the implementation for a CRL table.

Note Implementation return arguments must describe fundamental
numeric data types, such as double, single, int32, int16, int8,
uint32, uint16, uint8, or boolean (not fixed point data types).

Examples In the following example, the createAndSetCImplementationReturn
function is used along with the createAndAddImplementationArg
function to specify the output and input arguments for an operator
implementation.

op_entry = RTW.TflCOperationEntry;

.

.

.

createAndSetCImplementationReturn(op_entry, 'RTW.TflArgNumeric', ...

'Name', 'y1', ...

'IOType', 'RTW_IO_OUTPUT', ...

1-115

createAndSetCImplementationReturn

'IsSigned', true, ...

'WordLength', 32, ...

'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

'Name', 'u1', ...

'IOType', 'RTW_IO_INPUT',...

'IsSigned', true,...

'WordLength', 32, ...

'FractionLength', 0);

createAndAddImplementationArg(op_entry, 'RTW.TflArgNumeric',...

'Name', 'u2', ...

'IOType', 'RTW_IO_INPUT',...

'IsSigned', true,...

'WordLength', 32, ...

'FractionLength', 0);

The following examples show some common type specifications using
createAndSetCImplementationReturn.

% uint8:

createAndSetCImplementationReturn(hEntry, 'RTW.TflArgNumeric', ...

'Name', 'y1', ...

'IOType', 'RTW_IO_OUTPUT', ...

'IsSigned', false, ...

'WordLength', 8, ...

'FractionLength', 0);

% single:

createAndSetCImplementationReturn(hEntry, 'RTW.TflArgNumeric', ...

'Name', 'y1', ...

'IOType', 'RTW_IO_OUTPUT', ...

'DataTypeMode', 'single');

% double:

createAndSetCImplementationReturn(hEntry, 'RTW.TflArgNumeric', ...

1-116

createAndSetCImplementationReturn

'Name', 'y1', ...

'IOType', 'RTW_IO_OUTPUT', ...

'DataTypeMode', 'double');

% boolean:

createAndSetCImplementationReturn(hEntry, 'RTW.TflArgNumeric', ...

'Name', 'y1', ...

'IOType', 'RTW_IO_OUTPUT', ...

'DataTypeMode', 'boolean');

See Also createAndAddImplementationArg

How To • “Create Code Replacement Tables”

• “Introduction to Code Replacement Libraries”

1-117

arxml.importer.createCalibrationComponentObjects

Purpose Create Simulink calibration objects from AUTOSAR calibration
component

Syntax importerObj.createCalibrationComponentObjects(componentName)
[success] = createCalibrationComponentObjects(importerObj,

componentName, 'CreateSimulinkObject', true)

Description importerObj.createCalibrationComponentObjects(componentName)
creates Simulink calibration objects from an AUTOSAR calibration
component. This imports your parameters into the workspace and you
can then assign them to block parameters in your Simulink model.

Input
Arguments

componentName Absolute short name path of calibration
parameter component.

'CreateSimulink
Object', true

Optional property/value pair. The property
CreateSimulinkObject can be either true or
false (default is true). If it is true, then:

[success] =
createCalibrationComponentObjects(importerObj,
componentName, 'CreateSimulinkObject',
true) creates the Simulink.AliasType and
Simulink.NumericType corresponding to the
AUTOSAR data types described in the XML
file imported by importerObj.

Output
Arguments

success True if function is successful. False otherwise.

Examples importer_obj.createCalibrationComponentObjects('/package/autosar_component2')

How To • “Import an AUTOSAR Software Component”

1-118

arxml.importer.createComponentAsModel

Purpose Create AUTOSAR atomic software component as Simulink model

Syntax [modelH, success] = importerObj.createComponentAsMo
del(ComponentName)

[modelH, success] = importerObj.createComponentAsMo
del(ComponentName, Property1, Value1, Property2, Value2,
...)

Description [modelH, success] =
importerObj.createComponentAsModel(ComponentName) creates a
Simulink model corresponding to the AUTOSAR atomic software
component 'COMPONENT' described in the XML file imported by the
arxml.importer object importerObj.

You can also specify optional property/value pairs when creating this
Simulink model:

[modelH, success] =
importerObj.createComponentAsModel(ComponentName,
Property1, Value1, Property2, Value2, ...)

Input
Arguments

ComponentName Absolute short name path of the atomic
software component.

PropertyN, ValueN Optional property/value pairs. You can specify
values for the following properties:

'CreateSimulinkObject'
true (default) or false. If
true, then the function creates
the Simulink.AliasType and
Simulink.NumericType corresponding
to the AUTOSAR data types in the XML
file.

1-119

arxml.importer.createComponentAsModel

'NameConflictAction'
'overwrite' (default) or
'makenameunique' or 'error'.
Use this property to determine the
action if a Simulink model with the same
name as the component already exists.

'AutoSave'
true or false (default). If true, then
the function automatically saves the
generated Simulink model.

Output
Arguments

modelH Model handle.

success True if the function is successful. Otherwise,
it is false.

Examples importer_obj.createComponentAsModel('/package/autosar_component2')

How To • “Import an AUTOSAR Software Component”

1-120

arxml.importer.createComponentAsSubsystem

Purpose Create AUTOSAR atomic software component as Simulink atomic
subsystem

Syntax [susbsysH, success] = importerObj.createComponentAsSu
bsystem(ComponentName)

[susbsysH, success] = importerObj.createComponentAsSu
bsystem(ComponentName, Property1, Value1, Property2,
Value2, ...)

Description [susbsysH, success] =
importerObj.createComponentAsSubsystem(ComponentName) creates
a Simulink subsystem corresponding to the AUTOSAR atomic software
component 'COMPONENT' described in the XML file imported by the
arxml.importer object importerObj.

You can also specify optional property/value pairs when creating this
Simulink subsystem:

[susbsysH, success] =
importerObj.createComponentAsSubsystem(ComponentName,
Property1, Value1, Property2, Value2, ...)

You can perform AUTOSAR configuration and code generation on
atomic subsystems or function call subsystems. These subsystems must
be convertible to model reference blocks by using the method:

Simulink.SubSystem.convertToModelReference

Note The AUTOSAR target automatically checks that the subsystem
meets this requirement when you perform a subsystem build.

You do not have to convert your subsystem to a model reference block; it
is optional. If you convert your subsystem to a referenced model, you
can configure AUTOSAR options within the referenced model.

You can export functions for a single function-call subsystem. First
configure your function-call subsystem AUTOSAR options (e.g., using

1-121

arxml.importer.createComponentAsSubsystem

the GUI from the Configuration Parameters dialog or by calling
autosar_ui_launch(subsystemName)). Then right-click the subsystem
and select C/C++ Code > Export Functions.

Input
Arguments

ComponentName Absolute short name path of the atomic
software component .

PropertyN, ValueN Optional property/value pairs. You can specify
values for the following properties:

'CreateSimulinkObject'
true or false (default is true).
If true, the function creates
the Simulink.AliasType and
Simulink.NumericType corresponding
to the AUTOSAR data types in the XML
file.

'NameConflictAction'
'overwrite' (default),
'makenameunique' or 'error' .
Use this property to determine the
action to take if a Simulink model
with the same name as the component
already exists.

'AutoSave'
true or false (default is false). If
true, the function automatically saves
the generated Simulink model.

Output
Arguments

susbsysH Subsystem handle.

success True if the function is successful. Otherwise,
it is false.

1-122

arxml.importer.createComponentAsSubsystem

Examples importer_obj.createComponentAsSubsystem('/package/autosar_component2')

How To • “Import an AUTOSAR Software Component”

1-123

arxml.importer.createOperationAsConfigurableSubsystems

Purpose Create configurable Simulink subsystem library for client-server
operation

Syntax [modelH, success] = importerObj.createOperationAsCo
nfigurableSubsystems(interfaceName)

[modelH, success] = importerObj.createOperationAsCo
nfigurableSubsystems(InterfaceName, Property1, Value1,
Property2, Value2, ...)

Description [modelH, success] =
importerObj.createOperationAsConfigurableSubsystems(interfaceName)
creates a configurable Simulink subsystem library corresponding to the
AUTOSAR client-server interface 'INTERFACE'. This interface is
described in the XML file imported by the arxml.importer
object importerObj.

You can also specify optional property/value pairs when creating this
Simulink subsystem library:

[modelH, success] =
importerObj.createOperationAsConfigurableSubsystems(InterfaceName,
Property1, Value1, Property2, Value2, ...)

Input
Arguments

interfaceName Absolute short name path of the client-server
interface.

PropertyN, ValueN Optional property/value pairs. You can specify
values for the following properties:

'CreateSimulinkObject'
true (default) or false. If
true, then the function creates
the Simulink.AliasType and
Simulink.NumericType corresponding
to the AUTOSAR data types in the XML
file.

1-124

arxml.importer.createOperationAsConfigurableSubsystem

'NameConflictAction'
'overwrite' (default) or
'makenameunique' or 'error'.
Use this property to determine the
action if a Simulink model with the same
name as the component already exists.

'AutoSave'
true or false (default). If true, then
the function automatically saves the
generated Simulink subsystem library.

'ForceClientBlkForBSP'
true or false (default). If true, an
Invoke AUTOSAR Server Operation
block is created for a single argument
operation that accesses Basic Software.

Output
Arguments

modelH Model handle.

success True if the function is successful. False
otherwise.

Examples obj.createOperationAsConfigurableSubsystems('/PortInterface/csinterface')

See Also arxml.importer.getClientServerInterfaceNames

How To • “AUTOSAR Communication”

• “Import an AUTOSAR Software Component”

• “Configure Client-Server Communication”

1-125

cgv.CGV.createToleranceFile

Purpose Create file correlating tolerance information with signal names

Syntax cgvObj.createToleranceFile(file_name , signal_list,
tolerance_list)

Description cgvObj.createToleranceFile(file_name , signal_list,
tolerance_list) creates a MATLAB file, named file_name,
containing the tolerance specification for each output signal name in
signal_list. Each signal name in the signal_list corresponds
to the same location of a parameter name and value pair in the
tolerance_list.

Input
Arguments

file_name

Name for the file containing the tolerance specification for
each signal. Use this file as input to cgv.CGV.compare and
cgv.Batch.addTest.

signal_list

A cell array of strings, where each string is a signal name for data
from the model. Use cgv.CGV.getSavedSignals to view the list
of available signal names in the output data. signal_list can
contain an individual signal or multiple signals. The syntax for
an individual signal name is:

signal_list = {'log_data.subsystem_name.Data(:,1)'}

The syntax for multiple signal names is:

signal_list = {'log_data.block_name.Data(:,1)',...
'log_data.block_name.Data(:,2)',...
'log_data.block_name.Data(:,3)',...
'log_data.block_name.Data(:,4)'};

To specify a global tolerance for the signals, include the reserved
signal name, 'global_tolerance', in signal_list. Assign a
global tolerance value in the associated tolerance_list. If
signal_list contains other signals, their associated tolerance

1-126

cgv.CGV.createToleranceFile

value overrides the global tolerance value. In this example, the
global tolerance is a relative tolerance of 0.02.

signal_list = {'global_tolerance',...
'log_data.block_name.Data(:,1)',...
'log_data.block_name.Data(:,2)'};

tolerance_list = {{'relative', 0.02},...
{'relative', 0.015},{'absolute', 0.05}};

Note If a model component contains a space or newline character,
MATLAB adds parantheses and a single quote to the name of the
component. For example, if a substring of the signal name has a
space, 'block name', MATLAB displays the signal name as:

log_data.('block name').Data(:,1)

To use the signal name as input to a CGV function, 'block name'
must have two single quotes in the signal_list. For example:

signal_list = {'log_data.(''block name'').Data(:,1)'}

tolerance_list

Cell array of cell arrays. Each element of the outer cell array is
a cell array containing a parameter name and value pair for the
type of tolerance and its value. Possible parameter names are
'absolute' | 'relative' | 'function'. There is a one-to-one
mapping between each parameter name and value pair in the
tolerance_list and a signal name in the signal_list. For
example, a tolerance_list for a signal_list containing four
signals might look like the following:

tolerance_list = {{'relative', 0.02},{'absolute', 0.06},...
{'relative', 0.015},{'absolute', 0.05}};

1-127

cgv.CGV.createToleranceFile

How To • “Verify Numerical Equivalence with CGV”

1-128

disable

Purpose Disable RTDX interface, specified channel, or RTDX channels

Note Support for disable on C5000 processors will be removed in a
future version.

Syntax disable(rx,'channel')
disable(rx,'all')
disable(rx)

IDEs This function supports the following IDEs:

• Texas Instruments Code Composer Studio v3

Description disable(rx,'channel') disables the open channel specified by the
string channel, for rx. Input argument rx represents the RTDX portion
of the associated link to the IDE.

disable(rx,'all') disables the open channels associated with rx.

disable(rx) disables the RTDX interface for rx.

Important Requirements for Using disable

On the processor side, disable depends on RTDX to disable channels or
the interface. To use disable, meet the following requirements:

1 The processor must be running a program.

2 You enabled the RTDX interface.

3 Your processor program polls periodically.

Examples When you have opened and used channels to communicate with a
processor, disable the channels and RTDX before ending your session.
Use disable to switch off open channels and disable RTDX, as follows:

disable(IDE_Obj.rtdx,'all') % Disable the open RTDX channels.

1-129

disable

disable(IDE_Obj.rtdx) % Disable RTDX interface.

See Also close | enable | open

1-130

display (IDE Object)

Purpose Properties of IDE handle

Syntax IDE_Obj.display()

IDEs This function supports the following IDEs:

• Analog Devices VisualDSP++

• Eclipse IDE

• Green Hills MULTI

• Texas Instruments Code Composer Studio v3

Description IDE_Obj.display() displays the properties and property values of the
IDE handleIDE_Obj.

For example, after you creating IDE_Obj with a constructor, using the
display method with IDE_Obj returns a set of properties and values:

IDE_Obj.display

IDE Object:
Property1 : valuea
Property2 : valueb
Property3 : valuec
Property4 : valued

See Also get

1-131

display

Purpose Generate message that describes how to open code execution profiling
report

Syntax myExecutionProfile
myExecutionProfile.display

Description myExecutionProfile or myExecutionProfile.display generates a
message that describes how you can open the code execution profiling
report.

myExecutionProfile is a workspace variable, specified through
the configuration parameter CodeExecutionProfileVariable and
generated by a simulation.

See Also report

How To • “Configure Code Execution Profiling”

• “View and Compare Code Execution Times”

1-132

cgv.Config.displayReport

Purpose Display results of comparing configuration parameter values

Syntax cfgObj.displayReport()

Description cfgObj.displayReport() displays the results at the MATLAB
Command Window of comparing the configuration parameter values
for the model with the values that the object recommends. cfgObj is
a handle to a cgv.Config object.

How To • “Verify Numerical Equivalence Between Two Modes of Execution
of a Model”

1-133

eclipseide

Purpose Create handle object to interact with Eclipse IDE

Syntax IDE_Obj = eclipseide
IDE_Obj = eclipseide('timeout', period)

IDEs This function supports the following IDEs:

• Eclipse IDE

Description Before using eclipseide for the first time:

• Install the versions of Eclipse IDE and related build tools described
in “Installing Third-Party Software for Eclipse”.

• Use the eclipseidesetup function to configure and install a plug-in
that enables your coder product to interact with Eclipse IDE.

Use IDE_Obj = eclipseide to create an IDE handle object, which you
can use to communicate with the Eclipse IDE and processors connected
to the Eclipse IDE. After creating the IDE handle object, you can use
the methods for the Eclipse IDE.

When you use eclipseide, your coder product uses the plug-in to open
a session with Eclipse. If Eclipse IDE is not already running, the
eclipseide function starts the Eclipse IDE. The session connects via
the IP port number and uses the workspace you specified previously
with eclipseidesetup.

When you build a model, the software uses eclipseide to create an
IDE handle object. In that case, the software gets the name of the IDE
handle object from the IDE link handle name parameter (default
value: IDE_Obj) in the configuration parameters for the model.

To assign a timeout period to the handle object, enter the following
command:

IDE_Obj = eclipseide('timeout', period)

For period, enter the number of seconds that the handle object waits
for processor operations (such as load) to complete. Operations that

1-134

eclipseide

exceed the timeout period generate timeout errors. The default period
is 10 seconds.

Examples For example, to create an object handle with a 20-second timeout
period, enter:

>> IDE_Obj = eclipseide('timeout',20)
Starting Eclipse(TM) IDE...

ECLIPSEIDE Object:
Default timeout : 20.00 secs
Eclipse folder : C:\eclipse3.4\eclipse
Eclipse workspace: C:\WINNT\Profiles\rdlugyhe\workspace
Port number : 5555
Processor site : local

See Also eclipseidesetup

1-135

eclipseidesetup

Purpose Configure your coder product to interact with Eclipse IDE

Syntax eclipseidesetup

IDEs This function supports the following IDEs:

• Eclipse IDE

Description Before using eclipseidesetup for the first time, install the versions of
Eclipse IDE and related build tools described in “Installing Third-Party
Software for Eclipse”.

To avoid potential build errors later on, close Eclipse IDE before you
run eclipseidesetup. For more information, see Build Errors.

Use eclipseidesetup at the MATLAB command line to set up your
coder product to interact with Eclipse IDE. This action displays a dialog
box which you use to configure and add a plugin to the Eclipse IDE. For
detailed instructions and examples, see “Configuring Your MathWorks®

Software to Work with Eclipse”.

When to use eclipseidesetup:

• After you install or reinstall the Eclipse IDE.

• Before you use the eclipseide constructor function to create an IDE
handle object for the first time.

See Also eclipseide

1-136

enable

Purpose Enable RTDX interface, specified channel, or RTDX channels

Note Support for enable on C5000 processors will be removed in a
future version.

Syntax enable(rx,'channel')
enable(rx,'all')
enable(rx)

IDEs This function supports the following IDEs:

• Texas Instruments Code Composer Studio v3

Description enable(rx,'channel') enables the open channel specified by the
string channel, for RTDX link rx. The input argument rx represents
the RTDX portion of the associated link to the IDE.

enable(rx,'all') enables the open channels associated with rx.

enable(rx) enables the RTDX interface for rx.

Important Requirements for Using enable

On the processor side, enable depends on RTDX to enable channels. To
use enable, meet the following requirements:

1 The processor must be running a program when you enable the
RTDX interface. When the processor is not running, the state
defaults to disabled.

2 Enable the RTDX interface before you enable individual channels.

3 Channels must be open.

4 Your processor program must poll periodically.

5 Using code in the program running on the processor to enable
channels overrides the default disabled state of the channels.

1-137

enable

Examples To use channels to RTDX, you must both open and enable the channels:

IDE_Obj = ticcs; % Create a new connection to the IDE.

enable(IDE_Obj.rtdx) % Enable the RTDX interface.

open(IDE_Obj.rtdx,'inputchannel','w') % Open a channel for sending

% data to the processor.

enable(IDE_Obj.rtdx,'inputchannel') % Enable the channel so you can use

% it.

See Also disable | open

1-138

enableCPP

Purpose Enable C++ support for function entry in CRL table

Syntax enableCPP(hEntry)

Arguments hEntry
Handle to a CRL function entry previously returned by hEntry =
RTW.TflCFunctionEntry or hEntry = MyCustomFunctionEntry,
where MyCustomFunctionEntry is a class derived from
RTW.TflCFunctionEntry.

Description The enableCPP function enables C++ support for a function entry in
a CRL table. This allows you to specify a C++ name space for the
implementation function defined in the entry (see the setNameSpace
function).

Note When you register a CRL containing C++ function entries, you
must specify the value {'C++'} for the LanguageConstraint property
of the CRL registry entry. For more information, see “Register Code
Replacement Libraries”.

Examples In the following example, the enableCPP function is used to enable C++
support, and then the setNameSpace function is called to set the name
space for the sin implementation function to std.

fcn_entry = RTW.TflCFunctionEntry;

fcn_entry.setTflCFunctionEntryParameters(...

'Key', 'sin', ...

'Priority', 100, ...

'ImplementationName', 'sin', ...

'ImplementationHeaderFile', 'cmath');

fcn_entry.enableCPP();

fcn_entry.setNameSpace('std');

See Also registerCPPFunctionEntry | setNameSpace

1-139

enableCPP

How To • “Map Math Functions to Target-Specific Implementations”

• “Create Code Replacement Tables”

• “Introduction to Code Replacement Libraries”

1-140

rtw.codegenObjectives.Objective.excludeCheck

Purpose Exclude checks

Syntax excludeCheck(obj, checkID)

Description excludeCheck(obj, checkID) excludes a check from the Code
Generation Advisor when a user specifies the objective. When a user
selects multiple objectives, if the user specifies an additional objective
that includes this check as a higher priority objective, the Code
Generation Advisor displays this check.

Input
Arguments

obj Handle to a code generation objective object
previously created.

checkID Unique identifier of the check that you exclude
from the new objective.

Examples Exclude the Identify questionable code instrumentation (data
I/O) check from the objective.

excludeCheck(obj, 'mathworks.codegen.CodeInstrumentation');

See Also Simulink.ModelAdvisor

How To • “Create Custom Objectives”

• “About IDs”

1-141

flush

Purpose Flush data or messages from specified RTDX channels

Note flush support for C5000 processors will be removed in a future
version.

Syntax flush(rx,channel,num,timeout)
flush(rx,channel,num)
flush(rx,channel,[],timeout)
flush(rx,channel)
flush(rx,'all')

IDEs This function supports the following IDEs:

• Texas Instruments Code Composer Studio v3

Description flush(rx,channel,num,timeout) removes num oldest data messages
from the RTDX channel queue specified by channel in rx. To determine
how long to wait for the function to complete, flush uses timeout (in
seconds) rather than the global timeout period stored in rx. flush
applies the timeout processing when it flushes the last message in the
channel queue, because the flush function performs a read to advance
the read pointer past the last message. Use this calling syntax only
when you specify a channel configured for read access.

flush(rx,channel,num) removes the num oldest messages from the
RTDX channel queue in rx specified by the string channel. flush uses
the global timeout period stored in rx to determine how long to wait
for the process to complete. Compare this to the previous syntax that
specifies the timeout period. Use this calling syntax only when you
specify a channel configured for read access.

flush(rx,channel,[],timeout) removes the data messages from
the RTDX channel queue specified by channel in rx. To determine
how long to wait for the function to complete, flush uses timeout (in
seconds) rather than the global timeout period stored in rx. flush
applies the timeout processing when it flushes the last message in the

1-142

flush

channel queue, because flush performs a read to advance the read
pointer past the last message. Use this calling syntax only when you
specify a channel configured for read access.

flush(rx,channel) removes the pending data messages from the
RTDX channel queue specified by channel in rx. Unlike the preceding
syntax options, you use this statement to remove messages for both
read-configured and write-configured channels.

flush(rx,'all') removes the data messages from the RTDX channel
queues.

When you use flush with a write-configured RTDX channel, your
coder product sends the messages in the write queue to the processor.
For read-configured channels, flush removes one or more messages
from the queue depending on the input argument num you supply and
disposes of them.

Examples To show how to use flush, this example writes data to the processor
over the input channel, then uses flush to remove a message from the
read queue for the output channel:

IDE_Obj = ticcs;
rx = IDE_Obj.rtdx;
open(rx,'ichan','w');
enable(rx,'ichan');
open(rx,'ochan','r');
enable(rx,'ochan');
indata = 1:10;
writemsg(rx,'ichan',int16(indata));
flush(rx,'ochan',1);

Now flush the remaining messages from the read channel:

flush(rx,'ochan','all');

See Also enable | open

1-143

arxml.importer.getApplicationComponentNames

Purpose Get list of application software component names

Syntax applicationSoftwareComponentNames =
importerObj.getApplication

ComponentNames

Description applicationSoftwareComponentNames =
importerObj.getApplicationComponentNames returns the names
of application software component names found in the XML files
associated with importerObj, an arxml.importer object.

Output
Arguments

applicationSoftwareComponentNames

Cell array of strings. Each element is absolute short-name path of
corresponding application software component:

'/root_package_name[/sub_package_name]/component_short_name'

See Also arxml.importer.getSensorActuatorComponentNames |
arxml.importer.getComponentNames

How To • “Import an AUTOSAR Software Component”

1-144

RTW.ModelCPPArgsClass.getArgCategory

Purpose Get argument category for Simulink model port from model-specific
C++ encapsulation interface

Syntax category = getArgCategory(obj, portName)

Description category = getArgCategory(obj, portName) gets the category —
'Value', 'Pointer', or 'Reference'— of the argument corresponding
to a specified Simulink model inport or outport from a specified
model-specific C++ encapsulation interface.

Input
Arguments

obj Handle to a model-specific C++ encapsulation
interface control object, such as a
handle previously returned by obj =
RTW.getEncapsulationInterfaceSpecification
(modelName).

portName String specifying the name of an inport or
outport in your Simulink model.

Output
Arguments

category String specifying the argument category —
'Value', 'Pointer', or 'Reference' — for
the specified Simulink model port.

Alternatives To view argument categories in the Simulink Configuration Parameters
graphical user interface, go to the Interface pane and click the
Configure C++ Encapsulation Interface button. This button
launches the Configure C++ encapsulation interface dialog box, where
you can display and configure the step method for your model class.
In the I/O arguments step method view of this dialog box, click the
Get Default Configuration button to display step method argument
categories. For more information, see “Configure Step Method for Your
Model Class” in the Embedded Coder documentation.

How To • “Configure C++ Encapsulation Interfaces Programmatically”

1-145

RTW.ModelCPPArgsClass.getArgCategory

• “Configure the Step Method for a Model Class”

• “C++ Encapsulation Interface Control”

1-146

RTW.ModelSpecificCPrototype.getArgCategory

Purpose Get argument category for Simulink model port from model-specific
C function prototype

Syntax category = getArgCategory(obj, portName)

Description category = getArgCategory(obj, portName) gets the category,
'Value' or 'Pointer', of the argument corresponding to a specified
Simulink model inport or outport from a specified model-specific C
function prototype.

Input
Arguments

obj Handle to a model-specific C prototype
function control object previously returned
by obj = RTW.getFunctionSpecification
(modelName).

portName String specifying the name of an inport or
outport in your Simulink model.

Output
Arguments

category String specifying the argument category,
'Value' or 'Pointer', for the specified
Simulink model port.

Alternatives Click the Get Default Configuration button in the Model Interface
dialog box to get argument categories. See “Model Specific C Prototypes
View” in the Embedded Coder documentation.

How To • “Function Prototype Control”

1-147

RTW.ModelCPPArgsClass.getArgName

Purpose Get argument name for Simulink model port from model-specific C++
encapsulation interface

Syntax argName = getArgName(obj, portName)

Description argName = getArgName(obj, portName) gets the argument name
corresponding to a specified Simulink model inport or outport from a
specified model-specific C++ encapsulation interface.

Input
Arguments

obj Handle to a model-specific C++ encapsulation
interface control object, such as a
handle previously returned by obj =
RTW.getEncapsulationInterfaceSpecification
(modelName).

portName String specifying the name of an inport or
outport in your Simulink model.

Output
Arguments

argName String specifying the argument name for the
specified Simulink model port.

Alternatives To view argument names in the Simulink Configuration Parameters
graphical user interface, go to the Interface pane and click the
Configure C++ Encapsulation Interface button. This button
launches the Configure C++ encapsulation interface dialog box, where
you can display and configure the step method for your model class.
In the I/O arguments step method view of this dialog box, click the
Get Default Configuration button to display step method argument
names. For more information, see “Configure Step Method for Your
Model Class” in the Embedded Coder documentation.

How To • “Configure C++ Encapsulation Interfaces Programmatically”

• “Configure the Step Method for a Model Class”

1-148

RTW.ModelCPPArgsClass.getArgName

• “C++ Encapsulation Interface Control”

1-149

RTW.ModelSpecificCPrototype.getArgName

Purpose Get argument name for Simulink model port from model-specific C
function prototype

Syntax argName = getArgName(obj, portName)

Description argName = getArgName(obj, portName) gets the argument name
corresponding to a specified Simulink model inport or outport from a
specified model-specific C function prototype.

Input
Arguments

obj Handle to a model-specific C prototype
function control object previously returned
by obj = RTW.getFunctionSpecification
(modelName).

portName String specifying the name of an inport or
outport in your Simulink model.

Output
Arguments

argName String specifying the argument name for the
specified Simulink model port.

Alternatives Click the Get Default Configuration button in the Model Interface
dialog box to get argument names. See “Model Specific C Prototypes
View” in the Embedded Coder documentation.

How To • “Function Prototype Control”

1-150

RTW.ModelCPPArgsClass.getArgPosition

Purpose Get argument position for Simulink model port from model-specific
C++ encapsulation interface

Syntax position = getArgPosition(obj, portName)

Description position = getArgPosition(obj, portName) gets the position
— 1 for first, 2 for second, etc. — of the argument corresponding
to a specified Simulink model inport or outport from a specified
model-specific C++ encapsulation interface.

Input
Arguments

obj Handle to a model-specific C++ encapsulation
interface control object, such as a
handle previously returned by obj =
RTW.getEncapsulationInterfaceSpecification
(modelName).

portName String specifying the name of an inport or
outport in your Simulink model.

Output
Arguments

position Integer specifying the argument position — 1
for first, 2 for second, etc. — for the specified
Simulink model port. Without an argument
for the specified port, the function returns 0.

Alternatives To view argument positions in the Simulink Configuration Parameters
graphical user interface, go to the Interface pane and click the
Configure C++ Encapsulation Interface button. This button
launches the Configure C++ encapsulation interface dialog box, where
you can display and configure the step method for your model class.
In the I/O arguments step method view of this dialog box, click the
Get Default Configuration button to display step method argument
positions. For more information, see “Configure Step Method for Your
Model Class” in the Embedded Coder documentation.

1-151

RTW.ModelCPPArgsClass.getArgPosition

How To • “Configure C++ Encapsulation Interfaces Programmatically”

• “Configure the Step Method for a Model Class”

• “C++ Encapsulation Interface Control”

1-152

RTW.ModelSpecificCPrototype.getArgPosition

Purpose Get argument position for Simulink model port from model-specific
C function prototype

Syntax position = getArgPosition(obj, portName)

Description position = getArgPosition(obj, portName) gets the position
— 1 for first, 2 for second, etc. — of the argument corresponding
to a specified Simulink model inport or outport from a specified
model-specific C function prototype.

Input
Arguments

obj Handle to a model-specific C prototype
function control object previously returned
by obj = RTW.getFunctionSpecification
(modelName).

portName String specifying the name of an inport or
outport in your Simulink model.

Output
Arguments

position Integer specifying the argument position — 1
for first, 2 for second, etc. — for the specified
Simulink model port. Without an argument
for the specified port, the function returns 0.

Alternatives Click the Get Default Configuration button in the Model Interface
dialog box to get argument positions. See “Model Specific C Prototypes
View” in the Embedded Coder documentation.

How To • “Function Prototype Control”

1-153

RTW.ModelCPPArgsClass.getArgQualifier

Purpose Get argument type qualifier for Simulink model port from model-specific
C++ encapsulation interface

Syntax qualifier = getArgQualifier(obj, portName)

Description qualifier = getArgQualifier(obj, portName) gets the type
qualifier — 'none', 'const', 'const *', 'const * const', or 'const
&' — of the argument corresponding to a specified Simulink model
inport or outport from a specified model-specific C++ encapsulation
interface.

Input
Arguments

obj Handle to a model-specific C++ encapsulation
interface control object, such as a
handle previously returned by obj =
RTW.getEncapsulationInterfaceSpecification
(modelName).

portName String specifying the name of an inport or
outport in your Simulink model.

Output
Arguments

qualifier String specifying the argument type qualifier
— 'none', 'const', 'const *', 'const *
const', or 'const &' — for the specified
Simulink model port.

Alternatives To view argument qualifiers in the Simulink Configuration Parameters
graphical user interface, go to the Interface pane and click the
Configure C++ Encapsulation Interface button. This button
launches the Configure C++ encapsulation interface dialog box, where
you can display and configure the step method for your model class.
In the I/O arguments step method view of this dialog box, click the
Get Default Configuration button to display step method argument
qualifiers. For more information, see “Configure Step Method for Your
Model Class” in the Embedded Coder documentation.

1-154

RTW.ModelCPPArgsClass.getArgQualifier

How To • “Configure C++ Encapsulation Interfaces Programmatically”

• “Configure the Step Method for a Model Class”

• “C++ Encapsulation Interface Control”

1-155

RTW.ModelSpecificCPrototype.getArgQualifier

Purpose Get argument type qualifier for Simulink model port from model-specific
C function prototype

Syntax qualifier = getArgQualifier(obj, portName)

Description qualifier = getArgQualifier(obj, portName) gets the type
qualifier — 'none', 'const', 'const *', or 'const * const'— of the
argument corresponding to a specified Simulink model inport or outport
from a specified model-specific C function prototype.

Input
Arguments

obj Handle to a model-specific C prototype
function control object previously returned
by obj = RTW.getFunctionSpecification
(modelName).

portName String specifying the name of an inport or
outport in your Simulink model.

Output
Arguments

qualifier String specifying the argument type qualifier
— 'none', 'const', 'const *', or 'const
* const'— for the specified Simulink model
port.

Alternatives Click the Get Default Configuration button in the Model Interface
dialog box to get argument qualifiers. See “Model Specific C Prototypes
View” in the Embedded Coder documentation.

How To • “Function Prototype Control”

1-156

RTW.AutosarInterface.getArxmlFilePackaging

Purpose Get AUTOSAR XML packaging format

Syntax arxmlPackaging = autosarInterfaceObj.getArxmlFilePackaging

Description arxmlPackaging = autosarInterfaceObj.getArxmlFilePackaging
returns the AUTOSARXML packaging format in autosarInterfaceObj,
a model-specific RTW.AutosarInterface object.

Output
Arguments

arxmlPackaging

Packaging format of AUTOSAR XML, which is one of the
following:.

• 'Modular'— XML descriptions in separate files

• 'Single file'— XML descriptions in single file

See Also RTW.AutosarInterface.setArxmlFilePackaging

How To • “Configure the AUTOSAR Interface”

• “Export AUTOSAR Software Component”

1-157

getbuildopt

Purpose Generate structure of build tools and options

Syntax bt=IDE_Obj.getbuildopt
cs=IDE_Obj.getbuildopt(file)

IDEs This function supports the following IDEs:

• Analog Devices VisualDSP++

• Green Hills MULTI

• Texas Instruments Code Composer Studio v3

Description bt=IDE_Obj.getbuildopt returns an array of structures in bt. Each
structure includes an entry for each defined build tool. This list of
build tools comes from the active project and active build configuration.
Included in the structure is a string that describes the command-line
tool options. bt uses the following format for elements in the structures:

• bt(n).name — Name of the build tool.

• bt(n).optstring— command-line switches for build tool in bt(n).

cs=IDE_Obj.getbuildopt(file) returns a string of build options for
the source file specified by file. file must exist in the active project.
The resulting cs string comes from the active build configuration. The
type of source file (from the file extension) defines the build tool used
by the cs string.

1-158

arxml.importer.getCalibrationComponentNames

Purpose Get calibration component names

Syntax calibrationComponentNames = importerObj.getCalibrationComponen
tNames

Description calibrationComponentNames =
importerObj.getCalibrationComponentNames returns the list of
calibration component names found in the XML files associated with
the arxml.importer object, importerObj.

Output
Arguments

calibration
ComponentNames

Cell array of strings in which each element
is the absolute short name path of the
corresponding calibration parameter
component :

'/root_package_name[/sub_package_name]/component_short_name'

How To • “Import an AUTOSAR Software Component”

1-159

RTW.ModelCPPClass.getClassName

Purpose Get class name from model-specific C++ encapsulation interface

Syntax clsName = getClassName(obj)

Description clsName = getClassName(obj) gets the name of the class described by
the specified model-specific C++ encapsulation interface.

Input
Arguments

obj Handle to a model-specific C++ encapsulation
interface control object, such as a
handle previously returned by obj =
RTW.getEncapsulationInterfaceSpecification
(modelName).

Output
Arguments

clsName A string specifying the name of the class
described by the specified model-specific C++
encapsulation interface.

Alternatives To view the model class name in the Simulink Configuration
Parameters graphical user interface, go to the Interface pane and
click the Configure C++ Encapsulation Interface button. This
button launches the Configure C++ encapsulation interface dialog box,
which displays the model class name and allows you to display and
configure the step method for your model class. For more information,
see “Configure Step Method for Your Model Class” in the Embedded
Coder documentation.

How To • “Configure C++ Encapsulation Interfaces Programmatically”

• “Configure the Step Method for a Model Class”

• “C++ Encapsulation Interface Control”

1-160

arxml.importer.getClientServerInterfaceNames

Purpose Get list of client-server interfaces

Syntax interfaceNames = importerObj.getClientServerInterfaceNames

Description interfaceNames = importerObj.getClientServerInterfaceNames
returns the names of client-server interfaces found in the XML files
associated with importerObj, an arxml.importer object.

Output
Arguments

interfaceNames

Cell array of strings. Each element is absolute short-name path of
corresponding client-server interface:

'/root_package_name[/sub_package_name]/client_server_interface_short_name'

See Also arxml.importer.createOperationAsConfigurableSubsystems

How To • “AUTOSAR Communication”

• “Import an AUTOSAR Software Component”

• “Configure Client-Server Communication”

1-161

RTW.AutosarInterface.getComponentName

Purpose Get XML component name

Syntax componentName = autosarInterfaceObj.getComponentName

Description componentName = autosarInterfaceObj.getComponentName gets the XML
component name of the model-specific RTW.AutosarInterface object
defined by autosarInterfaceObj.

Output
Arguments

componentName Name of XML component object defined by
autosarInterfaceObj.

How To • “Configure the AUTOSAR Interface”

1-162

arxml.importer.getComponentNames

Purpose Get application and sensor/actuator software component names

Syntax componentNames = importerObj.getComponentNames

Description componentNames = importerObj.getComponentNames returns the list of
application and sensor/actuator software component names in the XML
file associated with the arxml.importer object, importerObj.

Note getComponentNames finds only the application and
sensor/actuator software components defined in the XML file specified
when constructing the arxml.importer object or the XML file specified
by the method setFile. The application software components and
sensor/actuator software components described in the XML file
dependencies are ignored.

Output
Arguments

componentNames Cell array of strings in which each element
is the absolute short name path of the
corresponding application software component
or sensor/actuator software component:

'/root_package_name[/sub_package_name]/component_short_name'

See Also arxml.importer.getSensorActuatorComponentNames |
arxml.importer.getApplicationComponentNames

How To • “Import an AUTOSAR Software Component”

1-163

RTW.AutosarInterface.getComponentType

Purpose Get type of software component

Syntax componentType = autosarInterfaceObj.getComponentType

Description componentType = autosarInterfaceObj.getComponentType returns
the type of the software component in autosarInterfaceObj, a
model-specific RTW.AutosarInterface object.

Output
Arguments

componentType

Type of software component. Either 'Application' or 'Sensor
Actuator'.

See Also RTW.AutosarInterface.setComponentType

How To • “Configure the AUTOSAR Interface”

1-164

RTW.AutosarInterface.getDataTypePackageName

Purpose Get XML data type package name

Syntax dataTypePackageName = autosarInterfaceObj.getDataTypePackageNa
me

Description dataTypePackageName = autosarInterfaceObj.getDataTypePackageName
gets the XML data type package name of autosarInterfaceObj, a
model-specific RTW.AutosarInterface object.

Output
Arguments

dataTypePackageName

Name of data type package specified by autosarInterfaceObj

See Also RTW.AutosarInterface.setDataTypePackageName

How To • “Prepare a Model for AUTOSAR Code Generation”

• “Generate AUTOSAR Code and Description Files”

1-165

RTW.AutosarInterface.getDefaultConf

Purpose Get default configuration

Syntax autosarInterfaceObj.getDefaultConf

Description autosarInterfaceObj.getDefaultConf gets the model’s default
configuration for autosarInterfaceObj, using information from the
model to which autosarInterfaceObj is attached.

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object. You must attach the object to a model using attachToModel
before calling getDefaultConf.

When you initially invoke getDefaultConf (or the GUI button
equivalent, Get Default Configuration in the Model Interface dialog),
the runnable names, XML properties, and I/O configuration are
initialized. If you invoke the command (or click the button) again, only
the I/O configurations are reset to default values.

How To • “Generating Code for AUTOSAR Software Components”

1-166

RTW.ModelCPPClass.getDefaultConf

Purpose Get default configuration information for model-specific C++
encapsulation interface from Simulink model

Syntax getDefaultConf(obj)

Description getDefaultConf(obj) initializes the specified model-specific C++
encapsulation interface to a default configuration, based on information
from the ERT-based Simulink model to which the interface is attached.
On the first invocation, class and step method names and step method
properties are set to default values. On subsequent invocations, only
step method properties are reset to default values.

Before calling this function, you must call attachToModel, to attach the
C++ encapsulation interface to a loaded model.

Input
Arguments

obj Handle to a model-specific C++ encapsulation
interface control object, such as a
handle previously returned by obj
= RTW.ModelCPPArgsClass or obj =
RTW.ModelCPPVoidClass.

Alternatives To view C++ encapsulation interface default configuration information
in the Simulink Configuration Parameters graphical user interface, go
to the Interface pane and click the Configure C++ Encapsulation
Interface button. This button launches the Configure C++
encapsulation interface dialog box, where you can display and configure
the step method for your model class. In the I/O arguments step
method view of this dialog box, click the Get Default Configuration
button to display default configuration information. In the void-void
step method view, you can see the default configuration information
without clicking a button. For more information, see “Configure Step
Method for Your Model Class” in the Embedded Coder documentation.

How To • “Configure C++ Encapsulation Interfaces Programmatically”

• “Configure the Step Method for a Model Class”

1-167

RTW.ModelCPPClass.getDefaultConf

• “C++ Encapsulation Interface Control”

1-168

RTW.ModelSpecificCPrototype.getDefaultConf

Purpose Get default configuration information for model-specific C function
prototype from Simulink model

Syntax getDefaultConf(obj)

Description getDefaultConf(obj) invokes the specified model-specific C function
prototype to initialize the properties and the step function name of the
function argument to a default configuration based on information from
the ERT-based Simulink model to which it is attached. If you invoke
the command again, only the properties of the function argument are
reset to default values.

Before calling this function, you must call attachToModel, to attach the
function prototype to a loaded model.

Input
Arguments

obj Handle to a model-specific C prototype
function control object previously returned by
obj = RTW.ModelSpecificCPrototype.

Alternatives Click the Get Default Configuration button in the Model Interface
dialog box to get the default configuration. See “Model Specific C
Prototypes View” in the Embedded Coder documentation.

How To • “Function Prototype Control”

1-169

arxml.importer.getDependencies

Purpose Get list of XML dependency files

Syntax Dependencies = importerObj.getDependencies()

Description Dependencies = importerObj.getDependencies() returns the list of
XML dependency files associated with the arxml.importer object,
importerObj.

Output
Arguments

Dependencies Cell array of strings.

How To • “Import an AUTOSAR Software Component”

1-170

RTW.AutosarInterface.getEventType

Purpose Get event type

Syntax EventType = autosarInterfaceObj.getEventType(EventName)

Description EventType = autosarInterfaceObj.getEventType(EventName)
returns the event type of EventName

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.

Input
Arguments

EventName

Name of event

Output
Arguments

EventType

Type of event, for example, TimingEvent or DataReceivedEvent

See Also RTW.AutosarInterface.setEventType |
RTW.AutosarInterface.addEventConf

How To • “Configure the AUTOSAR Interface”

• “Configure Multiple Runnables for DataReceivedEvents”

1-171

RTW.AutosarInterface.getExecutionPeriod

Purpose Get runnable execution period

Syntax EP = autosarInterfaceObj.getExecutionPeriod
EP = autosarInterfaceObj.getExecutionPeriod(EventName)

Description EP = autosarInterfaceObj.getExecutionPeriod returns the
execution period of the sole TimingEvent in the runnable.

EP = autosarInterfaceObj.getExecutionPeriod(EventName)
returns the execution period of a named event in the runnable.

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.

Input
Arguments

EventName

Name of TimingEvent

Output
Arguments

EP

Execution period of runnable

See Also RTW.AutosarInterface.addEventConf |
RTW.AutosarInterface.setExecutionPeriod

How To • “Configure the AUTOSAR Interface”

• “Configure Multiple Runnables for DataReceivedEvents”

1-172

arxml.importer.getFile

Purpose Return XML file name for arxml.importer object

Syntax filename = importerObj.getFile

Description filename = importerObj.getFile returns the name of the XML file
associated with the arxml.importer object, importerObj.

Output
Arguments

filename XML file name

How To • “Import an AUTOSAR Software Component”

1-173

RTW.ModelSpecificCPrototype.getFunctionName

Purpose Get function name from model-specific C function prototype

Syntax fcnName = getFunctionName(obj, fcnType)

Description fcnName = getFunctionName(obj, fcnType) gets the name of the
step or initialize function described by the specified model-specific C
function prototype.

Input
Arguments

obj Handle to a model-specific C
prototype function control object
previously returned by obj =
RTW.getFunctionSpecification(modelName).

fcnType Optional string specifying which function
name to get. Valid strings are 'step' and
'init'. If fcnType is not specified, gets the
step function name.

Output
Arguments

fcnName A string specifying the name of the function
described by the specified model-specific C
function prototype.

Alternatives Click the Get Default Configuration button in the Model Interface
dialog box to get function names. See “Model Specific C Prototypes
View” in the Embedded Coder documentation.

How To • “Function Prototype Control”

1-174

RTW.AutosarInterface.getImplementationName

Purpose Get name of XML implementation

Syntax implementationName = autosarInterfaceObj.getImplementationName

Description implementationName = autosarInterfaceObj.getImplementationName
returns the name of the XML implementation for autosarInterfaceObj,
a model-specific RTW.AutosarInterface object.

Output
Arguments

implementationName Name of XML implementation for
autosarInterfaceObj

See Also RTW.AutosarInterface.setImplementationName

How To • “Configure the AUTOSAR Interface”

1-175

RTW.AutosarInterface.getInitEventName

Purpose Get initial event name

Syntax initEventName = autosarInterfaceObj.getInitEventName

Description initEventName = autosarInterfaceObj.getInitEventName gets the
initial event name of autosarInterfaceObj, a model-specific
RTW.AutosarInterface object.

Output
Arguments

initEventName Name of the initial event specified by
autosarInterfaceObj.

How To • “Configure the AUTOSAR Interface”

1-176

RTW.AutosarInterface.getInitRunnableName

Purpose Get initial runnable name

Syntax initRunnableName = autosarInterfaceObj.getInitRunnableName

Description initRunnableName = autosarInterfaceObj.getInitRunnableName gets
the initial runnable name of autosarInterfaceObj, a model-specific
RTW.AutosarInterface object.

Output
Arguments

initRunnableName Name of the initial runnable specified by
autosarInterfaceObj.

How To • “Configure the AUTOSAR Interface”

1-177

RTW.AutosarInterface.getInterfacePackageName

Purpose Get XML interface package name

Syntax interfacePkgName = autosarInterfaceObj.getInterfacePackageName

Description interfacePkgName = autosarInterfaceObj.getInterfacePackageName
gets the XML interface package name of autosarInterfaceObj, a
model-specific RTW.AutosarInterface object.

Output
Arguments

interfacePkgName Name of the interface package specified by
autosarInterfaceObj

See Also RTW.AutosarInterface.setInterfacePackageName

How To • “Configure the AUTOSAR Interface”

1-178

RTW.AutosarInterface.getInternalBehaviorName

Purpose Get name of XML file that specifies software component internal
behavior

Syntax internalBehaviorName = autosarInterfaceObj.getInternalBehavior
Name

Description internalBehaviorName =
autosarInterfaceObj.getInternalBehaviorName gets the name of the
XML file that specifies the software component internal behavior
for autosarInterfaceObj.

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.

Output
Arguments

internalBehavior
Name

Name of XML file that specifies
software component internal behavior
for autosarInterfaceObj

See Also RTW.AutosarInterface.setInternalBehaviorName

How To • “Configure the AUTOSAR Interface”

• “Export AUTOSAR Software Component”

1-179

RTW.AutosarInterface.getIOAutosarPortName

Purpose Get I/O AUTOSAR port name

Syntax ioAutosarName = autosarInterfaceObj.getIOAutosarPortName(portN
ame)

Description ioAutosarName =
autosarInterfaceObj.getIOAutosarPortName(portName) gets
the I/O AUTOSAR port name in the configuration for the port
corresponding to portName.

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.

By default the AUTOSAR port name, data element name, and interface
name are the same as the Simulink port name.

Input
Arguments

portName Name of inport/outport name (string).

Output
Arguments

ioAutosarName AUTOSAR port name of portName

How To • “Configure the AUTOSAR Interface”

1-180

RTW.AutosarInterface.getIODataAccessMode

Purpose Get I/O data access mode

Syntax dataAccessMode = autosarInterfaceObj.getIODataAccessMode(portN
ame)

Description dataAccessMode =
autosarInterfaceObj.getIODataAccessMode(portName) returns the
data access mode of the I/O corresponding to portName, for
autosarInterfaceObj, a model-specific RTW.AutosarInterface object.

Input
Arguments

portName Name of inport/outport (string).

Output
Arguments

dataAccessMode Data access mode of the given port. Can be
one of the following:
• ImplicitSend

• ImplicitReceive

• ExplicitSend

• ExplicitReceive

• QueuedExplicitReceived

How To • RTW.AutosarInterface.setIODataAccessMode

• “Prepare a Model for AUTOSAR Code Generation”

1-181

RTW.AutosarInterface.getIODataElement

Purpose Get I/O data element name

Syntax ioDataElement = autosarInterfaceObj.getIODataElement(portName
)

Description ioDataElement = autosarInterfaceObj.getIODataElement(portName)
gets the I/O data element name in the configuration for the port
corresponding to portName.

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.

By default the AUTOSAR port name, data element name, and interface
name are the same as the Simulink port name.

Input
Arguments

portName Name of inport/outport (string).

Output
Arguments

ioDataElement Data element of the given port (string).

How To • “Configure the AUTOSAR Interface”

1-182

RTW.AutosarInterface.getIOErrorStatusReceiver

Purpose Get name of error status receiver port

Syntax ESR = autosarInterfaceObj.getIOErrorStatusReceiver(PortName)

Description ESR = autosarInterfaceObj.getIOErrorStatusReceiver(PortName) gets
the receiver port name in the configuration for the port corresponding
to PortName .

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.

Input
Arguments

PortName Name of inport/outport (string)

Output
Arguments

ESR Name of receiver port for PortName

See Also RTW.AutosarInterface.setIOErrorStatusReceiver

How To • “Configure Ports for Basic Software and Error Status Receivers”

1-183

RTW.AutosarInterface.getIOInterfaceName

Purpose Get I/O interface name

Syntax ioInterfaceName = autosarInterfaceObj.getIOInterfaceName(portN
ame)

Description ioInterfaceName =
autosarInterfaceObj.getIOInterfaceName(portName)
gets the I/O interface name in the configuration for the port
corresponding to portName.

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.

By default the AUTOSAR port name, data element name, and interface
name are the same as the Simulink port name.

Input
Arguments

portName Name of the inport/outport (string).

Output
Arguments

ioInterfaceName Name of the I/O interface for portName.

How To • “Configure the AUTOSAR Interface”

1-184

RTW.AutosarInterface.getIOPortNumber

Purpose Get I/O AUTOSAR port number

Syntax IOPortNumber= autosarInterfaceObj.getIOPortNumber(PortName)

Description IOPortNumber= autosarInterfaceObj.getIOPortNumber(PortName) gets
the I/O AUTOSAR port number in the configuration for the port
corresponding to PortName.

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.

Input
Arguments

PortName Name of the inport/output (string).

Output
Arguments

IOPortNumber Port number of PortName.

How To • “Generating Code for AUTOSAR Software Components”

1-185

RTW.AutosarInterface.getIOServiceInterface

Purpose Get port I/O service interface

Syntax SI = autosarInterfaceObj.getIOServiceInterface(PortName)

Description SI = autosarInterfaceObj.getIOServiceInterface(PortName) gets the
I/O service interface in the configuration for the port corresponding
to PortName.

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.

Input
Arguments

PortName Name of the inport/outport (string)

Output
Arguments

SI I/O service interface of PortName

See Also RTW.AutosarInterface.setIOServiceInterface

How To • “Configure Ports for Basic Software and Error Status Receivers”

1-186

RTW.AutosarInterface.getIOServiceName

Purpose Get port I/O service name

Syntax SN = autosarInterfaceObj.getIOServiceName(PortName)

Description SN = autosarInterfaceObj.getIOServiceName(PortName) gets the
I/O service name in the configuration for the port corresponding to
PortName.

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.

Input
Arguments

PortName Name of the inport/outport (string)

Output
Arguments

SN Name of I/O service for PortName

See Also RTW.AutosarInterface.setIOServiceName

How To • “Configure Ports for Basic Software and Error Status Receivers”

1-187

RTW.AutosarInterface.getIOServiceOperation

Purpose Get port I/O service operation

Syntax SO = autosarInterfaceObj.getIOServiceOperation(PortName)

Description SO = autosarInterfaceObj.getIOServiceOperation(PortName) gets the
I/O service operation in the configuration for the port corresponding
to PortName.

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.

Input
Arguments

PortName Inport/outport name (string).

Output
Arguments

SO I/O service operation of PortName.

See Also RTW.AutosarInterface.setIOServiceOperation

How To • “Configure Ports for Basic Software and Error Status Receivers”

1-188

RTW.AutosarInterface.getIsServerOperation

Purpose Determine whether server is specified

Syntax isServerOperation = autosarInterfaceObj.getIsServerOperation

Description isServerOperation = autosarInterfaceObj.getIsServerOperation
returns the value of the property 'isServerOperation' in
autosarInterfaceObj.

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.

Output
Arguments

isServerOperation True or false. If true, a server is specified
in autosarInterfaceObj.

How To • “Configure Client-Server Communication”

1-189

Name

Purpose Get name of profiled code section

Syntax SectionName = NthSectionProfile.Name

Description SectionName = NthSectionProfile.Name returns the name that
identifies the profiled code section.

The software generates an identifier based on the model entity that
corresponds to the profiled section of code.

NthSectionProfile is a coder.profile.ExecutionTimeSection object
generated by the coder.profile.ExecutionTime property Sections.

Output
Arguments

SectionName

Name that identifies profiled code section

See Also Sections | TimerTicksPerSecond | display | report
| SamplePeriod | SampleOffset | Number | NumCalls |
MaximumExecutionTimeCallNum | MaximumSelfTimeCallNum
| ExecutionTimeInTicks | MaximumExecutionTimeInTicks
| TotalExecutionTimeInTicks | SelfTimeInTicks |
MaximumSelfTimeInTicks | TotalSelfTimeInTicks

How To • “Configure Code Execution Profiling”

• “View and Compare Code Execution Times”

• “Analyze Code Execution Data”

1-190

RTW.ModelCPPClass.getNumArgs

Purpose Get number of step method arguments from model-specific C++
encapsulation interface

Syntax num = getNumArgs(obj)

Description num = getNumArgs(obj) gets the number of arguments for the step
method described by the specified model-specific C++ encapsulation
interface.

Input
Arguments

obj Handle to a model-specific C++ encapsulation
interface control object, such as a
handle previously returned by obj =
RTW.getEncapsulationInterfaceSpecification
(modelName).

Output
Arguments

num An integer specifying the number of step
method arguments.

Alternatives To view the number of step method arguments in the Simulink
Configuration Parameters graphical user interface, go to the Interface
pane and click the Configure C++ Encapsulation Interface button.
This button launches the Configure C++ encapsulation interface dialog
box, where you can display and configure the step method for your
model class. In the I/O arguments step method view of this dialog
box, click the Get Default Configuration button to display the step
method arguments. For more information, see “Configure Step Method
for Your Model Class” in the Embedded Coder documentation.

How To • “Configure C++ Encapsulation Interfaces Programmatically”

• “Configure the Step Method for a Model Class”

• “C++ Encapsulation Interface Control”

1-191

RTW.ModelSpecificCPrototype.getNumArgs

Purpose Get number of function arguments from model-specific C function
prototype

Syntax num = getNumArgs(obj)

Description num = getNumArgs(obj) gets the number of function arguments for the
function described by the specified model-specific C function prototype.

Input
Arguments

obj Handle to a model-specific C
prototype function control object
previously returned by obj =
RTW.getFunctionSpecification(modelName).

Output
Arguments

num An integer specifying the number of function
arguments.

Alternatives Click the Get Default Configuration button in the Model Interface
dialog box to get arguments. See “Model Specific C Prototypes View” in
the Embedded Coder documentation.

How To • “Function Prototype Control”

1-192

NumCalls

Purpose Total number of calls to profiled code section

Syntax TotalNumCalls = NthSectionProfile.NumCalls

Description TotalNumCalls = NthSectionProfile.NumCalls returns the total
number of calls to the profiled code section over the entire simulation.

NthSectionProfile is a coder.profile.ExecutionTimeSection object
generated by the coder.profile.ExecutionTime property Sections.

Output
Arguments

TotalNumCalls

Total number of calls

See Also Sections | TimerTicksPerSecond | display | report
| Name | SamplePeriod | SampleOffset | Number |
MaximumExecutionTimeCallNum | MaximumSelfTimeCallNum
| ExecutionTimeInTicks | MaximumExecutionTimeInTicks
| TotalExecutionTimeInTicks | SelfTimeInTicks |
MaximumSelfTimeInTicks | TotalSelfTimeInTicks

How To • “Configure Code Execution Profiling”

• “Configure Code Execution Profiling”

• “View and Compare Code Execution Times”

1-193

cgv.CGV.getOutputData

Purpose Get output data

Syntax out = cgvObj.getOutputData(InputIndex)

Description out = cgvObj.getOutputData(InputIndex) is the method that you
use to retrieve the output data that the object creates during execution
of the model. out is the output data that the object returns. cgvObj
is a handle to a cgv.CGV object. InputIndex is a unique numeric
identifier that specifies which output data to retrieve. The InputIndex
is associated with specific input data.

How To • “Verify Numerical Equivalence with CGV”

1-194

RTW.AutosarInterface.getPeriodicEventName

Purpose Get periodic event name

Syntax periodicEventName = autosarInterfaceObj.getPeriodicEventName

Description periodicEventName = autosarInterfaceObj.getPeriodicEventName
gets the periodic event name specified by the model-specific
RTW.AutosarInterface object, autosarInterfaceObj.

Output
Arguments

periodicEventName Name of the periodic event specified by
autosarInterfaceObj

Examples For multiple runnables, use the Children property to access each
individual runnable after building or GUI update, for example:

autosarInterfaceObj.Children(1).getPeriodicEventName()

How To • “Configure the AUTOSAR Interface”

1-195

RTW.AutosarInterface.getPeriodicRunnableName

Purpose Get periodic runnable name

Syntax periodicRunnableName = autosarInterfaceObj.getPeriodicRunnable
Name

Description periodicRunnableName =
autosarInterfaceObj.getPeriodicRunnableName gets the name of the
periodic runnable specified in autosarInterfaceObj, a model-specific
RTW.AutosarInterface object.

Output
Arguments

periodicRunnable
Name

Name of the periodic runnable specified by
autosarInterfaceObj.

Examples For multiple runnables, use the Children property to access each
individual runnable after building or GUI update, for example:

autosarInterfaceObj.Children(1).getPeriodicRunnableName()

How To • “Configure the AUTOSAR Interface”

1-196

RTW.ModelSpecificCPrototype.getPreview

Purpose Get model-specific C function prototype code preview

Syntax preview = getPreview(obj, fcnType)

Description preview = getPreview(obj, fcnType) gets the model-specific C
function prototype code preview.

Input
Arguments

obj Handle to a model-specific C
prototype function control object
previously returned by obj =
RTW.getFunctionSpecification(modelName).

fcnType Optional. String specifying which function
to preview. Valid strings are 'step' and
'init'. If fcnType is not specified, previews
the step function.

Output
Arguments

preview String specifying the function prototype for
the step or initialization function.

Alternatives Use the Step function preview subpane in the Model Interface
dialog box to preview how your step function prototype is interpreted
in generated code. See “Model Specific C Prototypes View” in the
Embedded Coder documentation.

How To • “Function Prototype Control”

1-197

cgv.Config.getReportData

Purpose Return results of comparing configuration parameter values

Syntax rpt_data = cfgObj.getReportData()

Description rpt_data = cfgObj.getReportData() compares the original
configuration parameter values with the values that the object
recommends. cfgObj is a handle to a cgv.Config object. Returns a
cell array of strings with the model, parameter, previous value, and
recommended or new value.

How To • “Verify Numerical Equivalence with CGV”

1-198

SampleOffset

Purpose Get sample offset associated with profiled task

Syntax SampleOffset = NthSectionProfile.SampleOffset

Description SampleOffset = NthSectionProfile.SampleOffset returns the
sample offset if the profiled code section is a task.

NthSectionProfile is a coder.profile.ExecutionTimeSection object
generated by the coder.profile.ExecutionTime property Sections.

Output
Arguments

SampleOffset

Sample offset associated with profiled task

See Also Sections | TimerTicksPerSecond | display | report | Name |
SamplePeriod | Number | NumCalls | MaximumExecutionTimeCallNum
| MaximumSelfTimeCallNum | ExecutionTimeInTicks |
MaximumExecutionTimeInTicks | TotalExecutionTimeInTicks
| SelfTimeInTicks | MaximumSelfTimeInTicks |
TotalSelfTimeInTicks

How To • “Configure Code Execution Profiling”

• “View and Compare Code Execution Times”

• “Analyze Code Execution Data”

1-199

SamplePeriod

Purpose Get sample time associated with profiled task

Syntax SampleTime = NthSectionProfile.SamplePeriod

Description SampleTime = NthSectionProfile.SamplePeriod returns the sample
time if the profiled code section is a task.

NthSectionProfile is a coder.profile.ExecutionTimeSection object
generated by the coder.profile.ExecutionTime property Sections.

Output
Arguments

SampleTime

Sample time associated with profiled task

See Also Sections | TimerTicksPerSecond | display | report | Name |
SampleOffset | Number | NumCalls | MaximumExecutionTimeCallNum
| MaximumSelfTimeCallNum | ExecutionTimeInTicks |
MaximumExecutionTimeInTicks | TotalExecutionTimeInTicks
| SelfTimeInTicks | MaximumSelfTimeInTicks |
TotalSelfTimeInTicks

How To • “Configure Code Execution Profiling”

• “View and Compare Code Execution Times”

• “Analyze Code Execution Data”

1-200

cgv.CGV.getSavedSignals

Purpose Display list of signal names to command line

Syntax signal_list = cgvObj.getSavedSignals(simulation_data)

Description signal_list = cgvObj.getSavedSignals(simulation_data) returns
a cell array, signal_list, of the output signal names of the data
elements from the input data set, simulation_data. simulation_data
is the output data stored in the CGV object, cgvObj, when you execute
the model.

Tips • After executing your model, use the cgv.CGV.getOutputData
function to get the output data used as the input argument to the
cgvObj.getSavedSignals function.

• Use names from the output signal list at the command line
or as input arguments to other CGV functions, for example,
cgv.CGV.createToleranceFile, cgv.CGV.compare, and
cgv.CGV.plot.

How To • “Verify Numerical Equivalence with CGV”

1-201

Number

Purpose Get number that uniquely identifies profiled code section

Syntax SectionNumber = NthSectionProfile.Number

Description SectionNumber = NthSectionProfile.Number returns a number that
uniquely identifies the profiled code section, for example, in the code
execution profiling report.

NthSectionProfile is a coder.profile.ExecutionTimeSection object
generated by the coder.profile.ExecutionTime property Sections.

Output
Arguments

SectionNumber

Number of profiled code section

See Also Sections | TimerTicksPerSecond | display | report
| Name | SamplePeriod | SampleOffset | NumCalls |
MaximumExecutionTimeCallNum | MaximumSelfTimeCallNum
| ExecutionTimeInTicks | MaximumExecutionTimeInTicks
| TotalExecutionTimeInTicks | SelfTimeInTicks |
MaximumSelfTimeInTicks | TotalSelfTimeInTicks

How To • “Configure Code Execution Profiling”

• “Configure Code Execution Profiling”

• “View and Compare Code Execution Times”

1-202

Sections

Purpose Get array of coder.profile.ExecutionTimeSection objects for
profiled code sections

Syntax NthSectionProfile = myExecutionProfile.Sections(N)
No_of_Sections = length(myExecutionProfile.Sections)

Description NthSectionProfile = myExecutionProfile.Sections(N) returns
an coder.profile.ExecutionTimeSection object for the Nth profiled
code section.

No_of_Sections = length(myExecutionProfile.Sections) returns
the number of code sections for which profiling data is available.

myExecutionProfile is a workspace variable generated by a simulation.

Use coder.profile.ExecutionTimeSection methods to extract
profiling information from the returned object.

Input
Arguments

N

Index of code section for which profiling data is required

Output
Arguments

NthSectionProfile

coder.profile.ExecutionTimeSection object that contains profiling
information

No_of_Sections

Number of code sections with profiling data

See Also TimerTicksPerSecond | display | report | Name |
SamplePeriod | SampleOffset | Number | NumCalls |
MaximumExecutionTimeCallNum | MaximumSelfTimeCallNum
| ExecutionTimeInTicks | MaximumExecutionTimeInTicks
| TotalExecutionTimeInTicks | SelfTimeInTicks |
MaximumSelfTimeInTicks | TotalSelfTimeInTicks

How To • “Configure Code Execution Profiling”

1-203

Sections

• “View and Compare Code Execution Times”

• “Analyze Code Execution Data”

1-204

arxml.importer.getSensorActuatorComponentNames

Purpose Get list of sensor/actuator software component names

Syntax sensoractuatorSoftwareComponentNames =
importerObj.getSensorAc

tuatorComponentNames

Description sensoractuatorSoftwareComponentNames =
importerObj.getSensorActuatorComponentNames returns the names
of sensor/actuator software component names found in the XML files
associated with importerObj, an arxml.importer object.

Output
Arguments

sensoractuatorSoftwareComponentNames

Cell array of strings. Each element is absolute short-name path of
corresponding sensor/actuator software component:

'/root_package_name[/sub_package_name]/component_short_name'

See Also arxml.importer.getApplicationComponentNames |
arxml.importer.getComponentNames

How To • “Import an AUTOSAR Software Component”

1-205

RTW.AutosarInterface.getServerInterfaceName

Purpose Get name of server interface

Syntax serverInterfaceName = autosarInterfaceObj.getServerInterfaceNa
me

Description serverInterfaceName = autosarInterfaceObj.getServerInterfaceName
returns the name of the server interface specified in
autosarInterfaceObj.

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.

Output
Arguments

serverInterfaceName Name of the server interface in
autosarInterfaceObj.

How To • “Configure Client-Server Communication”

1-206

RTW.AutosarInterface.getServerOperationPrototype

Purpose Get server operation prototype

Syntax operation_prototype = autosarInterfaceObj.getServerOperationPr
ototype

Description operation_prototype =
autosarInterfaceObj.getServerOperationPrototype returns the server
operation prototype in autosarInterfaceObj.

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.

Output
Arguments

operation_prototype String with names of prototype and
arguments:

operation_name(dir1 datatype1
arg1, dir2 datatype2 arg2, ...,
dirN datatypeN argN, ...)

• operation_name — Name of the
operation

• dirN — Either IN or OUT, which
indicates whether data is passed in
or out of the function.

• datatypeN — Data type, which can
be an AUTOSAR basic data type or
record, Simulink data type, or array.

• argN— Name of the argument

How To • “Configure Client-Server Communication”

1-207

RTW.AutosarInterface.getServerPortName

Purpose Get server port name

Syntax serverPortName = autosarInterfaceObj.getServerPortName

Description serverPortName = autosarInterfaceObj.getServerPortName returns the
server port name of the model-specific RTW.AutosarInterface object
defined by autosarInterfaceObj.

Output
Arguments

serverPortName Name of the server port defined by
autosarInterfaceObj.

How To • “Configure Client-Server Communication”

1-208

RTW.AutosarInterface.getServerType

Purpose Determine server type

Syntax serverType = autosarInterfaceObj.getServerType

Description serverType = autosarInterfaceObj.getServerType determines the type
of the server in autosarInterfaceObj, that is, whether it is application
software or Basic software.

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.

Output
Arguments

serverType Either 'Application software' or 'Basic
software'.

How To • “Configure Client-Server Communication”

1-209

cgv.CGV.getStatus

Purpose Return execution status

Syntax status = cgvObj.getStatus()
status = cgvObj.getStatus(inputName)

Description status = cgvObj.getStatus() returns the execution status of cgvObj.
cgvObj is a handle to a cgv.CGV object.

status = cgvObj.getStatus(inputName) returns the status of a
single execution for inputName.

Input
Arguments

inputName

inputName is a unique numeric or character identifier associated
with input data, which is added to the cgv.CGV object using
cgv.CGV.addInputData.

Output
Arguments

status

If inputName is provided, status is the result of the execution
of input data associated with inputName.

Value Description

none Execution has not run.

pending Execution is currently
running.

completed Execution ran to completion
without errors and output data
is available.

passed Baseline data was provided.
Execution ran to completion
and comparison to the baseline
data returned no differences.

1-210

cgv.CGV.getStatus

Value Description

error Execution produced an error.

failed Baseline data was provided.
Execution ran to completion
and comparison to the baseline
data returned a difference.

If inputName is not provided, the following pseudocode describes
the return status:

if (all executions return 'passed')
status = 'passed'

else if (all executions return 'passed' or 'completed')
status = 'completed'

else if (an execution returns 'error')
status = 'error'

else if (an execution returns 'failed')
status = 'failed'

else if (an execution returns 'none' or 'pending'
status = 'none'

See Also cgv.CGV.addInputData | cgv.CGV.run | cgv.CGV.addBaseline

How To • “Verify Numerical Equivalence with CGV”

1-211

RTW.ModelCPPClass.getStepMethodName

Purpose Get step method name from model-specific C++ encapsulation interface

Syntax fcnName = getStepMethodName(obj)

Description fcnName = getStepMethodName(obj) gets the name of the step method
described by the specified model-specific C++ encapsulation interface.

Input
Arguments

obj Handle to a model-specific C++ encapsulation
interface control object, such as a
handle previously returned by obj =
RTW.getEncapsulationInterfaceSpecification
(modelName).

Output
Arguments

fcnName A string specifying the name of the
step method described by the specified
model-specific C++ encapsulation interface.

Alternatives To view the step method name in the Simulink Configuration
Parameters graphical user interface, go to the Interface pane and
click the Configure C++ Encapsulation Interface button. This
button launches the Configure C++ encapsulation interface dialog box,
which displays the step method name and allows you to display and
configure the step method for your model class. For more information,
see “Configure Step Method for Your Model Class” in the Embedded
Coder documentation.

How To • “Configure C++ Encapsulation Interfaces Programmatically”

• “Configure the Step Method for a Model Class”

• “C++ Encapsulation Interface Control”

1-212

getTflArgFromString

Purpose Create CRL argument based on specified name and built-in data type

Syntax arg = getTflArgFromString(hTable, name, datatype)

Input
Arguments

hTable
Handle to a CRL table previously returned by hTable =
RTW.TflTable.

name
String specifying the name to use for the CRL argument, for
example, 'y1'.

datatype
String specifying a built-in data type or a fixed-point data type
to use for the CRL argument:

• Valid built-in data types are 'int8', 'int16', 'int32',
'uint8', 'uint16', 'uint32', 'single', 'double', and
'boolean'.

• You can specify fixed-point data types using the fixdt
function from Fixed-Point Designer™ software; for example,
'fixdt(1,16,2)'.

Output
Arguments

Handle to the created CRL argument, which can be specified to the
addConceptualArg function. See the example below.

Description The getTflArgFromString function creates a CRL argument that is
based on a specified name and built-in data type.

Note The IOType property of the created argument defaults to
'RTW_IO_INPUT', indicating an input argument. For an output
argument, you must change the IOType value to 'RTW_IO_OUTPUT' by
directly assigning the argument property. See the example below.

1-213

getTflArgFromString

Examples In the following example, getTflArgFromString is used to create an
int16 output argument named y1, which is then added as a conceptual
argument for a CRL table entry.

hLib = RTW.TflTable;
op_entry = RTW.TflCOperationEntry;
.
.
.
arg = hLib.getTflArgFromString('y1', 'int16');
arg.IOType = 'RTW_IO_OUTPUT';
op_entry.addConceptualArg(arg);

See Also addConceptualArg

How To • “Create Code Replacement Tables”

• “Introduction to Code Replacement Libraries”

1-214

getTflDWorkFromString

Purpose Create CRL DWork argument for semaphore entry based on specified
name and data type

Syntax arg = getTflDWorkFromString(hTable, name, datatype)

Input
Arguments

hTable
Handle to a CRL table previously returned by hTable =
RTW.TflTable.

name
String specifying the name to use for the CRL DWork argument,
for example, 'd1'.

datatype
String specifying a data type to use for the CRL DWork argument.
Currently, you must specify 'void*'.

Output
Arguments

Handle to the created CRL argument, which can be specified to the
addDWorkArg function. See the example below.

Description The getTflDWorkFromString function creates a CRL DWork argument,
based on a specified name and data type, for a semaphore entry in a
CRL table.

Examples In the following example, getTflDworkFromString is used to create a
void* argument named d1. The argument is then added as a DWork
argument for a semaphore entry in a CRL table.

hLib = RTW.TflTable;
sem_entry = RTW.TflCSemaphoreEntry;
.
.
.
% DWork Arg

arg = hLib.getTflDWorkFromString('d1','void*');
sem_entry.addDWorkArg(arg);

1-215

getTflDWorkFromString

.

.

.
hLib.addEntry(sem_entry);

See Also addDWorkArg

How To • “Map Semaphore or Mutex Operations to Target-Specific
Implementations”

• “Create Code Replacement Tables”

• “Introduction to Code Replacement Libraries”

1-216

Time

Purpose Get simulation time for code section

Syntax SimTime = NthSectionProfile.Time

Description SimTime = NthSectionProfile.Time returns a simulation time vector
that corresponds to the execution time measurements for the code
section.

Input
Arguments

NthSectionProfile - coder.profile.ExecutionTimeSection
object

Object generated by the coder.profile.ExecutionTime property
Sections

Output
Arguments

SimTime - Simulation time
double

Simulation time, in seconds, for section of code. Returned as a vector.

Examples Get Simulation Time for Code Section

Get simulation time for a code section.

1

Run a simulation with a model that is configured to generate a
workspace variable with execution time measurements. For example:

rtwdemo_sil_topmodel;
set_param('rtwdemo_sil_topmodel',...

'CodeExecutionProfiling', 'on');
set_param('rtwdemo_sil_topmodel',...

'SimulationMode', 'software-in-the-loop (SIL)');
set_param('rtwdemo_sil_topmodel',...

'CodeProfilingInstrumentation', 'on');
set_param('rtwdemo_sil_topmodel',...

'CodeProfilingSaveOptions', 'AllData');
sim('rtwdemo_sil_topmodel');

1-217

Time

The simulation generates the workspace variable executionProfile
(default).

2

At the end of the simulation, get profile for the seventh code section:

SeventhSectionProfile = executionProfile.Sections(7);

3

Get vector representing simulation time for code section:

simulation_time_vector = SeventhSectionProfile.Time;

See Also Sections | ExecutionTimeInTicks | ExecutionTimeInSeconds

Concepts • “Configure Code Execution Profiling”
• “Analyze Code Execution Data”

1-218

TimerTicksPerSecond

Purpose Get and set number of timer ticks per second

Syntax TimerTicksOneSecond =
myExecutionProfile.TimerTicksPerSecond
myExecutionProfile.TimerTicksPerSecond(TimerTicksOneSec)

Description TimerTicksOneSecond =
myExecutionProfile.TimerTicksPerSecond returns the number
of timer ticks per second. For example, if the timer runs at 1 MHz,
then the number of ticks per second is 106.

myExecutionProfile.TimerTicksPerSecond(TimerTicksOneSec) sets
the number of timer ticks per second. Use this method if the “Create a
Connectivity Configuration for a Target” does not specify this value.

myExecutionProfile is a workspace variable generated by a simulation.

Tip You can calculate the execution time in seconds using the formula

ExecutionTimeInSecs ExecutionTimeInTicks TimerTicksPerSeco / nnd .

Input
Arguments

TimerTicksOneSec

Number of timer ticks per second

Output
Arguments

TimerTicksOneSecond

Number of timer ticks per second

See Also Sections | display | report | Name | SamplePeriod |
SampleOffset | Number | NumCalls | MaximumExecutionTimeCallNum
| MaximumSelfTimeCallNum | ExecutionTimeInTicks |
MaximumExecutionTimeInTicks | TotalExecutionTimeInTicks
| SelfTimeInTicks | MaximumSelfTimeInTicks |
TotalSelfTimeInTicks

How To • “Configure Code Execution Profiling”

1-219

TimerTicksPerSecond

• “View and Compare Code Execution Times”

• “Analyze Code Execution Data”

1-220

RTW.AutosarInterface.getTriggerPortName

Purpose Get name of Simulink inport that provides trigger data for
DataReceivedEvent

Syntax SimulinkInportName =
autosarInterfaceObj.getTriggerPortName(Ev

entName)

Description SimulinkInportName =
autosarInterfaceObj.getTriggerPortName(EventName)
returns the name of the inport that provides trigger data for
EventName, a DataReceivedEvent.

autosarInterfaceObj is a model-specific RTW.AutosarInterface object.

Input
Arguments

EventName

Name of DataReceivedEvent

Output
Arguments

SimulinkInportName

Name of Simulink inport in model that provides trigger data for
EventName

See Also RTW.AutosarInterface.addEventConf |
RTW.AutosarInterface.setTriggerPortName

How To • “Configure the AUTOSAR Interface”

• “Configure Multiple Runnables for DataReceivedEvents”

1-221

ghsmulti

Purpose Create handle object to interact with MULTI IDE

Syntax IDE_Obj = ghsmulti
IDE_Obj=ghsmulti('propertyname1',propertyvalue1,'propertyname2',…
propertyvalue2,'timeout',value)

Note The output object name you provide for ghsmulti cannot begin
with an underscore, such as _IDE_Obj.

IDEs This function supports the following IDEs:

• Green Hills MULTI

Description IDE_Obj = ghsmulti returns object IDE_Obj that communicates with
a target processor. Before you use this command for the first time,
use ghsmulticonfig to configure your MULTI software installation
to identify the location of your MULTI software, your processor
configuration, your debug server, and the host name and port number
of the service.

ghsmulti creates an interface between MATLAB and Green Hills
MULTI.

The first time you use ghsmulti, supply the properties and property
values shown in following table as input arguments.

Property
Name

Default Value Description

hostname localhost Specifies the name of the machine
hosting the service. The default
host name indicates that the
service is on the local PC. Replace
localhost with the name you

1-222

ghsmulti

Property
Name

Default Value Description

entered as the Host name when
you ran ghsmulticonfig.

portnum 4444 Specifies the port to connect to
the service on the host machine.
Replace portnum with the number
you entered as the Port number
when you ran ghsmulticonfig.

When you invoke ghsmulti, it starts a service on your localhost. If
you selected the Show server status window option when you ran
ghsmulticonfig, the service appears in your Microsoft Windows task
bar. If you clear Show server status window, the service does not
appear.

Parameters that you pass as input arguments to ghsmulti are
interpreted as object property definitions. Each property definition
consists of a property name followed by the desired property value
(often called a PV, or property name/property value, pair).

IDE_Obj =
ghsmulti('hostname','name','portnum','number',...) returns a
ghsmulti object IDE_Obj that you use to interact with a processor in
the IDE from the MATLAB command prompt. If you enter a hostname
or portnum that are not the same as the ones you provided when
you configured your MULTI installation, the software returns
an error that it could not connect to the specified host and
port and does not create the object.

You use the debugging methods with this object to access memory
and control the execution of the processor. ghsmulti also enables you
to create an array of objects for a multiprocessor board, where each
object refers to one processor on the board. When IDE_Obj is an array
of objects, a method called with IDE_Obj as an input argument is sent
sequentially to the processors connected to the ghsmulti object. Green
Hills MULTI provides the communication between the IDE and the
processor.

1-223

ghsmulti

After you build the ghsmulti object IDE_Obj, you can review the object
property values with get, but you cannot modify the hostname and
portnum property values. You can use set to change the value of other
properties.

IDE_Obj=ghsmulti('propertyname1',propertyvalue1,'propertyname2',…
propertyvalue2,'timeout',value) sets the global time-out value in
seconds to value in IDE_Obj. MATLAB waits for the specified time-out
period to get a response from the IDE application. If the IDE does not
respond within the allotted time-out period, MATLAB exits
from the evaluation of this function.

Examples This example shows how to use ghsmulti with default values.

IDE_Obj = ghsmulti('hostname','localhost','portnum',4444);

returns a handle to the default host and port number—localhost and
4444.

IDE_Obj = ghsmulti('hostname','localhost','portnum',4444)

MULTI Object:
Host Name : localhost
Port Num : 4444
Default timeout : 10.00 secs
MULTI Dir : C:\ghs\multi500\ppc\

See Also ghsmulticonfig

1-224

ghsmulticonfig

Purpose Configure coder product to interact with MULTI IDE

Syntax ghsmulticonfig

IDEs This function supports the following IDEs:

• Green Hills MULTI

Description ghsmulticonfig launches the IDE Link Configuration for Green
Hills(R) MULTI(R) dialog to specify information about MULTI.

Use this dialog after installing support for Green Hills MULTI, as
described in “Install Support for Green Hills MULTI IDE”.

Note The configuration dialog box is the only place you set the host
name and port number configuration.

Enter values for each of parameters in the dialog box.

1-225

ghsmulticonfig

Directory
Enter the full path to your Green Hills MULTI executable,
multi.exe. To search for the executable file, click Browse.

If you do not provide the path to the executable file, the software
returns an error message that it could not find multi.exe in the
specified folder.

Configuration
Select the primary processor family for which you develop projects
in MULTI. This corresponds to a .tgt file you select before you
can download and execute code. Select your family file from the
list. In many cases, the family_standalone.tgt option is the best
choice. For example, if you develop on the MPC7400, you could
select ppc_standalone.tgt. The software stores your selection.

If you change processors, use ghsmultisetup to change this
setting.

1-226

ghsmulticonfig

Debug server
Enter the name of your debug connection. The software uses
this connection to specify options about the processor, such as
processor to use, board support library, and processor endianness.
For more information about the Debug server, refer to your Green
Hills MULTI documentation.

For example, if you are using the Freescale
MPC7448 simulator, you could enter the string
simppc -cpu=ppc7448 -dec -rom_use_entry. Valid
strings for specifying simulators in Debug server appear in the
following table.

Processor Type Configuration Debug Server Parameter
String

ARM Simulator arm_standalone.tgt simarm -cpu=arm9

MPC7400 Simulator ppc_standalone.tgt simppc -cpu=7400 -dec

BlackFin
537

Simulator bf_standalone.tgt simbf -cpu=bf537 -fast

Renesas
V850

Simulator v800_standalone.tgt sim850 -cpu=v850

Renesas
V850

Renesas
Minicube

v800_standalone.tgt 850eserv2 -minicube -noiop
-df=C:/ghs/multi505/v850e/
df3707.800 -id ffffffffff

For information about using hardware in your development work,
refer to Connecting to Your Target in the MULTI documentation.
The string you specify for Debug server can be the name of the
connection if you have one configured in the Connection Organizer
in MULTI IDE.

Host name
Specify the name of the machine that runs the service. Enter
localhost if the service runs on your PC. localhost is the only
supported host name.

1-227

ghsmulticonfig

Port number
Specify the port the service uses to communicate with MULTI.
The default port number is 4444. If you change the port value,
verify that the port is available for use. If the port you assign
is not available, the software returns an error when you try to
create a ghsmulti object.

Show server status window
Select this option to display the service status in the Microsoft®

Windows Task bar. Clearing the option removes the service
from the task bar. Best practice is to select this option. Keeping
this option selected enables the software to shut down the
communication services for Green Hills MULTI completely.

1-228

halt

Purpose Halt program execution by processor

Syntax IDE_Obj.halt
IDE_Obj.halt(timeout)

IDEs This function supports the following IDEs:

• Analog Devices VisualDSP++

• Eclipse IDE

• Green Hills MULTI

• Texas Instruments Code Composer Studio v3

Description IDE_Obj.halt stops the program running on the processor. After you
issue this command, MATLAB waits for a response from the processor
that the processor has stopped. By default, the wait time is 10 seconds.
If 10 seconds elapses before the response arrives, MATLAB returns an
error. In this syntax, the timeout period defaults to the global timeout
period specified in IDE_Obj. Use IDE_Obj.get to determine the global
timeout period. However, the processor usually stops in spite of the
error message.

To resume processing after you halt the processor, use run. Also, the
IDE_Obj.read('pc') function can determine the memory address
where the processor stopped after you use halt.

IDE_Obj.halt(timeout) immediately stops program execution by the
processor. After the processor stops, halt returns to the host. timeout
defines, in seconds, how long the host waits for the processor to stop
running. If the processor does not stop within the specified timeout
period, the routine returns with a timeout error.

Examples

Use one of the provided example programs to show how halt works.
Load and run one of the example projects. At the MATLAB prompt,
check whether the program is running on the processor.

IDE_Obj.isrunning

1-229

halt

ans =

1

IDE_Obj.isrunning % Alternate syntax for checking the run status.

ans =

1

IDE_Obj.halt % Stop the running application on the processor.

IDE_Obj.isrunning

ans =

0

Issuing the halt stops the process on the processor. Checking in the IDE
confirms that the process has stopped.

See Also isrunning | reset | run

1-230

info

Purpose Information about processor

Syntax adf=IDE_Obj.info
adf = IDE_Obj.info
adf = info(rx)
adf = IDE_Obj.info
adf = info(rx)

IDEs This function supports the following IDEs:

• Analog Devices VisualDSP++

• Green Hills MULTI

• Texas Instruments Code Composer Studio v3

Description adf=IDE_Obj.info returns debugger or processor properties associated
with the IDE handle object, IDE_Obj.

Using info with Multiprocessor Boards

For multiprocessor targets, the info method returns properties for each
processor with the array.

Examples
Using info with IDE_Obj, which is associated with 1 processor:

oinfo = IDE_Obj.info;

Using info with IDE_Obj, which is associated with 2 processors:

oinfo = IDE_Obj.info; % Returns a 1x2 array of infor struct

Using info with MULTI IDE

Before using info, open a program in the MULTI IDE debugger. When
you use info with an IDE handle object for the MULTI IDE, the info
method returns the following information.

1-231

info

Structure Element Data Type Description

adf.CurBrkPt String When the debugger is stopped at a breakpoint, the
field reports the index of the breakpoint. Otherwise,
this value is-1.

adf.File String Name of the current file shown in the debugger
source pane.

adf.Line Integer Line number of the cursor position in the file in the
debugger source pane. If a file is not open in the
source pane, this value is -1.

adf.MultiDir String Full path to your IDE installation the root folder).
For example

'C:\ghs5_01'

adf.PID Double Process ID from the debug server in the IDE.

adf.Procedure String Current procedure in the debugger source pane.

adf.Process Double Program number, defined by the IDE, of the current
program.

adf.Remote String Status of the remote connection, either Connected
or Not connected.

adf.Selection String The string highlighted in the debugger. If a string is
not highlighted, this value is 'null'.

1-232

info

Structure Element Data Type Description

adf.State String State of the loaded program. The possible reported
states appear in the following list:
• About to resume

• Dying

• Just executed

• Just forked

• No child

• Running

• Stopped

• Zombied

For details about the states and their definitions,
refer to your IDE debugger documentation.

adf.Target Double Unique identifier the indicates the processor family
and variant.

adf.TargetOS Double Real-time operating system on the processor if one
exists. Provides both the major and minor revision
information.

adf.TargetSeries Double Whether the processor belongs to a series of
processors. For details about the processor series,
refer to your IDE debugger documentation.

info returns valid information when the IDE debugger is connected to
processor hardware or a simulator.

Examples
On a PC with a simulator configured in the IDE, info returns the
following configuration information after stopping a running simulation:

adf=info(test_obj1)

1-233

info

adf =

CurBrkPt: 0

File: '...\Compute_Sum_and_Diff_multilink\Compute_Sum_and_Diff_main.c'

Line: 3

MultiDir: 'C:\ghs5_01'

PID: 2380

Procedure: 'main'

Process: 0

Remote: 'Connected'

Selection: '(null)'

State: 'Stopped'

Target: 4325392

TargetOS: [2x1 double]

TargetSeries: 3

When you create an IDE handle, the response from info looks like the
following before you load a project.

adf=info(test_obj2)

test_obj2 =

CurBrkPt: []
File: []
Line: []

MultiDir: []
PID: []

Procedure: []
Process: []
Remote: []

Selection: []
State: []

Target: []
TargetOS: []

TargetSeries: []

1-234

info

Using info with CCS IDE

adf = IDE_Obj.info returns the property names and property values
associated with the processor accessed by IDE_Obj. adf is a structure
containing the following information elements and values.

Structure Element Data Type Description

adf.procname String Processor name as defined in the CCS setup utility.
In multiprocessor systems, this name reflects the
specific processor associated with IDE_Obj.

adf.isbigendian Boolean Value describing the byte ordering used by the
processor. When the processor is big-endian, this
value is 1. Little-endian processors return 0.

adf.family Integer Three-digit integer that identifies the processor
family, ranging from 000 to 999. For example, 320
for Texas Instruments digital signal processors.

adf.subfamily Decimal Decimal representation of the hexadecimal
identification value that TI assigns to the processor
to identify the processor subfamily. IDs range
from 0x000 to 0x3822. Use dec2hex to convert the
value in adf.subfamily to standard notation. For
example

dec2hex(adf.subfamily)

produces '67' when the processor is a member of
the 67xx processor family.

adf.timeout Integer Default timeout value MATLAB software uses when
transferring data to and from CCS. Functions that
use a timeout value have an optional timeout input
argument. When you omit the optional argument,
MATLAB software uses 10s as the default value.

adf = info(rx) returns info as a cell arraying containing the names of
your open RTDX channels.

1-235

info

Examples
On a PC with a simulator configured in CCS IDE, info returns the
configuration for the processor being simulated:

IDE_Obj.info

ans =

procname: 'CPU'
isbigendian: 0

family: 320
subfamily: 103

timeout: 10

This example simulates the TMS320C62xx processor running in
little-endian mode. When you use CCS Setup Utility to change the
processor from little-endian to big-endian, info shows the change.

IDE_Obj.info

ans =

procname: 'CPU'
isbigendian: 1

family: 320
subfamily: 103

timeout: 10

If you have two open channels, chan1 and chan2,

adf = info(rx)

returns

adf =
'chan1'
'chan2'

1-236

info

where adf is a cell array. You can dereference the entries in adf to
manipulate the channels. For example, you can close a channel by
dereferencing the channel in adf in the close function syntax.

close(rx.adf{1,1})

Using info with VisualDSP++ IDE

adf = IDE_Obj.info returns the property names and property values
associated with the processor accessed by IDE_Obj. The adf variable is
a structure containing the following information elements and values.

Structure Element Data Type Description

adf.procname String Processor name as defined in the CCS setup utility.
In multiprocessor systems, this name reflects the
specific processor associated with IDE_Obj.

adf.proctype String String with the type of the DSP processor. The type
property is the processor type like "ADSP-21065L"
or "ADSP-2181".

adf.revision String String with the silicon revision string of the
processor.

adf = info(rx) returns info as a cell arraying containing the names of
your open RTDX channels.

Examples
When you have an adivdsp object IDE_Obj, info provides information
about the object:

IDE_Obj = adivdsp('sessionname','Testsession')

ADIVDSP Object:
Session name : Testsession
Processor name : ADSP-BF533
Processor type : ADSP-BF533
Processor number : 0
Default timeout : 10.00 secs

1-237

info

objinfo = IDE_Obj.info

objinfo =

procname: 'ADSP-BF533'
proctype: 'ADSP-BF533'
revision: ''

objinfo.procname

ans =

ADSP-BF533

See Also dec2hex | get | set

1-238

insert

Purpose Insert debug point in file

Syntax IDE_Obj.insert(addr,type,timeout)
IDE_Obj.insert(addr)
IDE_Obj.insert(file,line,type,timeout)

IDEs This function supports the following IDEs:

• Analog Devices VisualDSP++

• Eclipse IDE

• Green Hills MULTI

• Texas Instruments Code Composer Studio v3

Description IDE_Obj.insert(addr,type,timeout) places a debug point at the
provided address of the processor. The IDE_Obj handle defines
the processor that will receive the new debug point. The debug
point location is defined by addr, the desired memory address. The
IDEs support several types of debug points. Refer to your IDE help
documentation for information on their respective behavior. The
following table shows which debug types each IDE supports.

CCS IDE Eclipse IDE MULTI VisualDSP++

'break'
(default)

Yes Yes Yes Yes

'watch' Yes Yes

'probe' Yes

The timeout parameter defines how long to wait (in seconds) for the
insert to complete. If this period is exceeded, the routine returns
immediately with a timeout error. In general the action (insert) still
occurs, but the timeout value gave insufficient time to verify the
completion of the action.

IDE_Obj.insert(addr) same as the preceding example, except the
timeout value defaults to the timeout property specified by the IDE_Obj

1-239

insert

object. Use IDE_Obj.get('timeout') to examine this default timeout
value.

IDE_Obj.insert(file,line,type,timeout) places a debug point at
the specified line in a source file of Eclipse. The FILE parameter gives
the name of the source file. LINE defines the line number to receive the
breakpoint. Eclipse IDE provides several types of debug points. Refer to
the previous list of supported debug point types. Refer to Eclipse IDE
documentation for information on their respective behavior.

IDE_Obj.insert(file,line) same as the preceding example, except the
timeout value defaults to the timeout property specified by the IDE_Obj
object. Use IDE_Obj.get('timeout') to examine this default timeout
value.

See Also address | run

1-240

isenabled

Purpose Determine whether RTDX link is enabled for communications

Note Support for isenabled on C5000 processors will be removed
in a future version.

Syntax isenabled(rx,'channel')
isenabled(rx)

IDEs This function supports the following IDEs:

• Texas Instruments Code Composer Studio v3

Description isenabled(rx,'channel') returns ans=1 when the RTDX
channel specified by string 'channel' is enabled for read or write
communications. When 'channel' has not been enabled, isenabled
returns ans=0.

isenabled(rx) returns ans=1 when RTDX has been enabled,
independent of a channel. When you have not enabled RTDX you get
ans=0 back.

Important Requirements for Using isenabled

On the processor side, isenabled depends on RTDX to determine and
report the RTDX status. Therefore the you must meet the following
requirements to use isenabled.

1 The processor must be running a program when you query the RTDX
interface.

2 You must enable the RTDX interface before you check the status of
individual channels or the interface.

3 Your processor program must be polling periodically for isenabled
to work.

1-241

isenabled

Note For isenabled to return valid results, your processor must
be running a loaded program. When the processor is not running,
isenabled returns a status that may not represent the true state of the
channels or RTDX.

Examples With a program loaded on your processor, you can determine whether
RTDX channels are ready for use. Restart your program to be sure it is
running. The processor must be running for isenabled and enabled to
function. This example creates a ticcs object IDE_Obj to begin.

IDE_Obj.restart
IDE_Obj.run('run');
IDE_Obj.rtdx.enable('ichan');
IDE_Obj.rtdx.isenabled('ichan')

MATLAB software returns 1 indicating that your channel 'ichan'
is enabled for RTDX communications. To determine the mode for
the channel, use IDE_Obj.rtdxto display the properties of object
IDE_Obj.rtdx.

See Also clear | disable | enable

1-242

isreadable

Purpose Determine whether specified memory block can read MATLAB software

Note Support for isreadable(rx,'channel') on C5000 processors
will be removed in a future version.

Syntax IDE_Obj.isreadable(address,'datatype',count)
IDE_Obj.isreadable(address,'datatype')
isreadable(rx,'channel')

IDEs This function supports the following IDEs:

• Texas Instruments Code Composer Studio v3

Description IDE_Obj.isreadable(address,'datatype',count) returns 1 if the
processor referred to by IDE_Obj can read the memory block defined
by the address, count, and datatype input arguments. When
the processor cannot read a portion of the specified memory block,
isreadable returns 0. You use the same memory block specification for
this function as you use for the read function.

The data block being tested begins at the memory location defined by
address. count determines the number of values to be read. datatype
defines the format of data stored in the memory block. isreadable
uses the datatype string to determine the number of bytes to read per
stored value. For details about each input parameter, read the following
descriptions.

address — isreadable uses address to define the beginning of the
memory block to read. You provide values for address as either decimal
or hexadecimal representations of a memory location in the processor.
The full address at a memory location consists of two parts: the offset
and the memory page, entered as a vector [location, page], a string,
or a decimal value.

When the processor has only one memory page, as is true for many
digital signal processors, the page portion of the memory address is 0.
By default, ticcs sets the page to 0 at creation if you omit the page

1-243

isreadable

property as an input argument. For processors that have one memory
page, setting the page value to 0 lets you specify memory locations in
the processor using the memory location without the page value.

Examples of Address Property Values

Property
Value Address Type Interpretation

'1F' String Location is 31 decimal on
the page referred to by
IDE_Obj.page

10 Decimal Address is 10 decimal on
the page referred to by
IDE_Obj.page

[18,1] Vector Address location 10 decimal on
memory page 1 (IDE_Obj.page
= 1)

To specify the address in hexadecimal format, enter the address
property value as a string. isreadable interprets the string as the
hexadecimal representation of the desired memory location. To convert
the hex value to a decimal value, the function uses hex2dec. When you
use the string option to enter the address as a hex value, you cannot
specify the memory page. For string input, the memory page defaults to
the page specified by IDE_Obj.page.

count — A numeric scalar or vector that defines the number of
datatype values to test for being readable. To produce parallel
structure with read, count can be a vector to define multidimensional
data blocks. This function tests a block of data whose size is the product
of the dimensions of the input vector.

datatype — A string that represents a MATLAB software data type.
The total memory block size is derived from the value of count and the
datatype you specify. datatype determines how many bytes to check
for each memory value. isreadable supports the following data types.

1-244

isreadable

datatype
String

Number of
Bytes/Value Description

'double' 8 Double-precision floating point
values

'int8' 1 Signed 8-bit integers

'int16' 2 Signed 16-bit integers

'int32' 4 Signed 32-bit integers

'single' 4 Single-precision floating point data

'uint8' 1 Unsigned 8-bit integers

'uint16' 2 Unsigned 16-bit integers

'uint32' 4 Unsigned 32-bit integers

Like the iswritable, write, and read functions, isreadable checks for
valid address values. Illegal address values would be an address space
larger than the available space for the processor:

• 232 for the C6xxx series

• 216 for the C5xxx series

When the function identifies an illegal address, it returns an error
message stating that the address values are out of range.

IDE_Obj.isreadable(address,'datatype') returns 1 if the processor
referred to by IDE_Obj can read the memory block defined by the
address, and datatype input arguments. When the processor cannot
read a portion of the specified memory block, isreadable returns
0. Notice that you use the same memory block specification for this
function as you use for the read function. The data block being tested
begins at the memory location defined by address. When you omit the
count option, count defaults to one.

isreadable(rx,'channel') returns a 1 when the RTDX channel
specified by the string channel, associated with link rx, is configured
for read operation. When channel is not configured for reading,
isreadable returns 0.

1-245

isreadable

Like the iswritable, read, and write functions, isreadable checks for
valid address values. Illegal address values are address spaces larger
than the available space for the processor:

• 232 for the C6xxx series

• 216 for the C5xxx series

When the function identifies an illegal address, it returns an error
message stating that the address values are out of range.

Note isreadable relies on the memory map option in the IDE. If
you did not define the memory map for the processor in the IDE,
isreadable does not produce useful results. Refer to your Texas
Instruments Code Composer Studio documentation for information on
configuring memory maps.

Examples When you write scripts to run models in the MATLAB environment and
the IDE, the isreadable function is very useful. Use isreadable to
check that the channel from which you are reading is configured.

IDE_Obj = ticcs;

rx = IDE_Obj.rtdx;

% Define read and write channels to the processor linked by IDE_Obj.

open(rx,'ichannel','r');s

open(rx,'ochannel','w');

enable(rx,'ochannel');

enable(rx,'ichannel');

isreadable(rx,'ochannel')

ans=

0

isreadable(rx,'ichannel')

ans=

1

1-246

isreadable

Now that your script knows that it can read from ichannel, it proceeds
to read messages as required.

See Also hex2dec | iswritable | read

1-247

isrtdxcapable

Purpose Determine whether processor supports RTDX

Note Support for isrtdxcapable on C5000 processors will be removed
in a future version.

Syntax b=IDE_Obj.isrtdxcapable

IDEs This function supports the following IDEs:

• Texas Instruments Code Composer Studio v3

Description b=IDE_Obj.isrtdxcapable returns b=1 when the processor referenced
by object IDE_Obj supports RTDX. When the processor does not support
RTDX, isrtdxcapable returns b=0.

Using isrtdxcapable with Multiprocessor Boards

When your board contains more than one processor, isrtdxcapable
checks each processor on the processor, as defined by the IDE_Obj
object, and returns the RTDX capability for each processor on the
board. In the returned variable b, you find a vector that contains the
information for each accessed processor.

Examples Create a link to your C6711 DSK. Test to see if the processor on the
board supports RTDX.

IDE_Obj=ticcs; %Assumes you have one board and it is the C6711 DSK.

b=IDE_Obj.isrtdxcapable

b =

1

1-248

isrunning

Purpose Determine whether processor is executing process

Syntax IDE_Obj.isrunning

IDEs This function supports the following IDEs:

• Analog Devices VisualDSP++

• Eclipse IDE

• Green Hills MULTI

• Texas Instruments Code Composer Studio v3

Description IDE_Obj.isrunning returns 1 when the processor is executing a
program. When the processor is halted, isrunning returns 0.

Examples isrunning lets you determine whether the processor is running. After
you load a program to the processor, use isrunning to verify that the
program is running.

IDE_Obj.load('program.exe','program')
IDE_Obj.run
IDE_Obj.isrunning

ans =

1
IDE_Obj.halt
IDE_Obj.isrunning

ans =

0

See Also halt | load | run

1-249

isvisible

Purpose Determine whether IDE appears on desktop

Syntax IDE_Obj.isvisible

IDEs This function supports the following IDEs:

• Analog Devices VisualDSP++

• Texas Instruments Code Composer Studio v3

Description IDE_Obj.isvisible returns 1 if the IDE is running on the desktop
and the window is open. If the IDE is not running or is running in the
background, this method returns 0.

Examples First use a constructor to create an IDE handle object and start the
IDE. To determine if the IDE is visible:

IDE_Obj.isvisible #determine if the ide is visible

ans =

1
IDE_Obj.visible(0) #make the ide invisible
IDE_Obj.isvisible #determine if the ide is visible

ans =

0

Notice that the IDE is not visible on your desktop. Recall that MATLAB
software did not open the IDE. When you close MATLAB software
with the IDE in this invisible state, the IDE remains running in the
background. To close it, perform either of the following tasks:

• Open MATLAB software. Create a link to the IDE. Use the new link
to make the IDE visible. Close the IDE.

• Open Microsoft Windows® Task Manager. Click Processes. Find
and highlight IDE_Obj_app.exe. Click End Task.

1-250

isvisible

See Also info | visible

1-251

iswritable

Purpose Determine whether MATLAB can write to specified memory block

Note Support for iswritable(rx,'channel') on C5000 processors
will be removed in a future version.

Syntax IDE_Obj.iswritable(address,'datatype',count)
IDE_Obj.iswritable(address,'datatype')
iswritable(rx,'channel')

IDEs This function supports the following IDEs:

• Texas Instruments Code Composer Studio v3

Description IDE_Obj.iswritable(address,'datatype',count) returns 1 if
MATLAB software can write to the memory block defined by the
address, count, and datatype input arguments on the processor
referred to by IDE_Obj. When the processor cannot write to a portion
of the specified memory block, iswritable returns 0. You use the
same memory block specification for this function as you use for the
write function.

The data block being tested begins at the memory location defined by
address. count determines the number of values to write. datatype
defines the format of data stored in the memory block. iswritable
uses the datatype parameter to determine the number of bytes to
write per stored value. For details about each input parameter, read
the following descriptions.

address — iswritable uses address to define the beginning of the
memory block to write to. You provide values for address as either
decimal or hexadecimal representations of a memory location in the
processor. The full address at a memory location consists of two parts:
the offset and the memory page, entered as a vector [location, page], a
string, or a decimal value. When the processor has only one memory
page, as is true for many digital signal processors, the page portion

1-252

iswritable

of the memory address is 0. By default, ticcs sets the page to 0 at
creation if you omit the page property as an input argument.

For processors that have one memory page, setting the page value to 0
lets you specify memory locations in the processor using the memory
location without the page value.

Examples of Address Property Values

Property
Value Address Type Interpretation

1F String Location is 31 decimal on
the page referred to by
IDE_Obj.page

10 Decimal Address is 10 decimal on
the page referred to by
IDE_Obj.page

[18,1] Vector Address location 10
decimal on memory page
1 (IDE_Obj.page = 1)

To specify the address in hexadecimal format, enter the address
property value as a string. iswritable interprets the string as the
hexadecimal representation of the desired memory location. To convert
the hex value to a decimal value, the function uses hex2dec. When you
use the string option to enter the address as a hex value, you cannot
specify the memory page. For string input, the memory page defaults to
the page specified by IDE_Obj.page.

count — A numeric scalar or vector that defines the number of
datatype values to test for being writable. To produce parallel
structure with write, count can be a vector to define multidimensional
data blocks. This function tests a block of data whose size is the total
number of elements in matrix specified by the input vector. If count is
the vector [10 10 10], then:

IDE_Obj.iswritable(31,[10 10 10])

1-253

iswritable

iswritable writes 1000 values (10*10*10) to the processor. For a
two-dimensional matrix defined with count as

IDE_Obj.iswritable(31,[5 6])

iswritable writes 30 values to the processor.

datatype — a string that represents a MATLAB data type. The total
memory block size is derived from the value of count and the specified
datatype. datatype determines how many bytes to check for each
memory value. iswritable supports the following data types.

datatype String Description

'double' Double-precision floating point values

'int8' Signed 8-bit integers

'int16' Signed 16-bit integers

'int32' Signed 32-bit integers

'single' Single-precision floating point data

'uint8' Unsigned 8-bit integers

'uint16' Unsigned 16-bit integers

'uint32' Unsigned 32-bit integers

IDE_Obj.iswritable(address,'datatype') returns 1 if the processor
referred to by IDE_Obj can write to the memory block defined by the
address, and count input arguments. When the processor cannot write
a portion of the specified memory block, iswritable returns 0. Notice
that you use the same memory block specification for this function as
you use for the write function. The data block tested begins at the
memory location defined by address. When you omit the count option,
count defaults to one.

1-254

iswritable

Note iswritable relies on the memory map option in the IDE. If
you did not define the memory map for the processor in the IDE,
this function does not produce useful results. Refer to your Texas
Instruments Code Composer Studio documentation for information on
configuring memory maps.

Like the isreadable, read, and write functions, iswritable checks for
valid address values. Illegal address values would be an address space
larger than the available space for the processor:

• 232 for the C6xxx series

• 216 for the C5xxx series

When the function identifies an illegal address, it returns an error
message stating that the address values are out of range.

iswritable(rx,'channel') returns a Boolean value signifying
whether the RTDX channel specified by channel and rx, is configured
for write operations.

Examples When you write scripts to run models in MATLAB software and the
IDE, the iswritable function is very useful. Use iswritable to check
that the channel to which you are writing to is indeed configured.

IDE_Obj = ticcs;

rx = IDE_Obj.rtdx;

% Define read and write channels to the processor linked by IDE_Obj.

open(rx,'ichannel','r');

open(rx,'ochannel','w');

enable(rx,'ochannel');

enable(rx,'ichannel');

iswritable(rx,'ochannel')

ans=

1

1-255

iswritable

iswritable(rx,'ichannel')

ans=

0

Now that your script knows that it can write to 'ichannel', it proceeds
to write messages as required.

See Also hex2dec | isreadable | read

1-256

list

Purpose Information listings from IDE

Syntax IDE_Obj.infolist = list('type')
IDE_Obj.infolist = list('type',typename)

IDEs This function supports the following IDEs:

• Green Hills MULTI

• Texas Instruments Code Composer Studio v3

Description Using list with MULTI

infolist = IDE_Obj.list(type) reads information about your the
IDE project and returns it in infolist. Different types of information
and return formats are possible depending on the input arguments you
supply to the list function call.

Note list does not recognize or return information about variables
that you declare in your code but that are not used or initialized.

The type argument specifies which information listing to return. To
determine the information that list returns, use one of the entries in
the following table.

type String Description

project Return information about the
current project in the IDE

variable Return information about one or
more embedded variables

function Return details about one or more
functions in your project

list returns dynamic the IDE information that you can alter. Returned
listings represent snapshots of the current the IDE configuration

1-257

list

only. Be aware that earlier copies of infolist might contain stale
information.

infolist = IDE_Obj.list('project') returns a vector of structures
that contain project information in the format shown in the following
table.

infolist Structure Element Description

infolist(1).name Project file name (with path).

infolist(1).primary Configuration file used for the
project. For more information,
refer to new.

infolist(1).compileroptions Compiler options string for the
project.

infolist(1).srcfiles Vector of structures that
describes project source files.
Each structure contains the
name and path for each source
file—infolist(1).srcfiles.name.

infolist(1).type Shows the project type, either
project or projlib. For more
information, refer to new.

infolist(2).... ...

infolist(n).... ...

infolist = IDE_Obj.list('variable') returns a structure of
structures that contains information on the local variables within scope.
The list also includes information on the global variables. If a local
variable has the same symbol name as a global variable, list returns
the local variable information.

infolist = IDE_Obj.list('variable',varname) returns information
about the specified variable varname.

1-258

list

infolist = IDE_Obj.list('variable',varnamelist) returns
information about variables in a list specified by varnamelist. The
information returned in each structure follows the format in the
following table.

infolist Structure Element Description

infolist.varname(1).name Symbol name.

infolist.varname(1).isglobal Indicates whether symbol is global
or local.

infolist.varname(1).location Information about the location of
the symbol.

infolist.varname(1).size Size per dimension.

infolist.varname(1).uclass IDE handle class that matches the
type of this symbol.

infolist.varname(1).bitsize Size in bits. More information is
added to the structure depending
on the symbol type.

infolist.(varname1).type Data type of symbol.

infolist.varname(2).... ...

infolist.varname(n).... ...

list uses the variable name as the field name to refer to the structure
information for the variable.

infolist = IDE_Obj.list('globalvar') returns a structure that
contains information on the global variables.

infolist = IDE_Obj.list('globalvar',varname) returns a structure
that contains information on the specified global variable.

infolist = IDE_Obj.list('globalvar',varnamelist) returns a
structure that contains information on global variables in the list.
The returned information follows the same format as the syntax
infolist = IDE_Obj.list('variable',...).

1-259

list

infolist = IDE_Obj.list('function') returns a structure that
contains information on the functions in the embedded program.

infolist = IDE_Obj.list('function',functionname) returns
a structure that contains information on the specified function
functionname.

infolist = IDE_Obj.list('function',functionnamelist) returns
a structure that contains information on the specified functions in
functionnamelist. The returned information follows the following
format when you specify option type as function.

infolist Structure Element Description

infolist.functionname(1).name Function name

infolist.functionname(1).filename Name of file where
function is defined

infolist.functionname(1).address Relevant address
information such as
start address and end
address

infolist.functionname(1).funcvar Variables local to the
function

infolist.functionname(1).uclass IDE handle class
that matches
the type of this
symbol—function

infolist.functionname(1).funcdecl Function
declaration—where
information such as
the function return
type is contained

infolist.functionname(1).islibfunc Determine if the
library is a function

1-260

list

infolist Structure Element Description

infolist.functionname(1).linepos Start and end line
positions of function

infolist.functionname(1).funcinfo Miscellaneous
information about
the function

infolist.functionname(2)... ...

infolist.functionname(n)... ...

To refer to the function structure information, list uses the function
name as the field name.

IDE_Obj.infolist = list('type') returns a structure that contains
information on the defined data types in the embedded program. This
method includes struct, enum and union data types and excludes
typedefs. The name of a defined type is its C struct tag, enum tag
or union tag. If the C tag is not defined, it is referred to by the IDE
compiler as '$faken' where n is an assigned number.

IDE_Obj.infolist = list('type',typename) returns a structure that
contains information on the specified defined data type.

IDE_Obj.infolist = list('type',typenamelist) returns a structure
that contains information on the specified defined data types in the
list. The returned information follows the following format when you
specify option type as type.

infolist Structure Element Description

infolist.typename(1).type Type name.

infolist.typename(1).size Size of this type.

infolist.typename(1).uclass IDE handle class that
matches the type of
this symbol. Additional
information is added
depending on the type.

1-261

list

infolist Structure Element Description

infolist.typename(2).... ...

infolist.typename(n).... ...

For the field name, list uses the type name to refer to the type
structure information.

The following list provides important information about variable and
field names:

• When a variable name, type name, or function name is not a valid
MATLAB structure field name, list replaces or modifies the name
so it becomes valid.

• In field names that contain the invalid dollar character $, list
replaces the $ with DOLLAR.

• Changing the MATLAB field name does not change the name of the
embedded symbol or type.

Examples
This first example shows list used with a variable, providing
information about the variable varname. Notice that the invalid field
name _with_underscore gets changed to Q_with_underscore. To make
the invalid name valid, list inserts the character Q before the name.

varname1 = '_with_underscore'; % Invalid fieldname.
IDE_Obj.list('variable',varname1);
ans =

Q_with_underscore : [varinfo]
ans. Q_with_underscore
ans=

name: '_with_underscore'
isglobal: 0
location: [1x62 char]

size: 1
uclass: 'numeric'

1-262

list

type: 'int'
bitsize: 16

To show how to use list with a defined C type, variable typename1
includes the type argument. Because valid field names cannot contain
the $ character, list changes the $ to DOLLAR.

typename1 = '$fake3'; % Name of defined C type with no tag.
IDE_Obj.list('type',typename1);
ans =

DOLLARfake0 : [typeinfo]

ans.DOLLARfake0=

type: 'struct $fake0'
size: 1

uclass: 'structure'
sizeof: 1

members: [1x1 struct]

When you request information about a project in the IDE, you see a
listing like the following that includes structures containing details
about your project.

projectinfo=IDE_Obj.list('project')

projectinfo =

name: 'D:\Work\c6711dskafxr_c6000_rtw\c6711dskafxr.pjt'

type: 'project'

targettype: 'TMS320C67XX'

srcfiles: [69x1 struct]

buildcfg: [3x1 struct]

1-263

list

Using list with CCS IDE

infolist = IDE_Obj.list(type) reads information about your CCS
session and returns it in infolist. Different types of information and
return formats apply depending on the input arguments you supply to
the list function call. The type argument specifies which information
listing to return. To determine the information that list returns, use
one of the following as the type parameter string:

• project— Tell list to return information about the current project
in CCS.

• variable — Tell list to return information about one or more
embedded variables.

• globalvar — Tell list to return information about one or more
global embedded variables.

• function— Tell list to return details about one or more functions
in your project.

The list function returns dynamic CCS information that can be altered
by the user. Returned listings represent snapshots of the current CCS
configuration only. Be aware that earlier copies of infolist might
contain stale information.

Also, list may report incorrect information when you make changes
to variables from MATLAB software. To report variable information,
list uses the CCS API, which only knows about variables in CCS.
Your changes from MATLAB software do not appear through the API
and list. For example, the following operations return incorrect or
old data information from list.

Suppose your original prototype is

unsigned short tgtFunction7(signed short signedShortArray1[]);

After creating the function object fcnObj, perform a declare operation
with this string to change the declaration:

unsigned short tgtFunction7(unsigned short signedShortArray1[]);

1-264

list

Now try using list to return information about signedShortArray1.

list(fcnObj,'signedShortArray1')

address: [3442 1]
location: [1x66 char]

size: 1
bitsize: 16
reftype: 'short'
referent: [1x1 struct]

member_pts_to_same_struct: 0
name: 'signedShortArray1'

You get this outcome because list uses the CCS API to query
information about a particular variable. As far as the API is concerned,
the first input variable is a short*. Changing the declaration does
not change anything.

When you specify option type as project, for example
infolist = IDE_Obj.list('project'), the method returns a vector of
structures that contain project information in the following format.

infolist Structure Element Description

infolist(1).name Project file name (with path).

infolist(1).type Project type — project,projlib, or
projext, refer to new.

infolist(1).processortype String description of processor CPU.

infolist(1).srcfiles Vector of structures that describes
project source files. Each
structure contains the name
and path for each source file —
infolist(1).srcfiles.name.

1-265

list

infolist Structure Element Description

infolist(1).buildcfg Vector of structures that describe
build configurations, each with the
following entries:

• infolist(1).buildcfg.name—
the build configuration name.

• infolist(1).buildcfg.outpath
— the default folder for storing
the build output.

infolist(2).... ...

infolist(n).... ...

infolist = IDE_Obj.list('variable') returns a structure of
structures that contains information on the local variables within scope.
The list also includes information on the global variables. However,
that if a local variable has the same symbol name as a global variable,
list returns the information about the local variable.

infolist = IDE_Obj.list('variable',varname) returns information
about the specified variable varname.

infolist = IDE_Obj.list('variable',varnamelist) returns
information about variables in a list specified by varnamelist. The
information returned in each structure follows the following format
when you specify option type as variable.

infolist Structure Element Description

infolist.varname(1).name Symbol name.

infolist.varname(1).isglobal Indicates whether symbol is global
or local.

infolist.varname(1).location Information about the location of
the symbol.

infolist.varname(1).size Size per dimension.

1-266

list

infolist Structure Element Description

infolist.varname(1).uclass ticcs object class that matches
the type of this symbol.

infolist.varname(1).bitsize Size in bits. More information is
added to the structure depending
on the symbol type.

infolist.varname(2).... ...

infolist.varname(n).... ...

list uses the variable name as the field name to refer to the structure
information for the variable.

infolist = IDE_Obj.list('globalvar') returns a structure that
contains information on the global variables.

infolist = IDE_Obj.list('globalvar',varname) returns a structure
that contains information on the specified global variable.

infolist = IDE_Obj.list('globalvar',varnamelist) returns a
structure that contains information on global variables in the list.
The returned information follows the same format as the syntax
infolist = IDE_Obj.list('variable',...).

infolist = IDE_Obj.list('function') returns a structure that
contains information on the functions in the embedded program.

infolist = IDE_Obj.list('function',functionname) returns
a structure that contains information on the specified function
functionname.

infolist = IDE_Obj.list('function',functionnamelist) returns
a structure that contains information on the specified functions in
functionnamelist. The returned information follows the following
format when you specify option type as function.

1-267

list

infolist Structure Element Description

infolist.functionname(1).name Function name

infolist.functionname(1).filename Name of file where
function is defined

infolist.functionname(1).address Relevant address
information such as
start address and end
address

infolist.functionname(1).funcvar Variables local to the
function

infolist.functionname(1).uclass ticcs object class
that matches the
type of this symbol —
function

infolist.functionname(1).funcdecl Function declaration
— where information
such as the function
return type is
contained

infolist.functionname(1).islibfunc Determine if the
library is a function

infolist.functionname(1).linepos Start and end line
positions of function

infolist.functionname(1).funcinfo Miscellaneous
information about
the function

infolist.functionname(2)... ...

infolist.functionname(n)... ...

To refer to the function structure information, list uses the function
name as the field name.

1-268

list

The following list provides important information about variable and
field names:

• When a variable name, type name, or function name is not a valid
MATLAB software structure field name, list replaces or modifies
the name so it becomes valid.

• In field names that contain the invalid dollar character $, list
replaces the $ with DOLLAR.

• Changing the MATLAB software field name does not change the
name of the embedded symbol or type.

Examples
To show how to use list with a defined C type, variable typename1
includes the type argument. Because valid field names cannot contain
the $ character, list changes the $ to DOLLAR.

typename1 = '$fake3'; % name of defined C type with no tag
IDE_Obj.list('type',typename1);
ans =

DOLLARfake0 : [typeinfo]

ans.DOLLARfake0=

type: 'struct $fake0'
size: 1

uclass: 'structure'
sizeof: 1

members: [1x1 struct]

When you request information about a project in CCS, you see a listing
like the following that includes structures containing details about your
project.

projectinfo=IDE_Obj.list('project')

projectinfo =

1-269

list

name: 'D:\Work\c6711dskafxr_c6000_rtw\c6711dskafxr.pjt'

type: 'project'

processortype: 'TMS320C67XX'

srcfiles: [69x1 struct]

buildcfg: [3x1 struct]

See Also info

1-270

listsessions

Purpose List existing sessions

Syntax list = listsessions
list = listsessions('verbose')

IDEs This function supports the following IDEs:

• Analog Devices VisualDSP++

Description list = listsessions returns list that contains a listing of the
sessions by name currently in the development environment.

list = listsessions('verbose') adds the optional input argument
verbose. When you include the verbose argument, listsessions
returns a cell array that contains one row for each existing session.
Each row has three columns — processor type, platform name, and
processor name.

See Also adivdsp

1-271

load

Purpose Load program file onto processor

Syntax IDE_Obj.load(filename,timeout)

IDEs This function supports the following IDEs:

• Analog Devices VisualDSP++

• Eclipse IDE

• Green Hills MULTI

• Texas Instruments Code Composer Studio v3

Description IDE_Obj.load(filename,timeout) loads the file specified by the
filename argument to the processor.

The filename argument can include a full path to the file, or the name
of a file in the IDE working folder.

With the VisualDSP++, MULTI, and Code Composer Studio IDEs, you
can use the cd method to check or modify the IDE working folder.

For MULTI, you can add an option argument after filename to specify
options for the 'prepare_target' command in MULTI debugger. Refer
to the MULTI documentation for information on 'prepare_target'.

Only use load with program files created by the IDE build process.

The timeout argument defines the number of seconds MATLAB waits
for the load process to complete. If the time-out period expires before
the load process returns a completion message, MATLAB generates an
error and returns. Usually the program load process works in spite of
the error message.

If you omit the timeout argument, load uses the timeout
property of the IDE handle object, which you can get by entering
IDE_Obj.get('timeout').

Using load with Eclipse IDE

With Eclipse IDE:

1-272

load

• Before using load, use activate to make the project associated with
the executable file active.

• For the filename argument, use a relative or absolute path to specify
the executable file.

A relative path consists of:

project/configuration/executablefile

An absolute path consists of:

workspace/project/configuration/executablefile

If the workspace is not the active workspace when you use load, the
software generates errors.

If the project is not the active project when you use load, the software
makes the project active.

If the software generates socket server errors when you use methods
with a Eclipse IDE handle object, such as IDE_Obj:

1 Delete the handle object from the MATLAB workspace.

2 Reconnect to the Eclipse IDE using the eclipseide constructor.

Examples IDE_Obj.load(programfile)
run(id)

See Also cd | dir | open

1-273

ExecutionTimeInSeconds

Purpose Get execution time in seconds for profiled section of code

Syntax ExecutionTimes = NthSectionProfile.ExecutionTimeInSeconds

Description ExecutionTimes = NthSectionProfile.ExecutionTimeInSeconds
returns a vector of execution times, measured in seconds, for the
profiled section of code. Each element of ExecutionTimes contains
the difference between the timer reading at the start and the end of
the section.

If you set the CodeProfilingSaveOptions parameter to 'SummaryOnly',
NthSectionProfile.ExecutionTimeInSeconds returns an empty
array. To change that parameter, open the Configuration Parameters
dialog box by pressing Ctrl+E, open the Verification pane under
Code Generation, and change the Save options parameter to All
measurement and analysis data.

Input
Arguments

NthSectionProfile - coder.profile.ExecutionTimeSection
object

Object generated by the coder.profile.ExecutionTime property
Sections

Output
Arguments

ExecutionTimes - Execution time measurements
double

Execution times, in seconds, for section of code. Returned as a vector.

Examples Get Vector of Code Execution Times

Get execution times for a code section.

1

Run a simulation with a model that is configured to generate a
workspace variable with execution time measurements. For example:

rtwdemo_sil_topmodel;
set_param('rtwdemo_sil_topmodel', 'CodeExecutionProfiling', 'on');

1-274

ExecutionTimeInSeconds

set_param('rtwdemo_sil_topmodel', 'SimulationMode', 'software-in-the-l
set_param('rtwdemo_sil_topmodel', 'CodeProfilingInstrumentation', 'on
set_param('rtwdemo_sil_topmodel', 'CodeProfilingSaveOptions', 'AllData
sim('rtwdemo_sil_topmodel');

The simulation generates the workspace variable executionProfile
(default).

2

At the end of the simulation, get profile for the seventh code section:

SeventhSectionProfile = executionProfile.Sections(7);

3

Get vector of execution times for code section:

time_vector = SeventhSectionProfile.ExecutionTimeInSeconds;

See Also Sections | ExecutionTimeInTicks

Concepts • “Configure Code Execution Profiling”
• “Analyze Code Execution Data”

1-275

ExecutionTimeInTicks

Purpose Get execution times in timer ticks for profiled section of code

Syntax ExecutionTimes = NthSectionProfile.ExecutionTimeInTicks

Description ExecutionTimes = NthSectionProfile.ExecutionTimeInTicks
returns a vector of execution times, measured in timer ticks, for the
profiled section of code. Each element of ExecutionTimes contains the
difference between the timer reading at the start and the end of the
section. The data type of the arrays is the same as the data type of
the timer used on the target, which allows you to infer the maximum
range of the timer measurements.

NthSectionProfile is a coder.profile.ExecutionTimeSection object
generated by the coder.profile.ExecutionTime property Sections.

If you set the CodeProfilingSaveOptions parameter to 'SummaryOnly',
NthSectionProfile.ExecutionTimeInTicks returns an empty array.
To change that parameter, open the Configuration Parameters dialog by
pressing Ctrl+E, open the Verification pane under Code Generation,
and change the Save options parameter to All measurement and
analysis data.

Tip You can calculate the execution time in seconds using the formula

ExecutionTimeInSecs ExecutionTimeInTicks TimerTicksPerSeco / nnd

Output
Arguments

ExecutionTimes

Vector of execution times, in timer ticks, for profiled section of code

SelfExecutionTimes

Vector of execution times, in timer ticks, for profiled section of code but
excluding time spent in child functions

See Also Sections | TimerTicksPerSecond | display | report |
Name | SamplePeriod | SampleOffset | Number | NumCalls |

1-276

ExecutionTimeInTicks

MaximumExecutionTimeCallNum | MaximumSelfTimeCallNum |
MaximumExecutionTimeInTicks | TotalExecutionTimeInTicks
| SelfTimeInTicks | MaximumSelfTimeInTicks |
TotalSelfTimeInTicks

How To • “Configure Code Execution Profiling”

• “Configure Code Execution Profiling”

• “View and Compare Code Execution Times”

1-277

MaximumExecutionTimeCallNum

Purpose Get the call number at which maximum number of timer ticks occurred

Syntax MaxTicksCallNum =
NthSectionProfile.MaximumExecutionTimeCallNu

m

Description MaxTicksCallNum =
NthSectionProfile.MaximumExecutionTimeCallNum returns the call
number at which the maximum number of timer ticks was recorded in a
single invocation of the profiled code section during a simulation.

NthSectionProfile is a coder.profile.ExecutionTimeSection object
generated by the coder.profile.ExecutionTime property Sections.

Output
Arguments

MaxTicksCallNum

Call number at which the maximum number of timer ticks occurred for
a single invocation of the profiled code section

See Also Sections | TimerTicksPerSecond | display | report | Name
| SamplePeriod | SampleOffset | ExecutionTimeInTicks
| Number | NumCalls | MaximumSelfTimeCallNum |
ExecutionTimeInTicks | MaximumExecutionTimeInTicks
| TotalExecutionTimeInTicks | SelfTimeInTicks |
MaximumSelfTimeInTicks | TotalSelfTimeInTicks

How To • “Configure Code Execution Profiling”

• “Configure Code Execution Profiling”

• “View and Compare Code Execution Times”

1-278

MaximumExecutionTimeInTicks

Purpose Get maximum number of timer ticks for single invocation of profiled
code section

Syntax MaxTicks = NthSectionProfile.MaximumExecutionTimeInTicks

Description MaxTicks = NthSectionProfile.MaximumExecutionTimeInTicks
returns the maximum number of timer ticks recorded in a single
invocation of the profiled code section during a simulation.

NthSectionProfile is a coder.profile.ExecutionTimeSection object
generated by the coder.profile.ExecutionTime property Sections.

Output
Arguments

MaxTicks

Maximum number of timer ticks for single invocation of profiled code
section

See Also Sections | TimerTicksPerSecond | display | report | Name
| SamplePeriod | SampleOffset | ExecutionTimeInTicks
| Number | NumCalls | MaximumExecutionTimeCallNum
| MaximumSelfTimeCallNum | ExecutionTimeInTicks
| TotalExecutionTimeInTicks | SelfTimeInTicks |
MaximumSelfTimeInTicks | TotalSelfTimeInTicks

How To • “Configure Code Execution Profiling”

• “Configure Code Execution Profiling”

• “View and Compare Code Execution Times”

1-279

TotalExecutionTimeInTicks

Purpose Get total number of timer ticks recorded for profiled code section

Syntax TotalTicks = NthSectionProfile.TotalExecutionTimeInTicks

Description TotalTicks = NthSectionProfile.TotalExecutionTimeInTicks
returns the total number of timer ticks recorded for the profiled code
section over the entire simulation.

NthSectionProfile is a coder.profile.ExecutionTimeSection object
generated by the coder.profile.ExecutionTime property Sections.

Output
Arguments

TotalTicks

Total number of timer ticks for profiled code section

See Also Sections | TimerTicksPerSecond | display | report |
Name | SamplePeriod | SampleOffset | Number | NumCalls
| MaximumExecutionTimeCallNum | MaximumSelfTimeCallNum
| ExecutionTimeInTicks | MaximumExecutionTimeInTicks
| SelfTimeInTicks | MaximumSelfTimeInTicks |
TotalSelfTimeInTicks

How To • “Configure Code Execution Profiling”

• “Configure Code Execution Profiling”

• “View and Compare Code Execution Times”

1-280

SelfTimeInTicks

Purpose Get number of timer ticks recorded for profiled code section, excluding
time spent in child functions

Syntax SelfTicks = NthSectionProfile.SelfTimeInTicks

Description SelfTicks = NthSectionProfile.SelfTimeInTicks returns the
number of timer ticks recorded for the profiled code section. However,
this number excludes the time spent in calls to child functions.

NthSectionProfile is a coder.profile.ExecutionTimeSection object
generated by the coder.profile.ExecutionTime property Sections.

Output
Arguments

SelfTicks

Number of timer ticks for profiled code section, excluding periods in
child functions

See Also Sections | TimerTicksPerSecond | display | report | Name
| SamplePeriod | SampleOffset | ExecutionTimeInTicks
| Number | NumCalls | MaximumExecutionTimeCallNum
| MaximumSelfTimeCallNum | ExecutionTimeInTicks |
MaximumExecutionTimeInTicks | TotalExecutionTimeInTicks |
MaximumSelfTimeInTicks | TotalSelfTimeInTicks

How To • “Configure Code Execution Profiling”

• “Configure Code Execution Profiling”

• “View and Compare Code Execution Times”

1-281

MaximumSelfTimeCallNum

Purpose Get the call number at which the maximum number of timer ticks
occurred, excluding time spent in child functions

Syntax MaxSelfTicksCallNum = NthSectionProfile.MaxSelfTimeCallNum

Description MaxSelfTicksCallNum = NthSectionProfile.MaxSelfTimeCallNum
returns the call number at which the maximum number of self-time
ticks occurred for the profiled code section.

NthSectionProfile is a coder.profile.ExecutionTimeSection object
generated by the coder.profile.ExecutionTime property Sections.

Output
Arguments

MaxSelfTicksCallNum

Call number at which the maximum number of self-time ticks occurred
for profiled code section

See Also Sections | TimerTicksPerSecond | display | report | Name
| SamplePeriod | SampleOffset | ExecutionTimeInTicks
| Number | NumCalls | MaximumExecutionTimeCallNum |
ExecutionTimeInTicks | MaximumExecutionTimeInTicks
| TotalExecutionTimeInTicks | SelfTimeInTicks |
MaximumSelfTimeInTicks | TotalSelfTimeInTicks

How To • “Configure Code Execution Profiling”

• “Configure Code Execution Profiling”

• “View and Compare Code Execution Times”

1-282

MaximumSelfTimeInTicks

Purpose Get the maximum number of timer ticks allowed to be recorded for
profiled code section, excluding time spent in child functions

Syntax MaxSelfTicks = NthSectionProfile.MaximumSelfTimeInTicks

Description MaxSelfTicks = NthSectionProfile.MaximumSelfTimeInTicks
returns the maximum number of timer ticks allowed to be recorded
for the profiled code section. This number excludes the time spent in
calls to child functions.

NthSectionProfile is a coder.profile.ExecutionTimeSection object
generated by the coder.profile.ExecutionTime property Sections.

Output
Arguments

MaxSelfTicks

Maximum number of timer ticks for profiled code section, excluding
periods in child functions

See Also Sections | TimerTicksPerSecond | display | report | Name
| SamplePeriod | SampleOffset | ExecutionTimeInTicks
| Number | NumCalls | MaximumExecutionTimeCallNum
| MaximumSelfTimeCallNum | ExecutionTimeInTicks |
MaximumExecutionTimeInTicks | TotalExecutionTimeInTicks |
SelfTimeInTicks | TotalSelfTimeInTicks

How To • “Configure Code Execution Profiling”

• “Configure Code Execution Profiling”

• “View and Compare Code Execution Times”

1-283

TotalSelfTimeInTicks

Purpose Get total number of timer ticks recorded for profiled code section,
excluding time spent in child functions

Syntax TotalSelfTicks = NthSectionProfile.TotalSelfTimeInTicks

Description TotalSelfTicks = NthSectionProfile.TotalSelfTimeInTicks
returns the total number of timer ticks recorded for the profiled code
section over the entire simulation. However, this number excludes the
time spent in calls to child functions.

NthSectionProfile is a coder.profile.ExecutionTimeSection object
generated by the coder.profile.ExecutionTime property Sections.

Output
Arguments

TotalSelfTicks

Total number of timer ticks for profiled code section, excluding periods
in child functions

See Also Sections | TimerTicksPerSecond | display | report | Name
| SamplePeriod | SampleOffset | ExecutionTimeInTicks
| Number | NumCalls | MaximumExecutionTimeCallNum
| MaximumSelfTimeCallNum | ExecutionTimeInTicks |
MaximumExecutionTimeInTicks | TotalExecutionTimeInTicks |
SelfTimeInTicks | MaximumSelfTimeInTicks

How To • “Configure Code Execution Profiling”

• “Configure Code Execution Profiling”

• “View and Compare Code Execution Times”

1-284

rtw.codegenObjectives.Objective.modifyInheritedParam

Purpose Modify inherited parameter values

Syntax modifyInheritedParam(obj, paramName, value)

Description modifyInheritedParam(obj, paramName, value) changes the value
of an inherited parameter that the Code Generation Advisor verifies in
Check model configuration settings against code generation
objectives. Use this method when you create a new objective from
an existing objective.

Input
Arguments

obj Handle to a code generation objective object
previously created.

paramName Parameter that you modify in the objective.

value Value of the parameter.

Examples Change the value of Inlineparameters to off in the objective.

modifyInheritedParam(obj, 'InlineParams', 'off');

See Also get_param

How To • “Create Custom Objectives”

• “Parameter Command-Line Information Summary”

1-285

msgcount

Purpose Number of messages in read-enabled channel queue

Note Support for msgcount on C5000 processors will be removed in a
future version.

Syntax msgcount(rx,'channel')

IDEs This function supports the following IDEs:

• Texas Instruments Code Composer Studio v3

Description msgcount(rx,'channel') returns the number of unread messages in
the read-enabled queue specified by channel for the RTDX interface rx.
You cannot use msgcount on channels configured for write access.

Examples If you have created and loaded a program to the processor, you can
write data to the processor, then use msgcount to determine the number
of messages in the read queue.

1 Create and load a program to the processor.

2 Write data to the processor from MATLAB software.

indata=1:100;
writemsg(IDE_Obj.rtdx,'ichannel', int32(indata));

3 Use msgcount to determine the number of messages available in
the queue.

num_of_msgs = msgcount(IDE_Obj.rtdx,'ichannel')

See Also read | readmat | readmsg

1-286

new

Purpose Create project, library, or build configuration in IDE

Syntax IDE_Obj.new('name','type')

IDEs This function supports the following IDEs:

• Analog Devices VisualDSP++

• Eclipse IDE

• Green Hills MULTI

• Texas Instruments Code Composer Studio v3

Description IDE_Obj.new('name','type') creates a project, library, or build
configuration in the IDE.

The name argument specifies the name of the new project, library, or
build configuration

The type argument specifies whether to create a project, library, or
build configuration. The options are:

• 'project' — Executable project. Sometimes this file is called a
“DSP executable file”.

• 'projlib' — Library project.

• 'projext' — External make project. Only the CCS IDE supports
this option.

• 'buildcfg' — Build configuration in the active project. Only the
VisualDSP++ and CCS IDEs support this option.

When type is 'project' or 'projlib' , name can include the full path
to the new file. You can use the path to differentiate two files with
the same name. If you omit the path, the new method creates the file
or project in the current IDE working folder.

If you omit the type argument, and the name argument does not include
a file extension, type defaults to 'project'.

1-287

new

When type is 'buildcfg', use a unique name to differentiate the build
configuration from other build configurations in the active project.

The new method does not support 'text' as a type argument.

Examples IDE_Obj.new('my_project','project') #Create an IDE project, 'my_project.gpj'

IDE_Obj.new('my_build_config','buildcfg') #Create a build configuration.

See Also activate | close

1-288

open

Purpose Open project in IDE

Syntax IDE_Obj.open(filename,filetype,timeout)
IDE_Obj.open(myproject)

IDEs This function supports the following IDEs:

• Analog Devices VisualDSP++

• Eclipse IDE

• Green Hills MULTI

• Texas Instruments Code Composer Studio v3

Description IDE_Obj.open(filename,filetype,timeout) opens a project in the
IDE.

Use the filename argument to specify the file name, including the file
name extension. If the filename does not include a file name extension,
you can specify the file type using the filetype argument. If the file
does not exist in the current project or folder path, MATLAB returns a
warning and returns control to MATLAB.

For the optional filetype argument, you can specify the following
types.

1-289

open

CCS IDE Eclipse IDE MULTI IDE VisualDSP++
IDE

'project'
— Project
files

Yes Yes Yes Yes

'ProjectGroup'
— Project
group files

No No No Yes

'program'
— Target
program file
(executable)

No. Use
load
instead.

No Yes No

If you omit the filetype argument, filetype defaults to 'project'.

The optional timeout argument determines the number of seconds
MATLAB waits for the IDE to finish opening the file before returning
an error. If you omit the timeout argument, the open method uses
the timeout property of the IDE handle object (IDE_Obj) instead. The
timeout error does not terminate the loading process on the IDE.

Note The open method does not support the 'text', 'program', or
'workspace' arguments.

Examples IDE_Obj.open(myproject) opens the myproject project in the IDE.

See Also cd | dir | load | new

1-290

cgv.CGV.plot

Purpose Create plot for signal or multiple signals

Syntax [signal_names, signal_figures] = cgv.CGV.plot(data_set)
[signal_names, signal_figures] = cgv.CGV.plot(data_set,

'Signals', signal_list)

Description [signal_names, signal_figures] = cgv.CGV.plot(data_set)
create a plot for each signal in the data_set.

[signal_names, signal_figures] =
cgv.CGV.plot(data_set,'Signals', signal_list) create a plot
for each signal in the value of 'Signals' and return the names and
figure handles for the given signal names.

Input
Arguments

data_set

Output data from a model. After running the model, use
the cgv.CGV.getOutputData function to get the data. The
cgv.CGV.getOutputData function returns a cell array of the
output signal names.

’Signals’, signal_list

Parameter/value argument pair specifying the signal or signals
to plot. The value for this parameter can be an individual signal
name, or a cell array of strings, where each string is a signal
name in the data_set. Use cgv.CGV.getSavedSignals to view
the list of available signal names in the data_set. The syntax for
an individual signal name is:

signal_list = {'log_data.subsystem_name.Data(:,1)'}

The syntax for a list of signal names is:

signal_list = {'log_data.block_name.Data(:,1)',...
'log_data.block_name.Data(:,2)',...

'log_data.block_name.Data(:,3)',...
'log_data.block_name.Data(:,4)'};

1-291

cgv.CGV.plot

If a component of your model contains a space or newline
character, MATLAB adds parantheses and a single quote to the
name of the component. For example, if a section of the signal has
a space, 'block name', MATLAB displays the signal name as:

log_data.('block name').Data(:,1)

To use the signal name as input to a CGV function, 'block name'
must have two single quotes. For example:

signal_list = {'log_data.(''block name'').Data(:,1)'}

Output
Arguments

Depending on the data, one or more of the following parameters might
be empty:

signal_names

Cell array of signal names

signal_figures

Array of figure handles for signals

How To • “Verify Numerical Equivalence with CGV”

1-292

profile

Purpose Generate real-time execution or stack profiling report

Syntax IDE_Obj.profile(type,action,timeout)

IDEs This function supports the following IDEs:

• Analog Devices VisualDSP++

• Eclipse IDE

• Green Hills MULTI

• Texas Instruments Code Composer Studio v3

Description Use IDE_Obj.profile(type,action,timeout) to generate real-time
execution or stack profiling report.

Create the IDE_Obj IDE handle object using a constructor function
before you use the profile method.

The type argument determines the type of profile to generate. The
following types are available for the IDEs specified.

CCS IDE Eclipse
IDE

MULTI IDE VisualDSP++
IDE

'execution'
— Execution
profiling

Yes Yes, with
limitations.

Yes Yes

'stack'— Stack
profiling

Yes Yes

Currently, with the Eclipse IDE, you can only perform execution
profiling for ARM processors running Linux.

To get a real-time task execution profile report in HTML and graphical
plot forms, set the type argument to 'execution' and omit the action
argument, which defaults to 'report'. For more information, see
“Execution Profiling for Embedded Targets”.

1-293

profile

To prepare the stack memory on the processor for profiling, set the type
argument to 'stack', and set the action argument to 'setup'. This
action writes a repetitive series of known values to the stack memory.
For more information, see “Stack Profiling for Embedded Targets”.

After preparing the stack memory, to measure and report the
percentage of stack usage, set the type argument to 'stack', and set
the action argument to 'report'.

If you omit the action argument, action defaults to 'report'.

The optional timeout argument determines the number of seconds
MATLAB waits for the IDE to finish profiling before returning an error.
If you omit the timeout argument, the open method uses the timeout
property of the IDE handle object (IDE_Obj) instead.

Note You can use real-time task execution profiling with hardware
only. Simulators do not support the profiling feature.

Examples To use profile to assess how your program executes in real-time,
complete the following tasks with a Simulink model:

1 Open the model configuration parameters (Ctrl+ E).

2 Select the Coder Target pane.

3 Under the Tool Chain Automation tab, enable Profile real-time
execution.

4 Build your model.

IDE_Obj.build

5 Load your program to the processor.

IDE_Obj.load('c:\work\sumdiff.out')

1-294

profile

6 For stack profiling, initialize the stack to a known state. (For
execution profiling, skip this step.)

IDE_Obj.profile('stack','setup')

With the setup input argument, profile writes a known pattern
into the addresses that compose the stack. For C6000 processors,
the pattern is A5. For C2000™ and C5000 processors, the pattern
is A5A5 to account for the address size. As long as your application
does not write the same pattern to the system stack, profile can
report the stack usage.

7 Run the program on the processor.

IDE_Obj.run

8 Stop the running program.

IDE_Obj.halt

9 To get the profiling reports enter one of the following commands:

IDE_Obj.profile('stack','report') #Get stack profiling report

IDE_Obj.profile('execution') #Get execution profiling report

The HTML report contains the sections described in the following table.

Section Heading Description

Worst case task
turnaround times

Maximum task turnaround time for each
task since model execution started.

Maximum number of
concurrent overruns
for each task

Maximum number of concurrent task
overruns since model execution started.

Analysis of profiling
data recorded over
nnn seconds.

Profiling data was recorded over nnn seconds.
The recorded data for task turnaround times
and task execution times is presented in the
table following this heading.

1-295

profile

Task turnaround time is the elapsed time between starting and
finishing the task. If the task is not preempted, task turnaround time
equals the task execution time.

Task execution time is the time between task start and finish when the
task is actually running. It does not include time during which the task
may have been preempted by another task.

Note Task execution time cannot be measured directly. Task profiling
infers the execution time from the task start and finish times, and the
intervening periods during which the task was preempted by another
task.

The execution time calculations do not account for processor time
consumed by the scheduler while switching tasks. In cases where
preemption occurs, the reported task execution times overestimate the
true task execution time.

Task overruns occur when a timer task does not complete before the
same task is scheduled to run again. Depending on how you configure
the real-time scheduler, a task overrun may be handled as a real-time
failure. Alternatively, you might allow a small number of task overruns
to accommodate cases where a task occasionally takes longer than
normal to complete. If a task overrun occurs, and the same task is
scheduled to run again before the first overrun has been cleared,
concurrent task overruns are said to have occurred.

See Also load | run

1-296

pwd

Purpose Working folder used by Eclipse

Syntax wd= IDE_Obj.pwd

IDEs This function supports the following IDEs:

• Eclipse IDE

Description Use wd= IDE_Obj.pwd to get the working folder of the Eclipse IDE. This
value is the same as the Eclipse IDE workspace folder.

Examples To get the Eclipse IDE working folder:

IDE_Obj = eclipseide;
wd = IDE_Obj.pwd

wd =

C:\WINNT\Profiles\rdlugyhe\workspace

See Also dir

1-297

read

Purpose Read data from processor memory

Syntax mem=IDE_Obj.read(address)
mem=IDE_Obj.read(…,datatype)
mem=IDE_Obj.read(…,count)
mem=IDE_Obj.read(…,memorytype)
mem=IDE_Obj.read(…,timeout)

IDEs This function supports the following IDEs:

• Analog Devices VisualDSP++

• Eclipse IDE

• Green Hills MULTI

• Texas Instruments Code Composer Studio v3

Description mem=IDE_Obj.read(address) returns a block of data values from
the memory space of the processor referenced by IDE_Obj. The block
to read begins from the DSP memory location given by the address
argument. The data is read starting from address without regard
to type-alignment boundaries in the processor. Conversely, the byte
ordering defined by the data type is automatically applied.

The address argument is a decimal or hexadecimal representation of
a memory address in the processor. The full memory address consist
of two parts:

• The start address

• The memory type
You can define the memory type value can be explicitly using a numeric
vector representation of the address.

Alternatively, the IDE_Obj object has a default memory type value that
is applied if the memory type value is not explicitly incorporated in
the passed address parameter. In DSP processors with only a single
memory type, it is possible to specify addresses using the abbreviated

1-298

read

(implied memory type) format by setting the IDE_Obj object memory
type value to zero.

Note You cannot read data from processor memory while the processor
is running.

Provide the address argument either as a numerical value that is a
decimal representation of the DSP memory address, or as a string that
read converts to the decimal representation of the start address. (Refer
to function hex2dec in the MATLAB Function Reference. read uses
hex2dec to convert the hexadecimal string to a decimal value).

The examples in the following table show how read uses the address
parameter.

address
Parameter Value

Description

131082 Decimal address specification. The memory
start address is 131082 and memory type is 0.
This action is the same as specifying [131082
0].

[131082 1] Decimal address specification. The memory
start address is 131082 and memory type is 1.

'2000A' Hexadecimal address specification provided as
a string entry. The memory start address is
131082 (converted to the decimal equivalent)
and memory type is 0.

It is possible to specify address as a cell array. You can use a
combination of numbers and strings for the start address and memory
type values. For example, the following are valid addresses from cell
array myaddress:

1-299

read

myaddress1 myaddress1{1}=131072;
myadddress1{2}='Program(PM) Memory';

myaddress2 myaddress2{1}='20000';
myadddress2{2}='Program(PM) Memory';

myaddress3 myaddress3{1}=131072; myaddress3{2}=0;

mem=IDE_Obj.read(…,datatype) where the input argument datatype
defines the interpretation of the raw values read from DSP memory.
Parameter datatype specifies the data format of the raw memory
image. The data is read starting from address without regard to data
type alignment boundaries in the processor. The byte ordering defined
by the data type is automatically applied. This syntax supports the
following MATLAB data types.

MATLAB Data Type Description

double IEEE double-precision floating
point value

single IEEE single-precision floating
point value

uint8 8-bit unsigned binary integer
value

uint16 16-bit unsigned binary integer
value

uint32 32-bit unsigned binary integer
value

int8 8-bit signed two’s complement
integer value

int16 16-bit signed two’s complement
integer value

int32 32-bit signed two’s complement
integer value

1-300

read

The read method does not coerce data type alignment. Some
combinations of address and datatype will be difficult for the processor
to use.

mem=IDE_Obj.read(…,count) adds the count input parameter that
defines the dimensions of the returned data block mem. To read a block
of multiple data values. Specify count to determine how many values
to read from address. count can be a scalar value that causes read
to return a column vector that has count values. You can perform
multidimensional reads by passing a vector for count. The elements in
the input vector of count define the dimensions of the returned data
matrix. The memory is read in column-major order. count defines the
dimensions of the returned data array mem as shown in the following
table.

• n — Read n values into a column vector.

• [m,n]—Read m-by-n values into m by nmatrix in column-major order.

• [m,n,...] — Read a multidimensional matrix m-by-n-by…of values
into an m-by-n-by…array.

To read a block of multiple data values, specify the input argument
count that determines how many values to read from address.

mem=IDE_Obj.read(…,memorytype) adds an optional input argument
memorytype. Object IDE_Obj has a default memory type value 0 that
read applies if the memory type value is not explicitly incorporated
into the passed address parameter.

In processors with only a single memory type, it is possible to specify
addresses using the implied memory type format by setting the
IDE_Objmemorytype property value to zero.

Using read with MULTI

Blackfin and SHARC use different memory types. Blackfin processors
have one memory type. SHARC processors provide five types. The
following table shows the memory types for both processor families.

1-301

read

String Entry for
memorytype

Numerical Entry for
memorytype

Processor
Support

'program(pm)
memory'

0 Blackfin and
SHARC

'data(dm) memory' 1 SHARC

'data(dm) short
word memory'

2 SHARC

'external data(dm)
byte memory'

3 SHARC

'boot(prom)
memory'

4 SHARC

mem=IDE_Obj.read(…,timeout) adds the optional parameter timeout
that defines how long, in seconds, MATLAB waits for the specified read
process to complete. If the time-out period expires before the read
process returns a completion message, MATLAB returns an error and
returns. Usually the read process works in spite of the error message.

Examples This example reads one 16-bit integer from memory on the processor.

mlvar = IDE_Obj.read(131072,'int16')

131072 is the decimal address of the data to read.

You can read more than one value at a time. This read command
returns 100 32-bit integers from the address 0x20000 and plots the
result in MATLAB.

data = IDE_Obj.read('20000','int32',100)
plot(double(data))

See Also write

1-302

readmat

Purpose Matrix of data from RTDX channel

Note Support for readmat on C5000 processors will be removed in a
future version.

Syntax data = readmat(rx,channelname,'datatype',siz,timeout)
data = readmat(rx,channelname,'datatype',siz)

IDEs This function supports the following IDEs:

• Texas Instruments Code Composer Studio v3

Description data = readmat(rx,channelname,'datatype',siz,timeout) reads
a matrix of data from an RTDX channel configured for read access.
datatype defines the type of data to read, and channelname specifies
the queue to read. readmat reads the desired data from the RTDX link
specified by rx.

Before you read from a channel, open and enable the channel for read
access.

Replace channelname with the string you specified when you opened
the desired channel. channelname must identify a channel that you
defined in the program loaded on the processor.

You cannot read data from a channel you have not opened and
configured for read access. To determine which channels exist for the
loaded program, use the RTDX tools provided in the IDE.

data contains a matrix whose dimensions are given by the input
argument vector siz, where siz can be a vector of two or more elements.
To operate, the number of elements in the output matrix data must be
an integral number of channel messages.

When you omit the timeout input argument, readmat reads messages
from the specified channel until the output matrix is full or the global
timeout period specified in rx elapses.

1-303

readmat

Caution If the timeout period expires before the output data matrix is
fully populated, you lose the messages read from the channel to that
point.

MATLAB software supports reading five data types with readmat.

datatype String Data Format

'double' Double-precision floating point values. 64 bits.

'int16' 16-bit signed integers

'int32' 32-bit signed integers

'single' Single-precision floating point values. 32 bits.

'uint8' Unsigned 8-bit integers

data = readmat(rx,channelname,'datatype',siz) reads a matrix
of data from an RTDX channel configured for read access. datatype
defines the type of data to read, and channelname specifies the queue
to read. readmat reads the desired data from the RTDX link specified
by rx.

Examples In this data read and write example, you write data to the processor
through the IDE. You can then read the data back in two ways — either
through read or through readmsg.

To duplicate this example you need to have a program loaded on the
processor. The channels listed in this example, ichannel and ochannel,
must be defined in the loaded program. If the current program on the
processor defines different channels, replace the listed channels with
your current ones.

IDE_Obj = ticcs;

rx = IDE_Obj.rtdx;

open(rx,'ichannel','w');

enable(rx,'ichannel');

1-304

readmat

open(rx,'ochannel','r');

enable(rx,'ochannel');

indata = 1:25; % Set up some data.

IDE_Obj.write(0,indata,30);

outdata=IDE_Obj.read(0,'double',25,10)

outdata =

Columns 1 through 13

1 2 3 4 5 6 7 8 9 10 11 12 13

Columns 14 through 25

14 15 16 17 18 19 20 21 22 23 24 25

Now use RTDX to read the data into a 5-by-5 array called out_array.

out_array = readmat('ochannel','double',[5 5])

See Also readmsg | writemsg

1-305

readmsg

Purpose Read messages from specified RTDX channel

Note Support for readmsg on C5000 processors will be removed in a
future version.

Syntax data = readmsg(rx,channelname,'datatype',siz,nummsgs,timeout)
data = readmsg(rx,channelname,'datatype',siz,nummsgs)
data = readmsg(rx,channelname,datatype,siz)
data = readmsg(rx,channelname,datatype,nummsgs)
data = readmsg(rx,channelname,datatype)

IDEs This function supports the following IDEs:

• Texas Instruments Code Composer Studio v3

Description data = readmsg(rx,channelname,'datatype',siz,nummsgs,timeout)
reads nummsgs from a channel associated with rx. channelname
identifies the channel queue, which must be configured for read access.
Each message is the same type, defined by datatype. nummsgs can be
an integer that defines the number of messages to read from the
specified queue, or all to read the messages present in the queue
when you call the readmsg function.

Each read message becomes an output matrix in data, with dimensions
specified by the elements in vector siz. For example, when siz is [m
n], reading 10 messages (nummsgs equal 10) creates 10 m-by-n matrices
in data. Each output matrix in data must have the same number of
elements (m x n) as the number of elements in each message.

You must specify the type of messages you are reading by including the
datatype argument. datatype supports strings that define the type of
data you are expecting, as shown in the following table.

1-306

readmsg

datatype String Specified Data Type

'double' Floating point data, 64-bits
(double-precision).

'int16' Signed 16-bit integer data.

'int32' Signed 32-bit integers.

'single' Floating-point data, 32-bits
(single-precision).

'uint8' Unsigned 8-bit integers.

When you include the timeout input argument in the function, readmsg
reads messages from the specified queue until it receives nummsgs, or
until the period defined by timeout expires while readmsg waits for
more messages to be available.

When the desired number of messages is not available in the queue,
readmsg enters a wait loop and stays there until more messages become
available or timeout seconds elapse. The timeout argument overrides
the global timeout specified when you create rx.

data = readmsg(rx,channelname,'datatype',siz,nummsgs) reads
nummsgs from a channel associated with rx. channelname identifies
the channel queue, which must be configured for read access. Each
message is the same type, defined by datatype. nummsgs can be an
integer that defines the number of messages to read from the specified
queue, or all to read the messages present in the queue when you call
the readmsg function.

Each read message becomes an output matrix in data, with dimensions
specified by the elements in vector siz. When siz is [m n], reading 10
messages (nummsgs equal 10) creates 10 n-by-m matrices in data.

Each output matrix in data must have the same number of elements (m
x n) as the number of elements in each message.

You must specify the type of messages you are reading by including the
datatype argument. datatype supports six strings that define the type
of data you are expecting.

1-307

readmsg

data = readmsg(rx,channelname,datatype,siz) reads one data
message because nummsgs defaults to one when you omit the input
argument. readmsgs returns the message as a row vector in data.

data = readmsg(rx,channelname,datatype,nummsgs) reads the
number of messages defined by nummsgs. data becomes a cell array of
row matrices, data = {msg1,msg2,...,msg(nummsgs)}, because siz
defaults to [1,nummsgs]; each returned message becomes one row
matrix in the cell array.

Each row matrix contains one element for each data value in the current
message msg# = [element(1), element(2),...,element(l)] where
l is the number of data elements in message. In this syntax, the read
messages can have different lengths, unlike the previous syntax options.

data = readmsg(rx,channelname,datatype) reads one data
message, returning a row vector in data. The optional input
arguments—nummsgs, siz, and timeout—use their default values.

In the calling syntaxes for readmsg, you can set siz and nummsgs to
empty matrices, causing them to use their default values—nummsgs = 1
and siz = [1,l], where l is the number of data elements in the read
message.

Caution If the timeout period expires before the output data matrix is
fully populated, you lose the messages read from the channel to that
point.

Examples IDE_Obj = ticcs;

rx = IDE_Obj.rtdx;

open(rx,'ichannel','w');

enable(rx,'ichannel');

open(rx,'ochannel','r');

enable(rx,'ochannel');

indata = 1:25; % Set up some data.

IDE_Obj.write(0,indata,30);

outdata=IDE_Obj.read(0,'double',25,10)

1-308

readmsg

outdata =

Columns 1 through 13

1 2 3 4 5 6 7 8 9 10 11 12 13

Columns 14 through 25

14 15 16 17 18 19 20 21 22 23 24 25

Now use RTDX to read the messages into a 4-by-5 array called
out_array.

number_msgs = msgcount(rx,'ochannel') % Check number of msgs

% in read queue.

out_array = IDE_Obj.rtdx.readmsg('ochannel','double',[4 5])

See Also read | readmat | writemsg

1-309

rtw.codegenObjectives.Objective.register

Purpose Register objective

Syntax register(obj)

Description register(obj) registers obj Register and add obj to the end of the
list of available objectives that you can use with the Code Generation
Advisor.

Input
Arguments

obj Handle to a code generation objective object
previously created.

Examples Register the objective:

register(obj);

See Also DAStudio.CustomizationManager.ObjectiveCustomizer

How To • “Create Custom Objectives”

• “Registering Customizations”

1-310

registerCFunctionEntry

Purpose Create CRL function entry based on specified parameters and register
in CRL table

Syntax entry = registerCFunctionEntry(hTable, priority,
numInputs, functionName,
inputType, implementationName,
outputType, headerFile,
genCallback, genFileName)

Input
Arguments

hTable
Handle to a CRL table previously returned by hTable =
RTW.TflTable.

priority
Positive integer specifying the function entry’s search priority,
0-100, relative to other entries of the same function name and
conceptual argument list within this table. Highest priority
is 0, and lowest priority is 100. If the table provides two
implementations for a function, the implementation with the
higher priority will shadow the one with the lower priority.

numInputs
Positive integer specifying the number of input arguments.

functionName
String specifying the name of the function to be replaced. The
name must match one of the functions supported for replacement:

Math Functions

Note For detailed support information, see “Map Math
Functions to Target-Specific Implementations”.

abs acos acosh asin

asinh atan atan2 atanh

1-311

registerCFunctionEntry

ceil cos cosh exactrSqrt

exp fix floor frexp

hypot ldexp ln log

log10 max min mod/fmod

pow rem round rSqrt

saturate sign sin sincos

sinh sqrt round tanh

Memory Utility Functions

memcmp memcpy memset memset2zero1

Nonfinite Support Utility Functions2

getInf getMinusInf getNaN isInf3

isNaN3

Notes:
1 Some target processors provide optimized memset functions
for use when performing a memory set to zero. The CRL API
supports replacing memset to zero functions with more efficient
target-specific functions.
2 Replacement of nonfinite functions is supported for Simulink
code generation (not for Stateflow® or MATLAB Coder code
generation).
3 Replacement of isInf and isNaN is supported only for complex
floating-point inputs.

inputType
String specifying the data type of the input arguments, for
example, 'double'. (This function requires that the input
arguments are of the same type.)

implementationName
String specifying the name of your implementation. For example,
if functionName is 'sqrt', implementationName can be 'sqrt'
or a different name of your choosing.

1-312

registerCFunctionEntry

outputType
String specifying the data type of the return argument, for
example, 'double'.

headerFile
String specifying the header file in which the implementation
function is declared, for example, '<math.h>'.

genCallback
String specifying '' or 'RTW.copyFileToBuildDir'. If you specify
'RTW.copyFileToBuildDir', and if this function entry is matched
and used, the function RTW.copyFileToBuildDir will be called
after code generation to copy additional header, source, or object
files that you have specified for this function entry to the build
directory. For more information, see “Specify Build Information
for Code Replacements” in the Embedded Coder documentation.

genFileName
String specifying ''. (This argument is for use only by MathWorks
developers.)

Output
Arguments

Handle to the created CRL function entry. Specifying the return
argument in the registerCFunctionEntry function call is optional.

Description The registerCFunctionEntry function provides a quick way to create
and register a CRL function entry. This function can be used only if
your CRL function entry meets the following conditions:

• The input arguments are of the same type.

• The input argument names and the return argument name follow the
default Simulink naming convention:

- For input argument names, u1, u2, ..., un

- For return argument, y1

Examples In the following example, the registerCFunctionEntry function is
used to create a function entry for sqrt in a CRL table.

1-313

registerCFunctionEntry

hLib = RTW.TflTable;

hLib.registerCFunctionEntry(100, 1, 'sqrt', 'double', 'sqrt', ...

'double', '<math.h>', '', '');

See Also registerCPromotableMacroEntry

How To • “Alternative Method for Creating Function Entries”

• “Create Code Replacement Tables”

• “Introduction to Code Replacement Libraries”

1-314

registerCPPFunctionEntry

Purpose Create CRL C++ function entry based on specified parameters and
register in CRL table

Syntax entry = registerCPPFunctionEntry(hTable, priority,
numInputs, functionName,
inputType, implementationName,
outputType, headerFile,
genCallback, genFileName,
nameSpace)

Input
Arguments

hTable
Handle to a CRL table previously returned by hTable =
RTW.TflTable.

priority
Positive integer specifying the function entry’s search priority,
0-100, relative to other entries of the same function name and
conceptual argument list within this table. Highest priority
is 0, and lowest priority is 100. If the table provides two
implementations for a function, the implementation with the
higher priority will shadow the one with the lower priority.

numInputs
Positive integer specifying the number of input arguments.

functionName
String specifying the name of the function to be replaced. The
name must match one of the functions supported for replacement:

Math Functions

Note For detailed support information, see “Map Math
Functions to Target-Specific Implementations”.

abs acos acosh asin

asinh atan atan2 atanh

1-315

registerCPPFunctionEntry

ceil cos cosh exactrSqrt

exp fix floor frexp

hypot ldexp ln log

log10 max min mod/fmod

pow rem round rSqrt

saturate sign sin sincos

sinh sqrt round tanh

Memory Utility Functions

memcmp memcpy memset memset2zero1

Nonfinite Support Utility Functions2

getInf getMinusInf getNaN isInf3

isNaN3

Notes:
1 Some target processors provide optimized memset functions
for use when performing a memory set to zero. The CRL API
supports replacing memset to zero functions with more efficient
target-specific functions.
2 Replacement of nonfinite functions is supported for Simulink
code generation (not for Stateflow or MATLAB Coder code
generation).
3 Replacement of isInf and isNaN is supported only for complex
floating-point inputs.

inputType
String specifying the data type of the input arguments, for
example, 'double'. (This function requires that the input
arguments are of the same type.)

implementationName
String specifying the name of your implementation. For example,
if functionName is 'sqrt', implementationName can be 'sqrt'
or a different name of your choosing.

1-316

registerCPPFunctionEntry

outputType
String specifying the data type of the return argument, for
example, 'double'.

headerFile
String specifying the header file in which the implementation
function is declared, for example, '<math.h>'.

genCallback
String specifying '' or 'RTW.copyFileToBuildDir'. If you specify
'RTW.copyFileToBuildDir', and if this function entry is matched
and used, the function RTW.copyFileToBuildDir will be called
after code generation to copy additional header, source, or object
files that you have specified for this function entry to the build
directory. For more information, see “Specify Build Information
for Code Replacements” in the Embedded Coder documentation.

genFileName
String specifying ''. (This argument is for use only by MathWorks
developers.)

nameSpace
String specifying the C++ name space in which the implementation
function is defined. If this function entry is matched, the software
emits the name space in the generated function code (for example,
std::sin(tfl_cpp_U.In1)). If you specify '', the software does
not emit a name space designation in the generated code.

Output
Arguments

Handle to the created CRL C++ function entry. Specifying the return
argument in the registerCPPFunctionEntry function call is optional.

Description The registerCPPFunctionEntry function provides a quick way to
create and register a CRL C++ function entry. This function can be used
only if your CRL C++ function entry meets the following conditions:

• The input arguments are of the same type.

• The input argument names and the return argument name follow the
default Simulink naming convention:

1-317

registerCPPFunctionEntry

- For input argument names, u1, u2, ..., un

- For return argument, y1

Note When you register a CRL containing C++ function entries, you
must specify the value {'C++'} for the LanguageConstraint property
of the CRL registry entry. For more information, see “Register Code
Replacement Libraries”.

Examples In the following example, the registerCPPFunctionEntry function is
used to create a C++ function entry for sin in a CRL table.

hLib = RTW.TflTable;

hLib.registerCPPFunctionEntry(100, 1, 'sin', 'single', 'sin', ...

'single', 'cmath', '', '', 'std');

See Also enableCPP | setNameSpace

How To • “Alternative Method for Creating Function Entries”

• “Create Code Replacement Tables”

• “Introduction to Code Replacement Libraries”

1-318

registerCPromotableMacroEntry

Purpose Create CRL promotable macro entry based on specified parameters and
register in CRL table (for abs function replacement only)

Syntax entry = registerCPromotableMacroEntry(hTable, priority,
numInputs, functionName,
inputType, implementationName,
outputType, headerFile,
genCallback, genFileName)

Input
Arguments

hTable
Handle to a CRL table previously returned by hTable =
RTW.TflTable.

priority
Positive integer specifying the function entry’s search priority,
0-100, relative to other entries of the same function name and
conceptual argument list within this table. Highest priority
is 0, and lowest priority is 100. If the table provides two
implementations for a function, the implementation with the
higher priority will shadow the one with the lower priority.

numInputs
Positive integer specifying the number of input arguments.

functionName
String specifying the name of the function to be replaced. Specify
'abs'. (This function should be used only for abs function
replacement.)

inputType
String specifying the data type of the input arguments, for
example, 'double'. (This function requires that the input
arguments are of the same type.)

implementationName
String specifying the name of your implementation. For example,
assuming functionName is 'abs', implementationName can be
'abs' or a different name of your choosing.

1-319

registerCPromotableMacroEntry

outputType
String specifying the data type of the return argument, for
example, 'double'.

headerFile
String specifying the header file in which the implementation
function is declared, for example, '<math.h>'.

genCallback
String specifying '' or 'RTW.copyFileToBuildDir'. If you specify
'RTW.copyFileToBuildDir', and if this function entry is matched
and used, the function RTW.copyFileToBuildDir will be called
after code generation to copy additional header, source, or object
files that you have specified for this function entry to the build
directory. For more information, see “Specify Build Information
for Code Replacements” in the Embedded Coder documentation.

genFileName
String specifying ''. (This argument is for use only by MathWorks
developers.)

Output
Arguments

Handle to the created CRL promotable macro entry. Specifying the
return argument in the registerCPromotableMacroEntry function
call is optional.

Description The registerCPromotableMacroEntry function creates a CRL
promotable macro entry based on specified parameters and registers
the entry in the CRL table. A promotable macro entry will promote the
output data type based on the target word size.

This function provides a quick way to create and register a CRL
promotable macro entry. This function can be used only if your CRL
function entry meets the following conditions:

• The input arguments are of the same type.

• The input argument names and the return argument name follow the
default Simulink naming convention:

- For input argument names, u1, u2, ..., un

1-320

registerCPromotableMacroEntry

- For return argument, y1

Note This function should be used only for abs function
replacement. Other functions supported for replacement should use
registerCFunctionEntry.

Examples In the following example, the registerCPromotableMacroEntry
function is used to create a function entry for abs in a CRL table.

hLib = RTW.TflTable;

hLib.registerCPromotableMacroEntry(100, 1, 'abs', 'double', 'abs_prime', ...

'double', '<math_prime.h>', '', '');

See Also registerCFunctionEntry

How To • “Alternative Method for Creating Function Entries”

• “Create Code Replacement Tables”

• “Introduction to Code Replacement Libraries”

1-321

regread

Purpose Values from processor registers

Syntax reg=IDE_Obj.regread('regname','represent',timeout)
reg = IDE_Obj.regread('regname','represent')
reg = IDE_Obj.regread('regname')

IDEs This function supports the following IDEs:

• Green Hills MULTI

• Texas Instruments Code Composer Studio v3

Description reg=IDE_Obj.regread('regname','represent',timeout) reads the
data value in the regname register of the target processor and returns
the value in reg as a double-precision value. For convenience, regread
converts each return value to the MATLAB double datatype. Making
this conversion lets you manipulate the data in MATLAB. String
regname specifies the name of the source register on the target. The
IDE handle, IDE_Obj, defines the target to read from. Valid entries for
regname depend on your target processor.

Note regread does not read 64-bit registers, like the cycle register on
Blackfin processors.

Register names are not case-sensitive — a0 is the same as A0.

For example, MPC5500 processors provide the following register names
that are valid entries for regname.

Register Names Register Contents

'acc' Accumulator A register

sprg0 through sprg7 SPR registers

For example, TMS320C6xxx processors provide the following register
names that are valid entries for regname.

1-322

regread

Register Names Register Contents

A0, A1, A2,..., A15 General purpose A registers

B0, B1, B2,..., B15 General purpose B registers

PC, ISTP, IFR, IRP, NRP, AMR,
CSR

Other general purpose 32-bit
registers

A1:A0, A2:A1,..., B15:B14 64-bit general purpose register pairs

Note Use read (called a direct memory read) to read memory-mapped
registers.

The represent input argument defines the format of the data stored in
regname. Input argument represent takes one of three input strings.

represent String Description

'2scomp' Source register contains a signed integer value
in two’s complement format. This is the default
setting when you omit the represent argument.

'binary' Source register contains an unsigned binary
integer.

'ieee' Source register contains a floating point 32-bit or
64-bit value in IEEE floating-point format. Use
this only when you are reading from 32 and 64
bit registers on the target.

To limit the time that regread spends transferring data from the target
processor, the optional argument timeout tells the data transfer process
to stop after timeout seconds. timeout is defined as the number of
seconds allowed to complete the read operation. You might find this
useful for limiting prolonged data transfer operations. If you omit the
timeout argument, regread defaults to the global time-out defined
in IDE_Obj.

1-323

regread

reg = IDE_Obj.regread('regname','represent') does not set the
global time-out value. The time-out value in IDE_Obj applies.

reg = IDE_Obj.regread('regname') does not define the format of
the data in regname.

Reading and Writing Register Values

Register variables can be difficult to read and write because the
registers which hold their value are not dedicated to storing just the
variable values.

Registers are used as temporary storage locations during execution.
When this temporary storage process occurs, the value of the variable
is temporarily stored somewhere on the stack and returned later.
Therefore, getting the values of register variables during program
execution may return unexpected answers.

Values that you write to register variables and local variables during
intermediate times in program operation may not get reflected in the
register.

To see if the result is consisten, write a line of code that uses the
variable. For example:

register int a = 100;
int b;
...

b = a + 2;

Reading the register assigned to a may return an incorrect value for a
but if b returns the expected 102 result, nothing is wrong with the code
or the software.

Examples For MULTI IDE

For the MPC5554 processor, most registers are memory-mapped and
consequently are available using read and write. However, use
regread to read the PC register. The following command shows how to
read the PC register. To identify the target, IDE_Obj is the IDE handle.

1-324

regread

IDE_Obj.regread('PC','binary')

To tell MATLAB what data type you are reading, the string binary
indicates that the PC register contains a value stored as an unsigned
binary integer.

In response, MATLAB displays

ans =

33824

For processors in the Blackfin family, regread lets you access processor
registers directly. To read the value in general purpose register cycles,
type the following function.

treg = IDE_Obj.regread('cycles','2scomp');

treg now contains the two’s complement representation of the value
in A0.

For CCS IDE

For the C5xxx processor family, most registers are memory-mapped
and consequently are available using read and write. However, use
regread to read the PC register. The following command shows how
to read the PC register. To identify the processor, IDE_Obj is a link
for CCS IDE.

IDE_Obj.regread('PC','binary')

To tell MATLAB software what datatype you are reading, the string
binary indicates that the PC register contains a value stored as an
unsigned binary integer.

In response, MATLAB software displays

ans =

33824

1-325

regread

For processors in the C6xxx family, regread lets you access processor
registers directly. To read the value in general purpose register A0,
type the following function.

treg = IDE_Obj.regread('A0','2scomp');

treg now contains the two’s complement representation of the value
in A0.

Now read the value stored in register B2 as an unsigned binary integer,
by typing

IDE_Obj.regread('B2','binary');

See Also read | regwrite | write

1-326

regwrite

Purpose Write data values to registers on processor

Syntax IDE_Obj.regwrite('regname',value,'represent',timeout)
IDE_Obj.regwrite('regname',value,'represent')
IDE_Obj.regwrite('regname',value,)

IDEs This function supports the following IDEs:

• Green Hills MULTI

• Texas Instruments Code Composer Studio v3

Description IDE_Obj.regwrite('regname',value,'represent',timeout) writes
the data in value to the regname register of the target processor.
regwrite converts value from its representation in the MATLAB
workspace to the representation specified by represent. The represent
input argument defines the format of the data when it is stored in
regname. Input argument represent takes one of three input strings.

represent String Description

'2scomp' Write value to the destination register as
a signed integer value in two’s complement
format. This is the default setting when you
omit the represent argument.

'binary' Write value to the destination register as an
unsigned binary integer.

'ieee' Write value to the destination registers as a
floating point 32-bit or 64-bit value in IEEE
floating-point format. Use this only when
you are writing to 32- and 64-bit registers on
the target.

Note Use write to write memory-mapped registers. This action is
also called a direct memory write.

1-327

regwrite

String regname specifies the name of the destination register on the
target. IDE handle, IDE_Obj defines the target to write value to. Valid
entries for regname depend on your target processor. Register names
are not case-sensitive — a0 is the same as A0.

For example, MPC5500 processors provide the following register names
that are valid entries for regname.

Register Names Register Contents

'acc' Accumulator A register

sprg0 SPR registers

For example, C6xxx processors provide the following register names
that are valid entries for regname.

Register Names Register Contents

A0, A1, A2,..., A15 General purpose A registers

B0, B1, B2,..., B15 General purpose B registers

PC, ISTP, IFR, IRP,
NRP, AMR, CSR

Other general purpose 32-bit registers

A1:A0, A2:A1,...,
B15:B14

64-bit general purpose register pairs

Other processors provide other register sets. Refer to the documentation
for your target processor to determine the registers for the processor.

To limit the time that regwrite spends transferring data to the target
processor, the optional argument timeout tells the data transfer process
to stop after timeout seconds. timeout is defined as the number of
seconds allowed to complete the write operation. You might find this
useful for limiting prolonged data transfer operations.

If you omit the timeout input argument in the syntax, regwrite
defaults to the global time-out defined in IDE_Obj. If the write operation
exceeds the time specified, regwrite returns with a time-out error.
Generally, time-out errors do not stop the register write process. The

1-328

regwrite

write process stops while waiting for the IDE to respond that the write
operation is complete.

IDE_Obj.regwrite('regname',value,'represent') omits the
timeout input argument and does not change the time-out value
specified in IDE_Obj.

IDE_Obj.regwrite('regname',value,) omits the represent input
argument. Writing the data does not reformat the data written to
regname.

Reading and Writing Register Values

Register variables can be difficult to read and write because the
registers which hold their value are not dedicated to storing just the
variable values.

Registers are used as temporary storage locations during execution.
When this temporary storage process occurs, the value of the variable
is temporarily stored somewhere on the stack and returned later.
Therefore, getting the values of register variables during program
execution may return unexpected answers.

Values that you write to register variables and local variables during
intermediate times in program operation may not get reflected in the
register.

To see if the result is consistent, write a line of code that uses the
variable. For example:

register int a = 100;
int b;
...

b = a + 2;

Reading the register assigned to a may return an incorrect value for a
but if b returns the expected 102 result, nothing is wrong with the code
or the software.

1-329

regwrite

Examples To write a new value to the PC register on a C5xxx family processor,
enter

IDE_Obj.regwrite('pc',hex2dec('100'),'binary')

specifying that you are writing the value 256 (the decimal value of
0x100) to register pc as binary data.

To write a 64-bit value to a register pair, such as B1:B0, the following
syntax specifies the value as a string, representation, and target
registers.

IDE_Obj.regwrite('b1:b0',hex2dec('1010'),'ieee')

Registers B1:B0 now contain the value 4112 in double-precision format.

See Also read | regread | write

1-330

reload

Purpose Reload most recent program file to processor signal processor

Syntax s = IDE_Obj.reload(timeout)
s = IDE_Obj.reload

IDEs This function supports the following IDEs:

• Eclipse IDE

• Green Hills MULTI

• Texas Instruments Code Composer Studio v3

Description s = IDE_Obj.reload(timeout) resends the most recently loaded
program file to the processor. If you have not loaded a program file
in the current session (so there is no previously loaded file), reload
returns the null entry [] in s indicating that it could not load a file to
the processor. Otherwise, s contains the full path name to the program
file. After you reset your processor or after an event produces changes
in your processor memory, use reload to restore the program file to
the processor for execution.

To limit the time the IDE spends trying to reload the program file to the
processor, timeout specifies how long the load process can take. If the
load process exceeds the timeout limit, the IDE stops trying to load the
program file and returns an error stating that the time period expired.
Exceeding the allotted time for the reload operation usually indicates
that the reload was complete but the IDE did not receive confirmation
before the timeout period passed.

s = IDE_Obj.reload reloads the most recent program file, using the
timeout value set when you created link IDE_Obj, the global timeout
setting.

Using reload with Multiprocessor Boards

When your board contains more than one processor, reload calls the
reloading function for each processor represented by IDE_Obj, reloading
the most recently loaded program on each processor.

1-331

reload

This action is the same as calling reload for each processor individually
through IDE handle objects for each one.

Examples After you create an object that connects to the IDE, use the available
methods to reload your most recently loaded project. If you have not
loaded a project in this session, reload returns an error and an empty
value for s. Loading a project eliminates the error. First, create an IDE
handle object, such as IDE_Obj, using the constructor for your IDE.

s=IDE_Obj.reload(23)

Warning: No action taken - load a valid Program file before

you reload...

s =

''

IDE_Obj.open('D:\ti\tutorial\sim62xx\gelsolid\hellodsp.pjt','project')

IDE_Obj.build

IDE_Obj.load('hellodsp.pjt') #This file extension varies by IDE

IDE_Obj.halt

s=IDE_Obj.reload(23)

s =

D:\ti\tutorial\sim62xx\gelsolid\Debug\hellodsp.out

See Also cd | load | open

1-332

remoteBuild

Purpose Build Simulink-generated code on remote target running Linux

Syntax remoteBuild('modelname','targetrtwstartdir','targetipaddress',
'username','passwd','putilsfolder')

remoteBuild(bd.buildInfo,'targetrtwstartdir',
'targetipaddress','username','passwd','putilsfolder')

Description
Note Support for the remoteBuild method will end in a future release
of the Embedded Coder products. For more information, see “Support
ending for remoteBuild method in a future release”.

This function is only supported for generating code on a Windows host
computers, and then performing a remote build on an embedded Linux®

target.

Performing a remote build is a two-stage process. In the first stage, you
generate source files and a makefile from your Simulink model without
compiling and linking. In the second stage, you use remoteBuild
to download the source files and a makefile to the remote target.
There, the compiler and linker complete the build process. For more
information, see “Build on BeagleBoard Hardware”.

The remoteBuild function supports two different syntaxes, one simple,
the other a little more complex.

For the simple syntax, enter the model name as the first argument,
’modelname’. For example:

remoteBuild('modelname','targetrtwstartdir','targetipaddress','username

For the more complex syntax, use the load function to create an object
with the build information structure of the model:

bd = load('path'\'filename'.mat')

Then supply that object and build information as the first argument,
bd.buildinfo. For example:

remoteBuild(bd.buildInfo,'targetrtwstartdir','targetipaddress','usernam

1-333

remoteBuild

Tips • The host must be running Windows. Install ssh and scp
utilities, such as plink.exe and pscp.exe, on this Windows host.
These utilities are available from the PuTTY download page at
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

• The remote target must be running Linux, with ssh and scp protocols
enabled and GCC-based compiler, linker, and archiver tools installed.

Input
Arguments

modelname

Specify the name of the model. For example, sdl_test_beagle.

bd

Specify the object that contains the build information structure of the
model. For example, bd.buildInfo.

First, use the Simulink load command to create this object from the
buildInfo.mat file, located among the files you generated from your
model. For example,

bd = load('C:\Documents\MATLAB\foo_eclipseide\buildInfo.mat')

targetrtwstartdir

The path of the destination folder on the remote Linux target to which
remoteBuild copies the generated source and header files. For example:
'/home/root/devel'

If the destination folder does not exist, remoteBuild creates it.

targetipaddress

The IP address or the host name of the remote Linux target. For
example, '10.10.10.1'

username

The name of the user that runs ssh commands on the remote Linux
target. For example, 'root'

1-334

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

remoteBuild

passwd

Enter the password for username. If the username does not have a
password, provide empty quotes. For example ''

putilsfolder

The path of the folder on the Windows host that contains plink.exe and
pscp.exe. For example, 'C:\putils'

Examples Using the one-step approach, supply the model name as the first
argument:

remoteBuild('sdl_test_beagle','/home/root/devel','10.10.10.1','root','','C:\putils')

Using the one-step approach, first create an object with the board
specification. Then supply that object as the first argument:

bd = load('C:\Documents\MATLAB\foo_eclipseide\buildInfo.mat')

remoteBuild(bd.buildInfo,'/home/root/devel','10.10.10.1','root','','C:\putils')

References This stage requires using makefiles (Build format = Makefile), as
described in “Makefiles for Software Build Tool Chains”.

See Also xmakefilesetup | load

1-335

remove

Purpose Remove file, project, or breakpoint

Syntax IDE_Obj.remove(filename,filetype)
IDE_Obj.remove(addr,debugtype,timeout)
IDE_Obj.remove(filename,line,debugtype,timeout)
IDE_Obj.remove(all,break)

IDEs This function supports the following IDEs:

• Analog Devices VisualDSP++

• Eclipse IDE

• Green Hills MULTI

• Texas Instruments Code Composer Studio v3

Description IDE_Obj.remove(filename,filetype) deletes a file from the active
project in the IDE or deletes the project.

IDE_Obj.remove(addr,debugtype,timeout) removes a debug point
from an address in the program.

IDE_Obj.remove(filename,line,debugtype,timeout) removes a
debug point from a line in a source file.

IDE_Obj.remove(all,break) removes the breakpoints and waits for
completion.

Input
Arguments

IDE_Obj

Enter the name of the IDE link handle for your IDE. Create an IDE
link handle before you use the remove method. .

filename

Replace filename with the name of the file you are removing, or the
source file from which you are removing debug points. If the file is
not located in the active project, MATLAB returns a warning instead
of completing the action.

1-336

remove

filetype

To remove a project, enter 'project'. To remove a source file, enter
'text'.

Default: 'text'

addr

Enter the memory address of the debug point. Enter 'all' to remove
the breakpoints.

debugtype

Enter the type of debug point to remove. The IDE provide several types
of debug points. Refer to the IDE help documentation for information
on their respective behavior.

Default: 'break' (breakpoint)

line

Enter the line number of the debug point located in a file.

timeout

Enter a time limit, in seconds, for the method to complete an action.

Examples After you have a project in the IDE, you can delete files from it using
remove from the MATLAB software command line. For example, build a
project and load the resulting .out file. With the project build complete,
load your .out file by typing

IDE_Obj.load('filename.out')

Now remove one file from your project

IDE_Obj.remove('filename')

You see in the IDE that the file no longer appears.

1-337

remove

See Also add | cd | open

1-338

RTW.AutosarInterface.removeEventConf

Purpose Remove AUTOSAR event from model

Syntax autosarInterfaceObj.removeEventConf(EventName)

Description autosarInterfaceObj.removeEventConf(EventName) removes
EventName from autosarInterfaceObj, a model-specific
RTW.AutosarInterface object.

Input
Arguments

EventName

Name of AUTOSAR RTEEvent

See Also RTW.AutosarInterface.addEventConf

How To • “Configure the AUTOSAR Interface”

• “Configure Multiple Runnables for DataReceivedEvents”

1-339

rtw.codegenObjectives.Objective.removeInheritedCheck

Purpose Remove inherited checks

Syntax removeInheritedCheck(obj, checkID)

Description removeInheritedCheck(obj, checkID) removes an inherited check
from the objective definition. Use this method when you create a new
objective from an existing objective.

When the user selects multiple objectives, if another selected objective
includes this check, the Code Generation Advisor displays the check.

Input
Arguments

obj Handle to a code generation objective object
previously created.

checkID Unique identifier of the check that you remove
from the new objective.

Examples Remove the Identify questionable code instrumentation (data
I/O) check from the objective.

removeInheritedCheck(obj, 'mathworks.codegen.CodeInstrumentation');

)

See Also Simulink.ModelAdvisor

How To • “Create Custom Objectives”

• “About IDs”

1-340

rtw.codegenObjectives.Objective.removeInheritedParam

Purpose Remove inherited parameters

Syntax removeInheritedParam(obj, paramName)

Description removeInheritedParam(obj, paramName) removes an inherited
parameter from this objective. Use this method when you create a new
objective from an existing objective.

When the user selects multiple objectives, if another objective includes
the parameter, the Code Generation Advisor reviews the parameter
value using Check model configuration settings against code
generation objectives.

Input
Arguments

obj Handle to a code generation objective object
previously created.

paramName Parameter that you want to remove from the
objective.

Examples Remove Inlineparameters from the objective.

removeInheritedParam(obj, 'InlineParams');

See Also get_param

How To • “Create Custom Objectives”

• “Parameter Command-Line Information Summary”

1-341

report

Purpose Open code execution profiling report and specify display of time
measurements.

Syntax myExecutionProfile.report
myExecutionProfile.report(Name1, Value1,
Name2, Value2, ...)
myExecutionProfile.report('Units', 'Seconds',
'ScaleFactor',

'1e-06', 'NumericFormat', '%0.3f')

Description When you run a SIL or PIL simulation with code execution
profiling, the software generates the workspace variable
myExecutionProfile, specified inConfigurationParameters > Code
Generation > Verification > Workspace variable.

myExecutionProfile.report opens the code execution profiling report
using default display options.

myExecutionProfile.report(Name1, Value1, Name2, Value2,
...) opens the report with display options specified by the name-value
string pairs.

For example, to display time in microseconds (10-6 seconds) with a
precision of three decimal places, use the following command:

myExecutionProfile.report('Units', 'Seconds', 'ScaleFactor',
'1e-06', 'NumericFormat', '%0.3f')

1-342

report

Name-Value Pair Details

'Units', 'Seconds' or
'Units', 'Ticks'

Time measurements displayed in seconds
or timer ticks.Default:

• SIL simulation on Windows — Seconds

• SIL simulation on non-Windows —
Timer ticks

• PIL simulation — Seconds, if number
of timer ticks per second has been
specified by the target connectivity
configuration. Otherwise, ticks.

'ScaleFactor', Value Scale factor for displayed measurements.
For example, to display measurements in
microseconds, use the name-value pair
'ScaleFactor', '1e-6'.Value must be a
string representation of a number that is
a power of 10. For example, '1', '1e-6',
or '1e-9'. Default value is '1e-9'.
To specify the scale factor, you must also
specify 'Units', 'Seconds'.

'NumericFormat',
Convention

Numeric format for displayed
measurements. Use the decimal
convention utilized by the ANSI® C
function sprintf, for example, '%1.2f'.
Default is '%0.0f'.To specify the numeric
format, you must also specify 'Units',
'Seconds'.

See Also display

How To • “Configure Code Execution Profiling”

• “View and Compare Code Execution Times”

1-343

reset

Purpose Stop program execution and reset processor

Syntax IDE_Obj.reset(timeout)

IDEs This function supports the following IDEs:

• Analog Devices VisualDSP++

• Green Hills MULTI

• Texas Instruments Code Composer Studio v3

Description IDE_Obj.reset(timeout) stops the program executing on the processor
and asynchronously performs a processor reset, returning the processor
register contents to their power-up settings. reset returns immediately
after the processor halt.

The optional timeout argument sets the number of seconds MATLAB
waits for the processor to halt. If you omit the timeout argument,
timeout defaults to the timeout value of the IDE handle object.

See Also halt | load | run

1-344

restart

Purpose Reload most recent program file to processor signal processor

Syntax IDE_Obj.restart
IDE_Obj.restart(timeout)

IDEs This function supports the following IDEs:

• Eclipse IDE

• Green Hills MULTI

• Texas Instruments Code Composer Studio v3

Description IDE_Obj.restart issues a restart command in the IDE debugger. The
behavior of the restart process depends on the processor. Refer to the
documentation for your IDE for details about using restart with various
processors.

When IDE_Obj is an array that contains more than one processor, each
processor calls restart in sequence.

IDE_Obj.restart(timeout) adds the optional timeout input
argument. timeout defines an upper limit in seconds on the period
the restart routine waits for completion of the restart process. If the
time-out period is exceeded, restart returns control to MATLAB with a
time-out error. In general, restart causes the processor to initiate a
restart, even if the time-out period expires. The time-out error indicates
that the restart confirmation was not received before the time-out
period elapsed.

See Also halt | isrunning | run

1-345

rtIOStreamClose

Purpose Shut down communications channel with remote processor

Syntax int rtIOStreamClose(
int streamID

)

Arguments streamID
A handle to the stream that was returned by a previous call to
rtIOStreamOpen.

Description int rtIOStreamClose(
int streamID

)

Call this function to shut down the communications channel and clean
up associated resources.

A return value of zero indicates success. RTIOSTREAM_ERROR indicates
an error.

RTIOSTREAM_ERROR is defined in rtiostream.h as:

#define RTIOSTREAM_ERROR (-1)

See Also rtIOStreamOpen | rtIOStreamSend | rtIOStreamRecv |
rtiostream_wrapper

How To • “Create a Connectivity Configuration for a Target”

• rtwdemo_rtiostream_script

• rtwdemo_custom_pil_script

1-346

rtIOStreamOpen

Purpose Initialize communications channel with remote processor

Syntax int rtIOStreamOpen(
int argc,
void * argv[]

)

Arguments argc
Integer argument count, i.e., the number of parameters in argv[]

argv[]
An array of pointers to parameters; typically these are
null-terminated string parameters, however, this is allowed to
be implementation dependent.

Description int rtIOStreamOpen(
int argc,
void * argv[]

)

This function initializes a communication stream to allow exchange
of data between host and target.

The input parameters allows driver-specific parameters to be passed to
the communications driver.

If able to initialize a communication stream, the function returns a
nonnegative integer greater than zero, representing a stream handle. A
return value of RTIOSTREAM_ERROR indicates an error.

RTIOSTREAM_ERROR is defined in rtiostream.h as:

#define RTIOSTREAM_ERROR (-1)

See Also rtIOStreamSend | rtIOStreamRecv | rtIOStreamClose |
rtiostream_wrapper

1-347

rtIOStreamOpen

How To • “Create a Connectivity Configuration for a Target”

• rtwdemo_rtiostream_script

• rtwdemo_custom_pil_script

1-348

rtIOStreamRecv

Purpose Receive data from remote processor

Syntax int rtIOStreamRecv(
int streamID,
void * dst,

size_t size,
size_t * sizeRecvd

)

Arguments streamID
A handle to the stream that was returned by a previous call to
rtIOStreamOpen.

size
Size of data to copy into the buffer. For byte-addressable
architectures, size is measured in bytes. Some DSP architectures
are not byte-addressable. In these cases, size is measured in
number of WORDs, where sizeof(WORD) == 1.

dst
A pointer to the start of the buffer where received data must be
copied.

sizeRecvd
The number of units of data received and copied into the buffer
dst (zero if data was not copied).

Description int rtIOStreamRecv(
int streamID,
void * dst,
size_t size,
size_t * sizeRecvd

)

This function receives data over a communication channel with a
remote processor.

A return value of zero indicates success.RTIOSTREAM_ERROR indicates
an error.

1-349

rtIOStreamRecv

RTIOSTREAM_ERROR is defined in rtiostream.h as:

#define RTIOSTREAM_ERROR (-1)

See also rtiostreamSend for implementation and performance
considerations.

See Also rtIOStreamSend | rtIOStreamOpen | rtIOStreamClose |
rtIOStream_wrapper

How To • “Create a Connectivity Configuration for a Target”

• rtwdemo_rtiostream_script

• rtwdemo_custom_pil_script

1-350

rtIOStreamSend

Purpose Send data to remote processor

Syntax int rtIOStreamSend(
int streamID,

const void * src,
size_t size,

size_t * sizeSent
)

Arguments streamID
A handle to the stream that was returned by a previous call to
rtIOStreamOpen.

src
A pointer to the start of the buffer containing an array of data
to transmit

size
Size of data to transmit. For byte-addressable architectures,
size is measured in bytes. Some DSP architectures are not
byte-addressable. In these cases, size is measured in number of
WORDs, where sizeof(WORD) == 1.

sizeSent
Size of data actually transmitted (less than or equal to size), or
zero if data was not transmitted

Description int rtIOStreamSend(
int streamID,
const void * src,
size_t size,
size_t * sizeSent

)

This function sends data over a communication stream with a remote
processor.

1-351

rtIOStreamSend

A return value of zero indicates success.RTIOSTREAM_ERROR indicates
an error.

RTIOSTREAM_ERROR is defined in rtiostream.h as:

#define RTIOSTREAM_ERROR (-1)

Implementation and Performance Considerations

The API for rtIOStream functions is designed to be independent of the
physical layer across which the data is sent. Possible physical layers
include RS232, Ethernet, or Controller Area Network (CAN). The choice
of physical layer affects the achievable data rates for the host-target
communication.

For a processor-in-the-loop (PIL) application there is no minimum data
rate requirement. However, the higher the data rate, the faster the
simulation will run.

In general, a communications device driver will require additional
hardware-specific or channel-specific configuration parameters. For
example:

• A CAN channel may require specification of which available CAN
Node should be used.

• A TCP/IP channel may require a port or static IP address to be
configured.

• A CAN channel may require the CAN message ID and priority to
be specified.

It is the responsibility of the user who implements the rtIOStream
driver functions to provide this configuration data, for example by
hard-coding it, or by supplying arguments to rtIOStreamOpen.

See Also rtIOStreamOpen | rtIOStreamClose | rtIOStreamRecv |
rtiostream_wrapper

How To • “Create a Connectivity Configuration for a Target”

1-352

rtIOStreamSend

• rtwdemo_rtiostream_script

• rtwdemo_custom_pil_script

1-353

rtiostream_wrapper

Purpose Test rtiostream shared library methods

Syntax STATION_ID = rtiostream_wrapper(SHARED_LIB,'open')
STATION_ID =
rtiostream_wrapper(SHARED_LIB,'open',p1, v1, p2,

v2, ...)
[RES,SIZE_SENT] = rtiostream_wrapper(SHARED_LIB,'send',ID,

DATA, SIZE)
[RES, DATA_RECVD,

SIZE_RECVD] = rtiostream_wrapper(SHARED_LIB,'recv',ID,
SIZE)

RES = rtiostream_wrapper(SHARED_LIB,'close',ID)
rtiostream_wrapper(SHARED_LIB, 'unloadlibrary')

Description rtiostream_wrapper enables you to access the methods of an
rtiostream shared library from MATLAB code, for testing purposes.

STATION_ID = rtiostream_wrapper(SHARED_LIB,'open') opens an
rtiostream communication channel through a shared library, and
returns a handle to the channel.

STATION_ID = rtiostream_wrapper(SHARED_LIB,'open',p1, v1,
p2, v2, ...) opens an rtiostream communication channel through a
shared library. p1, v1, ... are additional parameter value pairs used
when opening an rtiostream communication channel through a shared
library. These arguments are implementation dependent, that is, they
are specific to the shared library being called.

[RES,SIZE_SENT] = rtiostream_wrapper(SHARED_LIB,'send',ID,
DATA, SIZE) sends DATA into the communication channel with handle
ID, and attempts to send SIZE bytes.

[RES, DATA_RECVD, SIZE_RECVD] =
rtiostream_wrapper(SHARED_LIB,'recv',ID, SIZE) receives up to
SIZE bytes of DATA from the communication channel with handle ID.

RES = rtiostream_wrapper(SHARED_LIB,'close',ID) closes the
communication channel with handle ID.

1-354

rtiostream_wrapper

rtiostream_wrapper(SHARED_LIB, 'unloadlibrary') unloads the
SHARED_LIB, clearing persistent data.

Input
Arguments

SHARED_LIB

Name of shared library that implements the required rtIOStream
functions rtIOStreamOpen, rtIOStreamSend, rtIOStreamRecv and
rtIOStreamClose. Must be on system path.

Shared library can be:

• libTCPIP — For TCP/IP communication. Value depends on your
operating system. See rtwdemo_rtiostream_script.

• 'libmwrtiostreamserial.dll'— For serial communication.

open

Opens communication channel

send

Sends data into communication channel with handle ID

ID

Communication channel handle

DATA

Data to be sent

SIZE

Size of requested data in bytes

recv

Receives data from communication channel with handle ID

close

1-355

rtiostream_wrapper

Closes communication channel with handle ID

unloadlibrary

Unloads SHARED_LIB

Name-Value Pair Arguments

p1, v1, ... are optional comma-separated pairs of Name,Value
arguments, where Name is the argument name and Value is the
corresponding value. Name must appear inside single quotes ('').
You can specify several name-value pair arguments in any order as
Name1,Value1, ,NameN,ValueN

’-client’

• 0 — Opens as TCP/IP server

• 1 — Opens as TCP/IP client

Shared library must be libTcpip.

’-port’

Port number for TCP/IP or COM port string for serial communication.
If port is for serial communication, you must also specify bit rate using
-baud.

Shared library must be either libTcpip or
'libmwrtiostreamserial.dll'.

’-hostname’

Identifier for host computer, for example, 'localhost'.

Shared library must be libTcpip.

’-baud’

Bit rate for serial communication port.

Shared library must be 'libmwrtiostreamserial.dll'.

1-356

rtiostream_wrapper

Output
Arguments

STATION_ID

Handle to communication channel. If attempt is unsuccessful, value
is -1.

RES

Error flag:

• -1 — Error occurred

• 0 — No error

SIZE_SENT

Number of bytes accepted by communication channel. May be less than
SIZE, that is, the requested number of bytes to send.

DATA_RECVD

Data received

SIZE_RECVD

Number of bytes actually received from channel. May be less than SIZE,
that is, the requested number of bytes to send.

Examples The following examples open communication channels using supplied
TCP/IP and serial communication drivers.

The following command opens rtiostream channel stationA as a
TCP/IP server:

stationA = rtiostream_wrapper('libmwrtiostreamtcpip.dll','open',...

'-client', '0',...

'-port', port_number);

The following command opens the rtiostream channel StationB as a
TCP/IP client:

1-357

rtiostream_wrapper

stationB = rtiostream_wrapper('libmwrtiostreamtcpip.dll','open',...

'-client','1',...

'-port', port_number,...

'-hostname','localhost');

If you use the supplied host-side driver for serial communications (as
an alternative to the drivers for TCP/IP), you must specify the bit
rate when you open a channel with a specific port. Specify the option
'-baud' with a value for the bit rate. For example, the following
command opens COM1 with a bit rate of 9600:

stationA = rtiostream_wrapper('libmwrtiostreamserial.dll','open',...

'-port','COM1',...

'-baud','9600');

See Also rtIOStreamOpen | rtIOStreamSend | rtIOStreamRecv |
rtIOStreamClose

How To • “Create a Connectivity Configuration for a Target”

• rtwdemo_rtiostream_script

• rtwdemo_custom_pil_script

1-358

RTW.AutosarInterface

Purpose Control and validate AUTOSAR configuration

Description You can use methods of the RTW.AutosarInterface class to configure
AUTOSAR code generation and XML import and export options.

Construction RTW.AutosarInterface Construct
RTW.AutosarInterface object

Methods addEventConf Add configured AUTOSAR event
to model

addIOConf Add AUTOSAR I/O configuration
to model

attachToModel Attach RTW.AutosarInterface
object to model

getArxmlFilePackaging Get AUTOSAR XML packaging
format

getComponentName Get XML component name

getComponentType Get type of software component

getDataTypePackageName Get XML data type package name

getDefaultConf Get default configuration

getEventType Get event type

getExecutionPeriod Get runnable execution period

getImplementationName Get name of XML implementation

getInitEventName Get initial event name

getInitRunnableName Get initial runnable name

getInterfacePackageName Get XML interface package name

1-359

RTW.AutosarInterface

getInternalBehaviorName Get name of XML file that
specifies software component
internal behavior

getIOAutosarPortName Get I/O AUTOSAR port name

getIODataAccessMode Get I/O data access mode

getIODataElement Get I/O data element name

getIOErrorStatusReceiver Get name of error status receiver
port

getIOInterfaceName Get I/O interface name

getIOPortNumber Get I/O AUTOSAR port number

getIOServiceInterface Get port I/O service interface

getIOServiceName Get port I/O service name

getIOServiceOperation Get port I/O service operation

getIsServerOperation Determine whether server is
specified

getPeriodicEventName Get periodic event name

getPeriodicRunnableName Get periodic runnable name

getServerInterfaceName Get name of server interface

getServerOperationPrototype Get server operation prototype

getServerPortName Get server port name

getServerType Determine server type

getTriggerPortName Get name of Simulink inport
that provides trigger data for
DataReceivedEvent

removeEventConf Remove AUTOSAR event from
model

runValidation Validate RTW.AutosarInterface
object against model

1-360

RTW.AutosarInterface

setArxmlFilePackaging Set AUTOSAR XML packaging
format

setComponentName Set XML component name

setComponentType Set type of software component

setDataTypePackageName Specify XML package name for
data type

setEventType Set type for event

setExecutionPeriod Specify execution period for
TimingEvent

setImplementationName Set name of XML implementation

setInitEventName Set initial event name

setInitRunnableName Set initial runnable name

setInterfacePackageName Set name of XML interface
package

setInternalBehaviorName Set name of XML file for software
component internal behavior

setIOAutosarPortName Set AUTOSAR port name

setIODataAccessMode Set I/O data access mode

setIODataElement Set I/O data element

setIOErrorStatusReceiver Set name of error status receiver
port

setIOInterfaceName Set I/O interface name

setIOServiceInterface Set port I/O service interface

setIOServiceName Set port I/O service name

setIOServiceOperation Set port I/O service operation

setIsServerOperation Indicate that server is specified

setPeriodicEventName Set periodic event name

1-361

RTW.AutosarInterface

setPeriodicRunnableName Set periodic runnable name

setServerInterfaceName Set name of server interface

setServerOperationPrototype Specify operation prototype

setServerPortName Set server port name

setServerType Specify server type

setTriggerPortName Specify Simulink inport that
provides trigger data for
DataReceivedEvent

syncWithModel Synchronize configuration with
model

Copy
Semantics

Handle. To learn how this affects your use of the class, see Copying
Objects in the MATLAB Programming Fundamentals documentation.

How To • “Configure the AUTOSAR Interface”

• “Configure Ports for Basic Software and Error Status Receivers”

• “Modify and Validate an Existing AUTOSAR Interface”

1-362

RTW.AutosarInterface

Purpose Construct RTW.AutosarInterface object

Syntax autosarInterfaceObject = RTW.AutosarInterface()
autosarInterfaceObject = RTW.AutosarInterface(model_handle)
autosarInterfaceObject = RTW.AutosarInterface(object_name,

model_handle)

Description autosarInterfaceObject = RTW.AutosarInterface() creates an
RTW.AutosarInterface object without specifying a model, and returns
a handle to this object.

autosarInterfaceObject = RTW.AutosarInterface(model_handle)
creates an RTW.AutosarInterface object with a model specified, and
returns a handle to this object. The software sets the name of the
RTW.AutosarInterface object to 'AutosarInterface'.

autosarInterfaceObject = RTW.AutosarInterface(object_name,
model_handle) creates an RTW.AutosarInterface object with a model
specified, and returns a handle to this object. The software sets the
name of the RTW.AutosarInterface object to object_name.

Input
Arguments

model_handle Handle to Simulink model

object_name Name of RTW.AutosarInterface object

Output
Arguments

autosarInterfaceObject Handle to newly created
RTW.AutosarInterface object.

How To • “Generating Code for AUTOSAR Software Components”

• RTW.AutosarInterface.attachToModel

1-363

rtw.codegenObjectives.Objective

Purpose Customize code generation objectives

Description An rtw.codegenObjectives.Objective object creates a code
generation objective.

Construction rtw.codegenObjectives.Objective Create custom code generation
objectives

Methods addCheck Add checks

addParam Add parameters

excludeCheck Exclude checks

modifyInheritedParam Modify inherited parameter
values

register Register objective

removeInheritedCheck Remove inherited checks

removeInheritedParam Remove inherited parameters

setObjectiveName Specify objective name

Copy
Semantics

Handle. To learn how this affects your use of the class, see Copying
Objects in the MATLAB Programming Fundamentals documentation.

Examples Create a custom objective named Reduce RAM Example. The following
code is the contents of the sl_customization.m file that you create.

function sl_customization(cm)

%SL_CUSTOMIZATION objective customization callback

objCustomizer = cm.ObjectiveCustomizer;

index = objCustomizer.addCallbackObjFcn(@addObjectives);

objCustomizer.callbackFcn{index}();

1-364

rtw.codegenObjectives.Objective

end

function addObjectives

% Create the custom objective

obj = rtw.codegenObjectives.Objective('ex_ram_1');

setObjectiveName(obj, 'Reduce RAM Example');

% Add parameters to the objective

addParam(obj, 'InlineParams', 'on');

addParam(obj, 'BooleanDataType', 'on');

addParam(obj, 'OptimizeBlockIOStorage', 'on');

addParam(obj, 'EnhancedBackFolding', 'on');

addParam(obj, 'BooleansAsBitfields', 'on');

% Add additional checks to the objective

% The Code Generation Advisor automatically includes 'Check model

% configuration settings against code generation objectives' in every

% objective.

addCheck(obj, 'mathworks.design.UnconnectedLinesPorts');

addCheck(obj, 'mathworks.design.Update');

%Register the objective

register(obj);

end

See Also DAStudio.CustomizationManager.ObjectiveCustomizer

How To • “Create Custom Objectives”

1-365

rtw.codegenObjectives.Objective

Purpose Create custom code generation objectives

Syntax obj = rtw.codegenObjectives.Objective('objID')
obj = rtw.codegenObjectives.Objective('objID',
'base_objID')

Description obj = rtw.codegenObjectives.Objective('objID') creates an
objective object, obj.

obj = rtw.codegenObjectives.Objective('objID',
'base_objID') creates an object, obj, for a new objective that is
identical to an existing objective. You can then modify the new objective
to meet your requirements.

Input
Arguments

objID A permanent, unique identifier for the
objective.
• You must have

objID.

• The value of objID must remain constant.

• When you refresh your customizations, if
objID is not unique, Simulink generates
an error.

base_objID The identifier of the objective that you want
to base the new objective on.

Examples Create a new objective:

obj = rtw.codegenObjectives.Objective('ex_ram_1');

Create a new objective based on the existing Execution efficiency
objective:

obj = rtw.codegenObjectives.Objective('ex_my_efficiency_1', 'Execution efficiency');

1-366

rtw.codegenObjectives.Objective

How To • “Create Custom Objectives”

1-367

RTW.configSubsystemBuild

Purpose Configure C function prototype or C++ encapsulation interface for
right-click build of specified subsystem

Syntax RTW.configSubsystemBuild(block)

Description RTW.configSubsystemBuild(block) opens a graphical user interface
where you can configure either C function prototype information or C++
encapsulation interface information for right-click builds of a specified
nonvirtual subsystem. A dialog box opens based on the Language
value selected for your model on the Code Generation pane of the
Configuration Parameters dialog box.

To configure and generate C++ encapsulation interfaces for a nonvirtual
subsystem, you must

• Select the system target file ert.tlc for the model.

• Select the Language parameter value C++ (Encapsulated) for the
model.

• Make sure that the subsystem is convertible to a Model block using
the function Simulink.SubSystem.convertToModelReference.
For referenced model conversion requirements, see the Simulink
reference page Simulink.SubSystem.convertToModelReference.

Input
Arguments

block String specifying the name of a nonvirtual
subsystem block in an ERT-based Simulink
model.

How To • “Configure Function Prototypes for Nonvirtual Subsystems”

• “Function Prototype Control”

• “Configure C++ Encapsulation Interfaces for Nonvirtual Subsystems”

• “C++ Encapsulation Interface Control”

1-368

rtw.connectivity.ComponentArgs

Purpose Provide parameters to each target connectivity component

Syntax componentArgs = rtw.connectivity.ComponentArgs (componentPath,
componentCodePath, componentCodeName, applicationCodePath)

Description Syntax of constructor ComponentArgs:

componentArgs = rtw.connectivity.ComponentArgs
(componentPath, componentCodePath, componentCodeName,
applicationCodePath)

You can use the methods of this class to get information about the
source component (e.g., the referenced model under test) and the target
application (e.g., the PIL application).

For methods, see the following table.

Method Syntax and Description

componentPath =
obj.getComponentPath

getComponentPath

Returns the Simulink system
path of the source component
(e.g., the path of the referenced
model that is under test).

componentCodePath =
obj.getComponentCodePath

getComponentCodePath

Returns the Embedded Coder
code generation directory path
associated with the source
component (e.g., the code
generation directory of the
referenced model that is under
test).

1-369

rtw.connectivity.ComponentArgs

Method Syntax and Description

componentCodeName =
obj.getComponentCodeName

getComponentCodeName

Returns the component name
used for code generation.

applicationCodePath =
obj.getApplicationCodePath

getApplicationCodePath

Returns the directory path
associated with the target
application (e.g., the path
associated with the PIL
application).

See rtw.connectivity.Config for more information.

See Also rtw.connectivity.Config

How To • “Create a Connectivity Configuration for a Target”

1-370

rtw.connectivity.Config

Purpose Define connectivity implementation, comprising builder, launcher, and
communicator components

Syntax rtw.connectivity.Config(componentArgs, builder, launcher,
communicator)

Description Constructor Description

Config Wrapper for the connectivity
component classes builder,
launcher and communicator.

Constructor Arguments

componentArgs rtw.connectivity.ComponentArgs
object.

builder rtw.connectivity.Builder (e.g.
rtw.connectivity.MakefileBuilder)
object.

launcher rtw.connectivity.Launcher object.

communicator rtw.connectivity.Communicator
(e.g. rtw.connectivity.-
RtIOStreamHostCommunicator)
object.

Constructor syntax:

rtw.connectivity.Config(componentArgs, builder, launcher,
communicator)

To define a connectivity implementation:

1 You must create a subclass of rtw.connectivity.Config that
creates instances of your connectivity component classes:

• rtw.connectivity.MakefileBuilder

1-371

rtw.connectivity.Config

• rtw.connectivity.Launcher

• rtw.connectivity.RtIOStreamHostCommunicator

You can see an example ConnectivityConfig.m, used in
rtwdemo_custom_pil_script.

2 Define the constructor for your subclass as follows:

function this = MyConfig(componentArgs)

When Simulink creates an instance of your subclass of
rtw.connectivity.Config, it provides an instance of
the rtw.connectivity.ComponentArgs class as the only
constructor argument. If you want to test your subclass of
rtw.connectivity.Config manually, you may want to create an
rtw.connectivity.ComponentArgs object to pass as a constructor
argument.

3 After instantiating the builder, launcher and communicator
objects in your subclass, call the constructor of the superclass
rtw.connectivity.Config to define your complete target
connectivity configuration, as shown in this example.

% call super class constructor to register components
this@rtw.connectivity.Config(componentArgs,...
builder, launcher, communicator);

You will register your subclass name (e.g.
“MyPIL.ConnectivityConfig”) to Simulink by using the
class rtw.connectivity.ConfigRegistry. This uses the
sl_customization.m mechanism to register your connectivity
configuration.

The PIL infrastructure instantiates your subclass as required. The
sl_customization.m mechanism helps in specifying a suitable
connectivity configuration for use with a particular PIL component
(and its configuration set). It is also possible for the subclass to
do extra validation on construction. For example, you can use the

1-372

rtw.connectivity.Config

componentPath returned by the getComponentPath method of the
componentArgs constructor argument to query and validate parameters
associated with the PIL component under test.

For supported hardware implementation settings and other support
information, see “SIL and PIL Simulation Support and Limitations” in
the Embedded Coder documentation.

See Also rtw.connectivity.MakefileBuilder | rtw.connectivity.Launcher
| rtw.connectivity.RtIOStreamHostCommunicator |
rtw.connectivity.ComponentArgs

How To • “Create a Connectivity Configuration for a Target”

• rtwdemo_custom_pil_script

1-373

rtw.connectivity.ConfigRegistry

Purpose Register connectivity configuration

Syntax config = rtw.connectivity.ConfigRegistry
config = rtw.connectivity.ConfigRegistry

Description Use this class to register your connectivity configuration with Simulink
by using the sl_customization.m mechanism. The connectivity
configuration is registered by a call to registerTargetInfo inside a
sl_customization.m file.

Create or add to your sl_customization.m file as shown in the
“Examples” on page 1-376 section, and place the file on the MATLAB
path. Simulink software reads the sl_customization.m when it starts,
and registers your connectivity configuration. This step also defines
the set of Simulink models that the new connectivity configuration is
compatible with.

A connectivity configuration must have a unique name and be
associated with a connectivity implementation class (a subclass of
rtw.connectivity.Config). The properties of the configuration
(e.g. SystemTargetFile) define the set of Simulink models that the
connectivity implementation class is compatible with. The properties
are shown in the following table.

Properties of rtw.connectivity.ConfigRegistry

Property Name Description

ConfigName Unique string name for this
configuration

ConfigClass Full class name of the
connectivity implementation (e.g.
rtw.pil.myConnectivityConfig)
to register.

1-374

rtw.connectivity.ConfigRegistry

Properties of rtw.connectivity.ConfigRegistry (Continued)

Property Name Description

SystemTargetFile Cell array of strings listing
System Target Files that support
this ConfigRegistry.
An empty cell array matches any
System Target File.
The model’s
SystemTargetFileConfiguration
Parameter is validated against
this cell array to determine if this
ConfigRegistry is valid for use.

TemplateMakefile Cell array of strings listing
Template Makefiles that support
this ConfigRegistry. An empty
cell array matches any Template
Makefile and nonmakefile based
targets (GenerateMakefile: off).
The model’s TemplateMakefile
Configuration Parameter is
validated against this cell array to
determine if this ConfigRegistry
is valid for use.

TargetHWDeviceType Cell array of strings listing
Hardware Device Types that
support this ConfigRegistry.
An empty cell array matches any
Hardware Device Type.
The model’s
TargetHWDeviceTypeConfiguration
Parameter is validated against
this cell array to determine if this
ConfigRegistry is valid for use.

1-375

rtw.connectivity.ConfigRegistry

Examples The following code shows an example sl_customization.m registration.
You must use the sl_customization.m file structure shown in the
example following. You must call the registerTargetInfo function
exactly as shown.

function sl_customization(cm)
% SL_CUSTOMIZATION for PIL connectivity config:...
% mypil.ConnectivityConfig

% Copyright 2008 The MathWorks, Inc.
% $Revision: 1.1.8.9 $

cm.registerTargetInfo(@loc_createConfig);

% local function
function config = loc_createConfig

config = rtw.connectivity.ConfigRegistry;
config.ConfigName = 'My PIL Example';
config.ConfigClass = 'mypil.ConnectivityConfig';

% match only ert.tlc
config.SystemTargetFile = {'ert.tlc'};
% match the standard ert TMF's
config.TemplateMakefile = {'ert_default_tmf' ...

'ert_unix.tmf', ...
'ert_vc.tmf', ...
'ert_vcx64.tmf', ...
'ert_lcc.tmf'};

% match regular 32-bit machines and Custom for e.g. ...
% 64-bit Linux
config.TargetHWDeviceType = {'Generic->32-bit x86 ...

compatible'
'Generic->Custom'};

You must configure the file to perform the following steps when
Simulink software starts:

1-376

rtw.connectivity.ConfigRegistry

1 Create an instance of the rtw.connectivity.ConfigRegistry class.
For example,

config = rtw.connectivity.ConfigRegistry;

2 Assign a connectivity configuration name to the ConfigName property
of the object. For example,

config.ConfigName = 'My PIL Example';

3 Associate the connectivity configuration with the connectivity API
implementation (created in step 1). For example,

config.ConfigClass = 'mypil.ConnectivityConfig';

4 Define compatible models for this target connectivity configuration,
by setting the SystemTargetFile, TemplateMakefile and
TargetHWDeviceType properties of the object. For example,

% match only ert.tlc
config.SystemTargetFile = {'ert.tlc'};
% match the standard ert TMF's
config.TemplateMakefile = {'ert_default_tmf' ...

'ert_unix.tmf', ...
'ert_vc.tmf', ...
'ert_vcx64.tmf', ...
'ert_lcc.tmf'};

% match regular 32-bit machines and Custom for e.g. ...
% 64-bit Linux
config.TargetHWDeviceType = {'Generic->32-bit x86 ...

compatible'
'Generic->Custom'};

See Also rtw.connectivity.Config

How To • “Create a Connectivity Configuration for a Target”

• rtwdemo_custom_pil_script

1-377

rtw.connectivity.Launcher

Purpose Control downloading, starting and resetting of a target application

Syntax rtw.connectivity.Launcher(componentArgs)

Description Constructor Description

Launcher Controls execution of an application on target
hardware.

rtw.connectivity.Launcher(componentArgs) controls the download,
start and reset of an application, for example, a PIL application.

You can also use rtw.connectivity.Launcher(componentArgs,
builder), which provides the Launcher access to a Builder object
through the getBuilder method. However, support for this approach
will cease in a future release.

You must make a subclass and implement the startApplication and
stopApplication methods.

You can implement a destructor method that cleans up resources (for
example, a handle to a third-party download tool) when this object
is cleared from memory. There is significant flexibility in how the
startApplication and stopApplicationmethods can be implemented.

For methods, see the following table.

Method Syntax and Description

componentArgs = obj.getComponentArgsgetComponentArgs

Returns the
rtw.connectivity.ComponentArgs object
associated with the Launcher object.

setExe(exe)setExe

Specify the application to run on the target

1-378

rtw.connectivity.Launcher

Method Syntax and Description

exe=getExe()getExe

Returns the application running on the target

obj.startApplicationstartApplication

Abstract method that you must implement in
a subclass.

Called by Simulink to start execution of the
target application.

Simulink calls the setExe method, which
specifies the target application to launch. To
obtain this application, use the getExe method.
For example:

exe = getExe()

The startApplication method must reset the
application to its initial state by ensuring that
external and static (global) variables are zero
initialized.

obj.stopApplicationstopApplication

Abstract method that you must implement in
a subclass.

Called by Simulink to stop execution of the
target application.

builder = obj.getBuildergetBuilder

Returns the rtw.connectivity.Builder object
associated with the Launcher object.

How To • “Create a Connectivity Configuration for a Target”

• rtwdemo_custom_pil_script

1-379

rtw.connectivity.MakefileBuilder

Purpose Configure makefile-based build process

Syntax rtw.connectivity.MakefileBuilder(componentArgs,
targetApplicationFramework, exeExtension)

Description Constructor Description

MakefileBuilder Control makefile-based build
process.

Constructor Arguments

componentArgs rtw.connectivity.ComponentArgs

TargetApplicationFramework rtw.pil.RtIOStream-
ApplicationFramework (e.g.
MyPIL.TargetFramework)

exeExtension Filename extension of an executable
for the target system.
The extension depends on the makefile
and compiler that are called by the
MakefileBuilder. These are defined
by the template makefile specified
by the source component (e.g., the
referenced model under test).
For an embedded target the extension
may be '.elf', '.abs', '.sre',
'.hex', or others.
For a Windows host-based target the
extension is '.exe'.
For a UNIX® host-based target the
extension is empty, ''.

Constructor syntax:

rtw.connectivity.MakefileBuilder(componentArgs,
targetApplicationFramework, exeExtension)

1-380

rtw.connectivity.MakefileBuilder

MakefileBuilder controls the customizable makefile-based build process
supporting the creation of custom applications (e.g. a PIL application)
that interface with a Simulink component such as a referenced model
(represented as a collection of binary libraries).

To build the PIL application, you must provide a template makefile
that includes the target MAKEFILEBUILDER_TGT. You can use the
standard TMF files, e.g., ert_unix.tmf or ert_vc.tmf.

See Also rtw.pil.RtIOStreamApplicationFramework |
rtw.connectivity.ComponentArgs

How To • “Create a Connectivity Configuration for a Target”

• rtwdemo_custom_pil_script

1-381

rtw.connectivity.RtIOStreamHostCommunicator

Purpose Configure host-side communications

Syntax rtw.connectivity.RtIOStreamHostCommunicator(componentArgs,
launcher, rtiostreamLib)

Description Constructor Description

RtIOStreamHostCommunicator Configure host-side
communications with the target
by loading and initializing a
shared library that implements
the rtiostream functions.

Constructor Arguments

componentArgs A
rtw.connectivity.ComponentArgs
object.

launcher A rtw.connectivity.Launcher
object.

rtiostreamLib An rtiostream shared library
that implements the host side of
host-target communications.

Constructor syntax:

rtw.connectivity.RtIOStreamHostCommunicator(componentArgs,
launcher, rtiostreamLib)

This class configures host-side communications with the target
by loading and initializing a shared library that implements the
rtiostream functions.

Embedded Coder provides an implementation of this shared library to
support TCP/IP communications between host and target, as well as
a version for serial communications. With TCP/IP or serial, you need
only supply the target-side drivers.

1-382

rtw.connectivity.RtIOStreamHostCommunicator

For other communications protocols (e.g. USB), you must supply a
shared library for the host-side of the communications link as well as
the target-side drivers.

To create your instance of
rtw.connectivity.RtIOStreamHostCommunicator, you have two
options:

• Instantiate rtw.connectivity.RtIOStreamHostCommunicator
directly, providing custom arguments to supply to the rtiostream
shared library.

• Alternatively, create a subclass of
rtw.connectivity.RtIOStreamHostCommunicator. Consider this
when more complex configuration is required. For example, the
subclass rtw.connectivity.HostTCPIPCommunicator includes
additional code to determine the TCP/IP port number on which the
executable application is serving, or you could use a subclass to
specify a serial port number, or specify verbose or silent operation.

Methods

setTimeoutRecvSecs Sets the timeout value for reading data.

hostCommunicator.setTimeoutRecvSecs(timeout) configures data
reading to time out if no new data is received for a period of greater
than timeout seconds.

setInitCommsTimeout Sets the timeout value for initial setup of the
communications channel.

hostCommunicator.setInitCommsTimeout(timeout) For some
targets you may need to set a timeout value for initial setup of the
communications channel. For example, the target processor may take
a few seconds before it is ready to open its side of the communications
channel. If you set a nonzero timeout value then the communicator
repeatedly tries to open the communications channel until the
timeout value is reached.

1-383

rtw.connectivity.RtIOStreamHostCommunicator

See Also rtw.connectivity.ComponentArgs | rtw.connectivity.Launcher |
rtiostream_wrapper

How To • “Create a Connectivity Configuration for a Target”

• rtwdemo_custom_pil_script

1-384

RTW.getEncapsulationInterfaceSpecification

Purpose Get handle to model-specific C++ encapsulation interface control object

Syntax obj = RTW.getEncapsulationInterfaceSpecification(modelName)

Description obj = RTW.getEncapsulationInterfaceSpecification(modelName)
returns a handle to a model-specific C++ encapsulation interface control
object.

Input
Arguments

modelName String specifying the name of a loaded
ERT-based Simulink model.

Output
Arguments

obj Handle to the C++ encapsulation interface
control object associated with the specified
model. If the model does not have an
associated C++ encapsulation interface control
object, the function returns [].

Alternatives The Configure C++ Encapsulation Interface button on the
Interface pane of the Simulink Configuration Parameters dialog box
launches the Configure C++ encapsulation interface dialog box, where
you can flexibly control the C++ encapsulation interfaces that are
generated for your model. Once you validate and apply your changes,
you can generate code based on your C++ encapsulation interface
modifications. See “Configure C++ Encapsulation Interfaces Using
Graphical Interfaces” in the Embedded Coder documentation.

How To • “Configure C++ Encapsulation Interfaces Programmatically”

• “Configure the Step Method for a Model Class”

• “C++ Encapsulation Interface Control”

1-385

RTW.getFunctionSpecification

Purpose Get handle to model-specific C prototype function control object

Syntax obj = RTW.getFunctionSpecification(modelName)

Description obj = RTW.getFunctionSpecification(modelName) returns a handle
to the model-specific C function prototype control object.

Input
Arguments

modelName String specifying the name of a loaded
ERT-based Simulink model.

Output
Arguments

obj Handle to the model-specific C prototype
function control object associated with the
specified model. If the model does not have an
associated function control object, the function
returns [].

Alternatives The Configure Model Functions button on the Interface pane
of the Simulink Configuration Parameters dialog box launches the
Model Interface dialog box, which provides you flexible control over the
C function prototypes that are generated for your model. Once you
validate and apply your changes, you can generate code based on your C
function prototype modifications. See “Configure Function Prototypes
Using Graphical Interfaces” in the Embedded Coder documentation.

How To • “Function Prototype Control”

1-386

RTW.ModelCPPArgsClass

Superclasses ModelCPPClass

Purpose Control C++ encapsulation interfaces for models using I/O arguments
style step method

Description The ModelCPPArgsClass class provides objects that describe C++
encapsulation interfaces for models using an I/O arguments style step
method. Use the attachToModel method to attach a C++ encapsulation
interface to a loaded ERT-based Simulink model.

Construction RTW.ModelCPPArgsClass Create C++ encapsulation
interface object for configuring
model class with I/O arguments
style step method

Methods See the methods of the base class RTW.ModelCPPClass, plus the
following methods.

getArgCategory Get argument category for
Simulink model port from
model-specific C++ encapsulation
interface

getArgName Get argument name for Simulink
model port from model-specific
C++ encapsulation interface

getArgPosition Get argument position for
Simulink model port from
model-specific C++ encapsulation
interface

getArgQualifier Get argument type qualifier
for Simulink model port from
model-specific C++ encapsulation
interface

1-387

RTW.ModelCPPArgsClass

runValidation Validate model-specific C++
encapsulation interface against
Simulink model

setArgCategory Set argument category for
Simulink model port in
model-specific C++ encapsulation
interface

setArgName Set argument name for Simulink
model port in model-specific C++
encapsulation interface

setArgPosition Set argument position for
Simulink model port in
model-specific C++ encapsulation
interface

setArgQualifier Set argument type qualifier
for Simulink model port in
model-specific C++ encapsulation
interface

Copy
Semantics

Handle. To learn how this affects your use of the class, see Copying
Objects in the MATLAB Programming Fundamentals documentation.

Alternatives The Configure C++ Encapsulation Interface button on the
Interface pane of the Simulink Configuration Parameters dialog box
launches the Configure C++ encapsulation interface dialog box, where
you can flexibly control the C++ encapsulation interfaces that are
generated for your model. Once you validate and apply your changes,
you can generate code based on your C++ encapsulation interface
modifications. See “Configure C++ Encapsulation Interfaces Using
Graphical Interfaces” in the Embedded Coder documentation.

How To • “Configure C++ Encapsulation Interfaces Programmatically”

• “Configure the Step Method for a Model Class”

1-388

RTW.ModelCPPArgsClass

• “C++ Encapsulation Interface Control”

1-389

RTW.ModelCPPArgsClass

Purpose Create C++ encapsulation interface object for configuring model class
with I/O arguments style step method

Syntax obj = RTW.ModelCPPArgsClass

Description obj = RTW.ModelCPPArgsClass returns a handle, obj, to a newly
created object of class RTW.ModelCPPArgsClass.

Output
Arguments

obj Handle to a newly created C++ encapsulation
interface object for configuring a model class
with an I/O arguments style step method. The
object has not yet been configured or attached
to an ERT-based Simulink model.

Alternatives The Configure C++ Encapsulation Interface button on the
Interface pane of the Simulink Configuration Parameters dialog box
launches the Configure C++ encapsulation interface dialog box, where
you can flexibly control the C++ encapsulation interfaces that are
generated for your model. See “Configure C++ Encapsulation Interfaces
Using Graphical Interfaces” in the Embedded Coder documentation.

How To • “Configure C++ Encapsulation Interfaces Programmatically”

• “Configure the Step Method for a Model Class”

• “C++ Encapsulation Interface Control”

1-390

RTW.ModelCPPClass

Purpose Control C++ encapsulation interfaces for models

Description The ModelCPPClass class is the base class for the classes
RTW.ModelCPPArgsClass and RTW.ModelCPPVoidClass, which provide
objects that describe C++ encapsulation interfaces for models using
either an I/O arguments style step method or a void-void style step
method. Use the attachToModel method to attach a C++ encapsulation
interface to a loaded ERT-based Simulink model.

Construction To access the methods of this class, use the constructor for either
RTW.ModelCPPArgsClass or RTW.ModelCPPVoidClass.

Methods attachToModel Attach model-specific C++
encapsulation interface to loaded
ERT-based Simulink model

getClassName Get class name from
model-specific C++ encapsulation
interface

getDefaultConf Get default configuration
information for model-specific
C++ encapsulation interface from
Simulink model

getNumArgs Get number of step method
arguments from model-specific
C++ encapsulation interface

getStepMethodName Get step method name from
model-specific C++ encapsulation
interface

1-391

RTW.ModelCPPClass

setClassName Set class name in model-specific
C++ encapsulation interface

setStepMethodName Set step method name in
model-specific C++ encapsulation
interface

Alternatives The Configure C++ Encapsulation Interface button on the
Interface pane of the Simulink Configuration Parameters dialog box
launches the Configure C++ encapsulation interface dialog box, where
you can flexibly control the C++ encapsulation interfaces that are
generated for your model. Once you validate and apply your changes,
you can generate code based on your C++ encapsulation interface
modifications. See “Configure C++ Encapsulation Interfaces Using
Graphical Interfaces” in the Embedded Coder documentation.

How To • “Configure C++ Encapsulation Interfaces Programmatically”

• “Configure the Step Method for a Model Class”

• “C++ Encapsulation Interface Control”

1-392

RTW.ModelCPPVoidClass

Superclasses ModelCPPClass

Purpose Control C++ encapsulation interfaces for models using void-void style
step method

Description The ModelCPPVoidClass class provides objects that describe C++
encapsulation interfaces for models using a void-void style step
method. Use the attachToModel method to attach a C++ encapsulation
interface to a loaded ERT-based Simulink model.

Construction RTW.ModelCPPVoidClass Create C++ encapsulation
interface object for configuring
model class with void-void style
step method

Methods See the methods of the base class RTW.ModelCPPClass, plus the
following method.

runValidation Validate model-specific C++
encapsulation interface against
Simulink model

Copy
Semantics

Handle. To learn how this affects your use of the class, see Copying
Objects in the MATLAB Programming Fundamentals documentation.

Alternatives The Configure C++ Encapsulation Interface button on the
Interface pane of the Simulink Configuration Parameters dialog box
launches the Configure C++ encapsulation interface dialog box, where
you can flexibly control the C++ encapsulation interfaces that are
generated for your model. Once you validate and apply your changes,
you can generate code based on your C++ encapsulation interface
modifications. See “Configure C++ Encapsulation Interfaces Using
Graphical Interfaces” in the Embedded Coder documentation.

1-393

RTW.ModelCPPVoidClass

How To • “Configure C++ Encapsulation Interfaces Programmatically”

• “Configure the Step Method for a Model Class”

• “C++ Encapsulation Interface Control”

1-394

RTW.ModelCPPVoidClass

Purpose Create C++ encapsulation interface object for configuring model class
with void-void style step method

Syntax obj = RTW.ModelCPPVoidClass

Description obj = RTW.ModelCPPVoidClass returns a handle, obj, to a newly
created object of class RTW.ModelCPPVoidClass.

Output
Arguments

obj Handle to a newly created C++ encapsulation
interface object for configuring a model class
with a void-void style step method. The
object has not yet been configured or attached
to an ERT-based Simulink model.

Alternatives The Configure C++ Encapsulation Interface button on the
Interface pane of the Simulink Configuration Parameters dialog box
launches the Configure C++ encapsulation interface dialog box, where
you can flexibly control the C++ encapsulation interfaces that are
generated for your model. See “Configure C++ Encapsulation Interfaces
Using Graphical Interfaces” in the Embedded Coder documentation.

How To • “Configure C++ Encapsulation Interfaces Programmatically”

• “Configure the Step Method for a Model Class”

• “C++ Encapsulation Interface Control”

1-395

RTW.ModelSpecificCPrototype

Purpose Describe signatures of functions for model

Description A ModelSpecificCPrototype object describes the signatures of the
step and initialization functions for a model. You must use this in
conjunction with the attachToModel method.

Construction RTW.ModelSpecificCPrototype Create model-specific C prototype
object

Methods addArgConf Add argument configuration
information for Simulink model
port to model-specific C function
prototype

attachToModel Attach model-specific C function
prototype to loaded ERT-based
Simulink model

getArgCategory Get argument category for
Simulink model port from
model-specific C function
prototype

getArgName Get argument name for Simulink
model port from model-specific C
function prototype

getArgPosition Get argument position for
Simulink model port from
model-specific C function
prototype

getArgQualifier Get argument type qualifier
for Simulink model port from
model-specific C function
prototype

1-396

RTW.ModelSpecificCPrototype

getDefaultConf Get default configuration
information for model-specific C
function prototype from Simulink
model

getFunctionName Get function name from
model-specific C function
prototype

getNumArgs Get number of function
arguments from model-specific C
function prototype

getPreview Get model-specific C function
prototype code preview

runValidation Validate model-specific C function
prototype against Simulink model

setArgCategory Set argument category for
Simulink model port in
model-specific C function
prototype

setArgName Set argument name for Simulink
model port in model-specific C
function prototype

setArgPosition Set argument position for
Simulink model port in
model-specific C function
prototype

setArgQualifier Set argument type qualifier
for Simulink model port in
model-specific C function
prototype

setFunctionName Set function name in
model-specific C function
prototype

1-397

RTW.ModelSpecificCPrototype

Copy
Semantics

Handle. To learn how this affects your use of the class, see Copying
Objects in the MATLAB Programming Fundamentals documentation.

Examples The code below creates a function control object, a, and uses it to add
argument configuration information to the model.

% Open the rtwdemo_counter model and specify the System Target File

rtwdemo_counter

set_param(gcs,'SystemTargetFile','ert.tlc')

%% Create a function control object

a=RTW.ModelSpecificCPrototype

%% Add argument configuration information for Input and Output ports

addArgConf(a,'Input','Pointer','inputArg','const *')

addArgConf(a,'Output','Pointer','outputArg','none')

%% Attach the function control object to the model

attachToModel(a,gcs)

Alternatives You can create a function control object using the Model Interface
dialog box.

See Also RTW.ModelSpecificCPrototype.addArgConf

How To • “Function Prototype Control”

1-398

RTW.ModelSpecificCPrototype

Purpose Create model-specific C prototype object

Syntax obj = RTW.ModelSpecificCPrototype

Description obj = RTW.ModelSpecificCPrototype creates a handle, obj, to an
object of class RTW.ModelSpecificCPrototype.

Output
Arguments

obj Handle to model specific C prototype object.

Examples Create a function control object, a, and use it to add argument
configuration information to the model:

% Open the rtwdemo_counter model and specify the System Target File

rtwdemo_counter

set_param(gcs,'SystemTargetFile','ert.tlc')

%% Create a function control object

a=RTW.ModelSpecificCPrototype

%% Add argument configuration information for Input and Output ports

addArgConf(a,'Input','Pointer','inputArg','const *')

addArgConf(a,'Output','Pointer','outputArg','none')

%% Attach the function control object to the model

attachToModel(a,gcs)

Alternatives The Configure Model Functions button on the Interface pane of the
Simulink Configuration Parameters dialog box launches the Model
Interface dialog box, which provides you flexible control over the C
function prototypes that are generated for your model. See “Configure
Function Prototypes Using Graphical Interfaces” in the Embedded
Coder documentation.

See Also RTW.ModelSpecificCPrototype.addArgConf

1-399

RTW.ModelSpecificCPrototype

How To • “Function Prototype Control”

1-400

rtw.pil.RtIOStreamApplicationFramework

Purpose Configure target-side communications

Syntax applicationFramework = rtw.pil.RtIOStreamApplicationFramework(
componentArgs)

Description Constructor Description

RtIOStreamApplicationFramework Specify target-specific
libraries and source files
that are required to build the
executable.

Constructor Argument

componentArgs A
rtw.connectivity.ComponentArgs
object.

Constructor syntax:

applicationFramework =
rtw.pil.RtIOStreamApplicationFramework(componentArgs)

You must create a subclass of
rtw.pil.RtIOStreamApplicationFramework. The purpose of this
class is to specify target-specific libraries and source files that are
required to build the executable for the PIL application. These libraries
and source files must include the device drivers that implement
the target-side of the rtiostream communications channel. See
also rtiostream_wrapper.

The class provides an RTW.BuildInfo object containing PIL-specific files
(including a PIL main) that will be combined with the PIL component
libraries, by the rtw.connectivity.MakefileBuilder, to create the
PIL application. You must make a subclass and add source files,
libraries, include paths and preprocessor macro definitions that are

1-401

rtw.pil.RtIOStreamApplicationFramework

required to implement the rtiostream target communications interface
to the RTW.BuildInfo object (access via getBuildInfo method).

The software uses only the following data in the RTW.BuildInfo object:

• Source file names returned by getSourceFiles

• Source file paths returned by getSourcePaths

• Include file names returned by getIncludeFiles

• Include file paths returned by getIncludePaths

• Libraries

• Preprocessor macro definitions returned by getDefines

• Linker options returned by getLinkFlags
The software ignores other data, such as template makefile (TMF)
tokens and compiler options.

For methods that belong to
rtw.pil.RtIOStreamApplicationFramework, see the following table.

Method Syntax and Description

componentArgs =
obj.getComponentArgs

getComponentArgs

Returns the
rtw.connectivity.ComponentArgs
object associated with this object.

buildInfo = obj.getBuildInfogetBuildInfo

Returns the RTW.BuildInfo
object associated with this object.

1-402

rtw.pil.RtIOStreamApplicationFramework

Method Syntax and Description

addPILMain obj.addPILMain(type)

To build the PIL application you
must specify a main.c file. Use
the addPILMain method to add
one of the two provided files to
the application framework.
Use the type argument to specify
'target' or 'host', depending
on which one of the following
example PIL main.c files you
want to use.
1) To specify a main.c adapted
for on-target PIL and suitable for
most PIL implementations, enter:

obj.addPILMain(`target')

2) To specify a main.c adapted for
host-based PIL, for example, as
used in the mypil host example,
enter:

obj.addPILMain(`host')

See Also rtw.connectivity.ComponentArgs | rtiostream_wrapper

How To • “Create a Connectivity Configuration for a Target”

• “Build Information Object”

• rtwdemo_custom_pil_script

1-403

cgv.CGV.run

Purpose Execute CGV object

Syntax result = cgvObj.run()

Description result = cgvObj.run() executes the model once for each input data
that you added to the object. result is a boolean value that indicates
whether the run completed without execution error. cgvObj is a handle
to a cgv.CGV object.

After each execution of the model, the object captures and writes the
following metadata to a file in the output folder:

ErrorDetails— If errors occur, the error information.
status — The execution status.
ver— Version information for MathWorks products.
hostname — Name of computer.
dateTime — Date and time of execution.
warnings— If warnings occur, the warning messages.
username — Name of user.
runtime— The amount of time that lapsed for the execution.

Tips • Only call run once for each cgv.CGV object.

• The cgv.CGV methods that set up the object are ignored after a call
to run. See the cgv.CGV for details.

• You can call run once without first calling cgv.CGV.addInputData.
However, it is recommended that you first save the required data for
execution to a MAT-file, including the model inputs and parameters.
Then use cgv.CGV.addInputData to pass the MAT-file to the CGV
object before calling run.

• The cgv.CGV object supports callback functions that you can define
and add to the cgv.CGV object. These callback functions are called
during cgv.CGV.run() in the following order:

1-404

cgv.CGV.run

Callback function Add to object using... cgv.CGV.run() executes
callback function...

HeaderReportFcn cgv.CGV.addHeaderReportFcn Before executing input
data in cgv.CGV

PreExecReportFcn cgv.CGV.addPreExecReportFcn Before executing each
input data file in cgv.CGV

PreExecFcn cgv.CGV.addPreExecFcn Before executing each
input data file in cgv.CGV

PostExecReportFcn cgv.CGV.addPostExecReportFcn After executing each input
data file in cgv.CGV

PostExecFcn cgv.CGV.addPostExecFcn After executing each input
data file in cgv.CGV

TrailerReportFcn cgv.CGV.addTrailerReportFcn After the input data is
executed in cgv.CGV

How To • “Verify Numerical Equivalence with CGV”

1-405

RTW.AutosarInterface.runValidation

Purpose Validate RTW.AutosarInterface object against model

Syntax [Status, Message] = autosarInterfaceObj.runValidation

Description [Status, Message] = autosarInterfaceObj.runValidation runs
a validation check for autosarInterfaceObj, a model-specific
RTW.AutosarInterface object. This check is made against the model
to which autosarInterfaceObj is attached.

Before calling runValidation, you must call attachToModel.

The method runValidation performs the checks described in the
following tables. The first table describes validation checks for the
AUTOSAR use cases, and the second table describes specific validation
checks when exporting multiple runnable entities.

Validation Checks

Group Check

Runnable names and event names must be
unique, and must be valid AUTOSAR short name
identifiers (see definition 1 following).

AUTOSAR port, interface, and data element names
must be valid AUTOSAR short name identifiers
(see definition 1 following).

AUTOSAR XML options for the component name,
internal behavior name, and implementation name
must be valid AUTOSAR path and short name
identifiers (see definition 2 following).

Valid names
and paths

AUTOSAR XML options for the interface package
name and data type package name must be
valid AUTOSAR path identifiers (see definition 3
following).

1-406

RTW.AutosarInterface.runValidation

Validation Checks (Continued)

Group Check

Valid names
and paths for
sender/receiver
ports

For sender/receiver ports (Implicit or explicit data
access mode):

• Simulink ports may have duplicated AUTOSAR
port names, however the AUTOSAR Interface
name must also be the same.

• A Simulink inport and an outport cannot have
the same AUTOSAR port name.

• For a duplicated AUTOSAR port name and
AUTOSAR Interface name, the Data element
names must be unique.

• Sender/receiver ports AUTOSAR port name
cannot be the same as the ServiceName of a
basic software port.

• Sender/receiver ports AUTOSAR port name and
Interface cannot be the same as the port name
or interface of a calibration object.

• Sender/receiver ports Interface plus XML
Option Interface package (e.g., of the form
AUTOSAR/Service/servicename) cannot be
the same as the ServiceInterface of a basic
software port.

1-407

RTW.AutosarInterface.runValidation

Validation Checks (Continued)

Group Check

Valid names
and paths for
basic software
ports

For basic software ports:
• ServiceName and ServiceOperation must be
valid AUTOSAR short name identifiers (see
definition 1 following); and ServiceInterface
must be a valid AUTOSAR path identifier (see
definition 3 following).

• Simulink ports may have duplicated
ServiceName, however the ServiceInterface
must also be the same.

• For a duplicated ServiceName and
ServiceInterface, the ServiceOperation
must be unique.

• For duplicated ServiceOperation and
ServiceInterface, the ServiceName must be
unique.

• Basic software port ServiceName name and
ServiceInterface cannot be the same as the
port name or interface of a calibration object.

Model must not contain custom code blocks.

Model must not contain continuous time.

Model must not contain noninlined S-functions.

Model must not contain nonfinite numbers.

Model must not contain complex numbers.

Model must not contain multitasking

Model must not contain asynchronous rates

Storage class of root I/O ports must be auto.

I/O must be 1D or scalar.

Unsupported
features

1-408

RTW.AutosarInterface.runValidation

Validation Checks (Continued)

Group Check

The sample time of a runnable must be a positive
real scalar. Sample times with offset, e.g. [2 1],
cause an error message.

An error status inport cannot point to itself (i.e.,
cannot specify itself as the inport for which it
permits access to error status).

Error status inports can only be defined to
correspond to other inports that have Data Access
Mode set to ImplicitReceive or ExplicitReceive

Error status
validation

Each receiver port can have only one error status
port designate it as its error status.

Multiple Runnable Validation Checks

Group Check

“Top-level” function-call subsystems (that are in the
top diagram of the wrapper subsystem) must not be
reusable functions. The subsystem block parameter
Code Generation > Function packaging must
be set to Auto, Nonreusable function, or Inline.

Top-level function-call subsystems cannot emit
function calls.

The only subsystems allowed at the top diagram are
function-call subsystems, and empty subsystems
(e.g., subsystems that do not contain executable
blocks, which may be used to display text in the
model, or to double-click for help callback.)

Wrapper
subsystem
validation
when exporting
multiple
runnables.
The "wrapper
subsystem" is
the top diagram
runnables are
exported from.

1-409

RTW.AutosarInterface.runValidation

Multiple Runnable Validation Checks (Continued)

Group Check

Top-level function-call subsystems cannot have
wide trigger ports.

A signal connected to an outport of the wrapper
subsystem cannot have multiple destinations. The
signal must have one destination that is uniquely a
sender, service, or interrunnable variable.

A signal connected to an outport of the wrapper
subsystem cannot have an inport of that subsystem
as its source.

The data store memory blocks referenced from
subsystems must be contained in the subsystems,
to prevent data integrity issues.

The lines must be contiguous. No line in the
wrapper subsystem can be an output of a virtual
Bus Creator or Mux block

Constant blocks are not allowed in the wrapper
subsystem.

Mux, or Demux blocks are not allowed in the
wrapper subsystem, because the signals being
passed via the runnable I/O must be contiguous
and have an address at the base of the array.

1-410

RTW.AutosarInterface.runValidation

Multiple Runnable Validation Checks (Continued)

Group Check

Wrapper level
Merge block
validation

Merge blocks have some restrictions at wrapper
level:
• A merge block is only allowed in the wrapper
subsystem when the merge block output is
connected to a diagram outport (not another
Merge block).

• The input to a Merge block in the wrapper
subsystem must be connected to a function-call
subsystem outport.

• The input to a Merge block in the wrapper
subsystem does not need a label.

• A merge block in the wrapper subsystem cannot
merge signals of unequal widths.

• You cannot connect a Merge block in the wrapper
subsystem to more than one outport of a given
function-call subsystem.

The runnable names, event names, and
interrunnable variable names must be unique.
Lines representing interrunnable variables must
be labelled with valid AUTOSAR short name
identifiers. Goto-from pairs are not allowed because
then the signal label is not unique.

Interrunnable variables cannot be structs.
The interrunnable variables must be scalar,
noncomplex types. This is required by the
AUTOSAR specification.

Signal lines that connect two top-level function-call
subsystems represent interrunnable variables.

Other multiple
runnable
validation
checks

1-411

RTW.AutosarInterface.runValidation

Multiple Runnable Validation Checks (Continued)

Group Check

Function-call subsystem output cannot be
connected to its own input. An output of a
function-call subsystem inside the wrapper
subsystem cannot be connected to an input of same
subsystem.

The blocks in the top diagram of the wrapper
subsystem must not have unconnected ports.

A top-level input that is Explicit Receive, Error
Status, or Basic Software Service cannot be
connected to more than one inport of a given
function-call subsystem.

The sample time of the inport associated with an
error status must be the same sample time as its
corresponding data port.

Each function call subsystem being exported as
a runnable entity must specify an AUTOSAR
interface.

Output
Arguments

Status Status flag indicating whether the
configuration is valid. If valid, Status is true;
otherwise, it is false.

Message If Status is false, Message explains why the
configuration is invalid.

Definitions The following are requirements for identifiers:

1 AUTOSAR short name identifiers must be composed of at most
32 characters, must begin with a letter, and can contain only

1-412

RTW.AutosarInterface.runValidation

letters, numbers, and underscore characters. For example,
this_is_valid123.

2 AUTOSAR path and short name identifiers must contain at least
two path delimiter “/” characters, e.g., /path/shortname. Strings
in between the path delimiters must be composed of at most 32
characters, must begin with a letter, and can contain only letters,
numbers, and underscore characters.

3 AUTOSAR path identifiers must contain at least one path delimiter
“/” characters, e.g., /path. Strings in between the path delimiters
must be composed of at most 32 characters, must begin with a letter
and can contain only letters, numbers, and underscore characters.

How To • “Generating Code for AUTOSAR Software Components”

1-413

RTW.ModelCPPArgsClass.runValidation

Purpose Validate model-specific C++ encapsulation interface against Simulink
model

Syntax [status, msg] = runValidation(obj)

Description [status, msg] = runValidation(obj) runs a validation check of
the specified model-specific C++ encapsulation interface against the
ERT-based Simulink model to which it is attached.

Before calling this function, you must call either attachToModel,
to attach a function prototype to a loaded model, or
RTW.getEncapsulationInterfaceSpecification, to get the
handle to a function prototype previously attached to a loaded model.

Input
Arguments

obj Handle to a model-specific C++ encapsulation
interface control object, such as a
handle previously returned by obj
= RTW.ModelCPPArgsClass or obj =
RTW.getEncapsulationInterfaceSpecification
(modelName).

Output
Arguments

status Boolean value; true for a valid configuration,
false otherwise.

msg If status is false, msg contains a string of
information describing why the configuration
is invalid.

Alternatives To validate a C++ encapsulation interface in the Simulink Configuration
Parameters graphical user interface, go to the Interface pane and click
the Configure C++ Encapsulation Interface button. This button
launches the Configure C++ encapsulation interface dialog box, where
you can display and configure the step method for your model class.
Click the Validate button to validate your current model step function

1-414

RTW.ModelCPPArgsClass.runValidation

configuration. The Validation pane displays status and an explanation
of failures. For more information, see “Configure Step Method for Your
Model Class” in the Embedded Coder documentation.

How To • “Configure C++ Encapsulation Interfaces Programmatically”

• “Configure the Step Method for a Model Class”

• “C++ Encapsulation Interface Control”

1-415

RTW.ModelCPPVoidClass.runValidation

Purpose Validate model-specific C++ encapsulation interface against Simulink
model

Syntax [status, msg] = runValidation(obj)

Description [status, msg] = runValidation(obj) runs a validation check of
the specified model-specific C++ encapsulation interface against the
ERT-based Simulink model to which it is attached.

Before calling this function, you must call either attachToModel,
to attach a function prototype to a loaded model, or
RTW.getEncapsulationInterfaceSpecification, to get the
handle to a function prototype previously attached to a loaded model.

Input
Arguments

obj Handle to a model-specific C++ encapsulation
interface control object, such as a
handle previously returned by obj
= RTW.ModelCPPVoidClass or obj =
RTW.getEncapsulationInterfaceSpecification
(modelName).

Output
Arguments

status Boolean value; true for a valid configuration,
false otherwise.

msg If status is false, msg contains a string of
information describing why the configuration
is invalid.

Alternatives To validate a C++ encapsulation interface in the Simulink Configuration
Parameters graphical user interface, go to the Interface pane and click
the Configure C++ Encapsulation Interface button. This button
launches the Configure C++ encapsulation interface dialog box, where
you can display and configure the step method for your model class.
Click the Validate button to validate your current model step function

1-416

RTW.ModelCPPVoidClass.runValidation

configuration. The Validation pane displays status and an explanation
of failures. For more information, see “Configure Step Method for Your
Model Class” in the Embedded Coder documentation.

How To • “Configure C++ Encapsulation Interfaces Programmatically”

• “Configure the Step Method for a Model Class”

• “C++ Encapsulation Interface Control”

1-417

RTW.ModelSpecificCPrototype.runValidation

Purpose Validate model-specific C function prototype against Simulink model

Syntax [status, msg] = runValidation(obj)

Description [status, msg] = runValidation(obj) runs a validation check of the
specified model-specific C function prototype against the ERT-based
Simulink model to which it is attached.

Before calling this function, you must call either attachToModel,
to attach a function prototype to a loaded model, or
RTW.getFunctionSpecification, to get the handle to a
function prototype previously attached to a loaded model.

Input
Arguments

obj Handle to a model-specific C prototype
function control object previously returned
by obj = RTW.ModelSpecificCPrototype
or obj = RTW.getFunctionSpecification
(modelName).

Output
Arguments

status True for a valid configuration; false otherwise.

msg If status is false, msg contains a string
explaining why the configuration is invalid.

Alternatives Click the Validate button in the Model Interface dialog box to run a
validation check of the specified model-specific C function prototype
against the ERT-based Simulink model to which it is attached.
See “Model Specific C Prototypes View” in the Embedded Coder
documentation.

How To • “Function Prototype Control”

1-418

RTW.ModelCPPArgsClass.setArgCategory

Purpose Set argument category for Simulink model port in model-specific C++
encapsulation interface

Syntax setArgCategory(obj, portName, category)

Description setArgCategory(obj, portName, category) sets the category —
'Value', 'Pointer', or 'Reference'— of the argument corresponding
to a specified Simulink model inport or outport in a specified
model-specific C++ encapsulation interface.

Input
Arguments

obj Handle to a model-specific C++ encapsulation
interface control object, such as a
handle previously returned by obj
= RTW.ModelCPPArgsClass or obj =
RTW.getEncapsulationInterfaceSpecification
(modelName).

portName String specifying the unqualified name of an
inport or outport in your Simulink model.

category String specifying the argument category —
'Value', 'Pointer', or 'Reference'— to be
set for the specified Simulink model port.

Note If you change the argument category
for an outport from 'Pointer' to 'Value', the
change causes the argument to move to the
first argument position when attachToModel
or runValidation is called.

Alternatives To set argument categories in the Simulink Configuration Parameters
graphical user interface, go to the Interface pane and click the
Configure C++ Encapsulation Interface button. This button
launches the Configure C++ encapsulation interface dialog box, where

1-419

RTW.ModelCPPArgsClass.setArgCategory

you can display and configure the step method for your model class.
In the I/O arguments step method view of this dialog box, click the
Get Default Configuration button to display step method argument
categories that you can examine and modify. For more information, see
“Configure Step Method for Your Model Class” in the Embedded Coder
documentation.

How To • “Configure C++ Encapsulation Interfaces Programmatically”

• “Configure the Step Method for a Model Class”

• “C++ Encapsulation Interface Control”

1-420

RTW.ModelSpecificCPrototype.setArgCategory

Purpose Set argument category for Simulink model port in model-specific C
function prototype

Syntax setArgCategory(obj, portName, category)

Description setArgCategory(obj, portName, category) sets the category,
'Value' or 'Pointer', of the argument corresponding to a specified
Simulink model inport or outport in a specified model-specific C
function prototype.

Input
Arguments

obj Handle to a model-specific C
prototype function control object
previously returned by obj =
RTW.ModelSpecificCPrototype or obj =
RTW.getFunctionSpecification(modelName).

portName String specifying the unqualified name of an
inport or outport in your Simulink model.

category String specifying the argument category,
'Value' or 'Pointer', that you set for the
specified Simulink model port.

Note If you change the argument
category for an outport from 'Pointer' to
'Value', it causes the argument to move to
the first argument position when you call
RTW.ModelSpecificCPrototype.attachToModel
or
RTW.ModelSpecificCPrototype.runValidation.

Alternatives Use the Step function arguments table in the Model Interface dialog
box to specify argument categories. See “Model Specific C Prototypes
View” in the Embedded Coder documentation.

1-421

RTW.ModelSpecificCPrototype.setArgCategory

How To • “Function Prototype Control”

1-422

RTW.ModelCPPArgsClass.setArgName

Purpose Set argument name for Simulink model port in model-specific C++
encapsulation interface

Syntax setArgName(obj, portName, argName)

Description setArgName(obj, portName, argName) sets the argument name
that corresponds to a specified Simulink model inport or outport in a
specified model-specific C++ encapsulation interface.

Input
Arguments

obj Handle to a model-specific C++ encapsulation
interface control object, such as a
handle previously returned by obj
= RTW.ModelCPPArgsClass or obj =
RTW.getEncapsulationInterfaceSpecification
(modelName).

portName String specifying the name of an inport or
outport in your Simulink model.

argName String specifying the argument name to set
for the specified Simulink model port. The
argument must be a valid C identifier.

Alternatives To set argument names in the Simulink Configuration Parameters
graphical user interface, go to the Interface pane and click the
Configure C++ Encapsulation Interface button. This button
launches the Configure C++ encapsulation interface dialog box, where
you can display and configure the step method for your model class.
In the I/O arguments step method view of this dialog box, click the
Get Default Configuration button to display step method argument
names that you can examine and modify. For more information, see
“Configure Step Method for Your Model Class” in the Embedded Coder
documentation.

How To • “Configure C++ Encapsulation Interfaces Programmatically”

1-423

RTW.ModelCPPArgsClass.setArgName

• “Configure the Step Method for a Model Class”

• “C++ Encapsulation Interface Control”

1-424

RTW.ModelSpecificCPrototype.setArgName

Purpose Set argument name for Simulink model port in model-specific C
function prototype

Syntax setArgName(obj, portName, argName)

Description setArgName(obj, portName, argName) sets the argument name
corresponding to a specified Simulink model inport or outport in a
specified model-specific C function prototype.

Input
Arguments

obj Handle to a model-specific C prototype
function control object previously returned
by obj = RTW.ModelSpecificCPrototype
or obj = RTW.getFunctionSpecification
(modelName).

portName String specifying the name of an inport or
outport in your Simulink model.

argName String specifying the argument name to set
for the specified Simulink model port. The
argument must be a valid C identifier.

Alternatives Use the Step function arguments table in the Model Interface dialog
box to specify argument names. See “Model Specific C Prototypes View”
in the Embedded Coder documentation.

How To • “Function Prototype Control”

1-425

RTW.ModelCPPArgsClass.setArgPosition

Purpose Set argument position for Simulink model port in model-specific C++
encapsulation interface

Syntax setArgPosition(obj, portName, position)

Description setArgPosition(obj, portName, position) sets the position — 1
for first, 2 for second, etc. — of the argument that corresponds to a
specified Simulink model inport or outport in a specified model-specific
C++ encapsulation interface. The specified argument is then moved
to the specified position, and other arguments shifted by one position
accordingly.

Input
Arguments

obj Handle to a model-specific C++ encapsulation
interface control object, such as a
handle previously returned by obj
= RTW.ModelCPPArgsClass or obj =
RTW.getEncapsulationInterfaceSpecification
(modelName).

portName String specifying the name of an inport or
outport in your Simulink model.

position Integer specifying the argument position
— 1 for first, 2 for second, etc. — to be set
for the specified Simulink model port. The
value must be greater than or equal to 1 and
less than or equal to the number of function
arguments.

Alternatives To set argument positions in the Simulink Configuration Parameters
graphical user interface, go to the Interface pane and click the

1-426

RTW.ModelCPPArgsClass.setArgPosition

Configure C++ Encapsulation Interface button. This button
launches the Configure C++ encapsulation interface dialog box, where
you can display and configure the step method for your model class.
In the I/O arguments step method view of this dialog box, click the
Get Default Configuration button to display step method argument
positions that you can examine and modify. For more information, see
“Configure Step Method for Your Model Class” in the Embedded Coder
documentation.

How To • “Configure C++ Encapsulation Interfaces Programmatically”

• “Configure the Step Method for a Model Class”

• “C++ Encapsulation Interface Control”

1-427

RTW.ModelSpecificCPrototype.setArgPosition

Purpose Set argument position for Simulink model port in model-specific C
function prototype

Syntax setArgPosition(obj, portName, position)

Description setArgPosition(obj, portName, position) sets the position —
1 for first, 2 for second, etc. — of the argument corresponding to a
specified Simulink model inport or outport in a specified model-specific
C function prototype. The specified argument moves to the specified
position, and other arguments shift by one position accordingly.

Input
Arguments

obj Handle to a model-specific C prototype
function control object previously returned
by obj = RTW.ModelSpecificCPrototype
or obj = RTW.getFunctionSpecification
(modelName).

portName String specifying the name of an inport or
outport in your Simulink model.

position Integer specifying the argument position
— 1 for first, 2 for second, etc. — to be set
for the specified Simulink model port. The
value must be greater than or equal to 1 and
less than or equal to the number of function
arguments.

Alternatives Use the Step function arguments table in the Model Interface dialog
box to specify argument position. See “Model Specific C Prototypes
View” in the Embedded Coder documentation.

How To • “Function Prototype Control”

1-428

RTW.ModelCPPArgsClass.setArgQualifier

Purpose Set argument type qualifier for Simulink model port in model-specific
C++ encapsulation interface

Syntax setArgQualifier(obj, portName, qualifier)

Description setArgQualifier(obj, portName, qualifier) sets the type qualifier
— 'none', 'const', 'const *', 'const * const', or 'const &'— of
the argument that corresponds to a specified Simulink model inport or
outport in a specified model-specific C++ encapsulation interface.

Input
Arguments

obj Handle to a model-specific C++ encapsulation
interface control object, such as a
handle previously returned by obj
= RTW.ModelCPPArgsClass or obj =
RTW.getEncapsulationInterfaceSpecification
(modelName).

portName String specifying the name of an inport or
outport in your Simulink model.

qualifier String specifying the argument type qualifier
— 'none', 'const', 'const *', 'const *
const', or 'const &' — to be set for the
specified Simulink model port.

Alternatives To set argument qualifiers in the Simulink Configuration Parameters
graphical user interface, go to the Interface pane and click the
Configure C++ Encapsulation Interface button. This button
launches the Configure C++ encapsulation interface dialog box, where
you can display and configure the step method for your model class.
In the I/O arguments step method view of this dialog box, click the
Get Default Configuration button to display step method argument
qualifiers that you can examine and modify. For more information, see
“Configure Step Method for Your Model Class” in the Embedded Coder
documentation.

1-429

RTW.ModelCPPArgsClass.setArgQualifier

How To • “Configure C++ Encapsulation Interfaces Programmatically”

• “Configure the Step Method for a Model Class”

• “C++ Encapsulation Interface Control”

1-430

RTW.ModelSpecificCPrototype.setArgQualifier

Purpose Set argument type qualifier for Simulink model port in model-specific
C function prototype

Syntax setArgQualifier(obj, portName, qualifier)

Description setArgQualifier(obj, portName, qualifier) sets the type qualifier
— 'none', 'const', 'const *', or 'const * const'— of the argument
corresponding to a specified Simulink model inport or outport in a
specified model-specific C function prototype.

Input
Arguments

obj Handle to a model-specific C prototype
function control object previously returned
by obj = RTW.ModelSpecificCPrototype
or obj = RTW.getFunctionSpecification
(modelName).

portName String specifying the name of an inport or
outport in your Simulink model.

qualifier String specifying the argument type qualifier
— 'none', 'const', 'const *', or 'const *
const'— to be set for the specified Simulink
model port.

Alternatives Use the Step function arguments table in the Model Interface dialog
box to specify argument qualifiers. See “Model Specific C Prototypes
View” in the Embedded Coder documentation.

How To • “Function Prototype Control”

1-431

RTW.AutosarInterface.setArxmlFilePackaging

Purpose Set AUTOSAR XML packaging format

Syntax autosarInterfaceObj.setArxmlFilePackaging(arxmlPackaging))

Description autosarInterfaceObj.setArxmlFilePackaging(arxmlPackaging))
sets the AUTOSAR XML packaging format in autosarInterfaceObj, a
model-specific RTW.AutosarInterface object.

Input
Arguments

arxmlPackaging

Packaging format of AUTOSAR XML. Specify one of the following:

• 'Modular'— XML descriptions in separate files

• 'Single file'— XML descriptions in single file

See Also RTW.AutosarInterface.getArxmlFilePackaging

How To • “Configure the AUTOSAR Interface”

• “Export AUTOSAR Software Component”

1-432

RTW.ModelCPPClass.setClassName

Purpose Set class name in model-specific C++ encapsulation interface

Syntax setClassName(obj, clsName)

Description setClassName(obj, clsName) sets the class name in the specified
model-specific C++ encapsulation interface.

Input
Arguments

obj Handle to a model-specific C++ encapsulation
interface control object, such as a
handle previously returned by obj
= RTW.ModelCPPArgsClass, obj =
RTW.ModelCPPVoidClass, or obj =
RTW.getEncapsulationInterfaceSpecification
(modelName).

clsName String specifying a new name for the class
described by the specified model-specific C++
encapsulation interface. The argument must
be a valid C/C++ identifier.

Alternatives To set the model class name in the Simulink Configuration Parameters
graphical user interface, go to the Interface pane and click the
Configure C++ Encapsulation Interface button. This button
launches the Configure C++ encapsulation interface dialog box, where
you can display and configure the step method for your model class. In
the I/O arguments step method view of this dialog box, click the Get
Default Configuration button to display the model class name, which
you can examine and modify. In the void-void step method view, you
can examine and modify the model class name without having to click
a button. For more information, see “Configure Step Method for Your
Model Class” in the Embedded Coder documentation.

How To • “Configure C++ Encapsulation Interfaces Programmatically”

• “Configure the Step Method for a Model Class”

1-433

RTW.ModelCPPClass.setClassName

• “C++ Encapsulation Interface Control”

1-434

RTW.AutosarInterface.setComponentName

Purpose Set XML component name

Syntax autosarInterfaceObj.setComponentName(componentName)

Description autosarInterfaceObj.setComponentName(componentName) sets the
XML component name of autosarInterfaceObj, a model-specific
RTW.AutosarInterface object.

Input
Arguments

componentName XML component name for
autosarInterfaceObj

See Also

RTW.AutosarInterface.getComponentName

“Generating Code for AUTOSAR Software Components”

1-435

RTW.AutosarInterface.setComponentType

Purpose Set type of software component

Syntax autosarInterfaceObj.setComponentType(componentType)

Description autosarInterfaceObj.setComponentType(componentType) sets
the type of the software component in autosarInterfaceObj, a
model-specific RTW.AutosarInterface object.

Input
Arguments

componentType

Type of software component. Either 'Application' or 'Sensor
Actuator'.

See Also RTW.AutosarInterface.getComponentType

How To • “Configure the AUTOSAR Interface”

1-436

RTW.AutosarInterface.setDataTypePackageName

Purpose Specify XML package name for data type

Syntax autosarInterfaceObj.setDataTypePackageName(dataTypePackageName
)

Description autosarInterfaceObj.setDataTypePackageName(dataTypePackageName)
specifies the name of the XML data type package for
autosarInterfaceObj, a model-specific RTW.AutosarInterface object.

Input
Arguments

dataTypePackageName

Name of data type package

See Also RTW.AutosarInterface.getDataTypePackageName

How To • “Prepare a Model for AUTOSAR Code Generation”

• “Generate AUTOSAR Code and Description Files”

1-437

arxml.importer.setDependencies

Purpose Set XML file dependencies

Syntax importerObj.setDependencies(dependencies)

Description importerObj.setDependencies(dependencies) sets the XML file
dependencies associated with the arxml.importer object, importerObj.

Input
Arguments

dependencies Can be:
• a cell array of strings (for a list of
dependencies)

• a char array (for a single dependency)

• or the empty array [] (for removing a
dependency)

Note The atomic software components
described in the XML file dependencies are
ignored.

How To • “Import an AUTOSAR Software Component”

1-438

RTW.AutosarInterface.setEventType

Purpose Set type for event

Syntax autosarInterfaceObj.setEventType(EventName, EventType)

Description autosarInterfaceObj.setEventType(EventName, EventType) sets
the event type for EventName, an event found in autosarInterfaceObj.

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.

Input
Arguments

EventName

Name of event

EventType

Type of event, for example, TimingEvent or DataReceivedEvent

See Also RTW.AutosarInterface.addEventConf

How To • “Configure the AUTOSAR Interface”

• “Configure Multiple Runnables for DataReceivedEvents”

1-439

RTW.AutosarInterface.setExecutionPeriod

Purpose Specify execution period for TimingEvent

Syntax autosarInterfaceObj.setExecutionPeriod(EP)
autosarInterfaceObj.setExecutionPeriod(EventName, EP)

Description autosarInterfaceObj.setExecutionPeriod(EP) specifies the
execution period for the sole TimingEvent in a runnable.

autosarInterfaceObj.setExecutionPeriod(EventName, EP) allows
you to specify the execution period for a named TimingEvent in a
runnable.

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.

Input
Arguments

EP

Execution period in seconds

EventName

Name of TimingEvent

See Also RTW.AutosarInterface.addEventConf |
RTW.AutosarInterface.getTriggerPortName

How To • “Configure the AUTOSAR Interface”

• “Configure Multiple Runnables for DataReceivedEvents”

1-440

arxml.importer.setFile

Purpose Set XML file name for arxml.importer object

Syntax importerObj.setFile(filename)

Description importerObj.setFile(filename) sets the name of the XML file
associated with the arxml.importer object, importerObj.

Input
Arguments

filename XML file name. Only atomic software
components described in this file can be
imported.

How To • “Import an AUTOSAR Software Component”

1-441

RTW.ModelSpecificCPrototype.setFunctionName

Purpose Set function name in model-specific C function prototype

Syntax setFunctionName(obj, fcnName, fcnType)

Description setFunctionName(obj, fcnName, fcnType) sets the step or
initialization function name in the specified function control object.

Input
Arguments

obj Handle to a model-specific C
prototype function control object
previously returned by obj =
RTW.ModelSpecificCPrototype or obj =
RTW.getFunctionSpecification(modelName).

fcnName String specifying a new name for the function
described by the function control object. The
argument must be a valid C identifier.

fcnType Optional. String specifying which function to
name. Valid strings are 'step' and 'init'. If
fcnType is not specified, sets the step function
name.

Alternatives Use the Initialize function name and Step function name fields in
the Model Interface dialog box to specify function names. See “Model
Specific C Prototypes View” in the Embedded Coder documentation.

How To • “Function Prototype Control”

1-442

RTW.AutosarInterface.setImplementationName

Purpose Set name of XML implementation

Syntax autosarInterfaceObj.setImplementationName(implementationName)

Description autosarInterfaceObj.setImplementationName(implementationName)
specifies the name of the XML implementation for
autosarInterfaceObj, a model-specific RTW.AutosarInterface object.

Input
Arguments

implementationName

Name of XML implementation for autosarInterfaceObj

See Also RTW.AutosarInterface.getImplementationName

How To • “Configure the AUTOSAR Interface”

• “Export AUTOSAR Software Component”

1-443

RTW.AutosarInterface.setInitEventName

Purpose Set initial event name

Syntax autosarInterfaceObj.setInitEventName(initEventName)

Description autosarInterfaceObj.setInitEventName(initEventName) sets the
initial event name for autosarInterfaceObj, a model-specific
RTW.AutosarInterface object.

Input
Arguments

initEventName Initial event name for autosarInterfaceObj

How To • RTW.AutosarInterface.getInitEventName

• “Configure the AUTOSAR Interface”

1-444

RTW.AutosarInterface.setInitRunnableName

Purpose Set initial runnable name

Syntax autosarInterfaceObj.setInitRunnableName(initRunnableName)

Description autosarInterfaceObj.setInitRunnableName(initRunnableName) sets
the initial runnable name for autosarInterfaceObj, a model-specific
RTW.AutosarInterface object.

Input
Arguments

initRunnableName Initial runnable name for
autosarInterfaceObj.

How To • RTW.AutosarInterface.getInitRunnableName

• “Configure the AUTOSAR Interface”

1-445

RTW.AutosarInterface.setInterfacePackageName

Purpose Set name of XML interface package

Syntax autosarInterfaceObj.setInterfacePackageName(interfacePkgName)

Description autosarInterfaceObj.setInterfacePackageName(interfacePkgName)
specifies the name of the XML interface package for
autosarInterfaceObj, a model-specific RTW.AutosarInterface object.

Input
Arguments

interfacePkgName

Name of interface package for autosarInterfaceObj

See Also RTW.AutosarInterface.getInterfacePackageName

How To • “Configure the AUTOSAR Interface”

1-446

RTW.AutosarInterface.setInternalBehaviorName

Purpose Set name of XML file for software component internal behavior

Syntax autosarInterfaceObj.setInternalBehaviorName(internalBehaviorNa
me)

Description autosarInterfaceObj.setInternalBehaviorName(internalBehaviorName)
specifies the name of the XML file with the software component internal
behavior for autosarInterfaceObj.

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.

Input
Arguments

internalBehaviorName

Name of XML file that specifies software component internal
behavior for autosarInterfaceObj

See Also RTW.AutosarInterface.getInternalBehaviorName

How To • “Configure the AUTOSAR Interface”

• “Export AUTOSAR Software Component”

1-447

RTW.AutosarInterface.setIOAutosarPortName

Purpose Set AUTOSAR port name

Syntax autosarInterfaceObj.setIOAutosarPortName(portName,
autosarPort)

Description autosarInterfaceObj.setIOAutosarPortName(portName,autosarPort)
updates the AUTOSAR port name in the configuration for the specified
port.

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.

By default the AUTOSAR port name, data element name, and interface
name are the same as the Simulink port name.

Input
Arguments

portName Name of inport/outport (string)

autosarPort AUTOSAR port name for portName (string).

How To • “Configure the AUTOSAR Interface”

1-448

RTW.AutosarInterface.setIODataAccessMode

Purpose Set I/O data access mode

Syntax autosarInterfaceObj.setIODataAccessMode(portName,
dataAccessMode)

Description autosarInterfaceObj.setIODataAccessMode(portName,dataAccessMode)
sets the data access mode in the configuration for the specified port.

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.

Input
Arguments

portName Name of inport/outport (string).

dataAccessMode Data access mode (string). Can be one of the
following:
• ImplicitSend

• ImplicitReceive

• ExplicitSend

• ExplicitReceive

• QueuedExplicitReceived

How To • RTW.AutosarInterface.getIODataAccessMode

• “Prepare a Model for AUTOSAR Code Generation”

1-449

RTW.AutosarInterface.setIODataElement

Purpose Set I/O data element

Syntax autosarInterfaceObj.setIODataElement(portName,dataElement)

Description autosarInterfaceObj.setIODataElement(portName,dataElement)
updates the name of the I/O data element in the configuration for the
specified port.

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.

By default the AUTOSAR port name, data element name, and interface
name are the same as the Simulink port name.

Input
Arguments

portName Name of the inport/outport (string).

dataElement Name of the I/O data element for portName
(string).

How To • “Configure the AUTOSAR Interface”

1-450

RTW.AutosarInterface.setIOErrorStatusReceiver

Purpose Set name of error status receiver port

Syntax autosarInterfaceObj.setIOErrorStatusReceiver(PortName,ESR)

Description autosarInterfaceObj.setIOErrorStatusReceiver(PortName,ESR)
sets the receiver port name in the configuration for the port
corresponding to PortName .

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.

Input
Arguments

PortName

Name of inport/outport (string)

ESR

Name of receiver port for PortName (string)

See Also RTW.AutosarInterface.getIOErrorStatusReceiver

How To • “Configure Ports for Basic Software and Error Status Receivers”

1-451

RTW.AutosarInterface.setIOInterfaceName

Purpose Set I/O interface name

Syntax autosarInterfaceObj.setIOInterfaceName(portName,
interfaceName)

Description autosarInterfaceObj.setIOInterfaceName(portName,interfaceName)
updates the I/O interface name in the configuration for the specified
port.

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.

By default the AUTOSAR port name, data element name, and interface
name are the same as the Simulink port name.

Input
Arguments

portName Name of inport/outport (string).

interfaceName Name of I/O interface for portName (string).

How To • “Configure the AUTOSAR Interface”

1-452

RTW.AutosarInterface.setIOServiceInterface

Purpose Set port I/O service interface

Syntax autosarInterfaceObj.setIOServiceInterface(PortName, SI)

Description autosarInterfaceObj.setIOServiceInterface(PortName, SI) specifies
the I/O service interface in the configuration for the port corresponding
to PortName.

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.

Input
Arguments

PortName

Name of the inport/outport (string)

SI

I/O service interface of PortName (string)

See Also RTW.AutosarInterface.getIOServiceInterface

How To • “Configure Ports for Basic Software and Error Status Receivers”

1-453

RTW.AutosarInterface.setIOServiceName

Purpose Set port I/O service name

Syntax autosarInterfaceObj.setIOServiceName(PortName, SN)

Description autosarInterfaceObj.setIOServiceName(PortName, SN) specifies the
I/O service name in the configuration for the port corresponding to
PortName.

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.

Input
Arguments

PortName

Name of the inport/outport (string)

SN

Name of I/O service for PortName (string)

See Also RTW.AutosarInterface.getIOServiceName

How To • “Configure Ports for Basic Software and Error Status Receivers”

1-454

RTW.AutosarInterface.setIOServiceOperation

Purpose Set port I/O service operation

Syntax autosarInterfaceObj.setIOServiceOperation(PortName, SO)

Description autosarInterfaceObj.setIOServiceOperation(PortName, SO) sets the
I/O service operation in the configuration for the port corresponding
to PortName.

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.

Input
Arguments

PortName

Inport/outport name (string)

SO

I/O service operation for PortName

See Also RTW.AutosarInterface.getIOServiceOperation

How To • “Configure Ports for Basic Software and Error Status Receivers”

1-455

RTW.AutosarInterface.setIsServerOperation

Purpose Indicate that server is specified

Syntax autosarInterfaceObj.setIsServerOperation(isServerOperation)

Description autosarInterfaceObj.setIsServerOperation(isServerOperation)
sets the value of the property 'isServerOperation' in
autosarInterfaceObj.

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.

Input
Arguments

isServerOperation True or false (default). If true, indicates that
a server is specified in autosarInterfaceObj.

How To • “Configure Client-Server Communication”

1-456

cgv.CGV.setMode

Purpose Specify mode of execution

Syntax cgvObj.setMode(connectivity)

Description cgvObj.setMode(connectivity) specifies the mode of execution for
the cgv.CGV object, cgvObj. The default value for the execution mode is
set to either normal or sim.

Input
Arguments

connectivity

Specify mode of execution

Value Description

sim or normal (default) Mode of execution is normal
simulation.

sil Mode of execution is SIL.

pil Mode of execution is PIL.

Examples After running a cgv.CGV object, copy the object. Before rerunning the
object, call setMode to change the execution mode to sil for an existing
cgv.CGV object.

cgvModel = 'rtwdemo_cgv';
cgvObj1 = cgv.CGV(cgvModel, 'connectivity', 'sim');
cgvObj1.run();
cgvObj2 = cgvObj1.copySetup()
cgvObj2.setMode('sil');
cgvObj2.run();

See Also cgv.CGV.run | cgv.CGV.copySetup

How To • “Verify Numerical Equivalence with CGV”

1-457

setNameSpace

Purpose Set name space for C++ function entry in CRL table

Syntax setNameSpace(hEntry, nameSpace)

Arguments hEntry
Handle to a CRL function entry previously returned by one of
the following:

• hEntry = RTW.TflCFunctionEntry

• hEntry = MyCustomFunctionEntry, where
MyCustomFunctionEntry is a class derived from
RTW.TflCFunctionEntry

• A call to the registerCPPFunctionEntry function

nameSpace
String specifying the name space in which the implementation
function for the C++ function entry is defined.

Description The setNameSpace function specifies the name space for a C++ function
entry in a CRL table. During code generation, if the CRL function
entry is matched, the software emits the name space in the generated
function code (for example, std::sin(tfl_cpp_U.In1)).

If you created the function entry using hEntry =
RTW.TflCFunctionEntry or hEntry = MyCustomFunctionEntry (that
is, not using registerCPPFunctionEntry), then, before calling the
setNameSpace function, you must enable C++ support for the function
entry by calling the enableCPP function.

Examples In the following example, the setNameSpace function is used to set the
name space for the sin implementation function to std.

fcn_entry = RTW.TflCFunctionEntry;

fcn_entry.setTflCFunctionEntryParameters(...

'Key', 'sin', ...

'Priority', 100, ...

'ImplementationName', 'sin', ...

1-458

setNameSpace

'ImplementationHeaderFile', 'cmath');

fcn_entry.enableCPP();

fcn_entry.setNameSpace('std');

See Also enableCPP | registerCPPFunctionEntry

How To • “Map Math Functions to Target-Specific Implementations”

• “Create Code Replacement Tables”

• “Introduction to Code Replacement Libraries”

1-459

rtw.codegenObjectives.Objective.setObjectiveName

Purpose Specify objective name

Syntax setObjectiveName(obj, objName)

Description setObjectiveName(obj, objName) specifies a name for the objective.
The Configuration Set Objectives dialog box displays the name of the
objective.

Input
Arguments

obj Handle to a code generation objective object
previously created.

objName Optional string that indicates the name of the
objective. If you do not specify an objective
name, the Configuration Set Objectives dialog
box displays the objective ID for the objective
name.

Examples Name the objective Reduce RAM Example:

setObjectiveName(obj, 'Reduce RAM Example');

How To • “Create Custom Objectives”

1-460

cgv.CGV.setOutputDir

Purpose Specify folder

Syntax cgvObj.setOutputDir('path')
cgvObj.setOutputDir('path', 'overwrite', 'on')

Description cgvObj.setOutputDir('path') is an optional method that specifies
a location where the object writes the output and metadata files for
execution. cgvObj is a handle to a cgv.CGV object. path is the absolute
or relative path to the folder. If the path does not exist, the object
attempts to create the folder. If you do not call setOutputDir, the object
uses the current working folder.

cgvObj.setOutputDir('path', 'overwrite', 'on') includes the
property and value pair to allow read-only files in the working directory
to be overwritten. The default value for 'overwrite' is 'off'.

How To • “Verify Numerical Equivalence with CGV”

1-461

cgv.CGV.setOutputFile

Purpose Specify output data file name

Syntax cgvObj.setOutputFile(InputIndex,OutputFile)

Description cgvObj.setOutputFile(InputIndex,OutputFile) is an optional
method that changes the default file name for the output data. cgvObj
is a handle to a cgv.CGV object. InputIndex is a unique numeric
identifier that specifies which output data to write to the file. The
InputIndex is associated with specific input data.OutputFile is the
name of the file, with or without the .mat extension.

How To • “Verify Numerical Equivalence with CGV”

1-462

RTW.AutosarInterface.setPeriodicEventName

Purpose Set periodic event name

Syntax autosarInterfaceObj.setPeriodicEventName(periodicEventName)

Description autosarInterfaceObj.setPeriodicEventName(periodicEventName)
sets the name of the periodic event for autosarInterfaceObj, a
model-specific RTW.AutosarInterface object.

Input
Arguments

periodicEventName Name of the periodic event for
autosarInterfaceObj.

How To • RTW.AutosarInterface.getPeriodicEventName

• “Configure the AUTOSAR Interface”

1-463

RTW.AutosarInterface.setPeriodicRunnableName

Purpose Set periodic runnable name

Syntax autosarInterfaceObj.setPeriodicRunnableName(periodicRunnableNa
me)

Description autosarInterfaceObj.setPeriodicRunnableName(periodicRunnableName)
sets the name of the periodic runnable for autosarInterfaceObj, a
model-specific RTW.AutosarInterface object.

Input
Arguments

periodicRunnable
Name

Name of periodic runnable for
autosarInterfaceObj.

How To • RTW.AutosarInterface.getPeriodicRunnableName

• “Configure the AUTOSAR Interface”

1-464

setReservedIdentifiers

Purpose Register specified reserved identifiers to be associated with CRL table

Syntax setReservedIdentifiers(hTable, ids)

Arguments hTable
Handle to a CRL table previously returned by hTable =
RTW.TflTable.

ids
Structure specifying reserved keywords to be registered in the
CRL table. The structure must contain the following:

• LibraryName element, a string that specifies a CRL name:
'ANSI', 'ISO','GNU', or a CRL name of your choice.

• HeaderInfos element, a structure or cell array of structures
containing

— HeaderName element, a string that specifies the header file
in which the identifiers are declared

— ReservedIds element, a cell array of strings that specifies
the names of the identifiers to be registered as reserved
keywords

For example,

d{1}.LibraryName = 'ANSI';
d{1}.HeaderInfos{1}.HeaderName = 'math.h';
d{1}.HeaderInfos{1}.ReservedIds = {'y0', 'y1'};

Description In a CRL table, each function implementation name defined by a table
entry will be registered as a reserved identifier. You can register
additional reserved identifiers for the table on a per-header-file basis.
Providing additional reserved identifiers can help prevent duplicate
symbols and other identifier-related compile and link issues.

The setReservedIdentifiers function allows you to register up to
four reserved identifier structures in a CRL table. One set of reserved
identifiers can be associated with an arbitrary CRL, while the other

1-465

setReservedIdentifiers

three (if present) must be associated with ANSI1, ISO®2, or GNU®3

libraries.

For information about generating a list of reserved identifiers for the
CRL that you are using to generate code, see “Simulink Coder Code
Replacement Library Keywords” in the Simulink Coder documentation.

Examples In the following example, setReservedIdentifiers is used to register
four reserved identifier structures, for 'ANSI', 'ISO','GNU', and 'My
Custom CRL', respectively.

hLib = RTW.TflTable;

% Create and register CRL entries here

.

.

.

% Create and register reserved identifiers

d{1}.LibraryName = 'ANSI';

d{1}.HeaderInfos{1}.HeaderName = 'math.h';

d{1}.HeaderInfos{1}.ReservedIds = {'a', 'b'};

d{1}.HeaderInfos{2}.HeaderName = 'foo.h';

d{1}.HeaderInfos{2}.ReservedIds = {'c', 'd'};

d{2}.LibraryName = 'ISO';

d{2}.HeaderInfos{1}.HeaderName = 'math.h';

d{2}.HeaderInfos{1}.ReservedIds = {'a', 'b'};

d{2}.HeaderInfos{2}.HeaderName = 'foo.h';

d{2}.HeaderInfos{2}.ReservedIds = {'c', 'd'};

1. ANSI® is a registered trademark of the American National Standards Institute, Inc.

2. ISO® is a registered trademark of the International Organization for
Standardization.

3. GNU® is a registered trademark of the Free Software Foundation.

1-466

setReservedIdentifiers

d{3}.LibraryName = 'GNU';

d{3}.HeaderInfos{1}.HeaderName = 'math.h';

d{3}.HeaderInfos{1}.ReservedIds = {'a', 'b'};

d{3}.HeaderInfos{2}.HeaderName = 'foo.h';

d{3}.HeaderInfos{2}.ReservedIds = {'c', 'd'};

d{4}.LibraryName = 'My Custom CRL';

d{4}.HeaderInfos{1}.HeaderName = 'my_math_lib.h';

d{4}.HeaderInfos{1}.ReservedIds = {'y1', 'u1'};

d{4}.HeaderInfos{2}.HeaderName = 'my_oper_lib.h';

d{4}.HeaderInfos{2}.ReservedIds = {'foo', 'bar'};

setReservedIdentifiers(hLib, d);

How To • “Introduction to Code Replacement Libraries”

• “Add Code Replacement Library Reserved Identifiers”

1-467

RTW.AutosarInterface.setServerInterfaceName

Purpose Set name of server interface

Syntax autosarInterfaceObj.setServerInterfaceName(ServerInterfaceName
)

Description autosarInterfaceObj.setServerInterfaceName(ServerInterfaceName)
sets the name of the server interface specified in autosarInterfaceObj

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.

Input
Arguments

ServerInterfaceName Server interface name for
autosarInterfaceObj.

How To • “Configure Client-Server Communication”

1-468

RTW.AutosarInterface.setServerOperationPrototype

Purpose Specify operation prototype

Syntax autosarInterfaceObj.setServerOperationPrototype(operation_prot
otype)

Description autosarInterfaceObj.setServerOperationPrototype(operation_prototype)
defines the server operation prototype for autosarInterfaceObj.

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.

Input
Arguments

operation_prototype String with names of prototype and
arguments:

operation_name(dir1 datatype1
arg1, dir2 datatype2 arg2, ...,
dirN datatypeN argN, ...)

• operation_name — Name of
operation

• dirN — Either IN or OUT, which
indicates whether data is passed in
or out of the function.

• datatypeN — Data type, which can
be an AUTOSAR basic data type or
record, Simulink data type, or array.

• argN— Name of the argument

Prototype and argument names must be
valid AUTOSAR short-name identifiers.

How To • “Configure Client-Server Communication”

1-469

RTW.AutosarInterface.setServerPortName

Purpose Set server port name

Syntax autosarInterfaceObj.setServerPortName(serverPortName)

Description autosarInterfaceObj.setServerPortName(serverPortName) sets the
server port name for the model-specific RTW.AutosarInterface object
defined by autosarInterfaceObj.

Input
Arguments

serverPortName Name for server port of autosarInterfaceObj

How To • “Configure Client-Server Communication”

1-470

RTW.AutosarInterface.setServerType

Purpose Specify server type

Syntax autosarInterfaceObj.setServerType(serverType)

Description autosarInterfaceObj.setServerType(serverType) specifies whether the
server in autosarInterfaceObj is application software or AUTOSAR
Basic Software.

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.

Input
Arguments

serverType Either 'Application software' or 'Basic
software'

How To • “Configure Client-Server Communication”

1-471

RTW.ModelCPPClass.setStepMethodName

Purpose Set step method name in model-specific C++ encapsulation interface

Syntax setStepMethodName(obj, fcnName)

Description setStepMethodName(obj, fcnName) sets the step method name in the
specified model-specific C++ encapsulation interface.

Input
Arguments

obj Handle to a model-specific C++ encapsulation
interface control object, such as a
handle previously returned by obj
= RTW.ModelCPPArgsClass, obj =
RTW.ModelCPPVoidClass, or obj =
RTW.getEncapsulationInterfaceSpecification
(modelName).

fcnName String specifying a new name for the
step method described by the specified
model-specific C++ encapsulation interface.
The argument must be a valid C/C++
identifier.

Alternatives To set the step method name in the Simulink Configuration Parameters
graphical user interface, go to the Interface pane and click the
Configure C++ Encapsulation Interface button. This button
launches the Configure C++ encapsulation interface dialog box, where
you can display and configure the step method for your model class. In
the I/O arguments step method view of this dialog box, click the Get
Default Configuration button to display the step method name, which
you can examine and modify. In the void-void step method view, you
can examine and modify the step method name without having to click
a button. For more information, see “Configure Step Method for Your
Model Class” in the Embedded Coder documentation.

How To • “Configure C++ Encapsulation Interfaces Programmatically”

• “Configure the Step Method for a Model Class”

1-472

RTW.ModelCPPClass.setStepMethodName

• “C++ Encapsulation Interface Control”

1-473

setTflCFunctionEntryParameters

Purpose Set specified parameters for function entry in CRL table

Syntax setTflCFunctionEntryParameters(hEntry, varargin)

Arguments hEntry
Handle to a CRL function entry previously returned by hEntry =
RTW.TflCFunctionEntry or hEntry = MyCustomFunctionEntry,
where MyCustomFunctionEntry is a class derived from
RTW.TflCFunctionEntry.

varargin
Parameter/value pairs for the function entry. See varargin
Parameters.

varargin
Parameters

The following function entry parameters can be specified to the
setTflCFunctionEntryParameters function using parameter/value
argument pairs. For example,

setTflCFunctionEntryParameters(..., 'Key', 'sqrt', ...);

Key
String specifying the name of the function to be replaced. The
name must match one of the functions supported for replacement:

Math Functions

Note For detailed support information, see “Map Math
Functions to Target-Specific Implementations”.

abs acos acosh asin

asinh atan atan2 atanh

ceil cos cosh exactrSqrt

exp fix floor frexp

hypot ldexp ln log

1-474

setTflCFunctionEntryParameters

log10 max min mod/fmod

pow rem round rSqrt

saturate sign sin sincos

sinh sqrt round tanh

Memory Utility Functions

memcmp memcpy memset memset2zero1

Nonfinite Support Utility Functions2

getInf getMinusInf getNaN isInf3

isNaN3

Notes:
1 Some target processors provide optimized memset functions
for use when performing a memory set to zero. The CRL API
supports replacing memset to zero functions with more efficient
target-specific functions.
2 Replacement of nonfinite functions is supported for Simulink
code generation (not for Stateflow or MATLAB Coder code
generation).
3 Replacement of isInf and isNaN is supported only for complex
floating-point inputs.

GenCallback
String specifying '' or 'RTW.copyFileToBuildDir'. The
default is ''. If you specify 'RTW.copyFileToBuildDir',
and if this function entry is matched and used, the function
RTW.copyFileToBuildDir will be called after code generation
to copy additional header, source, or object files that you have
specified for this function entry to the build directory. For
more information, see “Specify Build Information for Code
Replacements” in the Embedded Coder documentation.

Priority
Positive integer specifying the function entry’s search priority,
0-100, relative to other entries of the same function name and
conceptual argument list within this table. Highest priority is 0,

1-475

setTflCFunctionEntryParameters

and lowest priority is 100. The default is 100. If the table provides
two implementations for a function, the implementation with the
higher priority will shadow the one with the lower priority.

ImplType
Specifies the type of entry: FCN_IMPL_FUNCT for function or
FCN_IMPL_MACRO for macro. The default is FCN_IMPL_FUNCT.

ImplementationName
String specifying the name of the implementation function, for
example, 'sqrt', which can match or differ from the Key name.
The default is ''.

ImplementationHeaderFile
String specifying the name of the header file that declares the
implementation function, for example, '<math.h>'. The default
is ''.

ImplementationHeaderPath
String specifying the full path to the implementation header file.
The default is ''.

ImplementationSourceFile
String specifying the name of the implementation source file. The
default is ''.

ImplementationSourcePath
String specifying the full path to the implementation source file.
The default is ''.

Note To supply additional build information for the
function entry, you can use CRL table entry functions
addAdditionalHeaderFile, addAdditionalIncludePath,
addAdditionalLinkObj, addAdditionalLinkObjPath,
addAdditionalSourceFile, and addAdditionalSourcePath,
and CRL table entry properties AdditionalCompileFlags,
AdditionalLinkFlags, and OtherFiles. For more information.
see “Specify Build Information for Code Replacements”.

1-476

setTflCFunctionEntryParameters

AcceptExprInput
Boolean value used to flag the code generator that the
implementation function described by this entry should accept
expression inputs. The default value is true if ImplType equals
FCN_IMPL_FUNCT and false if ImplType equals FCN_IMPL_MACRO.

If the value is true, expression inputs are integrated into the
generated code in a form similar to the following:

rtY.Out1 = mySin(rtU.In1 + rtU.In2);

If the value is false, a temporary variable is generated for the
expression input, as follows:

real_T rtb_Sum;

rtb_Sum = rtU.In1 + rtU.In2;
rtY.Out1 = mySin(rtb_Sum);

SideEffects
Boolean value used to flag the code generator that the
implementation function described by this entry should not be
optimized away. This parameter applies to implementation
functions that return void but should not be optimized away,
such as a memcpy implementation or an implementation function
that accesses global memory values. For those implementation
functions only, you must include this parameter and specify the
value true. The default is false.

StoreFcnReturnInLocalVar
Boolean value used to flag the code generator that the return
value of the implementation function described by this entry must
be stored in a local variable regardless of other expression folding
settings. If the value is false (the default), other expression
folding settings determine whether the return value is folded.
Storing function returns in a local variable can increase the
clarity of generated code. For example, here is an example of code
generated with expression folding:

1-477

setTflCFunctionEntryParameters

void sw_step(void)
{

if (ssub(sadd(sw_U.In1, sw_U.In2), sw_U.In3) <=
smul(ssub(sw_U.In4, sw_U.In5),sw_U.In6)) {

sw_Y.Out1 = sw_U.In7;
} else {

sw_Y.Out1 = sw_U.In8;
}

}

With StoreFcnReturnInLocalVar set to true, the generated code
potentially is easier to understand and debug:

void sw_step(void)
{

real32_T rtb_Switch;
real32_T hoistedExpr;
......
rtb_Switch = sadd(sw_U.In1, sw_U.In2);
rtb_Switch = ssub(rtb_Switch, sw_U.In3);
hoistedExpr = ssub(sw_U.In4, sw_U.In5);
hoistedExpr = smul(hoistedExpr, sw_U.In6);
if (rtb_Switch <= hoistedExpr) {

sw_Y.Out1 = sw_U.In7;
} else {

sw_Y.Out1 = sw_U.In8;
}

}

EntryInfoAlgorithm
String specifying a computation or approximation method,
configured for the specified math function, that must be matched
in order for function replacement to occur. CRLs support function
replacement based on computation or approximation method
for the math functions rSqrt, sin, cos, and sincos. The valid
arguments for each supported function are:

1-478

setTflCFunctionEntryParameters

Function Argument Meaning

RTW_DEFAULT Match the default
computation method, Exact

RTW_NEWTON_RAPHSON Match the Newton-Raphson
computation method

rSqrt

RTW_UNSPECIFIED Match a computation method

RTW_CORDIC Match the CORDIC
approximation method

RTW_DEFAULT Match the default
approximation method,
None

sin
cos
sincos

RTW_UNSPECIFIED Match an approximation
method

Description The setTflCFunctionEntryParameters function sets specified
parameters for a function entry in a CRL table.

Examples In the following example, the setTflCFunctionEntryParameters
function is used to set specified parameters for a CRL function entry
for sqrt.

fcn_entry = RTW.TflCFunctionEntry;

fcn_entry.setTflCFunctionEntryParameters(...

'Key', 'sqrt', ...

'Priority', 100, ...

'ImplementationName', 'sqrt', ...

'ImplementationHeaderFile', '<math.h>');

How To • “Introduction to Code Replacement Libraries”

• “Map Math Functions to Target-Specific Implementations”

• “Create Code Replacement Tables”

1-479

setTflCOperationEntryParameters

Purpose Set specified parameters for operator entry in CRL table

Syntax setTflCOperationEntryParameters(hEntry, varargin)

Arguments hEntry
Handle to a CRL table entry previously returned by one of the
following class instantiations:

hEntry = RTW.TflCOperationEntry; Supports operator replacement, described
in “Map Scalar Operators to Target-Specific
Implementations” and “Map Nonscalar Operators
to Target-Specific Implementations”

hEntry = RTW.TflCOperationEntry-
Generator;

Provides relative scaling factor (RSF)
fixed-point parameters, described in “Map
Fixed-Point Operators to Target-Specific
Implementations”, that are not available in
RTW.TflCOperationEntry

hEntry = RTW.TflCOperationEntry-
Generator_NetSlope;

Provides net slope parameters, described in
“Map Fixed-Point Operators to Target-Specific
Implementations”, that are not available in
RTW.TflCOperationEntry

hEntry = RTW.TflBlasEntry-
Generator;

Supports replacement of nonscalar operators
with MathWorks BLAS functions, described in
“Map Nonscalar Operators to Target-Specific
Implementations”

hEntry = RTW.TflCBlasEntry-
Generator;

Supports replacement of nonscalar operators
with ANSI/ISO C BLAS functions, described in
“Map Nonscalar Operators to Target-Specific
Implementations”

hEntry = MyCustomOperationEntry;
(where MyCustomOperationEntry
is a class derived from
RTW.TflCOperationEntry)

Supports operator replacement using custom
CRL table entries, described in “Refine Matching
and Replacement Using Custom Entries”

1-480

setTflCOperationEntryParameters

Note If you want to specify one of the parameters
SlopesMustBeTheSame, MustHaveZeroNetBias,
RelativeScalingFactorF, or RelativeScalingFactorE
for your operator entry, instantiate your table entry
using hEntry = RTW.TflCOperationEntryGenerator
rather than hEntry = RTW.TflCOperationEntry. If
you want to use NetSlopeAdjustmentFactor and
NetFixedExponent, instantiate your table entry using hEntry =
RTW.TflCOperationEntryGenerator_NetSlope.

varargin
Parameter/value pairs for the operator entry. See varargin
Parameters.

varargin
Parameters

The following operator entry parameters can be specified to the
setTflCOperationEntryParameters function using parameter/value
argument pairs. For example,

setTflCOperationEntryParameters(..., 'Key', 'RTW_OP_ADD', ...);

Key
String specifying the operator to be replaced, among the operators
supported for replacement:

1-481

setTflCOperationEntryParameters

Operator Key

Addition (+) RTW_OP_ADD

Subtraction (-) RTW_OP_MINUS

Multiplication (*) RTW_OP_MUL

Division (/) RTW_OP_DIV

Data type conversion (cast) RTW_OP_CAST

Shift left (<<) RTW_OP_SL

Shift right (>>) RTW_OP_SRA (arithmetic)1

RTW_OP_SRL (logical)

Element-wise matrix
multiplication (.*)

RTW_OP_ELEM_MUL2

Matrix right division (/) RTW_OP_RDIV3

Matrix left division (\) RTW_OP_LDIV3

Matrix inversion (inv) RTW_OP_INV3

Complex conjugation RTW_OP_CONJUGATE

Transposition (.') RTW_OP_TRANS

Hermitian (complex
conjugate) transposition
(')

RTW_OP_HERMITIAN

Multiplication with
transposition

RTW_OP_TRMUL

Multiplication with
Hermitian transposition

RTW_OP_HMMUL

Notes:
1 CRLs that provide arithmetic shift right implementations
should also provide logical shift right implementations, because
some arithmetic shift rights are converted to logical shift rights
during code generation.
2 For scalar multiplication, use RTW_OP_MUL.
3 Matrix division and inversion are supported for Simulink
code generation (not for Stateflow or MATLAB Coder code
generation).

1-482

setTflCOperationEntryParameters

The default is 'RTW_OP_ADD'.

GenCallback
String specifying '' or 'RTW.copyFileToBuildDir'. The
default is ''. If you specify 'RTW.copyFileToBuildDir',
and if this operator entry is matched and used, the function
RTW.copyFileToBuildDir will be called after code generation
to copy additional header, source, or object files that you have
specified for this operator entry to the build directory. For
more information, see “Specify Build Information for Code
Replacements” in the Embedded Coder documentation.

Priority
Positive integer specifying the operator entry’s search priority,
0-100, relative to other entries of the same operator name and
conceptual argument list within this table. Highest priority is 0,
and lowest priority is 100. The default is 100. If the table provides
two implementations for an operator, the implementation with
the higher priority will shadow the one with the lower priority.

RoundingModes
Cell array of strings specifying one or more rounding modes
supported by the implementation function, among the following:
'RTW_ROUND_FLOOR', 'RTW_ROUND_CEILING', 'RTW_ROUND_ZERO',
'RTW_ROUND_NEAREST', 'RTW_ROUND_NEAREST_ML',
'RTW_ROUND_SIMPLEST', 'RTW_ROUND_CONV',
and 'RTW_ROUND_UNSPECIFIED'. The default is
{'RTW_ROUND_UNSPECIFIED'}.

SaturationMode
String specifying the saturation mode supported by the
implementation function: 'RTW_SATURATE_ON_OVERFLOW',
'RTW_WRAP_ON_OVERFLOW', or 'RTW_SATURATE_UNSPECIFIED'.
The default is 'RTW_SATURATE_UNSPECIFIED'.

SlopesMustBeTheSame
Boolean flag that, when set to true, indicates that CRL
replacement request processing must check that the slopes of the
arguments (input and output) are equal. The default is false.

1-483

setTflCOperationEntryParameters

This parameter and MustHaveZeroNetBias can be used for
fixed-point addition and subtraction replacement. Set both
parameters to true to disregard specific slope and bias values and
map relative slope and bias values to a replacement function.

To use this parameter, you must instantiate your table entry
using hEntry = RTW.TflCOperationEntryGenerator rather
than hEntry = RTW.TflCOperationEntry.

MustHaveZeroNetBias
Boolean flag that, when set to true, indicates that CRL
replacement request processing must check that the net bias of
the arguments is zero. The default is false.

This parameter and SlopesMustBeTheSame can be used for
fixed-point addition and subtraction replacement. Set both
parameters to true to disregard specific slope and bias values and
map relative slope and bias values to a replacement function.

To use this parameter, you must instantiate your table entry
using hEntry = RTW.TflCOperationEntryGenerator rather
than hEntry = RTW.TflCOperationEntry.

RelativeScalingFactorF
Floating-point value specifying the slope adjustment factor (F)
part of the relative scaling factor, F2E, for relative scaling CRL
entries. The default is 1.0.

This parameter and RelativeScalingFactorE can be used for
fixed-point multiplication and division replacement. Specify
both parameters to map a range of slope and bias values to a
replacement function.

To use this parameter, you must instantiate your table entry
using hEntry = RTW.TflCOperationEntryGenerator rather
than hEntry = RTW.TflCOperationEntry.

1-484

setTflCOperationEntryParameters

RelativeScalingFactorE
Floating-point value specifying the fixed exponent (E) part of the
relative scaling factor, F2E, for relative scaling CRL entries. For
example, -3.0. The default is 0.

This parameter and RelativeScalingFactorF can be used for
fixed-point multiplication and division replacement. Specify
both parameters to map a range of slope and bias values to a
replacement function.

To use this parameter, you must instantiate your table entry
using hEntry = RTW.TflCOperationEntryGenerator rather
than hEntry = RTW.TflCOperationEntry.

isRSF
Boolean value specifying that the operator entry is a relative
scaling factor (RSF) entry. Specify true if the values of
RelativeScalingFactorF and RelativeScalingFactorE equal
their defaults, 1.0 and 0, but the entry nonetheless should be
interpreted by the code generation process as an RSF entry.

NetSlopeAdjustmentFactor
Floating-point value specifying the slope adjustment factor (F)
part of the net slope, F2E, for net slope CRL entries. The default
is 1.0.

This parameter and NetFixedExponent can be used for fixed-point
multiplication and division replacement. Specify both parameters
to map a range of slope and bias values to a replacement function.

To use this parameter, you must instantiate your table entry
using hEntry = RTW.TflCOperationEntryGenerator_NetSlope
rather than hEntry = RTW.TflCOperationEntry.

NetFixedExponent
Floating-point value specifying the fixed exponent (E) part of the
net slope, F2E, for net slope CRL entries. For example, -3.0. The
default is 0.

1-485

setTflCOperationEntryParameters

This parameter and NetSlopeAdjustmentFactor can be used
for fixed-point multiplication and division replacement. Specify
both parameters to map a range of slope and bias values to a
replacement function.

To use this parameter, you must instantiate your table entry
using hEntry = RTW.TflCOperationEntryGenerator_NetSlope
rather than hEntry = RTW.TflCOperationEntry.

ImplementationName
String specifying the name of the implementation function, for
example, 's8_add_s8_s8'. The default is ''.

ImplementationHeaderFile
String specifying the name of the header file that declares the
implementation function, for example, 's8_add_s8_s8.h'. The
default is ''.

ImplementationHeaderPath
String specifying the full path to the implementation header file.
The default is ''.

ImplementationSourceFile
String specifying the name of the implementation source file, for
example, 's8_add_s8_s8.c'. The default is ''.

ImplementationSourcePath
String specifying the full path to the implementation source file.
The default is ''.

1-486

setTflCOperationEntryParameters

Note To supply additional build information for the
operator entry, you can use CRL table entry functions
addAdditionalHeaderFile, addAdditionalIncludePath,
addAdditionalLinkObj, addAdditionalLinkObjPath,
addAdditionalSourceFile, and addAdditionalSourcePath,
and CRL table entry properties AdditionalCompileFlags,
AdditionalLinkFlags, and OtherFiles. For more information.
see “Specify Build Information for Code Replacements”.

AcceptExprInput
Boolean value used to flag the code generator that the
implementation function described by this entry should accept
expression inputs. If the value is true (the default), expression
inputs are integrated into the generated code in a form similar to
the following:

rtY.Out1 = u8_add_u8_u8(u8_add_u8_u8(rtU.In1, rtU.In2), rtU.In3);

If the value is false, a temporary variable is generated for the
expression input, as follows:

uint8_T tempVar;

tempVar = u8_add_u8_u8(rtU.In1, rtU.In2);

rtY.Out1 = u8_add_u8_u8(tempVar, rtU.In3);

SideEffects
Boolean value used to flag the code generator that the
implementation function described by this entry should not be
optimized away. This parameter applies to implementation
functions that return void but should not be optimized away,
such as an implementation function that accesses global memory
values. For those implementation functions only, you must
include this parameter and specify the value true. The default is
false.

1-487

setTflCOperationEntryParameters

StoreFcnReturnInLocalVar
Boolean value used to flag the code generator that the return
value of the implementation function described by this entry must
be stored in a local variable regardless of other expression folding
settings. If the value is false (the default), other expression
folding settings determine whether the return value is folded.
Storing function returns in a local variable can increase the
clarity of generated code. For example, here is an example of code
generated with expression folding:

void sw_step(void)
{

if (ssub(sadd(sw_U.In1, sw_U.In2), sw_U.In3) <=
smul(ssub(sw_U.In4, sw_U.In5),sw_U.In6)) {

sw_Y.Out1 = sw_U.In7;
} else {

sw_Y.Out1 = sw_U.In8;
}

}

With StoreFcnReturnInLocalVar set to true, the generated code
potentially is easier to understand and debug:

void sw_step(void)
{

real32_T rtb_Switch;
real32_T hoistedExpr;
......
rtb_Switch = sadd(sw_U.In1, sw_U.In2);
rtb_Switch = ssub(rtb_Switch, sw_U.In3);
hoistedExpr = ssub(sw_U.In4, sw_U.In5);
hoistedExpr = smul(hoistedExpr, sw_U.In6);
if (rtb_Switch <= hoistedExpr) {

sw_Y.Out1 = sw_U.In7;
} else {

sw_Y.Out1 = sw_U.In8;
}

}

1-488

setTflCOperationEntryParameters

Description The setTflCOperationEntryParameters function sets specified
parameters for an operator entry in a CRL table.

Examples In the following example, the setTflCOperationEntryParameters
function is used to set parameters for a CRL operator entry for uint8
addition.

op_entry = RTW.TflCOperationEntry;

op_entry.setTflCOperationEntryParameters(...

'Key', 'RTW_OP_ADD', ...

'Priority', 90, ...

'SaturationMode', 'RTW_SATURATE_UNSPECIFIED', ...

'RoundingModes', {'RTW_ROUND_UNSPECIFIED'}, ...

'ImplementationName', 'u8_add_u8_u8', ...

'ImplementationHeaderFile', 'u8_add_u8_u8.h', ...

'ImplementationSourceFile', 'u8_add_u8_u8.c');

In the following example, the setTflCOperationEntryParameters
function is used to set parameters for a CRL operator entry for
fixed-point int16 division. The table entry specifies a relative scaling
between the operator inputs and output in order to map a range of slope
and bias values to a replacement function.

op_entry = RTW.TflCOperationEntryGenerator;

op_entry.setTflCOperationEntryParameters(...

'Key', 'RTW_OP_DIV', ...

'Priority', 90, ...

'SaturationMode', 'RTW_WRAP_ON_OVERFLOW', ...

'RoundingModes', {'RTW_ROUND_CEILING'}, ...

'RelativeScalingFactorF', 1.0, ...

'RelativeScalingFactorE', -3.0, ...

'ImplementationName', 's16_div_s16_s16_rsf0p125', ...

'ImplementationHeaderFile', 's16_div_s16_s16_rsf0p125.h', ...

'ImplementationSourceFile', 's16_div_s16_s16_rsf0p125.c');

In the following example, the setTflCOperationEntryParameters
function is used to set parameters for a CRL operator entry for
fixed-point uint16 addition. The table entry specifies equal slope and

1-489

setTflCOperationEntryParameters

zero net bias across operator inputs and output in order to map relative
slope and bias values (rather than a specific slope and bias combination)
to a replacement function.

op_entry = RTW.TflCOperationEntryGenerator;

op_entry.setTflCOperationEntryParameters(...

'Key', 'RTW_OP_ADD', ...

'Priority', 90, ...

'SaturationMode', 'RTW_WRAP_ON_OVERFLOW', ...

'RoundingModes', {'RTW_ROUND_UNSPECIFIED'}, ...

'SlopesMustBeTheSame', true, ...

'MustHaveZeroNetBias', true, ...

'ImplementationName', 'u16_add_SameSlopeZeroBias', ...

'ImplementationHeaderFile', 'u16_add_SameSlopeZeroBias.h', ...

'ImplementationSourceFile', 'u16_add_SameSlopeZeroBias.c');

How To • “Map Scalar Operators to Target-Specific Implementations”

• “Map Fixed-Point Operators to Target-Specific Implementations”

• “Create Code Replacement Tables”

1-490

setTflCSemaphoreEntryParameters

Purpose Set specified parameters for semaphore entry in CRL table

Syntax setTflCSemaphoreEntryParameters(hEntry, varargin)

Arguments hEntry
Handle to a CRL semaphore entry previously returned by hEntry
= RTW.TflCSemaphoreEntry;.

varargin
Parameter/value pairs for the semaphore entry. See varargin
Parameters.

varargin
Parameters

The following semaphore entry parameters can be specified to the
setTflCSemaphoreEntryParameters function using parameter/value
argument pairs. For example,

setTflCSemaphoreEntryParameters(..., 'Key', 'RTW_SEM_INIT', ...);

Key
String specifying the semaphore or mutex operation to be
replaced, among the semaphore and mutex operations supported
for replacement:

Operation Key

Mutex Destroy RTW_MUTEX_DESTROY

Mutex Init RTW_MUTEX_INIT

Mutex Lock RTW_MUTEX_LOCK

Mutex Unlock RTW_MUTEX_UNLOCK

Semaphore Destroy RTW_SEM_DESTROY

Semaphore Init RTW_SEM_INIT

Semaphore Post RTW_SEM_POST

Semaphore Wait RTW_SEM_WAIT

1-491

setTflCSemaphoreEntryParameters

GenCallback
String specifying '' or 'RTW.copyFileToBuildDir'. The
default is ''. If you specify 'RTW.copyFileToBuildDir', and
if this semaphore entry is matched and used, the function
RTW.copyFileToBuildDir is called after code generation to copy
additional header, source, or object files that you have specified for
this semaphore entry to the build directory. For more information,
see “Specify Build Information for Code Replacements” in the
Embedded Coder documentation.

Priority
Positive integer specifying the semaphore entry’s search priority,
0-100, relative to other entries of the same name and conceptual
argument list within this table. Highest priority is 0, and lowest
priority is 100. The default is 100. If the table provides two
implementations for a semaphore operation, the implementation
with the higher priority will shadow the one with the lower
priority.

ImplementationName
String specifying the name of the implementation function, for
example, 'mySemCreate'.

ImplementationHeaderFile
String specifying the name of the header file that declares the
implementation function, for example, 'mySem.h'. The default
is ''.

ImplementationHeaderPath
String specifying the full path to the implementation header file.
The default is ''.

ImplementationSourceFile
String specifying the name of the implementation source file, for
example, 'mySem.c'. The default is ''.

ImplementationSourcePath
String specifying the full path to the implementation source file.
The default is ''.

1-492

setTflCSemaphoreEntryParameters

Note To supply additional build information for the
semaphore entry, you can use CRL table entry functions
addAdditionalHeaderFile, addAdditionalIncludePath,
addAdditionalLinkObj, addAdditionalLinkObjPath,
addAdditionalSourceFile, and addAdditionalSourcePath,
and CRL table entry properties AdditionalCompileFlags,
AdditionalLinkFlags, and OtherFiles. For more information.
see “Specify Build Information for Code Replacements”.

SideEffects
Boolean value used to flag the code generator that the
implementation function described by this entry should not be
optimized away. This parameter applies to implementation
functions that return void but should not be optimized away,
such as an implementation function that accesses global memory
values. For those implementation functions only, you must
include this parameter and specify the value true. The default is
false.

Description The setTflCSemaphoreEntryParameters function sets specified
parameters for a semaphore entry in a CRL table.

Examples In the following example, the setTflCSemaphoreEntryParameters
function is used to set specified parameters for a CRL table entry for a
semaphore initialization replacement.

sem_entry = RTW.TflCSemaphoreEntry;

sem_entry.setTflCSemaphoreEntryParameters(...

'Key', 'RTW_SEM_INIT', ...

'Priority', 100, ...

'ImplementationName', 'mySemCreate', ...

'ImplementationHeaderFile', 'mySem.h', ...

'ImplementationSourceFile', 'mySem.c', ...

'GenCallback', 'RTW.copyFileToBuildDir', ...

'SideEffects', true);

1-493

setTflCSemaphoreEntryParameters

How To • “Map Semaphore or Mutex Operations to Target-Specific
Implementations”

• “Create Code Replacement Tables”

• “Introduction to Code Replacement Libraries”

1-494

RTW.AutosarInterface.setTriggerPortName

Purpose Specify Simulink inport that provides trigger data for
DataReceivedEvent

Syntax autosarInterfaceObj.setTriggerPortName(EventName,
SimulinkInportName)

Description autosarInterfaceObj.setTriggerPortName(EventName,
SimulinkInportName) specifies the inport that provides trigger data
for EventName, a DataReceivedEvent.

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.

Input
Arguments

EventName

Name of DataReceivedEvent

SimulinkInportName

Name of Simulink inport in model that provides trigger data

See Also RTW.AutosarInterface.addEventConf |
RTW.AutosarInterface.getTriggerPortName

How To • “Configure the AUTOSAR Interface”

• “Configure Multiple Runnables for DataReceivedEvents”

1-495

RTW.AutosarInterface.syncWithModel

Purpose Synchronize configuration with model

Syntax autosarInterfaceObj.syncWithModel

Description autosarInterfaceObj.syncWithModel synchronizes the configuration
with the model for the RTW.AutosarInterface class.

autosarInterfaceObj is a model-specific RTW.AutosarInterface
object.

How To • “Generating Code for AUTOSAR Software Components”

1-496

run

Purpose Execute program loaded on processor

Syntax IDE_Obj.run
IDE_Obj.run('runopt')
IDE_Obj.run(…,timeout)

IDEs This function supports the following IDEs:

• Analog Devices VisualDSP++

• Eclipse IDE

• Green Hills MULTI

• Texas Instruments Code Composer Studio v3

Description IDE_Obj.run runs the program file loaded on the referenced processor,
returning immediately after the processor starts running. Program
execution starts from the location of program counter (PC). Usually, the
program counter is positioned at the top of the executable file. However,
if you stopped a running program with halt, the program counter may
be anywhere in the program. run starts the program from the program
counter current location.

If IDE_Obj references more the one processor, each processors calls
run in sequence.

IDE_Obj.run('runopt') includes the parameter runopt that defines
the action of the run method. The options for runopt are listed in the
following table.

1-497

run

runopt string Description

'run' Executes the run and waits to confirm that
the processor is running, and then returns to
MATLAB.

'runtohalt' Executes the run but then waits until the
processor halts before returning. The halt can
be the result of the PC reaching a breakpoint,
or by direct interaction with the IDE, or by the
normal program exit process.

'tohalt' Waits until the running program has halted.
Unlike the other options, this selection does not
execute a run, it simply waits for the running
program to halt.

'main' This option resets the program and executes a
run until the start of function 'main'.

'tofunc' This option must be followed by an extra
parameter funname, the name of the function
to run to:

IDE_Obj.run('tofunc',funcname)

This executes a run from the present PC location
until the start of function funcname is reached.
If funcname is not along the program’s normal
execution path, funcname is not reached and the
method times out.

In the 'run' and 'runtohalt' cases, a halt can be caused by a
breakpoint, a direct interaction with the IDE, or by a normal program
exit.

The following table shows the availability of the runopt options by IDE.

1-498

run

CCS IDE Eclipse IDE MULTI IDE VisualDSP++
IDE

'run' Yes Yes Yes Yes

'runtohalt' Yes Yes Yes Yes

'tohalt' Yes Yes

'main' Yes Yes

'tofunc' Yes Yes

IDE_Obj.run(…,timeout) adds input argument timeout, to allow you
to set the time out to a value different from the global timeout value.
The timeout value specifies how long, in seconds, MATLAB waits for
the processor to start executing the loaded program before returning.

Most often, the 'run' and 'runtohalt' options cause the processor
to initiate execution, even when a timeout is reached. The timeout
indicates that the confirmation was not received before the timeout
period elapsed.

See Also halt | load | reset

1-499

save

Purpose Save file

Syntax IDE_Obj.save(filename,filetype)

IDEs This function supports the following IDEs:

• Analog Devices VisualDSP++

• Texas Instruments Code Composer Studio v3

Description Use IDE_Obj.save(filename,filetype) to save open files in the IDE
project.

The filename argument defines the name of the file to save. When
entering the file name, include the file extension.

The optional filetype argument defines the type of file to save. If
you omit the filetype argument, filetype defaults to 'project'.
Except with VisualDSP++ IDE, 'project' is the only supported option.
Therefore, you can omit the filetype argument in most cases.

CCS IDE Eclipse IDE MULTI IDE VisualDSP++
IDE

'project' Yes Yes Yes Yes

'projectgroup'No No No Yes

Note The open method does not support the 'text' argument.

Examples To save the project files:

IDE_Obj.save('all')

To save the myproject project:

IDE_Obj.save('myproject')

1-500

save

To save the active project:

IDE_Obj.save([])

For VisualDSP++ IDE, to save the projects in the project groups:

IDE_Obj.save('all','projectgroup')

For VisualDSP++ IDE, to save the myg.dpg project group:

IDE_Obj.save('myg.dpg','projectgroup')

For VisualDSP++ IDE, to save the active project in the project groups:

IDE_Obj.save([],'projectgroup')

See Also adivdsp | close | load

1-501

setbuildopt

Purpose Set active configuration build options

Syntax IDE_Obj.setbuildopt(tool,ostr)
IDE_Obj.setbuildopt(file,ostr)

IDEs This function supports the following IDEs:

• Analog Devices VisualDSP++

• Green Hills MULTI

• Texas Instruments Code Composer Studio v3

Description Use IDE_Obj.setbuildopt(tool,ostr) to set the build options for a
specific build tool in the current configuration. This replaces the switch
settings that are applied when you invoke the command line tool. For
example, a build tool could be a compiler, linker or assembler. To define
the tool argument, first use the getbuildopt command to read a list of
defined build tools.

If the VisualDSP++ and Code Composer Studio IDEs do not recognize
the ostr argument, setbuildopt sets the switch settings to the default
values for the build tool specified by tool.

If the MULTI IDE does not recognize the ostr argument, the IDE does
not load the project.

Use IDE_Obj.setbuildopt(file,ostr) to configure the build options
for a file you specify with the file argument. The source file must
exist in the active project.

See Also activate | getbuildopt

1-502

symbol

Purpose Program symbol table from IDE

Syntax s = IDE_Obj.symbol

IDEs This function supports the following IDEs:

• Analog Devices VisualDSP++

• Green Hills MULTI

• Texas Instruments Code Composer Studio v3

Description s = IDE_Obj.symbol returns the symbol table for the program loaded
in the processor associated with the IDE handle object, IDE_Obj. The
symbol method only applies after you load a processor program file.
s is an array of structures where each row in s presents the symbol
name and address in the table. Therefore, s has two columns; one is the
symbol name, and the other is the symbol address and symbol page.

For CCS IDE, this table shows a few possible elements of s, and their
interpretation.

s Structure Field Contents of the Specified Field

s(1).name String reflecting the symbol entry name.

s(1).address(1) Address or value of symbol entry.

s(1).address(2) Memory page for the symbol entry. For TI
C6xxx processors, the page is 0.

For MULTI IDE, this table shows a few possible elements of s and their
interpretation.

s Structure Field Contents of the Specified Field

s(1).name String reflecting the symbol entry name.

s(1).address Address or value of symbol entry.

s(1).address Address or value of symbol entry in hex.

1-503

symbol

You can use field address in s as the address input argument to read
and write.

It you use symbol and the symbol table does not exist, s returns empty
and you get a warning message.

Symbol tables are a portion of a COFF object file that contains
information about the symbols that are defined and used by the file.
When you load a program to the processor, the symbol table resides in
the IDE. While the IDE may contain more than one symbol table at a
time, symbol accesses the symbol table belonging to the program you
last loaded on the processor.

Examples Build and load a example program on your processor. Then use symbol
to return the entries stored in the symbol table in the processor.

s = IDE_Obj.symbol;

s contains the symbols and their addresses, in a structure you can
display with the following code:

for k=1:length(s),disp(k),disp(s(k)),end;

MATLAB software lists the symbols from the symbol table in a column.

See Also load | run

1-504

ticcs

Purpose Create handle object to interact with Code Composer Studio IDE

Syntax IDE_Obj = ticcs
IDE_Obj = ticcs('propertyname','propertyvalue',...)

Note The output argument name you provide for ticcs cannot begin
with an underscore, such as _IDE_Obj.

IDEs This function supports the following IDEs:

• Texas Instruments Code Composer Studio v3

Description IDE_Obj = ticcs returns a ticcs object in IDE_Obj that MATLAB
software uses to communicate with the default processor. If you do
not use input arguments, ticcs constructs the object with default
values for the properties. the IDE handles the communications between
MATLAB software and the selected CPU. When you use the function,
ticcs starts the IDE if it is not running. If ticcs opened an instance of
the IDE when you issued the ticcs function, the IDE becomes invisible
after your coder product creates the new object.

Note When ticcs creates the object IDE_Obj, it sets the working folder
for the IDE to be the same as your MATLAB Current Folder. When
you create files or projects in the IDE, or save files and projects, this
working folder affects where you store the files and projects.

Each object that accesses the IDE comprises two objects—a ticcs object
and an rtdx object—that include the following properties.

1-505

ticcs

Object Property Name Property Default Description

'apiversion' API version N/A Defines the API version
used to create the link.

'proctype' Processor
Type

N/A Specifies the kind of
processor on the board.

'procname' Processor
Name

CPU Name given to the
processor on the board
to which this object links.

'status' Running No Status of the program
currently loaded on the
processor.

'boardnum' Board
Number

0 Number that CCS assigns
to the board. Used to
identify the board.

'procnum' Processor
number

0 Number the CCS assigns
to a processor on a board.

ticcs

'timeout' Default
timeout

10.0 s Specifies how long
MATLAB software waits
for a response from CCS
after issuing a request.
This also applies when
you try to construct a
ticcs object. The create
process waits for this
timeout period for the
connection to the processor
to complete. If the timeout
period expires, you get an
error message that the
connection to the processor
failed and MATLAB
software could not create
the ticcs object.

1-506

ticcs

Object Property Name Property Default Description

'timeout' Timeout 10.0 s Specifies how long CCS
waits for a response
from the processor after
requesting data.

rtdx

'numchannels' Number
of open
channels

0 The number of open
channels using this link.

IDE_Obj = ticcs('propertyname','propertyvalue',...) returns a
handle in IDE_Obj that MATLAB software uses to communicate with
the specified processor. CCS handles the communications between the
MATLAB environment and the CPU.

MATLAB software treats input parameters to ticcs as property
definitions. Each property definition consists of a property
name/property value pair.

Two properties of the ticcs object are read only after you create the
object:

• 'boardnum' — The identifier for the installed board selected from
the active boards recognized by CCS. If you have one board, use the
default property value 0 to access the board.

• 'procnum'— The identifier for the processor on the board defined by
boardnum. On boards with more than one processor, use this value to
specify the processor on the board. On boards with one processor, use
the default property value 0 to specify the processor.

Given these two properties, the most common forms of the ticcs
method are

IDE_Obj = ticcs('boardnum',value)

IDE_Obj = ticcs('boardnum',value,'procnum',value)

IDE_Obj = ticcs(...,'timeout',value)

which specify the board, and processor in the second example, as the
processor.

1-507

ticcs

The third example adds the timeout input argument and value to allow
you to specify how long MATLAB software waits for the connection to
the processor or the response to a command to return completed.

You do not need to specify the boardnum and procnum properties when
you have one board with one processor installed. The default property
values refer to the processor on the board.

Note Simulators are considered boards. If you defined both boards and
simulators in the IDE, specify the boardnum and procnum properties
to connect to specific boards or simulators. Use ccsboardinfo to
determine the values for the boardnum and procnum properties.

Because these properties are read only after you create the handle,
you must set these property values as input arguments when you use
ticcs. You cannot change these values after the handle exists. After
you create the handle, use the get function to retrieve the boardnum
and procnum property values.

Using ticcs with Multiple Processor Boards

When you create ticcs objects that access boards that contain more
than one processor, such as the OMAP1510 platform, ticcs behaves
a little differently.

For each of the ticcs syntaxes, the result of the method changes in the
multiple processor case, as follows.

IDE_Obj = ticcs

IDE_Obj = ticcs('propertyname',propertyvalue)

IDE_Obj = ticcs('propertyname',propertyvalue,'propertyname',...

propertyvalue)

In the case where you do not specify a board or processor:

IDE_Obj = ticcs

Array of TICCS Objects:

1-508

ticcs

API version : 1.2

Board name : OMAP 3.0 Platform Simulator [Texas

Instruments]

Board number : 0

Processor 0 (element 1): TMS470R2127 (MPU, Not Running)

Processor 1 (element 2): TMS320C5500 (DSP, Not Running)

Where you choose to identify your processor as an input argument to
ticcs, for example, when your board contains two processors:

IDE_Obj = ticcs('boardnum',2)

Array of TICCS Objects:

API version : 1.2

Board name : OMAP 3.0 Platform Simulator [Texas Instruments]

Board number : 2

Processor 0 (element 1) : TMS470R2127 (MPU, Not Running)

Processor 1 (element 2) : TMS320C5500 (DSP, Not Running)

IDE_Obj returns a two element object handle with IDE_Obj(1)
corresponding to the first processor and IDE_Obj(2) corresponding to
the second.

You can include both the board number and the processor number in
the ticcs syntax. For example:

IDE_Obj = ticcs('boardnum',2,'procnum',[0 1])

Array of TICCS Objects:

API version : 1.2

Board name : OMAP 3.0 Platform Simulator [Texas

Instruments]

Board number : 2

Processor 0 (element 1) : TMS470R2127 (MPU, Not Running)

Processor 1 (element 2) : TMS320C5500 (DSP, Not Running)

Enter procnum as either a single processor on the board (a single value
in the input arguments to specify one processor) or a vector of processor
numbers, as shown in the example, to select two or more processors.

1-509

ticcs

Support Coemulation and OMAP

Coemulation, defined by Texas Instruments to mean simultaneous
debugging of two or more CPUs, allows you to coordinate your
debugging efforts between two or more processors within one device.
Efficient development with OMAP™ hardware requires coemulation
support. Instead of creating one IDE_Obj object when you issue the
following command

IDE_Obj = ticcs

or your hardware that has multiple processors, the resulting IDE_Obj
object comprises a vector of IDE_Obj objects IDE_Obj(1), IDE_Obj(2),
and so on, each of which accesses one processor on your device, say
an OMAP1510. When your processor has one processor, IDE_Obj is a
single object. With a multiprocessor board, the IDE_Obj object returns
the new vector of objects. For example, for board 2 with two processors,

IDE_Obj = ticcs

returns the following information about the board and processors:

IDE_Obj = ticcs('boardnum',2)

Array of TICCS Objects:

API version : 1.2

Board name : OMAP 3.0 Platform Simulator [Texas

Instruments]

Board number : 2

Processor 0 (element 1) : TMS470R2127 (MPU, Not Running)

Processor 1 (element 2) : TMS320C5500 (DSP, Not Running)

Checking the existing boards shows that board 2 does have two
processors:

ccsboardinfo

Board Board Proc Processor Processor

Num Name Num Name Type

1-510

ticcs

--- ---------------------------------- --- ---------------

2 OMAP 3.0 Platform Simulator [T ... 0 MPU TMS470R2x

2 OMAP 3.0 Platform Simulator [T ... 1 DSP TMS320C550

1 MGS3 Simulator [Texas Instruments] 0 CPU TMS320C5500

0 ARM925 Simulator [Texas Instru ... 0 CPU TMS470R2x

Examples On a system with three boards, where the third board has one processor
and the first and second boards have two processors each, the following
function:

IDE_Obj = ticcs('boardnum',1,'procnum',0);

returns an object that accesses the first processor on the second board.
Similarly, the function

IDE_Obj = ticcs('boardnum',0,'procnum',1);

returns an object that refers to the second processor on the first board.

To access the processor on the third board, use

IDE_Obj = ticcs('boardnum',2);

which sets the default property value procnum= 0 to connect to the
processor on the third board.

IDE_Obj = ticcs

TICCS Object:

API version : 1.2

Processor type : TMS320C6711

Processor name : CPU_1

Running? : No

Board number : 1

Processor number : 0

Default timeout : 10.00 secs

RTDX channels : 0

1-511

ticcs

Defined types : Void, Float, Double, Long, Int, Short, Char

See Also ccsboardinfo | set

1-512

visible

Purpose Set whether IDE window appears while IDE runs

Syntax IDE_Obj.visible(state)

IDEs This function supports the following IDEs:

• Analog Devices VisualDSP++

• Texas Instruments Code Composer Studio v3

Description Use IDE_Obj.visible(state) to make the IDE visible on the desktop
or make it run in the background.

To run the IDE in the background so it is not visible on the desktop,
enter '0' for the state argument.

To make the IDE visible on your system desktop, enter '1' for the
state argument.

You can use methods to interact with a IDE handle object, such as
IDE_Obj, while the IDE is in both states, visible and not visible. You
can interact with the IDE GUI while the IDE is visible.

On the Microsoft Windows platform, if you make the IDE visible and
look at the Windows Task Manager:

• While the IDE is visible (state is 1), the IDE appears on the
Applications page of Task Manager, and the IDE_Obj_app.exe
process shows up on the Processes page as a running process.

• While the IDE is not visible (state is 0), the IDE disappears from
the Applications page, but remains on the Processes page, with a
process ID (PID), using CPU and memory resources.

Examples In MATLAB, use the constructor function to create a IDE handle
object for your IDE. The constructor function creates a handle, such
as IDE_Obj, and starts the IDE.

To get the visiblity status of IDE_Obj, enter:

IDE_Obj.isvisible

1-513

visible

ans =
0

Now, change the visibility of the IDE to 1, and check its visibility again.

IDE_Obj.visible(1)
IDE_Obj.isvisible

ans =
1

If you close MATLAB software while the IDE is not visible, the IDE
remains running in the background. To close it, perform either of the
following tasks:

• Start MATLAB software. Create a link to the IDE. Use the new link
to make the IDE visible. Close the IDE.

• Open Microsoft Windows Task Manager. Click Processes. Find and
highlight IDE_Obj_app.exe. Click End Task.

See Also isvisible | load

1-514

write

Purpose Write data to processor memory block

Syntax mem=IDE_Obj.write(address,data)
mem=write(…,datatype)
mem=IDE_Obj.write(…,memorytype)
mem=IDE_Obj.write(…,timeout)

IDEs This function supports the following IDEs:

• Analog Devices VisualDSP++

• Eclipse IDE

• Green Hills MULTI

• Texas Instruments Code Composer Studio v3

Description mem=IDE_Obj.write(address,data) writes data, a collection of values,
to the memory space of the DSP processor referenced by IDE_Obj.

The data argument is a scalar, vector, or array of values to write to
the memory of the processor. The block to write begins from the DSP
memory location given by the input parameter address.

The method writes the data starting from address without regard to
type-alignment boundaries in the DSP. Conversely, the byte ordering of
the data type is automatically applied.

Note You cannot write data to processor memory while the processor
is running.

The address argument is a decimal or hexadecimal representation of a
memory address in the processor. The full memory address consist of
two parts: the start address and the memory type. The memory type
value can be explicitly defined using a numeric vector representation
of the address.

1-515

write

Alternatively, the IDE_Obj object has a default memory type value
which is applied if the memory type value is not explicitly incorporated
into the passed address parameter. In DSP processors with only a
single memory type, by setting the IDE_Obj object memory type value
to zero it is possible to specify the addresses using the abbreviated
(implied memory type) format.

You provide the address argument either as a numerical value that is
a decimal representation of the DSP memory address, or as a string
that write converts to the decimal representation of the start address.
(Refer to function hex2dec in the MATLAB Function Reference that
read uses to convert the hexadecimal string to a decimal value).

The following examples show how write uses the address argument.

address
Parameter
Value

Description

131082 Decimal address specification. The memory start
address is 131082 and memory type is 0. This action is
the same as specifying [131082 0].

[131082 1] Decimal address specification. The memory start
address is 131082 and memory type is 1.

'2000A' Hexadecimal address specification provided as a string
entry. The memory start address is 131082 (converted
to the decimal equivalent) and memory type is 0.

It is possible to specify address as cell array, in which case you can use
a combination of numbers and strings for the start address and memory
type values. For example, the following are valid addresses from cell
array myaddress:

myaddress1 myaddress1{1} = 131072; myadddress1{2} =
'Program(PM) Memory';

myaddress2 myaddress2{1} = '20000'; myadddress2{2} =
'Program(PM) Memory';

1-516

write

myaddress3 myaddress3{1} = 131072; myaddress3{2} = 0;

mem=write(…,datatype) where the datatype argument defines the
interpretation of the raw values written to DSP memory. The datatype
argument specifies the data format of the raw memory image. The
data is written starting from address without regard to data type
alignment boundaries in the DSP. The byte ordering of the data type
is automatically applied. The following MATLAB data types are
supported.

MATLAB Data Type Description

double IEEE double-precision floating
point value

single IEEE single-precision floating
point value

uint8 8-bit unsigned binary integer
value

uint16 16-bit unsigned binary integer
value

uint32 32-bit unsigned binary integer
value

int8 8-bit signed two’s complement
integer value

int16 16-bit signed two’s complement
integer value

int32 32-bit signed two’s complement
integer value

write does not coerce data type alignment. Some combinations of
address and datatype will be difficult for the processor to use.

mem=IDE_Obj.write(…,memorytype) adds an optional memorytype
argument. Object IDE_Obj has a default memory type value 0 that
write applies if the memory type value is not explicitly incorporated

1-517

write

into the passed address parameter. In processors with only a single
memory type, it is possible to specify the addresses using the implied
memory type format by setting the value of the IDE_Obj memorytype
property to zero.

mem=IDE_Obj.write(…,timeout) adds the optional timeout argument,
which the number of seconds MATLAB waits for the write process to
complete. If the timeout period expires before the write process returns
a completion message, MATLAB throws an error and returns. Usually
the process works in spite of the error message.

Using write with VisualDSP++ IDE

Blackfin and SHARC use different memory types. Blackfin processors
have one memory type. SHARC processors provide five types. The
following table shows the memory types for both processor families.

String Entry for
memorytype

Numerical Entry
for memorytype

Processor Support

'program(pm)
memory'

0 Blackfin and SHARC

'data(dm)
memory'

1 SHARC

'data(dm) short
word memory'

2 SHARC

'external
data(dm) byte
memory'

3 SHARC

'boot(prom)
memory'

4 SHARC

Examples Example with VisualDSP++ IDE

These three syntax examples show how to use write in some common
ways. In the first example, write an array of 16-bit integers to location
[131072 1].

1-518

write

IDE_Obj.write([131072 1],int16([1:100]));

Now write a single-precision IEEE floating point value (32-bits) at
address 2000A(Hex).

IDE_Obj.write('2000A',single(23.5));

For the third example, write a 2-D array of integers in row-major format
(standard C programming format) at address 131072 (decimal).

mlarr = int32([1:10;101:110]);
IDE_Obj.write(131072,mlarr');

See Also hex2dec | read

1-519

writemsg

Purpose Write messages to specified RTDX channel

Note Support for writemsg on C5000 processors will be removed in a
future version.

Syntax data = writemsg(rx,channelname,data)
data = writemsg(rx,channelname,data,timeout)

IDEs This function supports the following IDEs:

• Texas Instruments Code Composer Studio v3

Description data = writemsg(rx,channelname,data) writes data to a channel
associated with rx. channelname identifies the channel queue, which
you must configure for write access beforehand. The messages must be
the same type for a single write operation. writemsg takes the elements
of matrix data in column-major order.

In data = writemsg(rx,channelname,data,timeout), the optional
argument, timeout, limits the time writemsg spends transferring
messages from the processor. timeout is the number of seconds allowed
to complete the write operation. You can use timeout limit prolonged
data transfer operations. If you omit timeout, writemsg applies the
global timeout period defined for the IDE handle object IDE_Obj.

writemsg supports the following data types: uint8, int16, int32,
single, and double.

Examples After you load a program to your processor, configure a link in RTDX
for write access and use writemsg to write data to the processor. Recall
that the program loaded on the processor must define ichannel and the
channel must be configured for write access.

IDE_Obj=ticcs;

rx = IDE_Obj.rtdx;

open(rx,'ichannel','w'); % Could use rx.open('ichannel','w')

1-520

writemsg

enable(rx,'ichannel');

inputdata(1:25);

writemsg(rx,'ichannel',int16(inputdata));

As a further illustration, the following code snippet writes the messages
in matrix indata to the write-enabled channel specified by ichan.
The code in this example processes only when ichan is defined by the
program on the processor and enabled for write access.

indata = [1 4 7; 2 5 8; 3 6 9];
writemsg(IDE_Obj.rtdx,'ichan',indata);

The matrix indata is written by column to ichan. The preceding
function syntax is equivalent to

writemsg(IDE_Obj.rtdx,'ichan',[1:9]);

See Also readmat | readmsg | write

1-521

xmakefilesetup

Purpose Configure your coder product to generate makefiles

Syntax xmakefilesetup

IDEs This function supports the following IDEs:

• Analog Devices VisualDSP++

• Eclipse IDE

• Green Hills MULTI

• Texas Instruments Code Composer Studio v3

• Texas Instruments Code Composer Studio v4

• Texas Instruments Code Composer Studio v5

Description You can configure your coder product to generate and build your
software using makefiles. This process can use the software build
toolchains, such as compilers and linkers, associated with the preceding
list of IDEs. However, the makefile build process does not use the
graphical user interface of the IDE directly.

Enter xmakefilesetup at the MATLAB command line to configure
how to generate makefiles.

Use this function:

• Before you build your software using makefiles for the first time.

• If you change the software build toolchain or processor family.

For more instructions and examples, see “Makefiles for Software Build
Tool Chains”.

The xmakefile function displays the following dialog box, which
prompts you for information about your make utility and software
build toolchain.

1-522

xmakefilesetup

See Also “Build format” on page 3-120 | “Build action” on page 3-122

1-523

targetinstaller

Purpose Open Target Installer and install support for third-party hardware
or software

Syntax targetinstaller

Description The targetinstaller function opens Target Installer at the “Install or
update target” screen. Then use Target Installer to install support for
third-party hardware or software to MathWorks products.

The term target is given to each collection of features and capabilities
for a specific type third-party hardware or software.

The term support package is given to the zip file Target Installer uses to
install a target.

1-524

targetinstaller

When a target requires a specific firmware version on the hardware,
Target Installer gives you the option to update the firmware
automatically.

If you need to update the firmware on multiple pieces of hardware, use
the targetupdater function. The targetupdater function bypasses the
target installation process and opens Target Installer at the “Update
firmware” screen.

See Also “Working with Green Hills MULTI IDE” |

1-525

targetinstaller

1-526

2

Blocks — Alphabetical List

Blackfin537 bf537_adc

Purpose Configure ADC to collect data from analog jacks and output digital data

Library Embedded Coder/ Embedded Targets/ Processors/ Analog Devices
Blackfin/ ADSP-BF537 EZ-KIT Lite

Description
Configure AD1871 audio ADC on ADI BF537 EZ-KIT Lite board to
capture audio stream from the Line In jack of BF537 board. This block
uses a sampling rate of 48 kHz. It outputs the sampled signal as [Nx2],
where N indicates number of samples per frame in an array of int32
values.

This block allocates static ADC/DAC buffers, and does not use heap
memory.

2-2

Blackfin537 bf537_adc

Dialog
Box

Samples per frame
Set the number of samples the ADC buffers internally before it
sends the digitized signals, as a frame vector, to the next block
in the model. This value defaults to 64 samples per frame. The
frame rate depends on the sample rate and frame size. The
sample rate of the ADI BF537 EZ-KIT Lite board is 48 kHz. If you
set Samples per frame to 64, the resulting frame rate is 750
frames per second (48000/64 = 750).

Inherit sample time
Select whether the block inherits the sample time from the
model base rate or from the Simulink base rate. You can locate
the Simulink base rate in the Solver options in Configuration
Parameters. Selecting Inherit sample time directs the block
to use the specified rate in model configuration. Entering -1
configures the block to accept the sample rate from the upstream
Interrupt, Task, or Triggered Task blocks.

2-3

Blackfin537 bf537_adc

References ADSP-BF537 EZ-KIT Lite® Evaluation System Manual, Part Number
82-000865-01, available from the Analog Devices Web site.

See Also Blackfin537 bf537_dac

2-4

Blackfin537 bf537_dac

Purpose Convert a stream of digital data to an analog signal and send it to the
output jack

Library Embedded Coder/ Embedded Targets/ Processors/ Analog Devices
Blackfin/ ADSP-BF537 EZ-KIT Lite

Description
Configure AD1854 audio DAC on ADI BF537 EZ-KIT Lite board to
capture audio stream from the Line In jack of BF537 board. This block
uses a sampling rate of 48 kHz. It outputs the sampled signal as [Nx2],
where N indicates number of samples per frame in an array of int32
values.

This block allocates static ADC/DAC buffers, and does not use heap
memory.

2-5

Blackfin537 bf537_dac

Dialog
Box

Samples per frame
Set the number of samples per data input frame. Match this value
with the value of the block creating the data frames. This value
defaults to 64 samples per frame.

References ADSP-BF537 EZ-KIT Lite® Evaluation System Manual, Part Number
82-000865-01, available from the Analog Devices Web site.

See Also Blackfin537 bf537_adc

2-6

Blackfin537 bf537_uart_config

Purpose Configure UART transceiver to capture data from UART port

Library Embedded Coder/ Embedded Targets/ Processors/ Analog Devices
Blackfin/ ADSP-BF537 EZ-KIT Lite

Description
Configure UART transceiver on ADI BF537 based board to capture
data stream from the UART port of BF537 board. Your model can only
contain one configuration block per UART port.

If the memory allocation for this block fails, the software generates an
error that guides you to increase heap size or reduce data length. To
change the heap size, use the System heap size (MAUs) parameter,
located in the model Configuration Parameters under Code Generation
> IDE Link.

2-7

Blackfin537 bf537_uart_config

Dialog
Box

UART port
Select which UART port this block configures. UART0 uses
processor pins PF0 (UART0 transmit) and PF1 (UART0 receive).
UART1 uses processor pins PF2 (Push button SW13) and PF3
(Push button SW12). These pins have multiple GPIO functions
that depend on the configuration of the processor. For more
information, see the “Programmable Flags (PFs)” section of the
ADSP-BF537 EZ-KIT Lite® Evaluation System Manual.

Baud rate
Configure the rate at which the UART transfers bits per second.
The bits include the start bit, the data bits, the parity bit (if
enabled), and the stop bits. Configure both the sending and
receiving devices to the same baud rate.

2-8

Blackfin537 bf537_uart_config

Data bits
Set the number of data bits per data frame to 5, 6, 7, or 8. The
UART transmits the least significant bit sent first. Use the
default value, 8 bits, unless your system requires a lower value.
Configure both the sending and receiving devices to the same
data bit value.

Parity
Set type of parity checking to be none, even, or odd. When you set
Parity to none, the UART does not perform parity checking and
does not transmit a parity bit. When you set Parity to even, the
UART sets the parity bit to 1 to obtain an even number of ones in
the data word. When you set Parity to odd, the UART sets the
parity bit to 1 to obtain an odd number of ones in the data word.
Parity checking can detect errors of 1 bit only. An error in 2 bits
can cause the data to have a seemingly valid parity. Configure
both the sending and receiving devices to the same parity value.

Stop bits
Set the number of bits used to indicate the end of a byte. When you
set Stop bits to 1, the UART transmits 1 bit to signal the end of a
transmission. When you set Stop bits to 1.5, the UART extends
the length of time it transmits the 1-bit stop bit by half. Configure
both the sending and receiving devices to the same stop bit value.

References ADSP-BF537 EZ-KIT Lite® Evaluation System Manual, Part Number
82-000865-01, available from the Analog Devices Web site.

See Also Blackfin537 bf537_uart_rx, Blackfin537 bf537_uart_tx

2-9

Blackfin537 bf537_uart_rx

Purpose Receive data stream from UART port

Library Embedded Coder/ Embedded Targets/ Processors/ Analog Devices
Blackfin/ ADSP-BF537 EZ-KIT Lite

Description
Configure UART receiving on ADI BF537-based board to receive
data stream from the UART port on the board. This block outputs
[Nx1], where N indicates the data length in an array of uint8 values
representing the ASCII characters. Your model can only contain one
receive block per UART port.

If the memory allocation for this block fails, the software generates an
error that guides you to increase heap size or reduce data length. To
change the heap size, use the System heap size (MAUs) parameter,
located in the model Configuration Parameters under Code Generation
> IDE Link.

2-10

Blackfin537 bf537_uart_rx

Dialog
Box

UART port
Select which UART port from which this block receives data.

Data length
Set the data length, in bytes, of the Out port. This block outputs
the number of bytes the Data length parameter specifies.

Enable blocking mode
When you enable blocking mode, this block waits until it receives
enough data before writing the data to the Out port.

When you disable blocking mode:

2-11

Blackfin537 bf537_uart_rx

• If the receive buffer contains the number of bytes specified by
Data length, the block writes the data to the Out port and
also sends a positive number on the Status port. This positive
number indicates valid data on the Out port.

• If the receive buffer does not contain the number of bytes
specified by Data length, the block does not write the data to
the Out port and instead sends a 0 to the Status port. This 0
indicates invalid data on the out port.

Enable software buffer
Use a software-managed buffer, in addition to hardware FIFO,
to handle incoming data.

Software buffer size factor
If you enable the software buffer, set the size of Software buffer
size factor to handle expected bursts in the incoming data.

Sample time
Specify the time interval between samples. To inherit sample
time from the upstream block, set this parameter to -1.

References ADSP-BF537 EZ-KIT Lite® Evaluation System Manual, Part Number
82-000865-01, available from the Analog Devices Web site.

See Also Blackfin537 bf537_uart_config, Blackfin537 bf537_uart_tx

2-12

Blackfin537 bf537_uart_tx

Purpose Transmit data stream from UART port

Library Embedded Coder/ Embedded Targets/ Processors/ Analog Devices
Blackfin/ ADSP-BF537 EZ-KIT Lite

Description
Configure UART transmission on ADI BF537 based board to send data
stream through the UART port of the board. The block requires an
input of [Nx1], where N indicates the data length, in an array of uint8
values representing the ASCII characters. Your model can only contain
one transmit block per UART port.

If the memory allocation for this block fails, the software generates an
error that guides you to increase heap size or reduce data length. To
change the heap size, use the System heap size (MAUs) parameter,
located in the model Configuration Parameters under Code Generation
> IDE Link.

2-13

Blackfin537 bf537_uart_tx

Dialog
Box

UART port
Select the UART port the transmit block uses to send data.

Data length
Set the data length, in data words, of each transmission. Match
this value to the data size on the In port.

References ADSP-BF537 EZ-KIT Lite® Evaluation System Manual, Part Number
82-000865-01, available from the Analog Devices Web site.

See Also Blackfin537 bf537_uart_config, Blackfin537 bf537_uart_rx

2-14

Blackfin Hardware Interrupt

Purpose Generate Interrupt Service Routine

Library Embedded Coder/ Embedded Targets/ Processors/ Analog Devices
Blackfin/ Scheduling

Embedded Coder Support Package for Green Hills MULTI IDE/ Analog
Devices Blackfin/ Scheduling

Description
Create interrupt service routines (ISR) in the software generated by the
build process. When you incorporate this block in your model, code
generation results in ISRs on the processor that run the processes
that are downstream from this block or an Idle Task block connected
to this block. Core interrupts trigger the ISRs. System interrupts
trigger the core interrupts. In the following figure, you see the mapping
possibilities between system interrupts and core interrupts.

Interrupts

Blackfin processors support the interrupt numbers shown in the
following table. Some Blackfin processors do not support all of the
system interrupts.

Interrupt
Description

Valid Range in Parameter

Core interrupt
numbers

7 to 13 and 15

System interrupt
numbers

0 to 63 (The upper end value depends on the
processor. May be less than 63.)

2-15

Blackfin Hardware Interrupt

Dialog
Box

Core interrupt numbers
Specify a vector of one or more interrupt numbers for the interrupt
service routines (ISR) to install. The valid range is 7 to 13, and 15,
where 7 through 13 are hardware driven, 15 is software driven.
Both Green Hills MULTI and Analog Devices VisualDSP++ use
core interrupt 14 to service synchronous rates. Core interrupts
numbered 0 to 6 are reserved and cannot be entered in this field.

The width of the block output signal corresponds to the number of
interrupt values you specify in this field. Triggering of each ISR
depends on the core interrupt value, the system interrupt value,
and the preemption flag you enter for each interrupt. These three

2-16

Blackfin Hardware Interrupt

values define how the code and processor respond to interrupts
during asynchronous scheduler operations.

System interrupt numbers
System interrupt numbers identify system interrupts to map to
core interrupts. Enter one or more values as a vector. The valid
range depends on your processor. Some processors do not support
the full range of 64 system interrupts. The software does not
test for valid system interrupt values. You must verify that your
values are valid for your processor. You must specify at least one
system interrupt number to use asynchronous scheduling.

The block maps the first interrupt value in this field to the first
core interrupt value you enter in Core interrupt numbers,
it maps the second system interrupt value to the second core
interrupt value, and so on until it has mapped all of the system
interrupt values to core interrupt values. You cannot map more
than one system interrupt to the same core interrupt. Therefore,
you can enter one system interrupt value in this field and map it
to more than one core interrupt. You cannot enter more than one
value in this field and map the values to one core interrupt.

When you trigger one of the system interrupts in this field, the
block triggers the ISR associated with the core interrupt that is
mapped to the system interrupt.

Simulink task priorities
Each output of the Hardware Interrupt block drives a downstream
block (for example, a function call subsystem). Simulink task
priority specifies the Simulink priority of the downstream blocks.
Specify an array of priorities corresponding to the interrupt
numbers entered in Interrupt numbers.

Code generation requires rate transition code (see Rate
Transitions and Asynchronous Blocks). The task priority values
absolute time integrity when the asynchronous task must obtain
real time from its base rate or its caller. Typically, assign

2-17

Blackfin Hardware Interrupt

priorities for these asynchronous tasks that are higher than the
priorities assigned to periodic tasks.

Preemption flags: preemptable – 1, non-preemptable – 0
Higher priority interrupts can preempt interrupts that have lower
priority. To control this preemption, use the preemption flags to
specify whether an interrupt can be preempted.

• Entering 1 indicates the corresponding core interrupt can be
preempted.

• Entering 0 indicates the corresponding interrupt cannot be
preempted.

When Core interrupt numbers contains more than one
interrupt priority, you can assign different preemption flags to
each interrupt by entering a vector of preemption flag values
that correspond to the order of the interrupts in Core interrupt
numbers. If Core interrupt numbers contains more than one
interrupt, and you enter only one flag value in this field, that
status applies to all interrupts.

For example, the default settings [0 1]indicate that the interrupt
with value 10 in Core interrupt numbers is not preemptible
and the value 12 interrupt can be preempted.

Enable simulation input
When you select this option, Simulink adds an input port to the
Hardware Interrupt block. This port receives input only during
simulation. Connect one or more simulated interrupt sources to
the simulation input.

2-18

Byte Pack

Purpose Convert input signals to uint8 vector

Library Embedded Coder/ Embedded Targets/ Host Communication

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Target Communication

Simulink Coder/ Desktop Targets/ Host Communication

Description
Using the input port, the block converts data of one or more data types
into a single uint8 vector for output. With the options available, you
specify the input data types and the alignment of the data in the output
vector. Because UDP messages are in uint8 data format, use this block
before a UDP Send block to format the data for transmission using
the UDP protocol.

2-19

Byte Pack

Dialog
Box

Input port data types (cell array)
Specify the data types for the different signals as part of the
parameters. The block supports all Simulink data types except
characters. Enter the data types as Simulink types in the cell
array, such as ’double’ or ’int32’. The order of the data type
entries in the cell array must match the order in which the data
arrives at the block input. This block determines the signal sizes
automatically. The block has at least one input port and only
one output port.

Byte alignment
This option specifies how to align the data types to form the uint8
output vector. Select one of the values in bytes from the list.

Alignment can occur on 1, 2, 4, or 8-byte boundaries depending
on the value you choose. The value defaults to 1. Given the
alignment value, each signal data value begins on multiples of the
alignment value. The alignment algorithm s that each element
in the output vector begins on a byte boundary specified by the

2-20

Byte Pack

alignment value. Byte alignment sets the boundaries relative to
the starting point of the vector.

Selecting 1 for Byte alignment provides the tightest packing,
without holes between data types in the various combinations of
data types and signals.

Sometimes, you can have multiple data types of varying lengths. In
such cases, specifying a 2-byte alignment can produce 1–byte gaps
between uint8 or int8 values and another data type. In the pack
implementation, the block copies data to the output data buffer 1 byte
at a time. You can specify data alignment options with data types.

Example Use a cell array to enter input data types in the Input port data types
parameter. The order of the data types you enter must match the order
of the data types at the block input.

In the cell array, you provide the order in which the block expects to
receive data—uint32, uint32, uint16, double, uint8, double, and

2-21

Byte Pack

single. With this information, the block automatically provides the
number of block inputs.

Byte alignment equal to 2 specifies that each new value begins 2 bytes
from the previous data boundary.

The example shows the following data types:

{'uint32','uint32','uint16','double','uint8','double','single'}

When the signals are scalar values (not matrices or vectors in this
example), the first signal value in the vector starts at 0 bytes. Then,
the second signal value starts at 2 bytes, and the third at 4 bytes. Next,
the fourth signal value follows at 6 bytes, the fifth at 8 bytes, the sixth
at 10 bytes, and the seventh at 12 bytes. As the example shows, the
packing algorithm leaves a 1-byte gap between the uint8 data value
and the double value.

See Also Byte Reversal, Byte Unpack

2-22

Byte Reversal

Purpose Reverse order of bytes in input word

Library Embedded Coder/ Embedded Targets/ Host Communication

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Target Communication

Simulink Coder/ Desktop Targets/ Host Communication

Description
Byte reversal changes the order of the bytes in data you input to the
block. Use this block when your process communicates between targets
that use different endianness, such as between Intel® processors that
are little endian and others that are big endian. Texas Instruments
processors are little-endian by default.

To exchange data with a processor that has different endianness, place
a Byte Reversal block just before the send block and immediately after
the receive block.

2-23

Byte Reversal

Dialog
Box

Number of inputs
Specify the number of block inputs. The number of block inputs
adjusts automatically to match value so the number of outputs
equals the number of inputs.

When you use more than one input port, each input port maps
to the matching output port. Data entering input port 1 leaves
through output port 1, and so on.

Reversing the bytes does not change the data type. Input and
output retain matching data type.

The following model shows byte reversal in use. In this figure, the input
and output ports match for each path.

2-24

Byte Reversal

See Also Byte Pack, Byte Unpack

2-25

Byte Unpack

Purpose Unpack UDP uint8 input vector into Simulink data type values

Library Embedded Coder/ Embedded Targets/ Host Communication

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Target Communication

Simulink Coder/ Desktop Targets/ Host Communication

Description
Byte Unpack is the inverse of the Byte Pack block. It takes a UDP
message from a UDP receive block as a uint8 vector, and outputs
Simulink data types in various sizes depending on the input vector.

The block supports all Simulink data types.

2-26

Byte Unpack

Dialog
Box

Output port dimensions (cell array)
Containing a cell array, each element in the array specifies
the dimension that the MATLAB size function returns for the
corresponding signal. Usually you use the same dimensions
as you set for the corresponding Byte Pack block in the model.
Entering one value means that the block applies that dimension
to all data types.

Output port data types (cell array)
Specify the data types for the different input signals to the Pack
block. The block supports all Simulink data types—single,
double, int8, uint8, int16, uint16, int32, and uint32, and
Boolean. The entry here is the same as the Input port data types
parameter in the Byte Pack block in the model. You can enter one
data type and the block applies that type to all output ports.

2-27

Byte Unpack

Byte Alignment
This option specifies how to align the data types to form the input
uint8 vector. Match this setting with the corresponding Byte
Pack block alignment value of 1, 2, 4, or 8 bytes.

Example This figure shows the Byte Unpack block that corresponds to the
example in the Byte Pack example. The Output port data types (cell
array) entry shown is the same as the Input port data types (cell
array) entry in the Byte Pack block

{'uint32','uint32','uint16','double','uint8','double','single'}.

In addition, the Byte alignment setting matches as well. Output port
dimensions (cell array) now includes scalar values and matrices to
show how to enter nonscalar values. The example for the Byte Pack
block assumed only scalar inputs.

See Also Byte Pack, Byte Reversal

2-28

C2000 Absolute IQN

Purpose Absolute value

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ Optimization/ C28x IQmath

Description
This block computes the absolute value of an IQ number input. The
output is also an IQ number.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“Using the IQmath Library” for more information.

Dialog
Box

References For detailed information on the IQmath library, see the user’s guide for
the C28x IQmath Library - A Virtual Floating Point Engine, Literature
Number SPRC087, available at the Texas Instruments Web site. The
user’s guide is included in the zip file download that also contains the
IQmath library (registration required).

2-29

C2000 Absolute IQN

See Also c2000 Arctangent IQN, C2000 Division IQN, C2000 Float to IQN, C2000
Fractional part IQN, C2000 Fractional part IQN x int32, C2000 Integer
part IQN, C2000 Integer part IQN x int32, C2000 IQN to Float, C2000
IQN x int32, C2000 IQN x IQN, C2000 IQN1 to IQN2, C2000 IQN1 x
IQN2, C2000 Magnitude IQN, C2000 Saturate IQN, C2000 Square Root
IQN, C2000 Trig Fcn IQN

2-30

C2000 Arctangent IQN

Purpose Four-quadrant arc tangent

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ Optimization/ C28x IQmath

Description
The Arctangent IQN block computes the four-quadrant arc tangent of
the IQ number inputs and produces IQ number output.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“Using the IQmath Library” for more information.

Dialog
Box

Function
Type of arc tangent to calculate:

2-31

C2000 Arctangent IQN

• atan2— Compute the four-quadrant arc tangent with output
in radians with values from -pi to +pi.

• atan2PU — Compute the four-quadrant arc tangent
per unit. If atan2(B,A) is greater than or equal to 0,
atan2PU(B,A) = atan2(B,A)/2*pi. Otherwise, atan2PU(B,A)
= atan2(B,A)/2*pi+1. The output is in per-unit radians with
values from 0 to 2*pi radians.

Note The order of the inputs to the Arctangent IQN block correspond
to the Texas Instruments convention, with argument ’A’ at the top and
’B’ at bottom.

References For detailed information on the IQmath library, see the user’s guide for
the C28x IQmath Library - A Virtual Floating Point Engine, Literature
Number SPRC087, available at the Texas Instruments Web site. The
user’s guide is included in the zip file download that also contains the
IQmath library (registration required).

See Also C2000 Absolute IQN, C2000 Division IQN, C2000 Float to IQN, C2000
Fractional part IQN, C2000 Fractional part IQN x int32, C2000 Integer
part IQN, C2000 Integer part IQN x int32, C2000 IQN to Float, C2000
IQN x int32, C2000 IQN x IQN, C2000 IQN1 to IQN2, C2000 IQN1 x
IQN2, C2000 Magnitude IQN, C2000 Saturate IQN, C2000 Square Root
IQN, C2000 Trig Fcn IQN

2-32

C280x/C28x3x ADC

Purpose Analog-to-Digital Converter (ADC)

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C280x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C28x3x

Description
The ADC block configures the ADC to perform analog-to-digital
conversion of signals connected to the selected ADC input pins. The
ADC block outputs digital values representing the analog input signal
and stores the converted values in the result register of your digital
signal processor. You use this block to capture and digitize analog
signals from external sources such as signal generators, frequency
generators, or audio devices. With the C28x3x, you can configure
the ADC to use the processor’s DMA module to move data directly to
memory without using the CPU. This frees the CPU to perform other
tasks and increases overall system capacity.

Output

The output of the ADC is a vector of uint16 values. The output values
are in the range 0 to 4095 because the ADC is 12-bit converter.

Modes

The ADC block supports ADC operation in dual and cascaded modes. In
dual mode, either module A or module B can be used for the ADC block,
and two ADC blocks are allowed in the model. In cascaded mode, both
module A and module B are used for a single ADC block.

2-33

C280x/C28x3x ADC

Dialog
Box

ADC Control Pane

Module
Specifies which DSP module to use:

• A — Displays the ADC channels in module A (ADCINA0
through ADCINA7).

• B — Displays the ADC channels in module B (ADCINB0
through ADCINB7).

• A and B — Displays the ADC channels in both modules A
and B (ADCINA0 through ADCINA7 and ADCINB0 through
ADCINB7).

2-34

C280x/C28x3x ADC

Conversion mode
Type of sampling to use for the signals:

• Sequential— Samples the selected channels sequentially.

• Simultaneous — Samples the corresponding channels of
modules A and B at the same time.

Start of conversion
Type of signal that triggers conversions to begin:

• Software — Signal from software. Conversion values are
updated at each sample time.

• ePWMxA / ePWMxB / ePWMxA_ePWMxB — Start of conversion is
controlled by user-defined PWM events.

• XINT2_ADCSOC — Start of conversion is controlled by the
XINT2_ADCSOC external signal pin.

The choices available in Start of conversion depend on the
Module setting. The following table summarizes the available
choices. For each set of Start of conversion choices, the default
is given first.

Module
Setting

Start of Conversion Choices

A Software, ePWMxA, XINT2_ADCSOC

B ePWMxB, Software

A and B Software, ePWMxA, ePWMxB, ePWMxA_ePWMxB,
XINT2_ADCSOC

Sample time
Time in seconds between consecutive sets of samples that are
converted for the selected ADC channel(s). This is the rate at
which values are read from the result registers. To execute this
block asynchronously, set Sample Time to -1, check the Post
interrupt at the end of conversion box, and refer to “” for a
discussion of block placement and other settings.

2-35

C280x/C28x3x ADC

To set different sample times for different groups of ADC
channels, you must add separate ADC blocks to your model and
set the desired sample times for each block.

Data type
Date type of the output data. Valid data types are auto, double,
single, int8, uint8, int16, uint16, int32, or uint32.

Post interrupt at the end of conversion
Select this check box to post an asynchronous interrupt at the
end of each conversion. The interrupt is posted at the end of
conversion. To execute this block asynchronously, set Sample
Time to -1, and refer to “” for a discussion of block placement
and other settings.

Use DMA (with C28x3x)
Enable the Direct Memory Access (DMA) to transfer data directly
from the ADC to memory, bypassing the CPU and improving
overall system capacity. This feature is only valid with a C28x3x
target.

When enabled, this setting applies the following settings to the
channel specified by the DMA Channel parameter. Disable
the corresponding channel in the Coder Target -> Target
Hardware Resources by selecting Peripherals and DMA_ch#.
Modifications to DMA_ch# do not apply or override the following
settings:

• Enable DMA channel: Enabled for channel specified by the
ADC block DMA Channel parameter.

• Data size: 16 bit

• Interrupt source: If the ADC block Module is A or A and B,
Interrupt source is SEQ1INT. If the ADC block Module is B,
Interrupt source is SEQ2INT.

• Generate interrupt: Generate interrupt at end of
transfer

• Size

2-36

C280x/C28x3x ADC

— Burst: The value assigned to Burst equals the ADC block
Number of conversions (NOC) multiplied by a value for
the ADC block Conversion mode (CVM). To summarize,
Burst = NOC * CVM.

If Conversion mode is Sequential, CVM = 1. If
Conversion mode is Simultaneous, CVM = 2.

For example, Burst is 6 when NOC is 3 and CVM is 2.

— Transfer: 1

— SRC wrap: 65536

— DST wrap: 65536

• Source

— Begin address: The value of Begin address is 0xB00 if
the ADC blockModule is A or A and B. The value of Begin
address is 0xB08 if the ADC block Module is B.

— Burst step: 1

— Transfer step: 0

— Wrap step: 0

• Destination

— Begin address: The value of Begin address is the
ADC buffer address minus the ADC block Number of
conversions.

If the target is F28232 or F28332, the ADC buffer address is
0xDFFC (57340). For other C28x3x targets, the ADC buffer
address is 0xFFFC (65532).

For example, with a F28232 target, the Begin address is
0xDFF9 (57337) because the ADC buffer address, 57340
(0xDFFC), minus 3 conversions equals 57337 (0xDFF9).

— Burst step: 1

— Transfer step: 1

2-37

C280x/C28x3x ADC

— Wrap step: 0

• Mode

— Enable one shot mode: disabled

— Sync enable: disabled

— Enable continuous mode: enabled

— Enable DST sync mode: disabled

— Set channel 1 to highest priority: disabled

— Enable overflow interrupt: disabled

For more information, consult TMS320x2833x, 2823x Direct
Memory Access (DMA) Module Reference Guide, Literature
Number: SPRUFB8A, available at the Texas Instruments Web
site.

DMA Channel
When the Use DMA parameter is enabled, select a channel for
the DMA module to use for data transfers. To prevent channel
conflicts, the same channel number must remain disabled in
Coder Target -> Target Hardware Resources, otherwise the
software will generate an error message.

2-38

C280x/C28x3x ADC

Input Channels Pane

Number of conversions
Number of ADC channels to use for analog-to-digital conversions.

Conversion no.
Specific ADC channel to associate with each conversion number.

In oversampling mode, a signal at a given ADC channel can be
sampled multiple times during a single conversion sequence.
To oversample, specify the same channel for more than one
conversion. Converted samples are output as a single vector.

Use multiple output ports
If more than one ADC channel is used for conversion, you can use
separate ports for each output and show the output ports on the

2-39

C280x/C28x3x ADC

block. If you use more than one channel and do not use multiple
output ports, the data is output in a single vector.

See Also “ADC-PWM Synchronization via ADC Interrupt”

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x ePWM

C28x Hardware Interrupt

“Configuring Acquisition Window Width for ADC Blocks”

“ADC” on page 3-178

2-40

C28x CAN Calibration Protocol

Purpose Implement CAN Calibration Protocol (CCP) standard

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2803x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2806x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C280x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C281x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2834x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C28x3x

Description
The CAN Calibration Protocol block provides an implementation of a
subset of the CAN Calibration Protocol (CCP) Version 2.1. CCP is a
protocol for communicating between the target processor and the host
machine over CAN. In particular, a calibration tool (see “Compatibility
with Calibration Packages” on page 2-47) running on the host can
communicate with the target, allowing remote signal monitoring and
parameter tuning.

This block processes a Command Receive Object (CRO) and outputs
the resulting Data Transmission Object (DTO) and Data Acquisition
(DAQ) messages.

For more information on CCP, refer to ASAM Standards: ASAM MCD:
MCD 1a on the Association for Standardization of Automation and
Measuring Systems (ASAM) Web site at http://www.asam.de.

2-41

http://www.asam.de

C28x CAN Calibration Protocol

Note With the 32-bit version of MATLAB software, you can use the
CAN Calibration Protocol block to perform External mode simulations.

Using the DAQ Output

Note The CCP Data Acquisition (DAQ) List mode of operation is only
supported with Embedded Coder. If Embedded Coder is not available
then custom storage classes canlib.signal are ignored during code
generation: this means that the CCP DAQ Lists mode of operation
cannot be used.

You can use the CCP Polling mode of operation with or without
Embedded Coder.

The DAQ output is the output for CCP Data Acquisition (DAQ) lists
that have been set up. You can use the ASAP2 file generation feature of
the Real-Time (RT) target to

• Set up signals to be transmitted using CCP DAQ lists.

• Assign signals in your model to a CCP event channel automatically
(see “Generate an ASAP2 File”).

Once these signals are set up, event channels then periodically fire
events that trigger the transmission of DAQ data to the host. When this
occurs, CAN messages with the CCP/DAQ data appear on the DAQ
output, along with an associated function call trigger.

The calibration tool (see “Compatibility with Calibration Packages” on
page 2-47) must use CCP commands to assign an event channel and
data to the available DAQ lists, and interpret the synchronous response.

Using DAQ lists for signal monitoring has the following advantages
over the polling method:

2-42

C28x CAN Calibration Protocol

• The host does not need to poll for the data. Network traffic is halved.

• The data is transmitted at the update rate that matches the signal,
reducing network traffic.

• Data is consistent. The transmission takes place after the signals
have been updated, reducing interruptions while sampling the signal.

Note Embedded Coder software does not currently support event
channel prescalers.

2-43

C28x CAN Calibration Protocol

Dialog
Box

CCP station address (16–bit integer)
The station address of the target. The station address is
interpreted as a uint16. It is used to distinguish between
different targets. By assigning unique station addresses to targets
sharing the same CAN bus, it is possible for a single host to
communicate with multiple targets.

CAN module
If your processor has more than one module, select the module
this block configures.

2-44

C28x CAN Calibration Protocol

CAN message identifier (CRO)
Specify the CAN message identifier for the Command Receive
Object (CRO) message you want to process.

CAN message type (CRO)
The incoming message type. Select either Standard(11-bit
identifier) or Extended(29-bit identifier).

CAN message identifier (DTO/DAQ)
The message identifier is the CAN message ID used for Data
Transmission Object (DTO) and Data Acquisition (DAQ) message
outputs.

CAN message type (DTO/DAQ)
The message type to be transmitted by the DTO and DAQ
outputs. Select either Standard(11-bit identifier) or
Extended(29-bit identifier).

Total Number of Object Descriptor Tables (ODTs)
The default number of Object Descriptor Tables (ODTs) is 8.
These ODTs are shared equally between all available DAQ lists.
You can choose a value between 0 and 254, depending on how
many signals you log simultaneously. You must make sure you
allocate at least 1 ODT per DAQ list, or your build will fail. The
calibration tool will give an error message if there are too few
ODTs for the number of signals you specify for monitoring. Be
aware that too many ODTs can make the sample time overrun.
If you choose more than the maximum number of ODTs (254),
the build will fail.

A single ODT uses 56 bytes of memory. Using all 254 ODTs would
require over 14 KB of memory, a large proportion of the available
memory on the target. To conserve memory on the target, the
default number is low, allowing DAQ list signal monitoring with
reduced memory overhead and processing power.

As an example, if you have five different rates in a model, and
you are using three rates for DAQ, then this will create three
DAQ lists and you must make sure you have at least three ODTs.

2-45

C28x CAN Calibration Protocol

ODTs are shared equally among DAQ lists and, therefore, you will
end up with one ODT per DAQ list. With less than three ODTs,
you get zero ODTs per DAQ list and the behavior is undefined.

Taking this example further, say you have three DAQ lists with
one ODT each, and start trying to monitor signals in a calibration
tool. If you try to assign too many signals to a particular DAQ list
(that is, signals requiring more space than seven bytes (one ODT)
in this case), then the calibration tool will report this as an error.

CRO sample time
The sample time for CRO messages.

Supported CCP Commands

The following CCP commands are supported by the CAN Calibration
Protocol block:

• CONNECT

• DISCONNECT

• DNLOAD

• DNLOAD_6

• EXCHANGE_ID

• GET_CCP_VERSION

• GET_DAQ_SIZE

• GET_S_STATUS

• SET_DAQ_PTR

• SET_MTA

• SET_S_STATUS

• SHORT_UP

• START_STOP

• START_STOP_all

2-46

C28x CAN Calibration Protocol

• TEST

• UPLOAD

• WRITE_DAQ

Compatibility with Calibration Packages

The above commands support:

• Synchronous signal monitoring via calibration packages that use
DAQ lists

• Asynchronous signal monitoring via calibration packages that poll
the target

• Asynchronous parameter tuning via CCP memory programming

This CCP implementation has been tested with Vector-Informatik
CANape calibration package running in both DAQ list and polling mode.

See Also “CAN Calibration Protocol and External Mode”

2-47

C28x eCAN Receive

Purpose Enhanced Control Area Network receive mailbox

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2803x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2806x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C280x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C28x3x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2834x

Description
The C280x/C2803x/C28x3x enhanced Control Area Network (eCAN)
Receive block generates source code for receiving eCAN messages
through an eCAN mailbox. The eCAN modules on the DSP chip provide
serial communication capability and have 32 mailboxes configurable for
receive or transmit. The C280x/C2803x/C28x3x supports eCAN data
frames in standard or extended format.

The eCAN Receive block has up to two and, optionally, three output
ports.

• The first output port is the function call port, and a function call
subsystem should be connected to this port. When a new message is
received, this subsystem is executed.

• The second output port is the message data port. The received data is
output in the form of a vector of elements of the selected data type.
The length of the vector is 8 bytes. The message data port will output
data. When the block is used in polling mode, if a new message is not

2-48

C28x eCAN Receive

created between the consecutive executions of the block, then the old
or existing message, is repeated.

• The third output port is optional and appears only if Output
message length is selected.

To use the eCAN Receive block with the eCAN Pack block in the
canmsglib, set Data type to CAN_MESSAGE_TYPE.

2-49

C28x eCAN Receive

Dialog
Box

Chip family
Select the processor that has the eCAN module.

2-50

C28x eCAN Receive

Module
Determines which of the two eCAN modules is being configured
by this instance of the eCAN Receive block. Options are eCAN_A
and eCAN_B.

This parameter is not visible when you setChip family to C2803x.

Mailbox number
Sets the value of the mailbox number register (MBNR). For
standard CAN controller (SCC) mode, enter a unique number
from 0 to 15. For high-end CAN controller (HECC) mode enter a
unique number from 0 to 31 . In SCC mode, transmissions from
the mailbox with the highest number have the highest priority. In
HECC mode, the mailbox number only determines priority if the
Transmit priority level (TPL) of two mailboxes is equal.

Message identifier
Sets the value of the message identifier register (MID). The
message identifier is 11 bits long for standard frame size or 29 bits
long for extended frame size in decimal, binary, or hex format.
For the binary and hex formats, use bin2dec(' ') or hex2dec('
'), respectively, to convert the entry.

Message type
Select Standard (11-bit identifier) or Extended (29-bit
identifier).

Sample time
Frequency with which the mailbox is polled to determine if a new
message has been received. A new message causes a function
call to be emitted from the mailbox. If you want to update the
message output only when a new message arrives, then the
block needs to be executed asynchronously. To execute this
block asynchronously, set Sample Time to -1, check the Post
interrupt when message is received box, and refer to “” for a
discussion of block placement and other settings.

2-51

C28x eCAN Receive

Note For information about setting the timing parameters of
the CAN module, see “Configuring Timing Parameters for CAN
Blocks”.

Data type
Select one of the following options:

• uint8 (vector length = 8 elements)

• uint16 (vector length = 4 elements)

• uint32 (vector length = 2 elements)

• CAN_MESSAGE_TYPE (Select this option to use the eCAN receive
block with the CAN Unpack block.)

The length of the vector for the received message is at most 8
bytes. If the message is less than 8 bytes, the data buffer bytes
are right-aligned in the output. The data are unpacked as follows
using the data buffer, which is 8 bytes.

For uint8 data, eCAN Receive reads each unit of 8 bytes in the
registers, and outputs 8-bit data to 8 elements (using the lower
part of the 16-bit memory):

Output[0] = data_buffer[0];
Output[1] = data_buffer[1];
Output[2] = data_buffer[2];
Output[3] = data_buffer[3];
Output[4] = data_buffer[4];
Output[5] = data_buffer[5];
Output[6] = data_buffer[6];
Output[7] = data_buffer[7];

For uint16 data,

Output[0] = data_buffer[1..0];
Output[1] = data_buffer[3..2];

2-52

C28x eCAN Receive

Output[2] = data_buffer[5..4];
Output[3] = data_buffer[7..6];

For uint32 data,

Output[0] = data_buffer[3..0];
Output[1] = data_buffer[7..4];

For example, if the received message has two bytes:

data_buffer[0] = 0x21
data_buffer[1] = 0x43

The uint16 output would be:

Output[0] = 0x4321
Output[1] = 0x0000
Output[2] = 0x0000
Output[3] = 0x0000

When you select CAN_MESSAGE_TYPE, the block outputs the
following struct data (defined in can_message.h):

struct {

/* Is Extended frame */

uint8_T Extended;

/* Length */

uint8_T Length;

/* RTR */

uint8_T Remote;

/* Error */

uint8_T Error;

2-53

C28x eCAN Receive

/* CAN ID */

uint32_T ID;

/*

TIMESTAMP_NOT_REQUIRED is a macro that will be defined by Target teams

PIL, xPC if they do not require the timestamp field during code

generation. By default, timestamp is defined. If the targets do not require

the timestamp field, they should define the macro TIMESTAMP_NOT_REQUIRED before

including this header file for code generation.

*/

#ifndef TIMESTAMP_NOT_REQUIRED

/* Timestamp */

double Timestamp;

#endif

/* Data field */

uint8_T Data[8];

};

Initial output
Set the value the eCAN node outputs to the model before it has
received data. The default value is 0.

Output message length
Select to output the message length in bytes to the third output
port. If not selected, the block has only two output ports.

Post interrupt when message is received
Select this check box to post an asynchronous interrupt when a
message is received.

Interrupt line
Select the interrupt line the asynchronous interrupt uses. This
action sets bit 2 (GIL) in the Global Interrupt Mask Register
(CANGIM):

• 1 maps the global interrupts to the ECAN1INT line.

2-54

C28x eCAN Receive

• 0 maps the global interrupts to the ECAN0INT line.

References For detailed information on the eCAN module, visit ti.com and search
for the documentation related to your processor. The following materials
are available at the Texas Instruments Web site:

• TMS320F2833x, 2823x Enhanced Controller Area Network (eCAN)
Reference Guide, Literature Number SPRUEU1

• TMS320x280x/2801x Enhanced Controller Area Network (eCAN)
Reference Guide, Literature Number SPRUEU0

• TMS320x2803x Piccolo Enhanced Controller Area Network (eCAN)
Reference Guide, Literature Number: SPRUGL7

See Also “CAN-Based Control of PWM Duty Cycle”

C28x eCAN Transmit

C28x Hardware Interrupt

“eCAN_A, eCAN_B” on page 3-183

2-55

C28x eCAN Transmit

Purpose Enhanced Control Area Network transmit mailbox

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2803x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2806x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C280x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C28x3x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2834x

Description
The C280x/C2803x/C28x3x enhanced Control Area Network (eCAN)
Transmit block generates source code for transmitting eCAN messages
through an eCAN mailbox. The eCAN modules on the Board chip
provide serial communication capability and have 32 mailboxes
configurable for receive or transmit. The C280x/C2803x/C28x3x
supports eCAN data frames in standard or extended format.

Note Fixed-point inputs are not supported for this block.

Data Vectors

The length of the vector for each transmitted mailbox message is 8
bytes. Input data are right-aligned in the message data buffer. Only
uint16 (vector length = 4 elements) or uint32 (vector length = 2
elements) data are accepted. The following examples show how the
different types of input data are aligned in the data buffer:

2-56

C28x eCAN Transmit

For input of type uint32,

inputdata [0] = 0x12345678

the data buffer is:

data buffer[0] = 0x78
data buffer[1] = 0x56
data buffer[2] = 0x34
data buffer[3] = 0x12
data buffer[4] = 0x00
data buffer[5] = 0x00
data buffer[6] = 0x00
data buffer[7] = 0x00

For input of type uint16,

inputdata [0] = 0x1234

the data buffer is:

data buffer[0] = 0x34
data buffer[1] = 0x12
data buffer[2] = 0x00
data buffer[3] = 0x00
data buffer[4] = 0x00
data buffer[5] = 0x00
data buffer[6] = 0x00
data buffer[7] = 0x00

For input of type uint16[2], which is a two-element vector,

inputdata [0] = 0x1234
inputdata [1] = 0x5678

the data buffer is:

data buffer[0] = 0x34

2-57

C28x eCAN Transmit

data buffer[1] = 0x12
data buffer[2] = 0x78
data buffer[3] = 0x56
data buffer[4] = 0x00
data buffer[5] = 0x00
data buffer[6] = 0x00
data buffer[7] = 0x00

Dialog
Box

Module
Determines which of the two eCAN modules is being configured
by this instance of the eCAN Transmit block. Options are eCAN_A
and eCAN_B.

2-58

C28x eCAN Transmit

Mailbox number
Unique number from 0 to 15 for standard or from 0 to 31 for
enhanced CAN mode. It refers to a mailbox area in RAM. In
standard mode, the mailbox number determines priority.

Message identifier
Identifier of length 11 bits for standard frame size or length 29
bits for extended frame size in decimal, binary, or hex. If in binary
or hex, use bin2dec(' ') or hex2dec(' '), respectively, to
convert the entry. The message identifier is coded into a message
that is sent to the CAN bus.

Note CAN messages use the value of the Message identifier
parameter in C28x CAN Transmit block for transmission even
when you use the CAN Pack block to create the CAN message.

Message type
Select Standard (11-bit identifier) or Extended (29-bit
identifier).

Enable blocking mode
If selected, the CAN block code waits indefinitely for a transmit
(XMT) acknowledge. If not selected, the CAN block code does not
wait for a transmit (XMT) acknowledge, which is useful when the
hardware might fail to acknowledge transmissions.

Post interrupt when message is transmitted
If selected, an asynchronous interrupt will be posted when data
is transmitted.

Interrupt Line
Select the interrupt line the asynchronous interrupt uses. This
action sets bit 2 (GIL) in the Global Interrupt Mask Register
(CANGIM):

• 1 maps the global interrupts to the ECAN1INT line.

• 0 maps the global interrupts to the ECAN0INT line.

2-59

C28x eCAN Transmit

Note For information about setting the timing parameters of the CAN
module, see “Configuring Timing Parameters for CAN Blocks”.

References For detailed information on the eCAN module, see the following
materials, available at the Texas Instruments Web site:

• TMS320F2833x, 2823x Enhanced Controller Area Network (eCAN)
Reference Guide, Literature Number SPRUEU1

• TMS320x2803x Piccolo Enhanced Controller Area Network (eCAN)
Reference Guide, Literature Number: SPRUGL7

See Also “CAN-Based Control of PWM Duty Cycle”

C28x eCAN Receive

C28x Hardware Interrupt

“eCAN_A, eCAN_B” on page 3-183

2-60

C28x eCAP

Purpose Receive and log capture input pin transitions or configure auxiliary
pulse width modulator

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2802x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2803x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2806x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C280x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C28x3x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2834x

Description

Dialog
Box

The eCAP block dialog box provides configuration parameters on four
tabbed panes:

• General—Set the operating mode for the block (whether the block
performs eCAP or APWM processes, assign the pin associated, and
set the sample time

• eCAP—Configure eCAP functions such as prescaler value, capture
pin, and mode control

• APWM—Configure waveform and duty cycle values for the pulse
width modulation capability

2-61

C28x eCAP

• Interrupt—Specify when the block posts interrupts

You can add up to six eCAP blocks to your model, one block for each
capture pin. For example, you can have one block configured for eCAP
mode with eCAP1 pin selected and five blocks configured for APWM
mode with assigned pins eCAP2 through eCAP6. Or six blocks configured
for eCAP mode with each block assigned a different eCAP pin. You
cannot assign the same eCAP pin to two eCAP blocks in one model.

Block Input and Output Ports

The eCAP block has optional input and output ports as shown in the
following table.

Port Description and When the
Port is Enabled

Input port SI Synchronization input for
input value from software.
Enabled when you select Enable
software forced counter
synchronizing input in either
operating mode.

Input port RA One-shot arming starts the
one-shot sequence. Enabled when
you set the mode control to One
shot.

Output port TS When you enable the reset
counter, this option resets the
capture event counter after
capturing the event time stamp.
Enabled when you select Enable
reset counter after capture
event 1 time-stamp.

2-62

C28x eCAP

Port Description and When the
Port is Enabled

Output port CF This port reports the status of the
capture event. Enabled when you
select Enable capture event
status flag output.

Output port OF Enabled when you select Enable
overflow status flag output.

Note The outputs of this block can be vectorized.

2-63

C28x eCAP

General Pane

2-64

C28x eCAP

Operating mode
When you select eCAP, the block captures and logs pin transitions
for each capture unit to a FIFO buffer. When you select APWM,
the block generates asymmetric pulse width modulation (APWM)
waveforms for driving downstream systems.

eCAPx pin
The capture unit includes the following features:

• One pin for each capture unit. For example, eCAP1, eCAP2,
and so on.

• Four maskable interrupt flags, one for each capture unit.

• Ability to specify the transition detection—rising edge, falling
edge, or both edges.

Counter phase offset value (0~4294967295)
The value you enter here provides the time base for event
captures, clocked by the system clock. A phase register is used to
synchronize with other counters via the software or hardware
forced sync (refer to Enable counter Sync-In mode). This is
particularly useful in APWM mode when you need a phase offset
between capture modules. Enter the phase offset as an integer
from 0 to 42949667295 (232) counts.

Enable counter Sync-In mode
Select this to enable the TSCTR counter to load from the TSCTR
register when the block receives either the SYNC1 signal or a
software force event (refer to Enable software-forced counter
synchronizing input).

Enable software-forced counter synchronizing input
This option provides a convenient software method for
synchronizing one or more eCAP time bases.

Sync output selection
Select one of the list entries Pass through, CTR=PRD, or Disabled
to synchronize with other counters.

2-65

C28x eCAP

Sample time
Set the sample time for the block in seconds.

eCAP Pane

To enable the configuration parameters on this pane, select eCAP from
the Operating mode list on the General pane.

2-66

C28x eCAP

2-67

C28x eCAP

Event prescaler (integer from 0 to 31)
Multiply the input signal, called a pulse train, by this value.
Entering a 0 bypasses the input prescaler, leaving the input
capture signal unchanged.

Select mode control
Continuous performs continuous timestamp captures using a
circular buffer to capture events 1 through 4.

One-Shot disables continuous mode and enables the Enable
one-shot rearming control via input port option so you can
select it.

Enable one-shot rearming control via input port
Select this option to arm the one-shot sequence:

1 Reset the Mod4 counter to zero.

2 Unfreeze the Mod4 counter.

3 Enable capture register loading.

Stop value after
Specifies the number of capture events after which to stop the
capture.

Enable reset counter after capture event 1 timestamp
Enables a reset after capture event 1 and creates an Output port
TS. When you select this option, the eCAP process resets the
counters after receiving a capture event 1 timestamp.

Select capture event 1 polarity
Start the capture event on a Rising edge or Falling edge.

Time-Stamp counter data type
Select the data type of the counter. The list includes integer
and unsigned 8-, 16-, and 32-bit data types, double, single, and
Boolean.

2-68

C28x eCAP

Enable capture event status flag output
Output the capture event status flag on the Output port CF.
The block outputs a 0 until the event capture. After the event,
the flag value is 1.

Overflow capture event flag data type
Select the data type to represent the capture event flag. The
list includes integer and unsigned 8-, 16-, and 32-bit data types,
double, single, and Boolean.

Enable overflow status flag output
Output the status of the elements of the FIFO buffer on the
Output port OF. After you select this option, set the data type
for the flag in Overflow flag data type.

Overflow flag data type
Select the data type to represent the status flag. The list includes
integer and unsigned 8-, 16-, and 32-bit data types, double, single,
and Boolean.

APWM Pane

To enable the configuration parameters on this pane, select APWM from
the Operating mode list on the General pane.

2-69

C28x eCAP

2-70

C28x eCAP

Waveform period units
Set the units for measuring the waveform period. Clock cycles
uses the high-speed peripheral clock cycles of the DSP chip, or
Seconds. Changing these units changes the Waveform period
value and the Duty cycle value and Duty cycle units selection.

Waveform period source
Source from which the waveform period value is obtained. Select
Specify via dialog to enter the value inWaveform period or
select Input port to use a value from the input port.

Waveform period
Period of the PWM waveform measured in clock cycles or in
seconds, as specified in the Waveform period units.

Note The term clock cycles refers to the high-speed peripheral
clock on the F2812 chip. This clock is 75 MHz by default because
the high-speed peripheral clock prescaler is set to 2 (150 MHz/2).

Duty cycle units
Units for the duty cycle. Select Clock cycles or Percentages
from the list. Changing these units changes the Duty cycle
value, the Waveform period value, and Waveform period
units selection.

Duty cycle source
Source from which the duty cycle for the specific PWM pair is
obtained. Select Specify via dialog to enter the value in Duty
cycle or select Input port to use a value from the input port.

Duty cycle
Ratio of the PWM waveform pulse duration to the PWM waveform
period expressed in Duty cycle units.

Output polarity select
Set the active level for the output. Choose Active High or Active
Low from the list. When you select Active High, the compare

2-71

C28x eCAP

value defines the high time. Selecting Active Low directs the
compare value to define the low time.

Interrupt Pane

In the following figure, you see the interrupt options when you put
the block in eCAP mode by setting Operating mode on the General
pane to eCAP.

2-72

C28x eCAP

2-73

C28x eCAP

Post interrupt on capture event 1
Enables capture event 1 as an interrupt source. You can use the
C28x Hardware Interrupt block to react to this interrupt.

Post interrupt on counter overflow
Enables counter overflow as an interrupt source.

The next figure presents the interrupt options when you put the block in
APWMmode by settingOperating mode on theGeneral pane to APWM.

2-74

C28x eCAP

2-75

C28x eCAP

Post interrupt on counter equal period match
Post an interrupt when the value of the counter is the same as the
value of the period register (CTR=PRD).

Post interrupt on counter equal compare match
Post an interrupt when the value of the counter is the same as the
value of the compare register (CTR=CMP).

References For detailed information about interrupt processing, see TMS320x28xx,
28xxx Enhanced Capture (eCAP) Module Reference Guide, SPRU807B,
available at the Texas Instruments Web site.

See Also “eCAP” on page 3-185

2-76

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

Purpose Configure Event Manager to generate Enhanced Pulse Width Modulator
(ePWM) waveforms

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2802x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2803x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2806x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C280x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C28x3x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2834x

Description
Configures the Event Manager of the C280x/C2802x/C2803x/C28x3x
DSP to generate ePWM waveforms. These DSPs contain multiple
ePWM modules. Each module has two outputs, ePWMA and ePWMB.
You can use the ePWM block to configure up to six ePWM modules.

When you enable the High-Resolution Pulse Width Modulator
(HRPWM), the ePWM block uses the Scale Factor Optimizing Software
Version 5 library (SFO_TI_Build_V5.lib). SFO_TI_Build_V5.lib can
“dynamically determine the number of MEP steps per SYSCLKOUT
period.” For more information, consult TMS320x28xx, 28xxx
High-Resolution Pulse Width Modulator (HRPWM) Reference Guide,
Literature Number SPRU924, available at the Texas Instruments Web
site.

2-77

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

Dialog
Box

General Pane

2-78

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

Allow use of 16 HRPWMs (for C28044) instead of 6 PWMs
Enable all 16 High-Resolution PWM modules (HRPWM) on the
C28044 digital signal controller when the PWM resolution is too
low.

For example, the Spectrum Digital eZdsp™ F28044 board
has a system clock of 100 MHz (200-kHz switching). At
these frequencies, conventional PWM resolution is too
low—approximately 9 bits or 10 bits. By comparison, the HRPWM
resolution for the same board is 14.8 bits.

All the C280x/C2802x/C2803x/C2806x/C28x3x/c2834x ePWM
blocks in your model become HRPWM blocks, Thus, when you
enable this parameter:

• Use the HRPWM parameters under the ePWMA tab to make
additional configuration changes.

• Most of the configuration parameters under the ePWMB tab
are unavailable.

• Your model can contain up to 16 C280x/C2803x/C28x3x ePWM
blocks, provided you configure each one for a separate module.
(For example, Module is ePWM1, ePWM2, and so on.)

For processors other than the C28044, deselect (disable) Allow
use of 16 HRPWMs (for C28044) instead of 6 PWMs. To
enable HRPWM for other processors, first determine how many
HRPWM modules are available. Consult the Texas Instruments
documentation for your processor, and then use the HRPWM
parameters under the ePWMA tab to enable and configure
HRPWM.

For additional information about the C28044 and HRPWM,
consult the “References” on page 2-114 section.

Module
Specify which target ePWM module to use.

2-79

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

Timer period units
Specify the units of the Timer period or Timer initial period
as Clock cycles (the default) or Seconds. When Timer period
units is Seconds, the software down-converts the Timer period
or Timer initial period, a double for the period register to a
uint16. For best results, select Clock cycles. Doing so reduces
calculations and rounding errors.

Note If you set Timer period units to Seconds, enable
support for floating-point numbers. In the model window,
select Simulation > Model Configuration Parameters.
In the Configuration Parameters dialog box, select Code
Generation > Interface. Under Software Environment, enable
floating-point numbers.

Specify timer period via
Configure the source of the timer period value. Selecting Specify
via dialog changes the following parameter to Timer period.
Selecting Input port changes the following parameter to Timer
initial period and creates a timer period input port, T, on the
block.

Timer period
Set the period of the PWM waveform in clock cycles or in seconds,
as determined by the Timer period units parameter. When
you enable HRMWM, you can enter a high-precision floating
point value. The Time-Base Period High Resolution Register
(TBPRDHR) stores the high-resolution portion of the timer period
value.

Note The term clock cycles refers to the Time-base Clock on
the DSP. See the TB clock prescaler divider topic for an
explanation of Time-base Clock speed calculations.

2-80

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

Timer initial period
The period of the waveform from the time the PWM peripheral
starts operation until the ePWM input port, T, receives a new
value for the period. Use Timer period units to measure the
period in clock cycles or in seconds.

Note The term clock cycles refers to the Time-base Clock on
the DSP. See the TB clock prescaler divider topic for an
explanation of Time-base Clock speed calculations.

Reload for time base period register (PRDLD)
The time at which the counter period is reset.

• Counter equals to zero The counter period refreshes when
the value of the counter is 0.

• Immediate without using shadow The counter period
refreshes immediately.

Counting mode
Specify the counting mode in which to operate. This PWM module
can operate in three distinct counting modes: Up, Down, and
Up-Down. The Down option is not compatible with HRPWM. To
avoid an error when you build the model, do not set the Counting
mode parameter to Down and select the Enable HRPWM
(Period) parameter checkbox.

The following illustration shows the waveforms that correspond
to these three modes:

2-81

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

Synchronization action
Specify the source of a phase offset to apply to the Time-base
synchronization input signal, EPWMxSYNCI from the SYNC
input port. Selecting Set counter to phase value specified
via dialog creates the Phase offset value parameter. Selecting
Set counter to phase value specified via input port
creates a phase input port, PHS, on the block. Selecting Disable,
the default value prevents the application of phase offsets to the
TB module.

Counting direction after phase synchronization
This parameter appears when Counting mode is Up-Down and
Synchronization action is Set counter to phase value
specified via dialog or Input port. Configure the timer to
count up from zero, or down to zero, following synchronization.
This parameter corresponds to the PHSDIR field of the Time-base
Control Register (TBCTL).

Phase offset value (TBPHS)
This field appears when you select Set counter to phase value
specified via dialog in Synchronization action.

Configure the phase offset (delay) between the following events:

• The arrival of the Time-base synchronization input signal
(EPWMxSYNCI) on the SYNC input port

• The moment the Time-base (TB) submodule synchronizes the
ePWM module.

2-82

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

Note Enter the Phase offset value (TBPHS) in TBCLK cycles,
from 0 to 65535. Do not use fractional seconds.

This parameter corresponds to the Time-Base Phase Register
(TBPHS).

Specify software synchronization via input port (SWFSYNC)
Create an input port, SYNC, for a Time-base synchronization
input signal, EPWMxSYNCI. You can use this option to achieve
precise synchronization across multiple ePWM modules by
daisy-chaining multiple Time-base (TB) submodules.

Enable digital compare A event1 synchronization (DCAEVT1)
This parameter only appears in the C2802x and C2803x ePWM
blocks.

Synchronize the ePWM time base to a DCAEVT1 digital compare
event. Use this feature to synchronize this PWM module to the
time base of another PWM module. Fine-tune the synchronization
between the two modules using the Phase offset value. This
option is not compatible with HRPWM. Enabling HRPWM
disables this option.

Enable digital compare B event1 synchronization (DCBEVT1)
This parameter only appears in the C2802x and C2803x ePWM
blocks.

Synchronize the ePWM time base to a DCBEVT1 digital compare
event. Use this feature to synchronize this PWM module to the
time base of another PWM module. Fine-tune the synchronization
between the two modules using the Phase offset value. This
option is not compatible with HRPWM. Enabling HRPWM
disables this option.

Synchronization output (SYNCO)
This parameter corresponds to the SYNCOSEL field in the
Time-Base Control Register (TBCTL).

2-83

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

Use this parameter to specify the event that generates a
Time-base synchronization output signal, EPWMxSYNCO, from
the Time-base (TB) submodule.

The available choices are:

• Pass through (EPWMxSYNCI or SWFSYNC) — a
Synchronization input pulse or Software forced synchronization
pulse, respectively. You can use this option to achieve precise
synchronization across multiple ePWM modules by daisy
chaining multiple Time-base (TB) submodules.

• Counter equals to zero (CTR=Zero)— Time-base counter
equal to zero (TBCTR = 0x0000)

• Counter equals to compare B (CTR=CMPB) — Time-base
counter equal to counter-compare B (TBCTR = CMPB)

• Disable— Disable the EPWMxSYNCO output (the default)

Time base clock (TBCLK) prescaler divider
Use the Time base clock (TBCLK) prescaler divider
(CLKDIV) and the High speed time base clock
(HSPCLKDIVV) prescaler divider (HSPCLKDIV) to configure
the Time-base clock speed (TBCLK) for the ePWM module.
Calculate TBCLK using the following equation:

TBCLK = SYSCLKOUT/(HSPCLKDIV * CLKDIV)

For example, the default values of both CLKDIV and HSPCLKDIV
are 1, and the default frequency of SYSCLKOUT is 100 MHz, so:

TBCLK = 100 MHz = 100 MHz/(1 * 1)

The choices for the Time base clock (TBCLK) prescaler
divider are: 1, 2, 4, 8, 16, 32, 64, and 128.

2-84

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

The Time block clock (TBCLK) prescaler divider parameter
corresponds to the CLKDIV field of the Time-base Control
Register (TBCTL).

Note The frequency of SYSCLKOUT depends on the oscillator
frequency and the configuration of PLL-based clock module.
Changing the values of the PLL Control Register (PLLCR) affects
the timing of all ePWM modules.

For more information, consult the “PLL-Based Clock Module”
section of the data manual for your specific target (see
“References” on page 2-114).

High speed time base clock (HSPCLKDIV) prescaler divider
See the Time base clock (TBCLK) prescaler divider topic for
an explanation of the role of this value in setting the speed of the
Time-base Clock. Choices are to divide by 1, 2, 4, 6, 8, 10, 12, and
14. Selecting Enable high resolution PWM (HRPWM–Period)
forces this option to 1.

This parameter corresponds to the HSPCLKDIV field of the
Time-base Control Register (TBCTL).

Enable swap module A and B
This parameter only appears in the C2802x and C2803x ePWM
blocks.

Swap the ePWMA and ePWMB outputs. This option outputs the
ePWMA signals on the ePWMB outputs and the ePWMB signals
on the ePWMA outputs.

Enable high resolution PWM (HRPWM - Period)
This parameter only appears in the C2802x and C2803x ePWM
blocks.

2-85

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

When the effective resolution for conventionally generated PWM
is insufficient, consider using High Resolution PWM (HRPWM).
The resolution of PWM is normally dependent upon the PWM
frequency and the underlying system clock frequency. To address
this limitation, HRPWM usesMicro Edge Positioner (MEP) ™
technology to position edges more finely by dividing each coarse
system clock. The accuracy of the subdivision is on the order of
150ps. The following figure shows the relationship between one
system clock and edge position in terms of MEP steps:

Enable HRPWM mode and control it via the Extension Register
for HRPWM Period (TBPRDHR) register. When you enable this
parameter, you can enter an 8–bit floating point value in for the
Timer period parameter. This parameter enables the Enable
high resolution PWM (HRPWM - CMP) option, and displays
the HRPWM loading mode, HRPWM control mode, and
HRPWM edge control mode options. Also configure HRPWM
control mode.

Selecting Enable HRPWM (Period) forces TB clock prescaler
divider and High Speed TB clock prescaler divider to 1.
These settings match the HRPWM time base clock with the
SYSCLKOUT frequency.

2-86

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

The Down option in the Counting mode parameter is not
compatible with HRPWM. To avoid an error when you build the
model, do not set the Counting mode parameter to Down and
select the Enable HRPWM (Period) parameter checkbox.

Enable high resolution PWM (HRPWM - CMP)
This parameter only appears in the C2802x and C2803x ePWM
blocks.

Enable HRPWM mode and control it via the Extension Register
for HRPWM Duty (CMPAHR) register. Also configure HRPWM
control mode.

High resolution PWM (HRPWM) loading mode
This parameter appears only when theEnable high resolution
PWM (HRPWM - Period) is selected. Determine when to
transfer the value of the CMPAHR shadow to the active register:

• Counter equals to zero (CTR=ZERO) Transfer the value when
the time base counter equals zero (TBCTR = 0x0000).

• Counter equals to period (CTR=PRD) Transfer the value when
the time base counter equals the period (TBCTR = TBPRD).

• Counter equals to either zero or period (CTR=ZERO or
CTR=PRD) Transfer the value when either case is true.

This option configures the HRLOAD “Shadow Mode Bit” in the
HRPWM Configuration Register (HRCNFG).

High resolution PWM (HRPWM) control mode
This parameter appears only when the Enable high resolution
PWM (HRPWM - CMP) is selected. Select which register
controls the Micro Edge Positioner (MEP) step size. The High
resolution PWM (HRPWM) Control mode option configures
the CTLMODE “Control Mode Bits”.

• Duty control mode uses the Extension Register for HRPWM
Duty (CMPAHR) or the Extension Register for HRPWM Period
(TBPRDHR) to control the MEP edge position.

2-87

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

• Select Phase control mode to use the Time Base Period
High-Resolution Register (TBPRDHR) to control the MEP edge
position.

The High resolution PWM (HRPWM) control mode option
configures the CTLMODE “Control Mode Bits” in the HRPWM
Configuration Register (HRCNFG).

High resolution PWM (HRPWM) edge control mode
Swap the ePWMA and ePWMB outputs. This parameter sets the
SWAPAB field in the HRPWM Configuration Register (HRCNFG).

Use scale factor optimizer (SFO) software
This parameter is enabled only if the Enable high resolution
PWM (HRPWM - CMP) is selected. Enable scale factor
optimizing (SFO) software with HRPWM. This software
dynamically determines the scaling factor for the Micro Edge
Positioner (MEP) step size. The step size varies depending on
operating conditions such as temperature and voltage. The SFO
software reduces variability due to these conditions. For more
information, see the “Scale Factor Optimizing Software (SFO)”
section of the TMS320x2802x, 2803x Piccolo High Resolution
Pulse Width Modulator (HRPWM) Reference Guide, Literature
Number: SPRUGE8.

Enable auto convert
This parameter only appears if the Enable high resolution
PWM (HRPWM - CMP) is selected for the C2802x, C2803x ,
and C2806x ePWM blocks.

Apply the scaling factor calculated by the SFO software to the
controlling period or duty cycle. (Use the HRPWM control mode
to select controlling period or duty cycle.) This parameter sets
the AUTOCONV field in the HRPWM Configuration Register
(HRCNFG).

2-88

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

ePWMA and ePWMB panes

Each ePWM module has two outputs, ePWMA and ePWMB. The
ePWMA output pane and ePWMB output pane include the same
settings, although the default values vary in some cases, as noted.

2-89

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

2-90

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

2-91

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

Enable ePWMxA
Enable ePWMxB

Enables the ePWMA and/or ePWMB output signals for the ePWM
module identified on the General pane. By default, Enable
ePWMxA is enabled, and Enable ePWMxB is disabled.

Note To Enable ePWMxA or Enable ePWMxB, also enable
support for floating-point numbers: In the model window,
select Code > C/C++ Code > Code Generation Options.
In the Configuration Parameters dialog box, select Code
Generation > Interface. Under Software Environment, enable
floating-point numbers.

CMPA units
CMPB units

Specify the units used by the compare register: Percentages (the
default) or Clock cycles.

Notes

• The term clock cycles refers to the Time-base Clock on the DSP.
See the TB clock prescaler divider topic for an explanation
of Time-base Clock speed calculations.

• Percentages use additional computation time in generated code
and can decrease results.

• If you set CMPA units or CMPB units to Percentages,
also enable support for floating-point numbers: In the
model window, select Simulation > Model Configuration
Parameters. In the Configuration Parameters dialog
box, select Code Generation > Interface. Under Software
Environment, enable floating-point numbers.

2-92

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

Specify CMPA via
Specify CMPB via

Specify the source of the pulse width. If you select Specify via
dialog (the default), enter a value in the CMPA value or CMPB
value field. If you select Input port, set the value using an input
port, WA or WB, on the block. If you select Input port also set
CMPA initial value or CMPB initial value.

CMPA value
CMPB value

This field appears when you choose Specify via dialog in
CMPA source or CMPB source. Enter a value that specifies
the pulse width, in the units specified in CMPA units or CMPB
units.

CMPA initial value
CMPB initial value

This field appears when you set CMPA source or CMPB source
to Input port. Enter the initial pulse width of CMPA or CMPB
the PWM peripheral uses when it starts operation. Subsequent
inputs to the WA or WB ports change the CMPA or CMPB pulse
width.

Reload for compare A Register (SHDWAMODE)
Reload for compare B Register (SHDWBMODE)

The time at which the counter period is reset.

• Select Counter equals to zero the counter period refreshes
when the value of the counter is 0.

• Select Immediate without using shadow the counter period
refreshes immediately.

2-93

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

Action when counter=ZERO
Action when counter=period (PRD)
Action when counter=CMPA on up-count (CAU)
Action when counter=CMPA on down-count (CAD)
Action when counter=CMPB on up-count (CBU)
Action when counter=CMPB on down-count (CBD)

These settings, along with the other remaining settings in the
ePWMA output and ePWMB output panes, determine the
behavior of the Action Qualifier (AQ) submodule. The AQ module
determines which events are converted into various action types,
producing the required switched waveforms of the ePWMxA and
ePWMxB output signals.

For each of these four fields, the available choices are Do nothing,
Clear, Set, and Toggle.

The default values for these fields vary between the ePWMA
output and ePWMB output panes.

The following table shows the defaults for each of these panes
when you set Counting mode to Up or Up-Down:

Action when
counter =...

ePWMA output
pane

ePWMB output
pane

ZERO Do nothing Do nothing

PRD Clear Set

CMPA on up-count
(CAU)

Set Do nothing

CMPA on
down-count (CAD)

Do nothing Do nothing

CMPB on up-count
(CBU)

Do nothing Clear

CMPB on
down-count (CBD)

Do nothing Do nothing

2-94

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

The following table shows the defaults for each of these panes
when you set Counting mode to Down:

Action when
counter =...

ePWMA output
pane

ePWMB output
pane

ZERO Do nothing Do nothing

period (PRD) Clear Set

CMPA on
down-count (CAD)

Do nothing Do nothing

CMPB on
down-count (CBD)

Do nothing Do nothing

For a detailed discussion of the AQ submodule, consult the
TMS320x280x Enhanced Pulse Width Modulator (ePWM) Module
Reference Guide (SPRU791), available on the Texas Instruments
Web site.

Compare value reload condition
Add continuous software force input port
Continuous software force logic
Reload condition for software force

These four settings determine how the action-qualifier (AQ)
submodule handles the S/W force event, an asynchronous event
initiated by software (CPU) via control register bits.

Compare value reload condition determines if and when to
reload the Action-qualifier S/W Force Register from a shadow
register. Choices are Load on counter equals to zero
(CTR=Zero) (the default), Load on counter equals to period
(CTR=PRD), Load on either, and Freeze.

Add continuous software force input port creates an input
port, SFA, which you can use to control the software force logic.
Send one of the following values to SFA as an unsigned integer
data type:

• 0 = Forcing disable: Do nothing. The default option.

2-95

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

• 1 = Forcing low: Clear low

• 2 = Forcing high: Set high

If you did not create the SFA input port, you can use Continuous
software force logic to select which type of software force logic
to apply. The choices are:

• Forcing disable: Do nothing. The default.

• Forcing low: Clear low

• Forcing high: Set high

Reload condition for software force— Choices are Zero (the
default), Period, Either period or zero, and Immediate.

Inverted version of ePWMxA
Only the ePWMB pane on the C2802x and C2803x blocks displays
this option. Invert the ePWMxA signal and output it on the
ePWMxB outputs. This parameter sets the SELOUTB field in the
HRPWM Configuration Register (HRCNFG).

Enable high resolution PWM (HRPWM)
This parameter appears at this position in the C280x and C2833x
ePWM blocks.

Select to enable High Resolution PWM settings. When the
effective resolution for conventionally generated PWM is
insufficient, consider High Resolution PWM (HRPWM). The
resolution of PWM is normally dependent upon the PWM
frequency and the underlying system clock frequency. To address
this limitation, HRPWM usesMicro Edge Positioner (MEP)
technology to position edges more finely by dividing each coarse
system clock. The accuracy of the subdivision is on the order of
150ps. The following figure shows the relationship between one
system clock and edge position in terms of MEP steps:

2-96

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

High resolution PWM (HRPWM) loading mode
This parameter appears at this position in the C280x and C2833x
ePWM blocks.

Determine when to transfer the value of the CMPAHR shadow to
the active register:

• Counter equals to zero (CTR=ZERO): Transfer the value when
the time base counter equals zero (TBCTR = 0x0000).

• Counter equals to period (CTR=PRD): Transfer the value when
the time base counter equals the period (TBCTR = TBPRD).

• CTR=Zero or CTR=PRD Transfer the value when either case
is true.

High resolution PWM (HRPWM) control mode
This parameter appears at this position in the C280x and C2833x
ePWM blocks.

Select which register controls the Micro Edge Positioner (MEP)
step size. The High resolution PWM (HRPWM) control mode
option configures the CTLMODE “Control Mode Bits”.

2-97

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

• Duty control mode uses the Extension Register for HRPWM
Duty (CMPAHR) or the Extension Register for HRPWM Period
(TBPRDHR) to control the MEP edge position.

• Select Phase control mode to use the Time Base Period
High-Resolution Register (TBPRDHR) to control the MEP edge
position.

The High resolution PWM (HRPWM) control mode option
configures the CTLMODE “Control Mode Bits” in the HRPWM
Configuration Register (HRCNFG).

High resolution (HRPWM) edge control mode
This parameter appears at this position in the C280x and C2833x
ePWM blocks.

Swap the ePWMA and ePWMB outputs. This parameter sets the
SWAPAB field in the HRPWM Configuration Register (HRCNFG).

Use scale factor optimizer (SFO) software
Enable scale factor optimizing (SFO) software with HRPWM. This
software dynamically determines the scaling factor for the Micro
Edge Positioner (MEP) step size. The step size varies depending
on operating conditions such as temperature and voltage. The
SFO software reduces variability due to these conditions. For
more information, see the “Scale Factor Optimizing Software
(SFO)” section of the TMS320x2802x, 2803x Piccolo High
Resolution Pulse Width Modulator (HRPWM) Reference Guide,
Literature Number: SPRUGE8.

Deadband Unit Pane

The Deadband unit pane lets you specify parameters for the
Dead-Band Generator (DB) submodule.

2-98

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

2-99

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

Use deadband for ePWMxA
Use deadband for ePWMxB

Enables a deadband area of without signal overlap between pairs
of ePWM output signals. This check box is cleared by default.

Enable half-cycle clocking
This parameter only appears in the C2802x and C2803x ePWM
blocks.

To double the deadband resolution, enable half-cycle clocking.
This option clocks the deadband counters at TBCLK*2. When you
disable this option, the deadband counters use full-cycle clocking
(TBCLK*1).

Deadband polarity
Configure the deadband polarity as Active high (AH) (the
default option), Active low (AL) , Active high complementary
(AHC) or Active low complementary (ALC)

Signal source for rising edge (RED)
This field appears only when you select Use deadband for
ePWMxA in the ePWMA output pane. Enter a value from 0 to
1023 to specify a rising edge delay.

Signal source for falling edge (FED)
This field appears only when you select Use deadband for
ePWMxB in the ePWMB output pane. Enter a value from 0 to
1023 to specify a falling edge delay.

Deadband period source
Specify the source of the control logic. Choose Specify via
dialog (the default) to enter explicit values, or Input port to
use a value from the input port.

Rising edge (RED) deadband period (0~1023)
This field appears when you select the check boxUse deadband
for ePWMxA. The value you enter in the field specifies the dead
band delay in time-base clock (TBCLK) cycles.

2-100

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

Falling edge (FED) deadband period (0~1023)
This field appears when you select the check box Use deadband
for ePWMxB. The value you enter in the field specifies the dead
band delay in time-base clock (TBCLK) cycles.

Event Trigger Pane

Configure ADC Start of Conversion (SOC) by one or both of the ePWMA
and ePWMB outputs.

Enable ADC start of conversion for module A
When you select this option, ePWM starts the Analog-to-Digital
Conversion (ADC) for module A. By default, the software clears
(disables) this option.

2-101

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

Number of event for start of conversion for Module A (SOCA) to
be generated

When you select Enable ADC start of conversion for module
A, this field specifies the number of the event that triggers ADC
Start of Conversion for Module A (SOCA): First event triggers
ADC start of conversion with every event (the default). Second
event triggers ADC start of conversion with every second event.
Third event triggers ADC start of conversion with every third
event.

Start of conversion for module A event selection
When you select Enable ADC start of conversion for module
A, this field specifies the counter match condition that triggers an
ADC start of conversion event. The choices are:

Digital Compare Module A Event 1 start of conversion (DCAEVT1.soc)
and Digital Compare Module B Event 1 start of conversion
(DCBEVT1.soc)

(For C2802x and C2803x only) When the ePWM asserts a
DCAEVT1 or DCBEVT1 digital compare event. Use this feature
to synchronize this PWM module to the time base of another
PWM module. Fine-tune the synchronization between the two
modules using the Phase offset value.

Counter equals to zero (CTR=Zero)
When the ePWM counter reaches zero (the default).

Counter equals to period (CTR=PRD)
When the ePWM counter reaches the period value.

Counter equals to zero or period (CTR=Zero or CTR=PRD)
When the time base counter equals zero (TBCTR = 0x0000) or
when the time base counter equals the period (TBCTR = TBPRD).

Counter is incrementing and equals to the compare A register
(CTRU=CMPA)

When the ePWM counter reaches the compare A value on the
way up.

2-102

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

Counter is decrementing and equals to the compare A register
(CTRD=CMPA)

When the ePWM counter reaches the compare A value on the
way down.

Counter is incrementing and equals to the compare B register
(CTRU=CMPB)

When the ePWM counter reaches the compare B value on the
way up.

Counter is decrementing and equals to the compare B register
(CTRD=CMPB)

When the ePWM counter reaches the compare B value on the
way down.

Enable ADC start of conversion for module B
When you select this option, ePWM starts the Analog-to-Digital
Conversion (ADC) for module B. By default, the software clears
(disables) this option.

Number of event for start of conversion for Module B (SOCB) to
be generated

When you select Enable ADC start module B, this field specifies
the number of the event that triggers ADC start of conversion:
First event triggers ADC start of conversion with every event
(the default), Second event triggers ADC start of conversion
with every second event, and Third event triggers ADC start of
conversion with every third event.

Start of conversion for module B event selection
When you select Enable ADC start of conversion for module
B, this field specifies the counter match condition that triggers an
ADC start of conversion event. The choices are the same as for
Module A counter match event condition.

Enable ePWM interrupt
Select this option to generate interrupts based on different events
defined by Number of event for interrupt to be generated
and Interrupt counter match event condition. By default,
the software clears (disables) this option.

2-103

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

Number of event for interrupt to be generated
When you select Enable ePWM interrupt, this field specifies the
number of the event that triggers the ePWM interrupt: First
event triggers ePWM interrupt with every event (the default),
Second event triggers ePWM interrupt with every second event,
and Third event triggers ePWM interrupt with every third event.

Interrupt counter match event condition
When you select Enable ePWM interrupt, this field specifies
the counter match condition that triggers ePWM interrupt. The
choices are the same as for Module A counter match event
condition.

PWM Chopper Control Pane

The PWM chopper control pane lets you specify parameters
for the PWM-Chopper (PC) submodule. The PC submodule uses
a high-frequency carrier signal to modulate the PWM waveform
generated by the AQ and DB modules.

Chopper module enable
Select to enable the chopper module. Use of the chopper module is
optional, so this check box is cleared by default.

2-104

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

Chopper frequency divider
Set the prescaler value that determines the frequency of the
chopper clock. The system clock speed is divided by this value to
determine the chopper clock frequency. Choose an integer value
from 1 to 8.

Chopper clock cycles width of first pulse
Choose an integer value from 1 to 16 to set the width of the first
pulse. This feature provides a high-energy first pulse for a hard
and fast power switch turn on.

Chopper pulse duty cycle
The duty cycles of the second and subsequent pulses are also
programmable. Choices are 12.5%, 25%, 37.5%, 50%, 62.5%, 75%,
and 87.5%.

Trip Zone Unit Pane

The Trip Zone unit pane lets you specify parameters for the Trip-zone
(TZ) submodule. Each ePWM module receives six TZ signals (TZ1 to
TZ6) from the GPIO MUX. These signals indicate external fault or trip
conditions. Use the settings in this pane to program the EPWM outputs
to respond when faults occur.

2-105

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

2-106

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

Trip zone source
Specify the source of the control logic to enable or disable the TZ
Interrupts (One shot TZ1-TZ6 and Cyclic TZ1-TZ6). Select
Specify via dialog (the default) to enable specific Trip-zone
signals in the block dialog. Choose Input port to enable specific
Trip-zone signals using a block input port, TZSEL.

If you select Input port, use the following bit operation to
determine the value of the 16-bit integer to send to the TZSEL
input port:

TZSEL INPUT VALUE = (OSHT6*213 + OSHT5*212 + OSHT4*211

+ OSHT3*210 + OSHT2*29 + OSHT1*28 + CBC6*25 + CBC5*24 +
CBC4*23 + CBC3*22 + CBC2*21 + CBC1*20)

The software uses the higher 8 bits for the One shot TZ1-TZ6
and the lower 8 bits for Cyclic TZ1-TZ6. You can set up a group
of TZ sources (1~6), use a bit operation to combine them into an
integer, and then feed the integer to TZSEL.

For example, to enable One Shot TZ6 (OSHT6) and One Shot TZ5
(OSHT5) as trip zone sources, set OSHT6 and OSHT5 to “1” and
leave the remaining values as “0”.

TZSEL INPUT VALUE = (1*213 + 1*212 + 0*211 …)

TZSEL INPUT VALUE = (8192 + 4096 + 0 …)

TZSEL INPUT VALUE = 12288

When the block receives this value, it applies it to the TZSEL
register as a binary value: 11000000000000.

For more information, see the ”Trip-Zone Submodule Control and
Status Registers” section of the TMS320x28xx, 28xxx Enhanced
Pulse Width Modulator (ePWM) Module Reference Guide,
Literature Number: SPRU791 on www.ti.com

2-107

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

Enable One-Shot Trip zone1 (TZ1)
Enable One-Shot Trip zone2 (TZ2)
Enable One-Shot Trip zone3 (TZ3)
Enable One-Shot Trip zone4 (TZ4)
Enable One-Shot Trip zone5 (TZ5)
Enable One-Shot Trip zone6 (TZ6)

Select these check boxes to enable the corresponding Trip-zone
signal in One-Shot Mode. In this mode, when the trip event is
active, the software performs the corresponding action on the
EPWMxA/B output immediately and latches the condition. You
can unlatch the condition using software control.

Enable one-shot digital compare A event 1 (DCAEVT1)
Enable one-shot digital compare B event 1 (DCBEVT1)

Select these check boxes to enable the corresponding event signal
as a OST trip source for event 1. In this mode, if the digital
compare A or digital compare B event 1 is active, the software
performs the corresponding action on the EPWM1A/B output
immediately and latches the condition. You can unlatch the
condition using the software control.

Enable Cyclic Trip zone1 (TZ1)
Enable Cyclic Trip zone2 (TZ2)
Enable Cyclic Trip zone3 (TZ3)
Enable Cyclic Trip zone4 (TZ4)
Enable Cyclic Trip zone5 (TZ5)
Enable Cyclic Trip zone6 (TZ6)

Select these check boxes to enable the corresponding Trip-zone
signal in Cycle-by-Cycle Mode. In this mode, when the trip event
is active, the software performs the corresponding action on
the EPWMxA/B output immediately and latches the condition.
In Cycle-by-Cycle Mode, the software automatically clears
condition when the PWM Counter reaches zero. Therefore, in
Cycle-by-Cycle Mode, every PWM cycle resets or clears the trip
event.

2-108

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

Enable cyclic digital compare A event 2 (DCAEVT2)
Enable cyclic digital compare B event 2 (DCBEVT2)

Select these check boxes to enable the corresponding event signal
as a cyclic trip source for event 2. In this mode, if the digital
compare A or digital compare B event 2 is active, the software
performs the corresponding action on the EPWM2A/B output
immediately and latches the condition. You can unlatch the
condition using the software control.

Enable Trip-zone One-Shot interrupt (OST)
Generate an interrupt when the one shot (OST) triggering event
occurs.

Enable Trip-zone Cycle-by-Cycle interrupt (CBC)
Generate an interrupt when the cyclic or cycle-by-cycle (CBC)
triggering event occurs.

Digital comparator output A event x interrupt enable
(DCAEVTx)
Digital comparator output B event x interrupt enable
(DCBEVTx)

Generate an interrupt when Digital Comparator Output A or
Digital Comparator Output B for event 1 or 2 occurs.

ePWMxA forced (TZ) to
ePWMxB forced (TZ) to
ePWMxA forced (DCAEVTx) to
ePWMxB forced (DCBEVTx) to

Upon a fault condition, the software overrides and forces the
ePWMxA and/or ePWMxB (TZ or DCAEVTx) output to one of
the following states: No action (the default), High, Low, or Hi-Z
(High Impedance).

Digital Compare

Use the Digital Compare pane to configure the Digital Compare (DC)
submodule.

Each digital compare (DC) submodule receives three TZ signals (TZ1 to
TZ3) from the GPIO MUX, and three COMP signals from the COMP.

2-109

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

These signals indicate fault or trip conditions that are external to the
PWM submodule. Use the settings in this pane to output specific DC
events in response to those external signals. These DC events feed
directly into the Time-base, Trip-zone, and Event-trigger submodules.

For more information, see the “Digital Compare (DC) Submodule”
section of the TMS320x2802x, 2803x Piccolo Enhanced Pulse Width
Modulator (ePWM) Module Reference Guide, Literature Number:
SPRUGE9.

2-110

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

2-111

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

Source for digital compare A high signal (DCAH), Source for
digital compare B high signal (DCBH)

If the TZ or COMP event you select occurs, assert a high
signal. Qualify this signal using the DCAEVT# source select,
DCBEVT# source select options.

Source for digital compare A low signal (DCAL), Source for
digital compare B low signal (DCBL)

If the TZ or COMP event you select occurs, assert a low
signal. Qualify this signal using the DCAEVT# source select,
DCBEVT# source select options.

Digital compare output A event # selection (DCAEVT#), Digital
Compare output B event # selection (DCBEVT#)

Qualify the signals that generate DC events, such as DCAEVT#
or DCBEVT#. Select the states of Source for digital compare
A high signal DCAH, Source for digital compare B high
signal DCBH, Source for digital compare A low signal
(DCAL), and Source for digital compare B low signal
(DCBL) that generate the event. To disable this feature, choose
the Event disabled option.

DCAEVT# source select, DCBEVT# source select
This parameter controls two separate aspects of triggering DC
events:

• Triggering filtered or unfiltered DC event. (Configures
DCACTL[EVT1SRCSEL] or DCACTL[EVT2SRCSEL].)

• Trigger the DC event synchronously or asynchronously.
(Configures DCACTL[EVT1FRCSYNCSEL] or
DCACTL[EVT2FRCSYNCSEL].)

Filtering

• Options that begin with DCAEVT# with sync or DCAEVT# with
async do not apply filtering to DC events. Qualified signals
trigger DC events.

2-112

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

• Options that begin with DCEVTFILT sync apply filtering to
DC events. Qualified signals pass through filtering circuits
before triggering DC events. This filtering is not configurable
in the ePWM block. For more information, refer to the
“Event Filtering” section of the TMS320x2802x, 2803x Piccolo
Enhanced Pulse Width Modulator (ePWM) Module Reference
Guide, Literature Number: SPRUGE9.

Synchronizing

• Options that end with async trigger DC events asynchronously.
When the qualified or filtered signals exist, the DC submodule
triggers the DC event immediately.

• Options that end with sync trigger DC events synchronously.
Once the qualified or filtered signals exist, the DC submodule
triggers the DC event in sync with the TBCLK signal.

Note The following fields appear when you select DCEVTFILT
with sync or DCEVTFILT with async for the DCAEVTX
source select or DCBEVTX source select.

For more details about the following parameters, refer to the
sections:TMS320x2806x Piccolo processor: 3.2.9.3.2 (Event
Filtering) and Table 56 of Technical Reference Manual
(SPRUH18C). TMS320x2802x/03x Piccolo processors : 2.9.3.2
(Event Filtering) and Table 56 of Enhanced Pulse Width
Modulator (ePWM) Module Reference Guide (SPRUGE9E) for
TMS320x2802x and TMS320x2803x Piccolo processors.

—

Pulse select
The blanking window which filters out event occurrences on the
signal while active, is aligned to either a CTR = PRD pulse or
a CTR = 0 pulse.

2-113

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

Blanking window inverted
The option that allows you to Enable or Disable the Inverted
Blanking window.

Blanking window offset
The number of TBCLK cycles required from the blanking window
reference to the point when the blanking window is applied.

Blanking window width
The duration of the blanking window in terms of TBCLK.

Filter source select
The option that allows you to select a source for Filtering.

The available options are:

• Filtered version of DCAEVT1 (DCAEVT1FILT)

• Filtered version of DCAEVT2 (DCAEVT2FILT)

• Filtered version of DCBEVT1 (DCBEVT1FILT)

• Filtered version of DCBEVT2 (DCBEVT2FILT)

Enable counter capture
The option that allows you to Enable or Disable the time-base
counter capture.

References For more information, consult the following references, available at
the Texas Instruments Web site:

• TMS320x28xx, 28xxx Enhanced Pulse Width Modulator (ePWM)
Module Reference Guide, literature number SPRU791

• TMS320x280x, 2801x, 2804x High Resolution Pulse Width Modulator
Reference Guide, literature number SPRU924E

• TMS320x2802x, 2803x Piccolo Enhanced Pulse Width Modulator
(ePWM) Module Reference Guide, literature number SPRUGE9

• TMS320x2802x, 2803x Piccolo High Resolution Pulse Width
Modulator (HRPWM) Reference Guide, literature number SPRUGE8

2-114

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
ePWM

• Using the ePWM Module for 0% - 100% Duty Cycle Control
Application Report, literature number SPRU791

• Configuring Source of Multiple ePWM Trip-Zone Events, literature
number SPRAAR4

• TMS320F2809, TMS320F2808, TMS320F2806 TMS320F2802,
TMS320F2801 TMS320C2802, TMS320C2801, and TMS320F2801x
DSPs Data Manual, literature number SPRS230

• TMS320F28044 Digital Signal Processor Data Manual, literature
number SPRS357

• TMS320F28335/28334/28332 TMS320F28235/28234/28232
Digital Signal Controllers (DSCs) Data Manual, literature number
SPRS439

See Also “CAN-Based Control of PWM Duty Cycle”

“SPI-Based Control of PWM Duty Cycle”

“ADC-PWM Synchronization via ADC Interrupt”

C280x/C28x3x ADC

“ePWM” on page 3-186

2-115

C28x eQEP

Purpose Quadrature encoder pulse circuit

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2803x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2806x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C280x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C28x3x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2834x

Description
The enhanced quadrature encoder pulse (eQEP) module is used for
direct interface with a linear or rotary incremental encoder to get
position, direction, and speed information from a rotating machine for
use in motion and position-control systems.

2-116

C28x eQEP

Dialog
Box

General Pane

Module
If more than one eQEP module is available on your processor,
select the module this block configures.

Position counter mode
The input signals QEPA and QEPB are processed by the
Quadrature Decoder Unit (QDU) to produce clock (QCLK) and
direction (QDIR) signals. Choose the position counter mode
that matches the way the input to the eQEP module is encoded.

2-117

C28x eQEP

Choices are Quadrature-count (the default), Direction-count,
Up-count, and Down-count.

Positive rotation
This field appears only when you choose Quadrature-count in
Position counter mode. Choose the direction that represents
positive rotation: Clockwise (the default) or Counterclockwise.

External clock rate
This field appears only when you choose Direction-count,
Up-count, or Down-count in Position counter mode. In these
cases, you can program clock generation to the position counter to
occur on both rising and falling edges of the QEPA input or on the
rising edge only. Choosing the former increases the measurement
resolution by a factor of 2. Choices are 2x resolution: Count
the rising/falling edge (the default) or 1x resolution:
Count the rising edge only.

Quadrature direction flag output port
This check box appears only when you choose Quadrature-count
in Position counter mode. Select this check box if you want to
create a port on the block that gives access to the direction flag of
the quadrature module.

Invert input QEPxA polarity
Invert input QEPxB polarity
Invert input QEPxI polarity
Invert input QEPxS polarity

Select these check boxes to invert the polarity of the respective
eQEP input signal.

Index pulse gating option
Select this check box to enable gating of the index pulse.

Sample time
Enter the sample time in seconds.

2-118

C28x eQEP

Position Counter Pane

Output position counter
This check box is selected by default. Leave it selected to output
the position counter signal PCSOUT from the position counter
and control unit (PCCU).

2-119

C28x eQEP

Maximum position counter value
Enter a maximum value for the position counter. Enter a value
from 0 to 4294967295. The value defaults to the maximum
allowed value of 4294967295.

Enable set to init value on index event
Select to set the position counter to its initialization value on an
index event. This check box is cleared by default.

Set to init value on index event
This field appears only when Enable set to init value on
index event is selected. Choose to set the position counter to
its initialization value on the Rising edge (the default) or the
Falling edge of the index input.

Enable set to init value on strobe event
Select to set the position counter to its initialization value on a
strobe event. This check box is cleared by default.

Set to init value on strobe event
This field appears only when Enable set to init value on strobe
event is selected. Rising edge, the default option, sets the
position counter to its initialization value on the rising edge of the
strobe input. In the forward direction, Depending on direction
sets the position counter to its initialization value on the rising
edge of the strobe input. In the reverse direction, Depending on
direction sets the position counter to its initialization value on
the falling edge of the strobe input.

Enable software initialization
Select to allow the position counter to be set to its initialization
value via software. This check box is cleared by default.

Software initialization source
This field appears only when Enable software initialization is
selected. Choose Set to init value at start up (the default)
or Input port to receive the control logic through the input port.

2-120

C28x eQEP

Initialization value
This field appears only when Enable set to init value on
index event, Enable set to init value on strobe event, or
Enable software initialization check box is selected. Enter the
initialization value for the position counter. Enter a value from 0
to 4294967295. The value defaults to 2147483648.

Position counter reset mode
Choose a position counter reset mode, depending on the nature
of the system the eQEP module is working with: Reset on an
index event (the default), Reset on the maximum position,
Reset on the first index event, or Reset on a time unit
event.

Output position counter error flag
This check box appears only when Position counter reset mode
is set to Reset on an index event. Select this check box to
output the position counter error flag on error.

Output latch position counter on index event
This check box appears only when Position counter reset mode
is set to Reset on the maximum position or Reset on the
first index event. The eQEP index input can be configured
to latch the position counter (QPOSCNT) into QPOSILAT on
occurrence of a definite event on this pin. Select this check box to
latch the position counter on each index event.

Index event latch of position counter
This field appears only when the Output latch position
counter on index event check box is selected. Choose one of the
following events to configure the eQEP position counter to latch
on that event: Rising edge, Falling edge, or Software index
marker via input port.

Output latch position counter on strobe event
This check box appears only when Position counter reset mode
is set to Reset on the maximum position or Reset on the
first index event. The eQEP strobe input can be configured
to latch the position counter (QPOSCNT) into QPOSSLAT on

2-121

C28x eQEP

occurrence of a definite event on this pin. Select this check box to
latch the position counter on each strobe event.

Strobe event of latched position counter
This field appears only when theOutput latch position counter
on strobe event check box is selected. Choose Rising edge to
latch on the rising edge of the strobe event input, or Depending
on direction to latch on the rising edge in the forward direction
and the falling edge in the reverse direction.

2-122

C28x eQEP

Speed Calculation Pane

Enable QEP capture
The eQEP peripheral includes an integrated edge capture unit
to measure the elapsed time between the unit position events.
Check this check box to enable the edge capture unit. This check
box is cleared by default.

2-123

C28x eQEP

Output capture timer
Select this check box to output the capture timer into the capture
period register. This check box is cleared by default.

Output capture period timer
Select this check box to output the capture period into the capture
period register. This check box is cleared by default.

eQEP capture timer prescaler
The eQEP capture timer runs from prescaled SYSCLKOUT. The
capture timer period is the value of SYSCLKOUT divided by
the value you choose in this field. Choices are 1, 2, 4, 8, 16, 32,
64, and 128 (the default).

Unit position event prescaler
The timing of the unit position event is determined by prescaling
the quadrature-clock (QCLK). QCLK is divided by the value you
choose in this popup. Choices are 4, 8, 16, 32, 64, 128, 256, 512,
1024, and 2048 (the default).

Enable and output overflow error flag
Select this check box to enable and output the eQEP overflow
error flag in the event of capture timer overflow between unit
position events.

Enable and output direction change error flag
Select this check box to enable and output the direction change
error flag.

Capture timer and position
Choose the event that triggers the latching of the capture timer
and capture period register: On position counter read (the
default) or On unit time-out event.

Unit timer period
This field appears only when you choose On unit time-out
event in Capture timer and position. Enter a value for the
unit timer period from 0 to 4294967295. The value defaults to
100000000.

2-124

C28x eQEP

Output capture timer latched value
Select this check box to output the capture timer latched value
from the QCTMRLAT register.

Output capture timer period latched value
Select this check box to output the capture timer period latched
value from the QCPRDLAT register.

Output position counter latched value
Select this check box to output the position counter latched value
from the QPOSLAT register.

2-125

C28x eQEP

Compare Output Pane

Enable position-compare sync signal output
The eQEP peripheral includes a position-compare unit that is
used to generate the position-compare sync signal on compare
match between the position counter register (QPOSCNT) and the
position-compare register (QPOSCMP). Select this check box to

2-126

C28x eQEP

enable the position-compare sync signal output. This check box is
cleared by default.

Sync output pin selection
Choose which pin is used for the sync signal output. Choices are
Index pin is used for sync output (the default) and Strobe
pin is used for sync output.

Compare value source
Choose the source of the value to use in the position comparison.
Choose Specify via dialog (the default) to specify a fixed value
or Input port to read the value from the input port.

Position compare shadow load mode
This field lets you enable or disable shadow mode for use in
generating the position-compare sync signal (shadow mode is
enabled by default). When shadow mode is enabled, you can also
choose an event to trigger the loading of the shadow register value
into the active register.

Choose Disable shadow mode to disable shadow mode. Choose
Load on QPOSCNT=0 (the default) to load on the position-counter
zero event. Choose Load on QPOSCNT=QPOSCMP to load on compare
match.

Position compare value
This field appears only when you choose Specify via dialog in
Compare value source. Enter a value from 0 to 4294967295.
The value defaults to 4294967295. This value is loaded into the
position-compare register (QPOSCMP).

Sync output pulse width
The pulse stretcher logic in the position-compare unit generates
a programmable position-compare sync pulse output on the
position-compare match.

Enter a value from 1 to 4096 to determine the pulse width of the
position-compare sync output signal. The value defaults to 1.

2-127

C28x eQEP

Polarity of sync output
Choose a value to determine the polarity of the sync output signal:
Active high (the default) or Active low.

Watchdog Unit Pane

2-128

C28x eQEP

Enable watchdog time out flag via output port
The eQEP peripheral contains a watchdog timer that monitors
the quadrature-clock to indicate that the motion-control system
is operating. Select this check box to enable the watchdog time
out flag.

Watchdog timer
Enter the time-out value for the watchdog timer. Enter a value
from 0 to 65535 (the default).

2-129

C28x eQEP

Signal Data Types Pane

The image above shows the default condition of the Signal data types
pane. Choosing a number of options in other panes of the eQEP dialog
box causes a corresponding popup to appear in the Signal data types
pane.

The following table summarizes the options for which you can set the
data type in the Signal data types pane:

2-130

C28x eQEP

Pane Option

General Quadrature direction flag output port

Output position counter (selected by default)

Output position counter error flag

Output latch position counter on index event

Position
counter

Output latch position counter on strobe event

Output capture timer

Output capture period timer

Enable and output overflow error flag

Enable and output direction change error flag

Output capture timer latched value

Output capture timer period latched value

Speed
calculation

Output position counter latched value

Watchdog unit Enable watchdog time out flag via output port

The fields that appear on the Signal data types pane are named
similarly to these options. For example, Position counter value
data type on the Signal data types pane corresponds to the Output
position counter option on the Position counter pane.

For all data type fields, valid data types are auto, double, single,
int8, uint8, int16, uint16, int32, uint32, and boolean.

2-131

C28x eQEP

Interrupt Pane

The image above shows the default condition of the Interrupt pane.
Interrupts corresponding to specific events are enabled or disabled
based on the settings in this pane.

Position counter error interrupt enable
Check this box to enable position counter error interrupts. This
checkbox is cleared by default.

2-132

C28x eQEP

Quadrature phase error interrupt enable
Check this box to enable quadrature phase error interrupts. This
checkbox is cleared by default.

Quadrature direction change interrupt enable
Check this box to enable quadrature direction change interrupts
for changes in the counting direction. This checkbox is cleared
by default.

Watchdog timeout interrupt enable
The eQEP Peripheral contains a watchdog timer that monitors
the quadrature clock. Check this box to enable watchdog timeout
interrupts. This checkbox is cleared by default.

Position counter underflow interrupt enable
Check this box to enable position counter underflow interrupts.
This checkbox is cleared by default.

Position counter overflow interrupt enable
Check this box to enable position counter overflow interrupts.
This checkbox is cleared by default.

Position-compare ready interrupt enable
Check this box to enable position-compare ready interrupts. This
checkbox is cleared by default.

Position-compare match interrupt enable
Check this box to enable position-compare match interrupts. This
checkbox is cleared by default.

Strobe event latch interrupt enable
Check this box to enable strobe event latch interrupts. This
checkbox is cleared by default.

Index event latch interrupt enable
Check this box to enable index event latch interrupts. This
checkbox is cleared by default.

Unit timeout interrupt enable
Check this box to enable unit timeout interrupts. This checkbox is
cleared by default.

2-133

C28x eQEP

References For more information on the QEP module, consult the following
documents, available at the Texas Instruments Web site:

• TMS320x280x, 2801x, 2804x Enhanced Quadrature Encoder Pulse
(eQEP) Module Reference Guide, Literature Number SPRU790

• Using the Enhanced Quadrature Encoder Pulse (eQEP) Module in
TMS320x280x, 28xxx as a Dedicated Capture Application Report,
Literature Number SPRAAH1

See Also “eQEP” on page 3-201

2-134

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
GPIO Digital Input

Purpose Configure general-purpose input pins

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2802x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2803x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2806x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C280x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C28x3x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2834x

Description
This block configures the general-purpose I/O (GPIO) MUX registers
that control the operation of GPIO shared pins for digital input. Each
I/O port has one MUX register that selects peripheral operation or
digital I/O operation (the default). When a pin is configured for digital
input, it becomes unavailable for digital output or peripheral operation.
You can configure the Input qualification type for individual digital
input pins. To do so, use the Peripheral tab of Coder Target -> Target
Hardware Resources for your processor type.

Each processor has a different number of available GPIO pins:

• C280x has 35 GPIO pins

• C2802x has 22 GPIO pins, even though GPIO group lists 35

2-135

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
GPIO Digital Input

• C2803x has 45 GPIO pins

• C28x3x has 64 GPIO pins

Note To avoid losing new settings, click Apply before changing the
GPIO Group parameter.

Dialog
Box The dialog boxes for the C2802x and C28x3x processors are similar to

that of the C280x, shown in the preceding figure.

2-136

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
GPIO Digital Input

GPIO Group
Select the group of GPIO pins you want to view or configure.
For a table of GPIO pins and peripherals, refer to the Texas
Instruments documentation for your specific target.

Sample time
Specify the time interval between output samples. To inherit
sample time from the upstream block, set this parameter to -1.
For more information, refer to the section on “Specify Sample
Time” in the Simulink documentation.

Data type
Specify the data type of the input. The input is read as 16-bit
integer, and then cast to the selected data type. Valid data types
are auto, double, single, int8, uint8, int16, uint16, int32,
uint32 or boolean.

See Also C280x/C2802x/C2803x/C2806x/C28x3x/c2834x GPIO Digital Output

“GPIO” on page 3-205

2-137

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
GPIO Digital Output

Purpose Configure general-purpose input/output pins as digital outputs

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2802x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2803x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2806x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C280x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C28x3x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2834x

Description
Configure individual general-purpose input/output (GPIO) pins to
operate as digital outputs. When a pin is configured for digital output,
it cannot operate as a digital input or connect to peripheral I/O signals.
When you select a pin for digital output, the user interface presents a
Toggle option that inverts the output signal on the pin.

Each processor has a different number of available GPIO pins:

• C280x has 35 GPIO pins

• C2802x has 22 GPIO pins, even though GPIO group lists 35

• C2803x has 45 GPIO pins

• C28x3x has 64 GPIO pins

2-138

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
GPIO Digital Output

Note To avoid losing new settings, click Apply before changing the
GPIO Group parameter.

Dialog
Box The dialog boxes for the C2802x and C28x3x processors are similar to

that of the C280x, shown in the preceding figure.

GPIO Group
Select the group of GPIO pins you want to view or configure.

GPIO pins for output
To configure a GPIO pin for digital output, select the checkbox
next to it. Refer to the block for a table of all available peripherals
for each pin.

2-139

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x
GPIO Digital Output

A value of True at the input of the block drives the selected GPIO
pin high. A value of False at the input of the block grounds the
selected GPIO pin.

Toggle GPIO[bit#]
For each pin selected for output, you can elect to toggle the signal
of that pin. In Toggle mode, a value of True at the input of the
block switches the GPIO pin output level. Thus, if the GPIO pin
was driven high, in Toggle mode, with the value of True at the
input, the pin output level is driven low. If the GPIO pin was
driven low, in Toggle mode, with the value of True at the input of
the block, the same pin output level is driven high. If the input of
the block is False, the GPIO pin output level is unaffected.

Note The outputs of this block can be vectorized.

See Also C280x/C2802x/C2803x/C2806x/C28x3x/c2834x GPIO Digital Input

“GPIO” on page 3-205

2-140

C28x Hardware Interrupt

Purpose Interrupt Service Routine to handle hardware interrupt on C28x
processors

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ Scheduling

Description
Execution scheduling models based on timer interrupts do not meet
the requirements of some real-time applications to respond to external
events. The C28x Hardware Interrupt block addresses this problem by
allowing asynchronous processing of interrupts triggered by events
managed by other blocks in the C280x/C28x3x DSP Chip Support
Library.

The following C28x blocks can generate an interrupt for asynchronous
processing:

• ADC

• eCAN Receive

• SCI Receive

• SCI Transmit

• SPI Receive

• SPI Transmit

Only one Hardware Interrupt block can be used in a model. To handle
multiple interrupts, place a Demux block at the output of the Hardware
Interrupt block to direct function calls to the function-call subsystems.

Vectorized Output

The output of this block is a function call. The size of the function call
line equals the number of interrupts the block is set to handle. Each

2-141

C28x Hardware Interrupt

interrupt is represented by four parameters shown on the dialog box of
the block. These parameters are a set of four vectors of equal length.
Each interrupt is represented by one element from each parameter (four
elements total), one from the same position in each of these vectors.

Each interrupt is described by:

• CPU interrupt numbers

• PIE interrupt numbers

• Task priorities

• Preemption flags

So one interrupt is described by a CPU interrupt number, a PIE
interrupt number, a task priority, and a preemption flag.

The CPU and PIE interrupt numbers together uniquely specify a single
interrupt for a single peripheral or peripheral module.

The following table shows a super set of Peripheral Interrupts
Expansion (PIE) matrices for c28x (except c281x) processors. Some
peripheral interrupts may not be available on a particular device;
refer to the corresponding literature listed below for an exact PIE
representation of your processor. In the table, the row headers 1-12
represent the CPU values and the column headers 1-8 represent the
PIE values.

PIE table for all c28x processors except c281x follows:

PIE
•
CPU
•

8 7 6 5 4 3 2 1

1
WAKEINT
(LPM/WD)

TINT0
(TIMER
0)

ADCINT
(ADC)

XINT2 XINT1 ReservedSEQ2INT
(ADC)

SEQ1INT
(ADC)

2 EPWM8_TZINTEPWM7_TZINTEPWM6_
TZINT

EPWM5_TZINTEPWM4_TZINTEPWM3_TZINTEPWM2_TZINTEPWM1_TZINT

2-142

C28x Hardware Interrupt

PIE
•
CPU
•

8 7 6 5 4 3 2 1

3 EPWM8_INTEPWM7_INTEPWM6_
INT

EPWM5_INTEPWM4_INTEPWM3_INTEPWM2_INTEPWM1_INT

4 HRCAP2_INTHRCAP1_INTECAP6_INTECAP5_INTECAP4_INTECAP3_INTECAP2_INTECAP1_INT

5 ReservedReservedReservedHRCAP4_INTHRCAP3_INTReservedEQEP2_INTEQEP1_INT

6 SPITXINTD
(SPI-D)

SPIRXINTD
(SPI-D)

SPITXINTC
(SPI-C)
/

MXINTA
(McBSP-A)

SPIRXINTC
(SPI-C)
/

MRINTA
(McBSP-A)

SPITXINTB
(SPI-B)
/

MXINTB
(McBSP-B)

SPIRXINTB
(SPI-B)
/

MRINTB
(McBSP-B)

SPITXINTA
(SPI-A)

SPIRXINTA
(SPI-A)

7 ReservedReservedDINTCH6
(DMA6)

DINTCH5
(DMA5)

DINTCH4
(DMA4)

DINTCH3
(DMA3)

DINTCH2
(DMA2)

DINTCH1
(DMA1)

8 ReservedReservedSCITXINTC
(SCI-C)

SCIRXINTC
(SCI-C)

ReservedReservedI2CINT2AI2CINT1A

9 ECAN1INTB
(CAN-B)

ECAN0INTB
(CAN-B)

ECAN1INTA
(CAN-A)

ECAN0INTA
(CAN-A)

SCITXINTB
(SCI-B)
/

LINA_INT1

SCIRXINTB
(SCI-B)
/

LINA_INT0

SCITXINTA
(SCI-A)

SCIRXINTA
(SCI-A)

10 ADCINT8
/

EPWM16_TZINT

ADCINT7
/

EPWM15_TZINT

ADCINT6
/

EPWM14_TZINT

ADCINT5
/

EPWM13_TZINT

ADCINT4
/

EPWM12_TZINT

ADCINT3
/

EPWM11_TZINT

ADCINT2
/

EPWM10_TZINT

ADCINT1
/

EPWM9_TZINT11 CLA1_INT8
/

EPWM16_INT

CLA1_INT7
/

EPWM15_INT

CLA1_INT6
/

EPWM14_INT

CLA1_INT5
/

EPWM13_INT

CLA1_INT4
/

EPWM12_INT

CLA1_INT3
/

EPWM11_INT

CLA1_INT2
/

EPWM10_INT

CLA1_INT1
/

EPWM9_INT7

12 LUF LVF ReservedXINT7 XINT6 XINT5 XINT4 XINT3

PIE table for c281x processor follows:

2-143

C28x Hardware Interrupt

PIE
•
CPU
•

8 7 6 5 4 3 2 1

1
WAKEINT
(LPM/WD)

TINT0
(TIMER
0)

ADCINT
(ADC)

XINT2 XINT1 ReservedPDPINTB
(EV-B)

PDPINTA
(EV-A)

2 ReservedT1OFINT
(EV-A)

T1UFINT
(EV-A)

T1CINT
(EV-A)

T1PINT
(EV-A)

CMP3INT
(EV-A)

CMP2INT
(EV-A)

CMP1INT
(EV-A)

3 ReservedCAPINT3
(EV-A)

CAPINT2
(EV-A)

CAPINT1
(EV-A)

T2OFINT
(EV-A)

T2UFINT
(EV-A)

T2CINT
(EV-A)

T2PINT
(EV-A)

4 ReservedT3OFINT
(EV-B)

T3UFINT
(EV-B)

T3CINT
(EV-B)

T3PINT
(EV-B)

CMP6INT
(EV-B)

CMP5INT
(EV-B)

CMP4INT
(EV-B)

5 ReservedCAPINT6
(EV-B)

CAPINT5
(EV-B)

CAPINT4
(EV-B)

T4OFINT
(EV-B)

T4UFINT
(EV-B)

T4CINT
(EV-B)

T4PINT
(EV-B)

6 ReservedReservedMXINT
(McBSP)

MRINT
(McBSP)

ReservedReservedSPITXINTA
(SPI)

SPIRXINTA
(SPI)

7 ReservedReservedReservedReservedReservedReservedReservedReserved

8 ReservedReservedReservedReservedReservedReservedReservedReserved

9 ReservedReservedECAN1INT
(CAN)

ECAN0INT
(CAN)

SCITXINTB
(SCI-B)

SCIRXINTB
(SCI-B)

SCITXINTA
(SCI-A)

SCIRXINTA
(SCI-A)

10 ReservedReservedReservedReservedReservedReservedReservedReserved

11 ReservedReservedReservedReservedReservedReservedReservedReserved

12 ReservedReservedReservedReservedReservedReservedReservedReserved

Processor Literature Number at ti.com

280x and 28044 SPRU712

C2833x SPRUFB0

C2834x SPRUFN1

2-144

C28x Hardware Interrupt

Processor Literature Number at ti.com

C2802x SPRUFN3

C2803x SPRUGL8

C2806x SPRUH18

The task priority indicates the relative importance tasks associated with
the asynchronous interrupts. If an interrupt triggers a higher-priority
task while a lower-priority task is running, the execution of the
lower-priority task will be suspended while the higher-priority task is
executed. The lowest value represents the highest priority. The default
priority value of the base rate task is 40, so the priority value for each
asynchronously triggered task must be less than 40 for these tasks to
suspend the base rate task.

The preemption flag determines whether a given interrupt is
preemptable. Preemption overrides prioritization, such that
a preemptable task of higher priority can be preempted by a
non-preemptable task of lower priority.

2-145

C28x Hardware Interrupt

Dialog
Box

CPU interrupt numbers
Enter a vector of CPU interrupt numbers for the interrupts you
want to process asynchronously.

PIE interrupt numbers
Enter a vector of PIE interrupt numbers for the interrupts you
want to process asynchronously.

2-146

C28x Hardware Interrupt

Simulink task priorities
Enter a vector of task priorities for the interrupts you want to
process asynchronously.

See the discussion of this block’s “Vectorized Output” on page
2-141 for an explanation of task priorities.

Preemption flags
Enter a vector of preemption flags for the interrupts you want to
process asynchronously.

See the discussion of this block’s “Vectorized Output” on page
2-141 for an explanation of preemption flags.

Enable simulation input
Select this check box if you want to be able to test asynchronous
interrupt processing in the context of your Simulink software
model.

Note Select this check box to enable you to test asynchronous
interrupt processing behavior in Simulink software.

References Detailed information about interrupt processing is in TMS320x280x
DSP System Control and Interrupts Reference Guide, Literature
Number SPRU712B, available at the Texas Instruments Web site.

See Also The following links refer to topics that require the Embedded Coder
software.

“Asynchronous Scheduling”

C28x Software Interrupt Trigger,Idle Task

2-147

C28x I2C Receive

Purpose Configure inter-integrated circuit (I2C) module to receive data from
I2C bus

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2802x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2803x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2806x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C280x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C28x3x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2834x

Description
Configure the I2C module to receive data from the two-wire I2C serial
bus.

2-148

C28x I2C Receive

Dialog
Box

Addressing format
The I2C receive block supports the 7–Bit addressing, 10–Bit
addressing, and Free data format. The default setting is 7–Bit
addressing.

Slave address source
Select the method for setting the slave address register of the
I2C slave. Selecting Specify via dialog displays Slave address

2-149

C28x I2C Receive

register parameter. Selecting Input port enables definition
of the address register via the input port. The default setting
is Specify via dialog.

Slave address register
When you select Specify via dialog, enter a value for the Slave
address register. The default value is 80. This field takes a
decimal value.

Bit Count
Set the bit count to 1 through 8. The default setting is 8.

Read data length
Set the length of the read data. The default value is 1.

Initial output
Set the value the I2C node outputs to the model before it has
received data.

The default value is 0.

NACK bit generation
Select this parameter to generate a no-acknowledge bit (NACK)
during the I2C acknowledge cycle and ignore new bits from
the transmitting I2C node. The default setting is disabled (not
selected).

Enable stop condition
Enable the I2C Receive Block in master mode to send a STOP
message to the I2C Transmit block while it is in slave mode. The
default setting is disabled (not selected).

Output receiving status
Selecting this parameter creates a status output that indicates
when the I2C receive block is receiving a message. The default
setting is disabled (not selected).

Sample time
Set the sample time for the block’s input sampling. To execute
this block asynchronously, set Sample Time to -1, and refer to

2-150

C28x I2C Receive

“” for a discussion of block placement and other settings. The
default value is 0.001.

Data type
Type of data in the data vector. The length of the vector for the
received message is at most 8 bytes. If the message is less than 8
bytes, the data buffer bytes are right-aligned in the output. You
can set this parameter to int8, uint8, int16, uint16, int32, or
uint32. The default setting is int8.

References For detailed information on the I2C module, see:

• The TMS320x28xx, 28xxx Inter-Integrated Circuit (I2C) Module
Reference Guide, Literature Number SPRU721, available at the
Texas Instruments Web site, www.ti.com.

• The Philips Semiconductors Inter-IC bus (I2C-bus) specification
version 2.1 is available on the Philips Semiconductors Web site at
http://www.nxp.com/acrobat_download/literature/9398/39340011.pdf.

See Also “Using the I2C Bus to Access a Connected EEPROM”

C28x I2C Transmit

“I2C” on page 3-188

2-151

http://www.ti.com/
http://www.nxp.com/acrobat_download/literature/9398/39340011.pdf

C28x I2C Transmit

Purpose Configure inter-integrated circuit (I2C) module to transmit data to I2C
bus

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2802x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2803x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2806x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C280x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C28x3x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2834x

Description
Configure the I2C module to transmit data to the two-wire I2C serial
bus.

Note You can use this block to configure the I2C settings under the
Peripherals tab of the Coder Target > Target Hardware Resources for
the F2808 eZdsp, and F28335 eZdsp boards.

2-152

C28x I2C Transmit

Dialog
Box

Addressing format
The I2C transmit block supports the 7–Bit addressing, 10–Bit
addressing, and Free data format. The default setting is 7–Bit
addressing.

Slave address source
Select the method for setting the slave address register of the
I2C slave. Selecting Specify via dialog displays Slave address
register parameter . Selecting Input port enables definition
of the address register via the input port. The default setting
is Specify via dialog.

Slave address register
When you select Specify via dialog, enter a value for the Slave
address register. The default value is 80.

Bit Count
Set the bit count to 1 through 8. The default setting is 8.

2-153

C28x I2C Transmit

Enable stop condition
Selecting this parameter enables the transmitter to accept a
STOP condition from the C28x I2C Receive block. The default
setting is disabled (not selected).

Enable repeat mode
When you enable repeat mode, the I2C module retransmits the
same data until it detects a stop or start condition. If you use this
mode, also consider selecting Enable stop condition.

If you disable repeat mode, the I2C module operates in standard
mode, sending a specific number of data values once.

The default setting is disabled (not selected).

Output transmitting status
Selecting this parameter creates a status output that indicates
when the I2C transmit block is transmitting a message. The
default setting is disabled (not selected).

References For detailed information on the I2C module, see:

• The TMS320x28xx, 28xxx Inter-Integrated Circuit (I2C) Module
Reference Guide, Literature Number SPRU721, available at the
Texas Instruments Web site, www.ti.com.

• The Philips Semiconductors Inter-IC bus (I2C-bus) specification
version 2.1 is available on the Philips Semiconductors Web site at
http://www.nxp.com/acrobat_download/literature/9398/39340011.pdf.

See Also “Using the I2C Bus to Access a Connected EEPROM”

C28x I2C Receive

“I2C” on page 3-188

2-154

http://www.ti.com/
http://www.nxp.com/acrobat_download/literature/9398/39340011.pdf

C28x SCI Receive

Purpose Receive data on target via serial communications interface (SCI) from
host

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2802x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2803x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2806x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C280x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C281x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2834x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C28x3x

Description
The SCI Receive block supports asynchronous serial digital
communications between the target and other asynchronous
peripherals. This block receives scalar or vector data using the specified
SCI hardware module.

2-155

C28x SCI Receive

Note A model can only contain one SCI Receive block per module.
There are a maximum of 3 SCI modules on the c28x processor, A, B,
and C, which can be configured through Code Generation-> Coder
Target-> Target Hardware Resources-> Peripherals. Verify that
these settings meet the requirements of your application.

2-156

C28x SCI Receive

Dialog
Box

SCI module
SCI module to be used for communications.

Additional package header
This field specifies the data located at the front of the received
data package, which is not part of the data being received, and

2-157

C28x SCI Receive

generally indicates start of data. The additional package header
must be an ASCII value. You can use a string or number (0–255).
You must put single quotes around strings entered in this field,
but the quotes are not received nor are they included in the total
byte count. To specify a null value (no package header), enter
two single quotes alone.

Note Match additional package headers or terminators with
those specified in the host SCI Transmit block.

Additional package terminator
This field specifies the data located at the end of the received
data package, which is not part of the data being received,
and generally indicates end of data. The additional package
terminator must be an ASCII value. Use a string or number
(0–255). You must put single quotes around strings entered in
this field, but the quotes are not received nor are they included
in the total byte count. To specify a null value (no package
terminator), enter two single quotes alone.

Data type
Data type of the output data. Available options are single, int8,
uint8, int16, uint16, int32, or uint32.

Data length
How many of Data type the block will receive (not bytes).
Anything more than 1 is a vector. The data length is inherited
from the input (the data length originally input to the host-side
SCI Transmit block).

Initial output
Default value from the SCI Receive block. This value is used,
for example, if a connection time-out occurs and the Action
taken when connection timeout field is set to “Output the last
received value”, but nothing yet has been received.

2-158

C28x SCI Receive

Action taken when connection times out
Specify what to output if a connection time-out occurs. If Output
the last received value is selected, the block outputs the last
received value. If a value has not been received, the block outputs
the Initial output value.

If you select Output custom value, use the Output value when
connection times out field to set the custom value.

Sample time
Sample time, Ts, for the block’s input sampling. To execute this
block asynchronously, set Sample Time to -1, and refer to
“Asynchronous Scheduling” for a discussion of block placement
and other settings.

Output receiving status
Selecting this checkbox creates a Status block output that
provides the status of the transaction.

The error status may be one of the following values:

• 0: No errors

• 1: A time-out occurred while the block was waiting to receive
data

• 2: There is an error in the received data (checksum error)

• 3: SCI parity error flag — Occurs when a character is received
with a mismatch

• 4: SCI framing error flag — Occurs when an expected stop bit
is not found

Enable receive FIFO interrupt
If this option is selected, an interrupt is posted when FIFO is full,
allowing the subsystem to take some sort of action (for example,
read data as soon as it is received). If this option is cleared, the
block stays in polling mode. If the block is in polling mode and
not blocking, it checks the FIFO for data. If data is present, the
block reads and outputs the data. If data is not present, the block

2-159

C28x SCI Receive

continues. If the block is in polling mode and blocking, it waits
until data is available to read (after data length is reached).

Receive FIFO interrupt level (maximum 4 for Piccolo devices)
This parameter is enabled when the Enable receive FIFO
interrupt option is selected. Select an interrupt level from 0 to
16. The default level is 0.

References For detailed information on the SCI module, see TMS320x281x, 280x
DSP Serial Communication Interface (SCI) Reference Guide, Literature
Number SPRU051B, available at the Texas Instruments Web site.

See Also “HIL Verification of IIR Filter via SCI”

C28x SCI Transmit, C28x Hardware Interrupt

“SCI_A, SCI_B, SCI_C” on page 3-195

2-160

C28x SCI Transmit

Purpose Transmit data from target via serial communications interface (SCI)
to host

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2802x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2803x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2806x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C280x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C281x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2834x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C28x3x

Description
The SCI Transmit block transmits scalar or vector data using the
specified SCI hardware module. The sampling rate and data type are
inherited from the input port. The data type of the input port must be
one of the following: single, int8, uint8, int16, uint16, int32, uint32. If
the data type is not specified, the default data type is uint8.

2-161

C28x SCI Transmit

Note A model can only contain one SCI Transmit block per module.
There are a maximum of 3 SCI modules on the c28x processor, A, B
and C, which can be configured through Code Generation-> Coder
Target-> Target Hardware Resources -> Peripherals.

Verify that these settings meet the requirements of your application.

Fixed-point inputs are not supported for this block but you can use a
Data Type Conversion block with "Stored Integer" to pass the native
data type of your fixed-point format.

2-162

C28x SCI Transmit

Dialog
Box

SCI module
SCI module to be used for communications.

Additional package header
This field specifies the data located at the front of the sent data
package, which is not part of the data being transmitted, and
generally indicates start of data. The additional package header
must be an ASCII value. Use a string or number (0–255). You
must put single quotes around strings entered in this field, but
the quotes are not sent nor are they included in the total byte
count. To specify a null value (no package header), enter two
single quotes alone.

2-163

C28x SCI Transmit

Note Match additional package headers or terminators with
those specified in the host SCI Receive block.

Additional package terminator
This field specifies the data located at the end of the sent
data package, which is not part of the data being transmitted,
and generally indicates end of data. The additional package
terminator must be an ASCII value. Use a string or number
(0–255). You must put single quotes around strings entered in
this field, but the quotes are not sent nor are they included in the
total byte count. To specify a null value (no package terminator),
enter two single quotes alone.

Enable transmit FIFO interrupt
If checked, an interrupt is posted when FIFO is full, allowing the
subsystem to take some sort of action.

Transmit FIFO interrupt level (maximum 4 for Piccolo devices)
This parameter is enabled when the Enable transmit FIFO
interrupt option is selected. Select an interrupt level from 0 to
16. The default level is 0.

References For detailed information on the SCI module, see TMS320x281x, 280x
DSP Serial Communication Interface (SCI) Reference Guide, Literature
Number SPRU051B, available at the Texas Instruments Web site.

See Also “HIL Verification of IIR Filter via SCI”

C28x SCI Receive

C28x Hardware Interrupt

“SCI_A, SCI_B, SCI_C” on page 3-195

2-164

C28x Software Interrupt Trigger

Purpose Generate software triggered nonmaskable interrupt

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2802x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2803x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2806x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C280x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C281x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2834x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C28x3x

Description
When you add this block to a model, the block polls the input port for
the input value. When the input value is greater than the value in
Trigger software interrupt when input value is greater than, the
block posts the interrupt to a Hardware Interrupt block in the model.

To use this block, add a Hardware Interrupt block to your model
to process the software triggered interrupt from this block into an
interrupt service routine on the processor. Set the interrupt number
in the Hardware Interrupt block to the value you set here in CPU
interrupt number.

2-165

C28x Software Interrupt Trigger

The CPU and PIE interrupt numbers together specify a single interrupt
for a single peripheral or peripheral module. The following table maps
CPU and PIE interrupt numbers to these peripheral interrupts. The
row numbers are CPU values and the column numbers are the PIE
values.

Note Fixed-point inputs are not supported for this block.

2-166

C28x Software Interrupt Trigger

Dialog
Box

CPU interrupt number
Specify the interrupt to which the block responds. Interrupt
numbers are integers ranging from 1 to 12.

PIE interrupt number
Enter an integer value from 1 to 8 to set the Peripheral Interrupt
Expansion (PIE) interrupt number.

2-167

C28x Software Interrupt Trigger

Trigger software interrupt when input value is greater than:
Sets the value above which the block posts an interrupt. Enter
the value for the level that indicates that the interrupt is asserted
by a requesting routine.

References For detailed information about interrupt processing, see TMS320x280x
DSP System Control and Interrupts Reference Guide, SPRU712B,
available at the Texas Instruments Web site.

See Also C28x Hardware Interrupt

2-168

C28x SPI Receive

Purpose Receive data via serial peripheral interface (SPI) on target

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2802x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2803x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2806x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C280x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C281x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2834x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C28x3x

Description
The SPI Receive block supports synchronous, serial peripheral
input/output port communications between the Board controller and
external peripherals or other controllers. The block can run in either
slave or master mode.

In master mode, the SPISIMO pin transmits data and the SPISOMI pin
receives data. When master mode is selected, the SPI initiates the data
transfer by sending a serial clock signal (SPICLK), which is used for the
entire serial communications link. Data transfers are synchronized to
this SPICLK, which enables both master and slave to send and receive
data simultaneously. The maximum for the clock is one quarter of the
DSP controller’s clock frequency.

2-169

C28x SPI Receive

A model can only contain one SPI Receive block per module. There are
two modules, A and B, which can be configured through Coder Target ->
Target Hardware Resources.

Note Many SPI-specific settings are in the Board section of Coder
Target -> Target Hardware Resources. Verify that these settings meet
the requirements of your application.

2-170

C28x SPI Receive

Dialog
Box

Select module
Select the SPI module to be used for communications. Each
processor has a different number of modules.

2-171

C28x SPI Receive

Data length
Specify how many uint16s are expected to be received. Select
1 through 16.

Initial output
Set the value the SPI node outputs to the model before it has
received data.

The default value is 0.

Enable blocking mode
If this option is selected, system waits until data is received before
continuing processing.

Output receive error status
Selecting this checkbox creates a Status block output that
provides the status of the transaction.

Error status may be one of the following values:

• 0: No errors

• 1: Data loss occurred, (Overrun: when FIFO disabled, Overflow
when FIFO enabled)

• 2: Data not ready, a time out occurred while the block was
waiting to receive data

Post interrupt when data is received
Check this check box to post an asynchronous interrupt when
data is received.

Sample time
Sample time, Ts, for the block’s input sampling. To execute this
block asynchronously, set Sample Time to -1, check the Post
interrupt when message is received box, and refer to “” for a
discussion of block placement and other settings.

See Also “SPI-Based Control of PWM Duty Cycle”

C28x SPI Transmit

2-172

C28x SPI Receive

C28x Hardware Interrupt

“SPI_A, SPI_B, SPI_C, SPI_D” on page 3-198

2-173

C28x SPI Transmit

Purpose Transmit data via serial peripheral interface (SPI) to host

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2802x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2803x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2806x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C280x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C281x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2834x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C28x3x

Description
The SPI Transmit supports synchronous, serial peripheral input/output
port communications between the Board controller and external
peripherals or other controllers. The block can run in either slave or
master mode. In master mode, the SPISIMO pin transmits data and
the SPISOMI pin receives data. When master mode is selected, the SPI
initiates the data transfer by sending a serial clock signal (SPICLK),
which is used for the entire serial communications link. Data transfers
are synchronized to this SPICLK, which enables both master and slave
to send and receive data simultaneously. The maximum for the clock is
one quarter of the Board controller’s clock frequency.

2-174

C28x SPI Transmit

The sampling rate is inherited from the input port. The supported data
type is uint16.

Note A model can only contain one SPI Transmit block per module.
There are two modules, A and B, which can be configured through
Coder Target -> Target Hardware Resources.

Many SPI-specific settings are in the Board section of Coder Target
-> Target Hardware Resources. Verify that these settings meet the
requirements of your application.

2-175

C28x SPI Transmit

Dialog
Box

Select module
Select the SPI module to be used for communications. Each
processor has a different number of modules.

Output transmit error status
Selecting this check box creates a Status block output that
provides the status of the transaction.

Error status may be one of the following values:

• 0: No errors

• 1: A time-out occurred while the block was transmitting data

2-176

C28x SPI Transmit

• 2: There is an error in the transmitted data (for example,
header or terminator don’t match, length of data expected is too
big or too small)

Enable blocking mode
If this option is selected, system waits until data is sent before
continuing processing.

Post interrupt when data is transmitted
Check this check box to post an asynchronous interrupt when
data is transmitted.

See Also “SPI-Based Control of PWM Duty Cycle”

C28x SPI Receive

C28x Hardware Interrupt

“SPI_A, SPI_B, SPI_C, SPI_D” on page 3-198

2-177

C2802x/C2803x/C2806x COMP

Purpose Compare two input voltages on comparator pins

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2802x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2803x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2806x

Description
Configures the COMP to output a constant data from the comparator
pins on the DSP.

2-178

C2802x/C2803x/C2806x COMP

Dialog
Box

Comparator module
Select the comparator module to which the block configures. Use
only one block per module.

Second input
Select COMPxB to compare the voltage of Input Pin A with Input
Pin B

Select Internal DAC to compare the voltage of Input Pin A
with the output of a DAC reference located in the comparator.
For more information, see the “DAC Reference” section of the
TMS320x2802x, 2803x Piccolo Analog-to-Digital Converter (ADC)
and Comparator.

2-179

C2802x/C2803x/C2806x COMP

The comparator source outputs 1, if Input Pin A has a value
greater than Input Pin B or the 10-bit DAC reference. Otherwise,
it outputs 0.

Inverter comparator output
Select this check box to apply a logical NOT to the output of the
comparator source. For example, when the comparator source
outputs 1, the inverter circuit changes it to 0.

Synchronization
Select Asynchronous to pass the asynchronous version of the
comparator output. Select Synchronous to pass the synchronous
version of the comparator output. Selecting Synchronous enables
the Qualification period option.

Qualification period
Qualify changes in the comparator output before passing
them along. The Passed through setting passes changes in
the comparator value along without qualifying them. The
consecutive clocks settings pass changes in the comparator
value along after receiving the specified number of consecutive
samples with the same value. Use this setting to prevent
intermittent and spurious changes in the comparator output.

Sample time
Specify the time interval between samples. To inherit sample
time from the upstream block, set this parameter to -1.

References TMS320x2802x, 2803x Piccolo Analog-to-Digital Converter (ADC)
and Comparator, Literature Number: SPRUGE5, from the Texas
Instruments Web site.

2-180

C2802x/C2803x/C2806x ADC

Purpose Configure ADC to sample analog pins and output digital data

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2802x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2803x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2806x

Description
Configures the ADC to output a constant stream of data collected from
the ADC pins on the DSP.

An ADC block allows for reading one ADC channel. Use multiple ADC
blocks to read multiple ADC channels.

Examples Synchronize ADC with PWM

Use a hardware interrupt to synchronize changes to the PWM duty
cycle with ADC conversion.

This example demonstrates the use of the ADC block and PWM blocks.
The generated DSP code produces the pulse waveform whose duty
cycle is changing as the voltage applied to ADC input changes. The
waveform period is kept constant. The example also shows the use of
the Hardware Interrupt block to synchronize the update of the PWM
duty cycle with the ADC conversion.

This model uses the ADC block to sample an analog voltage and the
PWM block to generate a pulse waveform. The analog voltage controls
the duty cycle of the PWM waveform. Duty cycle changes can be
observed on the oscilloscope. "Hardware Interrupt" installs an Interrupt
Service Routine (ISR) for ADC interrupt and schedules the execution of

2-181

C2802x/C2803x/C2806x ADC

the connected subsystem (ADC-PWM Subsystem) when ADC interrupt
(ADCINT) is received.

"ADC-PWM Subsystem" consists of an ADC driving the duty cycle input
port of the PWM. PWM is configured to trigger ADC start of conversion
(SOC).

Required Hardware:

• Spectrum Digital F2812/F2808/F28335 eZdsp boards or F28027
controlSTICK

• Oscilloscope and probes

• Function generator

Hardware Connections: Connect the function generator output to the
ADC input ADCINA0 on the board. Connect the output of the PWM1 to
the analog input of the oscilloscope.

To run the example on on the DSP Board:

1 Open the model.

2 Click "Incremental build" to generate, build, load and run the DSP
code.

3 Observe the change of the PWM waveform on the oscilloscope.

2-182

C2802x/C2803x/C2806x ADC

Dialog
Box

Sampling mode
Select Single sample mode to sample two signals sequentially.
Select Simultaneous sample mode to sample the two signals
with a minimal delay between the samples.

SOC trigger number
Identify the start-of-conversion trigger by number. In single
sampling mode, you can select an individual trigger. In
simultaneous sampling mode, you can select triggers in pairs.

2-183

C2802x/C2803x/C2806x ADC

SOCx acquisition window
Define the length of the acquisition period, the acquisition
window, in sample cycles. The minimal value for this parameter is
7 cycles. For more information, see the “ADC Acquisition (Sample
and Hold) Window” section of the TMS320x2802x, 2803x Piccolo
Analog-to-Digital Converter (ADC) and Comparator Reference
Guide.

SOCx trigger source
Select the source that triggers the start of conversion. The
following types of inputs are available:

• Software

• CPU Timers 0/1/2 interrupts

• XINT2 SOC

• ePWM1-7 SOCA and SOCB

If you set SOCx trigger source to XINT2_XINT2SOC, use the
XINT2SOC external pin parameter in the Coder Target ->
Target Hardware Resources to define the external GPIO pin that
triggers the start of conversion. XINT2SOC external pin is
located under the Coder Target -> Target Hardware Resources of
the Peripherals tab, on the ADC pane.

ADCINT will trigger SOCx
At the end of conversion, use the ADCINT1 or ADCINT2 interrupt to
trigger a start of conversion (SOC). This loop creates a continuous
sequence of conversions. The default selection, No ADCINT
disables this parameter.

Sample time
Specify the time interval between samples. To inherit sample
time from the upstream block, set this parameter to -1.

Data type
Select the data type of the digital output data. You can choose
from the options double, single, int8, uint8, int16, uint16,
int32, and uint32.

2-184

C2802x/C2803x/C2806x ADC

Post interrupt at EOC trigger
Post interrupts when the ADC triggers EOC pulses. When
you select this option, the dialog box displays the Interrupt
selection and ADCINT# continuous mode options. For more
information, see the “EOC and Interrupt Operation” section of the
TMS320x2802x, 2803x Piccolo Analog-to-Digital Converter (ADC)
and Comparator Reference Guide.

Interrupt selection
Select which interrupt the ADC posts after triggering an EOC
pulse.

ADCINT1 continuous mode
ADCINT2 continuous mode

When the ADC generates an end of conversion (EOC) signal,
generate an ADCINT# interrupt whether the previous interrupt
flag has been acknowledged or not.

Input Channels — Conversion channel
Select the input channel to which this ADC conversion applies.

2-185

C2802x/C2803x/C2806x ADC

References TMS320x2802x, 2803x Piccolo Analog-to-Digital Converter (ADC)
and Comparator, Literature Number: SPRUGE5, from the Texas
Instruments Web site.

See Also “ADC-PWM Synchronization via ADC Interrupt”

C280x/C2802x/C2803x/C2806x/C28x3x/c2834x ePWM

C28x Hardware Interrupt

2-186

C2802x/C2803x/C2806x ADC

“Configuring Acquisition Window Width for ADC Blocks”

“ADC” on page 3-178

2-187

C2802x/C2803x/C2806x AnalogIO Input

Purpose Configure pin, sample time, and data type for analog input

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2802x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2803x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2806x

Description
Use this block to sample the Analog IO input pins on the C2802x
processor for a positive voltage and output the results.

2-188

C2802x/C2803x/C2806x AnalogIO Input

Dialog
Box

Parameters (Input pins)
Select the input pins to sample.

Sample time
Specify the time interval between samples. To inherit sample
time from the upstream block, set this parameter to -1.

Data type
Select the data type of the digital output data. If you select auto,
the block automatically selects the data type for your model. You
can also manually select a data type. You can choose from the
options double, single, int8, uint8, int16, uint16, int32, and
uint32.

See Also C2802x/C2803x/C2806x AnalogIO Output

2-189

C2802x/C2803x/C2806x AnalogIO Output

Purpose Configure Analog IO to output analog signals on specific pins

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2802x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2803x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2806x

Description
Configures the Analog IO output pins for the specified pins. In regular
mode, a value of True at the input of the block pulls the Analog IO
pin high. A value of False grounds the pin. In toggle mode, a value
of True at the input of the block switches the actual output level of
the Analog IO pin. A value of False does not alter the output level of
the Analog IO pin.

2-190

C2802x/C2803x/C2806x AnalogIO Output

Dialog
Box

Parameters (Output Pins)
Select the analog output pins that express the value of the digital
input on AIOx. Selecting Toggle inverts the output voltage
levels of the pins.

See Also C2802x/C2803x/C2806x AnalogIO Input

2-191

C2803x LIN Receive

Purpose Receive data via local interconnect network (LIN) module on target

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2803x

Description
The Local Interconnect Network (LIN) bus implements a serial
communications protocol for distributed automotive and industrial
applications. In particular, LIN serves low cost applications that do not
require the bandwidth or robustness provided by the CAN protocol. For
more information about LIN, see http://www.lin-subbus.org/.

The LIN Receive block configures the target to receive scalar or vector
data from the LINRX or LINTX pins.

Each C2803x target has one LIN module. Your model can only contain
one LIN Transmit and one LIN Receive block per module.

The C2803x LIN Transmit block takes three inputs:

• ID: Set the value of the LIN ID for the LIN transmit node.

• Tx ID Mask: Set the value of the LIN ID mask for the LIN transmit
node.

• Data: Connect this input to the data source.

For more information and examples, see:

• “Configuring LIN Communications”

• LIN-Based Control of PWM Duty Cycle (example)

2-192

http://www.lin-subbus.org/

C2803x LIN Receive

Note Many LIN-specific settings are located under Peripherals > LIN
in Coder Target -> Target Hardware Resources for your model. Verify
that these settings meet the requirements of your application.

Dialog
Box

Data type
Select the data type the LIN block outputs to the model. Available
options are single, int8, uint8, int16, uint16, int32, or uint32.

2-193

C2803x LIN Receive

To interpret the data, the data type and data length must match
those of the data input to transmitting LIN node.

The default value is int16.

Data length
Set the length of the data the LIN block outputs to the model. This
value is measured in multiples of the Data type. For example,
if Data type is int16 and Data length is int16, the LIN block
outputs the data to the model in lengths of

1 x int16

If you set the Data length to a value greater than 1, the block
outputs the data as vectors.

To interpret the data, the data type and data length must match
those of the data input to transmitting LIN node.

The default value is 1.

Note In a loopback configuration, the maximum data length
cannot exceed 8 bytes. If the sum of the incoming and the outgoing
data exceeds the hardware buffer length of the LIN module, the
module discards incoming bytes of data.

Initial output
Set the initial value the DATA port outputs to the model before
the LIN node has received data.

The default value is 0.

Action taken when connection times out
Specify what the LIN block outputs on the DATA port in response
to a connection time-out. The choices are:

2-194

C2803x LIN Receive

• Output the last received value— the DATA port outputs
the last data value the LIN node received.

• Output custom value — the DATA port outputs the value
defined by Output value when connection times out.

The default value is Output the last received value.

If the LIN node has not received data, and you set this parameter
to Output the last received value, the DATA port outputs
the Initial output value.

Output value when connection times out
Specify the custom value the DATA port outputs when Action
taken when connection times out is set to Output custom
value and a connection timeout occurs.

Enable blocking mode
If you enable (select) this checkbox, the target application stops
and waits for the LIN node to receive data before continuing. If
you disable this option, the application continues running and
does not wait for data to arrive.

The default value is disabled (deselected).

Verify checksum
If you enable (select) this option, the LIN node verifies the
checksum it receives.

The default value is disabled (deselected).

Output receiving status
Enabling (selecting) this checkbox adds a status output to the
LIN Receive block, as shown in the following figure.

The status output reports the following values for each message
the LIN node receives:

• 0: No error.

2-195

C2803x LIN Receive

• -1: A time-out occurred while the block was waiting to receive
data.

• -2: Unable to receive.

• Other status values represent the highest 8 bits of the SCI
Flags Register. Convert these values from decimal to binary.
Then determine the meaning of these values by referring to
“Table 14. SCI Flags Register (SCIFLR) Field Descriptions”
in TMS320F2803x Piccolo Local Interconnect Network (LIN)
Module, Literature Number SPRUGE2, available at the Texas
Instruments Web site.

Receive buffer interrupt
If you enable this option, the SCI node generates an interrupt
after it receives a complete frame. The default value is Disabled.

Checksum error interrupt
If you enable this option, the LIN block generates an interrupt
when the incoming message contains an invalid checksum.

The default value is Disabled.

The TXRX Error Detector Checksum Calculator verifies
checksums for incoming messages. With the classic LIN
implementation, the checksum only covers the data fields. For
LIN 2.0–compliant messages, the checksum includes both the ID
field and the data fields. If you enable this option, the Checksum
Calculator generates interrupts when it detects checksum errors,
such as those caused by LIN message collisions.

Framing error interrupt
If you enable this option, the LIN module generates interrupts
when framing errors occur.

The default value is Disabled.

Overrun error interrupt
If you enable this option, the LIN module generates interrupt
when overrun errors occur.

2-196

C2803x LIN Receive

The default value is Disabled.

ID parity error interrupt
If you enable this option, the LIN module generates an ID-Parity
interrupt when it receives an invalid ID.

The default value is Disabled.

If you enable this option, also enable Parity mode in Coder
Target -> Target Hardware Resources.

ID match interrupt
If you enable this option, the LIN module generates an interrupt
when the LIN node validates the ID in messages it receives.

The default value is Disabled.

Sample time
Set the block’s input sample time, Ts.

The default value is 0.1 seconds.

References For detailed information on the LIN module, see TMS320F2803x
Piccolo Local Interconnect Network (LIN) Module, Literature Number
SPRUGE2, available at the Texas Instruments Web site.

See Also C2803x LIN Transmit (block reference)

“LIN” on page 3-225

“Configuring LIN Communications”

LIN-Based Control of PWM Duty Cycle (example)

2-197

C2803x LIN Transmit

Purpose Transmit data from target via serial communications interface (SCI)
to host

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2803x

Description
The Local Interconnect Network (LIN) bus implements a serial
communications protocol for distributed automotive and industrial
applications. In particular, LIN serves low cost applications that do not
require the bandwidth or robustness provided by the CAN protocol. For
more information about LIN, see http://www.lin-subbus.org/.

The C2803x LIN Transmit block takes three inputs:

• ID: Set the value of the LIN ID for the LIN transmit node.

• Tx ID Mask: Set the value of the LIN ID mask for the LIN transmit
node.

• Data: Connect this input to the data source.

For more information and examples, see:

• “Configuring LIN Communications”

• LIN-Based Control of PWM Duty Cycle (example)

Note Many LIN-specific settings are located under Peripherals > LIN
in Coder Target -> Target Hardware Resources for your model. Verify
that these settings meet the requirements of your application.

2-198

http://www.lin-subbus.org/

C2803x LIN Transmit

Dialog
Box

Send checksum
Select this checkbox to include a checksum in the last data field of
the checkbyte. LIN 2.0 implementations require this checksum.

The default value is unchecked (disabled).

Physical bus error interrupt
The LIN master node detects when the physical bus cannot
convey a valid message. For example, if the bus had a short circuit
to ground or to VBAT. This raises a physical bus error flag in all
of the LIN nodes on the network. If you enable Physical bus
error interrupt, the LIN transmit node generates an interrupt
in response to a physical bus error flag.

Bit error interrupt
If you enable this option, the LIN node compares the data it
transmits and the data on the LIN bus.

The default value is Disabled.

The TXRX Error Detector Bit Monitor compares data bits on the
LIN transmit (LINTX) and receive (LINRX) pins. If the data
do not match, the Bit Monitor raises a bit-error flag. When you

2-199

C2803x LIN Transmit

enable this option, the bit-error flag also produces a bit-error
interrupt.

Transmit buffer interrupt
If you enable this option, the LIN node generates an interrupt
while it is generating a checksum and setting the Transmitter
buffer register ready flag.

The default value is Disabled.

References For detailed information on the SCI module, see TMS320F2803x
Piccolo Local Interconnect Network (LIN) Module, Literature Number
SPRUGE2, available at the Texas Instruments Web site.

See Also C2803x LIN Receive (block reference)

“LIN” on page 3-225

“Configuring LIN Communications”

LIN-Based Control of PWM Duty Cycle (example)

2-200

C281x ADC

Purpose Analog-to-digital converter (ADC)

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C281x

Description
The C281x ADC block configures the C281x ADC to perform
analog-to-digital conversion of signals connected to the selected ADC
input pins. The ADC block outputs digital values representing the
analog input signal and stores the converted values in the result
register of your digital signal processor. You use this block to capture
and digitize analog signals from external sources such as signal
generators, frequency generators, or audio devices.

Triggering

The C281x ADC trigger mode depends on the internal setting of the
source start-of-conversion (SOC) signal. In unsynchronized mode the
ADC is usually triggered by software at the sample time intervals
specified in the ADC block. For more information on configuring the
specific parameters for this mode, see “Configuring Acquisition Window
Width for ADC Blocks”.

In synchronized mode, the Event (EV) Manager associated with the
same module as the ADC triggers the ADC. In this case, the ADC
is synchronized with the pulse width modulator (PWM) waveforms
generated by the same EV unit via the ADC Start Event signal
setting. The ADC Start Event is set in the C281x PWM block. See
that block for information on the settings.

Note The ADC cannot be synchronized with the PWM if the ADC is in
cascaded mode (see below).

2-201

C281x ADC

Output

The output of the C281x ADC is a vector of uint16 values. The output
values are in the range 0 to 4095 because the C281x ADC is 12-bit
converter.

Modes

The C281x ADC block supports ADC operation in dual and cascaded
modes. In dual mode, either module A or module B can be used for the
ADC block, and two ADC blocks are allowed in the model. In cascaded
mode, both module A and module B are used for a single ADC block.

Dialog
Box

ADC Control Pane

Module
Specify which DSP module to use:

2-202

C281x ADC

• A — Displays the ADC channels in module A (ADCINA0
through ADCINA7).

• B — Displays the ADC channels in module B (ADCINB0
through ADCINB7).

• A and B — Displays the ADC channels in both modules A
and B (ADCINA0 through ADCINA7 and ADCINB0 through
ADCINB7)

Then, use the check boxes to select the desired ADC channels.

Conversion mode
Type of sampling to use for the signals:

• Sequential— Samples the selected channels sequentially

• Simultaneous — Samples the corresponding channels of
modules A and B at the same time

Start of conversion
Specify the type of signal that triggers the conversion:

• Software — Signal from software

• EVA— Signal from Event Manager A (only for Module A)

• EVB— Signal from Event Manager B (only for Module B)

• External — Signal from external hardware

Sample time
Time in seconds between consecutive sets of samples that are
converted for the selected ADC channel(s). This is the rate at
which values are read from the result registers. See“Scheduling
and Timing” for more information on timing. To execute this
block asynchronously, set Sample Time to -1, check the Post
interrupt at the end of conversion box, and refer to “” for a
discussion of block placement and other settings.

2-203

C281x ADC

To set different sample times for different groups of ADC
channels, you must add separate C281x ADC blocks to your model
and set the desired sample times for each block.

Data type
Date type of the output data. Valid data types are auto, double,
single, int8, uint8, int16, uint16, int32, or uint32.

Post interrupt at the end of conversion
Check this check box to post an asynchronous interrupt at the
end of each conversion. The interrupt is posted at the end of
conversion.

Input Channels Pane

Number of conversions
Number of ADC channels to use for analog-to-digital conversions.

2-204

C281x ADC

Conversion no.
Specific ADC channel to associate with each conversion number.

In oversampling mode, a signal at a given ADC channel can be
sampled multiple times during a single conversion sequence.
To oversample, specify the same channel for more than one
conversion. Converted samples are output as a single vector.

Use multiple output ports
If more than one ADC channel is used for conversion, you can use
separate ports for each output and show the output ports on the
block. If you use more than one channel and do not use multiple
output ports, the data is output in a single vector.

See Also “ADC-PWM Synchronization via ADC Interrupt”

C281x PWM

C28x Hardware Interrupt

“ADC” on page 3-178

2-205

C281x CAP

Purpose Receive and log capture input pin transitions

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C281x

Description
The C281x CAP module provides input capture functionality for
systems where precise timing of external events is important. The
C281x CAP block sets parameters for the capture units (CAPs) of the
Event Manager (EV) module. The capture units log transitions detected
on the capture unit pins by recording the times of the input signal
transitions into a two-level deep FIFO stack. You can set the capture
unit pins to detect rising edge, falling edge, either type of transition,
or no transition. The cnt output of the block gives the captured value
of the EV running timer.

The C281x chip has six capture units — three associated with each
EV module. Capture units 1, 2, and 3 are associated with EVA and
capture units 4, 5, and 6 are associated with EVB. Each capture unit is
associated with a capture input pin.

Each group of EV module capture units can use one of two
general-purpose (GP) timers on the target board. EVA capture units
can use GP timer 1 or 2. EVB capture units can use GP timer 3 or 4.
When a transition occurs, the module stores the value of the selected
timer in the two-level deep FIFO stack.

The C281x CAP module shares GP Timers with other C281 blocks. For
more information and guidance on sharing timers, see “Sharing General
Purpose Timers between C281x Peripherals”.

Note You can have up to two C281x CAP blocks in a model—one block
for each EV module.

2-206

C281x CAP

Outputs

This block has up to two outputs: a cnt (count) output and an optional,
FIFO status flag output. The cnt output holds the value of the EV
timer captured during the detected transitions. The cnt output gives
the captured values of the running counter based on the value set in
Output data format parameter. The status flag outputs are:

• 0 — The FIFO is empty. Either no captures have occurred or the
previously stored captures have been read from the stack. (The
binary version of this flag is 00.)

• 1 — The FIFO has one entry in the top register of the stack. (The
binary version of this flag is 01.)

• 2 — The FIFO has two entries in the stack registers. (The binary
version of this flag is 10.)

• 3 — The FIFO has two entries in the stack registers and one or
more captured values have been lost. This occurs because another
capture occurred before the FIFO stack was read. This means that
the FIFO stack is read when you execute the block as specified by
your scheduling scheme synchronously, if a sample time is used or
asynchronously, if triggered by an interrupt or an idle task. The new
value is placed in the bottom register. The bottom register value is
pushed to the top of the stack and the top value is pushed out of the
stack. (The binary version of this flag is 11.)

2-207

C281x CAP

Dialog
Box

Data Format Pane

Module
Select the Event Manager (EV) module to use:

• A — Use CAPs 1, 2, and 3.

• B — Use CAPs 4, 5, and 6.

Output overrun status flag
Select to output the status of the elements in the FIFO. The data
type of the status flag is uint16.

Output data format
The type of data to output:

• Send 2 elements (FIFO Buffer) — Sends the latest two
values. The output is updated when there are two elements
in the FIFO, which is indicated by bit 13 or 11 or 9 being
sent (CAP x FIFO). If the CAP is polled when fewer than two

2-208

C281x CAP

elements are captures, old values are repeated. The CAP
registers are read as follows:

1 The CAP x FIFO status bits are read and the value is stored
in the status flag.

2 The top value of the FIFO is read and stored in the output
at index 0.

3 The new top value of the FIFO (the previously stored bottom
stack value) is read and stored in the output at index 1.

• Send 1 element (oldest)— Sends the older of the two most
recent values. The output is updated when there is at least one
element in the FIFO, which is indicated by the bits 13:12, or
11:10, or 9:8 being sent. The CAP registers are read as follows:

4 The CAP x FIFO status bits are read and the value is stored
in the status flag.

5 The top value of the FIFO is read and stored in the output.

• Send 1 element (latest) — Sends the most recent value.
The output is updated when there is at least one element in
the FIFO, which is indicated by the bits 13:12, or 11:10, or 9:8
being sent. The CAP registers are read as follows:

6 The CAP x FIFO status bits are read and the value is stored
in the status flag.

7 If the FIFO buffer contains two entries, the bottom value is
read and stored in the output. If the FIFO buffer contains
one entry, the top value is read and stored in the output.

Sample time
Time between outputs from the FIFO. If new data is not available,
the previous data is sent.

Data type
Data type of the output data. Available options are auto, double,
single, int8, uint8, int16, uint16, int32, uint32, and boolean.
The auto option uses the data type of a connected block that

2-209

C281x CAP

outputs data to this block. If this block does not receive an input,
auto sets the data type to double.

Note The output of the C281x CAP block can be vectorized.

CAP Panes

The CAP panes set parameters for individual CAPs. The particular
CAP affected by a CAP pane depends on the EV module you selected:

• CAP1 controls CAP 1 or CAP 4, for EV module A or B, respectively.

2-210

C281x CAP

• CAP2 controls CAP 2 or CAP 5, for EV module A or B, respectively.

• CAP3 controls CAP 3 or CAP 6, for EV module A or B, respectively.

Enable CAP
Select to use the specified capture unit pin.

Edge Detection
Type of transition detection to use for this CAP. Available
types are Rising Edge, Falling Edge, Both Edges, and No
transition.

Time Base
Select which target board GP timer the CAP uses as a time base.
CAPs 1, 2, and 3 can use Timer 1 or Timer 2. CAPs 4, 5, and 6
can use Timer 3 or Timer 4.

Clock source
This option is available only for the CAP 3 pane. You can select
Internal to use the internal time base. Also configure the
Counting mode, Timer prescaler, and Timer period source
for the internal time base.

Select QEP circuit to generate the input clock from the
quadrature encoder pulse (QEP) submodule.

Counting mode
Select Up to generate an asymmetrical waveform output, or
Up-down to generate a symmetrical waveform output, as shown in
the following illustration.

2-211

C281x CAP

The Counting mode is for the internal timer settings.

When you specify the Counting mode as Up (asymmetric) the
waveform:

• Starts low

• Goes high when the rising period counter value matches the
Compare value

• Goes low at the end of the period

When you specify the Counting mode as Up-down (symmetric)
the waveform:

• Starts low

2-212

C281x CAP

• Goes high when the increasing period counter value matches
the Compare value

• Goes low when the decreasing period counter value matches
the Compare value

Counting mode becomes unavailable when you set Clock
source to QEP circuit.

Timer Prescaler
Clock divider factor by which to prescale the selected GP timer
to produce the desired timer counting rate. Available options are
none, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, and 1/128. The following
table shows the rates that result from selecting each option.

Scaling Resulting Rate (µs)

none 0.01334

1/2 0.02668

1/4 0.05336

1/8 0.10672

1/16 0.21344

1/32 0.42688

1/64 0.85376

1/128 1.70752

Note These rates assume a 75 MHz input clock.

Timer period source
Select Specify via dialog to enable the Timer period
parameter. Select Input port to create a block input, T1, that
accepts the timer period value.

2-213

C281x CAP

Timer period
Set the length of the timer period in clock cycles. Enter a value
from 0 to 65535. The value defaults to 65535.

If you know the length of a clock cycle, you can easily calculate
how many clock cycles to set for the timer period. The following
calculation determines the length of one clock cycle:

Sysclk MHz HISPCLK InputClock escaler() (/) Pr (/)150 1 2 1 128→ →

In this calculation, you divide the System clock frequency of 150
MHz by the high-speed clock prescaler of 2. Then, you divide the
resulting value by the timer control input clock prescaler, 128.
The resulting frequency is 0.586 MHz. Thus, one clock cycle is
1/.586 MHz, which is 1.706 µs.

Post interrupt on CAP
Check this check box to post an asynchronous interrupt on CAP.

See Also

C28x Hardware Interrupt

2-214

C281x GPIO Digital Input

Purpose General-purpose I/O pins for digital input

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C281x

Description
This block configures the general-purpose I/O (GPIO) registers that
control the GPIO shared pins for digital input. Each I/O port has one
MUX register, which is used to select peripheral operation or digital
I/O operation.

Note To avoid losing new settings, click Apply before changing the
IO Port parameter.

2-215

C281x GPIO Digital Input

Dialog
Box

IO Port
Select the input/output port to use: GPIOPA, GPIOPB, GPIOPD,
GPIOPE, GPIOPF, or GPIOPG and select the I/O Port bits to enable
for digital input. (There is no GPIOPC port on the C281x.) If you

2-216

C281x GPIO Digital Input

select multiple bits, vector input is expected. Cleared bits are
available for peripheral functionality. Multiple GPIO DI blocks
cannot share the same I/O port.

Note The input function of the digital I/O and the input path to
the related peripheral are enabled on the board. If you configure a
pin as digital I/O, the corresponding peripheral function cannot
be used.

The following tables show the shared pins.

GPIO A MUX

Bit
Peripheral Name
(Bit =1)

GPIO Name
(Bit = 0)

0 PWM1 GPIOA0

1 PWM2 GPIOA1

2 PWM3 GPIOA2

3 PWM4 GPIOA3

4 PWM5 GPIOA4

5 PWM6 GPIOA5

8 QEP1/CAP1 GPIOA8

9 QEP2/CAP2 GPIOA9

10 CAP3 GPIOA10

2-217

C281x GPIO Digital Input

GPIO B MUX

Bit
Peripheral Name
(Bit =1)

GPIO Name
(Bit = 0)

0 PWM7 GPIOB0

1 PWM8 GPIOB1

2 PWM9 GPIOB2

3 PWM10 GPIOB3

4 PWM11 GPIOB4

5 PWM12 GPIOB5

8 QEP3/CAP4 GPIOB8

9 QEP4/CAP5 GPIOB9

10 CAP6 GPIOB10

Sample time
Time interval, in seconds, between consecutive input from the
pins.

Data type
Data type of the data to obtain from the GPIO pins. The data is
read as 16-bit integer data and then cast to the selected data type.
Valid data types are auto, double, single, int8, uint8, int16,
uint16, int32, uint32 or boolean.

Note The width of the vectorized data output by this block
is determined by the number of bits selected in the Block
Parameters dialog box.

See Also C281x GPIO Digital Output

“GPIO” on page 3-205

2-218

C281x GPIO Digital Output

Purpose General-purpose I/O pins for digital output

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C281x

Description
This block configures the general-purpose I/O (GPIO) registers that
control the GPIO shared pins for digital output. Each I/O port has one
MUX register, which is used to select peripheral operation or digital
I/O operation.

Note Fixed-point inputs are not supported for this block.

Note To avoid losing new settings, click Apply before changing the
IO Port parameter.

2-219

C281x GPIO Digital Output

Dialog
Box

IO Port
Select the input/output port to use: GPIOPA, GPIOPB, GPIOPD,
GPIOPE, GPIOPF, or GPIOPG and select the I/O Port bits to enable

2-220

C281x GPIO Digital Output

for digital input. (There is no GPIOPC port on the C281x.) If you
select multiple bits, vector input is expected. Cleared bits are
available for peripheral functionality. Multiple GPIO DO blocks
cannot share the same I/O port.

Note The input function of the digital I/O and the input path to
the related peripheral are enabled on the board. If you configure a
pin as digital I/O, the corresponding peripheral function cannot
be used.

The following tables show the shared pins.

GPIO A MUX

Bit
Peripheral Name
(Bit =1)

GPIO Name
(Bit = 0)

0 PWM1 GPIOA0

1 PWM2 GPIOA1

2 PWM3 GPIOA2

3 PWM4 GPIOA3

4 PWM5 GPIOA4

5 PWM6 GPIOA5

8 QEP1/CAP1 GPIOA8

9 QEP2/CAP2 GPIOA9

10 CAP3 GPIOA10

2-221

C281x GPIO Digital Output

GPIO B MUX

Bit
Peripheral Name
(Bit =1)

GPIO Name
(Bit = 0)

0 PWM7 GPIOB0

1 PWM8 GPIOB1

2 PWM9 GPIOB2

3 PWM10 GPIOB3

4 PWM11 GPIOB4

5 PWM12 GPIOB5

8 QEP3/CAP4 GPIOB8

9 QEP4/CAP5 GPIOB9

10 CAP6 GPIOB10

See Also C281x GPIO Digital Input

“GPIO” on page 3-205

2-222

C281x PWM

Purpose Pulse width modulators (PWMs)

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C281x

Description
F2812 DSPs include a suite of pulse width modulators (PWMs) used
to generate various signals. This block provides options to set the A
or B module Event Managers to generate the waveforms you require.
The twelve PWMs are configured in six pairs, with three pairs in each
module.

The C281x PWM module shares GP Timers with other C281 blocks. For
more information and guidance on sharing timers, see “Sharing General
Purpose Timers between C281x Peripherals”.

Note All inputs to the C281x PWM block must be scalar values.

2-223

C281x PWM

Dialog
Box

Timer Pane

Module
Specify which target PWM pairs to use:

• A — Displays the PWMs in module A (PWM1/PWM2,
PWM3/PWM4, and PWM5/PWM6).

• B — Displays the PWMs in module B (PWM7/PWM8,
PWM9/PWM10, and PWM11/PWM12).

Note PWMs in module A use Event Manager A, Timer 1, and
PWMs in module B use Event Manager B, Timer 3.

2-224

C281x PWM

Waveform period source
Source from which the waveform period value is obtained. Select
Specify via dialog to enter the value inWaveform period or
select Input port to use a value from the input port.

Note All inputs to the C281x PWM block must be scalar values.

Waveform period
Period of the PWM waveform measured in clock cycles or in
seconds, as specified in the Waveform period units.

Note The term clock cycles refers to the high-speed peripheral
clock on the F2812 chip. This clock is 75 MHz by default because
the high-speed peripheral clock prescaler is set to 2 (150 MHz/2).

Waveform type (counting mode)
Type of waveform to be generated by the PWM pair. The F2812
PWMs can generate two types of waveforms: Asymmetric(Up)
and Symmetric(Up-down). The following illustration shows the
difference between the two types of waveforms.

2-225

C281x PWM

Waveform period units
Units in which to measure the waveform period. Options are
Clock cycles, which refer to the high-speed peripheral clock
on the F2812 chip (75 MHz), or Seconds. Changing these units
changes the Waveform period value and the Duty cycle value
and Duty cycle units selection.

Timer prescaler
Divide the clock input to produce the desired timer counting rate.

2-226

C281x PWM

Outputs Pane

Enable PWM#/PWM#
Check to activate the PWM pair. PWM1/PWM2 are activated
via the Output 1 pane, PWM3/PWM4 are on Output 2, and
PWM5/PWM6 are on Output 3.

Duty cycle source
Select Specify via dialog to use the dialog box to enter a Duty
cycle value for the pair of PWM outputs. Select Input port to
use the input port, W#, to enter a Duty cycle value for the pair
of PWM outputs.

The input portW1 corresponds to PWM1/PWM2. W2 corresponds
to PWM3/PWM4. W3 corresponds to PWM5/6.

2-227

C281x PWM

Note All inputs to the C281x PWM block must be scalar values.

Duty cycle
Set the ratio of the PWM waveform pulse duration to the PWM
Waveform period.

Duty cycle units
Units for the duty cycle. Valid choices are Clock cycles and
Percentages. Changing these units changes the Duty cycle
value, and the Waveform period value andWaveform period
units selection.

Note Using percentages can cause some additional computation
time in generated code. This may or may not be noticeable in
your application.

2-228

C281x PWM

Logic Pane

Control logic source
Configure the control logic for all PWMs enabled on the Outputs
tab. Valid settings are Specify via dialog (default setting) or
to Input port.

Specify via Dialog enables PWM control logic settings for
each PWM output:

• Forced high causes the pulse value to be high.

Active high causes the pulse value to go from low to high.

Active low causes the pulse value to go from high to low.

Forced low causes the pulse value to be low.

2-229

C281x PWM

Input port adds an input port to the PWM block for setting the
C2000 ACTRx register. Each PWM uses 2 bits to set the following
options:

• 00 Forced Low

• 01 Active Low

• 10 Active High

• 11 Forced High

Bits 11–0 of the 16–bit Compare Action Control Registers for
module A control PWM1-6

Bits 11–0 of the 16–bit Compare Action Control Registers for
module B control PWM1-6

For example: If a decimal value of 3222 is read at the input port
while using PWM module A, the following PWM settings will be
honored:

3222 = 0C96h = 110010010110b

So that:

• PW1: Active High

• PW2: Active Low

• PW3: Active Low

• PW4: Active High

• PW5: Forced Low

• PW6: Forced High

For more information, see the section on Compare Action Control
Registers (ACTRA and ACTRB) in the Texas Instruments™
document “TMS320x281x DSP Event Manager (EV) Reference
Guide”, literature number SPRU065.

2-230

C281x PWM

Deadband Pane

Use deadband for PWM#/PWM#
Enables a deadband area without signal overlap at the beginning
of particular PWM pair signals. The following figure shows the
deadband area.

2-231

C281x PWM

Deadband prescaler
Number of clock cycles, which, when multiplied by the Deadband
period, determines the size of the deadband. Selectable values
are 1, 2, 4, 8, 16, and 32.

Deadband period source
Source from which the deadband period is obtained. Select
Specify via dialog to enter the values in the Deadband
period field or select Input port to use a value, in clock cycles,
from the input port.

Note All inputs to the C281x PWM block must be scalar values.

Deadband period
Value that, when multiplied by the Deadband prescaler,
determines the size of the deadband. Selectable values are from
1 to 15.

2-232

C281x PWM

ADC Control Pane

ADC start event
Controls whether this PWM and ADC associated with the
same EV module are synchronized. Select None to disable
synchronization or select an event to generate the source
start-of-conversion (SOC) signal for the associated ADC.

• None — The ADC and PWM are not synchronized. The EV
does not generate an SOC signal and the ADC is triggered by

2-233

C281x PWM

software (that is, the A/D conversion occurs when the ADC
block is executed in the software).

• Underflow interrupt— The EV generates an SOC signal for
the ADC associated with the same EV module when the board’s
general-purpose (GP) timer counter reaches a hexadecimal
value of FFFF.

• Period interrupt— The EV generates an SOC signal for the
ADC associated with the same EV module when the value in GP
timer matches the value in the period register. The value set in
Waveform period above determines the value in the register.

Note If you select Period interrupt and specify a sampling
time less than the specified (Waveform period)/(Event timer
clock speed), zero-order hold interpolation will occur. (For
example, if you enter 64000 as the waveform period, the period
for the timer is 64000/75 MHz = 8.5333e-004. If you enter a
Sample time in the C281x ADC dialog box that is less than
this result, it will cause zero-order hold interpolation.)

• Compare interrupt— The EV generates an SOC signal for the
ADC associated with the same EV module when the value in the
GP timer matches the value in the compare register. The value
set in Duty cycle above determines the value in the register.

See Also “CAN-Based Control of PWM Duty Cycle”

“SPI-Based Control of PWM Duty Cycle”

“ADC-PWM Synchronization via ADC Interrupt”

C281x ADC

2-234

C281x QEP

Purpose Quadrature encoder pulse circuit

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C281x

Description
Each F2812 Event Manager has three capture units, which can log
transitions on its capture unit pins. Event Manager A (EVA) uses
capture units 1, 2, and 3. Event Manager B (EVB) uses capture units
4, 5, and 6.

The quadrature encoder pulse (QEP) circuit decodes and counts
quadrature encoded input pulses on these capture unit pins. QEP
pulses are two sequences of pulses with varying frequency and a fixed
phase shift of 90 degrees (or one-quarter of a period). The circuit counts
both edges of the QEP pulses, so the frequency of the QEP clock is four
times the input sequence frequency.

The QEP, in combination with an optical encoder, is useful for obtaining
speed and position information from a rotating machine. Logic in the
QEP circuit determines the direction of rotation by which sequence is
leading. For module A, if the QEP1 sequence leads, the general-purpose
(GP) Timer counts up and if the QEP2 sequence leads, the timer counts
down. The pulse count and frequency determine the angular position
and speed.

The C281x QEP module shares GP Timers with other C281 blocks. For
more information and guidance on sharing timers, see “Sharing General
Purpose Timers between C281x Peripherals”.

2-235

C281x QEP

Dialog
Box

Module
Specify which QEP pins to use:

• A — Uses QEP1 and QEP2 pins.

2-236

C281x QEP

• B — Uses QEP3 and QEP4 pins.

Counting mode
Specify how to count the QEP pulses:

• Counter — Count the pulses based on GP Timer 2 (or GP
Timer 4 for EVB).

• RPM — Count the rotations per minute.

Positive rotation
Defines whether to use Clockwise or Counterclockwise as the
direction to use as positive rotation. This field appears only if
you select RPM.

Initial count
Initial value for the counter. The value defaults to 0.

Encoder resolution (pulse/revolution)
Number of QEP pulses per revolution. This field appears only if
you select RPM.

Enable QEP index
Reset the QEP counter to zero when the QEP index input on
CAP3_QEPI1 transitions from low to high.

Enable index qualification mode
Qualify the QEP index input on CAP3_QEPI1. Check that the
levels on CAP1_QEP1 and CAP2_QEP2 are high before asserting
the index signal as valid.

Timer period
Set the length of the timer period in clock cycles. Enter a value
from 0 to 65535. The value defaults to 65535.

If you know the length of a clock cycle, you can easily calculate
how many clock cycles to set for the timer period. The following
calculation determines the length of one clock cycle:

Sysclk MHz HISPCLK InputClock escaler() (/) Pr (/)150 1 2 1 128→ →

2-237

C281x QEP

In this calculation, you divide the System clock frequency of 150
MHz by the high-speed clock prescaler of 2. Then, you divide the
resulting value by the timer control input clock prescaler, 128.
The resulting frequency is 0.586 MHz. Thus, one clock cycle is
1/.586 MHz, which is 1.706 µs.

Sample time
Time interval, in seconds, between consecutive reads from the
QEP pins.

Data type
Data type of the QEP pin data. The circuit reads the data as
16-bit data and then casts it to the selected data type. Valid data
types are auto, double, single, int8, uint8, int16, uint16,
int32, uint32 or boolean.

References For more information on the QEP module, consult the following
documents, available at the Texas Instruments Web site:

• TMS320x280x, 2801x, 2804x Enhanced Quadrature Encoder Pulse
(eQEP) Module Reference Guide, Literature Number SPRU790

• Using the Enhanced Quadrature Encoder Pulse (eQEP) Module in
TMS320x280x, 28xxx as a Dedicated Capture Application Report,
Literature Number SPRAAH1

2-238

C281x Timer

Purpose Configure general-purpose timer in Event Manager module

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C281x

Description
The C281x contains two event-manager (EV) modules. Each module
contains two general-purpose (GP) timers. You can use these timers as
independent time bases for various applications.

Use the C281x Timer block to set the periodicity of one GP timer and
the conditions under which it posts interrupts. Each model can contain
up to four C281x Timer blocks.

The C281x Timer module configures GP Timers that other C281 blocks
share. For more information and guidance on sharing timers, see
“Sharing General Purpose Timers between C281x Peripherals”.

2-239

C281x Timer

Dialog
Box

Module
Timer no

Select which of four possible timers to configure. SettingModule
to A lets you select Timer 1 or Timer 2 in Timer no. Setting
Module to B lets you select Timer 3 or Timer 4 in Timer no.

Clock source
When Timer no has a value of Timer 2 or Timer 4, use this
parameter to select the clock source for the event timer. You

2-240

C281x Timer

can choose either Internal or QEP circuit. When you select
Internal, you can configure other options such as Timer period
source, Counting mode, and Timer prescaler.

Timer period source
Select the source of the event timer period. Use Specify via
dialog to set the period using Timer period. Select Input port
to create an input, T, that accepts the value of the timer period
in clock cycles, from 0 to 65535. Timer period source becomes
unavailable when Clock source is set to QEP circuit.

Timer period
Set the length of the timer period in clock cycles. Enter a value
from 0 to 65535. The value defaults to 10000.

If you know the length of a clock cycle, you can easily calculate
how many clock cycles to set for the timer period. The following
calculation determines the length of one clock cycle:

Sysclk MHz HISPCLK InputClock escaler() (/) Pr (/)150 1 2 1 128→ →

In this calculation, you divide the System clock frequency of 150
MHz by the high-speed clock prescaler of 2. Then, you divide the
resulting value by the timer control input clock prescaler, 128.
The resulting frequency is 0.586 MHz. Thus, one clock cycle is
1/.586 MHz, which is 1.706 µs.

Compare value source
Select the source of the compare value. Use Specify via dialog
to set the period using the Compare value parameter. Select
Input port to create a block input, W, that accepts the value of
the compare value, from 0 to 65535.

Compare value
Enter a constant value for comparison to the running timer value
for generating interrupts. Enter a value from 0 to 65535. The
value defaults to 5000. The timer only generates interrupts if you
enable Post interrupt on compare match.

2-241

C281x Timer

Counting mode
Select Up to generate an asymmetrical waveform output, or
Up-down to generate a symmetrical waveform output, as shown in
the following illustration.

When you specify the Counting mode as Up (asymmetric) the
waveform:

• Starts low

• Goes high when the rising period counter value matches the
Compare value

• Goes low at the end of the period

2-242

C281x Timer

When you specify the Counting mode as Up-down (symmetric)
the waveform:

• Starts low

• Goes high when the increasing period counter value matches
the Compare value

• Goes low when the decreasing period counter value matches
the Compare value

Counting mode becomes unavailable when Clock source is
set to QEP circuit.

Timer prescaler
Divide the clock input to produce the desired timer counting rate.

Timer prescaler becomes unavailable when Clock source is
set to QEP circuit.

Post interrupt on period match
Generate an interrupt when the value of the timer reaches its
maximum value as specified in Timer period.

Post interrupt on underflow
Generate an interrupt when the value of the timer cycles back to 0.

Post interrupt on overflow
Generate an interrupt when the value of the timer reaches its
maximum, 65535. Also set Timer period to 65535 for this
parameter to work.

Post interrupt on compare match
Generate an interrupt when the value of the timer equals
Compare value.

References TMS320x281x DSP Event Manager (EV) Reference Guide, Literature
Number: SPRU065, available from the Texas Instruments Web site.

See Also C28x Hardware Interrupt, Idle Task

2-243

C28x Watchdog

Purpose Configure counter reset source of DSP Watchdog module

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2802x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2803x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2806x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C280x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C281x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C28x3x

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ C2834x

Description
This block configures the counter reset source of the Watchdog module
on the DSP.

2-244

C28x Watchdog

Dialog
Box

Watchdog counter reset source

• Input— Create a input port on the watchdog block. The input
signal resets the counter.

• Specify via dialog — Use the value of Sample time to
reset the watchdog timer.

Sample time
The interval at which the DSP resets the watchdog timer. When
you set this value to -1, the model inherits the sample time value
of the model. To execute this block asynchronously, set Sample
Time to -1, and refer to “” for a discussion of block placement
and other settings.

See Also “Watchdog” on page 3-203

2-245

C2000 Clarke Transformation

Purpose Convert balanced three-phase quantities to balanced two-phase
quadrature quantities

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ Optimization/ C28x DMC

Description
This block converts balanced three-phase quantities into balanced
two-phase quadrature quantities. The transformation implements
these equations

Id Ia

Iq Ib Ia

=

= +() /2 3

and is illustrated in the following figure.

The inputs to this block are the phase a (As) and phase b (Bs)
components of the balanced three-phase quantities and the outputs
are the direct axis (Alpha) component and the quadrature axis (Beta)
of the transformed signal.

2-246

C2000 Clarke Transformation

The instantaneous outputs are defined by the following equations and
are shown in the following figure:

ia I t
ib I t
ic I t
id I t

=
= +
= −
=

* sin()
* sin(/)
* sin(/)
* sin()

ω
ω π
ω π
ω

2 3
2 3

iiq I t= +* sin(/)ω π 2

The variables used in the preceding equations and figures correspond to
the variables on the block as shown in the following table:

Equation Variables Block Variables

Inputs ia As

ib Bs

Outputs id Alpha

iq Beta

2-247

C2000 Clarke Transformation

Note

• To generate optimized code from this block, enable the TI C28x or
TI C28x (ISO) CRL. See “About Code Replacement Libraries and
Optimization”.

• The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“Using the IQmath Library” for more information.

Dialog
Box

References For detailed information on the DMC library, see C/F 28xx Digital
Motor Control Library, Literature Number SPRC080, available at the
Texas Instruments Web site.

See Also C2000 Inverse Park Transformation, C2000 Park Transformation,
C2000 PID Controller, C2000 Space Vector Generator, C2000 Speed
Measurement

2-248

C2000 Division IQN

Purpose Divide IQ numbers

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ Optimization/ C28x IQmath

Description
This block divides two numbers that use the same Q format, using the
Newton-Raphson technique. The resulting quotient uses the same Q
format at the inputs.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code code used by
this block dynamically adjusts the Q format based on the block input.
See “Using the IQmath Library” for more information.

Dialog
Box

References For detailed information on the IQmath library, see the user’s guide for
the C28x IQmath Library - A Virtual Floating Point Engine, Literature
Number SPRC087, available at the Texas Instruments Web site. The
user’s guide is included in the zip file download that also contains the
IQmath library (registration required).

2-249

C2000 Division IQN

See Also C2000 Absolute IQN, c2000 Arctangent IQN, C2000 Float to IQN,
C2000 Fractional part IQN, C2000 Fractional part IQN x int32, C2000
Integer part IQN, C2000 Integer part IQN x int32, C2000 IQN to Float,
C2000 IQN x int32, C2000 IQN x IQN, C2000 IQN1 to IQN2, C2000
IQN1 x IQN2, C2000 Magnitude IQN, C2000 Saturate IQN, C2000
Square Root IQN, C2000 Trig Fcn IQN

2-250

C2000 Float to IQN

Purpose Convert floating-point number to IQ number

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ Optimization/ C28x DMC

Description
This block converts a floating-point number to an IQ number. The Q
value of the output is specified in the dialog.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“Using the IQmath Library” for more information.

Dialog
Box

Q value
Q value from 1 to 30 that specifies the precision of the output

2-251

C2000 Float to IQN

References For detailed information on the IQmath library, see the user’s guide for
the C28x IQmath Library - A Virtual Floating Point Engine, Literature
Number SPRC087, available at the Texas Instruments Web site. The
user’s guide is included in the zip file download that also contains the
IQmath library (registration required).

See Also C2000 Absolute IQN, C2000 Arctangent IQN, C2000 Division IQN,
C2000 Fractional part IQN, C2000 Fractional part IQN x int32, C2000
Integer part IQN, C2000 Integer part IQN x int32, C2000 IQN to Float,
C2000 IQN x int32, C2000 IQN x IQN, C2000 IQN1 to IQN2, C2000
IQN1 x IQN2, C2000 Magnitude IQN, C2000 Saturate IQN, C2000
Square Root IQN, C2000 Trig Fcn IQN

2-252

C2000 Fractional part IQN

Purpose Fractional part of IQ number

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ Optimization/ C28x IQmath

Description
This block returns the fractional portion of an IQ number. The returned
value is an IQ number in the same IQ format.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“Using the IQmath Library” for more information.

Dialog
Box

References For detailed information on the IQmath library, see the user’s guide for
the C28x IQmath Library - A Virtual Floating Point Engine, Literature
Number SPRC087, available at the Texas Instruments Web site. The
user’s guide is included in the zip file download that also contains the
IQmath library (registration required).

2-253

C2000 Fractional part IQN

See Also C2000 Absolute IQN, C2000 Arctangent IQN, C2000 Division IQN,
C2000 Float to IQN, C2000 Fractional part IQN x int32, C2000 Integer
part IQN, C2000 Integer part IQN x int32, C2000 IQN to Float, C2000
IQN x int32, C2000 IQN x IQN, C2000 IQN1 to IQN2, C2000 IQN1 x
IQN2, C2000 Magnitude IQN, C2000 Saturate IQN, C2000 Square Root
IQN, C2000 Trig Fcn IQN

2-254

C2000 Fractional part IQN x int32

Purpose Fractional part of result of multiplying IQ number and long integer

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ Optimization/ C28x IQmath

Description
This block multiplies an IQ input and a long integer input and returns
the fractional portion of the resulting IQ number.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“Using the IQmath Library” for more information.

Dialog
Box

References For detailed information on the IQmath library, see the user’s guide for
the C28x IQmath Library - A Virtual Floating Point Engine, Literature
Number SPRC087, available at the Texas Instruments Web site. The
user’s guide is included in the zip file download that also contains the
IQmath library (registration required).

2-255

C2000 Fractional part IQN x int32

See Also C2000 Absolute IQN, C2000 Arctangent IQN, C2000 Division IQN,
C2000 Float to IQN, C2000 Fractional part IQN, C2000 Integer part
IQN, C2000 Integer part IQN x int32, C2000 IQN to Float, C2000 IQN
x int32, C2000 IQN x IQN, C2000 IQN1 to IQN2, C2000 IQN1 x IQN2,
C2000 Magnitude IQN, C2000 Saturate IQN, C2000 Square Root IQN,
C2000 Trig Fcn IQN

2-256

C2000 From RTDX

Purpose Add RTDX communication channel for target to receive data from host

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ RTDX Instrumentation

Description

Note This block will be removed from the Embedded Coder product in
an upcoming release.

Note To use RTDX for C28x host/target communications, download
and install TI DSP/BIOS. The DSP/BIOS installation includes files
required for RTDX communications. For more information, see
DSP/BIOS, RTDX and Host-Target Communications, Literature
Number SPRA895, available at the Texas Instruments Web site.

When you generate code from Simulink in Simulink Coder software
with a From RTDX block in your model, code generation inserts the
C commands to create an RTDX input channel on the target. Input
channels transfer data from the host to the target.

The generated code contains this command:

RTDX_enableInput(&channelname)

where channelname is the name you enter in Channel name.

2-257

C2000 From RTDX

Note From RTDX blocks work only in code generation and when your
model runs on your target. In simulations, this block does not perform
operations, except generating an output matching your specified initial
conditions.

To use RTDX blocks in your model, you must do the following:

1 Add one or more To RTDX or From RTDX blocks to your model.

2 Download and run your model on your target.

3 Enable the RTDX channels from MATLAB or use Enable RTDX
channel on start-up on the block dialog.

4 Use the readmsg and writemsg functions on the MATLAB command
line to send and retrieve data from the target over RTDX.

,For more information about using RTDX in your model, see the
following examples:

• Real-Time Data Exchange (RTDX™) Tutorial

• Comparing Simulation and Target Implementation with RTDX

• Real-Time Data Exchange via RTDX

• DC Motor Speed Control via RTDX™

Note To use RTDX with the XDS100 USB JTAG Emulator and the
C28027 chip, add the following line to the linker command file:

_RTDX_interrupt_mask = ~0x000000008;

2-258

C2000 From RTDX

Dialog
Box

Channel name
Name of the input channel to be created by the generated code.
The channel name must meet C syntax requirements for length
and character content.

Enable blocking mode
Blocking mode instructs the target processor to pause processing
until new data is available from the From RTDX block. If you
enable blocking and new data is not available when the processor
needs it, your process stops. In nonblocking mode, the processor
uses old data from the block when new data is not available.

2-259

C2000 From RTDX

Nonblocking operation is the default and is recommended for
most operations.

Initial conditions
Data the processor reads from RTDX for the first read. If blocking
mode is not enabled, you must have an entry for this option.
Leaving the option blank causes an error in Simulink Coder
software. Valid values are 0, null ([]), or a scalar. The default
value is 0.

0 or null ([]) outputs a zero to the processor. A scalar generates
one output sample with the value of the scalar. If Output
dimensions specifies an array, every element in the array has
the same scalar or zero value. A null array ([]) outputs a zero
for every sample.

Sample time
Time between samples of the signal. The value defaults to 1
second. This produces a sample rate of one sample per second
(1/Sample time).

Output dimensions
Dimensions of a matrix for the output signal from the block. The
first value is the number of rows and the second is the number
of columns. For example, the default setting [1 64] represents
a 1-by-64 matrix of output values. Enter a 1-by-2 vector for the
dimensions.

Frame-based
Sets a flag at the block output that directs downstream blocks
to use frame-based processing on the data from this block. In
frame-based processing, the samples in a frame are processed
simultaneously. In sample-based processing, samples are
processed one at a time. Frame-based processing can increase the
speed of your application running on your target. Throughput
remains the same in samples per second processed. Frame-based
operation is the default.

2-260

C2000 From RTDX

Data type
Type of data coming from the block. Select one of the following
types:

• Double — Double-precision floating-point values. This is the
default. Values range from -1 to 1.

• Single— Single-precision floating-point values ranging from
-1 to 1.

• Uint8— 8-bit unsigned integers. Output values range from 0
to 255.

• Int16— 16-bit signed integers. With the sign, the values range
from -32768 to 32767.

• Int32 — 32-bit signed integers. Values range from -231 to
(231-1).

Enable RTDX channel on start-up
Enables the RTDX channel when you start the channel from
MATLAB. With this selected, you do not need to use the enable
function to prepare your RTDX channels. This option applies only
to the channel you specify in Channel name. You do have to
open the channel.

See Also “Real-Time Data Exchange via RTDX™”

ticcs, readmsg, C2000 To RTDX, writemsg.

References RTDX 2.0 User’s Guide, Literature Number: SPRUFC7, available from
the Texas Instruments Web site.

How to Write an RTDX Host Application Using MATLAB, Literature
Number: SPRA386, available from the Texas Instruments Web site.

2-261

C2000 Integer part IQN

Purpose Integer part of IQ number

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ Optimization/ C28x IQmath

Description
This block returns the integer portion of an IQ number. The returned
value is a long integer.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“Using the IQmath Library” for more information.

Dialog
Box

References For detailed information on the IQmath library, see the user’s guide for
the C28x IQmath Library - A Virtual Floating Point Engine, Literature
Number SPRC087, available at the Texas Instruments Web site. The
user’s guide is included in the zip file download that also contains the
IQmath library (registration required).

2-262

C2000 Integer part IQN

See Also C2000 Absolute IQN, C2000 Arctangent IQN, C2000 Division IQN,
C2000 Float to IQN, C2000 Fractional part IQN, C2000 Fractional part
IQN x int32, C2000 Integer part IQN x int32, C2000 IQN to Float,
C2000 IQN x int32, C2000 IQN x IQN, C2000 IQN1 to IQN2, C2000
IQN1 x IQN2, C2000 Magnitude IQN, C2000 Saturate IQN, C2000
Square Root IQN, C2000 Trig Fcn IQN

2-263

C2000 Integer part IQN x int32

Purpose Integer part of result of multiplying IQ number and long integer

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ Optimization/ C28x IQmath

Description
This block multiplies an IQ input and a long integer input and returns
the integer portion of the resulting IQ number as a long integer.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“Using the IQmath Library” for more information.

Dialog
Box

References For detailed information on the IQmath library, see the user’s guide for
the C28x IQmath Library - A Virtual Floating Point Engine, Literature
Number SPRC087, available at the Texas Instruments Web site. The
user’s guide is included in the zip file download that also contains the
IQmath library (registration required).

2-264

C2000 Integer part IQN x int32

See Also C2000 Absolute IQN, C2000 Arctangent IQN, C2000 Division IQN,
C2000 Float to IQN, C2000 Fractional part IQN, C2000 Fractional part
IQN x int32, C2000 Integer part IQN, C2000 IQN to Float, C2000 IQN
x int32, C2000 IQN x IQN, C2000 IQN1 to IQN2, C2000 IQN1 x IQN2,
C2000 Magnitude IQN, C2000 Saturate IQN, C2000 Square Root IQN,
C2000 Trig Fcn IQN

2-265

C2000 Inverse Park Transformation

Purpose Convert rotating reference frame vectors to two-phase stationary
reference frame

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ Optimization/ C28x DMC

Description
This block converts vectors in an orthogonal rotating reference frame to
a two-phase orthogonal stationary reference frame. The transformation
implements these equations:

Id ID IQ
Iq ID IQ

= −
= +

* cos * sin
* sin * cos

θ θ
θ θ

and is illustrated in the following figure.

The inputs to this block are the direct axis (Ds) and quadrature axis (Qs)
components of the transformed signal in the rotating frame and the
phase angle (Angle) between the stationary and rotating frames.

2-266

C2000 Inverse Park Transformation

The outputs are the direct axis (Alpha) and the quadrature axis (Beta)
components of the transformed signal.

The variables used in the preceding figure and equations correspond to
the block variables as shown in the following table:

Equation Variables Block Variables

Inputs ID Ds

IQ Qs

θ Angle

Outputs id Alpha

iq Beta

Note

• To generate optimized code from this block, enable the TI C28x
or TI C28x (ISO) Code Replacement Library. See “About Code
Replacement Libraries and Optimization”.

• The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“Using the IQmath Library” for more information.

2-267

C2000 Inverse Park Transformation

Dialog
Box

References For detailed information on the DMC library, see C/F 28xx Digital
Motor Control Library, Literature Number SPRC080, available at the
Texas Instruments Web site.

See Also C2000 Clarke Transformation, C2000 Park Transformation, C2000 PID
Controller, C2000 Space Vector Generator, C2000 Speed Measurement

2-268

C2000 IQN to Float

Purpose Convert IQ number to floating-point number

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ Optimization/ C28x IQmath

Description
This block converts an IQ input to an equivalent floating-point number.
The output is a single floating-point number.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“Using the IQmath Library” for more information.

Dialog
Box

References For detailed information on the IQmath library, see the user’s guide for
the C28x IQmath Library - A Virtual Floating Point Engine, Literature
Number SPRC087, available at the Texas Instruments Web site. The
user’s guide is included in the zip file download that also contains the
IQmath library (registration required).

2-269

C2000 IQN to Float

See Also C2000 Absolute IQN, C2000 Arctangent IQN, C2000 Division IQN,
C2000 Float to IQN, C2000 Fractional part IQN, C2000 Fractional part
IQN x int32, C2000 Integer part IQN, C2000 Integer part IQN x int32,
C2000 IQN x int32, C2000 IQN x IQN, C2000 IQN1 to IQN2, C2000
IQN1 x IQN2, C2000 Magnitude IQN, C2000 Saturate IQN, C2000
Square Root IQN, C2000 Trig Fcn IQN

2-270

C2000 IQN x int32

Purpose Multiply IQ number with long integer

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ Optimization/ C28x IQmath

Description
This block multiplies an IQ input and a long integer input and produces
an IQ output of the same Q value as the IQ input.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“Using the IQmath Library” for more information.

Dialog
Box

References For detailed information on the IQmath library, see the user’s guide for
the C28x IQmath Library - A Virtual Floating Point Engine, Literature
Number SPRC087, available at the Texas Instruments Web site. The
user’s guide is included in the zip file download that also contains the
IQmath library (registration required).

2-271

C2000 IQN x int32

See Also C2000 Absolute IQN, C2000 Arctangent IQN, C2000 Division IQN,
C2000 Float to IQN, C2000 Fractional part IQN, C2000 Fractional part
IQN x int32, C2000 Integer part IQN, C2000 Integer part IQN x int32,
C2000 IQN to Float, C2000 IQN x IQN, C2000 IQN1 to IQN2, C2000
IQN1 x IQN2, C2000 Magnitude IQN, C2000 Saturate IQN, C2000
Square Root IQN, C2000 Trig Fcn IQN

2-272

C2000 IQN x IQN

Purpose Multiply IQ numbers with same Q format

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ Optimization/ C28x IQmath

Description
This block multiplies two IQ numbers. Optionally, it can also round and
saturate the result.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“Using the IQmath Library” for more information.

Dialog
Box

Multiply option
Type of multiplication to perform:

• Multiply — Multiply the numbers.

2-273

C2000 IQN x IQN

• Multiply with Rounding— Multiply the numbers and round
the result.

• Multiply with Rounding and Saturation — Multiply the
numbers and round and saturate the result to the maximum
value.

References For detailed information on the IQmath library, see the user’s guide for
the C28x IQmath Library - A Virtual Floating Point Engine, Literature
Number SPRC087, available at the Texas Instruments Web site. The
user’s guide is included in the zip file download that also contains the
IQmath library (registration required).

See Also C2000 Absolute IQN, C2000 Arctangent IQN, C2000 Division IQN,
C2000 Float to IQN, C2000 Fractional part IQN, C2000 Fractional part
IQN x int32, C2000 Integer part IQN, C2000 Integer part IQN x int32,
C2000 IQN to Float, C2000 IQN x int32, C2000 IQN1 to IQN2, C2000
IQN1 x IQN2, C2000 Magnitude IQN, C2000 Saturate IQN, C2000
Square Root IQN, C2000 Trig Fcn IQN

2-274

C2000 IQN1 to IQN2

Purpose Convert IQ number to different Q format

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ Optimization/ C28x IQmath

Description
This block converts an IQ number in a particular Q format to a different
Q format.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“Using the IQmath Library” for more information.

Dialog
Box

Q value
Q value from 1 to 30 that specifies the precision of the output

References For detailed information on the IQmath library, see the user’s guide for
the C28x IQmath Library - A Virtual Floating Point Engine, Literature

2-275

C2000 IQN1 to IQN2

Number SPRC087, available at the Texas Instruments Web site. The
user’s guide is included in the zip file download that also contains the
IQmath library (registration required).

See Also C2000 Absolute IQN, C2000 Arctangent IQN, C2000 Division IQN,
C2000 Float to IQN, C2000 Fractional part IQN, C2000 Fractional part
IQN x int32, C2000 Integer part IQN, C2000 Integer part IQN x int32,
C2000 IQN to Float, C2000 IQN x int32, C2000 IQN1 to IQN2, C2000
IQN1 x IQN2, C2000 Magnitude IQN, C2000 Saturate IQN, C2000
Square Root IQN, C2000 Trig Fcn IQN

2-276

C2000 IQN1 x IQN2

Purpose Multiply IQ numbers with different Q formats

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ Optimization/ C28x IQmath

Description
This block multiples two IQ numbers when the numbers are represented
in different Q formats. The format of the result is specified in the dialog
box.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“Using the IQmath Library” for more information.

Dialog
Box

Q value
Q value from 1 to 30 that specifies the precision of the output

2-277

C2000 IQN1 x IQN2

References For detailed information on the IQmath library, see the user’s guide for
the C28x IQmath Library - A Virtual Floating Point Engine, Literature
Number SPRC087, available at the Texas Instruments Web site. The
user’s guide is included in the zip file download that also contains the
IQmath library (registration required).

See Also C2000 Absolute IQN, C2000 Arctangent IQN, C2000 Division IQN,
C2000 Float to IQN, C2000 Fractional part IQN, C2000 Fractional part
IQN x int32, C2000 Integer part IQN, C2000 Integer part IQN x int32,
C2000 IQN to Float, C2000 IQN x int32, C2000 IQN x IQN, C2000
IQN1 to IQN2, C2000 Magnitude IQN, C2000 Saturate IQN, C2000
Square Root IQN, C2000 Trig Fcn IQN

2-278

C2000 Magnitude IQN

Purpose Magnitude of two orthogonal IQ numbers

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ Optimization/ C28x IQmath

Description
This block calculates the magnitude of two IQ numbers using

a b2 2+

The output is an IQ number in the same Q format as the input.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“Using the IQmath Library” for more information.

Dialog
Box

References For detailed information on the IQmath library, see the user’s guide for
the C28x IQmath Library - A Virtual Floating Point Engine, Literature
Number SPRC087, available at the Texas Instruments Web site. The

2-279

C2000 Magnitude IQN

user’s guide is included in the zip file download that also contains the
IQmath library (registration required).

See Also C2000 Absolute IQN, C2000 Arctangent IQN, C2000 Division IQN,
C2000 Float to IQN, C2000 Fractional part IQN, C2000 Fractional part
IQN x int32, C2000 Integer part IQN, C2000 Integer part IQN x int32,
C2000 IQN to Float, C2000 IQN x int32, C2000 IQN x IQN, C2000
IQN1 to IQN2, C2000 IQN1 x IQN2, C2000 Saturate IQN, C2000
Square Root IQN, C2000 Trig Fcn IQN

2-280

C2000 Park Transformation

Purpose Convert two-phase stationary system vectors to rotating system vectors

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ Optimization/ C28x DMC

Description
This block converts vectors in balanced two-phase orthogonal
stationary systems into an orthogonal rotating reference frame. The
transformation implements these equations

ID Id Iq
IQ Id Iq

= +
= − +

* cos * sin
* sin * cos

θ θ
θ θ

and is illustrated in the following figure.

The variables used in the preceding figure and equations correspond to
the block variables as shown in the following table:

2-281

C2000 Park Transformation

Equation Variables Block Variables

Inputs id Alpha

iq Beta

θ Angle

Outputs ID Ds

IQ Qs

The inputs to this block are the direct axis (Alpha) and the quadrature
axis (Beta) components of the transformed signal and the phase angle
(Angle) between the stationary and rotating frames.

The outputs are the direct axis (Ds) and quadrature axis (Qs)
components of the transformed signal in the rotating frame.

The instantaneous inputs are defined by the following equations:

id I t
iq I t

=
= +

* sin()
* sin(/)

ω
ω π 2

Note

• To generate optimized code from this block, enable the TI C28x
or TI C28x (ISO) Code Replacement Library. See “About Code
Replacement Libraries and Optimization”.

• The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“Using the IQmath Library” for more information.

2-282

C2000 Park Transformation

Dialog
Box

References For detailed information on the DMC library, see C/F 28xx Digital
Motor Control Library, Literature Number SPRC080, available at the
Texas Instruments Web site.

See Also C2000 Clarke Transformation, C2000 Inverse Park Transformation,
C2000 PID Controller, C2000 Space Vector Generator, C2000 Speed
Measurement

2-283

C2000 PID Controller

Purpose Digital PID controller

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ Optimization/ C28x DMC

Description
This block implements a 32-bit digital PID controller with antiwindup
correction. The inputs are a reference input (ref) and a feedback input
(fdb) and the output (out) is the saturated PID output. The following
diagram shows a PID controller with antiwindup.

The differential equation describing the PID controller before saturation
that is implemented in this block is

upresat(t) = up(t) + ui(t) + ud(t)

2-284

C2000 PID Controller

where upresat is the PID output before saturation, up is the proportional
term, ui is the integral term with saturation correction, and ud is the
derivative term.

The proportional term is

up(t) = Kpe(t)

where Kp is the proportional gain of the PID controller and e(t) is the
error between the reference and feedback inputs.

The integral term with saturation correction is

u t
K

T
e K u u di

p

i
c presat

t

() () () ()= + −()⎧
⎨
⎩

⎫
⎬
⎭

∫    
0

where Kc is the integral correction gain of the PID controller.

The derivative term is

u t K T
de t
dtd p d()
()=

where Td is the derivative time of the PID controller. In discrete terms,
the derivative gain is defined as Kd = Td/T, and the integral gain is
defined as Ki = T/Ti, where T is the sampling period and Ti is the
integral time of the PID controller.

Using backward approximation, the preceding differential equations
can be transformed into the following discrete equations.

u n K e n

u n u n K K e n K u n u n

p p

i i i p c presat

[] []

[] [] [] [] []

=

= − + + − − −()1 1 1

uu n K K e n e n

u n u n u n u n

u n S

d d p

presat p i d

[] [] []

[] [] [] []

[]

= − −()
= + +

=

1

AAT u npresat[]()

2-285

C2000 PID Controller

Note

• To generate optimized code from this block, enable the TI C28x
or TI C28x (ISO) Code Replacement Library. See “About Code
Replacement Libraries and Optimization”.

• The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“Using the IQmath Library” for more information.

This block implements a 32-bit digital PID controller with antiwindup
correction. The inputs are a reference input (ref) and a feedback input
(fdb) and the output (out) is the saturated PID output. The following
diagram shows a PID controller with antiwindup.

2-286

C2000 PID Controller

The differential equation describing the PID controller before saturation
that is implemented in this block is

upresat(t) = up(t) + ui(t) + ud(t)

where upresat is the PID output before saturation, up is the proportional
term, ui is the integral term with saturation correction, and ud is the
derivative term.

The proportional term is

up(t) = Kpe(t)

where Kp is the proportional gain of the PID controller and e(t) is the
error between the reference and feedback inputs

u t
K

T
e K u u di

p

i
c presat

t

() () () ()= + −()⎧
⎨
⎩

⎫
⎬
⎭

∫    
0

where Kc is the integral correction gain of the PID controller.

The derivative term is

u t K T
de t
dtd p d()
()=

where Td is the derivative time of the PID controller. In discrete terms,
the derivative gain is defined as Kd = Td/T, and the integral gain is
defined as Ki = T/Ti, where T is the sampling period and Ti is the
integral time of the PID controller.

Using backward approximation, the preceding differential equations
can be transformed into the following discrete equations.

2-287

C2000 PID Controller

u n K e n

u n u n K K e n K u n u n

p p

i i i p c presat

[] []

[] [] [] [] []

=

= − + + − − −()1 1 1

uu n K K e n e n

u n u n u n u n

u n S

d d p

presat p i d

[] [] []

[] [] [] []

[]

= − −()
= + +

=

1

AAT u npresat[]()

Note

• To generate optimized code from this block, enable the TI C28x
or TI C28x (ISO) Code Replacement Library. See “About Code
Replacement Libraries and Optimization”.

• The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“Using the IQmath Library” for more information.

2-288

C2000 PID Controller

Dialog
Box

Proportional gain
Amount of proportional gain (Kp) to apply to the PID

Integral gain
Amount of gain (Ki) to apply to the integration equation

Integral correction gain
Amount of correction gain (Kc) to apply to the integration equation

Derivative gain
Amount of gain (Kd) to apply to the derivative equation.

Minimum output
Minimum allowable value of the PID output

2-289

C2000 PID Controller

Maximum output
Maximum allowable value of the PID output

References For detailed information on the DMC library, see C/F 28xx Digital
Motor Control Library, Literature Number SPRC080, available at the
Texas Instruments Web site.

See Also C2000 Clarke Transformation, C2000 Inverse Park Transformation,
C2000 Park Transformation, C2000 Space Vector Generator, C2000
Speed Measurement

2-290

C2000 Ramp Control

Purpose Create ramp-up and ramp-down function

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ Optimization/ C28x DMC

Description
This block implements a ramp-up and ramp-down function. The input
is a target value and the outputs are the set point value (setpt) and
a flag. The flag output is set to 7FFFFFFFh when the output setpt
value reaches the input target value. The target and setpt values
are signed 32-bit fixed-point numbers with Q values between 16 and 29.
The flag is a long number.

The target value is compared with the setpt value. If they are not
equal, the output setpt is adjusted up or down by a fixed step size
(0.0000305).

If the fixed step size is relatively large compared to the target value,
the output may oscillate around the target value.

2-291

C2000 Ramp Control

Dialog
Box

Maximum delay rate
Value that is multiplied by the sampling loop time period to
determine the time delay for each ramp step. Valid values are
integers greater than 0.

Minimum limit
Minimum allowable ramp value. If the input falls below this
value, it will be saturated to this minimum. The smallest value
you can enter is the minimum value that can be represented in
fixed-point data format by the input and output blocks to which
this Ramp Control block is connected in your model. If you enter
a value below this minimum, an error occurs at the start of code
generation or simulation. For example, if your input is in Q29
format, its minimum value is -4.

Maximum limit
Maximum allowable ramp value. If the input goes above this
value, it will be reduced to this maximum. The largest value
you can enter is the maximum value that can be represented in
fixed-point data format by the input and output blocks to which

2-292

C2000 Ramp Control

this Ramp Control block is connected in your model. If you enter
a value above this maximum, an error occurs at the start of code
generation or simulation. For example, if your input is in Q29
format, its maximum value is 3.9999....

See Also C2000 Ramp Generator

2-293

C2000 Ramp Generator

Purpose Generate ramp output

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ Optimization/ C28x DMC

Description
This block generates ramp output (out) from the slope of the ramp
signal (gain), DC offset in the ramp signal (offset), and frequency of
the ramp signal (freq) inputs. All of the inputs and output are 32-bit
fixed-point numbers with Q values between 1 and 29.

Algorithm The block’s output (out) at the sampling instant k is governed by the
following algorithm:

out(k) = angle(k) * gain(k) + offset(k)

For out(k) > 1, out(k) = out(k) - 1. For out(k) < -1, out(k) = out(k) + 1.

Angle(k) is defined as follows:

angle(k) = angle(k-1) + freq(k) * Maximum step angle

for angle(k) > 1, angle(k) = angle(k) - 1

for angle(k) < -1, angle(k) = angle(k) + 1

The frequency of the ramp output is controlled by a precision frequency
generation algorithm that relies on the modulo nature of the finite
length variables. The frequency of the output ramp signal is equal to

f = (Maximum step angle * sampling rate) / 2m

where m represents the fractional length of the data type of the inputs.

2-294

C2000 Ramp Generator

All math operations are carried out in fixed-point arithmetic, where the
fixed-point fractional length is determined by the block’s inputs.

Note To generate optimized code from this block, enable the TI
C28x or TI C28x (ISO) Code Replacement Library. See “About Code
Replacement Libraries and Optimization”.

Dialog
Box

Maximum step angle
The maximum step size, which determines the rate of change of
the output (i.e., the minimum period of the ramp signal).

When you enter double-precision floating-point values for
parameters in the IQ Math blocks, the software converts them
to single-precision values that are compatible with the behavior
on c28x processor.

Examples The following model demonstrates the Ramp Generator block. The
Constant and Scope blocks are available in Simulink Commonly Used
Blocks.

2-295

C2000 Ramp Generator

In your model, select Simulation > Model Configuration
Parameters. On the Solver pane, set Type to Fixed-step and Solver
to Discrete (no continuous states). Set the parameter values for
the blocks as shown in the following table.

Block Connects to Parameter Value

Constant Ramp Generator - gain Constant value

Sample time

Output data type

Output scalig value

1

0.001

sfix(32)

2^-9

Constant Ramp Generator -
offset

Constant value

Sample time

Output data type

Output scalig value

0

inf

sfix(32)

2^-9

Constant Ramp Generator - freq Constant value

Sample time

Output data type

Output scalig value

0.001

inf

sfix(32)

2^-9

C2000 Ramp
Generator

Scope and Floating
Scope (Simulink block)

Maximum step angle 1

2-296

C2000 Ramp Generator

When you run the model, the Scope block generates the following output
(drag a zoom box around a portion of the output to change the display).

With fixed point calculations in IQMath, for a given frequency input on
the block, f_input, the equation is:

f = (Maximum step angle * f_input * sampling rate) / 2m

For example, if f_input = 0.001, the real value, 1, counts as fixed point
with a fractional length of 9:

f = (1 * 1 * (1/0.001)) / 29 = 1.9531 Hz

Where 0.001 is the block sample time.

2-297

C2000 Ramp Generator

If we use normal math, and f_input is a non-fixed point real value, then:

f = (Maximum step angle * f_input * sampling rate) / 1

For example, if we are using floating point calculation:

f = (1 * 0.001 * (1/0.001)) / 1 = 1 Hz

When using fixed point with fractional length 9, the expected period
becomes:

T = 1/f = 1/1.9531 Hz = 0.5120 s

This result is what the above Scope output shows.

Note If you use different fractional lengths for the fixed point
calculations, the output frequency varies depending on the precision.

See Also C2000 Ramp Control

2-298

C2000 Saturate IQN

Purpose Saturate IQ number

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ Optimization/ C28x IQmath

Description
This block saturates an input IQ number to the specified upper and
lower limits. The returned value is an IQ number of the same Q value
as the input.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“Using the IQmath Library” for more information.

2-299

C2000 Saturate IQN

Dialog
Box

Upper Limit
Maximum real-world value to which to saturate

Lower Limit
Minimum real-world value to which to saturate

References For detailed information on the IQmath library, see the user’s guide for
the C28x IQmath Library - A Virtual Floating Point Engine, Literature
Number SPRC087, available at the Texas Instruments Web site. The
user’s guide is included in the zip file download that also contains the
IQmath library (registration required).

See Also C2000 Absolute IQN, C2000 Arctangent IQN, C2000 Division IQN,
C2000 Float to IQN, C2000 Fractional part IQN, C2000 Fractional part
IQN x int32, C2000 Integer part IQN, C2000 Integer part IQN x int32,
C2000 IQN to Float, C2000 IQN x int32, C2000 IQN x IQN, C2000
IQN1 to IQN2, C2000 IQN1 x IQN2, C2000 Magnitude IQN, C2000
Square Root IQN, C2000 Trig Fcn IQN

2-300

C2000 Space Vector Generator

Purpose Duty ratios for stator reference voltage

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ Optimization/ C28x DMC

Description
This block calculates duty ratios that generate a given stator reference
voltage using space vector PWM technique. Space vector pulse width
modulation is a switching sequence of the upper three power devices of
a three-phase voltage source inverter and is used in applications such
as AC induction and permanent magnet synchronous motor drives. The
switching scheme results in three pseudosinusoidal currents in the
stator phases. This technique approximates a given stator reference
voltage vector by combining the switching pattern corresponding to the
basic space vectors.

The inputs to this block are

• Alpha component — the reference stator voltage vector on the direct
axis stationary reference frame (Ua)

• Beta component — the reference stator voltage vector on the direct
axis quadrature reference frame (Ub)

The alpha and beta components are transformed via the inverse Clarke
equation and projected into reference phase voltages. These voltages
are represented in the outputs as the duty ratios of the PWM1 (Ta),
PWM3 (Tb), and PWM5 (Tc).

2-301

C2000 Space Vector Generator

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“Using the IQmath Library” for more information.

Dialog
Box

References For detailed information on the DMC library, see C/F 28xx Digital
Motor Control Library, Literature Number SPRC080, available at the
Texas Instruments Web site.

See Also C2000 Clarke Transformation, C2000 Inverse Park Transformation,
C2000 Park Transformation, C2000 PID Controller, C2000 Speed
Measurement

2-302

C2000 Speed Measurement

Purpose Calculate motor speed

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ Optimization/ C28x DMC

Description
This block calculates the motor speed based on the rotor position when
the direction information is available. The inputs are the electrical
angle (theta) and the direction of rotation (dir) from the encoder. The
outputs are the speed normalized from 0 to 1 in the Q format (freq) and
the speed in revolutions per minute (rpm).

Note

• To generate optimized code from this block, enable the TI C28x
or TI C28x (ISO) Code Replacement Library. See “About Code
Replacement Libraries and Optimization”.

• This block does not call the corresponding Texas Instruments library
function during code generation. Instead, the MathWorks code uses
the TI functions global Q setting to adjust dynamically the Q format
based on the block input. See “Using the IQmath Library” for more
information.

Understanding the Theta Input to the Block

To indicate the rotational position of your motor, the block expects a
32-bit, fixed-point value that varies from 0 to 1.

Block input theta is defined by the following relations:

• A theta input signal equal to 0 indicates 0 degrees of rotation.

2-303

C2000 Speed Measurement

• A theta input signal equal to 1 indicates 360 degrees of rotation
(one full rotation).

When the motor spins at a constant speed, theta (in counts) from your
position sensor (encoder) should increase linearly from 0 to 1 and
then abruptly return to 0, like a saw-shaped signal. Adjust the theta
signal output from your encoder to get the input signal range for the
Speed Measurement block. Then, convert your encoder signal to 32-bit
fixed-point Q format that meets your resolution needs.

For example, if you are using a position sensor that generates 8000
counts for one full revolution of the motor, (0.0450 degrees per count),
you need to reset your counter to 0 after your counter reaches 8000.
Each time you read your encoder position, you need to convert the
position to a 32-bit, fixed-point Q format value knowing that 8000 is
represented as a 1.0. In this example your format could be Q31.

The Base Speed Parameter

Base speed is the maximum motor rotation rate to measure. This value
is probably not the maximum speed the motor can achieve.

The Speed Measurement block calculates motor speed from two
successive theta readings of the motor position, thetanew and thetaold
(the base speed of the motor; and the time between readings). The
maximum speed the block can calculate occurs when the difference
between two successive samples [abs(thetanew-thetaold)] is 1.0—one full
motor revolution occurs between theta samples.

Therefore, the value you provide for the Base speed (in revolutions per
minute) parameter is the speed, in revolutions per minute, at which
your motor position signal reports one full revolution during one sample
time. While the motor may spin faster than the base speed, the block
cannot calculate the rotation rate in that case. If the motor completes
more than one revolution in one sample time, the calculated speed may
be wrong. The block does not know that between samples thetanew and
thetaold, theta wrapped from 1 back to 0 and started counting up again.

The time difference between the two theta readings is the sample time.
The Speed Measurement block inherits the sample time from the

2-304

C2000 Speed Measurement

upstream block in your model. You set the sample time in the upstream
block and then the Speed Measurement block uses that sample time to
calculate the rotation rate of the motor.

The Sample Time Calculation

Motor speed measurements depend on the sample time you set in the
model. Your sample time must be short enough to measure the full
speed of the motor.

Two parameters drive your sample time—motor base speed and encoder
counts per revolution. To be able to measure the maximum rotation
rate, you must take at least one sample for each revolution. For a motor
with base speed equal to 1000 rpm, which is 16.67 rps, you need to
sample at 1/16.67 s, which is 0.06 s/sample. This sample rate of 16.67
samples per second is the maximum sample time (lowest sample rate)
so that you can measure the full speed of the motor.

Using the same sample rate assumption, the minimum speed the block
can measure depends on the encoder counts per revolution. At the
minimum measurable motor speed, the encoder generates one count per
sample period—16.67 counts per second. For an encoder that generates
8000 counts per revolution, this results in being able to measure a speed
of [(16.67 counts/s) * (0.045 degrees/count)] = 0.752 degrees per second,
or about 45 degrees per minute—one-eighth RPM.

The Differentiator Constant

The differentiator constant is a scalar value applied to the block output.
For example, setting it to 1 does not alter the output. Setting the
constant to 1/4 multiplies the frequency and revolutions per minute
outputs by 0.25. This setting can be useful when your motor has
multiple pole pairs, and one electrical revolution is not equal to one
mechanical revolution. The constant lets you account for the difference
between electrical and mechanical rotation rates.

The Low-Pass Filter Constant

This block includes filtering capability if your position signal is noisy.
Setting the filter constant to 0 disables the filter. Setting the filter
constant to 1 filters out the entire signal and results in a block output

2-305

C2000 Speed Measurement

equal to 0. Use a simulation to determine the best filter constant for
your system. Your goal is to filter enough to remove the noise on your
signal but not so much that the speed measurements cannot react to
abrupt speed changes.

Dialog
Box

Base speed
Maximum speed of the motor to measure in revolutions per
minute.

Differentiator constant
Constant used in the differentiator equation that describes the
rotor position.

Low-pass filter constant
Constant to apply to the lowpass filter. This constant is
1/(1+T*(2πfc)), where T is the sampling period and fc is the cutoff
frequency. The 1/(2πfc) term is the lowpass filter time constant.
This block uses a lowpass filter to reduce noise generated by the
differentiator.

2-306

C2000 Speed Measurement

Example The following example demonstrates how you configure the Speed
Measurement block.

Configuring the Speed Measurement Block to Measure
Motor Speed

Use the following process to set up the Speed Measurement block
parameters.

1 Add the block to your model.

2 Open the block dialog box to view the block parameters.

3 Set the value for Base Speed to the maximum speed to measure, in
revolutions per minute.

4 Enter values for Differentiator and Low-Pass Filter Constant.

5 Click OK to close the dialog box.

Setting the Sample Time to Measure Motor Speed

Use the following process to set the sample time for measuring the
motor speed.

1 Open the block dialog box for the block before the Speed Measurement
block in your model (the upstream or driving block).

2 Set the sample time parameter in the upstream block according to the
sample time guidelines described in The Sample Time Calculation.

3 Click OK to close the dialog box.

References For detailed information on the DMC library, see C/F 28xx Digital
Motor Control Library, SPRC080, available at the Texas Instruments
Web site.

See Also C2000 Clarke Transformation, C2000 Inverse Park Transformation,
C2000 Park Transformation, C2000 PID Controller, C2000 Space
Vector Generator

2-307

C2000 Square Root IQN

Purpose Square root or inverse square root of IQ number

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ Optimization/ C28x IQmath

Description
This block calculates the square root or inverse square root of an IQ
number and returns an IQ number of the same Q format. The block
uses table lookup and a Newton-Raphson approximation.

Negative inputs to this block return a value of zero.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“Using the IQmath Library” for more information.

Dialog
Box

Function
Whether to calculate the square root or inverse square root

2-308

C2000 Square Root IQN

• Square root (_sqrt)— Compute the square root.

• Inverse square root (_isqrt) — Compute the inverse
square root.

References For detailed information on the IQmath library, see the user’s guide for
the C28x IQmath Library - A Virtual Floating Point Engine, Literature
Number SPRC087, available at the Texas Instruments Web site. The
user’s guide is included in the zip file download that also contains the
IQmath library (registration required).

See Also C2000 Absolute IQN, C2000 Arctangent IQN, C2000 Division IQN,
C2000 Float to IQN, C2000 Fractional part IQN, Fractional part IQN x
int32, C2000 Integer part IQN, Integer part IQN x int32, C2000 IQN
to Float, C2000 IQN x int32, C2000 IQN x IQN, C2000 IQN1 to IQN2,
C2000 IQN1 x IQN2, C2000 Magnitude IQN, C2000 Saturate IQN,
C2000 Trig Fcn IQN

2-309

C2000 To RTDX

Purpose Add RTDX communication channel to send data from target to host

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ RTDX Instrumentation

Description

Note This block will be removed from the Embedded Coder product in
an upcoming release.

Note To use RTDX for C28x host/target communications, download
and install TI DSP/BIOS. The DSP/BIOS installation includes files
required for RTDX communications. For more information, see
DSP/BIOS, RTDX and Host-Target Communications, Literature
Number SPRA895, available at the Texas Instruments Web site.

When you generate code from Simulink in Simulink Coder software
with a To RTDX block in your model, code generation inserts the C
commands to create an RTDX output channel on the target DSP. The
output channels transfer data from the target DSP to the host.

The generated code contains this command:

RTDX_enableOutput(&channelname)

where channelname is the name you enter in the channelName field
in the To RTDX dialog box.

2-310

C2000 To RTDX

Note To RTDX blocks work only in code generation and when your
model runs on your target. In simulations, this block does not perform
operations.

To use RTDX blocks in your model, you must do the following:

1 Add one or more To RTDX or From RTDX blocks to your model.

2 Download and run your model on your target.

3 Enable the RTDX channels from MATLAB or use Enable RTDX
channel on start-up on the block dialog.

4 Use the readmsg and writemsg functions on the MATLAB command
line to send and retrieve data from the target over RTDX.

For more information about using RTDX in your model, see the
following examples:

• Real-Time Data Exchange (RTDX™) Tutorial

• Comparing Simulation and Target Implementation with RTDX

• Real-Time Data Exchange via RTDX

• DC Motor Speed Control via RTDX™

Note To use RTDX with the XDS100 USB JTAG Emulator and the
C28027 chip, add the following line to the linker command file:

_RTDX_interrupt_mask = ~0x000000008;

2-311

C2000 To RTDX

Dialog
Box

Channel name
Name of the output channel to be created by the generated code.
The channel name must meet C syntax requirements for length
and character content.

Enable blocking mode
Enables blocking mode (selected by default). In blocking mode,
writing a message is suspended while the RTDX channel is busy,
that is, when data is being written in either direction. The code
waits at the RTDX_write call site while the channel is busy. An
interrupt of the higher priority will temporary divert the program
execution from this site, but it will eventually come back and wait
until the channel stops writing.

When blocking mode is not enabled (when the check box is
cleared), writing a message is abandoned if the RTDX channel is
busy, and the code proceeds with the current iteration.

Enable RTDX channel on start-up
Enables the RTDX channel when you start the channel from
MATLAB. With this selected, you do not need to use the enable
function to prepare your RTDX channels. This option applies only
to the channel you specify in Channel name. You do have to
open the channel.

2-312

C2000 To RTDX

See Also “Real-Time Data Exchange via RTDX™”

C2000 From RTDX

References RTDX 2.0 User’s Guide, Literature Number: SPRUFC7, available from
the Texas Instruments Web site.

How to Write an RTDX Host Application Using MATLAB, Literature
Number: SPRA386, available from the Texas Instruments Web site.

2-313

C2000 Trig Fcn IQN

Purpose Sine, cosine, or arc tangent of IQ number

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ Optimization/ C28x IQmath

Description
This block calculates basic trigonometric functions and returns the
result as an IQ number. Valid Q values for _IQsinPU and _IQcosPU are
1 to 30. For all others, valid Q values are from 1 to 29.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“Using the IQmath Library” for more information.

Dialog
Box

Function
Type of trigonometric function to calculate:

• _IQsin— Compute the sine (sin(A)), where A is in radians.

2-314

C2000 Trig Fcn IQN

• _IQsinPU— Compute the sine per unit (sin(2*pi*A)), where
A is in per-unit radians.

• _IQcos— Compute the cosine (cos(A)), where A is in radians.

• _IQcosPU — Compute the cosine per unit (cos(2*pi*A)),
where A is in per-unit radians.

References For detailed information on the IQmath library, see the user’s guide for
the C28x IQmath Library - A Virtual Floating Point Engine, Literature
Number SPRC087, available at the Texas Instruments Web site. The
user’s guide is included in the zip file download that also contains the
IQmath library (registration required).

See Also C2000 Absolute IQN, C2000 Arctangent IQN, C2000 Division IQN,
C2000 Float to IQN, C2000 Fractional part IQN, C2000 Fractional part
IQN x int32, C2000 Integer part IQN, C2000 Integer part IQN x int32,
C2000 IQN to Float, C2000 IQN x int32, C2000 IQN x IQN, C2000
IQN1 to IQN2, C2000 IQN1 x IQN2, C2000 Magnitude IQN, C2000
Saturate IQN, C2000 Square Root IQN

2-315

C5510 DSK ADC

Purpose Configure AIC23 and peripherals to collect data from analog jacks and
output digital data

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C5000/ C5510 DSK

Description
Configures the AIC23 codec and the TMS320C5510 peripherals to
output a stream of digital data. The block collects this data from the
analog jacks on the C5510 DSP Starter Kit board.

2-316

C5510 DSK ADC

Dialog
Box

Sampling rate
Set the rate at which the analog-to-digital converter samples the
analog input. A higher rate increases the resolution of the data
the ADC outputs.

Word length
Set the number of data bits the ADC creates for each sample.
Increasing the word length increases the accuracy of the data in
each sample. If your model also contains a DAC block, set the
word length in the DAC block to match that of the ADC block.

Samples per frame
Set the number of samples the ADC buffers internally before it
sends the digitized signals, as a frame vector, to the next block
in the model. This value defaults to 64 samples per frame. The

2-317

C5510 DSK ADC

frame rate depends on the sample rate and frame size. Thus, if
you set Sampling Rate to 8 kHz, and Samples per frame to 32,
the resulting frame rate is 250 frames per second (8000/32 = 250).

Inherit sample time
Select whether the block inherits the sample time from the
model base rate or from the Simulink base rate. You can locate
the Simulink base rate in the Solver options in Configuration
Parameters. Selecting Inherit sample time directs the block to use
the specified rate in model configuration. Entering -1 configures
the block to accept the sample rate from the upstream HWI, Task,
or Triggered Task blocks.

See Also C5510 DSK DAC

2-318

C5510 DSK DAC

Purpose Configure AIC23 codec and peripherals to send data stream to output
jack

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C5000/ C5510 DSK

Description
Configures the AIC23 codec and the TMS3205510 peripherals to send a
stream of data to the output jack on the C5510 DSP Starter Kit board.

2-319

C5510 DSK DAC

Dialog
Box

Sampling Rate
Set the rate at which the digital-to-analog converter receives each
data sample. If your model contains an ADC block, set this value
to match the sampling rate of the ADC block.

Word length
Set the number of bits in each data input sample the DAC. If your
model also contains an ADC block, set the word length in the DAC
block to match that of the ADC block. If you enter the incorrect
value for this parameter, the DAC cannot generate an analog
output that corresponds to the data it receives.

Samples per frame
Set the number of samples per data input frame. Match this value
with the value of the block creating the data frames. This value
defaults to 64 samples per frame.

2-320

C5510 DSK DAC

See Also C5510 DSK ADC

2-321

C5000/C6000 Hardware Interrupt

Purpose Interrupt Service Routine to handle hardware interrupt on C5000 and
C6000 processors

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C5000/ Scheduling

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Scheduling

Description
Create interrupt service routines (ISR) in the software generated by the
build process. When you incorporate this block in your model, code
generation results in ISRs on the processor that run the processes
that are downstream from the this block or a Task block connected to
this block.

2-322

C5000/C6000 Hardware Interrupt

Dialog
Box

Interrupt numbers
Specify an array of interrupt numbers for the interrupts to install.
The following table provides the valid range for C5xxx and C6xxx
processors:

Processor Family Valid Interrupt Numbers

C5xxx 2, 3, 5-21, 23

C6xxx 4-15

The width of the block output signal corresponds to the number of
interrupt numbers specified here. Combined with the Simulink
task priorities that you enter and the preemption flag you
enter for each interrupt, these three values define how the code
and processor handle interrupts during asynchronous scheduler
operations.

2-323

C5000/C6000 Hardware Interrupt

Simulink task priorities
Each output of the Hardware Interrupt block drives a downstream
block (for example, a function call subsystem). Simulink software
task priority specifies the Simulink priority of the downstream
blocks. Specify an array of priorities corresponding to the
interrupt numbers entered in Interrupt numbers.

Simulink task priority values are required to generate rate
transition code (refer to Rate Transitions and Asynchronous
Blocks). The task priority values are also required for absolute
time integrity when the asynchronous task needs to obtain
real time from its base rate or its caller. Typically, you assign
priorities for these asynchronous tasks that are higher than the
priorities assigned to periodic tasks.

Preemption flags preemptable – 1, non-preemptable – 0
Higher priority interrupts can preempt interrupts that have lower
priority. To allow you to control preemption, use the preemption
flags to specify whether an interrupt can be preempted.

Entering 1 indicates that the interrupt can be preempted.
Entering 0 indicates the interrupt cannot be preempted. When
Interrupt numbers contains more than one interrupt priority,
you can assign different preemption flags to each interrupt by
entering a vector of flag values, corresponding to the order of
the interrupts in Interrupt numbers. If Interrupt numbers
contains more than one interrupt, and you enter only one flag
value in this field, that status applies to all interrupts.

In the default settings [0 1], the interrupt with priority 5
in Interrupt numbers is not preemptible and the priority 8
interrupt can be preempted.

Enable simulation input
When you select this option, Simulink software adds an input port
to the Hardware Interrupt block. This port is used in simulation
only. Connect one or more simulated interrupt sources to the
simulation input.

2-324

C6000 Block Processing

Purpose Repeat user-specified operation on submatrices of input matrix, using
internal memory of DSP for increased efficiency

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Scheduling

Description
Using Direct Memory Access (DMA) on the processor, the Block
Processing block extracts submatrices of a user-specified size from each
input matrix. It sends each submatrix to a subsystem for processing,
and then reassembles each subsystem output into the output matrix,
as shown in the following figure. While processing images as matrices,
this submatrix capability can greatly improve the throughput.

��������	

2-325

C6000 Block Processing

Note Because you modify the Block Processing block subsystem, the
link between this block and the block library is broken when you
click-and-drag a Block Processing block into your model. Thus, this
block is not automatically updated if you upgrade to a newer version
of the Embedded Coder. To delete blocks from this subsystem without
triggering a warning, right-click on the block and select Mask > Look
Under Mask. If you search for library blocks in a model, this block
is not part of the results.

The blocks inside the subsystem dictate the following block
configuration information:

• Frame status of the input and output signals

• Whether the block supports single channel or multichannel signals

• Which data types this block supports

Use the Number of inputs and Number of outputs parameters to
specify the number of input and output ports on the Block Processing
block.

Use the Block size parameter to specify the size of each submatrix
in cell array format. Each vector in the cell array corresponds to one
input; the block uses the vectors in the order you enter them. If you
have one input port, enter one vector. If you have more than one input
port, you can enter one vector that is used for all inputs or you can
specify a different vector for each input. For example, to specify each
submatrix as a 2-by-3 array, enter {[2 3]}. The output matrix size
depends on the size of the submatrix at the output of the subsystem and
the number of submatrices at the input. For example, if the output
submatrix size is 32x16 and the input submatrix sizes are 8x16, the
total output matrix size will be 256x256. If the block size specified does
not subdivide an input matrix evenly, i.e. there are leftover matrix
elements which are not covered by the subdivision, those uncovered
elements will be ignored.

2-326

C6000 Block Processing

Use the Overlap parameter to specify the overlap of each submatrix
in cell array format. Each vector in the cell array corresponds to the
overlap of one input; the block uses the vectors in the order they are
specified. If you enter one vector, each overlap is the same size. For
example, to specify that each 3-by-3 submatrix overlap by 1 row and 2
columns, enter {[1 2]}.

The Traverse order parameter determines how the block extracts
submatrices from the input matrix. If you select Row-wise, the
block extracts submatrices by moving across the rows. If you select
Column-wise, the block extracts submatrices by moving down the
columns.

Click Open Subsystem to open the block subsystem. Click-and-drag
blocks into this subsystem to define the processing operations the block
performs on the submatrices. The input to this subsystem are the
submatrices defined by the Block size parameter.

Note When you place an Assignment block inside a Block Processing
block subsystem, the Assignment block behaves as though it is inside a
For Iterator block. For a description of this behavior, refer to “Iterated
Assignment” on the Assignment block reference page. To produce the
normal behavior of the Assignment block, use an Overwrite Values
block inside the Block Processing block subsystem.

Example This section provides an example that applies the block processing block
to multiply and add submatrices.

Multiple Inputs

In this example, you multiply each element of three input matrices by
two and add the results using the Block Processing block. Suppose you
have the following model:

2-327

C6000 Block Processing

1 Use the Block Processing block to perform the multiplication and
addition on submatrices of the three input matrices. Set the following
parameters as given:

• Number of inputs = 3

• Number of outputs = 1

• Block size = {[2 2]}

For each iteration, the block sends a 2-by-2 submatrix from each
input matrix to the Block Processing block subsystem to be processed.
The block calculates its total number of iterations using the
dimensions of the matrix connected to the top input port. In this case,
the first input is a 4-by-4 matrix. The block can extract four 2-by-2
submatrices from this input matrix, so the block iterates four times.

2-328

C6000 Block Processing

2 In the open Block Processing block, click the Open Subsystem
button located near the bottom of the block mask.

This action opens the block subsystem.

3 Click and drag the blocks shown in the following table into the
subsystem.

Block Library Quantity

Gain Simulink / Math Operations 3

Sum Simulink / Math Operations 1

2-329

C6000 Block Processing

4 Use the Gain blocks to multiply the elements of each submatrix by
two. Set the Gain parameter to 2.

5 Use the Sum block to add the values. Set the Icon shape parameter
to rectangular and the List of signs parameter to +++.

6 Connect the blocks as shown in the following figure.

7 Close the subsystem and click OK.

8 Run the model.

2-330

C6000 Block Processing

The Block Processing block operates on the submatrices, assembles
the results into an output matrix, and then uses the Display block to
present the output matrix.

2-331

C6000 Block Processing

Dialog
Box

The Block Processing dialog box appears as shown in the following
figure.

2-332

C6000 Block Processing

Number of inputs
Enter the number of block inputs on the Block Processing block.

Number of outputs
Enter the number of output ports on the Block Processing block.

Block size
Specify the size of each submatrix in cell array format. Each
vector in the cell array corresponds to one input.

Overlap
Specify the overlap of each submatrix in cell array format. Each
vector in the cell array corresponds to the overlap of one input.

Traverse order
Determines how the block extracts submatrices from the input
matrix. If you select Row-wise, the block extracts submatrices
by moving across the rows. If you select Column-wise, the block
extracts submatrices by moving down the columns.

Open Subsystem
Click this button to open the block’s subsystem. Click and drag
blocks into this subsystem to define the processing the block
performs on the submatrices.

See Also Memory Allocate, Memory Copy, C6000 EDMA

2-333

C6000 Deinterleave

Purpose Separate interleaved YCbCr 4:2:2 data into Y, Cb, and Cr components

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Avnet S3ADSP DM6437

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ DM6437 EVM

Description
This block separates interleaved YCbCr 4:2:2 data into its luma
component (Y’), blue-difference chroma component (Cb), and
red-difference chroma component (Cr).

The input, YCbCr, is a (2*M)*N array of 8-bit unsigned values
representing an interleaved YCbCr 4:2:2 image where the size of the
luma plane, Y, is M*N. Input data is assumed to be in row-major
format, and the data stored in each row of the input is assumed to be
interleaved in the following order:

Cb(1), Y(1), Cr(1), Y(2), Cb(M), Y(M), Cr(M), Y(M)

The deinterleaved outputs are the planar format luma component, Y,
and the chroma components, Cb and Cr, of the YCbCr 4:2:2 input. If
the input image is a (2*M) by N matrix, then the output dimensions
for the Y port is (M*N) and the dimensions for the Cb and Cr ports
are (M/2) by N.

2-334

C6000 Deinterleave

Dialog
Box This block does not have settable options.

See Also C6000 Interleave

2-335

C6000 EDMA

Purpose Configure EDMA Controller on C6000 processor

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Scheduling

Description
Use this block to configure the Enhanced Direct Memory Access
(EDMA) Controller on C6000 processors. The controller manages data
transfers between the device peripherals on the C6000 processors and
the level two (L2) cache/memory controller. Data transfers handled
by the controller include:

• Host accesses to cache

• Accessing noncacheable memory

• Servicing cache

• Transferring data by user programs

EDMA controller handles transfers without involving the processor and
can process transfers between addressable memory spaces, including
internal and external memory.

For details about the EDMA controller, refer to TMS320C6000 DSP
Enhanced Direct Memory Access (EDMA) Controller Reference Guide,
SPRU234, from the Texas Instruments Web site.

Note The C6000 EDMA block does not support C64x+ processors, such
as the C6455 or TCI6482.

EDMA blocks provide two operating modes—open an EDMA channel
and allocate a table in EDMA parameter RAM (PaRAM).

2-336

C6000 EDMA

The open channel mode opens an EDMA channel for the controller.
When you open a channel, EDMA sets the transfer parameters for the
channel and writes those to a table as PaRAM entries.

In allocate table mode, the block sets the EDMA transfer parameters
and places them in a table in EDMA PaRAM without opening a
channel. With this mode, you can use EDMA channels and transfers
to develop complex memory structures like sorting, or circular buffers.
The allocate table operating mode lets you link multiple EDMA blocks
on one EDMA channel. One EDMA block opens an EDMA channel
and succeeding blocks link to the open channel and originating EDMA
block by the device handle setting.

Use the following procedure to link EDMA blocks in a model:

1 Add an EDMA block to your model, open the block dialog box, and
set Setup type to Open channel.

2 Assign an EDMA channel to use in EDMA channel (-1 for
auto-allocate) by entering a channel number or entering -1 to let
the block choose the channel.

3 In Device handle, provide a name for this EDMA block. The name
you enter becomes the block identifier for other blocks to link to this
block. Use a valid C variable string.

4 Close the block dialog box.

5 Add a second EDMA block to your model, and open the block dialog
box to set the block parameters.

6 Select Allocate table from the Setup type list.

7 Select the Link to event check box.

8 Enter the device handle from the earlier block to link to in Linked
event handle in this block. The two blocks are linked together
through the device handle and they use the same channel.

2-337

C6000 EDMA

9 Close the block dialog box.

10 To link more EDMA blocks to this channel, repeat steps 5 through 9
for each new block, entering the same device handle.

For a demonstration of using and linking EDMA blocks, refer to the
example Custom Device Driver via Legacy Code Integration example.

2-338

C6000 EDMA

Dialog

2-339

C6000 EDMA

Box
The preceding dialog box shown presents all of the parameters
available. In some cases, parameters are available only when you select
other parameters. The following list of block parameters describes all
of the available parameters for the block and when one parameter
enables another.

Setup type
Choose either Open channel or Allocate table from the list. If
this is the only EDMA block in your model, choose Open channel.
If your model includes multiple EDMA blocks, choose Open
channel when each block should use a different channel. Select
Allocate table for a block that you plan to link to another
EDMA block.

EDMA channel (-1 for auto-allocate)
Enter an integer from 0 to 63 to specify the EDMA channel to use.
If you enter -1, the block assigns the channel automatically from
the available channels.

Device handle
Provide a name for this block. The name you enter must be a
valid C variable. The EDMA controller uses the name as the
identifier for this block and open channel. Other EDMA blocks in
your model can link to this block and channel by using the device
handle you enter.

Element count
Specifies the number of elements in a frame. The value 65355 is
the maximum number of elements allowed in one frame. The
value defaults to 64 elements.

Element size
EDMA supports 32-bit words, 16-bit half words, and 8-bit bytes.
Select one of the list entries according to your needs.

Transfer source
Enter the address of the elements to transfer. Specify the
address as a hexadecimal value as shown by the default address
0x.00000000

2-340

C6000 EDMA

Transfer source address update
Select whether to enable transfer source update on the EDMA
controller. When you select an option from the list, the controller
updates the transfer source address according to your choice.
Choose one of the list entries shown in the following table.

Option Transfer Source
Address

Condition
Indicated

None Does not change
address after
submitting the transfer
request.

Indicates that all
of the elements
to transfer are
located at the
same address in
memory.

Increment Increases the transfer
address by the value
in Element count
after submitting the
transfer request.

Indicates that
the elements are
contiguous, with
each subsequent
element located
at a higher
address than
the previous
element.

Decrement Decreases the transfer
address by the value
in Element count
after submitting the
transfer request.

Indicates that
the elements are
contiguous, with
each subsequent
element located
at a lower
address than
the previous
element.

2-341

C6000 EDMA

Transfer destination
Enter the destination memory address for the data transfer.
Specify the address as a hexadecimal value as shown by the
default address 0x.00000000

Transfer destination address update
Select whether to enable transfer destination update on the
EDMA controller. When you select an option from the list, the
controller updates the transfer destination address according to
your choice. Choose one of the list entries shown in the following
table.

Option Transfer Destination
Address

Condition
Indicated

None Does not change
address after
submitting the transfer
request.

Indicates that
all of the
elements to
transfer are
located at the
same address
in memory.

Increment Increases the transfer
address by the value in
Element count after
submitting the transfer
request.

Indicates
that the
elements are
contiguous,
with each
subsequent
element
located at
a higher
address than
the previous
element.

Decrement Decreases the transfer
address by the value in
Element count after

Indicates
that the
elements are

2-342

C6000 EDMA

Option Transfer Destination
Address

Condition
Indicated

submitting the transfer
request.

contiguous,
with each
subsequent
element
located at a
lower address
than the
previous
element.

Link to event
You can link EDMA transfers together to create more complicated
memory applications such as buffers and sorting routines. When
you select Link to event to enable linking, the EDMA controller
link feature reloads the current transfer parameters from PaRAM
when the previous transfer is complete.

Linked event handle
To link to another EDMA block to create more complex memory
applications, enter the device handle from the EDMA block to
link to in Linked event handle. This entry is an alphanumeric
string and the EDMA controller interprets your entry as a string.

Raise interrupt
Select this check box to direct the EDMA controller to raise an
interrupt when the transfer request completes. When you select
this parameter, you enable the Transfer complete code (-1 for
auto-allocate) option. Clearing Raise interrupt stops the controller
from raising the interrupt on TR completion.

Transfer complete code (-1 for auto-allocate)
The transfer code Indicates when the controller has submitted a
required number of transfer requests (TR). Provide an integer
from 0 and 62. On C67x processors, the code must be from 0 to
15. The default value of -1 lets the controller assign the transfer
code for this channel.

2-343

C6000 EDMA

When you enable this option, the EDMA controller submits
the transfer request with a request that the controller signal
completion of the transfer with this code. When the transfer is
completed, the transfer controller returns the specified code to the
EDMA controller.

After the EDMA controller receives the transfer complete code in
response to the TR, the controller uses the code to trigger another
TR or to raise an interrupt to the processor when you select Raise
interrupt.

References For details about the EDMA controller, refer to TMS320C6000 DSP
Enhanced Direct Memory Access (EDMA) Controller Reference Guide,
SPRU234, available from the Texas Instruments Web site.

For an introduction to the EDMA controller, refer to TMS320C6000
Peripherals Reference Guide, SPRU190, which provides an overview of
the controller, available from the Texas Instruments Web site.

See Also Memory Allocate, Memory Copy

2-344

C6000 Interleave

Purpose Convert planar YCbCr 4:2:2 data to interleaved YCbCr 4:2:2 data

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ DM6437 EVM

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Avnet S3ADSP DM6437

Description
This block takes planar YCbCr 4:2:2 data on three separate inputs and
converts them to a single interleaved YCbCr 4:2:2 data output.

The input is a planar, color separated, YCbCr 4:2:2 image represented
as a 2-D matrix of 8-bit unsigned integers. There are three block inputs,
one each for the luma component (Y), blue-difference chroma component
(Cb), and red-difference chroma component (Cr). If the input to the
Y port has dimensions M*N, the input to the Cb and Cr ports must
be (M/2) by N.

The output is an interleaved YCbCr 4:2:2 image represented as a 2-D
matrix of 8-bit unsigned integers. If the dimension of the Y port is
M*N and dimensions of the Cb and Cr ports are M/2 by N, the image
dimensions of the YCbCr output dimensions are 2*M*N under normal
conditions. If you specify a line-to-line stride greater than 2*M in the
block’s mask, the output dimensions become (line-to-line stride)*N.

2-345

C6000 Interleave

Dialog
Box

Line to line stride (bytes)
Use the line-to-line stride parameter to satisfy the input
requirements of the DM6437EVM Video Display block. Because of
hardware requirements, each line of the input to the DM6437EVM
Video Display block must have a size that is multiple of 32 bytes.
For example, if the image you want to display is 180 by 120, use
a line-to-line stride of 384 to satisfy the hardware requirements.
Under normal conditions, the output of the Interleave block
would have size 360x120 which would not be accepted by the
DM6437EVM Video Display block. By using a line stride of
384, the block outputs a 384 by 120 matrix—of which only the
360x120 portion contains valid data—that is readily accepted by
the DM6437EVM Video Display block.

Line-to-line stride is the distance in bytes between successive
lines of an interleaved YCbCr frame. If line-to-line stride is
greater than twice the number of pixels on a line of Y plane, this
block outputs an interleaved YCbCr frame whose dimensions
are the line-to-line stride times the number of lines in Y plane.
Otherwise, line stride parameter is ignored, and the output
matrix dimension becomes 2*(number of pixels on a line of Y
plane)*(the number of lines in Y plane).

2-346

C6000 Interleave

See Also C6000 Deinterleave

2-347

C6000 IP Config

Purpose Configure Internet Protocol on C6000 targets with Ethernet ports

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Avnet S3ADSP DM6437

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ DM6437 EVM

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ C6747 EVM

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ DM648 EVM

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Target Communication

Description
Adding this block to your model provides options to configure the IP
parameters for your C6000 board. Setting the options for the block
sets the address and name for your board and specifies your target
and Ethernet daughtercard.

To use this block with the C6416, C6713, or C6713 DSK targets, you
must meet the following requirements:

• Install the D.signT DSK-91C111 Ethernet adapter daughter card.

• Install the Texas Instruments TMS320C6000 TCP/IP stack software.

The block uses dynamic addressing, getting the address from the local
server or static addressing. If you have a dynamic host configuration
protocol (DHCP) server available, you can allow the server to provide
an IP address for your board. Dynamic IP addresses can be useful but
unreliable — they can change.

2-348

C6000 IP Config

To use static addressing, create a static IP address by clearing Use
DHCP to allocate an IP address for DM642 EVM (requires DHCP
server). to enable the manual IP address configuration parameters.

Note When you use the UDP Send and Receive blocks in a model, you
must also include this block to set up the IP drivers for the Ethernet
parameters for the target networking capability.

Whether you choose to use dynamic addressing, you must set the Host
name, and select and set the Use the following CPU interrupt for
Ethernet driver (4-13) options.

When you build and run your model, this block does not alter the
results. It outputs zeros. When you generate code from your model, this
block adds the code that configures IP on your board.

2-349

C6000 IP Config

Dialog
Box

The block dialog box provides options on two tabs — Device Config
and IP Parameters.

Device Tab Options

Target platform
Specify your C6000 target by selecting the target board from
the list. Changing the target platform changes the entry on the
Ethernet adapter daughtercard list.

Ethernet adapter daughtercard
After you select you target platform, this option lets you select
whatever daughtercard is available to implement Ethernet
communications on the target.

2-350

C6000 IP Config

TCP/IP stack installation folder
To use the UDP and TCP blocks for the board, you must install
the TMS320C6000 TCP/IP Stack from Texas Instruments. Specify
the folder where the TMS320C6000 TCP/IP Stack from Texas
Instruments is installed.

Use the following CPU interrupt for Ethernet driver (4-13)
The Ethernet driver on the DM642 can respond to a CPU
interrupt from 4 to 13. Enter one valid CPU interrupt for the
driver to react to. CPU interrupt 13 is the default interrupt.

Memory segment for internal TCP/IP stack buffers
Shows you the segment in memory where the TCP/IP stack
buffers reside. For the supported boards, the default setting and
location is SDRAM. You can change the location by entering the
name of the memory segment to use. TCP/IP stack buffers occupy
approximately 130 kB of memory. In most cases you should
locate the TCP/IP stack buffers in external memory. Be sure that
the segment you specify here agrees with the memory segment
allocation in the Target Hardware Resources tab.

Enable status print-outs to Stdout
Select this option to direct the block to send IP status information
to the standard output device.

2-351

C6000 IP Config

IP Parameters Options

Use DHCP to allocate an IP address (requires a DHCP server)
Selecting this parameter configures the board to get an IP address
from the local DHCP server on the network. If you select this
option and you do not have a DHCP server, the generated code
does not run as expected. Clearing this option enables all of the
IP configuration options for the block to let you define your IP
address manually.

2-352

C6000 IP Config

Use the following IP address
Specify an IP address. This value is the address that others use
to communicate with the evaluation module over IP. Use the full
xxx.xxx.xxx.xxx format.

Subnet mask
Define the subnet mask address, entering the full subnet mask in
the format xxx.xxx.xxx.xxx. Subnet masks define how many bits
of the IP address are used to identify the network.

By using 1s in all the address bits that identify the network,
the subnet mask shows you which bits define the network and
which are internal to the network. In the figure, the subnet mask
255.255.255.0 indicates that the first three octets in the address
define the network.

Gateway IP
Enter one address for the gateway server or router that maintains
a more complete listing of the surrounding networks. Messages
that are destined for machines outside the local network are sent
to the gateway address for address resolution.

Domain name server IP
Enter the address of the server for the domain in which the target
is a member.

Domain name
Enter the name for the domain. Without the domain name, the
target cannot communicate on the network within the domain.

Host name (less than 64 characters)
Enter the name of the host. Usually this value is the NetBIOS
name for the machine if it exists.

See Also C6000 TCP/IP Receive, C6000 TCP/IP Send,

2-353

C6000 TCP/IP Receive

Purpose Receive message from remote IP interface

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Target Communication

Description
Adding this block to your Simulink model results in generated code that
configures TCP/IP on your target to receive messages.

To use this block with the C6416, C6713, or C6713 DSK targets, you
must meet the following requirements.

• Install the D.signT DSK-91C111 Ethernet adapter daughter card.

• Install the Texas Instruments TMS320C6000 TCP/IP stack software.

The block receives the message from the specified IP address on a host
machine and passes it out the Msg port to a downstream block. The
size of the message is unrestricted.

A second block output is a function call port that issues a function call
whenever a new message is available on the receive buffer.

In simulations, this block outputs a stream of data (default typeuint8_T)
from the Msg port with the first bytes set to 0xFF and the rest set to
0x00. When the function call port exists, it generates a function call
for every sample time hit.

Models that contain this block generate code for the parameters that
configure TCP/IP on the target, including the ports, buffers, and
message sizes.

2-354

C6000 TCP/IP Receive

Dialog
Box

Main Pane

Connection type
Connection type specifies the connection initiation method
used for the block. This is a read-only parameter — you cannot
change it.

A Server connection creates a listening socket at the IP address
and port in Local IP port. The TCP/IP layer uses this socket to
accept incoming connection requests. External TCP/IP interfaces
that send TCP/IP data to this block must actively seek the
connection to establish communications (the client model).

2-355

C6000 TCP/IP Receive

Remote address and IP port to receive from (format IP
Address:IP port)

Identifies the remote TCP/IP interface, by IP address and IP port,
from which the block expects to receive messages. The input
format uses the IP address and IP port identifier, separated by
a colon. IP port value ranges from 0 to 65535. Entering a 0 for
the IP port when the Connection type is Client specifies that
the TCP/IP stack automatically assigns a port to use to seek
connections.

Local IP port
This option identifies the IP port to use when Connection type
is Server and when it is Client.

When you choose Server, Local IP port specifies the well-known
port of the target TCP/IP server. Your IP port value must lie
between 1 and 65535.

When you specify Client for the connection type, Local IP port
specifies the TCP/IP address for the client socket. The IP port
value can range from 0 to 65535, where 0 specifies that the
TCP/IP stack assigns an ephemeral port automatically to seek
connections.

TCP/IP receive buffer size
Specifies the size of the buffer used for queuing incoming TCP/IP
messages. Typically, larger TCP/IP receive buffers provide a
cushion for packet drops and can improve efficiency. The compiler
allocates the TCP/IP receive buffer on the heap.

all TCP/IP blocks that specify a common local IP port must share
a common TCP/IP receive buffer, because the size of the TCP/IP
buffer is set only for the listening socket. all active connecting
sockets inherit their buffer size value from the listening socket.

Enable blocking mode
Select this option to put the calling TCP/IP task into blocking
mode so that the block receives messages completely before

2-356

C6000 TCP/IP Receive

outputting the messages in the buffer to downstream blocks.
Blocks connected to the receive block do not execute until the
receive process completes. In blocking mode, program execution
for receiving data stops until data in the message buffer is
received.

Clearing this option puts the block in non blocking mode. The
block checks the number of bytes in the TCP/IP receive buffer and
returns output data only when the receive buffer contains more
data than requested.

The block receives or outputs data continuously. Processes do
not wait for data. Disabling blocking activates the Sample time
parameter and adds an additional function call port to the block
that indicates when the data port contains new, valid data.

Selecting blocking mode activates the Timeout parameter.

Sample Time
Use this option to specify when the block polls for new messages.
This parameter value should be positive. Setting this to a specific
value, often large, can reduce the chances of TCP/IP messages
getting dropped. The default sample time is 0.01 seconds.

2-357

C6000 TCP/IP Receive

Data Types Pane

New Data Indicator
Use this option to specify how new data is indicated, either by a
function call or a Boolean status.

Output Data Size
Use this option to specify the size of the output data, the units
depend on the output data type.

Output Data Type
Use this option to specify the type of the output data. The value
selected can be a built-in Simulink data type.

2-358

C6000 TCP/IP Receive

Output Signal
Use this option to specify whether the output signal is to be
frame-based or sample-based.

See Also C6000 TCP/IP Send, C6000 UDP Receive, C6000 UDP Send

2-359

C6000 TCP/IP Send

Purpose Send message to remote IP interface

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Target Communication

Description
Adding this block to your Simulink model results in generated code that
configures TCP/IP on your target to send messages.

To use this block with the C6416, C6713, or C6713 DSK targets, you
must meet the following requirements.

• Install the D.signT DSK-91C111 Ethernet adapter daughter card.

• Install the Texas Instruments TMS320C6000 TCP/IP stack software.

The block sends the message to the specified IP address on a host
machine. The data type of the message is unrestricted, as long as it is
a built-in Simulink data type. The size of the data to be transmitted
is also unrestricted.

Models that contain this block generate code for the parameters that
configure TCP/IP on the target, including the ports, buffers, and
message sizes.

2-360

C6000 TCP/IP Send

Dialog
Box

Connection type
Connection type specifies the connection initiation method
used for the block. This is a read-only parameter — you cannot
change it.

A Server connection creates a listening socket at the IP address
and port in Local IP port. The TCP/IP layer uses this socket to
accept incoming connection requests. For an external TCP/IP
interface to receive TCP/IP data from this block, it must actively
seek the connection to establish communications (the client
model).

IP Address:IP port). External interfaces that want to exchange
data with this block must be listening at the specified remote IP
address and port.

2-361

C6000 TCP/IP Send

Remote IP address and IP port to send to (format IP address:IP
port)

Identifies the remote TCP/IP interface, by IP address and IP port,
to which the block expects to send messages. The input format
uses the IP address and IP port identifier, separated by a colon.
IP port value ranges from 0 to 65535. Entering a 0 for the IP port
when the Connection type is Client specifies that the TCP/IP
stack automatically assigns a port to use to seek connections.

Local IP port
This option identifies the IP port used when Connection type
is Server.

When the connection type is Server, Local IP port specifies the
well-known port of the target TCP/IP server. The IP port value
must lie between 1 and 65535.

TCP/IP send buffer size
Specifies the size of the buffer used for queuing outgoing TCP/IP
messages. Typically, larger TCP/IP receive buffers provide a
cushion for packet drops and can improve efficiency. The compiler
allocates the TCP/IP send buffer on the heap.

all TCP/IP blocks that specify a common local IP port must share
a common TCP/IP send buffer, because the size of the TCP/IP
buffer is set only for the listening socket. all active connecting
sockets inherit their buffer size value from the listening socket.

See Also C6000 TCP/IP Receive, UDP Send, UDP Receive

2-362

C6000 UDP Receive

Purpose Receive uint8 vector as UDP message

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Target Communication

Description
This block configures the Ethernet driver on the target to receive UDP
messages. A UDP message comes into this block from the transport
layer, usually TCP/IP. The block passes the message to the next
downstream block out the Msg port. One block output (Msg) is the data
vector from the message. A second output is a flag that indicates when
a new UDP message is available. A third output specifies the length
of the message for variable length messages.

To use this block with the C6416, or C6713 DSK targets, you must
meet the following requirements.

• Install the D.signT DSK-91C111 Ethernet adapter daughter card.

• Install the Texas Instruments TMS320C6000 TCP/IP stack software.

This block reads a single UDP packet every sample hit. It does not
attempt to receive multiple UDP packets to fill the output vector. If the
UDP packet size is greater than the output port width parameter, UDP
messages at the Msg port are truncated. The part for the UDP packet
that does not fit into the Msg port is discarded as a result. The missing
message content cannot be retrieved. Conversely, if the UDP packet
size is smaller than the Msg port width specified, the portion of the
output vector that does not fit into the specified size is invalid data.

In non blocking mode, the data in the Msg port is not valid unless the
block issues a function call.

2-363

C6000 UDP Receive

C6000 UDP Receive blocks operate only to generate code for the target
Ethernet driver. They do not perform a function in simulation and their
simulation outputs are zeros.

Note To use the C6000 UDP Send and C6000 UDP Receive blocks,
you must include the C6000 IP Config block to configure the Ethernet
parameters for the target network. This block sets up the IP drivers for
use and must be in the model for network-related processing.

Additional options let you decide whether the UDP messages work in
blocking mode and set the sampling time for polling for new messages.

2-364

C6000 UDP Receive

Dialog
Box

IP address to receive from (0.0.0.0 to accept all)
Specifies the IP address from which the block accepts messages.
Setting the address 0.0.0.0 configures the block to accept messages
from all IP addresses. Setting a specific address, not 0.0.0.0,
directs the block to accept messages from the specified address
only.

Selecting Enable blocking mode, disables the IP address to
receive from parameter. As a result, the block accepts messages
from any IP address. You must clear Enable blocking mode to
set this parameter to a specific IP address. The block must be
in non blocking mode to specify the address to receive messages
from via UDP.

2-365

C6000 UDP Receive

IP port to receive from
Specify the port on this machine from which the block accepts
messages. The other end of the communication, usually a UDP
Send block, sends messages to this port. The value defaults to
25000, but the values can range from 1 to 65535.

Output port width (bytes)
Specifies the width of messages that the block accepts. When you
design the transmit end of the UDP communication channel, you
decide the message width. Set this parameter to a value equal or
greater than the size of messages you expect to receive.

UDP receive buffer size (bytes)
Specify the size of the buffer in which UDP messages are stored
when received. 8192 bytes is the default size. You need a buffer
large enough to store UDP messages that come in while your
process reads a message from the buffer or performs other
tasks. Specifying the buffer size prevents the receive buffer from
overflowing.

Enable blocking mode
Select this option to put the UDP receive process in blocking mode
meaning the block outputs received messages before accepting
input new messages. In blocking mode, program execution for
receiving data stops until data in the buffer is sent. In non
blocking mode, the block can receive or send data continuously.
Processes do not wait for data.

Sample time (seconds)
Use this option to specify when the block polls for new messages.
The value entered here should be greater than zero. Setting
this to a specific value, often large, can reduce the chances of
UDP messages getting dropped. The default sample time is 0.01
seconds.

See Also C6000 TCP/IP Receive, C6000 TCP/IP Send, C6000 UDP Send

2-366

C6000 UDP Send

Purpose Send UDP message to host

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Target Communication

Description
The UDP send block configures the target’s on-board Ethernet driver
to receive a uint8 vector that it sends as a UDP message to the host.
Models can contain only one C6000 UDP Send block.

To use this block with the C6416, C6713, or C6713 DSK targets, you
must meet the following requirements.

• Install the D.signT DSK-91C111 Ethernet adapter daughter card.

• Install the Texas Instruments TMS320C6000 TCP/IP stack software.

Msg input format must be a uint8 vector with UDP format. To use
variable length messages, supply the message length for each message
as input to the Len port. Message length can be an integer value in
bytes up to the input width of signal at the Msg port.

C6000 UDP Send blocks operate only to generate code for the target
Ethernet driver. They do not perform a function during simulation
and they output zero.

Note To use the UDP Send and Receive blocks, for network processing,
you must include the C6000 IP Config block to set up the IP drivers
for the target Ethernet network.

2-367

C6000 UDP Send

Dialog
Box

IP address to send to (255.255.255.255 for broadcast)
Specify the IP address to which the block sends the message.
If you enter the address 255.255.255.255, the block broadcasts
message to a listening IP address. If you enter a specific IP
address, you limit the block to sending the message to the
specified address.

Remote IP port to send to (1–65535)
Specify the port on the host to which the block sends the message.
Port numbers range from 1 to 65535.

Note This port designation must match the port number where
you configure the host to receive UDP messages.

2-368

C6000 UDP Send

Use the following local IP port (–1 for automatic port
assignment)

Specify the local IP port the block sends the message from. If you
accept the default value of 1, the network automatically selects
the local IP port for sending the message.

If the address you are sending to expects the message to come
from a specific port, enter that port address in this parameter.
If you entered a port number in the UDP Receive block option
Remote IP port to receive from, enter that port identifier in
this parameter also.

Show input port for the number of bytes to be sent
Adds a block input port that lets you specify the number of bytes
to send for each UDP message. The maximum allowed value is
1472 bytes. Use the input to dynamically the change the length of
each message.

See Also C6000 TCP/IP Receive, C6000 TCP/IP Send, C6000 UDP Receive

2-369

C62x Autocorrelation

Purpose Autocorrelate input vector or frame-based matrix

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Optimization/ C62x DSP Library

Description
The Autocorrelation block computes the autocorrelation of an
input vector or frame-based matrix. For frame-based inputs, the
autocorrelation is computed along each of the input’s columns. The
number of samples in the input channels must be an integer multiple of
eight. Input and output signals are real and Q.15.

Autocorrelation blocks support discrete sample times and little-endian
code generation only.

Dialog
Box

Compute all non-negative lags
When you select this parameter, the autocorrelation is performed
using all nonnegative lags, where the number of lags is one less

2-370

C62x Autocorrelation

than the length of the input. The lags produced are therefore
in the range [0, length(input)-1]. When this parameter is not
selected, you specify the lags used in Maximum non-negative
lag (less than input length).

Maximum non-negative lag (less than input length)
Specify the maximum lag (maxLag) the block should use in
performing the autocorrelation. The lags used are in the range [0,
maxLag]. The maximum lag must be odd. Enable this parameter
by clearing the Compute all non-negative lags parameter.

Algorithm In simulation, the Autocorrelation block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_autocor.
During code generation, this block calls the DSP_autocor routine to
produce optimized code.

2-371

C62x Bit Reverse

Purpose Bit-reverse elements of each complex input signal channel

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Optimization/ C62x DSP Library

Description
The Bit Reverse block bit-reverses the elements of each channel of a
complex input signal, X. The Bit Reverse block is primarily used to
provide ordered inputs and outputs to or from blocks that perform
FFTs. Inputs to this block must be 16-bit fixed-point data types.

The Bit Reverse block supports discrete sample times and little-endian
code generation only.

Dialog
Box

Algorithm In simulation, the Bit Reverse block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_bitrev_cplx.
During code generation, this block calls the DSP_bitrev_cplx routine
to produce optimized code.

Examples The Bit Reverse block reorders the output of the C62xRadix-2 FFT in
the model below to natural order.

2-372

C62x Bit Reverse

The following code calculates the same FFT in the workspace. The
output from this calculation, y2, is displayed side-by-side with the
output from the model, c. The outputs match, showing that the Bit
Reverse block reorders the Radix-2 FFT output to natural order:

k = 4;
n = 2^k;
xr = zeros(n, 1);
xr(2) = 0.5;
xi = zeros(n, 1);
x2 = complex(xr, xi);
y2 = fft(x2);

[y2, c]
0.5000 0.5000
0.4619 - 0.1913i 0.4619 - 0.1913i
0.3536 - 0.3536i 0.3535 - 0.3535i
0.1913 - 0.4619i 0.1913 - 0.4619i

0 - 0.5000i 0 - 0.5000i
-0.1913 - 0.4619i -0.1913 - 0.4619i
-0.3536 - 0.3536i -0.3535 - 0.3535i
-0.4619 - 0.1913i -0.4619 - 0.1913i
-0.5000 -0.5000
-0.4619 + 0.1913i -0.4619 + 0.1913i
-0.3536 + 0.3536i -0.3535 + 0.3535i
-0.1913 + 0.4619i -0.1913 + 0.4619i

0 + 0.5000i 0 + 0.5000i
0.1913 + 0.4619i 0.1913 + 0.4619i
0.3536 + 0.3536i 0.3535 + 0.3535i
0.4619 + 0.1913i 0.4619 + 0.1913i

See Also C62xRadix-2 FFT, C62xRadix-2 IFFT

2-373

C62x Block Exponent

Purpose Minimum number of extra sign bits in each input channel

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Optimization/ C62x DSP Library

Description
The Block Exponent block first computes the number of extra sign bits
of all values in each channel of an input signal, and then returns the
minimum number of sign bits found in each channel. The number of
elements in each input channel must be even and at least six. all input
elements must be 32-bit signed fixed-point data types. The output is
a vector of 16-bit integers — one integer for each channel of the input
signal.

This block is useful for determining whether every sample in a channel
is using extra sign bits. If so, you can scale your signal by the minimum
number of extra sign bits to eliminate the common extra bits. This
increases the representable precision and decreases the representable
range of the signal.

The Block Exponent block supports both continuous and discrete
sample times. This block supports little-endian code generation only.

Dialog
Box

2-374

C62x Block Exponent

Algorithm In simulation, the Block Exponent block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_bexp. During
code generation, this block calls the DSP_bexp routine given to produce
optimized code.

2-375

C62x Complex FIR

Purpose Filter complex input signal using complex FIR filter

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Optimization/ C62x DSP Library

Description
The Complex FIR block filters a complex input signal X using a complex
FIR filter. This filter is implemented using a direct form structure.

The number of FIR filter coefficients, which are given as elements of the
input vector H, must be even. The product of the number of elements
of X and the number of elements of H must be at least four. Inputs,
coefficients, and outputs are all Q.15 data types.

The Complex FIR block supports discrete sample times and little-endian
code generation only.

2-376

C62x Complex FIR

Dialog
Box

Coefficient source
Specify the source of the filter coefficients:

• Specify via dialog — Enter the coefficients in the
Coefficients (H) parameter in the dialog

• Input port — Accept the coefficients from port H. This port
must have the same rate as the input data port X.

Coefficients (H)
Designate the filter coefficients in vector format. There must be
an even number of coefficients. This parameter is only visible
when Specify via dialog is selected for the Coefficient
source parameter. This parameter is tunable in simulation.

Initial conditions
If the initial conditions are

• all the same, you need only enter a scalar.

2-377

C62x Complex FIR

• Different within channels but the same across channels, enter
a vector containing the initial conditions for one channel.
The length of this vector must be one less than the number
of coefficients.

• Different across channels, enter a matrix containing all initial
conditions. The number of rows of this matrix must be one less
than the number of coefficients, and the number of columns of
this matrix must be equal to the number of channels.

You may enter real-valued initial conditions. Zero-valued
imaginary parts will be assumed.

Input Processing
Process input signal as frames or samples

• Columns as channels (frame based) — Process the input
signal as frames. Each frame contains a group of sequential
data samples. To perform frame-based processing, you must
have a DSP System Toolbox™ license.

• Elements as channels (sample based)— Process the input
signal as individual data samples.

• Inherited (this choice will be removed see release
notes)— Use the frame status attribute of the input signal to
determine whether to process the input as frames or samples.

When you load an existing model in R2011a, the software sets
this parameter to Inherited (this choice will be removed
- see release notes). Selecting this option allows you to
continue working with your model until you upgrade. Upgrade
your model using the slupdate function as soon as possible.

Note For more information about this option, see “Changes
to Frame-Based Processing”

2-378

C62x Complex FIR

Algorithm In simulation, the Complex FIR block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_fir_cplx.
During code generation, this block calls the DSP_fir_cplx routine to
produce optimized code.

See Also C62xGeneral Real FIR, C62xRadix-4 Real FIR, C62xRadix-8 Real FIR,
C62xSymmetric Real FIR

2-379

C62x Convert Floating-Point to Q.15

Purpose Convert single-precision floating-point input signal to Q.15 fixed-point

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Optimization/ C62x DSP Library

Description
The Convert Floating-Point to Q.15 block converts a single-precision
floating-point input signal to a Q.15 output signal. Input can be real or
complex. For real inputs, the number of input samples must be even.

The Convert Floating-Point to Q.15 block supports both continuous and
discrete sample times. This block supports little-endian code generation
only.

Dialog
Box

Algorithm In simulation, the Convert Floating-Point to Q.15 block is equivalent to
the TMS320C62x DSP Library assembly code function DSP_fltoq15.
During code generation, this block calls the DSP_fltoq15 routine to
produce optimized code.

See Also C62xConvert Q.15 to Floating Point

2-380

C62x Convert Q.15 to Floating-Point

Purpose Convert Q.15 fixed-point signal to single-precision floating-point

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Optimization/ C62x DSP Library

Description
The Convert Q.15 to Floating-Point block converts a Q.15 input signal
to a single-precision floating-point output signal. Input can be real or
complex. For real inputs, the number of input samples must be even.

The Convert Q.15 to Floating-Point block supports both continuous and
discrete sample times. This block supports little-endian code generation
only.

Dialog
Box

Algorithm In simulation, the Convert Q.15 to Floating-Point block is equivalent to
the TMS320C62x DSP Library assembly code function DSP_q15tofl.
During code generation, this block calls the DSP_q15tofl routine to
produce optimized code.

See Also C62xConvert Floating-Point to Q.15

2-381

C62x FFT

Purpose Decimation-in-frequency forward FFT of complex input vector

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Optimization/ C62x DSP Library

Description
The FFT block computes the decimation-in-frequency forward FFT,
with scaling between stages, of each channel of a complex input signal.
The input length of each channel must be both a power of two and in the
range 8 to 16,384, inclusive. The input must also be in natural (linear)
order. The block outputs a complex signal in natural order. Inputs and
outputs are signed 16-bit fixed-point data types.

The fft16x16r routine used by this block employs butterfly stages to
perform the FFT. The number of butterfly stages used, S, depends on
the input length L = 2^k. If k is even, then S = k/2. If k is odd, then
S = (k+1)/2.

If k is even, then L is a power of two as well as a power of four, and
this block performs all S stages with radix-4 butterflies to compute
the output. If k is odd, then L is a power of two but not a power of
four. In that case this block performs the first (S-1) stages with radix-4
butterflies, followed by a final stage using radix-2 butterflies.

To minimize noise, the FFT block also implements a divide-by-two
scaling on the output of each stage except for the last. Therefore, for the
gain of the block to match that of the theoretical FFT, the FFT block
offsets the location of the binary point of the output data type by (S-1)
bits to the right relative to the location of the binary point of the input
data type. That is, the number of fractional bits of the output data type
equals the number of fractional bits of the input data type minus (S-1).

OutputFractionalBits = InputFractionalBits–(S–1)

2-382

C62x FFT

The FFT block supports both continuous and discrete sample times.
This block supports little-endian code generation.

Dialog
Box

Algorithm In simulation, the FFT block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_fft16x16r.
During code generation, this block calls the DSP_fft16x16r routine
to produce optimized code.

See Also C62xRadix-2 FFT, C62xRadix-2 IFFT

2-383

C62x General Real FIR

Purpose Filter real input signal using real FIR filter

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Optimization/ C62x DSP Library

Description
The General Real FIR block filters a real input signal X using a real FIR
filter. This filter is implemented using a direct form structure.

The filter coefficients are specified by a real vector H, which must
contain at least five elements. The coefficients must be in reversed
order. all inputs, coefficients, and outputs are Q.15 signals.

The General Real FIR block supports discrete sample times and
supports little-endian code generation only.

2-384

C62x General Real FIR

Dialog
Box

Coefficient source
Specify the source of the filter coefficients:

• Specify via dialog — Enter the coefficients in the
Coefficients (H) parameter in the dialog

• Input port — Accept the coefficients from port H. This port
must have the same rate as the input data port X

Coefficients (H)
Designate the filter coefficients in vector format. This parameter
is only visible when Specify via dialog is selected for the
Coefficient source parameter. This parameter is tunable in
simulation.

Initial conditions
If the initial conditions are

• all the same, you need only enter a scalar.

2-385

C62x General Real FIR

• Different within channels but the same across channels, enter
a vector containing the initial conditions for one channel.
The length of this vector must be one less than the number
of coefficients.

• Different across channels, enter a matrix containing all initial
conditions. The number of rows of this matrix must be one less
than the number of coefficients, and the number of columns of
this matrix must be equal to the number of channels.

The initial conditions must be real.

Input Processing
Process input signal as frames or samples

• Columns as channels (frame based) — Process the input
signal as frames. Each frame contains a group of sequential
data samples. To perform frame-based processing, you must
have a DSP System Toolbox license.

• Elements as channels (sample based)— Process the input
signal as individual data samples.

• Inherited (this choice will be removed see release
notes)— Use the frame status attribute of the input signal to
determine whether to process the input as frames or samples.

When you load an existing model in R2011a, the software sets
this parameter to Inherited (this choice will be removed
- see release notes). Selecting this option allows you to
continue working with your model until you upgrade. Upgrade
your model using the slupdate function as soon as possible.

Note For more information about this option, see “Changes
to Frame-Based Processing”

Algorithm In simulation, the General Real FIR block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_fir_gen.

2-386

C62x General Real FIR

During code generation, this block calls the DSP_fir_gen routine to
produce optimized code.

See Also C62xComplex FIR, C62xRadix-4 Real FIR, C62xRadix-8 Real FIR,
C62xSymmetric Real FIR

2-387

C62x LMS Adaptive FIR

Purpose LMS adaptive FIR filtering

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Optimization/ C62x DSP Library

Description
The LMS Adaptive FIR block performs least-mean-square (LMS)
adaptive filtering. This filter is implemented using a direct form
structure.

Note To implement a complete LMS algorithm, use this block in
combination with the 5 other blocks shown in the “Examples” on page
2-391 section.

Note This block performs fixed-point computations using fixdt(1,16,15)
and fixdt(1,32,30) data types. Because of this limitation, you may not
be able to address numeric overflow and underflow problems with this
block. As a result, this block is useful in a limited set of applications.

The following constraints apply to the inputs and outputs of this block:

• The scalar input X must be a Q.15 data type.

• The scalar input B must be a Q.15 data type.

• The scalar output R is a Q1.30 data type.

• The output H has length equal to the number of filter taps and is a
Q.15 data type. The number of filter taps must be a positive, even
integer.

2-388

C62x LMS Adaptive FIR

This block performs LMS adaptive filtering according to the equations

e n d n H n X n() () [() ()]+ = + − ⋅ +1 1 1

and

H n H n e n X n() () [() ()],+ = + + ⋅ +1 1 1

where

• n designates the time step.

• X is a vector composed of the current and last nH–1 scalar inputs.

• d is the desired signal. The output R converges to d as the filter
converges.

• H is a vector composed of the current set of filter taps.

• e is the error, or d H n X n− ⋅ +[() ()]1 .

• μ is the step size.

For this block, the input B and the output R are defined by

B e n= + ()1

and

R H n X n= ⋅ +() (),1

which combined with the first two equations, result in the following
equations that this block follows:

e n d n R() ()+ = + −1 1

H n H n B X n() () [()].+ = + ⋅ +1 1

2-389

C62x LMS Adaptive FIR

d and B must be produced externally to the LMS Adaptive FIR block.
Refer to Examples below for a sample model that does this.

The LMS Adaptive FIR block supports discrete sample times and
supports little-endian code generation only.

The rounding mode used is floor, and the saturation mode is wrap. all
intermediate products have s32Q30 data type. The update equation is
as follows:

H H B X

R X H
i i i

i i
N

= + ×

= ×∑
S16Q15 S32Q30 S32Q30(() ())

(),

where N is the number of filter taps.

Note This block does not implement a leaky LMS algorithm. Therefore,
do not compare it with the leakage factor of the LMS block of the DSP
System Toolbox software.

2-390

C62x LMS Adaptive FIR

Dialog
Box

Number of FIR filter taps
Designate the number of filter taps. The number of taps must be
a positive, even integer.

Initial value of filter taps
Enter the initial value of the filter taps.

Output filter coefficients H?
If you select this option, the filter taps are produced as output H.
If not selected, H is suppressed.

Algorithm In simulation, the LMS Adaptive FIR block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_firlms2.
During code generation, this block calls the DSP_firlms2 routine to
produce optimized code.

Examples The following model uses the LMS Adaptive FIR block.

2-391

C62x LMS Adaptive FIR

The portion of the model enclosed by the dashed line produces the
signal B and feeds it back into the LMS Adaptive FIR block. The inputs

to this region are X and the desired signal d, and the output of this

region is the vector of filter taps H . Thus this region of the model
acts as a canonical LMS adaptive filter. For example, compare this
region to the adaptfilt.lms function in DSP System Toolbox software.
adaptfilt.lms performs canonical LMS adaptive filtering and has the
same inputs and output as the outlined section of this model.

To use the LMS Adaptive FIR block you must create the input B in
some way similar to the one shown here. You must also provide the

signals X and d. This model simulates the desired signal d by feeding

X into a digital filter block. You can simulate your desired signal in
a similar way, or you may bring d in from the workspace with a From
Workspace or codec block.

2-392

C62x Matrix Multiply

Purpose Matrix multiply two input signals

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Optimization/ C62x DSP Library

Description
The Matrix Multiply block multiplies two input matrices A and B.
Inputs and outputs are real, 16-bit, signed fixed-point data types. This
block wraps overflows when they occur.

The product of the two 16-bit inputs results in a 32-bit accumulator
value. The Matrix Multiply block, however, only outputs 16 bits.
You can choose to output the highest or second-highest 16 bits of the
accumulator value.

Alternatively, you can choose to output 16 bits according to how many
fractional bits you want in the output. The number of fractional bits in
the accumulator value is the sum of the fractional bits of the two inputs.

Input A Input B
Accumulator
Value

Total Bits 16 16 32

Fractional
Bits

R S R + S

Therefore R+S is the location of the binary point in the accumulator
value. You can select 16 bits in relation to this fixed position of the
accumulator binary point to give the desired number of fractional bits
in the output (see Examples below). You can either require the output
to have the same number of fractional bits as one of the two inputs, or
you can specify the number of output fractional bits in the Number of
fractional bits in output parameter.

2-393

C62x Matrix Multiply

The Matrix Multiply block supports both continuous and discrete
sample times. This block supports little-endian code generation only.

Dialog
Box

Set fractional bits in output to
Only 16 bits of the 32 accumulator bits are output from the block.
Choose which 16 bits to output from the list:

• Match input A— Output the 16 bits of the accumulator value
that cause the number of fractional bits in the output to match
the number of fractional bits in input A (or R in the discussion
above).

• Match input B— Output the 16 bits of the accumulator value
that cause the number of fractional bits in the output to match
the number of fractional bits in input B (or S in the discussion
above).

• Match high bits of acc. (b31:b16)— Output the highest
16 bits of the accumulator value.

• Match high bits of prod. (b30:b15) — Output the
second-highest 16 bits of the accumulator value.

• User-defined— Output the 16 bits of the accumulator value
that cause the number of fractional bits of the output to match
the value specified in the Number of fractional bits in
output parameter.

2-394

C62x Matrix Multiply

Number of fractional bits in output
Specify the number of bits to the right of the binary point in
the output. This parameter is enabled only when you select
User-defined for Set fractional bits in output to.

Algorithm In simulation, the Matrix Multiply block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_mat_mul.
During code generation, this block calls the DSP_mat_mul routine to
produce optimized code.

Examples Example 1

Suppose A and B are both Q.15. The data type of the resulting
accumulator value is therefore the 32-bit data type Q1.30 (R + S = 30).
In the accumulator, bits 31:30 are the sign and integer bits, and bits
29:0 are the fractional bits. The following table shows the resulting
data type and accumulator bits used for the output signal for different
settings of the Set fractional bits in output to parameter.

Set fractional bits
in output to

Data Type Accumulator Bits

Match input A Q.15 b30:b15

Match input B Q.15 b30:b15

Match high bits of
acc.

Q1.14 b31:b16

Match high bits of
prod.

Q.15 b30:b15

Example 2

Suppose A is Q12.3 and B is Q10.5. The data type of the resulting
accumulator value is therefore Q23.8 (R + S = 8). In the accumulator,
bits 31:8 are the sign and integer bits, and bits 7:0 are the fractional
bits. The following table shows the resulting data type and accumulator
bits used for the output signal for different settings of the Set
fractional bits in output to parameter.

2-395

C62x Matrix Multiply

Set fractional bits
in output to

Data Type Accumulator Bits

Match input A Q12.3 b20:b5

Match input B Q10.5 b18:b3

Match high bits of
acc.

Q23.-8 b31:b16

Match high bits of
prod.

Q22.-7 b30:b15

See Also C62xVector Multiply

2-396

C62x Matrix Transpose

Purpose Matrix transpose input signal

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Optimization/ C62x DSP Library

Description
The Matrix Transpose block transposes an input matrix or vector. A 1-D
input is treated as a column vector and is transposed to a row vector.
Input and output signals are real, 16-bit, signed fixed-point data types.

The Matrix Transpose block supports both continuous and discrete
sample times. This block supports little-endian code generation only.

Note If you use Code Replacement Library (CRL) technology with
this block, the TI compiler generates processor and compiler-specific
instructions that improve the generated code. For more information,
consult“Introduction to Code Replacement Libraries”.

Dialog
Box

Algorithm In simulation, the Matrix Transpose block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_mat_trans.
During code generation, this block calls the DSP_mat_trans routine
to produce optimized code.

2-397

C62x Radix-2 FFT

Purpose Radix-2 decimation-in-frequency forward FFT of complex input vector

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Optimization/ C62x DSP Library

Description
The Radix-2 FFT block computes the radix-2 decimation-in-frequency
forward FFT of each channel of a complex input signal. The input
length of each channel must be both a power of two and in the range 16
to 32,768, inclusive. The input must also be in natural (linear) order.
The output of this block is a complex signal in bit-reversed order. Inputs
and outputs are signed 16-bit fixed-point data types, and the output
data type matches the input data type.

You can use the C62x Bit Reverse block to reorder the output of the
Radix-2 FFT block to natural order.

The Radix-2 FFT block supports both continuous and discrete sample
times. This block supports little-endian code generation.

Dialog
Box

Algorithm In simulation, the Radix-2 FFT block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_radix2. During

2-398

C62x Radix-2 FFT

code generation, this block calls the DSP_radix2 routine to produce
optimized code.

Examples The output of the Radix-2 FFT block is bit-reversed. This example
shows you how to use the C62x Bit Reverse block to reorder the output
of the Radix-2 FFT block to natural order.

The following code calculates the same FFT as the above model in the
workspace. The output from this calculation, y2, is then displayed
side-by-side with the output from the model, c. The outputs match,
showing that the Bit Reverse block does reorder the Radix-2 FFT block
output to natural order:

k = 4;
n = 2^k;
xr = zeros(n, 1);
xr(2) = 0.5;
xi = zeros(n, 1);
x2 = complex(xr, xi);
y2 = fft(x2);

[y2, c]
0.5000 0.5000
0.4619 - 0.1913i 0.4619 - 0.1913i
0.3536 - 0.3536i 0.3535 - 0.3535i
0.1913 - 0.4619i 0.1913 - 0.4619i

0 - 0.5000i 0 - 0.5000i
-0.1913 - 0.4619i -0.1913 - 0.4619i
-0.3536 - 0.3536i -0.3535 - 0.3535i
-0.4619 - 0.1913i -0.4619 - 0.1913i
-0.5000 -0.5000
-0.4619 + 0.1913i -0.4619 + 0.1913i
-0.3536 + 0.3536i -0.3535 + 0.3535i

2-399

C62x Radix-2 FFT

-0.1913 + 0.4619i -0.1913 + 0.4619i
0 + 0.5000i 0 + 0.5000i

0.1913 + 0.4619i 0.1913 + 0.4619i
0.3536 + 0.3536i 0.3535 + 0.3535i
0.4619 + 0.1913i 0.4619 + 0.1913i

See Also C62x Bit Reverse, C62x FFT, C62x Radix-2 IFFT

2-400

C62x Radix-2 IFFT

Purpose Radix-2 inverse FFT of complex input vector

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Optimization/ C62x DSP Library

Description
The Radix-2 IFFT block computes the radix-2 inverse FFT
of each channel of a complex input signal. This block uses a
decimation-in-frequency forward FFT algorithm with butterfly weights
modified to compute an inverse FFT. The input length of each channel
must be both a power of two and in the range 16 to 32,768, inclusive.
The input must also be in natural (linear) order. The output of this
block is a complex signal in bit-reversed order. Inputs and outputs are
signed 16-bit fixed-point data types.

The radix2 routine used by this block employs a radix-2 FFT of length
L=2^k. So that the gain of the block matches that of the theoretical
IFFT, the Radix-2 IFFT block offsets the location of the binary point of
the output data type by k bits to the left relative to the location of the
binary point of the input data type. That is, the number of fractional
bits of the output data type equals the number of fractional bits of the
input data type plus k.

OutputFractionalBits = InputFractionalBits+(k)

You can use the C62x Bit Reverse block to reorder the output of the
Radix-2 IFFT block to natural order.

The Radix-2 IFFT block supports both continuous and discrete sample
times. This block supports little-endian code generation.

2-401

C62x Radix-2 IFFT

Dialog
Box

Algorithm In simulation, the Radix-2 IFFT block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_radix2. During
code generation, this block calls the DSP_radix2 routine to produce
optimized code.

See Also C62x Bit Reverse, C62x FFT, C62x Radix-2 FFT

2-402

C62x Radix-4 Real FIR

Purpose Filter real input signal using real FIR filter

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Optimization/ C62x DSP Library

Description
The Radix-4 Real FIR block filters a real input signal X using a real FIR
filter. This filter is implemented using a direct form structure.

The number of input samples per channel must be even. The filter
coefficients are specified by a real vector, H. The number of filter
coefficients must be a multiple of four and must be at least eight. The
coefficients must also be in reversed order. all inputs, coefficients, and
outputs are Q.15 signals.

The Radix-4 Real FIR block supports discrete sample times and
supports little-endian code generation only.

2-403

C62x Radix-4 Real FIR

Dialog
Box

Coefficient source
Specify the source of the filter coefficients:

• Specify via dialog — Enter the coefficients in the
Coefficients parameter in the dialog

• Input port — Accept the coefficients from port H. This port
must have the same rate as the input data port X

Coefficients (H)
Designate the filter coefficients in vector format. This parameter
is only visible when Specify via dialog is selected for the
Coefficient source parameter. This parameter is tunable in
simulation.

Initial conditions
If the initial conditions are

• all the same, enter a scalar.

• Different within channels but the same across channels, enter
a vector containing the initial conditions for one channel.
The length of this vector must be one less than the number
of coefficients.

2-404

C62x Radix-4 Real FIR

• Different across channels, enter a matrix containing all initial
conditions. The number of rows of this matrix must be one less
than the number of coefficients, and the number of columns of
this matrix must be equal to the number of channels.

Initial conditions must be real.

Algorithm In simulation, the Radix-4 Real FIR block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_fir_r4. During
code generation, this block calls the DSP_fir_r4 routine to produce
optimized code.

See Also C62xComplex FIR, C62xGeneral Real FIR, C62xRadix-8 Real FIR,
C62xSymmetric Real FIR

2-405

C62x Radix-8 Real FIR

Purpose Filter real input signal using real FIR filter

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Optimization/ C62x DSP Library

Description
The Radix-8 Real FIR block filters a real input signal X using a real FIR
filter. This filter is implemented using a direct form structure.

The number of input samples per channel must be even. The filter
coefficients are specified by a real vector, H. The number of coefficients
must be an integer multiple of eight. The coefficients must be in
reversed order. all inputs, coefficients, and outputs are Q.15 signals.

The Radix-8 Real FIR block supports discrete sample times and
little-endian code generation only.

2-406

C62x Radix-8 Real FIR

Dialog
Box

Coefficient source
Specify the source of the filter coefficients:

• Specify via dialog — Enter the coefficients in the
Coefficients parameter in the dialog

• Input port — Accept the coefficients from port H. This port
must have the same rate as the input data port X

Coefficients (H)
Designate the filter coefficients in vector format. This parameter
is only visible when Specify via dialog is selected for the
Coefficient source parameter. This parameter is tunable in
simulation.

Initial conditions
If the initial conditions are

• all the same, you need only enter a scalar.

• Different within channels but the same across channels, enter
a vector containing the initial conditions for one channel.
The length of this vector must be one less than the number
of coefficients.

2-407

C62x Radix-8 Real FIR

• Different across channels, enter a matrix containing all initial
conditions. The number of rows of this matrix must be one less
than the number of coefficients, and the number of columns of
this matrix must be equal to the number of channels.

Initial conditions must be real.

Algorithm In simulation, the Radix-8 Real FIR block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_fir_r8. During
code generation, this block calls the DSP_fir_r8 routine to produce
optimized code.

See Also C62xComplex FIR, C62xGeneral Real FIR, C62xRadix-4 Real FIR,
C62xSymmetric Real FIR

2-408

C62x Real Forward Lattice All-Pole IIR

Purpose Filter real input signal using lattice filter

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Optimization/ C62x DSP Library

Description
The Real Forward Lattice all-Pole IIR block filters a real input signal
using an autoregressive forward lattice filter. The input and output
signals must be the same 16-bit signed fixed-point data type. The
reflection coefficients must be real and Q.15. The number of reflection
coefficients must be greater than or equal to four, and they must be
in reversed order. Use an even number of reflection coefficients to
maximize the speed of your generated code.

The Real Forward Lattice all-Pole IIR block supports discrete sample
times and supports little-endian code generation only.

2-409

C62x Real Forward Lattice All-Pole IIR

Dialog
Box

Coefficient source
Specify the source of the filter coefficients:

• Specify via dialog — Enter the coefficients in the
Reflection coefficients parameter in the dialog

• Input port— Accept the coefficients from port K

Reflection coefficients
Designate the reflection coefficients of the filter in vector format.
The number of coefficients must be greater than or equal to four,
and they must be in reverse order. Using an even number of
reflection coefficients maximizes the speed of your generated code.
This parameter is visible when you select Specify via dialog
for the Coefficient source parameter. This parameter is tunable
in simulation.

2-410

C62x Real Forward Lattice All-Pole IIR

Initial conditions
If your block initial conditions are

• all the same, you need only enter a scalar.

• Different within channels but the same across channels, enter
a vector containing the initial conditions for one channel. The
length (number of elements) of this vector must be the same as
the number of reflection coefficients in your filter.

• Different across channels, enter a matrix containing all initial
conditions. The number of rows (initial conditions for one
channel) of this matrix must be the same as the number of
reflection coefficients, and the number of columns of this matrix
must be equal to the number of channels.

Input Processing
Process input signal as frames or samples

• Columns as channels (frame based) — Process the input
signal as frames. Each frame contains a group of sequential
data samples. To perform frame-based processing, you must
have a DSP System Toolbox license.

• Elements as channels (sample based)— Process the input
signal as individual data samples.

• Inherited (this choice will be removed see release
notes)— Use the frame status attribute of the input signal to
determine whether to process the input as frames or samples.

When you load an existing model in R2011a, the software sets
this parameter to Inherited (this choice will be removed
- see release notes). Selecting this option allows you to
continue working with your model until you upgrade. Upgrade
your model using the slupdate function as soon as possible.

Note For more information about this option, see “Changes
to Frame-Based Processing”

2-411

C62x Real Forward Lattice All-Pole IIR

Algorithm In simulation, the Real Forward Lattice all-Pole IIR block is equivalent
to the TMS320C62x DSP Library assembly code function DSP_iirlat.
During code generation, this block calls the DSP_iirlat routine to
produce optimized code.

See Also C62xReal IIR

2-412

C62x Real IIR

Purpose Filter real input signal using IIR filter

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Optimization/ C62x DSP Library

Description
The Real IIR block filters a real input signal X using a real
autoregressive moving-average (ARMA) IIR Filter. This filter is
implemented using a direct form I structure.

There must be five AR coefficients and five MA coefficients. The first
AR coefficient is assumed to be one. Inputs, coefficients, and output
are Q.15 data types.

The Real IIR block supports discrete sample times and supports
little-endian code generation only.

2-413

C62x Real IIR

Dialog
Box

Coefficient sources
Specify the source of the filter coefficients:

• Specify via dialog — Enter the coefficients in the
MA (numerator) coefficients and AR (denominator)
coefficients parameters in the dialog

• Input ports— Accept the coefficients from block input ports
MA and AR

MA (numerator) coefficients
Designate the moving-average coefficients of the filter in vector
format. There must be five MA coefficients. This parameter is only

2-414

C62x Real IIR

visible when Specify via dialog is selected for the Coefficient
sources parameter. This parameter is tunable in simulation.

AR (denominator) coefficients
Designate the autoregressive coefficients of the filter in vector
format. There must be five AR coefficients, however the first AR
coefficient is assumed to be equal to one. This parameter is only
visible when Specify via dialog is selected for the Coefficient
sources parameter. This parameter is tunable in simulation.

Input state initial conditions
If the input state initial conditions are

• all the same, you need only enter a scalar.

• Different within channels but the same across channels, enter
a vector containing the input state initial conditions for one
channel. The length of this vector must be four.

• Different across channels, enter a matrix containing all input
state initial conditions. This matrix must have four rows.

Output state initial conditions
If the output state initial conditions are

• all the same, you need only enter a scalar.

• Different within channels but the same across channels, enter
a vector containing the output state initial conditions for one
channel. The length of this vector must be four.

• Different across channels, enter a matrix containing all output
state initial conditions. This matrix must have four rows.

Input Processing
Process input signal as frames or samples

• Columns as channels (frame based) — Process the input
signal as frames. Each frame contains a group of sequential
data samples. To perform frame-based processing, you must
have a DSP System Toolbox license.

2-415

C62x Real IIR

• Elements as channels (sample based)— Process the input
signal as individual data samples.

• Inherited (this choice will be removed see release
notes)— Use the frame status attribute of the input signal to
determine whether to process the input as frames or samples.

When you load an existing model in R2011a, the software sets
this parameter to Inherited (this choice will be removed
- see release notes). Selecting this option allows you to
continue working with your model until you upgrade. Upgrade
your model using the slupdate function as soon as possible.

Note For more information about this option, see “Changes
to Frame-Based Processing”

Algorithm In simulation, the Real IIR block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_iir. During
code generation, this block calls the DSP_iir routine to produce
optimized code.

See Also C62xReal Forward Lattice all-Pole IIR

2-416

C62x Reciprocal

Purpose Fraction and exponent portions of reciprocal of real input signal

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Optimization/ C62x DSP Library

Description
The Reciprocal block computes the fractional (F) and exponential (E)
portions of the reciprocal of a real Q.15 input, such that the reciprocal
of the input is F*(2E). The fraction is Q.15 and the exponent is a 16-bit
signed integer.

The Reciprocal block supports both continuous and discrete sample
times. This block also supports little-endian code generation only.

Dialog
Box

Algorithm In simulation, the Reciprocal block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_recip16.
During code generation, this block calls the DSP_recip16 routine to
produce optimized code.

2-417

C62x Symmetric Real FIR

Purpose Filter real input signal using FIR filter

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Optimization/ C62x DSP Library

Description
The Symmetric Real FIR block filters a real input signal using a
symmetric real FIR filter. This filter is implemented using a direct
form structure.

The number of input samples per channel must be even. The filter
coefficients are specified by a real vector H, which must be symmetric
about its middle element. The number of coefficients must be of the
form 16k + 1, where k is a positive integer. This block wraps overflows
that occur. The input, coefficients, and output are 16-bit signed
fixed-point data types.

Intermediate multiplies and accumulates performed by this filter
result in a 32-bit accumulator value. However, the Symmetric Real
FIR block only outputs 16 bits. You can choose to output 16 bits of the
accumulator value in one of the following ways.

Match input x Output 16 bits of the accumulator
value such that the output has the
same number of fractional bits as the
input

Match coefficients h Output 16 bits of the accumulator
value such that the output has the
same number of fractional bits as the
coefficients

Match high 16 bits of
acc.

Output bits 31 - 16 of the accumulator
value

2-418

C62x Symmetric Real FIR

Match high 16 bits of
prod.

Output bits 30 - 15 of the accumulator
value

User-defined Output 16 bits of the accumulator
value such that the output has the
number of fractional bits specified in
the Number of fractional bits in
output parameter

The Symmetric Real FIR block supports discrete sample times and
only little-endian code generation.

2-419

C62x Symmetric Real FIR

Dialog
Box

Coefficient source
Specify the source of the filter coefficients:

• Specify via dialog — Enter the coefficients in the
Coefficients parameter in the dialog

• Input port— Accept the coefficients from port H

Coefficients
Enter the coefficients in vector format. This parameter is visible
only when Specify via dialog is specified for the Coefficient
source parameter. This parameter is tunable in simulation.

Set fractional bits in coefficients to
Specify the number of fractional bits in the filter coefficients:

2-420

C62x Symmetric Real FIR

• Match input X — Sets the coefficients to have the same
number of fractional bits as the input

• Best precision — Sets the number of fractional bits of the
coefficients such that the coefficients are represented to the
best precision possible

• User-defined — Sets the number of fractional bits in
the coefficients with the Number of fractional bits in
coefficients parameter

This parameter is visible only when Specify via dialog is
specified for the Coefficient source parameter.

Number of fractional bits in coefficients
Specify the number of bits to the right of the binary point in the
filter coefficients. This parameter is visible only when Specify
via dialog is specified for the Coefficient source parameter,
and is only enabled if User-defined is specified for the Set
fractional bits in coefficients to parameter.

Set fractional bits in output to
Only 16 bits of the 32 accumulator bits are output from the block.
Select which 16 bits to output:

• Match input X— Output the 16 bits of the accumulator value
that cause the number of fractional bits in the output to match
the number of fractional bits in input X

• Match coefficients H — Output the 16 bits of the
accumulator value that cause the number of fractional bits in
the output to match the number of fractional bits in coefficients
H

• Match high bits of acc. (b31:b16)— Output the highest
16 bits of the accumulator value

• Match high bits of prod. (b30:b15) — Output the
second-highest 16 bits of the accumulator value

2-421

C62x Symmetric Real FIR

• User-defined— Output the 16 bits of the accumulator value
that cause the number of fractional bits of the output to match
the value specified in the Number of fractional bits in
output parameter

See Matrix Multiply “Examples” on page 2-395 for demonstrations
of these selections.

Number of fractional bits in output
Specify the number of bits to the right of the binary point in
the output. This parameter is only enabled if User-defined is
selected for the Set fractional bits in output to parameter.

Initial conditions
If the initial conditions are

• all the same, you need only enter a scalar.

• Different within channels but the same across channels, enter
a vector containing the initial conditions for one channel.
The length of this vector must be one less than the number
of coefficients.

• Different across channels, enter a matrix containing all initial
conditions. The number of rows of this matrix must be one less
than the number of coefficients, and the number of columns of
this matrix must be equal to the number of channels.

Algorithm In simulation, the Symmetric Real FIR block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_fir_sym.
During code generation, this block calls the DSP_fir_sym routine to
produce optimized code.

See Also C62xComplex FIR, C62xGeneral Real FIR, C62xRadix-4 Real FIR,
C62xRadix-8 Real FIR

2-422

C62x Vector Dot Product

Purpose Vector dot product of real input signals

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Optimization/ C62x DSP Library

Description
The Vector Dot Product block computes the vector dot product of two
real input vectors, X and Y. The input vectors must have the same
dimensions and must be signed 16-bit fixed-point data types. The
number of samples per channel of the inputs must be even and greater
than or equal to four. The output is a signed 32-bit fixed-point scalar on
each channel, and the number of fractional bits of the output is equal to
the sum of the number of fractional bits of the inputs.

The Vector Dot Product block supports both continuous and discrete
sample times. This block supports little-endian code generation only.

Dialog
Box

Algorithm In simulation, the Vector Dot Product block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_dotprod.
During code generation, this block calls the DSP_dotprod routine to
produce optimized code.

2-423

C62x Vector Maximum Index

Purpose Zero-based index of maximum value element in each input signal
channel

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Optimization/ C62x DSP Library

Description
The Vector Maximum Index block computes the zero-based index of the
maximum value element in each channel (vector) of the input signal.
The input takes a real, 16-bit, signed fixed-point data type. The number
of samples per input channel must be an integer multiple of three. The
output data type is a 32-bit signed integer.

The Vector Maximum Index block supports both continuous and discrete
sample times. This block supports little-endian code generation only.

Dialog
Box

Algorithm In simulation, the Vector Maximum Index block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_maxidx. During
code generation, this block calls the DSP_maxidx routine to produce
optimized code.

2-424

C62x Vector Maximum Value

Purpose Maximum value for each input signal channel

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Optimization/ C62x DSP Library

Description
The Vector Maximum Value block returns the maximum value in each
channel (vector) of the input signal. The input takes a real, 16-bit,
signed fixed-point data type. The number of samples on each input
channel must be an integer multiple of four and must be at least 16.
The output data type matches the input data type.

The Vector Maximum Value block supports both continuous and discrete
sample times. This block supports little-endian code generation only.

Dialog
Box

Algorithm In simulation, the Vector Maximum Value block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_maxval. During
code generation, this block calls the DSP_maxval routine to produce
optimized code.

See Also C62xVector Minimum Value

2-425

C62x Vector Minimum Value

Purpose Minimum value for each input signal channel

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Optimization/ C62x DSP Library

Description
The Vector Minimum Value block returns the minimum value in each
channel of the input signal. The input may be a real, 16-bit, signed
fixed-point data type. The number of samples on each input channel
must be an integer multiple of four and must be at least 16. The output
data type matches the input data type.

The Vector Minimum Value block supports both continuous and discrete
sample times. This block supports little-endian code generation only.

Dialog
Box

Algorithm In simulation, the Vector Minimum Value block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_minval. During
code generation, this block calls the DSP_minval routine to produce
optimized code.

See Also C62xVector Maximum Value

2-426

C62x Vector Multiply

Purpose Element-wise multiplication on inputs

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Optimization/ C62x DSP Library

Description
The Vector Multiply block performs element-wise 32-bit multiplication
of two inputs X and Y. The total number of elements in each input
must be even and at least eight, and the inputs must have matching
dimensions. The upper 32 bits of the 64-bit accumulator result are
returned. all input and output elements are 32-bit signed fixed-point
data types.

The Vector Multiply block supports both continuous and discrete sample
times. This block supports little-endian code generation only.

Dialog
Box

Algorithm In simulation, the Vector Multiply block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_mul32. During
code generation, this block calls the DSP_mul32 routine to produce
optimized code.

See Also C62xMatrix Multiply

2-427

C62x Vector Negate

Purpose Negate each input signal element

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Optimization/ C62x DSP Library

Description
The Vector Negate block negates each element of a 32-bit signed
fixed-point input signal. For real signals, the number of input elements
must be even and at least four. For complex signals, the number of
input elements must be at least two. The output is the same data type
as the input.

The Vector Negate block supports both continuous and discrete sample
times. This block supports little-endian code generation only.

Dialog
Box

Algorithm In simulation, the Vector Negate block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_neg32. During
code generation, this block calls the DSP_neg32 routine to produce
optimized code.

2-428

C62x Vector Sum of Squares

Purpose Sum of squares over each real input channel

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Optimization/ C62x DSP Library

Description
The Vector Sum of Squares block computes the sum of squares over
each channel of a real input. The number of samples per input channel
must be even and at least eight, and the input must be a 16-bit signed
fixed-point data type. The output is a 32-bit signed fixed-point scalar on
each channel. The number of fractional bits of the output is twice the
number of fractional bits of the input.

The Vector Sum of Squares block supports both continuous and discrete
sample times. This block supports little-endian code generation only.

Dialog
Box

Algorithm In simulation, the Vector Sum of Squares block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_vecsumsq.
During code generation, this block calls the DSP_vecsumsq routine to
produce optimized code.

2-429

C62x Weighted Vector Sum

Purpose Weighted sum of input vectors

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Optimization/ C62x DSP Library

Description
The Weighted Vector Sum block computes the weighted sum of two
inputs, X and Y, according to (W*X)+Y. Inputs may be vectors or
frame-based matrices. The number of samples per channel must be a
multiple of four. Inputs, weights, and output are Q.15 data types, and
weights must be in the range -1 < W < 1.

The Weighted Vector Sum block supports both continuous and discrete
sample times. This block supports little-endian code generation only.

Dialog
Box

Weight source
Specify the source of the weights:

• Specify via dialog — Enter the weights in the Weights (W)
parameter in the dialog

2-430

C62x Weighted Vector Sum

• Input port — Accept the weights from port W

Weights (W)
This parameter is visible only when Specify via dialog is
specified for the Weight source parameter. This parameter is
tunable in simulation. When the weights are

• all the same, you need only enter a scalar.

• Different within channels but the same across channels, enter
a vector containing the initial conditions for one channel. The
length of this vector must be a multiple of four.

• Different across channels, enter a matrix containing all initial
conditions. The number of rows of this matrix must be a
multiple of four, and the number of columns of this matrix
must be equal to the number of channels.

Weights must be in the range -1 < W < 1.

Algorithm In simulation, the Weighted Vector Sum block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_w_vec. During
code generation, this block calls the DSP_w_vec routine to produce
optimized code.

2-431

C6416 DSK ADC

Purpose Digitized output from codec to processor

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ C6416 DSK

Description
Use the C6416 DSK ADC (analog-to-digital converter) block to capture
and digitize analog signals from the analog input jacks on the board.
Placing an C6416 DSK ADC block in your Simulink block diagram lets
you use the AIC23 coder-decoder module (codec) on the C6416 DSK to
convert an analog input signal to a digital signal for the digital signal
processor.

Most of the configuration options in the block alter the codec. However,
the Output data type, Samples per frame, and Scaling options
relate to the model you are using in Simulink software, the signal
processor on the board, or direct memory access (DMA) on the board.
In the following table, you find each option listed with the C6416 DSK
hardware affected.

Option Affected Hardware

ADC Source Codec

Mic Codec

Output data type TMS320C6416 digital signal processor

Samples per
frame

Direct memory access module

Sample Rate Codec

Scaling TMS320C6416 digital signal processor

Word Length Codec

2-432

C6416 DSK ADC

You can select one of two input sources from the ADC source list:

• Line In— the codec accepts input from the line in connector (LINE
IN) on the board’s mounting bracket.

• Mic— the codec accepts input from the microphone connector (MIC
IN) on the board mounting bracket.

Use the Stereo check box to indicate whether the audio input is
monaural or stereo. Clear the check box to choose monaural audio
input. Select the check box to enable stereo audio input. Monaural
(mono) input is left channel only, but the output sends left channel
content to both the left and right output channels; stereo uses the left
and right channels on input and output.

The block uses frame-based processing of inputs, buffering the input
data into frames at the specified samples per frame rate. In Simulink
software, the block puts monaural data into an N-element column
vector. Stereo data input forms an N-by-2 matrix with N data values
and two stereo channels (left and right).

When the samples per frame setting is more than one, each frame of
data is either the N-element vector (monaural input) or N-by-2 matrix
(stereo input). For monaural input, the elements in each frame form the
column vector of input audio data. In the stereo format, the frame is
the matrix of audio data represented by the matrix rows and columns
— the rows are the audio data samples and the columns are the left
and right audio channels.

When you select Mic for ADC source, you can select the +20 dB Mic
gain boost check box to add 20 dB to the microphone input signal
before the codec digitizes the signal.

2-433

C6416 DSK ADC

Dialog
Box

ADC source
The input source to the codec. Line In is the default. Selecting
Mic enables the +20 dB Mic gain boost option.

+20 dB Mic gain boost
Boosts the input signal by +20dB when ADC source is Mic. Gain
is applied before analog-to-digital conversion.

Stereo
Indicates whether the input audio data is in monaural or stereo
format. Select the check box to enable stereo input. Clear the
check box when you input monaural data. By default, stereo is
enabled. Monaural data comes from the right channel.

Sample rate
Sets the sample rate for the data output by the codec. Options are
8, 32, 44.1, 48, and 96kHz, with a default of 8kHz.

2-434

C6416 DSK ADC

Word length
Sets the resolution with which the ADC samples the analog input.
Increasing the word length increases the accuracy of the data in
each sample. If your model also contains a DAC block, set its
word length match that of the ADC block.

Output data type
Selects the word length and shape of the data from the codec.
By default, double is selected. Options are Double, Single, and
Integer. To process single and double data types, the block uses
emulated floating-point instructions on the C6416 processor.

Scaling
Selects whether the codec data is unmodified, or normalized to
the output range to ±1.0, based on the codec data format. Select
either Normalize or Integer from the list. Normalize is the
default setting.

Samples per frame
Creates frame-based outputs from sample-based inputs. This
parameter specifies the number of samples of the signal the block
buffers internally before it sends the digitized signals, as a frame
vector, to the next block in the model. This value defaults to 64
samples per frame. Notice that the frame rate depends on the
sample rate and frame size. For example, if your input is 8000
samples per second, and you select 32 samples per frame, the
frame rate is 250 frames per second. The throughput remains the
same at 8000 samples per second.

Inherit sample time
Selects whether the block inherits the sample time from the
model base rate or Simulink base rate as determined in the
Solver options in Configuration Parameters. Selecting Inherit
sample time directs the block to use the specified rate in model
configuration. Entering -1 configures the block to accept the
sample rate from the upstream HWI, Task, or Triggered Task
blocks.

See Also C6416 DSK DAC

2-435

C6416 DSK DAC

Purpose Use codec to convert digital input to analog output

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ C6416 DSK

Description
Adding the C6416 DSK DAC (digital-to-analog converter) block to your
Simulink model lets you output an analog signal to the LINE OUT
connection on the C6416 DSK board. When you add the C6416 DSK
DAC block, the digital signal received by the codec is converted to an
analog signal and sent to the output jack.

Only theWord length option in the block affects the codec. The other
options relate to the model you are using in Simulink software and
the signal processor on the board. Refer to the following table for
information.

Option Affected Hardware

Overflow mode TMS320C6416 Digital Signal Processor

Scaling TMS320C6416 Digital Signal Processor

Word length Codec

2-436

C6416 DSK DAC

Dialog
Box

Word length
Sets the DAC to interpret the input data word length. Without
this setting, the DAC cannot convert the digital data to analog
as expected. The value defaults to 16 bits, with options of 20,
24, and 32 bits. The word length you set here should match the
ADC setting.

Sampling rate
Sets the sampling rate for the block output to the output ports on
the target. Select from the list of available rates.

Scaling
Selects whether the input to the codec represents unmodified
data, or data that has been normalized to the range ±1.0. Match
the setting for the C6416 DSK ADC block.

Overflow mode
Determines how the codec responds to data that is outside the
range specified by the Scaling parameter. You can choose Wrap
or Saturate to handle the result of an overflow in an operation. If
efficient operation matters, Wrap is the more efficient mode.

2-437

C6416 DSK DAC

See Also C6416 DSK ADC

2-438

C6416 DSK DIP Switch

Purpose Simulate or read DIP switches

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ C6416 DSK

Description
Added to your model, this block behaves differently in simulation than
in code generation and targeting.

In Simulation — the options Switch 0, Switch 1, Switch 2, and
Switch 3 generate output to simulate the settings of the user-defined
dual inline pin (DIP) switches on your C6416 DSK. Each option turns
the associated DIP switch on when you select it. The switches are
independent of one another.

By defining the switches to represent actions on your target, DIP
switches let you modify the operation of your process by reconfiguring
the switch settings.

Use the Data type to specify whether the DIP switch options output an
integer or a logical string of bits to represent the status of the switches.
The table that follows presents all the option setting combinations with
the result of your Data type selection.

Option Settings to Simulate the User DIP Switches on the
C6416 DSK

Switch 0
(LSB) Switch 1 Switch 2

Switch 3
(MSB)

Boolean
Output

Integer
Output

Cleared Cleared Cleared Cleared 0000 0

Selected Cleared Cleared Cleared 0001 1

Cleared Selected Cleared Cleared 0010 2

Selected Selected Cleared Cleared 0011 3

2-439

C6416 DSK DIP Switch

Option Settings to Simulate the User DIP Switches on the C6416
DSK (Continued)

Switch 0
(LSB) Switch 1 Switch 2

Switch 3
(MSB)

Boolean
Output

Integer
Output

Cleared Cleared Selected Cleared 0100 4

Selected Cleared Selected Cleared 0101 5

Cleared Selected Selected Cleared 0110 6

Selected Selected Selected Cleared 0111 7

Cleared Cleared Cleared Selected 1000 8

Selected Cleared Cleared Selected 1001 9

Cleared Selected Cleared Selected 1010 10

Selected Selected Cleared Selected 1011 11

Cleared Cleared Selected Selected 1100 12

Selected Cleared Selected Selected 1101 13

Cleared Selected Selected Selected 1110 14

Selected Selected Selected Selected 1111 15

Selecting the Integer data type results in the switch settings
generating integers in the range from 0 to 15 (uint8), corresponding to
converting the string of individual switch settings to a decimal value. In
the Boolean data type, the output string presents the separate switch
setting for each switch, with the Switch 0 status represented by the
least significant bit (LSB) and the status of Switch 3 represented by
the most significant bit (MSB).

In Code generation and targeting— the code generated by the block
reads the physical switch settings of the user switches on the board and
reports them as shown in the table above. Your process uses the result
in the same way whether in simulation or in code generation. In code
generation and when running your application, the block code ignores
the settings for Switch 0, Switch 1, Switch 2 and Switch 3 in favor

2-440

C6416 DSK DIP Switch

of reading the hardware switch settings. When the block reads the DIP
switches, it reports the results as either a Boolean string or an integer
value as the following table shows.

Output Values From The User DIP Switches on the C6416 DSK

Switch 0
(LSB) Switch 1 Switch 2

Switch 3
(MSB)

Boolean
Output

Integer
Output

Off Off Off Off 0000 0

On Off Off Off 0001 1

Off On Off Off 0010 2

On On Off Off 0011 3

Off Off On Off 0100 4

On Off On Off 0101 5

Off On On Off 0110 6

On On On Off 0111 7

Off Off Off On 1000 8

On Off Off On 1001 9

Off On Off On 1010 10

On On Off On 1011 11

Off Off On On 1100 12

On Off On On 1101 13

Off On On On 1110 14

On On On On 1111 15

2-441

C6416 DSK DIP Switch

Dialog
Box

Switch 0
Simulate the status of the user-defined DIP switch on the board.

Switch 1
Simulate the status of the user-defined DIP switch on the board.

Switch 2
Simulate the status of the user-defined DIP switch on the board.

Switch 3
Simulate the status of the user-defined DIP switch on the board.

Data type
Determines how the block reports the status of the user-defined
DIP switches. Boolean is the default, indicating that the output is
a vector of four logical values.

Each vector element represents the status of one DIP switch;
the first is Switch 0 and the fourth is Switch 3. The data type

2-442

C6416 DSK DIP Switch

Integer converts the logical string to an equivalent unsigned 8-bit
(uint8) value. For example, when the logical string generated
by the switches is 0101, the conversion yields 5 — the MSB is 0
and the LSB is 1.

Sample time
Specifies the time between samples of the signal. This value
defaults to 1 second between samples, for a sample rate of one
sample per second (1/Sample time).

2-443

C6416 DSK LED

Purpose Control LEDs

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ C6416 DSK

Description
Adding the C6416 DSK LED block to your Simulink block diagram lets
you trigger the user light emitting diodes (LED) on the C6416 DSK. To
use the block, send a nonzero real scalar to the block. The C6416 DSK
LED block controls all four User LEDs located on the C6416 DSK.

When you add this block to a model, and send an integer to the block
input, the block sets the LED state based on the input value it receives:

• When the block receives an input value equal to 0, the specified LEDs
are turned off (disabled), 0000

• When the block receives a nonzero input value, the specified LEDs
are turned on (enabled), 0001 to 1111

To activate the block, send it an integer in the range 0 to 15. Vectors
do not work to activate LEDs; nor do complex numbers as scalars or
vectors.

For example, sending the value 6 turns on the diodes to show 0110
(off/on/on/off). 13 turns on the diodes to show 1101.

all LEDs maintain their state until the C6416 DSK LED block receives
an input value that changes the state. Enabled LEDs stay on until
the block receives an input value that turns the LEDs off; disabled
LEDs stay off until turned on. Resetting the C6416 DSK turns off all
User LEDs. When you start an application, the LEDs are turned off
by default.

2-444

C6416 DSK LED

Dialog
Box This dialog does not have user-selectable options.

2-445

C6416 DSK Reset

Purpose Reset to initial conditions

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ C6416 DSK

Description
Double-clicking this block in a Simulink model window resets the
C6416 DSK that is running the executable code built from the model.
When you double-click the C6416 DSK Reset block, the block runs the
software reset function provided by CCS IDE that resets the processor
on your C6416 DSK. Applications running on the board stop and the
signal processor returns to the initial conditions you defined.

Before you build and download your model, add the block to the model
as a stand-alone block. You do not need to connect the block to a block
in the model. When you double-click this block in the block library, it
resets your C6416 DSK. In other words, when you double-click a C6416
DSK Reset block, you reset your C6416 DSK.

Dialog
Box

This block does not have settable options and does not provide a user
interface dialog.

2-446

C6455 DSK/EVM ADC

Purpose Configure AIC23 audio codec to capture audio stream from LINE-IN
or MIC

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ C6455 EVM

Description
This block uses the AIC23 audio codec on the C6455 DSK/EVM board
to capture an analog audio stream from the Line In or Mic jacks and
generate a digital frame-based output. Output is a [Nx2] array of int16
values representing the left and right channels of the sampled signal,
where N is the number of samples per frame. Use the Inherit sample
time parameter to place the ADC block in an asynchronous function
call subsystem.

2-447

C6455 DSK/EVM ADC

Dialog
Box

ADC input source
Select Line In or Mic In as the input source.

Sampling Rate
Set the sampling rate of the analog-to-digital converter.
Increasing the frequency increases the accuracy of the sampling
data over time.

Samples per frame
Set the number of samples the block buffers internally before it
sends the digitized signals, as a frame vector, to the next block
in the model. This value defaults to 64 samples per frame. The
frame rate depends on the sample rate and frame size. For
example, if Sampling Rate is 8 kHz, and Samples per frame is
32, the frame rate is 250 frames per second (8000/32 = 250).

Inherit sample time
Select whether the block inherits the sample time from the
model base rate or Simulink base rate as determined in the
Solver options in Configuration Parameters. Selecting Inherit

2-448

C6455 DSK/EVM ADC

sample time directs the block to use the specified rate in model
configuration. Entering -1 configures the block to accept the
sample rate from the upstream HWI, Task, or Triggered Task
blocks.

See Also DM6437 EVM DAC

2-449

C6455 DSK/EVM DAC

Purpose Configure AIC23 codec to convert digital signal to audio output on
LINE OUT and HP OUT

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ C6455 EVM

Description
Configure the AIC23 stereo codec on the C6455 EVM board to convert
a digital signal to an analog audio stream on the LINE OUT and HP
OUT output jacks. The digital signal input must be an [Nx2] array of
int16 values. Column 1 of the array is the left channel and column 2 is
the right channel of the sampled signal. The sampling rate of the DAC
output must match the sampling rate of the digital signal from the ADC.

Dialog
Box

Sampling Frequency
Set the sampling rate of the digital-to-analog converter. The rate
defaults to 8 kHz. Options range up to 96 kHz.

See Also C6455 DSK/EVM ADC

2-450

C6455 DSK/EVM DIP

Purpose Output state of user-selected DIP switch as Boolean

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ C6455 EVM

Description
Outputs a Boolean that gives the state of a user-selected DIP switch
from the SW1 bank of switches on the C6455 DSK/EVM board. Boolean
0 means the switch is open, and Boolean 1 means it is closed. Use
multiple blocks to output the state of multiple DIP switches.

For simulations, you may want to use the C6455 DSK/EVM DIP block
with a Constant block and an Environment Controller block, both from
the Simulink block libraries.

2-451

C6455 DSK/EVM DIP

Dialog
Box

DIP Switch
Select the switch, 0 through 3, from the SW1 bank of switches.

Sample Time
Specifies the time between samples of the signal in seconds. This
value defaults to 1 second between samples.

2-452

C6455 DSK/EVM LED

Purpose Apply Boolean input to user-selected LED

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ C6455 EVM

Description
This block controls an individual LED among the User LEDs on the
C6455 DSK/EVM during execution of generated code. The block input
accepts Boolean values, 0 (off) or 1 (on). Use multiple blocks to control
multiple LEDs.

Dialog
Box

LED number
Specify the number of the User LED that the Boolean input
controls.

2-453

C6455 SRIO Config

Purpose Configure generated code for serial RapidI/O peripheral

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ C6455 EVM

Description
The C6455 processor supports the serial RapidI/O (SRIO) peripheral
from Texas Instruments for high-speed packet-switched chip-to-chip
and board-to-board communications. This block provides the
parameters you use to configure the SRIO peripheral on your hardware
to communicate between different processors.

The dialog box parameters that you set provide values to initialize the
registers on the processor relevant to SRIO processing.

Because SRIO handles communications between two platforms, it
requires two models or sets of code—one running on the local device and
one running on the remote device. Both models must include the SRIO
Config block to configure their SRIO communications capability, and
the blocks must have the device IDs to refer to one another.

SRIO blocks implement both direct I/O and doorbell interrupt forms
of SRIO communications. Direct I/O provides data transfer directly
between two processors. With direct I/O you have burst-write and
burst-read access with the remote device. The block configures the
SRIO peripheral as a 4x SRIO, meaning that all four links of SRIO are
bundled together for the fastest link. Direct I/O uses the Load/Store
Unit (LSU) and Direct Memory Access (DMA) Engine to control and
monitor the data transfer.

Doorbell interrupt enables the local device to initiate CPU interrupts
on the remote device if burst-write access is enabled. Such interrupts
signal that data is ready to transfer. Both devices, local (source) and
remote (destination) include doorbell message queues. The destination

2-454

C6455 SRIO Config

device reads its queue to determine the interrupt source and to process
the doorbell INFO field.

To see the SRIO blocks in use, refer to the Interprocessor
Communications via Serial Rapid I/O (SRIO) example, located in the
online help system examples for Embedded Coder software.

Dialog
Box

Local device ID (16-bit hex)
Enter the ID of the local device to configure the device ID field in
the generated code. Use a 16-bit hexadecimal format. When you
configure SRIO Transmit and SRIO Receive blocks in models, the
local device ID in this field must match the remote device ID for
the Transmit and Receive block in each model.

In the generated code, you see the input device ID as a constant
mapped to the following program code entry.

#define SRIO_LARGE_DEV_ID 0xCAFE

2-455

C6455 SRIO Config

Operation rate
Set the operating frequency of the SRIO serializer/deserializer
(SERDES). Two variables determine the primary operating
frequency of the SERDES, the reference clock frequency and PLL
multiplication factor. Select Full, Half, or Quarter from the list.

• Full takes two data samples for each PLL output clock cycle.

• Half takes one data sample for each PLL output clock cycle.

• Quarter takes one data sample and a delay for two PLL output
cycles

This value defaults to Full.

Interrupt number for SRIO events
Assigns an interrupt number to initiate for SRIO events. After
you select a value from the list, you see a constant similar to the
following defined in the generated code

#define SRIO_INTR_NUMBER 4

References For more information about SRIO, refer to TMS320TCI648x Serial
RapidIO User’s Guide, Literature Number: SPRUE13. Texas
Instruments Incorporated.

2-456

C6455 SRIO Receive

Purpose Configure generated code to receive serial RapidI/O packets

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ C6455 EVM

Description
SRIO receive blocks add the ability to receive SRIO packets to the
processor that is running the embedded code. Each receive block has
two output ports—theStat port that is permanent and the optional Ptr
port, that report the status of the block and output a pointer to data.

Writing data between DSPs is more efficient than reading because
SRIO write can handle up to 4kB per write request without stalling
the processor while SRIO read only handles up to 256 bytes per read
request. Thus, the elapsed time for transferring data by reading from
the remote device can be much longer than that required for writing
from the remote device. Use the doorbell interrupt options to signal
remote devices and to coordinate the data transfer between processors.

The Stat port reports SRIO operating status as shown in the following
table.

Value at Stat
Port

Description

1 SRIO request is done (complete)

0 SRIO request is pending

-1 SRIO request failed

-2 SRIO request was not sent because the SRIO
request queue is full

2-457

C6455 SRIO Receive

To see the SRIO blocks in use, refer to the Interprocessor
Communications via Serial Rapid I/O (SRIO) example in the online help
system examples for Embedded Coder software.

Dialog
Box

The block dialog box provides parameters on two panes:

• Main pane includes parameters that configure the data transfer
operation, the doorbell interrupt ID, and various address settings
for the remote device and host.

• “Data Types Pane” on page 2-358parameters configure the data type
and size that the block reads.

2-458

C6455 SRIO Receive

Main Pane

Remote device ID (16-bit hex)
Enter the ID of the remote device in 16-bit hexadecimal format
to configure the remote ID field in the generated code. When you
configure SRIO Receive blocks for this communication link, the
remote device ID in this field must match the local device ID for
the SRIO Config block in the transmitting model.

2-459

C6455 SRIO Receive

Accept doorbell interrupt from remote device
Enables the doorbell interrupt operation for the block. The block
waits until it receives a doorbell interrupt before it reads from
the remote device. Selecting this option enables the Doorbell
interrupt ID parameter so you can set the interrupt ID.

Doorbell interrupt ID
Sets the interrupt ID for the doorbell to determine which SRIO
Receive block should be awakened based on the incoming
interrupt value. Select a value from the list. If your model
contains more than one SRIO receive block, each receive block
must use a different ID. IDs range from 0 to 15 with a default
value of 0. SRIO Receive and SRIO Transmit blocks are paired
together by this ID. Create and SRIO Transmit block with this ID
to send the doorbell interrupt.

Read from remote device
Selecting this option tells the block to perform a burst read from
the remote device at the address in Remote address. If you clear
this option, you must select Accept doorbell interrupt from
remote device.

Remote address (32-bit hex aligned to an 8-byte boundary
This address specifies where the data is being read from the
remote device. The address you enter here should match the local
address of the corresponding SRIO Transmit block.

This address should align to an 8-byte boundary in memory.

Show output port for local address pointer
When you select this parameter, the output port Ptr returns the
pointer that you specify in Local address (32-bit hex aligned
to an 8 byte boundary). Clearing this option removes the Ptr
port from the block.

Local address (32-bit hex aligned to an 8 byte boundary
This address specifies the destination for the data to transfer. This
address should match the remote address of the corresponding

2-460

C6455 SRIO Receive

SRIO Transmit block. You will need it if the SRIO Transmit block
performs burst-write operations.

Enable blocking mode
SRIO receive blocks can operate in either blocking or nonblocking
modes.

• Selecting this option puts the block in blocking mode and
the block waits for a doorbell interrupt to come or timeout to
occur before passing program control to downstream blocks or
performing read operations.

— Clearing Enable blocking mode directs the block to poll
the doorbell interrupt status register to determine whether
the SRIO Transmit block sent a doorbell packet.

— Sending the packet indicates that the transmitting block
completed a data transfer to this block.

• Clearing this option to put the block in nonblocking mode
enables the Sample time option. In nonblocking mode,
Simulink software uses the sample time to determine the
polling period the block uses for polling the interrupt status
register.

Enable blocking mode is not available when you clear Enable
doorbell. Clearing Accept doorbell interrupt form remote
device also disables this option because blocking mode refers to
the doorbell interrupt process.

Sample time
Determines the polling period, in seconds, for the block in
nonblocking mode. Enter the time period to wait between polls.
To enable this option, clear Enable blocking mode and select
Accept doorbell interrupt from remote device.

Timeout value
In blocking mode, this value determines how long the block
waits for a doorbell interrupt before it sets the Stat output port
to Timeout status. Enter a time in seconds (The value defaults

2-461

C6455 SRIO Receive

to inf to block until the block receives a doorbell interrupt).
The default time-out value is 1 second. Clearing either Enable
blocking mode or Accept doorbell interrupt from remote
device disables this option.

Data Properties Pane

2-462

C6455 SRIO Receive

Output data size
Use this to specify the amount of data in bytes to transfer. Enter
either a scalar to define a vector of elements or a two-element
array. For example, enter 256 to specify a vector of 256 elements.
To specify a two-dimensional array of 512 elements, enter [256 2].
The block uses this value to determine the size of the Ptr port. If
you select the Frame-based option, you must enter the vector, or
scalar value, as an array. Thus the 256-element vector example
entry becomes [256 1].

Output data type
Specify the data type used for the output. With this information,
the block calculates the size of the data transfer in bytes using
this value and the Output data size value.

Frame-based
When you select this option, the block treats the data
as frame-based rather than sample-based. If you select
Frame-based, you must enter your output data size as a
two-element array. For example, to specify a vector that contains
256 elements, enter [256 1].

References For more information about SRIO, refer to TMS320TCI648x Serial
RapidIO User’s Guide, Literature Number: SPRUE13. Texas
Instruments Incorporated.

2-463

C6455 SRIO Transmit

Purpose Configure generated code to transmit serial RapidI/O packets

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ C6455 EVM

Description
SRIO transmit blocks add the ability to transmit SRIO packets to
another processor. Each transmit block has an input Ptr port, and an
optional Stat output port controlled by the Show output port for
status option.

Writing data between DSPs is more efficient than reading because
SRIO write can handle up to 4kB per write request without stalling
the processor while SRIO read only handles up to 256 bytes per read
request. Thus, the time used to transfer data by reading from the
remote device can be much longer than that required for writing from
the remote device. SRIO read may require multiple requests. Use the
doorbell interrupt options signal remote devices and to coordinate the
data transfer between the processors.

The Stat port reports SRIO operating status as shown in the following
table.

Value at Stat
Port

Description

1 SRIO request is done (complete)

0 SRIO request is pending

-1 SRIO request failed

-2 SRIO request was not sent because the SRIO
request queue is full

2-464

C6455 SRIO Transmit

To see the SRIO blocks in use, refer to the Interprocessor
Communications via Serial Rapid I/O (SRIO) example in the online help
system examples for Embedded Coder software.

Dialog
Box

Remote device ID (16-bit hex)
Enter the ID of the remote device in 16-bit hexadecimal format
to configure the remote ID field in the generated code. When you
configure SRIO Transmit blocks for this communication link, the
remote device ID in this field must match the local device ID for
the SRIO Config block on the receiving end of the transmission.

2-465

C6455 SRIO Transmit

Send doorbell interrupt to remote device
Enables the doorbell interrupt operation for the bloc, which sends
a doorbell interrupt after writing data to the remote device.
Selecting this option enables Doorbell interrupt ID.

Doorbell interrupt ID
Sets the interrupt ID for the doorbell to set the doorbell INFO field
of the SRIO packet. Select a value from the list. If your model
contains more than one SRIO transmit block, each transmit block
must use a different ID. IDs range from 0 to 15 with a default
value of 0. SRIO Receive and SRIO Transmit blocks are paired
together by this ID. Create an SRIO Receive block with this ID
to receive the doorbell interrupt. The block uses this value to set
the doorbell INFO field in an SRIO packet.

Write to remote device
Selecting this option tells the block to perform a burst write using
Direct IO to the device at the address in Remote device ID. If
you clear this option, you must select Send doorbell interrupt
to remote device. Selecting this option enables the Remote
address (32-bit hex aligned to an 8–byte boundary option.

Remote address (32-bit hex aligned to an 8-byte boundary
Enter the address to write the output data to at the remote device.

Clearing Write to remote device disables this option. It
becomes and do not care field.

For efficient data transfers, enter an address that aligns to an
8–byte boundary in memory.

Specify local address for incoming signal buffer
Select this option to enable you to specify the local address for
the input data to this block. Select his option if you are pairing
this block with an SRIO Receive block that performs burst-read
operation. The SRIO Receive block needs to know the specific
address to read the data from. When you select this option,
you enable Local address (32-bit hex aligned to an 8 byte
boundary) where you enter the local address.

2-466

C6455 SRIO Transmit

Local address (32-bit hex aligned to an 8 byte boundary
This address specifies the location of the incoming data. For burst
write operations, this value is a local address that SRIO uses to
form the direct I/O packets.

For efficient data transfers, enter an address that aligns to an
8–byte boundary in memory.

Show output port for status
When you select this parameter, the output port Stat appears on
the block. Stat returns the status of the write transmit operation.

References For more information about SRIO, refer to TMS320TCI648x Serial
RapidIO User’s Guide, Literature Number: SPRUE13. Texas
Instruments Incorporated.

2-467

C64x Autocorrelation

Purpose Autocorrelate input vector or frame-based matrix

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Optimization/ C64x DSP Library

Description
The C64x Autocorrelation block computes the autocorrelation of an
input vector or frame-based matrix. For frame-based inputs, the
autocorrelation is computed along each of the input’s columns. The
number of samples in the input channels must be an integer multiple of
eight. Input and output signals are real and Q.15.

Autocorrelation blocks support discrete sample times and little-endian
code generation only.

2-468

C64x Autocorrelation

Dialog
Box

Compute all non-negative lags
When you select this parameter, the autocorrelation is performed
using all nonnegative lags, where the number of lags is one less
than the length of the input. The lags produced are therefore
in the range [0, length(input)-1]. When this parameter is not
selected, you specify the lags used in Maximum non-negative
lag (less than input length).

Maximum non-negative lag (less than input length)
Specify the maximum lag (maxLag) the block should use in
performing the autocorrelation. The lags used are in the range
[0, maxLag]. The maximum lag must be odd, and (maxLag+1)
must be divisible by 4, such as maxLag equal to 3, 7, or 19.
This parameter is enabled when you clear the Compute all
non-negative lags parameter.

Algorithm In simulation, the Autocorrelation block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_autocor.
During code generation, this block calls the DSP_autocor routine to
produce optimized code.

2-469

C64x Bit Reverse

Purpose Bit-reverse elements of each complex input signal channel

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Optimization/ C64x DSP Library

Description
The C64x Bit Reverse block bit-reverses the elements of each channel
of a complex input signal X. The Bit Reverse block is used primarily
to provide ordered inputs and outputs to or from blocks that perform
FFTs. Inputs to this block must be 16-bit fixed-point data types. Input
vector lengths must be a power of two. Because you use this block with
FFT blocks the input vector length must be a power of two.

The Bit Reverse block supports discrete sample times and little-endian
code generation only.

Dialog
Box

Algorithm In simulation, the Bit Reverse block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_bitrev_cplx.
During code generation, this block calls the DSP_bitrev_cplx routine
to produce optimized code.

Examples The Bit Reverse block reorders the output of the C64x Radix-2 FFT in
the model below to natural order.

2-470

C64x Bit Reverse

The following code calculates the same FFT in the workspace. The
output from this calculation, y2, is displayed side-by-side with the
output from the model, c. The outputs match, showing that the Bit
Reverse block reorders the Radix-2 FFT output to natural order:

k = 4;
n = 2^k;
xr = zeros(n, 1);
xr(2) = 0.5;
xi = zeros(n, 1);
x2 = complex(xr, xi);
y2 = fft(x2);

[y2, c]
0.5000 0.5000
0.4619 - 0.1913i 0.4619 - 0.1913i
0.3536 - 0.3536i 0.3535 - 0.3535i
0.1913 - 0.4619i 0.1913 - 0.4619i

0 - 0.5000i 0 - 0.5000i
-0.1913 - 0.4619i -0.1913 - 0.4619i
-0.3536 - 0.3536i -0.3535 - 0.3535i
-0.4619 - 0.1913i -0.4619 - 0.1913i
-0.5000 -0.5000
-0.4619 + 0.1913i -0.4619 + 0.1913i
-0.3536 + 0.3536i -0.3535 + 0.3535i
-0.1913 + 0.4619i -0.1913 + 0.4619i

0 + 0.5000i 0 + 0.5000i
0.1913 + 0.4619i 0.1913 + 0.4619i
0.3536 + 0.3536i 0.3535 + 0.3535i
0.4619 + 0.1913i 0.4619 + 0.1913i

See Also C64x Radix-2 FFT, C64x Radix-2 IFFT

2-471

C64x Block Exponent

Purpose Minimum number of extra sign bits in each input channel

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Optimization/ C64x DSP Library

Description
The C64x Block Exponent block first computes the number of extra sign
bits of all values in each channel of an input signal, and then returns
the minimum number of sign bits found in each channel. The number
of elements in each input channel must be a multiple of eight. Input
elements must be 32-bit signed fixed-point data types. The output is
a vector of 16-bit integers — one integer for each channel of the input
signal.

This block is useful for determining whether every sample in a channel
is using extra sign bits. If so, you can scale your signal by the minimum
number of extra sign bits to eliminate the common extra bits. This
increases the representable precision and decreases the representable
range of the signal.

Block Exponent blocks support both continuous and discrete sample
times. This block supports little-endian code generation only.

Dialog
Box

2-472

C64x Block Exponent

Algorithm In simulation, the Block Exponent block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_bexp. During
code generation, this block calls the DSP_bexp routine given to produce
optimized code.

2-473

C64x Complex FIR

Purpose Filter complex input signal using complex FIR filter

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Optimization/ C64x DSP Library

Description
The C64x Complex FIR block filters a complex input signal X using
a complex FIR filter. This filter is implemented using a direct form
structure. Each input channel must contain an integer multiple of four
samples, with four samples as the minimum required.

The number of FIR filter coefficients, which are given as elements of the
input vector H, must be even. The product of the number of elements
of X and the number of elements of H must be at least four. Inputs,
coefficients, and outputs are all Q.15 data types. For each channel, the
number of input elements must be a multiple of four.

The Complex FIR block supports discrete sample times and little-endian
code generation only.

2-474

C64x Complex FIR

Dialog
Box

Coefficient source
Specify the source of the filter coefficients:

• Specify via dialog — Enter the coefficients in the
Coefficients (H) parameter in the dialog box

• Input port — Accept the coefficients from port H. This port
must have the same rate as the input data port X. Choosing
this option adds an input port to the block.

Coefficients (H)
Designate the filter coefficients in vector format. There must
be an even number of coefficients. This parameter is visible
only when Specify via dialog is selected for the Coefficient
source parameter. This parameter is tunable in simulation.

Initial conditions
Lets you provide initial conditions for the filter. If your initial
conditions for the channels are

• all the same, enter a scalar that applies to all channels.

• Different within channels but the same across channels, enter
a vector containing the initial conditions for one channel. These

2-475

C64x Complex FIR

conditions then apply to all channels. The length of this vector
must be one less than the number of coefficients.

• Different across channels, enter a matrix containing all initial
conditions for every individual channel. The number of rows of
this matrix must be one less than the number of coefficients,
and the number of columns of this matrix must be equal to
the number of channels.

You may enter real-valued initial conditions. Zero-valued
imaginary parts will be assumed.

Algorithm In simulation, the Complex FIR block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_fir_cplx.
During code generation, this block calls the DSP_fir_cplx routine to
produce optimized code.

See Also C64x General Real FIR, C64x Radix-4 Real FIR, C64x Radix-8 Real
FIR, C64x Symmetric Real FIR

2-476

C64x Convert Floating-Point to Q.15

Purpose Convert floating-point signal to Q.15 fixed-point

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Optimization/ C64x DSP Library

Description
The C64x Convert Floating-Point to Q.15 block converts a
single-precision floating-point input signal to a Q.15 output signal.
Input can be real or complex. For real inputs, the number of input
samples must be even.

The Convert Floating-Point to Q.15 block supports both continuous and
discrete sample times. This block supports little-endian code generation
only.

Dialog
Box

Algorithm In simulation, the Convert Floating-Point to Q.15 block is equivalent to
the TMS320C64x DSP Library assembly code function DSP_fltoq15.
During code generation, this block calls the DSP_fltoq15 routine to
produce optimized code.

See Also C64x Convert Q.15 to Floating Point

2-477

C64x Convert Q.15 to Floating-Point

Purpose Convert Q.15 fixed-point signal to single-precision floating-point

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Optimization/ C64x DSP Library

Description
The C64x Convert Q.15 to Floating-Point block converts a Q.15 input
signal to a single-precision floating-point output signal. Input can be
real or complex. For real inputs, the number of input samples must
be even.

The Convert Q.15 to Floating-Point block supports both continuous and
discrete sample times. This block supports little-endian code generation
only.

Dialog
Box

Algorithm In simulation, the Convert Q.15 to Floating-Point block is equivalent to
the TMS320C64x DSP Library assembly code function DSP_q15tofl.
During code generation, this block calls the DSP_q15tofl routine to
produce optimized code.

See Also C64x Convert Floating-Point to Q.15

2-478

C64x FFT

Purpose Decimation-in-frequency forward FFT of complex input vector

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Optimization/ C64x DSP Library

Description
The C64x FFT block computes the decimation-in-frequency forward
FFT, with scaling between stages, of each channel of a complex input
signal. The input length of each channel must be both a power of
two and in the range 8 to 16,384, inclusive. The input must also be
in natural (linear) order. The output of this block is a complex signal
in natural order. Inputs and outputs are all signed 16-bit fixed-point
data types.

The fft16x16r routine used by this block employs butterfly stages to
perform the FFT. The number of butterfly stages used, S, depends on
the input length L = 2^k. If k is even, then S = k/2. If k is odd, then
S = (k+1)/2.

If k is even, then L is a power of two as well as a power of four, and
this block performs all S stages with radix-4 butterflies to compute
the output. If k is odd, then L is a power of two but not a power of
four. In that case this block performs the first (S-1) stages with radix-4
butterflies, followed by a final stage using radix-2 butterflies.

To minimize noise, the FFT block also implements a divide-by-two
scaling on the output of each stage except for the last. So that the gain
of the block matches that of the theoretical FFT, the FFT block offsets
the location of the binary point of the output data type by (S-1) bits to
the right relative to the location of the binary point of the input data
type. That is, the number of fractional bits of the output data type
equals the number of fractional bits of the input data type minus (S-1).

OutputFractionalBits = InputFractionalBits–(S–1)

2-479

C64x FFT

The FFT block supports both continuous and discrete sample times.
This block supports little-endian code generation.

Dialog
Box

Algorithm In simulation, the FFT block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_fft16x16r.
During code generation, this block calls the DSP_fft16x16r routine
to produce optimized code.

See Also C64x Radix-2 FFT, C64x Radix-2 IFFT

2-480

C64x General Real FIR

Purpose Filter real input signal using real FIR filter

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Optimization/ C64x DSP Library

Description
The C64x General Real FIR block filters a frame-based real input signal
X using a real FIR filter. This filter is implemented using a direct form
structure. Signal X must contain at least four samples per channel and
the number of samples must be an integer multiple of four.

If the input it is a sample-based signal, the model throws the following
error:

%%%BEGIN ERROR%%%

Error reported by S-function 'stic6x_fir_real' in 'model/General Real FIR1':

Number of output samples must be divisible by 4.

%%%END ERROR%%%

To resolve this error, convert the signal to a frame-based signal.

The filter coefficients are specified by a real vector H, which must
contain at least five elements. The coefficients must be in reversed
order. all inputs, coefficients, and outputs are Q.15 signals.

The General Real FIR block supports discrete sample times and
supports little-endian code generation only.

2-481

C64x General Real FIR

Dialog
Box

Coefficient source
Specify the source of the filter coefficients:

• Specify via dialog— Enter the coefficients in the Coefficients
(H) parameter in the dialog box

• Input port — Accept the coefficients from port H. This port must
have the same rate as the input data port X

Coefficients (H)
Designate the filter coefficients in vector format. This parameter
is only visible when Specify via dialog is selected for the
Coefficient source parameter. This parameter is tunable in
simulation.

Initial conditions
If the initial conditions are

• all the same, you need only enter a scalar.

• Different within channels but the same across channels, enter
a vector containing the initial conditions for one channel.

2-482

C64x General Real FIR

The length of this vector must be one less than the number
of coefficients.

• Different across channels, enter a matrix containing all initial
conditions. The number of rows of this matrix must be one less
than the number of coefficients, and the number of columns of
this matrix must be equal to the number of channels.

The initial conditions must be real.

Algorithm In simulation, the General Real FIR block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_fir_gen.
During code generation, this block calls the DSP_fir_gen routine to
produce optimized code.

See Also C64x Complex FIR, C64x Radix-4 Real FIR, C64x Radix-8 Real FIR,
C64x Symmetric Real FIR

2-483

C64x LMS Adaptive FIR

Purpose LMS adaptive FIR filtering

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Optimization/ C64x DSP Library

Description
The C64x LMS Adaptive FIR block performs least-mean-square (LMS)
adaptive filtering. This filter is implemented using a direct form
structure.

Note To implement a complete LMS algorithm, use this block in
combination with the 5 other blocks shown in the “Examples” on page
2-487 section.

Note This block performs fixed-point computations using fixdt(1,16,15)
and fixdt(1,32,30) data types. Because of this limitation, you may not
be able to address numeric overflow and underflow problems with this
block. As a result, this block is useful in a limited set of applications.

The following constraints apply to the inputs and outputs of this block:

• The scalar input, X must be a Q.15 data type.

• The scalar input B must be a Q.15 data type.

• The scalar output R is a Q1.30 data type.

• The output H has length equal to the number of filter taps and is a
Q.15 data type. The number of filter taps must be a positive integer
that is a multiple of four.

2-484

C64x LMS Adaptive FIR

This block performs LMS adaptive filtering according to the equations

e n d n H n X n() () [() ()]+ = + − ⋅ +1 1 1

and

H n H n e n X n() () [() ()],+ = + + ⋅ +1 1 1

where

• n designates the time step.

• X is a vector composed of the current and last nH–1 scalar inputs.

• d is the desired signal. The output R converges to d as the filter
converges.

• H is a vector composed of the current set of filter taps.

• e is the error, or d H n X n− ⋅ +[() ()]1 .

• μ is the step size.

For this block, the input B and the output R are defined by

B e n= + ()1

and

R H n X n= ⋅ +() (),1

which combined with the first two equations, result in the following
equations that this block follows:

e n d n R() ()+ = + −1 1

H n H n B X n() () [()].+ = + ⋅ +1 1

2-485

C64x LMS Adaptive FIR

d and B must be produced externally to the LMS Adaptive FIR block.
See “Examples” on page 2-487 below for a sample model where this
is done.

The LMS Adaptive FIR block supports discrete sample times and
supports little-endian code generation only.

The rounding mode used is floor, and the saturation mode is wrap. all
intermediate products have s32Q30 data type. The update equation is
as follows:

H H B X

R X H
i i i

i i
N

= + ×

= ×∑
S16Q15 S32Q30 S32Q30(() ())

(),

where N is the number of filter taps.

Note This block does not implement a leaky LMS algorithm. Therefore,
do not compare it with the leakage factor of the LMS block of the DSP
System Toolbox software.

2-486

C64x LMS Adaptive FIR

Dialog
Box

Number of FIR filter taps
Designate the number of filter taps. The number of taps must be
a positive integer that is also a multiple of four.

Initial value of filter taps
Enter the initial value of the filter taps.

Output filter coefficients H?
If you select this option, the filter taps are produced as output H.
If you do not select this option, H is suppressed.

Algorithm In simulation, the LMS Adaptive FIR block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_firlms2.
During code generation, this block calls the DSP_firlms2 routine to
produce optimized code.

Examples The following model uses the LMS Adaptive FIR block.

2-487

C64x LMS Adaptive FIR

The portion of the model enclosed by the dashed line produces the
signal B and feeds it back into the LMS Adaptive FIR block. The inputs

to this region are X and the desired signal d, and the output of this

region is the vector of filter taps H . Thus this region of the model
acts as a canonical LMS adaptive filter. For example, compare this
region to the adaptfilt.lms function in DSP System Toolbox software.
adaptfilt.lms performs canonical LMS adaptive filtering and has the
same inputs and output as the outlined section of this model.

To use the LMS Adaptive FIR block you must create the input B in
some way similar to the one shown here. You must also provide the

signals X and d. This model simulates the desired signal d by feeding

X into a digital filter block. You can simulate your desired signal in
a similar way, or you may bring d in from the workspace with a From
Workspace or codec block.

2-488

C64x Matrix Multiply

Purpose Matrix multiply two input signals

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Optimization/ C64x DSP Library

Description
The C64x Matrix Multiply block multiplies two input matrices A and B.
Inputs and outputs are real, 16-bit, signed fixed-point data types. This
block wraps overflows when they occur.

The product of the two 16-bit inputs results in a 32-bit accumulator
value. The Matrix Multiply block, however, only outputs 16 bits.
You can choose to output the highest or second-highest 16 bits of the
accumulator value.

Alternatively, you can choose to output 16 bits according to how many
fractional bits you want in the output. The number of fractional bits in
the accumulator value is the sum of the fractional bits of the two inputs.

Input A Input B
Accumulator
Value

Total Bits 16 16 32

Fractional
Bits

R S R + S

Therefore R+S is the location of the binary point in the accumulator
value. You can select 16 bits in relation to this fixed position of the
accumulator binary point to give the desired number of fractional bits
in the output (see “Examples” on page 2-491 below). You can either
require the output to have the same number of fractional bits as one of
the two inputs, or you can specify the number of output fractional bits
in the Number of fractional bits in output parameter.

2-489

C64x Matrix Multiply

The Matrix Multiply block supports both continuous and discrete
sample times. This block supports little-endian code generation only.

Dialog
Box

Set fractional bits in output to
Only 16 bits of the 32 accumulator bits are output from the block.
Choose which 16 bits to output from the list:

• Match input A— Output the 16 bits of the accumulator value
that cause the number of fractional bits in the output to match
the number of fractional bits in input A (or R in the discussion
above).

• Match input B— Output the 16 bits of the accumulator value
that cause the number of fractional bits in the output to match
the number of fractional bits in input B (or S in the discussion
above).

• Match high bits of acc. (b31:b16)— Output the highest
16 bits of the accumulator value.

• Match high bits of prod. (b30:b15) — Output the
second-highest 16 bits of the accumulator value.

• User-defined— Output the 16 bits of the accumulator value
that cause the number of fractional bits of the output to match
the value specified in the Number of fractional bits in
output parameter.

2-490

C64x Matrix Multiply

Number of fractional bits in output
Specify the number of bits to the right of the binary point in
the output. This parameter is enabled only when you select
User-defined for Set fractional bits in output to.

Algorithm In simulation, the Matrix Multiply block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_mat_mul.
During code generation, this block calls the DSP_mat_mul routine to
produce optimized code.

Examples Example 1

Suppose A and B are both Q.15. The data type of the resulting
accumulator value is therefore the 32-bit data type Q1.30 (R + S = 30).
In the accumulator, bits 31:30 are the sign and integer bits, and bits
29:0 are the fractional bits. The following table shows the resulting
data type and accumulator bits used for the output signal for different
settings of the Set fractional bits in output to parameter.

Set fractional bits
in output to

Data Type Accumulator Bits

Match input A Q.15 b30:b15

Match input B Q.15 b30:b15

Match high bits of
acc.

Q1.14 b31:b16

Match high bits of
prod.

Q.15 b30:b15

Example 2

Suppose A is Q12.3 and B is Q10.5. The data type of the resulting
accumulator value is therefore Q23.8 (R + S = 8). In the accumulator,
bits 31:8 are the sign and integer bits, and bits 7:0 are the fractional
bits. The following table shows the resulting data type and accumulator
bits used for the output signal for different settings of the Set
fractional bits in output to parameter.

2-491

C64x Matrix Multiply

Set fractional bits
in output to

Data Type Accumulator Bits

Match input A Q12.3 b20:b5

Match input B Q10.5 b18:b3

Match high bits of
acc.

Q23.-8 b31:b16

Match high bits of
prod.

Q22.-7 b30:b15

See Also C64x Vector Multiply

2-492

C64x Matrix Transpose

Purpose Matrix transpose input signal

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Optimization/ C64x DSP Library

Description
The C64x Matrix Transpose block transposes an input matrix or vector.
A 1-D input is treated as a column vector and transposed to a row
vector. Input and output signals are real, 16-bit, signed fixed-point
data type. Both the number of rows and the number of columns must
be multiples of four.

The Matrix Transpose block supports both continuous and discrete
sample times. This block supports little-endian code generation only.

Note If you use Code Replacement Library (CRL) technology with
this block, the TI compiler generates processor and compiler-specific
instructions that improve the generated code. For more information,
consult“Introduction to Code Replacement Libraries”.

Dialog
Box

2-493

C64x Matrix Transpose

Algorithm In simulation, the Matrix Transpose block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_mat_trans.
During code generation, this block calls the DSP_mat_trans routine
to produce optimized code.

2-494

C64x Radix-2 FFT

Purpose Radix-2 decimation-in-frequency forward FFT of complex input vector

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Optimization/ C64x DSP Library

Description
The C64x Radix-2 FFT block computes the radix-2
decimation-in-frequency forward FFT of each channel of a
complex input signal. The input length of each channel must be both
a power of two and in the range 16 to 32,768, inclusive. The input
must also be in natural (linear) order. The output of this block is
a complex signal in bit-reversed order. Inputs and outputs are signed
16-bit fixed-point data types, and the output data type matches the
input data type.

You can use the C64x Bit Reverse block to reorder the output of the
Radix-2 FFT block to natural order.

The Radix-2 FFT block supports both continuous and discrete sample
times. This block supports little-endian code generation.

Dialog
Box

Algorithm In simulation, the Radix-2 FFT block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_radix2. During

2-495

C64x Radix-2 FFT

code generation, this block calls the DSP_radix2 routine to produce
optimized code.

Examples The output of the Radix-2 FFT block is bit-reversed. This example
shows you how to use the C64x Bit Reverse block to reorder the output
of the Radix-2 FFT block to natural order.

The following code calculates the same FFT as the above model in the
workspace. The output from this calculation, y2, is then displayed
side-by-side with the output from the model, c. The outputs match,
showing that the Bit Reverse block does reorder the Radix-2 FFT block
output to natural order:

k = 4;
n = 2^k;
xr = zeros(n, 1);
xr(2) = 0.5;
xi = zeros(n, 1);
x2 = complex(xr, xi);
y2 = fft(x2);

[y2, c]
0.5000 0.5000
0.4619 - 0.1913i 0.4619 - 0.1913i
0.3536 - 0.3536i 0.3535 - 0.3535i
0.1913 - 0.4619i 0.1913 - 0.4619i

0 - 0.5000i 0 - 0.5000i
-0.1913 - 0.4619i -0.1913 - 0.4619i
-0.3536 - 0.3536i -0.3535 - 0.3535i
-0.4619 - 0.1913i -0.4619 - 0.1913i
-0.5000 -0.5000
-0.4619 + 0.1913i -0.4619 + 0.1913i
-0.3536 + 0.3536i -0.3535 + 0.3535i

2-496

C64x Radix-2 FFT

-0.1913 + 0.4619i -0.1913 + 0.4619i
0 + 0.5000i 0 + 0.5000i

0.1913 + 0.4619i 0.1913 + 0.4619i
0.3536 + 0.3536i 0.3535 + 0.3535i
0.4619 + 0.1913i 0.4619 + 0.1913i

See Also C64x Bit Reverse, C64x FFT, C64x Radix-2 IFFT

2-497

C64x Radix-2 IFFT

Purpose Radix-2 inverse FFT of complex input vector

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Optimization/ C64x DSP Library

Description
The C64x Radix-2 IFFT block computes the radix-2 inverse FFT
of each channel of a complex input signal. This block uses a
decimation-in-frequency forward FFT algorithm with butterfly weights
modified to compute an inverse FFT. The input length of each channel
must be both a power of two and in the range 16 to 32,768, inclusive.
The input must also be in natural (linear) order. The output of this
block is a complex signal in bit-reversed order. Inputs and outputs are
signed 16-bit fixed-point data types.

The radix2 routine used by this block employs a radix-2 FFT of length
L=2^k. So that the gain of the block matches that of the theoretical
IFFT, the Radix-2 IFFT block offsets the location of the binary point of
the output data type by k bits to the left relative to the location of the
binary point of the input data type. That is, the number of fractional
bits of the output data type equals the number of fractional bits of the
input data type plus k.

OutputFractionalBits = InputFractionalBits+(k)

You can use the C64x Bit Reverse block to reorder the output of the
Radix-2 IFFT block to natural order.

The Radix-2 IFFT block supports both continuous and discrete sample
times. This block supports little-endian code generation.

2-498

C64x Radix-2 IFFT

Dialog
Box

Algorithm In simulation, the Radix-2 IFFT block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_radix2. During
code generation, this block calls the DSP_radix2 routine to produce
optimized code.

See Also C64x Bit Reverse, C64x FFT, C64x Radix-2 FFT

2-499

C64x Radix-4 Real FIR

Purpose Filter real input signal using real FIR filter

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Optimization/ C64x DSP Library

Description
The C64x Radix-4 Real FIR block filters a real input signal X using a
real FIR filter. This filter is implemented using a direct form structure.

The number of input samples per channel must be a multiple of four.
The filter coefficients are specified by a real vector, H. The number of
filter coefficients must be a multiple of four and must be at least eight.
The coefficients must also be in reversed order {b(n), b(n-1),...,(b(0)}. all
inputs, coefficients, and outputs are Q.15 signals.

The Radix-4 Real FIR block supports discrete sample times and
supports little-endian code generation only.

2-500

C64x Radix-4 Real FIR

Dialog
Box

Coefficient source
Specify the source of the filter coefficients:

• Specify via dialog — Enter the coefficients in the
Coefficients parameter in the dialog box

• Input port — Accept the coefficients from port H. This port
must have the same rate as the input data port X

Coefficients (H)
Designate the filter coefficients in vector format. This parameter
is only visible when Specify via dialog is selected for the
Coefficient source parameter. Enter the n coefficients in
reversed order — b(n), b(n-1),...,(b(0). This parameter is tunable
in simulation.

Initial conditions
If the initial conditions are

• all the same, enter a scalar.

• Different within channels but the same across channels, enter
a vector containing the initial conditions for one channel.

2-501

C64x Radix-4 Real FIR

The length of this vector must be one less than the number
of coefficients.

• Different across channels, enter a matrix containing all initial
conditions. The number of rows of this matrix must be one less
than the number of coefficients, and the number of columns of
this matrix must be equal to the number of channels.

Initial conditions must be real.

Algorithm In simulation, the Radix-4 Real FIR block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_fir_r4. During
code generation, this block calls the DSP_fir_r4 routine to produce
optimized code.

See Also C64x Complex FIR, C64x General Real FIR, C64x Radix-8 Real FIR,
C64x Symmetric Real FIR

2-502

C64x Radix-8 Real FIR

Purpose Filter real input signal using real FIR filter

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Optimization/ C64x DSP Library

Description
The C64x Radix-8 Real FIR block filters a real input signal X using a
real FIR filter. This filter is implemented using a direct form structure.

The number of input samples per channel must be a multiple of four.
The filter coefficients are specified by a real vector, H. The number of
coefficients must be an integer multiple of eight. The coefficients must
be in reversed order — {b(n), b(n-1),...,(b(0)}. all inputs, coefficients, and
outputs are Q.15 signals.

The Radix-8 Real FIR block supports discrete sample times and
little-endian code generation only.

2-503

C64x Radix-8 Real FIR

Dialog
Box

Coefficient source
Specify the source of the filter coefficients:

• Specify via dialog — Enter the coefficients in the
Coefficients parameter in the dialog box

• Input port — Accept the coefficients from port H. This port
must have the same rate as the input data port X

Coefficients (H)
Designate the filter coefficients in vector format, entering them in
reversed order — b(n), b(n-1),...,(b(0). This parameter is visible
when Specify via dialog is selected for the Coefficient
source parameter. This parameter is tunable in simulation.

Initial conditions
If the initial conditions are

• all the same, you need only enter a scalar.

• Different within channels but the same across channels, enter
a vector containing the initial conditions for one channel.
The length of this vector must be one less than the number
of coefficients.

2-504

C64x Radix-8 Real FIR

• Different across channels, enter a matrix containing all initial
conditions. The number of rows of this matrix must be one less
than the number of coefficients, and the number of columns of
this matrix must be equal to the number of channels.

Initial conditions must be real.

Algorithm In simulation, the Radix-8 Real FIR block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_fir_r8. During
code generation, this block calls the DSP_fir_r8 routine to produce
optimized code.

See Also C64x Complex FIR, C64x General Real FIR, C64x Radix-4 Real FIR,
C64x Symmetric Real FIR

2-505

C64x Real Forward Lattice All-Pole IIR

Purpose Filter real input signal using lattice IIR filter

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Optimization/ C64x DSP Library

Description
The C64x Real Forward Lattice all-Pole IIR block filters a real input
signal using an autoregressive forward lattice filter. The input and
output signals must be the same 16-bit signed fixed-point data type.
The reflection coefficients must be real and Q.15. The number of
reflection coefficients must be greater than or equal to ten; they must
be even; and they must be in reversed order — k(n), k(n-1),..., k(0).
Using an even number of reflection coefficients maximizes the speed of
your generated code.

The Real Forward Lattice all-Pole IIR block supports discrete sample
times and supports little-endian code generation only.

2-506

C64x Real Forward Lattice All-Pole IIR

Dialog
Box

Coefficient source
Specify the source of the filter coefficients:

• Specify via dialog — Enter the coefficients in the
Reflection coefficients parameter in the dialog box

• Input port— Accept the coefficients from port K

Reflection coefficients
Designate the reflection coefficients of the filter in vector format.
The number of coefficients must be greater than or equal to ten
and be even. Enter the coefficients in reverse order from k(n) to
k(0). Using an even number of reflection coefficients maximizes
the speed of your generated code. This parameter is visible when
you select Specify via dialog for the Coefficient source
parameter. This parameter is tunable in simulation.

2-507

C64x Real Forward Lattice All-Pole IIR

Initial conditions
If your block initial conditions are

• all the same, you need only enter a scalar.

• Different within channels but the same across channels, enter
a vector containing the initial conditions for one channel. The
length (number of elements) of this vector must be the same as
the number of reflection coefficients in your filter.

• Different across channels, enter a matrix containing all initial
conditions. The number of rows (initial conditions for one
channel) of this matrix must be the same as the number of
reflection coefficients, and the number of columns of this matrix
must be equal to the number of channels.

Input Processing
Process input signal as frames or samples

• Columns as channels (frame based) — Process the input
signal as frames. Each frame contains a group of sequential
data samples. To perform frame-based processing, you must
have a DSP System Toolbox license.

• Elements as channels (sample based)— Process the input
signal as individual data samples.

• Inherited (this choice will be removed see release
notes)— Use the frame status attribute of the input signal to
determine whether to process the input as frames or samples.

When you load an existing model in R2011a, the software sets
this parameter to Inherited (this choice will be removed
- see release notes). Selecting this option allows you to
continue working with your model until you upgrade. Upgrade
your model using the slupdate function as soon as possible.

Note For more information about this option, see “Changes
to Frame-Based Processing”

2-508

C64x Real Forward Lattice All-Pole IIR

Algorithm In simulation, the Real Forward Lattice all-Pole IIR block is equivalent
to the TMS320C64x DSP Library assembly code function DSP_iirlat.
During code generation, this block calls the DSP_iirlat routine to
produce optimized code.

See Also C64x Real IIR

2-509

C64x Real IIR

Purpose Filter real input signal using IIR filter

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Optimization/ C64x DSP Library

Description
The C64x Real IIR block filters a real input signal X using a real
autoregressive moving-average (ARMA) IIR Filter. This filter is
implemented using a direct form I structure. You must use at least
eight input samples.

There must be five AR coefficients and five MA coefficients. The first
AR coefficient is assumed to be one. Inputs, coefficients, and output
are Q.15 data types.

The Real IIR block supports discrete sample times and supports
little-endian code generation only.

2-510

C64x Real IIR

Dialog
Box

Coefficient sources
Specify the source of the filter coefficients:

• Specify via dialog — Enter the coefficients in the
MA (numerator) coefficients and AR (denominator)
coefficients parameters in the dialog box

• Input ports— Accept the coefficients from block input ports
MA and AR

MA (numerator) coefficients
Designate the moving-average coefficients of the filter in vector
format. There must be five MA coefficients. This parameter is only
visible when Specify via dialog is selected for the Coefficient
sources parameter. This parameter is tunable in simulation.

AR (denominator) coefficients
Designate the autoregressive coefficients of the filter in vector
format. There must be five AR coefficients, however the first AR

2-511

C64x Real IIR

coefficient is assumed to be equal to one. This parameter is only
visible when Specify via dialog is selected for the Coefficient
sources parameter. This parameter is tunable in simulation.

Input state initial conditions
If the input state initial conditions are

• all the same, you need only enter a scalar.

• Different within channels but the same across channels, enter
a vector containing the input state initial conditions for one
channel. The length of this vector must be four.

• Different across channels, enter a matrix containing all input
state initial conditions. This matrix must have four rows.

Output state initial conditions
If the output state initial conditions are

• all the same, you need only enter a scalar.

• Different within channels but the same across channels, enter
a vector containing the output state initial conditions for one
channel. The length of this vector must be four.

• Different across channels, enter a matrix containing all output
state initial conditions. This matrix must have four rows.

Algorithm In simulation, the Real IIR block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_iir. During
code generation, this block calls the DSP_iir routine to produce
optimized code.

See Also C64x Real Forward Lattice all-Pole IIR

2-512

C64x Reciprocal

Purpose Fraction and exponent of reciprocal of real input signal

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Optimization/ C64x DSP Library

Description
The C64x Reciprocal block computes the fractional (F) and exponential
(E) portions of the reciprocal of a real Q.15 input, such that the
reciprocal of the input is F*(2E). The fraction is Q.15 and the exponent
is a 16-bit signed integer.

The Reciprocal block supports both continuous and discrete sample
times. This block supports little-endian code generation only.

Dialog
Box

Algorithm In simulation, the Reciprocal block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_recip16.
During code generation, this block calls the DSP_recip16 routine to
produce optimized code.

2-513

C64x Symmetric Real FIR

Purpose Filter real input signal using FIR filter

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Optimization/ C64x DSP Library

Description
The C64x Symmetric Real FIR block filters a real input signal using a
symmetric real FIR filter. This filter is implemented using a direct
form structure.

The number of input samples per channel must be even. The filter
coefficients are specified by a real vector H, which must be symmetric
about its middle element. Thus you must use an odd number of
coefficients. The number of coefficients must be of the form 16k + 1,
where k is a positive integer. This block wraps overflows that occur. The
input, coefficients, and output are 16-bit signed fixed-point data types.

Intermediate multiplies and accumulates performed by this filter
result in 32-bit accumulator values. However, the Symmetric Real FIR
block only outputs 16 bits. You can choose to output 16 bits of the
accumulator value in one of the following ways.

Match input x Output 16 bits of the accumulator value
such that the output has the same number
of fractional bits as the input

Match coefficients
h

Output 16 bits of the accumulator value
such that the output has the same number
of fractional bits as the coefficients

Match high 16 bits
of acc.

Output bits 31 - 16 of the accumulator value

2-514

C64x Symmetric Real FIR

Match high 16 bits
of prod.

Output bits 30 - 15 of the accumulator value

User-defined Output 16 bits of the accumulator value such
that the output has the number of fractional
bits specified in the Number of fractional
bits in output parameter

The Symmetric Real FIR block supports discrete sample times and
only little-endian code generation.

Dialog
Box

Coefficient source
Specify the source of the filter coefficients:

2-515

C64x Symmetric Real FIR

• Specify via dialog — Enter the coefficients in the
Coefficients parameter in the dialog box

• Input port— Accept the coefficients from port H

Coefficients
Enter the coefficients in vector format. Coefficients must be
symmetric about the middle element of the vector, so the number
of coefficients must be odd. This parameter is visible when
Specify via dialog is specified for the Coefficient source
parameter. This parameter is tunable in simulation.

Set fractional bits in coefficients to
Specify the number of fractional bits in the filter coefficients:

• Match input X — Sets the coefficients to have the same
number of fractional bits as the input

• Best precision — Sets the number of fractional bits of the
coefficients such that the coefficients are represented to the
best precision possible

• User-defined — Sets the number of fractional bits in
the coefficients with the Number of fractional bits in
coefficients parameter

This parameter is visible only when Specify via dialog is
specified for the Coefficient source parameter.

Number of fractional bits in coefficients
Specify the number of bits to the right of the binary point in the
filter coefficients. This parameter is visible only when Specify
via dialog is specified for the Coefficient source parameter,
and is only enabled if User-defined is specified for the Set
fractional bits in coefficients to parameter.

Set fractional bits in output to
Only 16 bits of the 32 accumulator bits are output from the block.
Select which 16 bits to output:

2-516

C64x Symmetric Real FIR

• Match input X— Output the 16 bits of the accumulator value
that cause the number of fractional bits in the output to match
the number of fractional bits in input X

• Match coefficients H — Output the 16 bits of the
accumulator value that cause the number of fractional bits in
the output to match the number of fractional bits in coefficients
H

• Match high bits of acc. (b31:b16)— Output the highest
16 bits of the accumulator value

• Match high bits of prod. (b30:b15) — Output the
second-highest 16 bits of the accumulator value

• User-defined— Output the 16 bits of the accumulator value
that cause the number of fractional bits of the output to match
the value specified in the Number of fractional bits in
output parameter

See Matrix Multiply “Examples” on page 2-491 for demonstrations
of these selections.

Number of fractional bits in output
Specify the number of bits to the right of the binary point in
the output. This parameter is only enabled if User-defined is
selected for the Set fractional bits in output to parameter.

Initial conditions
If the initial conditions are

• all the same, you need only enter a scalar.

• Different within channels but the same across channels, enter
a vector containing the initial conditions for one channel.
The length of this vector must be one less than the number
of coefficients.

• Different across channels, enter a matrix containing all initial
conditions. The number of rows of this matrix must be one less

2-517

C64x Symmetric Real FIR

than the number of coefficients, and the number of columns of
this matrix must be equal to the number of channels.

Algorithm In simulation, the Symmetric Real FIR block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_fir_sym.
During code generation, this block calls the DSP_fir_sym routine to
produce optimized code.

See Also C64x Complex FIR, C64x General Real FIR, C64x Radix-4 Real FIR,
C64x Radix-8 Real FIR

2-518

C64x Vector Dot Product

Purpose Vector dot product of real input signals

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Optimization/ C64x DSP Library

Description
The C64x Vector Dot Product block computes the vector dot product
of two real input vectors, X and Y. The input vectors must have the
same dimensions and must be signed 16-bit fixed-point data types. The
number of samples per channel of the inputs must be a multiple of four.
The output is a signed 32-bit fixed-point scalar on each channel, and
the number of fractional bits of the output is equal to the sum of the
number of fractional bits of the inputs.

The Vector Dot Product block supports both continuous and discrete
sample times. This block supports little-endian code generation only.

Dialog
Box

Algorithm In simulation, the Vector Dot Product block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_dotprod.
During code generation, this block calls the DSP_dotprod routine to
produce optimized code.

2-519

C64x Vector Maximum Index

Purpose Zero-based index of maximum value element in each input signal
channel

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Optimization/ C64x DSP Library

Description
The C64x Vector Maximum Index block computes the zero-based index
of the maximum value element in each channel (vector) of the input
signal. The input may be real, 16-bit, signed fixed-point data type. The
number of samples per input channel must be an integer multiple of 16
and at least 48. The output data type is 32-bit signed integer.

The Vector Maximum Index block supports both continuous and discrete
sample times. This block supports little-endian code generation only.

Dialog
Box

Algorithm In simulation, the Vector Maximum Index block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_maxidx. During
code generation, this block calls the DSP_maxidx routine to produce
optimized code.

2-520

C64x Vector Maximum Value

Purpose Maximum value for each input signal channel

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Optimization/ C64x DSP Library

Description
The C64x Vector Maximum Value block returns the maximum value in
each channel (vector) of the input signal. The input can be real, 16-bit,
signed fixed-point data type. The number of samples on each input
channel must be an integer multiple of 8 and must be at least 32. The
output data type matches the input data type.

The Vector Maximum Value block supports both continuous and discrete
sample times. This block supports little-endian code generation only.

Dialog
Box

Algorithm In simulation, the Vector Maximum Value block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_maxval. During
code generation, this block calls the DSP_maxval routine to produce
optimized code.

See Also C64x Vector Minimum Value

2-521

C64x Vector Minimum Value

Purpose Minimum value for each input signal channel

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Optimization/ C64x DSP Library

Description
The C64x Vector Minimum Value block returns the minimum value in
each channel of the input signal. The input may be a real, 16-bit, signed
fixed-point data type. The number of samples on each input channel
must be an integer multiple of 4 and must be at least 20. The output
data type matches the input data type.

The Vector Minimum Value block supports both continuous and discrete
sample times. This block supports little-endian code generation only.

Dialog
Box

Algorithm In simulation, the Vector Minimum Value block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_minval. During
code generation, this block calls the DSP_minval routine to produce
optimized code.

See Also C64x Vector Maximum Value

2-522

C64x Vector Multiply

Purpose Element-wise multiplication on inputs

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Optimization/ C64x DSP Library

Description
The C64x Vector Multiply block performs element-wise 32-bit
multiplication of two inputs X and Y. The total number of elements in
each input must be a multiple or 8 and at least 16, and the inputs must
have matching dimensions. The upper 32 bits of the 64-bit accumulator
result are returned. all input and output elements are 32-bit signed
fixed-point data types.

The Vector Multiply block supports both continuous and discrete sample
times. This block supports little-endian code generation only.

Dialog
Box

Algorithm In simulation, the Vector Multiply block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_mul32. During
code generation, this block calls the DSP_mul32 routine to produce
optimized code.

See Also C64x Matrix Multiply

2-523

C64x Vector Negate

Purpose Negate each input signal element

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Optimization/ C64x DSP Library

Description
The C64x Vector Negate block negates each element of a 32-bit signed
fixed-point input signal. For real signals, the number of input elements
must be a multiple of four, and at least eight. For complex signals,
the number of input elements must be at least two. The output is the
same data type as the input.

The Vector Negate block supports both continuous and discrete sample
times. This block supports little-endian code generation only.

Dialog
Box

Algorithm In simulation, the Vector Negate block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_neg32. During
code generation, this block calls the DSP_neg32 routine to produce
optimized code.

2-524

C64x Vector Sum of Squares

Purpose Sum of squares over each real input channel

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Optimization/ C64x DSP Library

Description
The C64x Vector Sum of Squares block computes the sum of squares
over each channel of a real input. The number of samples per input
channel must be divisible by 4; equal to or greater than 8; and the input
must be a 16-bit signed fixed-point data type. The output is a 32-bit
signed fixed-point scalar on each channel. The number of fractional bits
of the output is twice the number of fractional bits of the input.

The Vector Sum of Squares block supports both continuous and discrete
sample times. This block supports little-endian code generation only.

Dialog
Box

Algorithm In simulation, the Vector Sum of Squares block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_vecsumsq.
During code generation, this block calls the DSP_vecsumsq routine to
produce optimized code.

2-525

C64x Weighted Vector Sum

Purpose Weighted sum of input vectors

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Optimization/ C64x DSP Library

Description
The C64x Weighted Vector Sum block computes the weighted sum of
two inputs, X and Y, according to (W*X)+Y. Inputs may be vectors or
frame-based matrices. The number of samples per channel must be a
multiple of eight. Inputs, weights, and output are Q.15 data types, and
weights must be in the range -1 < W < 1.

The Weighted Vector Sum block supports both continuous and discrete
sample times. This block supports little-endian code generation only.

Dialog
Box

Weight source
Specify the source of the weights:

• Specify via dialog— Enter the weights in theWeights (W)
parameter in the dialog box

2-526

C64x Weighted Vector Sum

• Input port— Accept the weights from port W

Weights (W)
This parameter is visible only when Specify via dialog is
specified for the Weight source parameter. This parameter is
tunable in simulation. When the weights are

• all the same, you need only enter a scalar.

• Different within channels but the same across channels, enter
a vector containing the initial conditions for one channel. The
length of this vector must be a multiple of four.

• Different across channels, enter a matrix containing all initial
conditions. The number of rows of this matrix must be a
multiple of four, and the number of columns of this matrix
must be equal to the number of channels.

Weights must be in the range -1 < W < 1.

Algorithm In simulation, the Weighted Vector Sum block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_w_vec. During
code generation, this block calls the DSP_w_vec routine to produce
optimized code.

2-527

C6713 DSK ADC

Purpose Digitized signal output from codec to processor

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ C6713 DSK

Description
Use the C6713 DSK ADC (analog-to-digital converter) block to capture
and digitize analog signals from external sources, such as signal
generators, frequency generators or audio devices. Placing an C6713
DSK ADC block in your Simulink block diagram lets you use the audio
coder-decoder module (codec) on the C6713 DSK to convert an analog
input signal to a digital signal for the digital signal processor.

Due to a hardware limitation, there can be only one C6713 DSK ADC
block per model. Using two blocks will generate an error message.

Most of the configuration options in the block alter the codec. However,
the Output data type, Samples per frame and Scaling options are
related to the model you are using in Simulink software, the signal
processor on the board, or direct memory access (DMA) on the board.
In the following table, you find each option listed with the C6713 DSK
hardware affected.

Option Affected Hardware

ADC source Codec

Mic Codec

Output data
type

TMS320C6713 digital signal processor

Samples per
frame

Direct memory access functions

2-528

C6713 DSK ADC

Option Affected Hardware

Scaling TMS320C6713 digital signal processor

Source gain
(dB)

Codec

You can select one of three input sources from the ADC source list:

• Line In— the codec accepts input from the line in connector (LINE
IN) on the board’s mounting bracket.

• Mic— the codec accepts input from the microphone connector (MIC
IN) on the board mounting bracket.

Use the Stereo check box to indicate whether the audio input is
monaural or stereo. Clear the check box to choose monaural audio
input. Select the check box to enable stereo audio input. Monaural
(mono) input is left channel only, but the output sends left channel
content to both the left and right output channels; stereo uses the left
and right channels on input and output.

The block uses frame-based processing of inputs, buffering the input
data into frames at the specified samples per frame rate. In Simulink
software, the block puts monaural data into an N-element column
vector. Stereo data input forms an N-by-2 matrix with N data values
and two stereo channels (left and right).

When the samples per frame setting is more than one, each frame of
data is either the N-element vector (monaural input) or N-by-2 matrix
(stereo input). For monaural input, the elements in each frame form the
column vector of input audio data. In the stereo format, the frame is
the matrix of audio data represented by the matrix rows and columns
— the rows are the audio data samples and the columns are the left
and right audio channels.

When you select Mic for ADC source, you can select the +20 dB Mic
gain boost check box to add 20 dB to the microphone input signal
before the codec digitizes the signal.

2-529

C6713 DSK ADC

Source gain (dB) lets you add gain to the input signal before the A/D
conversion. Select the gain from the list.

Dialog
Box

ADC source
The input source to the codec. Line In is the default setting.
Selecting Mic enables the +20 dB Mic gain boost option.

+20 dB Mic gain boost
Boosts the input signal by +20dB when ADC source is Mic. Gain
is applied before analog-to-digital conversion.

2-530

C6713 DSK ADC

Stereo
Indicates whether the input audio data is in monaural or stereo
format. Select the check box to enable stereo input. Clear the
check box when you input monaural data. By default, stereo
operation is enabled.

Sampling Rate
Set the sampling rate of the analog-to-digital converter.
Increasing the frequency increases the accuracy of the sampling
data over time.

Word length
Sets the resolution with which the ADC samples the analog input.
Increasing the word length increases the accuracy of the data in
each sample. If your model also contains a DAC block, set its
word length match that of the ADC block.

Output data type
Selects the word length and shape of the data from the codec.
By default, double is selected. Options are Double, Single, and
Integer.

Scaling
Selects whether the codec data is unmodified, or normalized to the
output range to ±1.0, based on the codec data format. Select either
Normalize or Integer Value. Normalize is the default setting.

Samples per frame
Creates frame-based outputs from sample-based inputs. This
parameter specifies the number of samples of the signal the block
buffers internally before it sends the digitized signals, as a frame
vector, to the next block in the model. This value defaults to 64
samples per frame. Notice that the frame rate depends on the
sample rate and frame size. For example, if your input is 8kHz
samples per second, and you select 64 samples per frame, the
frame rate is 125 frames every second. The throughput remains
the same at 64 samples per second.

2-531

C6713 DSK ADC

Inherit sample time
Select whether the block inherits the sample time from the
model base rate or from the Simulink base rate. You can locate
the Simulink base rate in the Solver options in Configuration
Parameters. Selecting Inherit sample time directs the block to use
the specified rate in model configuration.

See Also C6713 DSK DAC

2-532

C6713 DSK DAC

Purpose Configure codec to convert digital input to analog output

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ C6713 DSK

Description
Adding the C6713 DSK DAC (digital-to-analog converter) block to your
Simulink model lets you connect an analog signal to the analog output
jack on the C6713 DSK. When you add the C6713 DSK DAC block, the
digital signal received by the codec is converted to an analog signal
and sent to the output jack.

The input on the C6713DSK DAC block takes [Nx1] and [Nx2] signals.
The AIC23 audio codec on the C6713DSK board outputs stereo samples,
even though it accepts both mono [Nx1] and stereo [Nx2] signals. If
the input is a mono signal with dimension [Nx1], the block outputs
the same signal on both the left and right channels. If the input is a
stereo signal with dimension [Nx2], each of the N samples are output
separately through the left and right channels.

Only theWord length option in the block affects the codec. The other
options relate to the model you are using in Simulink software and
the signal processor on the board. Refer to the following table for
information.

Option Affected Hardware

Overflow mode TMS320C6713 Digital Signal Processor

Scaling TMS320C6713 Digital Signal Processor

Word length Codec

2-533

C6713 DSK DAC

Dialog
Box

Word length
Sets the DAC to interpret the input data word length. Without
this setting, the DAC cannot convert the digital data to analog as
expected. The value defaults to 16 bits, with options of 20, 24, and
32 bits. Select the word length to match the ADC setting.

Scaling
Selects whether the input to the codec represents unmodified
data, or data that has been normalized to the range ±1.0. Match
the setting of the C6713 DSK ADC block.

Overflow mode
Determines how the codec responds to data that is outside the
range specified by the Scaling parameter. You can choose Wrap
or Saturate options to apply to the result of an overflow in an
operation. Saturation is the less efficient operating mode if
efficiency is important to your development.

See Also C6713 DSK ADC

2-534

C6713 DSK DIP Switch

Purpose Simulate or read DIP switches

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ C6713 DSK

Description
Added to your model, this block behaves differently in simulation than
in code generation and targeting.

In Simulation — the options Switch 0, Switch 1, Switch 2, and
Switch 3 generate output to simulate the settings of the user-defined
dual inline pin (DIP) switches on your C6713 DSK. Each option turns
the associated DIP switch on when you select it. The switches are
independent of one another.

By defining the switches to represent actions on your target, DIP
switches let you modify the operation of your process by reconfiguring
the switch settings.

Use the Data type to specify whether the DIP switch options output an
integer or a logical string of bits to represent the status of the switches.
The table that follows presents all the option setting combinations with
the result of your Data type selection.

Option Settings to Simulate the User DIP Switches on the
C6713 DSK

Switch 0
(LSB) Switch 1 Switch 2

Switch 3
(MSB)

Boolean
Output

Integer
Output

Cleared Cleared Cleared Cleared 0000 0

Selected Cleared Cleared Cleared 0001 1

Cleared Selected Cleared Cleared 0010 2

2-535

C6713 DSK DIP Switch

Option Settings to Simulate the User DIP Switches on the C6713
DSK (Continued)

Switch 0
(LSB) Switch 1 Switch 2

Switch 3
(MSB)

Boolean
Output

Integer
Output

Selected Selected Cleared Cleared 0011 3

Cleared Cleared Selected Cleared 0100 4

Selected Cleared Selected Cleared 0101 5

Cleared Selected Selected Cleared 0110 6

Selected Selected Selected Cleared 0111 7

Cleared Cleared Cleared Selected 1000 8

Selected Cleared Cleared Selected 1001 9

Cleared Selected Cleared Selected 1010 10

Selected Selected Cleared Selected 1011 11

Cleared Cleared Selected Selected 1100 12

Selected Cleared Selected Selected 1101 13

Cleared Selected Selected Selected 1110 14

Selected Selected Selected Selected 1111 15

Selecting the Integer data type results in the switch settings
generating integers in the range from 0 to 15 (uint8), corresponding to
converting the string of individual switch settings to a decimal value. In
the Boolean data type, the output string presents the separate switch
setting for each switch, with the Switch 0 status represented by the
least significant bit (LSB) and the status of Switch 3 represented by
the most significant bit (MSB).

In Code generation and targeting— the code generated by the block
reads the physical switch settings of the user switches on the board and
reports them as shown above. Your process uses the result in the same
way whether in simulation or in code generation. In code generation

2-536

C6713 DSK DIP Switch

and when running your application, the block code ignores the settings
for Switch 0, Switch 1, Switch 2 and Switch 3 in favor of reading
the hardware switch settings. When the block reads the DIP switches,
it reports the results as either a Boolean string or an integer value
as the table below shows.

Output Values From The User DIP Switches on the C6713 DSK

Switch 0
(LSB) Switch 1 Switch 2

Switch 3
(MSB)

Boolean
Output

Integer
Output

Off Off Off Off 0000 0

On Off Off Off 0001 1

Off On Off Off 0010 2

On On Off Off 0011 3

Off Off On Off 0100 4

On Off On Off 0101 5

Off On On Off 0110 6

On On On Off 0111 7

Off Off Off On 1000 8

On Off Off On 1001 9

Off On Off On 1010 10

On On Off On 1011 11

Off Off On On 1100 12

On Off On On 1101 13

Off On On On 1110 14

On On On On 1111 15

2-537

C6713 DSK DIP Switch

Dialog
Box

Switch 0
Simulate the status of the user-defined DIP switch on the board.

Switch 1
Simulate the status of the user-defined DIP switch on the board.

Switch 2
Simulate the status of the user-defined DIP switch on the board.

Switch 3
Simulate the status of the user-defined DIP switch on the board.

Data type
Determines how the block reports the status of the user-defined
DIP switches. Boolean is the default, indicating that the output is
a vector of four logical values, either 0 or 1.

Each vector element represents the status of one DIP switch; the
first switch is switch Switch 0 and the fourth is switch Switch 3.

2-538

C6713 DSK DIP Switch

The data type Integer converts the logical string to an equivalent
unsigned 8-bit (uint8) value. For example, when the logical string
generated by the switches is 0101, the conversion yields 5 — the
LSB is 1 and the MSB is 0.

Sample time
Specifies the time between samples of the signal. This value
defaults to 1 second between samples, for a sample rate of one
sample per second (1/Sample time).

2-539

C6713 DSK LED

Purpose Control LEDs

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ C6713 DSK

Description
Adding the C6713 DSK LED block to your Simulink block diagram
lets you trigger all four of the user light emitting diodes (LED) on the
C6713 DSK. To use the block, send a nonzero real scalar to the block.
The C6713 DSK LED block controls all four User LEDs located on the
C6713 DSK.

When you add this block to a model, and send a real scalar to the block
input, the block sets the LED state based on the input value it receives:

• When the block receives an input value equal to 0, the specified LEDs
are turned off (disabled), 0000

• When the block receives a nonzero input value, the specified LEDs
are turned on (enabled), 0001 to 1111

To activate the block, send it an integer in the range 0 to 15. Vectors
do not work to activate LEDs; nor do complex numbers as scalars or
vectors.

all LEDs maintain their state until they receive an input value that
changes the state. Enabled LEDs stay on until the block receives an
input value that turns the LEDs off; disabled LEDs stays off until
turned on. Resetting the C6713 DSK turns off all User LEDs. By
default, the LEDs are turned off when you start an application.

2-540

C6713 DSK LED

Dialog
Box This dialog box does not have user-selectable options.

2-541

C6713 DSK Reset

Purpose Reset to initial conditions

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ C6713 DSK

Description
Double-clicking this block in a Simulink model window resets the C6713
DSK that is running the executable code built from the model. When
you double-click the Reset block, the block runs the software reset
function provided by CCS IDE that resets the processor on your C6713
DSK. Applications running on the board stop and the signal processor
returns to the initial conditions you defined.

Before you build and download your model, add the block to the model
as a stand-alone block. You do not need to connect the block to a block
in the model. When you double-click this block in the block library it
resets your C6713 DSK. In other words, anytime you double-click a
C6713 DSK Reset block you reset your C6713 DSK.

Dialog
Box

This block does not have settable options and does not provide a user
interface dialog box.

2-542

C6000 CPU Timer

Purpose Select timer and configure periodic interrupt

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Scheduling

Description
Configures the CPU timer period on your board. The timer
raises periodic interrupts when the timer counter reaches the timer
period. While the block provides two timers, 0 and 1, some CPU’s have
more or fewer than two timers. For example, the DM642 provides
three timers. If you set Timer no to 1, verify that your CPU has two
or more timers.

The C6000 CPU Timer block does not support C64x processors.

Dialog
Box

Timer no.
Select the timer to use from the list. Verify that the target offers
a timer with the timer number you choose. Timer 0 is selected
by default.

Timer period
Set the timer interrupt period in terms of CPU clock cycles.

2-543

C6000 CPU Timer

Enter the timer period in clock cycles, either as an integer,
fraction, decimal, or a variable in your workspace. 0 is the default
value.

For example, to generate a periodic timer interrupt every second
when the CPU clock operates at 720MHz, set Timer period to
720e6 clock cycles.

See Also C5000/C6000 Hardware Interrupt, Idle Task

2-544

DM642 EVM Audio ADC

Purpose Audio codec and peripherals

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ DM642 EVM

Description
Use the DM642 EVM ADC (analog-to-digital converter) block to capture
and digitize analog audio signals from external sources, such as signal
generators, frequency generators, or audio devices. Placing a DM642
EVM ADC block in your Simulink block diagram lets you use the audio
coder-decoder module (codec) on the DM642 EVM to convert an analog
input signal to a digital signal for the digital signal processor.

ADC blocks output int16 data independent of the data type you provide
as input to the block.

Most of the configuration options in the block alter the codec. However,
the Samples per frame and Scaling options are related to the model
you are using in Simulink software, the signal processor on the board,
or direct memory access (DMA) on the board. In the following table, you
find each option listed with the DM642 EVM hardware affected.

Option Affected Hardware

ADC Source Codec

Mic Codec

Sample rate (Hz) Codec

Samples per frame Direct memory access functions

Stereo Codec

You can select one of two input sources from the ADC source list:

2-545

DM642 EVM Audio ADC

• Line In— the codec accepts input from the line in connector (LINE
IN) on the board’s mounting bracket.

• Mic in — the codec accepts input from the microphone connector
(MIC IN) on the board mounting bracket.

Use the Stereo check box to indicate whether the audio input is
monaural or stereo. Clear the check box to choose monaural audio
input. Select the check box to enable stereo audio input. Monaural
(mono) input is left channel only, but the output sends left channel
content to both the left and right output channels; stereo uses the left
and right channels.

You must set the sample rate for the block. From Sample rate (Hz),
select the sample rate for your model. Sample rate (Hz) specifies the
number of times each second that the codec samples the input signal.
Sample rates range from 8 kHz to 96 kHz, in preset rates. You must
select from the list; you cannot enter a sample rate that is not on the list.

2-546

DM642 EVM Audio ADC

Dialog
Box

ADC source
The input source to the codec. Line In is the default.

+20 dB Mic gain boost
Boosts the input signal by +20dB when ADC source is Mic. Gain
is applied before analog-to-digital conversion.

Stereo
The number of channels input to the A/D converter. Clearing this
option selects the left channel; selecting this option selects both
left and right input channels. To configure the DM642 EVM board
for monaural operation, clear the Stereo check box. When you
first open the dialog box, Stereo is selected. This value defaults
to stereo operation.

2-547

DM642 EVM Audio ADC

Sample rate (Hz)
Sampling rate of the A/D converter. Available sample rates are
set by the codec. Default rate is 8 kHz. Options range up to 96
kHz. Select the sample rate from the list.

Samples per frame
Creates frame-based outputs from sample-based inputs. This
parameter specifies the number of samples of the signal buffered
internally by the block before it sends the digitized signals, as a
frame vector, to the next block in the model. This value defaults
to 64 samples per frame. Notice that the frame rate depends
on the sample rate and frame size. For example, if your input
is 32 samples per second, and you select 64 samples per frame,
the frame rate is one frame every two seconds. The throughput
remains the same at 32 samples per second.

Inherit sample time
Selects whether the block inherits the sample time from the
model base rate or Simulink base rate as determined in the
Solver options in Configuration Parameters. Selecting Inherit
sample time directs the block to use the specified rate in model
configuration. You must select this option to use the block in a
function subsystem with the asynchronous scheduler.

See Also DM642 EVM Audio DAC

2-548

DM642 EVM Audio DAC

Purpose Configure codec to convert digital audio input to analog audio output

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ DM642 EVM

Description
Adding the DM642 EVM DAC (digital-to-analog converter) block to
your Simulink model lets you output an analog signal to the LINE OUT
connection on the DM642 EVM mounting bracket. When you add the
DM642 EVM DAC block, the digital signal received by the codec is
converted to an analog signal (digital-to-analog conversion) and sent
to the output audio jack.

The DAC data word length is 16 bits. The block converts all input data
to int16 before it writes the data out to the DAC output buffer.

With an integer data word length of 16 bits, a data value above 215–1 or
below -215 wraps back into the representable range of values between
-215 to 215–1. Wrapping uses modulo arithmetic to cast an overflow back
into the representable range of the data type. Saturate arithmetic is
not available. For example,

While converting the digital signal to an analog signal, the codec rounds
floating point data to the nearest integer, thus rounding 0.51 up to 1.0
or 4.49 down to 4.0.

Setting the sample rate configures the codec sampling rate for the
analog output data stream. The rates range from 8000 Hz, similar to
plain old telephone service quality, to 48 kHz (CD quality audio) to
96 kHz.

2-549

DM642 EVM Audio DAC

Dialog
Box

Sample rate (Hz)
Sampling rate of the D/A converter. Available output sample
rates are set by the codec. Default rate is 8000 Hz (8 kHz) and the
maximum rate is 96000 Hz (96 kHz). Choose the rate from the list.

See Also DM642 EVM Audio ADC

2-550

DM642 EVM FPGA GPIO Read

Purpose User GPIO registers to read from selected pins

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ DM642 EVM

Description
Added to your model, this block reads logical values from the GPIO
registers you select in the dialog box and sends the data out to
downstream blocks as an unsigned 8-bit word.

The DM642 EVM offers eight general purpose I/O registers that you can
read from and write to for your needs. Each I/O pin represents either a
logical 0 or 1 depending on the signal at the pin.

An important note — you cannot read and write to the same I/O
registers with the FPGA GPIO Read and FPGA GPIO Write blocks. If
you read register 1 with the read block you cannot write to register 1
with the write block. This applies to all eight registers.

2-551

DM642 EVM FPGA GPIO Read

Dialog
Box

bit 0 to bit 7
Each bit represents the logical value at one GPIO register. Bit
0 is register 0, bit 7 is register 7. Select the bits that represent
the registers to read. The read and write functions cannot share
the same registers. If you select a register to read, you cannot
write to that register.

Sample time
Time in seconds between consecutive inputs to the registers. Enter
a real positive value or a variable name from your workspace.

See Also DM642 EVM FPGA GPIO Write

2-552

DM642 EVM FPGA GPIO Write

Purpose Write to GPIO registers

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ DM642 EVM

Description
Added to your model, this block writes logical values to the GPIO
registers you select in the dialog box, reading the data from an upstream
block as an unsigned 8-bit word.

The DM642 EVM offers eight general purpose I/O registers that you can
read from and write to for your needs. Each I/O pin represents either a
logical 0 or 1 depending on the signal at the pin.

An important note — you cannot read and write to the same I/O
registers with the FPGA GPIO Read and FPGA GPIO Write blocks. If
you write register 1 with the write block you cannot read from register
1 with the read block. This applies to all eight registers.

2-553

DM642 EVM FPGA GPIO Write

Dialog
Box

bit 0 to bit 7
Each bit represents the logical value at one GPIO register. Bit
0 is register 0, bit 7 is register 7. Select the bits that represent
the registers to write. The read and write functions cannot share
the same registers. When you select a register to write to, you
cannot read that register.

See Also DM642 EVM FPGA GPIO Read

2-554

DM642 EVM Video ADC

Purpose Video decoders to capture analog video

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ DM642 EVM

Description
Adding this block to a model enables code generated from your model to
perform the following tasks:

1 Capture analog video data from the video block inputs on the DM642
EVM.

2 Convert the input to a format and mode you define in the block.

3 Output the converted digital video for further downstream processing.

Adding two of these blocks to a model lets you capture two separate
video data streams and prepare them for display simultaneously, such
as in picture-in-picture mode.

The block captures and buffers one frame (two fields for NTSC standard)
of analog input video from the block inputs, converts the buffered video
to the specified format, and then outputs the converted video frame as
8-bit unsigned integer data for further processing.

Input to the DM642 EVMmust be analog National Television Standards
Committee (NTSC) or Phase Alternating Line (PAL) video format. The
block captures and processes data in frames, not fields.

To configure the format for the output video, the block offers output
format options that control how the block handles color data. The block
also offers a sample time option to let you set the frame rate for video
output from the block.

2-555

DM642 EVM Video ADC

Note This block does not provide output video for display. Use the
DM642 EVM Video DAC to generate video data to output to the
board video output connectors. The DM642EVM board provides both
composite and S-video connectors for output. However, these are driven
simultaneously, so you do not need to specify which one is to be used.

When you add this block to a Simulink model, it does not alter the
simulation — it outputs a string of zeros. Generating code from a model
that includes this block produces the code used for capturing data on
your evaluation module by adding

• Video device configuration code for the chosen mode

• Code used to copy the run time buffer

To use video in a Simulink model, use one of the available video source
blocks to introduce video data to your model.

Options for the block let you configure the digital video format and
video mode for the data output by the block.

NTSC TV systems use interlaced scanning to create TV frames from
fields. The even and odd TV lines are separated into even and odd
fields that combine to make a complete TV frame image. For output,
the block provides complete frames, consisting of two fields, which are
available at an instant. When the sample time you specify for the block
is different from the NTSC frame rate of 30Hz, you may encounter
visible anomalies in the video stream from the block.

Memory Use

This block allocates video capture buffers on the system heap, using a
TI driver that allocates three frame buffers on the heap for continuous
video capture. To use the block you must create a heap in external
memory on the target with the label EXTERNALHEAP. If you do not
create the heap, either using the default values in the Target Hardware

2-556

DM642 EVM Video ADC

Resources tab or setting your own values. Embedded Coder software
returns an error.

Use Create heap and Heap size and set the heap size in the Target
Hardware Resources tab to configure the heap. Select Define label and
name the heap EXTERNALHEAP in Heap label.

The default settings for the Target Hardware Resources tab create a
heap with enough memory to handle the worst case memory allocation
needs automatically. If you configure the heap without enough memory,
you get a run-time error because the system cannot initialize the video
driver.

Notes About Converting NTSC Video Input From YCbCr to
RGB24

When you choose to convert your NTSC YCbCr-defined video input
to RGB24 (8:8:8 RGB) for output from the block, the block performs
an intermediate conversion step that follows a standard process for
conversion (as described by Graphical Device Interface (GDI) color space
conversions documentation from the International Color Consortium
(ICC)).

First, the block converts the luma component (Y’), blue-difference
chroma component (Cb), and red-difference chroma component (Cr) of
the input signal to 5:6:5 RGB format where the red and blue channels of
the source use a 5-bit representation and the green channel uses 6 bits.

Now the block converts your 5:6:5 RGB to 8:8:8 RGB using the following
conventions:

1 For the red and blue 5-bit channels, it copies the three most
significant bits (MSB) from the 5-bit source word and append them to
the lower order end of the target word.

2 For the green 6-bit channel, it copies the two MSBs from the green
source word and append them to the lower order end of the target
green word.

2-557

DM642 EVM Video ADC

The results is to output three RGB channels — red, green, and blue
— each with 8-bit words.

For example, to convert hexadecimal values by this algorithm, 5:5:5
RGB data of (0x19, 0x33, 0x1A) becomes (0xCE, 0xCF, 0xD6) of 8:8:8
RGB output.

To do the conversion in the binary case for 5:5:5 RGB data:

1 blue data 1 1101 converts to 11101111

2 for the green channel, conversion takes 11 0011 to 1100 1111

3 red data 1 0101 becomes 1010 1101 (same algorithm as blue data)

To maximize the speed of the RGB conversion, the Video ADC block
provides color space conversion using a routine written in assembly
language and optimized for the DM64x processor core. Using the
optimized color space conversion code replaces the Color Space
Conversion block available from the Computer Vision System Toolbox™
(VIP blockset). While you can use a compatible VIP blockset block with
the DM642, this particular color space conversion operation is handled
better by the conversion code included in the ADC block.

2-558

DM642 EVM Video ADC

Dialog
Box

Decoder type
Configures the block options to support either the TVP5146
Decoder on the DM642 EVM or the SAA7115 Decoder, depending
on the model of your board. Choose one option from the list —
TVP5146 or SAA7115. When you select SAA7115 for the type
of decoder, the dialog box adds a new option — Output Mode.
Generally, older DM642 EVM boards use the SAA7115 decoder.
Newer boards use the default setting TVP5146 decoder.

Input port
Directs the block to capture video from either the 0 or 1 video
input port on the DM642 EVM. The block does not support port 2
for video input. Input port 0 provides both composite video (via
connector J15) and S-video (connector J16) inputs.

2-559

DM642 EVM Video ADC

Mode
Select the video format to capture from the list. The block
supports NTSC and PAL video formats.

Analog Video Input
Select composite video or S-video. The video decoder connected to
port 0 has both composite and S-video inputs. These are available
via connector J15 and J16, respectively. Port 1 has two composite
video connectors, but does not provide S-video.

Output size
Reports the size of the video images to output. Output size is a
read-only parameter set to 720 x 576 resolution elements when
you select PAL mode and the TVP5146 decoder in Decoder type.
When you select NTSC mode with the TVP5146 decoder, Output
size reports the read-only value 720 x 480.

If you select the SAA7115 decoder, Output size lists the available
video sizes to output for further processing, depending on the
Mode setting. The following tables show the sizes to pick from
depending on whether you pick NTSC or PAL forMode The block
scales the input video to the selected size for output.

Video Output Size Options
For NTSC Mode

Description

128 x 96 Output NTSC video with
dimensions 128 pixels by 96
pixels. Scales the output to 1/4
the resolution of QCIF video.

176 x 144 Output NTSC video with
dimensions 176 pixels by 144
pixels. Scales the output to 1/4
the resolution of CIF video.

2-560

DM642 EVM Video ADC

Video Output Size Options
For NTSC Mode

Description

320 x 240 Output NTSC video with
dimensions 320 pixels by 240
pixels. Scales the output to
standard interchange format
NTSC. Derived from CCIR 601
video (most often).

720 x 480 Output NTSC video with
dimensions 720 pixels by 480
pixels. Scales the output to
higher definition TV mode.

Video Output Size Options
For PAL Mode

Description

128 x 96 Output video with dimensions
128 pixels by 96 pixels

176 x 144 Output video with dimensions
176 pixels by 144 pixels.

320 x 240 Output video with dimensions
320 pixels by 240 pixels

720 x 576 Output video with dimensions
720 pixels by 576 pixels

Output format
Determines how the block represents color data in the output.
Choose one of the following color representations according to
what your model and algorithm require.

2-561

DM642 EVM Video ADC

Digital Output
Format Description

RGB24 Output uses 8 bits each of red, green, and
blue colors to represent the color of each
pixel in the image. RGB color space is
device-dependent.

YCbCr Output from the block includes three
channels to represent the color image data
per pixel:

• Y — the luma component (essentially a
black/white signal)

• Cb — the blue-difference chroma
component

• Cr — the red-difference chroma
component

This is the digital standard color space DVDs
use.

Y Black/White video. Does not contain
color/chromaticity values.

Data order
With data order, you control the way the video decoder stores
and outputs video data fields and frames of images. Choose one
of these options from the list.

• Row major— store video data in row major order. This is the
default setting and matches most video data.

• Column major— store video data in column major order. The
Simulink and MATLAB software use this format to store
images and matrices.

2-562

DM642 EVM Video ADC

DM642 EVM Video ADC blocks store the image data in row major
format because most video capture devices use a scanning order of
left-to-right and top-to-bottom, favoring the rows.

MATLAB and Simulink software use column major ordering to
store image and matrix data. Therefore, some of the Simulink
blocks may not work as expected with the DM642 EVM Video
ADC blocks.

To address this problem, the Video ADC blocks include an option
Data order to let you select either row major or the column
major storage formats. By default, this block uses row major data
format.

When you select Column major, the block performs an explicit
transposition on the image data to map the data format from row
major to column major order. To minimize the processor time
spent on the transposition, the block uses optimized assembly
routines to transpose the image data.

Inherit sample time
Selecting Inherit sample time sets the sample time to –1. To
use this block in a function call subsystem, you must select this
option. Inherit sample time is cleared by default and the block
uses the model sample time.

Specifying sample-time inheritance for a this block, a source
block, can cause Simulink software to assign an inappropriate
sample time to the block. You should avoid selecting Inherit
sample time unless you are required to do so because you placed
the block in a function call subsystem. When you select Inherit
sample time, Simulink software displays a warning message
when you update or simulate the model.

See Also DM642 EVM Video DAC

2-563

DM642 EVM Video DAC

Purpose Video encoder to display video

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ DM642 EVM

Description
In the project generated from a model, this block provides the code to
gather video from another block in the model, and direct the video
stream to the video output port on the board.

You should input unsigned 8-bit integers to the block in the specified
mode.

Adding this block to a model enables code generated from your model to
perform the following tasks:

1 Capture digital video data from the application on your DM642 EVM.

2 Buffer the captured video into frames for NTSC display — two fields
per frame and 30 frames per second, or SVGA display — RGB24
color with noninterlaced frames.

3 Convert to analog video.

4 Output the converted analog video to the EVM Video Out ports.

Unlike the DM642 EVM Video ADC block, this DAC block does not
convert the video between formats. Nor does this block inherit settings
from the DM642 EVM Video ADC block, as some of the other C6000
DAC blocks do.

The Mode option specifies both the video format the block accepts and
the format the block outputs to the video output ports on the EVM.

2-564

DM642 EVM Video DAC

To be able to be displayed, images that you send to the block should be
equal to or smaller than the target display size. If the input images
are smaller than the target display size, the block pads the image by
adding zeros to the image.

When you add this block to your Simulink model, it does not alter your
simulation — it outputs a string of zeros. In code generation, the block
creates the device code used to buffer, convert, and send video to the
output port on the EVM.

Note The DM642EVM board provides both composite and S-video
connectors for output. However, these are driven simultaneously, so
you do not need to specify which one is to be used.

Memory Use

This block allocates video capture buffers on the system heap, using a
TI driver that allocates three frame buffers on the heap for continuous
video capture. To use the block you must create a heap in external
memory on the target with the label EXTERNALHEAP. If you do not
create the heap, either using the default values in the Target Hardware
Resources tab or setting your own values. Embedded Coder software
returns an error.

Use Create heap and Heap size and set the heap size in the Target
Hardware Resources tab to configure the heap. Select Define label and
name the heap EXTERNALHEAP in Heap label.

The default settings for the Target Hardware Resources tab create a
heap with enough memory to handle the worst case memory allocation
needs automatically. If you configure the heap without enough memory,
you get a run-time error because the system cannot initialize the video
driver.

2-565

DM642 EVM Video DAC

Dialog
Box

Mode
Specifies the video format for the block. The block then sends
video in this format to the video output port on the EVM. The
Mode parameter offers the following options:

Analog Output
Mode Description

NTSC 720x480
YCbCr

Analog output of video data in
720-by-480 pixels format with full color.

NTSC 640x480 Y Analog video output in 640-by-480
pixels format with black and white only
(luminance). Does not contain color
data.

SVGA 800x600
RGB24

Full super VGA format 800-by-600
pixels with three color channels: 8-bit
red, 8-bit green, and 8-bit blue data.

2-566

DM642 EVM Video DAC

Analog Output
Mode Description

PAL 720x570 YCbCr Analog output of video data in
720-by-570 pixels PAL format with full
color.

PAL 720 x 570 Y Analog output of video data in
720-by-570 pixels PAL format with
black and white only (luminance). Does
not contain color data.

Data order
With data order, you control the way the video decoder stores
and outputs video data fields and frames of images. Choose one
of these options from the list.

• Row major— store video data in row major order. This is the
default setting and matches most video data.

• Column major — store video data in column major order.
Simulink and MATLAB software use this format to store
images and matrices.

DM642 EVM Video DAC blocks store the image data in row
major format because most video display devices use a scanning
order of left-to-right and top-to-bottom, favoring the rows.

MATLAB and Simulink software use column major ordering to
store image and matrix data. Therefore, some of the Simulink
blocks may not work as expected with the DM642 EVM Video
DAC blocks.

To address this problem, the Video DAC blocks include an
option Data order to let you select either row major or the
column major storage formats. By default, these blocks use
row major data format.

When the column major data ordering option is selected, the
block performs an explicit transposition on the image data to
map the data format from row major to column major order.

2-567

DM642 EVM Video DAC

To minimize the processor time spent on the transposition,
the block uses optimized assembly routines to accomplish the
image transposition.

Center Image
Directs the block to center the output image on the display.
Centering the image requires some computation by the processor
so there are small time and CPU cycles penalties for choosing this
option. For that reason, Center image is cleared by default.

Another note of interest — some cameras pad their video output
with zeros so that the display does not cut off the image on one
side, usually the left. Images that include such padding may
appear to be off-center on the display. In fact, while the displayed
image may not appear centered, the electronic image (the data
that compose the displayed image plus the padding which you
cannot see) is centered in the display area.

See Also DM642 EVM Video ADC

2-568

DM642 EVM LED

Purpose Control LEDs

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ DM642 EVM

Description
Controls the User LEDs on the DM642 EVM while the processor
executes your generated code. To trigger the LEDs, input an unsigned
8-bit integer to the block. In response, the eight user-controlled LEDs
reflect the binary equivalent of that input value — turning off an LED
is 0 and turning on an LED is 1.

During operation, the LED block inherits the sample time from the
upstream block in the model. Therefor, each time the model operation
encounters the LED block, the block writes the desired output value
to the LEDs.

Dialog
Box You see the block does not provide user options. Adding the block to

your model adds the ability to control the LEDs.

2-569

DM642 EVM Video Port

Purpose Video port to receive video data from video input port

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ DM642 EVM

Description
Adding this block to your model lets you define the format of raw video
captured by the video port on the DM642 EVM. The block outputs video
as a stream of image frames built from the defined input.

You can select the video port the block reads from, set the size of the
input data in bits per pixel, and define the frame sizes in pixels and
lines.

When your process captures standard video input, like NTSC format
video, use the DM642 EVM Video ADC block instead of this one.

By default, the block settings define NTSC format input video to capture
— 640 pixels wide by 480 lines tall using 8 bits per pixel.

The block does not check your inputs to determine whether they form
valid frames. You must be sure the values you assign work for you
application.

The block does not support video capture from port 2 on the EVM.

Blanking intervals, both horizontal and vertical, represent the time
used for the scan to return to the starting point of the next line (the
horizontal blanking period) or field or frame (the vertical blanking
period).

Memory Use

This block allocates video capture buffers on the system heap, using a
TI driver that allocates three frame buffers on the heap for continuous
video capture. To use the block you must create a heap in external
memory on the target with the label EXTERNALHEAP. If you do not

2-570

DM642 EVM Video Port

create the heap, either using the default values in the Target Hardware
Resources tab or setting your own values. Embedded Coder software
returns an error.

Use Create heap and Heap size and set the heap size in the Target
Hardware Resources tab to configure the heap. Select Define label and
name the heap EXTERNALHEAP in Heap label.

The default settings for the Target Hardware Resources tab create a
heap with enough memory to handle the worst case memory allocation
needs automatically. If you configure the heap without enough memory,
you get a run-time error because the system cannot initialize the video
driver.

2-571

DM642 EVM Video Port

Dialog
Box

Video Port
Select the video port to be the source of the raw video data stream.
Either 0 or 1 appear on the list and 0 is the default port.

Number of bits per pixel
Select the number of bits used to represent a pixel in the input
video stream. List entries tell you the input pixel representation
and the data type of the output pixels for each input size. You
cannot enter values here. Select from the list.

2-572

DM642 EVM Video Port

Number of pixels per line
Configure the width of each video frame in pixels. Enter the pixel
count as an integer greater than zero.

Number of lines per frame
Configure the height of a single frame of video in lines. Enter the
number of lines as an integer greater than zero. Combined with
the Number of bits per pixel, this specifies the video frame
format.

Pixel clock frequency
Specify the rate at which picture elements (pixels) arrive at the
block input. Usually you enter this in Hz using scientific notation
as shown by the default value. You can enter the value in decimal
notation as well.

Horizontal blanking (in pixel clocks)
The blanking signal that occurs at the end of each video scanning
line. Enter the value as an integer number of pixels. One video
line comprises the number of pixels in the line plus the horizontal
blanking pixels.

Vertical blanking (in pixel clocks)
The blanking signal that occurs at the end of each video field or
frame. Enter this value as an integer number of lines (pixels).
One frame includes the number of lines in the height of the frame
plus the additional blanking lines.

Data order
With this option you tell the encoder whether to output video
in row major or column major order. Most video capture and
display systems use row major ordering. MATLAB and Simulink
software use column major order. As a result, some Simulink
blocks and MATLAB operations may not produce the output you
expect unless you change the ordering for video from the default
row major setting to column major.

Inherit sample time
Selects whether the block inherits the sample time from the
model base rate or Simulink base rate as determined in the

2-573

DM642 EVM Video Port

Solver options in Configuration Parameters. Selecting Inherit
sample time directs the block to use the specified rate in model
configuration. Entering -1 configures the block to accept the
sample rate from the upstream HWI, Task, or Triggered Task
blocks.

See Also DM642 EVM Video ADC, DM642 EVM Video DAC

2-574

DM642 EVM Reset

Purpose Reset to initial conditions

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ DM642 EVM

Description
Double-clicking this block in a Simulink model window resets the
DM642 EVM that is running the executable code built from the model.
When you double-click the Reset block, the block runs the software
reset function provided by CCS IDE that resets the processor on your
DM642 EVM. Applications running on the board stop and the signal
processor returns to the initial conditions you defined.

Before you build and download your model, add the block to the model
as a stand-alone block. You do not need to connect the block to a block
in the model. When you double-click this block in the block library it
resets your DM642 EVM. In other words, anytime you double-click a
DM642 EVM Reset block you reset your DM642 EVM.

Dialog
Box

This block does not have settable options and does not provide a user
interface dialog box.

2-575

DM6437 EVM ADC

Purpose Configure AIC33 audio codec to capture audio stream from LINE-IN
or MIC

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ DM6437 EVM

Description
This block uses the AIC33 audio codec on the DM6437 EVM board to
capture an analog audio stream from the Line In or Mic jacks and
generate a digital frame-based output. Output is a [Nx2] array of int16
values representing the left and right channels of the sampled signal,
where N is the number of samples per frame. Use the Inherit sample
time parameter to place the ADC block in an asynchronous function
call subsystem.

2-576

DM6437 EVM ADC

Dialog
Box

ADC input source
Select Line In or Mic In as the input source.

Sampling Rate
Set the sampling rate of the analog-to-digital converter, from 8
kHz (the default) to 96 kHz.

Samples per frame
Set the number of samples the block buffers internally before it
sends the digitized signals, as a frame vector, to the next block
in the model. This value defaults to 64 samples per frame. The
frame rate depends on the sample rate and frame size. For
example, if Sampling Rate is 8 kHz, and Samples per frame is
32, the frame rate is 250 frames per second (8000/32 = 250).

Inherit sample time
Select whether the block inherits the sample time from the
model base rate or Simulink base rate as determined in the
Solver options in Configuration Parameters. Selecting Inherit
sample time directs the block to use the specified rate in model

2-577

DM6437 EVM ADC

configuration. Entering -1 configures the block to accept the
sample rate from the upstream HWI, Task, or Triggered Task
blocks.

See Also DM6437 EVM DAC

2-578

DM6437 EVM DAC

Purpose Configure AIC33 codec to convert digital signal to audio output on
LINE OUT and HP OUT

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ DM6437 EVM

Description
Configure the AIC33 stereo codec on the DM6437 EVM board to convert
a digital signal to an analog audio stream on the LINE OUT and HP
OUT output jacks. The digital signal input must be an [Nx2] array of
int16 values. Column 1 of the array is the left channel and column 2 is
the right channel of the sampled signal. The sampling rate of the DAC
output must match the sampling rate of the digital signal from the ADC.

Dialog
Box

Sampling frequency
Select the sampling rate of the digital signal input. This value
must match the Sampling rate of the ADC block in your model.

See Also DM6437 EVM ADC

2-579

DM6437 EVM DIP

Purpose Output state of user-selected DIP switch as Boolean

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ DM6437 EVM

Description
Outputs the state of a user-selected DIP switch or jumper on the
DM6437 EVM board. The output is a Boolean value, 0 (open) or 1
(closed). Use multiple blocks to output the state of multiple DIP
switches.

Dialog
Box

DIP Switch
Select the switch or jumper to sample: SW4(0),SW4(1), SW4(2),
SW4(3), JP1, SW7.

SW4 is a read-only user switch. JP1 is for NTSC/PAL selection.
SW7 is a slide switch.

2-580

DM6437 EVM DIP

Sample time
The interval between samples, in seconds. This value defaults
to 1 second between samples.

2-581

DM6437 EVM LED

Purpose Apply Boolean input to user-selected LED

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ DM6437 EVM

Description
This block controls an individual LED among the User LEDs on the
DM6437 EVM during execution of generated code. The block input
accepts Boolean values, 0 (off) or 1 (on). Use multiple blocks to control
multiple LEDs.

Dialog
Box

LED number
Specify the number of the User LED that the Boolean input
controls.

2-582

DM6437 EVM Video Capture

Purpose Configure video peripherals to capture NTSC/PAL video

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ DM6437 EVM

Description
Configure the video peripherals to capture an NTSC/PAL video input
and make it available as a stream of YCbCr 4:2:2 interleaved data.

Dialog
Box

Video capture mode
Set the video format to match that of the input, NTSC or PAL.

Analog video input
Set the input type to match that of the input, Composite or
S-video.

Sample time
Set a sample time rate that matches the frame rate of the input
signal, typically 1/30 for NTSC and 1/25 for PAL. A mismatch

2-583

DM6437 EVM Video Capture

between these two rates may cause discontinuities in the video
output signal.

See Also DM643x Draw Rectangles, DM643x OSD, DM643x Video Display

2-584

DM643x CAN Receive

Purpose Receive messages from CAN serial communications bus on DM643x

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ DM6437 EVM

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Scheduling

Description
The CAN Receive block listens to broadcast messages on the DM643x
CAN protocol bus. It saves messages with the user-specified Message
Identifier to its message buffer. The CAN Receive block polls the
message buffer at a rate determined by Sample time. When it detects
a message in the message buffer, the block triggers the function-call
output (f0) and makes the CAN message data available at the message
output (Msg).

2-585

DM643x CAN Receive

Dialog
Box

Mailbox number
Enter a unique number from 0 to 15 for standard or from 0 to 31
for enhanced CAN mode. This field refers to a mailbox area in
RAM. In standard mode, the mailbox number determines priority.

Message identifier
Identifies the length of the message—11 bits for standard frame
size or 29 bits for extended frame size in decimal, binary, or hex
formats. If the format is binary or hex, use bin2dec(' ') or
hex2dec(' '), respectively, to convert the entry. The message
identifier is associated with a receive mailbox. This mailbox only
accepts messages that match the mailbox message identifier.

Message type
Select Standard (11-bit identifier) or Extended (29-bit
identifier).

2-586

DM643x CAN Receive

Sample time
Frequency with which the mailbox is polled to determine if a new
message has been received. A new message causes a function
call to be emitted from the mailbox. To update the message
output only when a new message arrives, the block must be
executed asynchronously. To execute this block asynchronously,
set Sample Time to -1. Refer to “Asynchronous Scheduling” for a
discussion of block placement and other settings.

For information about setting the timing parameters of the CAN
module “Configuring Timing Parameters for CAN Blocks”.

Data type
Type of data in the data vector. The length of the vector for the
received message is, at most, 8 bytes. If the message is less than 8
bytes, the data buffer bytes are right-aligned in the output. Only
uint16 (vector length = 4 elements) or uint32 (vector length = 8
elements) data are allowed. This block uses an 8–byte data buffer
to unpack the data, as follows:

For uint16 data,

Output[0] = data_buffer[1..0];
Output[1] = data_buffer[3..2];
Output[2] = data_buffer[5..4];
Output[3] = data_buffer[7..6];

For uint32 data,

Output[0] = data_buffer[3..0];
Output[1] = data_buffer[7..4];

For example, if the received message has two bytes,

data_buffer[0] = 0x21
data_buffer[1] = 0x43

the uint16 output would be:

2-587

DM643x CAN Receive

Output[0] = 0x4321
Output[1] = 0x0000
Output[2] = 0x0000
Output[3] = 0x0000

Output message length
Select this option to output the message length, in bytes, to the
third output port. If you do not select this option, the block has
only two output ports.

References For detailed information on the CAN module, see TMS320DM643x
DMP High-End CAN Controller User’s Guide (Rev. A), Literature
Number SPRU981, available at the Texas Instruments Web site.

See Also “Configuring Timing Parameters for CAN Blocks”, DM643x CAN Setup,
DM643x CAN Transmit

2-588

DM643x CAN Setup

Purpose Configure CAN serial communications bus parameters on DM643x

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ DM6437 EVM

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Scheduling

Description
This block configures the CAN serial communications bus parameters
on the DM6437EVM. The “Configuring Timing Parameters for CAN
Blocks” topic provides instructions and examples for configuring this
block.

2-589

DM643x CAN Setup

Dialog
Box

Baud rate prescaler
Value by which to scale the bit rate. Valid values are 0 to 255.

TSEG1
(Time SEGment 1) Sets the value of time segment 1, which, with
TSEG2 and Baud rate prescaler, determines the length of a bit
on the CAN bus. Valid values for TSEG1 are 2 through 16.

TSEG2
(Time SEGment 2) Sets the value of time segment 2, which, with
TSEG1 and Baud rate prescaler, determines the length of a bit
on the CAN bus. Valid values for TSEG2 are 2 through 8.

ERM
(Edge Resynchronization Mode) Sets the message
resynchronization triggering. Options are Falling edges only
and Both falling and rising edges.

2-590

DM643x CAN Setup

SJW
(Synchronization Jump Width) For CAN to work, all nodes on the
network must be synchronized. However, as time passes, clocks
on different nodes drift out of sync, and must resynchronize.
SJW specifies the maximum width (in time quanta) that can
be added to TSEG1 (in the case of a slower transmitter), or
subtracted from TSEG2 (in the case of a faster transmitter) to
regain synchronization during the receipt of a CAN message.
Valid values for SJW are 1 to 4.

SAM
(SAMple point setting) Number of samples used by the CAN
module to determine the CAN bus level. Selecting Sample one
time samples once at the sampling point. Selecting Sample three
times samples once at the sampling point and twice before at a
distance of TQ/2 (Time Quanta/2). A majority decision is derived
from the three points.

Self test mode
Puts the CAN module into loopback mode, that sends a dummy
acknowledge message without requiring an acknowledge bit.

References For detailed information on the CAN module, see TMS320DM643x
DMP High-End CAN Controller User’s Guide (Rev. A), Literature
Number SPRU981, available at the Texas Instruments Web site.

See Also “Configuring Timing Parameters for CAN Blocks”, DM643x CAN
Transmit, DM643x CAN Receive

2-591

DM643x CAN Transmit

Purpose Configure CAN mailbox to transmit messages on CAN serial
communications bus on DM643x

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ DM6437 EVM

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Scheduling

Description
The CAN Transmit block receives messages through the message input
(Msg) and broadcasts them to the CAN serial communication bus on
the DM643x.

Dialog
Box

Mailbox number
Sets the value of the mailbox number register (MBNR). For
standard CAN controller (SCC) mode, enter a unique number

2-592

DM643x CAN Transmit

from 0 to 15. For high-end CAN controller (HECC) mode enter a
unique number from 0 to 31 . In SCC mode, transmissions from
the mailbox with the highest number have the highest priority. In
HECC mode, the mailbox number only determines priority if the
Transmit priority level (TPL) of two mailboxes is equal.

Message identifier
Sets the value of the message identifier register (MID). The
message identifier is 11 bits long for standard frame size or 29 bits
long for extended frame size in decimal, binary, or hex format.
For the binary and hex formats, use bin2dec(' ') or hex2dec('
'), respectively, to convert the entry.

Message type
Select Standard (11-bit identifier) or Extended (29-bit
identifier).

Enable blocking mode
If you enable blocking mode, the CAN block code blocks
further transmissions indefinitely until it receives a transmit
acknowledge (TA bit in the CANTA register = 1). If you disable
blocking mode, the CAN block code continues transmitting
without receiving transmit acknowledgements. This is useful
when the hardware might fail to acknowledge transmissions.

References For detailed information on the CAN module, see TMS320DM643x
DMP High-End CAN Controller User’s Guide (Rev. A), Literature
Number SPRU981, available at the Texas Instruments Web site.

See Also “Configuring Timing Parameters for CAN Blocks”, DM643x CAN Setup,
DM643x CAN Receive

2-593

DM643x Draw Rectangles

Purpose Configure Video Processing Back End to draw rectangles using On
Screen Display (OSD) module

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ DM6437 EVM

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Scheduling

Description
This block configures the Video Processing Back End (VPBE) to draw
and position rectangles using the On Screen Display (OSD) module.
The position input (Pos) is a 1x4 vector, designates the location of
the upper-left corner of the rectangle. The position coordinates (0,0)
originate in the upper-left corner of the video display.

2-594

DM643x Draw Rectangles

Dialog
Box

Color
Select the rectangle color. For Specify via dialog, enter an
integer between 0–255. This integer specifies a corresponding
RGB color in the DM643x ROM0 color lookup table (DM643x
ROM0 CLUT). If you select Specify via input port, the block
displays an additional input port, Color. Like Specify via dialog,
the Color input takes an integer between 0–255 that fetches a
color from the DM643x ROM0 CLUT. Changing the input value to
the Color input port can change the color of the rectangle while
the model is running.

2-595

DM643x Draw Rectangles

For more information about the DM643x ROM0 CLUT, enter the
following text at the MATLAB command prompt:

help 'dm643x_clut'

Horizontal line thickness
Select the cursor height in lines.

Vertical line thickness
Select the cursor width in pixels.

Show input port for enable control
Create an input port (En) that can be used to enable or disable
the position input.

See Also DM643x OSD, DM643x Video Capture, DM643x Video Display

2-596

DM643x OSD

Purpose Overlay graphics and text on video

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ DM6437 EVM

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Scheduling

Description
Use the On Screen Display (OSD) capabilities of the Video Processing
Back End (VPBE) to overlay graphics and text on video.

2-597

DM643x OSD

Dialog
Box

Window Configuration Pane

OSD window
Display graphics using OSD window 0 or 1.

Window Mode
If you set OSD Window to OSD1, theWindow Mode parameter
appears. Selecting Display configures OSD1 to display graphics.
Selecting Attribute configures OSD1 to serve as an “alpha” input
for controlling the transparency of OSD0. The positions of the two
OSD windows must match for this to work.

Input data format
Set the format of the input data to 1-, 2-, 4-, 8-bit bitmap, or
RGB565 which provides 16-bit color depth (64k colors).

2-598

DM643x OSD

Due to bandwidth constraints, RGB565 can only be used with
one OSD window at a time. If you are using OSD1 to control
transparency (i.e., OSD1 Window Mode is Attribute), get the
best color depth by setting OSD1 Input data format to one of
the bitmap settings and OSD0 Input data format to RGB565.

Window location source
Select the method for setting the location of the graphics display
window. Specify via dialog creates the Window location field.
Specify via input port creates an position input (Pos) on the
OSD block which accepts the location of the window as data.

Window location
This parameter appears when you setWindow location source
to Specify via dialog. Set the pixel width, height, and base
coordinates. For example, the default values, [360, 240, 100, 100]
set the width to 360 pixels, the height to 240 pixels, the base
coordinates for x to 100 pixels, and the base coordinates for y to
100 pixels.

Note [0, 0], the origin of the coordinate system, is the located in
the upper-left corner of the Video0 window.

Horizontal zoom
Set the horizontal magnification of the graphics display window.
Selecting Specify via input port creates a zoom input (Zoom)
on the OSD block.

Vertical zoom
Set the vertical magnification of the graphics display window.
Selecting Specify via input port creates a zoom input (Zoom)
on the OSD block.

Show input port for enable control
Create an input port (En) to enable or disable the OSD graphics
display window. This parameter is not available when Window
Mode is Attribute.

2-599

DM643x OSD

Blending ratio
Control the degree of blending between the OSD graphics display
window and the Video display window in the background. This
can be used to superimpose a semitransparent OSD graphic on
a video background or to create fade-in and fade-out effects. The
settings range from full OSD to full video in steps of 1/8. An
additional setting, Specify via input port, creates an input port
(Blend) for changing the ratio dynamically.

Transparency mode
Turn the transparency mode of the graphics display windowOn or
Off, or select Specify via input port to create an input (Trans)
on the OSD block. With transparency enabled, OSD pixels that
match the color of the Video background color are rendered
transparent. This is used for typical “bluescreen” type effects.

2-600

DM643x OSD

Video Encoder Pane

Enable horizontal 9/8 expansion
Expands the image horizontally and is typically used to
compensate for spatially compressed NTSC and PAL video
signals. For example, you can use this setting to adjust a 720
x 480 pixel NTSC analog video input that is displayed as a 640
x 480 pixel image.

Enable vertical 6/5 expansion
Expands the image vertically and is typically used to compensate
for spatially compressed PAL video signals. For example, you can
use this setting in combination with the Enable horizontal 9/8
expansion setting to adjust a 720 x 576 pixel PAL analog video
input that is displayed as a 640 x 480 pixel image.

2-601

DM643x OSD

See Also DM643x Draw Rectangles, DM643x Video Capture, DM6437 EVM
Video Capture, DM643x Video Display

2-602

DM643x PWM

Purpose Configure DM643x DSP Event Manager to generate PWM waveforms

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ DM6437 EVM

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Scheduling

Description
This block configures one of the three PWM modules on the DM6437;
each module has one output. The PWM module’s clock cycles depend
on the DM6437’s 27 MHz input clock, and are not affected by the
DM6437’s PLL module. Upon startup, the PWM module uses the
Initial waveform period and Initial duty-cycle values. Inputs to
the waveform period port, T, and the duty-cycle port, W, can change
those values while the application is running.

Dialog
Box

The PWM block dialog box comprises four tabs:

• Timer — Select the PWM module, and configure the initial
waveform.

• Outputs — Configure the initial duty cycle.

• Logic — Configure the control logic.

• Mode— Configure one-shot or continuous operation.

The following sections describe the contents of each tab in the dialog box.

2-603

DM643x PWM

Timer

Module
Select the PWM module for this block. all the parameter settings
in this block configure the registers of the PWM module selected.

Initial waveform period
Set the initial period of the PWM waveform. The waveform period
applied at the input port, T, changes this value. The range of
acceptable values is 0.000000296 to 79.536431370 seconds or 8
to 231-1 clock cycles. These ranges depend on the 27 MHz clock
frequency and the width of the 32-bit register.

Waveform period units
Set the unit of measure of the waveform period to Seconds or
Clock cycles. This setting applies to both the Initial waveform
period and the waveform period input, T. Clock cycles depend on
the DM6437’s 27 MHz input clock.

2-604

DM643x PWM

Outputs

Initial duty-cycle
Set the initial duty-cycle of the PWM. The duty-cycle applied at
the input port, W, changes this value. The range of acceptable
values is 0 to 100 percent or 8 to 231-1 clock cycles. These ranges
depend on the 27 MHz clock frequency and the width of the 32-bit
register.

Duty-cycle units
Set the unit of measure of the duty-cycle to percentage or clock
cycles. This setting applies to both the Initial duty-cycle and
the duty-cycle input, W. Clock cycles depend on the DM6437’s 27
MHz input clock.

2-605

DM643x PWM

Logic

PWM control logic
Control the state of the PWM output while it is inactive and the
polarity of the PWM waveform when it is active:

• Inactive Low (Low to High): When the PWM output is
inactive, the output remains low. When it is active, the first
phase is low, and the second phase is high.

• Inactive Low (High to Low): When the PWM output is
inactive, the output remains low. When it is active, the first
phase is high, and the second phase is low.

• Inactive High (Low to High): When the PWM output is
inactive, the output remains high. When it is active, the first
phase is low, and the second phase is high.

• Inactive High (High to Low): When the PWM output is
inactive, the output remains high. When it is active, the first
phase is high, and the second phase is low.

2-606

DM643x PWM

Mode

PWM Mode
Set the mode to one-shot or continuous. One-shot repeats the
waveform for the number of periods given by repeat value and
then, if interrupts are enabled, generates an interrupt at the end
of operation. Continuous repeats the waveform infinitely and
generates an interrupt, if enabled, every period.

Repeat Value
Set the repeat value if PWM Mode is set to One-shot. The PWM
module outputs the waveform the specified number of times +1.

Interrupt enable
Enable the PWM module to generate an interrupt.

In one-shot mode, the PWM module generates an interrupt when
number of periods given by Repeat value have been completed.

In continuous mode, the PWM module generates an interrupt
during each period signaling that it is okay to set values for the
subsequent waveform period and duty cycle.

2-607

DM643x PWM

References For detailed information on the PWM module, see TMS320DM643x
DMP Pulse-Width Modulator (PWM) Peripheral User’s Guide,
Literature Number SPRU995, available at the Texas Instruments Web
site.

2-608

DM643x UART Config

Purpose Configure DM643x UART for serial communication

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Scheduling

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ DM6437 EVM

Description
Configure the serial communication parameters that are common to the
transmit and receive elements of the DM643x UART module. If your
model contains a DM643x UART Transmit block or a DM643x UART
Receive block, it must also contain a DM643x UART Config block.

The UART module converts data between parallel and serial formats
depending on whether it is transmitting or receiving data from external
peripheral devices. Except for the Module parameter, configure all of
the parameters in this block so they match the serial communication
settings of the external peripheral devices.

2-609

DM643x UART Config

Dialog
Box

Module
Select the UART module this block configures, UART0 or UART1.
Your model can only contain one DM643x UART Config block
per module.

Baud rate
Set the rate of signal modulations per second. Choose from 2400,
4800, 9600, 19200, 38400, 57600, or 115200.

Data bits
Set the number of data bits in the character frame, from 5, 6,
7, or 8.

Parity
Enable and configure parity error detection.

In parity error detection, the transmitter reserves a parity bit at
the end of the character frame, adds the number of 1’s in the data

2-610

DM643x UART Config

bits, and assigns a value to the parity bit. The receiver compares
the number of 1’s in the data bits with the value of the parity bit.
If the two values don’t match, the receiver signals the transmitter
that an error has occurred.

• None disables parity error detection. The character frame does
not include a parity bit.

• Odd enables parity error detection and reserves a parity bit at
the end of the character frame. If the data bits contain an odd
number of 1’s, the method assigns a value of 0 to the parity bit.

• Even enables parity error detection and reserves a parity bit to
the end of the character frame. If the data bits contain an even
number of 1’s, the method assigns a value of 0 to the parity bit.

Stop bits
Select 1 or 2.

Flow control
Select None or Hardware.

References For detailed information on the UART module, see TMS320DM643x
DMP Universal Asynchronous Receiver/Transmitter (UART) User’s
Guide, Literature Number: SPRU997, available at the Texas
Instruments Web site.

See Also DM643x UART Receive, DM643x UART Transmit

2-611

DM643x UART Receive

Purpose Configure receiver element of DM643x UART module for serial
communication

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Scheduling

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ DM6437 EVM

Description
Configure the serial communication parameters of the receiver element
of the DM643x UART module. The receiver element converts data from
external peripheral devices from serial to parallel format and passes it
to the CPU. If your model contains a DM643x UART Receive block, it
must also contain a DM643x UART Config block.

2-612

DM643x UART Receive

Dialog
Box

Module
Select the UART module this block configures, UART0 or UART1.
Your model can only contain one DM643x UART Receive block per
module. This parameter must also match theModule parameter
in the DM643x UART Config block.

Data size
Set the data size, in bytes, of each transmission. Blocking mode
uses this parameter to determine whether to generate an error.

Enable blocking mode
Enable this parameter to generate an error if the size of the last
data transmission does not match the value of the Data size
parameter. The DM643x UART Receive block sends the error
message as a negative value on its Status output. If you disable
Enable blocking mode, the block sends the number of bytes it
received as a positive value on its Status output.

2-613

DM643x UART Receive

Sample time
Set the sample time for the block’s input sampling. To execute
this block asynchronously, set Sample Time to -1, and refer to
“Asynchronous Scheduling” for a discussion of block placement
and other settings.

References For detailed information on the UART module, see TMS320DM643x
DMP Universal Asynchronous Receiver/Transmitter (UART) User’s
Guide, Literature Number: SPRU997, available at the Texas
Instruments Web site.

See Also DM643x UART Config, DM643x UART Transmit

2-614

DM643x UART Transmit

Purpose Configure transmitter element of DM643x UART module for serial
communication

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Scheduling

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ DM6437 EVM

Description
Configure the serial communication parameters of the transmitter
element of the DM643x UART module. If your model contains a
DM643x UART Receive block, it must also contain a DM643x UART
Config block. The transmitter element converts parallel data from the
CPU to a serial data format for output to external peripheral devices.

Dialog
Box

Module
Select the UART module this block configures, UART0 or UART1.
Your model can only contain one DM643x UART Transmit

2-615

DM643x UART Transmit

block per module. This parameter must also match the Module
parameter in the DM643x UART Config block.

Data size
Set the number of bytes to send per transmission.

References For detailed information on the UART module, see TMS320DM643x
DMP Universal Asynchronous Receiver/Transmitter (UART) User’s
Guide, Literature Number: SPRU997, available at the Texas
Instruments Web site.

See Also DM643x UART Config, DM643x UART Receive

2-616

DM643x Video Capture

Purpose Configure Video Processing Front End (VPFE) to capture REC656 or
generic YCbCr 4:2:2 video

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Scheduling

Description
Configure the video processing front end (VPFE) to capture NTSC or
PAL video.

2-617

DM643x Video Capture

Dialog
Box

VPFE

Video capture interface
Configure this parameter to match the format of the input signal
using either the REC656 or Generic YCbCr-4:2:2 option. The
REC656 format is also known to as ITU-R BT.656 or CCIR-656
and comprises an 8-bit YCbCr 422 input signal. Generic
YCbCr-4:2:2 comprises an 8-bit signal with discrete horizontal
(H) and vertical (VSYNC) signals, such as a computer monitor
signal.

Data input mode
When Video capture interface is set to Generic YCbCr-4:2:2,
set this parameter depending on the number of pins used by the
physical interface. If the physical interfaces uses pins 0–8, select

2-618

DM643x Video Capture

8-bit. If the physical interface uses pins 0–15, use 16-bit. When
you select 16-bit, the lower 8 pins capture Y and the upper 8 pins
capture the C (chroma) components.

For more information, refer to Table 1. Interface Signals for
Video Processing Front End in the TMS320DM643x DMP Video
Processing Front End (VPFE) User’s Guide, Literature Number:
SPRU977, available on the Texas Instruments Web site.

Scan mode
If you set Video capture interface to Generic YCbCr-4:2:2,
set Scan mode to match the scan mode of the input signal,
Interlaced or Progressive. Regardless of the setting, the
block outputs an interleaved YCbCr 422 signal, which you can
deinterleave using the C6000 Deinterleave block.

Note If you set Scan mode to Interlaced, verify that the Field
ID signal is connected to the input pin for this video capture
driver to work as expected.

Frame size
Define the size of the capture frame. You can use this parameter
to capture the entire input frame or to capture just a portion of it.
The minimum value must be greater than zero. The maximum
value is the size of the input frame. Enter the row and column
dimensions of the capture frame in pixels. For example, entering
[740, 480] sets the row width to 740 pixels, and the column
height to 480 pixels.

Capture start pixel
Set the location of the capture frame relative to the display frame,
using the upper-left corners of both frames (e.g., [0, 0]) as the
point of reference. You can position the start pixel anywhere in
the input frame. Enter the row and column dimensions of the
Capture start pixel in pixels. For example, entering [10, 20]

2-619

DM643x Video Capture

positions the upper-left corner of the capture frame at row 10,
column 20 from the upper-left corner of the display frame.

The combination of the Frame size and Capture start pixel
parameters may place the capture frame outside the display
frame. If so, the portions of the capture frame that lie outside
the display frame capture null video data (black screen) without
generating an error.

Sample time
Set the sampling rate of the video capture frame. Enter Sample
time as a fraction of 1 over the sample rate per second. For
example, to obtain a sample rate of 30 frames per second, enter
1/30.0. NTSC has a typical frame rate of 1/30, while PAL usually
requires 1/25.

You can set this parameter to match the frame rate of the
input signal, or you can use it to downsample the input signal.
For example, sampling a 1/30 input at 1/15 halves the data
throughput of the signal.

Setting the sample time to a different value from the input signal
refresh rate may cause discontinuities in the video image. Avoid
exceeding the sample rate of the input signal.

2-620

DM643x Video Capture

External Device

The External Device tab enables you to connect a video device with
an external video decoder to the VPFE. When you specify the external
coder, you create hookpoints in the VPFE driver initialization code
for opening the external video decoder, starting the data output, and
closing the external video decoder. The external decoder plugs into the
following function pointers:

• EVD_Handle (*Open)()

• Int (*Close)(Ptr handle)

• Int (*Control)(Ptr handle,Uint32 Cmd,Ptr CmdArg)

2-621

DM643x Video Capture

For example, if you were to enter “PSP_VPFE_TVP5146” for External
decoder module name, you would declare the following functions as
shown:

// External device open function

EVD_Handle PSP_VPFE_TVP5146_Open(void);

// External device close function

Int PSP_VPFE_TVP5146_Close(EVD_Handle handle);

// External device control function

Int PSP_VPFE_TVP5146_Control(EVD_Handle handle, Uint32 Cmd, Ptr CmdArg);

The VPFE driver also assumes that a user structure
named TVP5146_ConfigParams and a variable called
PSP_VPFE_TVP5146_params exists to pass to the
PSP_VPFE_TVP5146_Control function. In other words, there
must be a declaration like the following:

typedef struct _PSP_VPFE_TVP5146_ConfigParams
{
int dummy; // User defined fields
} PSP_VPFE_TVP5146_ConfigParams;
TVP5146_ConfigParams PSP_VPFE_TVP5146_params;

You must use the custom code interface to add the header file that
declares function prototypes and the source files that contain the
implementation of the _Open, *_Close and *_Control functions to the
generated project.

External decoder
If your target is connected to a video device that outputs a RAW
video signal and relies on the DM643x VPFE’s built-in decoder,
select None. If your target is connected to a video device with
a decoder that outputs REC656 or generic YCbCr-4:2:2, select
Specify via input dialog.

2-622

DM643x Video Capture

External decoder module name
If you set the External decoder to Specify via input dialog,
then enter a name for the external video decoder module name in
this field.

See Also DM643x Draw Rectangles, DM643x OSD, DM643x Video Display

References TMS320DM643x DMP Video Processing Front End (VPFE) User’s
Guide, Literature Number: SPRU977, available from the Texas
Instruments Web site.

2-623

DM643x Video Display

Purpose Configure Video Processing Back End to display NTSC/PAL video

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ DM6437 EVM

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Scheduling

Description
This block configures the Video Processing Back End (VPBE) to display
NTSC/PAL video.

Dialog
Box

The block dialog box comprises multiple tabs:

• Window Configuration — Configure the video window, position,
zoom, and whether to display the input port.

• Video Encoder— Configure the video display mode, analog video
output, and horizontal or vertical expansion.

The dialog box images show all of the available parameters enabled.
Some of the parameters shown do not appear until you select one or
more other parameters.

2-624

DM643x Video Display

Window Configuration

Video window
Create a video display window, Video0 or Video1.

You must create a Video0 display window before you can use
the following video elements:

• a Video1 video display window from the DM643x Video Display
block

• an on-screen display from the DM643x OSD block

• a video rectangle from the DM643x Draw Rectangles block

Window location source
Select the method for setting the location of the graphics display
window. Specify via dialog creates the Window location field.
Specify via input port creates an position input (Pos) on the
OSD block which accepts the location of the window as data.

2-625

DM643x Video Display

Window location
This parameter appears when you setWindow location source
to Specify via dialog. Set the pixel width, height, and base
coordinates. For example, the default values, [360, 240, 100, 100]
set the width to 360 pixels, the height to 240 pixels, the base
coordinates for x to 100 pixels, and the base coordinates for y to
100 pixels.

Note [0, 0], the origin of the coordinate system, is the located in
the upper-left corner of the Video0 window.

Horizontal zoom
Set the horizontal magnification of the graphics display window.
Selecting Specify via input port creates a zoom input (Zoom)
on the video display block.

Vertical zoom
Set the vertical magnification of the graphics display window.
Selecting Specify via input port creates a zoom input (Zoom)
on the video display block.

Show input port for enable control
Create an input port (En) to enable or disable the video display
window.

2-626

DM643x Video Display

Video Encoder Pane

Video output mode
Set the output mode to Analog or Digital. This parameter is
only available in the block that comes from the Avnet S3 ADSP
DM6437 library.

Video display mode
Set the video format to NTSC , PAL, HD 480p60, or HD 576p50.

Analog video output
Set the output type to Composite, S-video, or Component.

Enable horizontal 9/8 expansion
Expands the image horizontally. Typically used to compensate for
spatially compressed NTSC and PAL video signals. For example,
use this setting to adjust a 720 x 480 pixel NTSC analog video
input that is displayed as a 640 x 480 pixel image.

Enable vertical 6/5 expansion
Expands the image vertically. Typically used to compensate
for spatially compressed PAL video signals. For example, use

2-627

DM643x Video Display

this setting in combination with the Enable horizontal 9/8
expansion setting to adjust a 720 x 576 pixel PAL analog video
input that is displayed as a 640 x 480 pixel image.

See Also DM643x Draw Rectangles, DM643x OSD, DM6437 EVM Video Capture,
DM643x Video Capture

2-628

DM648 EVM Video Capture

Purpose Configure DSP peripherals to capture NTSC/PAL or HD video

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ DM648 EVM

Description
This block configures the Video Processing Back End (VPBE) to capture
NTSC, PAL, or HD video.

To capture multiple video data streams for applications such as
multipicture displays, use multiple Video capture blocks. For NTSC
and PAL, you can capture eight video streams by combining four
Capture ports with two Capture channels. For HD, you can capture
two video streams using two Capture ports.

2-629

DM648 EVM Video Capture

Dialog

Video capture mode
Set the video format to NTSC, PAL, or HD. Each menu item
gives the encoding type, the vertical lines of resolution, whether
the scanning type is interlaced (i) or progressive (p), and the
frame rate of the input. For example, the “NTSC 480i30” indicates
NTSC encoding, 480 lines of vertical resolution, interlaced, and 30
frames per second.

Capture port
Select the video input port. When you configure Video capture
mode for an NTSC or PAL input, four capture ports become
available. When you configure Video capture mode for an HD
input, two capture ports become available. VP1 is not available in
the list of capture ports because it is reserved for video display.

Capture channel
Two capture channels, A and B, are available for NTSC or PAL.
Capture channel is not available when Video capture mode
is configured for an HD input.

2-630

DM648 EVM Video Capture

Sample time
Set the interval between samples in fractions of a second. This
value defaults to 1/30.0, or one-thirtieth of a second. If the sample
time does not match the frame rate of the video input, some
irregularities may occur.

See Also DM648 EVM Video Display

2-631

DM648 EVM Video Display

Purpose Configure DSP peripherals to display NTSC, PAL, HD, or VESA video

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ DM648 EVM

Description
This block configures the Video Processing Back End (VPBE) to display
NTSC/PAL/HD/VESA video. When sending the video output to a
computer display, verify that the combination of the resolution of the
VESA in Video display mode and the frequency in Refresh rate are
valid settings for the monitor. Using unsupported combinations may
permanently damage the computer display connected to a video output.

Dialog
Box

Video display mode
Set the video display mode to NTSC, PAL, HD, or VESA. The
NTSC, PAL, and HD menu items give the encoding type, the
vertical lines of resolution, whether the scanning type is interlaced

2-632

DM648 EVM Video Display

(i) or progressive (p), and the frame rate of the input. For example,
the “NTSC 480i30” indicates NTSC encoding, 480 lines of vertical
resolution, interlaced, and 30 frames per second. The VESA
modes correspond to a range of standard computer display modes.

Refresh rate
When Video display mode is one of the VESA modes, set the
refresh rate of the video output.

Video position
Position the upper-left corner of the video output in the video
display by entering coordinates. The default coordinates, [0,0],
correspond to the upper-left corner of the video display. Increasing
the horizontal and vertical coordinates moves the video output
to the right and down.

See Also DM643x Draw Rectangles, DM643x OSD, DM6437 EVM Video Capture,
DM643x Video Capture

2-633

C6747 EVM/C6748 EVM ADC

Purpose Capture audio stream from LINE IN jack

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ C6747 EVM

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ C6748 EVM

Description
Configures the AIC31 audio codec on the C6747EVM/C6748EVM
board to capture an audio stream from the LINE IN jack. Output is
a [Nx2], N being the number of samples per frame, array of int16
values representing the left and right channels of the sampled signal.
Use Inherit sample time parameter to place the ADC block in an
asynchronous function call subsystem.

2-634

C6747 EVM/C6748 EVM ADC

Dialog
Box

Sampling rate
Set the rate at which the analog-to-digital converter samples the
analog input. A higher rate increases the resolution of the data
the ADC outputs.

Samples per frame
Set the number of samples the ADC buffers internally before it
sends the digitized signals, as a frame vector, to the next block
in the model. This value defaults to 64 samples per frame. The
frame rate depends on the sample rate and frame size. Thus, if
you set Sampling Rate to 8 kHz, and Samples per frame to 64, the
resulting frame rate is 125 frames per second (8000/64 = 125).

Inherit sample time
Select whether the block inherits the sample time from the
model base rate or from the Simulink base rate. You can locate
the Simulink base rate in the Solver options in Configuration

2-635

C6747 EVM/C6748 EVM ADC

Parameters. Selecting Inherit sample time directs the block to use
the specified rate in model configuration.

See Also C6747 EVM/C6748 EVM DAC

2-636

C6747 EVM/C6748 EVM DAC

Purpose Output audio on LINE OUT / HP OUT jacks

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ C6747 EVM

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ C6748 EVM

Description
Configures the AIC31 audio codec on the C6747EVM/C6748EVM board
to output audio on LINE OUT / HP OUT jacks on the board.Input must
be a [Nx2] array of int16 values representing the left and right channels
of the sampled signal. Sampling rate and samples per frame of the DAC
must match the sampling rate and samples per frame of the ADC block.

2-637

C6747 EVM/C6748 EVM DAC

Dialog
Box

Sampling rate
Set the rate at which the digital-to-analog converter receives each
data sample. If your model contains an ADC block, select Inherit
from ADC.

Samples per frame
Set the number of samples per data input frame. Match this value
with the value of the block creating the data frames. This value
defaults to 64 samples per frame.

See Also DM643x Draw Rectangles, DM643x OSD, DM6437 EVM Video Capture,
DM643x Video Capture

2-638

C6747 EVM DIP Switch

Purpose Output DIP switch status

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ C6747 EVM

Description
Outputs on / off state of a DIP switch on the C6747EVM board. The
output value is boolean, that is ’0’ or ’1’, depending on the state of the
switch.

Dialog
Box

DIP Switch
Select the switch, 0 through 3, from the SW3 bank of switches.

Sample time
Specify the time between samples of the signal in seconds. This
value defaults to 1 second between samples.

2-639

C6747 EVM DIP Switch

See Also DM643x Draw Rectangles, DM643x OSD, DM6437 EVM Video Capture,
DM643x Video Capture

2-640

C6747 EVM LED

Purpose Control four on-board LEDs

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ C6747 EVM

Description
Controls the DS1-DS4 LEDs on the C6747EVM board. The input is a
boolean signal. The input signal value will be reflected on the LED
selected.

Dialog
Box

LED
Specify the number of the User LED that the Boolean input
controls.

See Also DM643x Draw Rectangles, DM643x OSD, DM6437 EVM Video Capture,
DM643x Video Capture

2-641

DSP/BIOS Hardware Interrupt

Purpose Generate Interrupt Service Routine

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ DSP/BIOS

Description
Creates an Interrupt Service Routine (ISR) that executes the task block
or subsystem that is downstream from the block. ISRs are functions
that the CPU executes in response to an external event.

Interrupt numbers for C6000 family processors range from 0 to 15,
with 0 reserved for the reset ISR. The following table presents the
set of interrupt numbers for the C6713 processor. For more detailed
and specific information about interrupts, refer to Texas Instruments
technical documentation for your target processor.

Interrupt
Number Default Event Module

0 Reset

1 NMI

2 Reserved

3 Reserved

4 GPINT4 GPIO

5 GPINT5 GPIO

6 GPINT6 GPIO

7 GPINT7 GPIO

8 EDMAINT EDMA

9 EMUDTDMA Emulation

10 SDINT EMIF

2-642

DSP/BIOS Hardware Interrupt

Interrupt
Number Default Event Module

11 EMURTDXRX Emulation

12 EMURTDXTX Emulation

13 DSPINT HPI

14 TINT0 Timer 0

15 TINT1 Timer 1

In models, you usually follow this block with either a DSP/BIOS Task or
DSP/BIOS Triggered Task block.

Dialog
Box

Interrupt number(s)
Enter one or more integer values as a vector that represent
interrupts. Interrupts have a value from 0, the highest priority to

2-643

DSP/BIOS Hardware Interrupt

15, lowest priority. As shown, enter the values enclosed in square
brackets. For example, entering

[3 5 15]

results in three interrupt routines. [5 8] is the default entry,
specifying two interrupts.

Preemption flag(s)
Higher priority interrupts can preempt interrupts that have lower
priority. To allow you to control preemption, use the preemption
flags to specify whether an interrupt can be preempted.

Entering 1 indicates that the interrupt can be preempted.
Entering 0 indicates the interrupt cannot be preempted. When
Interrupt numbers contains more than one interrupt priority,
you can assign different preemption flags to each interrupt by
entering a vector of flag values, corresponding to the order of
the interrupts in Interrupt numbers. If Interrupt numbers
contains more than one interrupt, and you enter only one flag
value here, that status applies to all interrupts.

In the default settings [0 1], the interrupt with priority 5
in Interrupt numbers is not preemptible and the priority 8
interrupt can be preempted.

Manage own timer
The ISR generated by the this block can manage its own time by
reading time from the clock on the board. Selecting this option
directs the ISR to maintain the time itself. When you select
Manage own timer, you enable the Timer resolution option
that reports the timer resolution the ISR uses.

Timer resolution (seconds)
When you direct the block to manage its own time, this option
(available only when you select Manage own timer) reports
the resolution of the clock. Timer resolution is a read-only
parameter. You cannot change the value.

2-644

DSP/BIOS Hardware Interrupt

Enable simulation input
Selecting this option adds an input port to the block for simulating
inputs in Simulink software. Connect interrupt simulation
sources to the input. This option affects simulation only. It does
not alter generated code.

See Also DSP/BIOS Task, DSP/BIOS Triggered Task

2-645

DSP/BIOS Task

Purpose Create task that runs as separate DSP/BIOS thread

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ DSP/BIOS

Description
Creates a free-running task that runs in response to an ISR and as a
separate DSP/BIOS thread. The spawned task runs the downstream
function call subsystem in the model.

When the process runs this task, it uses a semaphore structure to
enable the task and restrict access by it to other resources.

In order to use this block, set the System target file parameter to
idelink_ert.tlc or idelink_ert.tlc. The System target file
parameter is located on the Code Generation pane of the Model
Configuration Parameters dialog, which you can view by selecting your
model and pressing Ctrl+E.

2-646

DSP/BIOS Task

Dialog
Box

Task name (32 characters or less)
Creates a name for the task. Enter a string of up to 32 characters,
including numbers and letters. You cannot use the standard C
reserved characters, such as / and : in the name.

Task priority (1-15)
Sets the priority for the task, where 1 is the lowest priority and 15
the highest. Higher priority tasks can preempt tasks that have
lower priority.

Stack size (bytes)
Specify the size of the stack the task uses. The value defaults
to 4096 bytes. Each DSP/BIOS task has a separate stack. This

2-647

DSP/BIOS Task

parameter is not related to System stack size (MAUs) in the
model Configuration Parameters.

Stack memory segment
Specify where the stack resides in memory.

Manage own timer
This block can manage its own time by reading time from the
clock on the board. Selecting this option directs the task/block to
maintain the time itself. When you select Manage own timer,
you enable the Timer resolution option that reports the timer
resolution the task uses.

Timer resolution (seconds)
When you direct the block to manage its own time, this option
(available only when you select Manage own timer) reports
the resolution of the clock. Timer resolution is a read-only
parameter. You cannot change the value.

See Also DSP/BIOS Hardware Interrupt, DSP/BIOS Triggered Task

2-648

DSP/BIOS Triggered Task

Purpose Create asynchronously triggered task

Library Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ DSP/BIOS

Description
Creates a task that runs asynchronously in response to an ISR and as a
separate DSP/BIOS thread. The spawned task runs the downstream
function call subsystem in the model.

When the process runs this task, it uses a semaphore structure to
enable the task and restrict access by it to other resources.

2-649

DSP/BIOS Triggered Task

Dialog
Box

Task name (32 characters or less)
Creates a name for the task. Enter a string of up to 32 characters,
including numbers and letters. You cannot use the standard C
reserved characters, such as / or : in the name.

Task priority (1-15)
Sets the priority for the task, where 1 is the lowest priority and 15
the highest. Higher priority tasks can preempt tasks that have
lower priority, unless the preemptible flag (Preemption flag
option on the C5000/C6000 Hardware Interrupt block) prevents
preempting the task.

Stack size (bytes)
Specify the size of the stack the task uses. The value defaults to
4096 bytes. Take care to set this value to a value that is large

2-650

DSP/BIOS Triggered Task

enough. If the task uses more than the allotted space it can write
into other memory areas with unintended results.

Each DSP/BIOS task has a separate stack. This parameter is not
related to System stack size (MAUs) in the model Configuration
Parameters.

Stack memory segment
Specify where the stack resides in memory by specifying the
memory segment. Additional information about DSP/BIOS
memory segments also appears in the Target Hardware Resources
tab.

Synchronize data transfer of this task with caller task
Specify whether this task should synchronize data transfer with
the calling task. Select this option to enable synchronization.
Clearing this option enables the Timer resolution option.

Timer resolution
When you direct the block not to synchronize data with the calling
task (by clearing Synchronize data transfer of this task with
caller task), Timer resolution reports the resolution of the
timer. Timer resolution is a read-only parameter. You cannot
change the value.

See Also DSP/BIOS Hardware Interrupt, DSP/BIOS Task

2-651

CAN Pack

Purpose Pack individual signals into CAN message

Library CAN Communication

Embedded Coder/ Embedded Targets/ Host Communication

Description
The CAN Pack block loads signal data into a message at specified
intervals during the simulation.

Note To use this block, you also need a license for Simulink software.

CAN Pack block has one input port by default. The number of block
inputs is dynamic and depends on the number of signals you specify for
the block. For example, if your block has four signals, it has four block
inputs.

This block has one output port, CAN Msg. The CAN Pack block takes
the specified input parameters and packs the signals into a message.

Other Supported Features

The CAN Pack block supports:

• The use of Simulink Accelerator™ mode. Using this feature, you can
speed up the execution of Simulink models.

• The use of model referencing. Using this feature, your model can
include other Simulink models as modular components.

• Code generation using Simulink Coder to deploy models to targets.

2-652

CAN Pack

Note Code generation is not supported if your signal information
consists of signed or unsigned integers greater than 32-bits long.

For more information on these features, see the Simulink
documentation.

Dialog
Box

Use the Function Block Parameters dialog box to select your CAN Pack
block parameters.

Parameters

Data is input as
Select your data signal:

• raw data: Input data as a uint8 vector array. If you select this
option, you only specify the message fields. all other signal

2-653

CAN Pack

parameter fields are unavailable. This option opens only one
input port on your block.

• manually specified signals: Allows you to specify data signal
definitions. If you select this option, use the Signals table to
create your signals. The number of block inputs depends on the
number of signals you specify.

• CANdb specified signals: Allows you to specify a CAN
database file that contains message and signal definitions.
If you select this option, select a CANdb file. The number of

2-654

CAN Pack

block inputs depends on the number of signals specified in the
CANdb file for the selected message.

CANdb file
This option is available if you specify that your data is input
via a CANdb file in the Data is input as list. Click Browse to
find the CANdb file on your system. The message list specified
in the CANdb file populates the Message section of the dialog
box. The CANdb file also populates the Signals table for the
selected message.

2-655

CAN Pack

Note File names that contain non-alphanumeric characters
such as equal signs, ampersands, and so forth are not valid CAN
database file names. You can use periods in your database name.
Rename CAN database files with non-alphanumeric characters
before you use them.

Message list
This option is available if you specify that your data is input via a
CANdb file in the Data is input as field and you select a CANdb
file in the CANdb file field. Select the message to display signal
details in the Signals table.

Message

Name
Specify a name for your CAN message. The default is CAN
Msg. This option is available if you choose to input raw data or
manually specify signals. This option in unavailable if you choose
to use signals from a CANdb file.

Identifier type
Specify whether your CAN message identifier is a Standard or an
Extended type. The default is Standard. A standard identifier
is an 11-bit identifier and an extended identifier is a 29-bit
identifier. This option is available if you choose to input raw data
or manually specify signals. For CANdb specified signals, the
Identifier type inherits the type from the database.

Identifier
Specify your CAN message ID. This number must be a positive
integer from 0 through 2047 for a standard identifier and from
0 through 536870911 for an extended identifier. You can also
specify hexadecimal values using the hex2dec function. This
option is available if you choose to input raw data or manually
specify signals.

2-656

CAN Pack

Length (bytes)
Specify the length of your CAN message from 0 to 8 bytes. If you
are using CANdb specified signals for your data input, the
CANdb file defines the length of your message. If not, this field
defaults to 8. This option is available if you choose to input raw
data or manually specify signals.

Remote frame
Specify the CAN message as a remote frame.

Signals Table

This table appears if you choose to specify signals manually or define
signals using a CANdb file.

If you are using a CANdb file, the data in the file populates this table
automatically and you cannot edit the fields. To edit signal information,
switch to manually specified signals.

If you have selected to specify signals manually, create your signals
manually in this table. Each signal you create has the following values:

Name
Specify a descriptive name for your signal. The Simulink block
in your model displays this name. The default is Signal [row
number].

Start bit
Specify the start bit of the data. The start bit is the least
significant bit counted from the start of the message data. The
start bit must be an integer from 0 through 63.

Length (bits)
Specify the number of bits the signal occupies in the message. The
length must be an integer from 1 through 64.

Byte order
Select either of the following options:

• LE: Where the byte order is in little-endian format (Intel). In
this format you count bits from the start, which is the least

2-657

CAN Pack

significant bit, to the most significant bit, which has the
highest bit index. For example, if you pack one byte of data in
little-endian format, with the start bit at 20, the data bit table
resembles this figure.

Little-Endian Byte Order Counted from the Least Significant Bit
to the Highest Address

• BE: Where byte order is in big-endian format (Motorola®). In
this format you count bits from the start, which is the least
significant bit, to the most significant bit. For example, if you

2-658

CAN Pack

pack one byte of data in big-endian format, with the start bit at
20, the data bit table resembles this figure.

Big-Endian Byte Order Counted from the Least Significant Bit
to the Lowest Address

Data type
Specify how the signal interprets the data in the allocated bits.
Choose from:

• signed (default)

• unsigned

2-659

CAN Pack

• single

• double

Multiplex type
Specify how the block packs the signals into the CAN message
at each timestep:

• Standard: The signal is packed at each timestep.

• Multiplexor: The Multiplexor signal, or the mode signal
is packed. You can specify only one Multiplexor signal per
message.

• Multiplexed: The signal is packed if the value of the
Multiplexor signal (mode signal) at run time matches the
configured Multiplex value of this signal.

For example, a message has four signals with the following types
and values.

Signal Name Multiplex Type Multiplex Value

Signal-A Standard N/A

Signal-B Multiplexed 1

Signal-C Multiplexed 0

Signal-D Multiplexor N/A

In this example:

• The block packs Signal-A (Standard signal) and Signal-D
(Multiplexor signal) in every timestep.

• If the value of Signal-D is 1 at a particular timestep, then the
block packs Signal-B along with Signal-A and Signal-D in that
timestep.

• If the value of Signal-D is 0 at a particular timestep, then the
block packs Signal-C along with Signal-A and Signal-D in that
timestep.

2-660

CAN Pack

• If the value of Signal-D is not 1 or 0, the block does not pack
either of the Multiplexed signals in that timestep.

Multiplex value
This option is available only if you have selected the Multiplex
type to be Multiplexed. The value you provide here must match
the Multiplexor signal value at run time for the block to pack
the Multiplexed signal. TheMultiplex value must be a positive
integer or zero.

Factor
Specify the Factor value to apply to convert the physical value
(signal value) to the raw value packed in the message. See
“Conversion Formula” on page 2-661 to understand how physical
values are converted to raw values packed into a message.

Offset
Specify the Offset value to apply to convert the physical value
(signal value) to the raw value packed in the message. See
“Conversion Formula” on page 2-661 to understand how physical
values are converted to raw values packed into a message.

Min
Specify the minimum physical value of the signal. The default
value is -inf (negative infinity). You can specify a number for
the minimum value. See “Conversion Formula” on page 2-661
to understand how physical values are converted to raw values
packed into a message.

Max
Specify the maximum physical value of the signal. The default
value is inf. You can specify a number for the maximum value.
See “Conversion Formula” on page 2-661 to understand how
physical values are converted to raw values packed into a message.

Conversion Formula

The conversion formula is

raw_value = (physical_value - Offset) / Factor

2-661

CAN Pack

where physical_value is the value of the signal after it is saturated
using the specified Min and Max values. raw_value is the packed
signal value.

See Also CAN Unpack

2-662

CAN Unpack

Purpose Unpack individual signals from CAN messages

Library CAN Communication

Embedded Coder/ Embedded Targets/ Host Communication

Description
The CAN Unpack block unpacks a CAN message into signal data using
the specified output parameters at every timestep. Data is output as
individual signals.

Note To use this block, you also need a license for Simulink software.

The CAN Unpack block has one output port by default. The number
of output ports is dynamic and depends on the number of signals you
specify for the block to output. For example, if your block has four
signals, it has four output ports.

Other Supported Features

The CAN Unpack block supports:

• The use of Simulink Accelerator mode. Using this feature, you can
speed up the execution of Simulink models.

• The use of model referencing. Using this feature, your model can
include other Simulink models as modular components.

• Code generation using Simulink Coder to deploy models to targets.

2-663

CAN Unpack

Note Code generation is not supported if your signal information
consists of signed or unsigned integers greater than 32-bits long.

For more information on these features, see the Simulink
documentation.

Dialog
Box

Use the Function Block Parameters dialog box to select your CAN
message unpacking parameters.

Parameters

Data to be output as
Select your data signal:

2-664

CAN Unpack

• raw data: Output data as a uint8 vector array. If you select
this option, you only specify the message fields. The other
signal parameter fields are unavailable. This option opens only
one output port on your block.

• manually specified signals: Allows you to specify data
signals. If you select this option, use the Signals table to
create your signals message manually.

2-665

CAN Unpack

The number of output ports on your block depends on the
number of signals you specify. For example, if you specify four
signals, your block has four output ports.

• CANdb specified signals: Allows you to specify a CAN
database file that contains data signals. If you select this
option, select a CANdb file.

The number of output ports on your block depends on the
number of signals specified in the CANdb file. For example, if

2-666

CAN Unpack

the selected message in the CANdb file has four signals, your
block has four output ports.

CANdb file
This option is available if you specify that your data is input via a
CANdb file in the Data to be output as list. Click Browse to
find the CANdb file on your system. The messages and signal
definitions specified in the CANdb file populate the Message
section of the dialog box. The signals specified in the CANdb file
populate Signals table.

Note File names that contain non-alphanumeric characters
such as equal signs, ampersands, and so forth are not valid CAN
database file names. You can use periods in your database name.
Rename CAN database files with non-alphanumeric characters
before you use them.

Message list
This option is available if you specify that your data is to be
output as a CANdb file in the Data to be output as list and you
select a CANdb file in the CANdb file field. You can select the
message that you want to view. The Signals table then displays
the details of the selected message.

Message

Name
Specify a name for your CAN message. The default is CAN Msg.
This option is available if you choose to output raw data or
manually specify signals.

Identifier type
Specify whether your CAN message identifier is a Standard or an
Extended type. The default is Standard. A standard identifier
is an 11-bit identifier and an extended identifier is a 29-bit
identifier. This option is available if you choose to output raw

2-667

CAN Unpack

data or manually specify signals. For CANdb-specified signals,
the Identifier type inherits the type from the database.

Identifier
Specify your CAN message ID. This number must be a integer
from 0 through 2047 for a standard identifier and from 0 through
536870911 for an extended identifier. If you specify 1, the block
unpacks the messages that match the length specified for the
message. You can also specify hexadecimal values using the
hex2dec function. This option is available if you choose to output
raw data or manually specify signals.

Length (bytes)
Specify the length of your CAN message from 0 to 8 bytes. If you
are using CANdb specified signals for your output data, the
CANdb file defines the length of your message. If not, this field
defaults to 8. This option is available if you choose to output raw
data or manually specify signals.

Signals Table

This table appears if you choose to specify signals manually or define
signals using a CANdb file.

If you are using a CANdb file, the data in the file populates this table
automatically and you cannot edit the fields. To edit signal information,
switch to manually specified signals.

If you have selected to specify signals manually, create your signals
manually in this table. Each signal you create has the following values:

Name
Specify a descriptive name for your signal. The Simulink block
in your model displays this name. The default is Signal [row
number].

Start bit
Specify the start bit of the data. The start bit is the least
significant bit counted from the start of the message. The start
bit must be an integer from 0 through 63.

2-668

CAN Unpack

Length (bits)
Specify the number of bits the signal occupies in the message. The
length must be an integer from 1 through 64.

Byte order
Select either of the following options:

• LE: Where the byte order is in little-endian format (Intel). In
this format you count bits from the start, which is the least
significant bit, to the most significant bit, which has the
highest bit index. For example, if you pack one byte of data in
little-endian format, with the start bit at 20, the data bit table
resembles this figure.

2-669

CAN Unpack

Little-Endian Byte Order Counted from the Least Significant Bit
to the Highest Address

• BE: Where the byte order is in big-endian format (Motorola). In
this format you count bits from the start, which is the least
significant bit, to the most significant bit. For example, if you
pack one byte of data in big-endian format, with the start bit at
20, the data bit table resembles this figure.

2-670

CAN Unpack

Big-Endian Byte Order Counted from the Least Significant Bit
to the Lowest Address

Data type
Specify how the signal interprets the data in the allocated bits.
Choose from:

• signed (default)

• unsigned

• single

• double

2-671

CAN Unpack

Multiplex type
Specify how the block unpacks the signals from the CAN message
at each timestep:

• Standard: The signal is unpacked at each timestep.

• Multiplexor: The Multiplexor signal, or the mode signal is
unpacked. You can specify only one Multiplexor signal per
message.

• Multiplexed: The signal is unpacked if the value of the
Multiplexor signal (mode signal) at run time matches the
configured Multiplex value of this signal.

For example, a message has four signals with the following values.

Signal Name Multiplex Type Multiplex Value

Signal-A Standard N/A

Signal-B Multiplexed 1

Signal-C Multiplexed 0

Signal-D Multiplexor N/A

In this example:

• The block unpacks Signal-A (Standard signal) and Signal-D
(Multiplexor signal) in every timestep.

• If the value of Signal-D is 1 at a particular timestep, then the
block unpacks Signal-B along with Signal-A and Signal-D in
that timestep.

• If the value of Signal-D is 0 at a particular timestep, then the
block unpacks Signal-C along with Signal-A and Signal-D in
that timestep.

• If the value of Signal-D is not 1 or 0, the block does not unpack
either of the Multiplexed signals in that timestep.

2-672

CAN Unpack

Multiplex value
This option is available only if you have selected the Multiplex
type to be Multiplexed. The value you provide here must match
the Multiplexor signal value at run time for the block to unpack
the Multiplexed signal. TheMultiplex value must be a positive
integer or zero.

Factor
Specify the Factor value applied to convert the unpacked raw
value to the physical value (signal value). See “Conversion
Formula” on page 2-674 to understand how unpacked raw values
are converted to physical values.

Offset
Specify the Offset value applied to convert the physical value
(signal value) to the unpacked raw value. See “Conversion
Formula” on page 2-674 to understand how unpacked raw values
are converted to physical values.

Min
Specify the minimum raw value of the signal. The default value
is -inf (negative infinity). You can specify a number for the
minimum value. See “Conversion Formula” on page 2-674 to
understand how unpacked raw values are converted to physical
values.

Max
Specify the maximum raw value of the signal. The default value
is inf. You can specify a number for the maximum value. See
“Conversion Formula” on page 2-674 to understand how unpacked
raw values are converted to physical values.

Output Ports

Selecting an Output ports option adds an output port to your block.

Output identifier
Select this option to output a CAN message identifier. The data
type of this port is uint32.

2-673

CAN Unpack

Output remote
Select this option to output the message remote frame status.
This option adds a new output port to the block. The data type of
this port is uint8.

Output timestamp
Select this option to output the message time stamp. This option
adds a new output port to the block. The data type of this port
is double.

Output length
Select this option to output the length of the message in bytes.
This option adds a new output port to the block. The data type of
this port is uint8.

Output error
Select this option to output the message error status. This option
adds a new output port to the block. The data type of this port is
uint8.

Output status
Select this option to output the message received status. The
status is 1 if the block receives new message and 0 if it does not.
This option adds a new output port to the block. The data type of
this port is uint8.

If you do not select an Output ports option, the number of output ports
on your block depends on the number of signals you specify.

Conversion Formula

The conversion formula is

physical_value = raw_value * Factor + Offset

where raw_value is the unpacked signal value. physical_value is the
scaled signal value which is saturated using the specified Min and
Max values.

See Also CAN Pack

2-674

Custom MATLAB file

Purpose Automatically update active configuration parameters of parent model
using file containing custom MATLAB code

Library Configuration Wizards

Description
When you add a Custom MATLAB file block to your Simulink model and
double-click it, a custom MATLAB script executes and automatically
configures model parameters that are relevant to code generation. You
can also set a block option to invoke the build process after configuring
the model.

After double-clicking the block, you can verify that the model parameter
values have changed by opening the Configuration Parameters dialog
box and examining the settings.

MathWorks provides an example MATLAB script,
matlabroot/toolbox/rtw/rtw/rtwsampleconfig.m, that you
can use with the Custom MATLAB file block and adapt to your
model requirements. The block and the script provide a starting
point for customization. For more information, see “Create a Custom
Configuration Wizard Block” in the Embedded Coder documentation.

Note You can include more than one Configuration Wizard block in
your model. This provides a quick way to switch between configurations.

Parameters Configure the model for
Value selected from

• ERT (optimized for fixed-point)

• ERT (optimized for floating-point)

• GRT (optimized for fixed/floating-point)

2-675

Custom MATLAB file

• GRT (debug for fixed/floating-point)

• Custom

For this block, Custom is selected by default.

Configuration function
Name of the predefined or custom MATLAB script to be used
to update the active configuration parameters of the parent
Simulink model. The default value is rtwsampleconfig, which
refers to the example script rtwsampleconfig.m.

Invoke build process after configuration
If selected, the script initiates the code generation and build
process after updating the model’s configuration parameters. If
not selected (the default), the build process is not initiated.

See Also ERT (optimized for fixed-point), ERT (optimized for floating-point), GRT
(debug for fixed/floating-point), GRT (optimized for fixed/floating-point)

“Wizard” in the Embedded Coder documentation

2-676

Data Object Wizard

Purpose Simulink data object wizard for creating potential Simulink data objects

Library Module Packaging

Description
When you add a Data Object Wizard block to your Simulink model and
double-click it, the Data Object Wizard is launched:

2-677

Data Object Wizard

The Data Object Wizard allows you to determine quickly which model
data is not associated with Simulink data objects and to create and
associate data objects with the data.

You can also launch the Data Object Wizard by entering
dataobjectwizard at the MATLAB command line or by selecting Code
> Data Objects > Data Object Wizard in your model.

2-678

Data Object Wizard

Example For an example of a model that incorporates the Data Object Wizard
block, see rtwdemo_mpf.

See Also “Create Data Objects with Data Object Wizard”

2-679

ERT (optimized for fixed-point)

Purpose Automatically update active configuration parameters of parent model
for ERT fixed-point code generation

Library Configuration Wizards

Description
When you add an ERT (optimized for fixed-point) block to your Simulink
model and double-click it, a predefined MATLAB script executes and
automatically configures the model parameters optimally for fixed-point
code generation with the ERT target. You can also set a block option to
invoke the build process after configuring the model.

After double-clicking the block, you can verify that the model parameter
values have changed by opening the Configuration Parameters dialog
box and examining the settings.

Note You can include more than one Configuration Wizard block in
your model. This provides a quick way to switch between configurations.

Parameters Configure the model for
Value selected from

• ERT (optimized for fixed-point)

• ERT (optimized for floating-point)

• GRT (optimized for fixed/floating-point)

• GRT (debug for fixed/floating-point)

• Custom

For this block, ERT (optimized for fixed-point) is selected
by default.

2-680

ERT (optimized for fixed-point)

Configuration function
Grayed out unless Configure the model for is set to Custom.
This parameter is used with the Custom MATLAB file block.

Invoke build process after configuration
If selected, the script initiates the code generation and build
process after updating the model’s configuration parameters. If
not selected (the default), the build process is not initiated.

See Also Custom MATLAB file, ERT (optimized for floating-point), GRT (debug
for fixed/floating-point), GRT (optimized for fixed/floating-point)

“Wizard” in the Embedded Coder documentation

2-681

ERT (optimized for floating-point)

Purpose Automatically update active configuration parameters of parent model
for ERT floating-point code generation

Library Configuration Wizards

Description
When you add an ERT (optimized for floating-point) block to your
Simulink model and double-click it, a predefined MATLAB script
executes and automatically configures the model parameters optimally
for floating-point code generation with the ERT target. You can also set
a block option to invoke the build process after configuring the model.

After double-clicking the block, you can verify that the model parameter
values have changed by opening the Configuration Parameters dialog
box and examining the settings.

Note You can include more than one Configuration Wizard block in
your model. This provides a quick way to switch between configurations.

Parameters Configure the model for
Value selected from

• ERT (optimized for fixed-point)

• ERT (optimized for floating-point)

• GRT (optimized for fixed/floating-point)

• GRT (debug for fixed/floating-point)

• Custom

For this block, ERT (optimized for floating-point) is
selected by default.

2-682

ERT (optimized for floating-point)

Configuration function
Grayed out unless Configure the model for is set to Custom.
This parameter is used with the Custom MATLAB file block.

Invoke build process after configuration
If selected, the script initiates the code generation and build
process after updating the model’s configuration parameters. If
not selected (the default), the build process is not initiated.

See Also Custom MATLAB file, ERT (optimized for fixed-point), GRT (debug for
fixed/floating-point), GRT (optimized for fixed/floating-point)

“Wizard” in the Embedded Coder documentation

2-683

GRT (debug for fixed/floating-point)

Purpose Automatically update active configuration parameters of parent model
for GRT fixed- or floating-point code generation with debugging enabled

Library Configuration Wizards

Description
When you add a GRT (debug for fixed/floating-point) block to your
Simulink model and double-click it, a predefined MATLAB script
executes and automatically configures the model parameters optimally
for fixed/floating-point code generation, with TLC debugging options
enabled, with the GRT target. You can also set a block option to invoke
the build process after configuring the model.

After double-clicking the block, you can verify that the model parameter
values have changed by opening the Configuration Parameters dialog
box and examining the settings.

Note You can include more than one Configuration Wizard block in
your model. This provides a quick way to switch between configurations.

Parameters Configure the model for
Value selected from

• ERT (optimized for fixed-point)

• ERT (optimized for floating-point)

• GRT (optimized for fixed/floating-point)

• GRT (debug for fixed/floating-point)

• Custom

For this block, GRT (debug for fixed/floating-point) is
selected by default.

2-684

GRT (debug for fixed/floating-point)

Configuration function
Grayed out unless Configure the model for is set to Custom.
This parameter is used with the Custom MATLAB file block.

Invoke build process after configuration
If selected, the script initiates the code generation and build
process after updating the model’s configuration parameters. If
not selected (the default), the build process is not initiated.

See Also Custom MATLAB file, ERT (optimized for fixed-point), ERT (optimized
for floating-point), GRT (optimized for fixed/floating-point)

“Wizard” in the Embedded Coder documentation

2-685

GRT (optimized for fixed/floating-point)

Purpose Automatically update active configuration parameters of parent model
for GRT fixed- or floating-point code generation

Library Configuration Wizards

Description
When you add a GRT (optimized for fixed/floating-point) block to your
Simulink model and double-click it, a predefined MATLAB script
executes and automatically configures the model parameters optimally
for fixed/floating-point code generation with the GRT target. You can
also set a block option to invoke the build process after configuring
the model.

After double-clicking the block, you can verify that the model parameter
values have changed by opening the Configuration Parameters dialog
box and examining the settings.

Note You can include more than one Configuration Wizard block in
your model. This provides a quick way to switch between configurations.

Parameters Configure the model for
Value selected from

• ERT (optimized for fixed-point)

• ERT (optimized for floating-point)

• GRT (optimized for fixed/floating-point)

• GRT (debug for fixed/floating-point)

• Custom

For this block, GRT (optimized for fixed/floating-point) is
selected by default.

2-686

GRT (optimized for fixed/floating-point)

Configuration function
Grayed out unless Configure the model for is set to Custom.
This parameter is used with the Custom MATLAB file block.

Invoke build process after configuration
If selected, the script initiates the code generation and build
process after updating the model’s configuration parameters. If
not selected (the default), the build process is not initiated.

See Also Custom MATLAB file, ERT (optimized for fixed-point), ERT (optimized
for floating-point), GRT (debug for fixed/floating-point)

“Wizard” in the Embedded Coder documentation

2-687

Host SCI Receive

Purpose Configure host-side serial communications interface to receive data
from serial port

Library Embedded Coder/ Embedded Targets/ Host Communication

Description
Specify the configuration of data being received from the target by
this block.

The data package being received is limited to 16 bytes of ASCII
characters, including package headers and terminators. Calculate
the size of a package by including the package header, or terminator,
or both, and the data size.

Acceptable data types are single, int8, uint8, int16, uint16, int32,
or uint32. The number of bytes in each data type is listed in the
following table:

Data Type Byte Count

single 4 bytes

int8 and uint8 1 byte

int16 and uint16 2 bytes

int32 anduint32 4 bytes

For example, if your data package has package header ’S’ (1 byte) and
package terminator ’E’ (1 byte), that leaves 14 bytes for the actual data.
If your data is of type int8, there is room in the data package for 14
int8s. If your data is of type uint16, there is room in the data package
for 7 uint16s. If your data is of type int32, there is room in the data
package for only 3 int32s, with 2 bytes left over. Even though you
could fit two int8s or one uint16 in the remaining space, you may not,
because you cannot mix data types in the same package.

2-688

Host SCI Receive

The number of data types that can fit into a data package determine
the data length (see Data length in the Dialog Box description). In the
example just given, the 14 for data type int8 and the 7 for data type
uint16 are the data lengths for each data package, respectively. When
the data length exceeds 16 bytes, unexpected behavior, including run
time errors, may result.

Dialog
Box

Port name
You may configure up to four COM ports (COM1 through COM4)
for up to four host-side SCI Receive blocks.

2-689

Host SCI Receive

Additional package header
This field specifies the data located at the front of the received
data package, which is not part of the data being received, and
generally indicates start of data. The additional package header
must be an ASCII value. You can use a string or number (0–255).
You must put single quotes around strings entered in this field,
but the quotes are not received nor are they included in the total
byte count.

Note Match additional package headers or terminators with
those specified in the target SCI transmit block.

Additional package terminator
This field specifies the data located at the end of the received
data package, which is not part of the data being received,
and generally indicates end of data. The additional package
terminator must be an ASCII value. You can use astring or
number (0–255). You must put single quotes around strings
entered in this field, but the quotes are not received nor are they
included in the total byte count.

Data type
Choice of single, int8, uint8, int16, uint16, int32, or uint32.

The input port of the SCI Transmit block accepts only one of these
values. Which value it accepts is inherited from the data type
from the input (the data length is also inherited from the input).
Data must consist of only one data type; you cannot mix types.

Data length
How many of Data type the block receives (not bytes). Anything
more than 1 is a vector. The data length is inherited from the
input (the data length input to the SCI Transmit block).

2-690

Host SCI Receive

Initial output
Default value from the SCI Receive block. This value is used,
for example, if a connection time-out occurs and the Action
taken when connection timeout field is set to “Output the last
received value”, but nothing yet has been received.

Action Taken when connection times out
Specify what to output if a connection time-out occurs. If “Output
the last received value” is selected, the block outputs the last
received value. If a value has not been received, the block outputs
the Initial output.

If you select Output custom value, use the Output value when
connection times out field to set the custom value.

Sample time
Determines how often the SCI Receive block is called (in seconds).
When you set this value to -1, the model inherits the sample
time value of the model. To execute this block asynchronously,
set Sample Time to -1, and refer to “” for a discussion of block
placement and other settings.

Output receiving status
Selecting this checkbox creates a Status block output that
provides the status of the transaction.

The error status may be one of the following values:

• 0: No errors

• 1: A time-out occurred while the block was waiting to receive
data

• 2: There is an error in the received data (checksum error)

• 3: SCI parity error flag — Occurs when a character is received
with a mismatch

• 4: SCI framing error flag — Occurs when an expected stop bit
is not found

2-691

Host SCI Receive

See Also “SCI_A, SCI_B, SCI_C” on page 3-195

2-692

Host SCI Setup

Purpose Configure COM ports for host-side SCI Transmit and Receive blocks

Library Embedded Coder/ Embedded Targets/ Host Communication

Description
Standardize COM port settings for use by the host-side SCI Transmit
and Receive blocks. Setting COM port configurations globally with
the SCI Setup block avoids conflicts (e.g., the host-side SCI Transmit
block cannot use COM1 with settings different than those the COM1
used by the host-side SCI Receive block) and requires that you set
configurations only once for each COM port. The SCI Setup block is
a stand alone block.

2-693

Host SCI Setup

Dialog
Box

Communication Mode
Raw data or protocol. Raw data is unformatted and sent whenever
the transmitting side is ready to send, whether the receiving side
is ready or not. Without a wait state, deadlocks do not occur. Data
transmission is asynchronous. With this mode, it is possible the
receiving side could miss data, but if the data is noncritical, using
raw data mode can avoid blocking processes.

If you specify protocol mode, some handshaking between host
and target occurs. The transmitting side sends $SND indicating
that it is ready to transmit. The receiving side sends back $RDY
indicating that it is ready to receive. The transmitting side then
sends data and, when the transmission is completed, it sends a
checksum.

Advantages to using protocol mode include

• Data is received as expected (checksum)

• Data is received by target

2-694

Host SCI Setup

• Time consistency; each side waits for its turn to send or receive

Note Deadlocks can occur if one SCI Transmit block is trying to
communicate with more than one SCI Receive block on different
COM ports when both are blocking (using protocol mode).
Deadlocks cannot occur on the same COM port.

Baud rate
Choose from 110, 300, 1200, 2400, 4800, 9600, 19200, 38400,
57600, or 115200.

Number of stop bits
Select 1 or 2.

Parity mode
Select none, odd, or even.

Timeout
Enter values greater than or equal to 0, in seconds. When the
COM port involved is using protocol mode, this value indicates
how long the transmitting side waits for an acknowledgement
from the receiving side or how long the receiving side waits for
data. The system displays a warning message if the time-out
is exceeded, every n number of seconds, n being the value in
Timeout.

Note Simulink suspends processing for the length of the
time-out. During that time you cannot perform actions in
Simulink. If the time-out is set for a long period of time, it may
appear that Simulink has frozen.

See Also “SCI_A, SCI_B, SCI_C” on page 3-195

2-695

Host SCI Transmit

Purpose Configure host-side serial communications interface to transmit data to
serial port

Library Embedded Coder/ Embedded Targets/ Host Communication

Description
Specify the configuration of data being transmitted to the target from
this block.

The data package being sent is limited to 16 bytes of ASCII characters,
including package headers and terminators. Calculate the size of a
package by figuring in package header, or terminator, or both, and
the data size.

Acceptable data types are single, int8, uint8, int16, uint16, int32,
or uint32. The byte size of each data type is as follows:

Data Type Byte Count

single 4 bytes

int8 & uint8 1 byte

int16 & uint16 2 bytes

int32 & uint32 4 bytes

For example, if your data package has package header “S” (1 byte) and
package terminator “E” (1 byte), that leaves 14 bytes for the actual data.
If your data is of type int8, there is room in the data package for 14
int8s. If your data is of type uint16, there is room in the data package
for only 7 uint16s. If your data is of type int32, there is room in the
data package for only 3 int32s, with 2 bytes left over. Even though you
could fit two int8s or one uint16 in the remaining space, you may not,
because you cannot mix data types in the same package.

2-696

Host SCI Transmit

The number of data types that can fit into a data package determine
the data length (see Data length in the Dialog Box description). In
the example just given, the 14 for data type int8 and the 7 for data
type uint16 are the data lengths for each data package, respectively.
When the data length exceeds 16 bytes, unexpected behavior, including
run time errors, may result.

Dialog
Box

Port name
You may configure up to four COM ports (COM1 through COM4)
for up to four host-side SCI Transmit blocks.

Additional package header
This field specifies the data located at the front of the transmitted
data package, which is not part of the data being transmitted, and
generally indicates start of data. The additional package header
must be an ASCII value. You can use astring or number (0–255).
You must put single quotes around strings entered in this field,
but the quotes are not sent nor are they included in the total byte
count.

2-697

Host SCI Transmit

Note Match additional package headers or terminators with
those specified in the target SCI receive block.

Additional package terminator
This field specifies the data located at the end of the transmitted
data package, which is not part of the data being sent, and
generally indicates end of data. The additional package
terminator must be an ASCII value. You can use astring or
number (0–255). You must put single quotes around strings
entered in this field, but the quotes are not transmitted nor are
they included in the total byte count.

See Also “SCI_A, SCI_B, SCI_C” on page 3-195

2-698

Idle Task

Purpose Create free-running task

Library Embedded Coder/ Embedded Targets/ Processors/ Analog Devices
Blackfin/ Scheduling

Embedded Coder/ Embedded Targets/ Processors/ Analog Devices
SHARC/ Scheduling

Embedded Coder/ Embedded Targets/ Processors/ Analog Devices
TigerSHARC/ Scheduling

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ Scheduling

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C5000/ Scheduling

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Scheduling

Embedded Coder Support Package for Green Hills MULTI IDE/ Analog
Devices Blackfin/ Scheduling

Embedded Coder Support Package for Green Hills MULTI IDE/
Freescale MPC55xx MPC74xx/ Scheduling

Description
The Idle Task block, and the subsystem connected to it, specify one or
more functions to execute as background tasks. The tasks executed
through the Idle Task block are of the lowest priority, lower than that of
the base rate task.

This block is not supported on targets running an operating system or
RTOS.

2-699

Idle Task

Vectorized Output

The block output comprises a set of vectors—the task numbers vector
and the preemption flag or flags vector. A preemption-flag vector must
be the same length as the number of tasks vector unless the preemption
flag vector has only one element. The value of the preemption flag
determines whether a given interrupt (and task) is preemptible.
Preemption overrides prioritization. A lower-priority nonpreemptible
task can preempt a higher-priority preemptible task.

When the preemption flag vector has one element, that element value
applies to the functions in the downstream subsystem as defined by the
task numbers in the task number vector. If the preemption flag vector
has the same number of elements as the task number vector, each task
defined in the task number vector has a preemption status defined by
the value of the corresponding element in the preemption flag vector.

Dialog
Box

Task numbers
Identifies the created tasks by number. Enter as many tasks as
you need by entering a vector of integers. The default values
are [1,2] to indicate that the downstream subsystem has two
functions.

2-700

Idle Task

The values you enter determine the execution order of the
functions in the downstream subsystem, while the number of
values you enter corresponds to the number of functions in the
downstream subsystem.

Enter a vector containing the same number of elements as the
number of functions in the downstream subsystem. This vector
can contain up to 16 elements, and the values must be from 0
to 15 inclusive.

The value of the first element in the vector determines the order
in which the first function in the subsystem is executed, the value
of the second element determines the order in which the second
function in the subsystem is executed, and so on.

For example, entering [2,3,1] in this field indicates that there
are three functions to be executed, and that the third function is
executed first, the first function is executed second, and the second
function is executed third. After the functions are executed,
the Idle Task block cycles back and repeats the execution of the
functions in the same order.

Preemption flags
Higher-priority interrupts can preempt interrupts that have lower
priority. To allow you to control preemption, use the preemption
flags to specify whether an interrupt can be preempted.

Entering 1 indicates that the interrupt can be preempted.
Entering 0 indicates the interrupt cannot be preempted. When
Task numbers contains more than one task, you can assign
different preemption flags to each task by entering a vector of flag
values, corresponding to the order of the tasks in Task numbers.
If Task numbers contains more than one task, and you enter
only one flag value here, that status applies to the tasks.

2-701

Idle Task

In the default settings [0 1], the task with priority 1 in Task
numbers is not preemptible, and the priority 2 task can be
preempted.

Enable simulation input
When you select this option, Simulink software adds an input
port to the Idle Task block. This port is used in simulation
only. Connect one or more simulated interrupt sources to the
simulation input.

Note Select this check box to test asynchronous interrupt processing
behavior in Simulink software.

2-702

Invoke AUTOSAR Server Operation

Purpose Configure AUTOSAR client port to access Basic Software or application
software components

Library Embedded Coder/ AUTOSAR

Description
Use this block to configure an AUTOSAR client port for your Simulink
model, which provides access to Basic Software or application software
components:

1 Copy or drag this block from the AUTOSAR library into your model.

2 Double-click the block to open the Invoke AUTOSAR Server
Operation dialog box.

3 Specify the parameters and clickOK. This action updates the number
of inports and outports to match the operation prototype.

4 Connect this block to other blocks in your model as required.

5 Save and build the model to generate AUTOSAR-compliant code
and XML files.

Note If you run a SIL simulation with a model that contains an Invoke
AUTOSAR Server block, the software sets the return arguments from
the block to ground values.

Simulink does not support pointer data types. If you want to pass a
NULL pointer as an input argument to your operation:

2-703

Invoke AUTOSAR Server Operation

1 Specify the data type of the argument as uint8.

2 Connect a constant signal with data type uint8 and value 0 to the
corresponding input port of the block.

3 Check that your client-server interface XML file specifies the
argument as an array with data type uint8.

Parameters Client port name
Must be a valid AUTOSAR short-name identifier.

Operation prototype
Controls the type and number of inports and outports of the block,
and must be of the form:

operation(prt1 datatype1 arg1, prt2 datatype2 arg2, ...
prtN datatypeN argN, ...)

• operation — Name of the operation

• prtN. Either IN or OUT, which indicates whether data passes
into or out of the function.

• datatypeN — A string indicating data type, which can be an
AUTOSAR basic data type or record, Simulink data type, or
array.

• argN — Name of the argument

Interface path
The reference path for the client-server interface XML file that
you provide.

Server type
You select the value from:

• Application software — For communication with an
application software component.

• Basic software— For communication with AUTOSAR Basic
Software.

2-704

Invoke AUTOSAR Server Operation

For this block, Application software is the default.

Show error status
If you select this, client port receives error status of client-server
communication.

Sample time (-1 for inherited)
To inherit the sample time, set this parameter to -1.

See Also Mode Switch for Invoke AUTOSAR Server Operation

“Configure Client-Server Communication”,
rtwdemo_autosar_clientserver_script, and
rtwdemo_autosar_PIM_script in the Embedded Coder documentation

2-705

Linux Audio Capture

Purpose Capture ALSA audio from sound card and output data

Library Embedded Coder/ Embedded Targets/ Operating Systems/ Embedded
Linux

Simulink Coder/ Desktop Targets/ Operating Systems/ Linux

Description
This block uses the ALSA driver framework to capture an audio stream
from a sound card. It outputs the left and right channels of the signal as
an [Nx2] frame of int16 values. N is the number of samples per frame.

2-706

Linux Audio Capture

Dialog

Device
Use the default ALSA device, or enter the name of a specific audio
output device.

Entering 'default' selects the ALSA device specified by an
ALSA configuration file on your target Linux system.

One of the following ALSA configuration files defines the default
device:

• /etc/asound.conf, which defines system-wide options for all
users

2-707

Linux Audio Capture

• ~/.asoundrc, which overrides /etc/asound.conf for the
current user

The entry that specifies the default device looks similar to this
example:

pcm.!default {
type hw
card 0
device 2

}

To enter the name of an alternate audio input device, review
the /proc/asound/cards file on your target Linux system. For
example, if /proc/asound/cards contained the following entries,
you could set the value of Device to 'AudioPCI' :

$ cat /proc/asound/cards

0 [Dummy]: Dummy - Dummy
Dummy 1

1 [VirMIDI]: VirMIDI - VirMIDI
Virtual MIDI Card 1

2 [AudioPCI]: ENS1371 - Ensoniq AudioPCI
Ensoniq AudioPCI ENS1371 at 0xe400, irq 11

The default value for Device is 'default'.

Sample rate (Hz)
Enter a value that matches the sample rate of the ALSA audio
output.

By default, the sample rate of the ALSA output equals the output
of the audio capture device. In this case, enter the sample rate of
the audio capture device.

2-708

Linux Audio Capture

The /etc/asound.conf and ~/.asoundrc files can configure
ALSA to downsample the signal from the audio capture device. In
this case, enter the downsample rate specified by the configuration
files. For example, if one of the configuration files contained the
following entry, you would set the value of Sample rate (Hz)
to 16000 :

pcm_slave.sl3 {
pcm ens1371
format S16_LE
channels 1
rate 16000

}
pcm.complex_convert {

type plug
slave sl3

}

The default value for Sample rate (Hz) is 44100 Hz (44.1 kHz).
The maximum rate equals the sampling rate of the audio capture
device.

Queue duration (seconds)
Set the duration of the queue in seconds. This queue provides a
software-based frame buffer between the ALSA output and the
Linux Audio Capture block. The queue prevents dropped data
caused by temporary mismatches in the rate of data arriving and
leaving the queue. Higher values can handle more significant
mismatches, but such values also increase signal latency and
memory usage.

The default value for Queue duration (seconds) is 0.5 seconds.

Frame size (samples)
Set the number of samples per frame in the output this block
sends to your model. The default value for this parameter is
4096 samples.

2-709

Linux Audio Capture

References http://www.alsa-project.org

See Also http://www.alsa-project.org

Linux Audio Playback

Linux Task

2-710

http://www.alsa-project.org
http://www.alsa-project.org

Linux Audio Playback

Purpose Send audio data stream to ALSA audio device output

Library Embedded Coder/ Embedded Targets/ Operating Systems/ Embedded
Linux (linuxlib)

Simulink Coder/ Desktop Targets/ Operating Systems/ Linux

Description
This block takes a stream of audio data and sends it to the output jack
of an ALSA audio device. The block input, In, takes the left and right
channels of data as an [Nx2] frame of int16 values. N is the number of
samples per frame.

2-711

Linux Audio Playback

Dialog

Device
Use the default ALSA device, or enter the name of a specific audio
device.

Entering 'default' selects the ALSA device specified by an
ALSA configuration file on your target Linux system.

One of the following ALSA configuration files defines the default
device:

• /etc/asound.conf, which defines system-wide options for all
users

• ~/.asoundrc, which overrides /etc/asound.conf for the
current user

2-712

Linux Audio Playback

The entry that specifies the default device looks like this
hypothetical example:

pcm.!default {
type hw
card 0
device 2

}

To enter the name of an alternate audio device, consult the
/proc/asound/cards file on your target Linux system. For
example, if /proc/asound/cards contained the following
hypothetical entries, you could set the value of Device to
'AudioPCI' :

$ cat /proc/asound/cards

0 [Dummy]: Dummy - Dummy
Dummy 1

1 [VirMIDI]: VirMIDI - VirMIDI
Virtual MIDI Card 1

2 [AudioPCI]: ENS1371 - Ensoniq AudioPCI
Ensoniq AudioPCI ENS1371 at 0xe400, irq 11

The default value for Device is 'default'.

Sample rate (Hz)
Enter a value that matches the sample rate of the ALSA audio
output.

By default, the sample rate of the ALSA output is the same as the
output of the audio capture device. In this case, enter the sample
rate of the audio capture device.

The /etc/asound.conf and ~/.asoundrc files can configure
ALSA to downsample the signal from the audio capture device. In

2-713

Linux Audio Playback

this case, enter the downsample rate specified by the configuration
files. For example, if one of the configuration files contained the
following hypothetical entry, you would set the value of Sample
rate (Hz) to 16000 :

pcm_slave.sl3 {
pcm ens1371
format S16_LE
channels 1
rate 16000

}
pcm.complex_convert {

type plug
slave sl3

}

The default value for Sample rate (Hz) is 44100 Hz (44.1 kHz).
The maximum rate is the sampling rate of the audio capture
device.

Queue duration (seconds)
Set the duration of the queue in seconds. This queue provides a
software-based frame buffer between the ALSA audio device and
this block. The queue prevents dropped data caused by temporary
mismatches in the rate of data arriving and leaving the queue.
Higher values can handle more significant mismatches, but
increase signal latency and memory usage.

The default value for Queue duration (seconds) is 0.5 seconds.

See Also http://www.alsa-project.org

Linux Audio Capture

Linux Task

2-714

http://www.alsa-project.org

Linux Task

Purpose Spawn task function as separate Linux thread

Library Embedded Coder/ Embedded Targets/ Operating Systems/ Embedded
Linux

Simulink Coder/ Desktop Targets/ Operating Systems/ Linux

Description
Use this block to create a task function that spawns as a separate Linux
thread. The task function runs the code of the downstream function-call
subsystem. For example:

In order to use this block, set the System target file parameter to
idelink_ert.tlc or idelink_ert.tlc. The System target file
parameter is located on the Code Generation pane of the Model
Configuration Parameters dialog, which you can view by selecting your
model and pressing Ctrl+E.

2-715

Linux Task

Dialog

Task name
Assign a name to this task. You can enter up to 32 letters and
numbers. Do not use standard C reserved characters, such as the
/ and : characters.

Thread scheduling policy
Select the scheduling policy that applies to this thread. You can
choose from the following options:

• SCHED_FIFO enables a First In, First Out scheduling algorithm
that executes real-time processes without time slicing.
With FIFO scheduling, a higher-priority process preempts a
lower-priority process. The lower-priority process remains at
the top of the list for its priority and resumes execution when
the scheduler blocks all higher-priority processes.

For example, in the following image, task2 preempts task1.
Then task3 preempts task2. When task3 completes, task2
resumes. When task2 completes, task1 resumes.

2-716

Linux Task

Selecting SCHED_FIFO, displays the Thread priority
parameter, which you can set to a value from 1 to 99.

• SCHED_OTHER enables the default Linux time-sharing
scheduling algorithm. You can use this scheduling for
all processes except those requiring special static priority
real-time mechanisms. With this algorithm, the scheduler
chooses processes based on their dynamic priority within the
static priority 0 list. Each time the process is ready to run
and the scheduler denies it, the operating system increases
that process’s dynamic priority. Such prioritization helps the
scheduler serve the SCHED_OTHER processes.

Selecting SCHED_OTHER, hides the Thread priority parameter,
and sets the thread priority to 0.

Thread priority (1 to 99)
When you set Thread scheduling policy to SCHED_FIFO, you
can set the priority of the thread from 1 to 99 (low-to-high).

Higher-priority tasks can preempt lower-priority tasks.

See Also Linux Audio Capture

2-717

Linux Task

Linux Audio Playback

2-718

Memory Allocate

Purpose Allocate memory section

Library Embedded Coder/ Embedded Targets/ Processors/ Analog Devices
Blackfin/ Memory Operations

Embedded Coder/ Embedded Targets/ Processors/ Analog Devices
SHARC/ Memory Operations

Embedded Coder/ Embedded Targets/ Processors/ Analog Devices
TigerSHARC/ Memory Operations

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ Memory Operations

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C5000/ Memory Operations

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Memory Operations

Embedded Coder Support Package for Green Hills MULTI IDE/ Analog
Devices Blackfin/ Memory Operations

Embedded Coder Support Package for Green Hills MULTI IDE/
Freescale MPC55xx MPC74xx/ Memory Operations

Description
On C2xxx, C5xxx, or C6xxx processors, this block directs the TI compiler
to allocate memory for a new variable you specify. Parameters in the
block dialog box let you specify the variable name, the alignment of the
variable in memory, the data type of the variable, and other features
that fully define the memory required.

The block does not verify whether the entries for your variable are
valid, such as checking the variable name, data type, or section. You

2-719

Memory Allocate

must check that all variable names are valid, that they use valid data
types, and that all section names you specify are valid as well.

The block does not have input or output ports. It only allocates a
memory location. You do not connect it to other blocks in your model.

Note When using this block with Green Hills MULTI IDE and
Blackfin® processors, set the -no_discard_zero_initializers option.

Dialog
Box

The block dialog box comprises multiple tabs:

• Memory — Allocate the memory for storing variables. Specify the
data type and size.

• Section — Specify the memory section in which to allocate the
variable.

The dialog box images show all of the available parameters enabled.
Some of the parameters shown do not appear until you select one or
more other parameters.

2-720

Memory Allocate

The following sections describe the contents of each pane in the dialog
box.

2-721

Memory Allocate

Memory Parameters

You find the following memory parameters on this tab.

Variable name
Specify the name of the variable to allocate. The variable is
allocated in the generated code.

2-722

Memory Allocate

Specify variable alignment
Select this option to direct the compiler to align the variable in
Variable name to an alignment boundary. When you select this
option, theMemory alignment boundary parameter appears so
you can specify the alignment. Use this parameter and Memory
alignment boundary when your processor requires this feature.

Memory alignment boundary
After you select Specify variable alignment, this option enables
you to specify the alignment boundary in bytes. If your variable
contains more than one value, such as a vector or an array, the
elements are aligned according to rules applied by the compiler.

Data type
Defines the data type for the variable. Select from the list of types
available.

Specify data type qualifier
Selecting this enables Data type qualifier so you can specify the
qualifier to apply to your variable.

Data type qualifier
After you select Specify data type qualifier, you enter the
desired qualifier here. Volatile is the default qualifier. Enter
the qualifier you need as text. Common qualifiers are static and
register. The block does not check for valid qualifiers.

Data dimension
Specifies the number of elements of the type you specify in Data
type. Enter an integer here for the number of elements.

Initialize memory
Directs the block to initialize the memory location to a fixed value
before processing.

Initial value
Specifies the initialization value for the variable. At run time, the
block sets the memory location to this value.

2-723

Memory Allocate

Section Parameters

Parameters on this pane specify the section in memory to store the
variable.

Specify memory section
Selecting this parameter enables you to specify the memory
section to allocate space for the variable. Enter either one of the

2-724

Memory Allocate

standard memory sections or a custom section that you declare
elsewhere in your code.

Memory section
Identify a specific memory section to allocate the variable in
Variable name. Verify that the section has enough space to
store your variable. After you specify a memory section by
selecting Specify memory section and entering the section
name in Memory section, use Bind memory section to bind
the memory section to a location.

Bind memory section
After you specify a memory section by selecting Specify memory
section and entering the section name in Memory section,
use this parameter to bind the memory section to the location in
memory specified in Section start address. When you select
this, you enable the Section start address parameter.

The new memory section specified in Memory section is defined
when you check this parameter.

Note Do not use Bind memory section for existing memory
sections.

Section start address
Specify the address to which to bind the memory section. Enter
the address in decimal form or in hexadecimal with a conversion
to decimal as shown by the default value hex2dec('8000'). The
block does not verify the address—verify that the address exists
and can contain the memory section you entered in Memory
section.

See Also Memory Copy

2-725

Memory Copy

Purpose Copy to and from memory section

Library Embedded Coder/ Embedded Targets/ Processors/ Analog Devices
Blackfin/ Memory Operations

Embedded Coder/ Embedded Targets/ Processors/ Analog Devices
SHARC/ Memory Operations

Embedded Coder/ Embedded Targets/ Processors/ Analog Devices
TigerSHARC/ Memory Operations

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C2000/ Memory Operations

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C5000/ Memory Operations

Embedded Coder/ Embedded Targets/ Processors/ Texas Instruments
C6000/ Memory Operations

Embedded Coder Support Package for Green Hills MULTI IDE/ Analog
Devices Blackfin/ Memory Operations

Embedded Coder Support Package for Green Hills MULTI IDE/
Freescale MPC55xx MPC74xx/ Memory Operations

Description
In generated code, this block copies variables or data from and to
processor memory as configured by the block parameters. Your model
can contain as many of these blocks as you require to manipulate
memory on your processor.

Each block works with one variable, address, or set of addresses
provided to the block. Parameters for the block let you specify both
the source and destination for the memory copy, as well as options for
initializing the memory locations.

2-726

Memory Copy

Using parameters provided by the block, you can change options like
the memory stride and offset at run time. In addition, by selecting
various parameters in the block, you can write to memory at program
initialization, at program termination, and at every sample time. The
initialization process occurs once, rather than occurring for every read
and write operation.

With the custom source code options, the block enables you to add
custom ANSI C source code before and after each memory read and
write (copy) operation. You can use the custom code capability to lock
and unlock registers before and after accessing them. For example,
some processors have registers that you may need to unlock and
lock with EALLOW and EDIS macros before and after your program
accesses them.

If your processor or board supports quick direct memory access (QDMA)
the block provides a parameter to check that implements the QDMA
copy operation, and enables you to specify a function call that can
indicate that the QDMA copy is finished. Only the C621x, C64xx, and
C671x processor families support QDMA copy.

Note Replace Read from Memory and Write To Memory blocks, which
were removed in a previous release, with the Memory Copy block.

Block Operations

This block performs operations at three periods during program
execution—initialization, real-time operations, and termination. With
the options for setting memory initialization and termination, you
control when and how the block initializes memory, copies to and
from memory, and terminates memory operations. The parameters
enable you to turn on and off memory operations in the three periods
independently.

Used in combination with the Memory Allocate block, this block
supports building custom device drivers, such as PCI bus drivers or
codec-style drivers, by letting you manipulate and allocate memory.

2-727

Memory Copy

This block does not require the Memory Allocate block to be in the
model.

In a simulation, this block does not perform an operation. The block
output is not defined.

Copy Memory

When you employ this block to copy an individual data element from
the source to the destination, the block copies the element from the
source in the source data type, and then casts the data element to the
destination data type as provided in the block parameters.

Dialog
Box

The block dialog box contains multiple tabs:

• Source — Identifies the sequential memory location to copy from.
Specify the data type, size, and other attributes of the source variable.

• Destination — Specify the memory location to copy the source to.
Here you also specify the attributes of the destination.

• Options— Select various parameters to control the copy process.

The dialog box images show many of the available parameters enabled.
Some parameters shown do not appear until you select one or more
other parameters. Some parameters are not shown in the figures, but
the text describes them and how to make them available.

2-728

Memory Copy

Sections that follow describe the parameters on each tab in the dialog
box.

2-729

Memory Copy

Source Parameters

Copy from
Select the source of the data to copy. Choose one of the entries
on the list:

• Input port— This source reads the data from the block input
port.

2-730

Memory Copy

• Specified address — This source reads the data at the
specified location in Specify address source and Address.

• Specified source code symbol — This source tells the
block to read the symbol (variable) you enter in Source code
symbol. When you select this copy from option, you enable the
Source code symbol parameter.

Note If you do not select Input port for Copy from, change
Data type from the default Inherit from source to one of
the data types on the Data type list. If you do not make the
change, you receive an error message that the data type cannot
be inherited because the input port does not exist.

Depending on the choice you make for Copy from, you see other
parameters that let you configure the source of the data to copy.

Specify address source
This parameter directs the block to get the address for the
variable either from an entry in Address or from the input port to
the block. Select either Specify via dialog or Input port from
the list. Selecting Specify via dialog activates the Address
parameter for you to enter the address for the variable.

When you select Input port, the port label on the block changes
to &src, indicating that the block expects the address to come
from the input port. Being able to change the address dynamically
lets you use the block to copy different variables by providing the
variable address from an upstream block in your model.

Source code symbol
Specify the symbol (variable) in the source code symbol table
to copy. The symbol table for your program must include this
symbol. The block does not verify that the symbol exists and uses
valid syntax. Enter a string to specify the symbol exactly as you
use it in your code.

2-731

Memory Copy

Address
When you select Specify via dialog for the address source, you
enter the variable address here. Addresses should be in decimal
form. Enter either the decimal address or the address as a
hexadecimal string with single quotations marks and use hex2dec
to convert the address to the expected format. The following
example converts Ox1000 to decimal form.

4096 = hex2dec('1000');

For this example, you could enter either 4096 or hex2dec('1000')
as the address.

Data type
Use this parameter to specify the type of data that your source
uses. The list includes the supported data types, such as int8,
uint32, and Boolean, and the option Inherit from source for
inheriting the data type from the block input port.

Data length
Specifies the number of elements to copy from the source location.
Each element has the data type specified in Data type.

Use offset when reading
When you are reading the input, use this parameter to specify
an offset for the input read. The offset value is in elements with
the assigned data type. The Specify offset source parameter
becomes available when you check this option.

Specify offset source
The block provides two sources for the offset — Input port and
Specify via dialog. Selecting Input port configures the block
input to read the offset value by adding an input port labeled
src ofs. This port enables your program to change the offset
dynamically during execution by providing the offset value as an
input to the block. If you select Specify via dialog, you enable
the Offset parameter in this dialog box so you can enter the offset
to use when reading the input data.

2-732

Memory Copy

Offset
Offset tells the block whether to copy the first element of the
data at the input address or value, or skip one or more values
before starting to copy the input to the destination. Offset defines
how many values to skip before copying the first value to the
destination. Offset equal to one is the default value and Offset
accepts only positive integers of one or greater.

Stride
Stride lets you specify the spacing for reading the input. By
default, the stride value is one, meaning the generated code reads
the input data sequentially. When you add a stride value that
is not equal to one, the block reads the input data elements not
sequentially, but by skipping spaces in the source address equal
to the stride. Stride must be a positive integer.

The next two figures help explain the stride concept. In the
first figure you see data copied without a stride. Following that
figure, the second figure shows a stride value of two applied
to reading the input when the block is copying the input to an
output location. You can specify a stride value for the output with
parameter Stride on the Destination pane. Compare stride with
offset to see the differences.

2-733

Memory Copy

2-734

Memory Copy

2-735

Memory Copy

Destination Parameters

Copy to
Select the destination for the data. Choose one of the entries on
the list:

• Output port— Copies the data to the block output port. From
the output port the block passes data to downstream blocks
in the code.

• Specified address— Copies the data to the specified location
in Specify address source and Address.

2-736

Memory Copy

• Specified source code symbol— Tells the block to copy the
variable or symbol (variable) to the symbol you enter in Source
code symbol. When you select this copy to option, you enable
the Source code symbol parameter.

Depending on the choice you make for Copy from, you see other
parameters that let you configure the source of the data to copy.

Specify address source
This parameter directs the block to get the address for the
variable either from an entry in Address or from the input port to
the block. Select either Specify via dialog or Input port from
the list. Selecting Specify via dialog activates the Address
parameter for you to enter the address for the variable.

When you select Input port, the port label on the block changes
to &dst, indicating that the block expects the destination address
to come from the input port. Being able to change the address
dynamically lets you use the block to copy different variables by
providing the variable address from an upstream block in your
model.

Source code symbol
Specify the symbol (variable) in the source code symbol table
to copy. The symbol table for your program must include this
symbol. The block does not verify that the symbol exists and
uses valid syntax.

Address
When you select Specify via dialog for the address source, you
enter the variable address here. Addresses should be in decimal
form. Enter either the decimal address or the address as a
hexadecimal string with single quotations marks and use hex2dec
to convert the address to the expected format. This example
converts Ox2000 to decimal form.

8192 = hex2dec('2000');

2-737

Memory Copy

For this example, you could enter either 8192 or hex2dec('2000')
as the address.

Data type
Use this parameter to specify the type of data that your variable
uses. The list includes the supported data types, such as int8,
uint32, and Boolean, and the option inherit from source for
inheriting the data type for the variable from the block input port.

Specify offset source
The block provides two sources for the offset—Input port and
Specify via dialog. Selecting Input port configures the block
input to read the offset value by adding an input port labeled
src ofs. This port enables your program to change the offset
dynamically during execution by providing the offset value as an
input to the block. If you select Specify via dialog, you enable
the Offset parameter in this dialog box so you can enter the offset
to use when writing the output data.

Offset
Offset tells the block whether to write the first element of the
data to be copied to the first destination address location, or skip
one or more locations at the destination before writing the output.
Offset defines how many values to skip in the destination before
writing the first value to the destination. One is the default offset
value and Offset accepts only positive integers of one or greater.

Stride
Stride lets you specify the spacing for copying the input to
the destination. By default, the stride value is one, meaning
the generated code writes the input data sequentially to the
destination in consecutive locations. When you add a stride value
not equal to one, the output data is stored not sequentially, but by
skipping addresses equal to the stride. Stride must be a positive
integer.

This figure shows a stride value of three applied to writing the
input to an output location. You can specify a stride value for the
input with parameter Stride on the Source pane. As shown in

2-738

Memory Copy

the figure, you can use both an input stride and output stride at
the same time to enable you to manipulate your memory more
fully.

Sample time
Sample time sets the rate at which the memory copy operation
occurs, in seconds. The default value Inf tells the block to use a
constant sample time. You can set Sample time to -1 to direct
the block to inherit the sample time from the input, or from the

2-739

Memory Copy

Simulink software model when there are no block inputs. Enter
the sample time in seconds as you need.

2-740

Memory Copy

Options Parameters

2-741

Memory Copy

Set memory value at initialization
When you check this option, you direct the block to initialize
the memory location to a specific value when you initialize your
program at run time. After you select this option, use the Set
memory value at termination and Specify initialization
value source parameters to set your desired value. Alternately,
you can tell the block to get the initial value from the block input.

Specify initialization value source
After you check Set memory value at initialization, use this
parameter to select the source of the initial value. Choose either

• Specify constant value — Sets a single value to use when
your program initializes memory.

• Specify source code symbol — Specifies a variable (a
symbol) to use for the initial value. Enter the symbol as a
string.

Initialization value (constant)
If you check Set memory value at initialization and choose
Specify constant value for Specify initialization value
source, enter the constant value to use in this field.

Initialization value (source code symbol)
If you check Set memory value at initialization and choose
Specify source code symbol for Specify initialization value
source, enter the symbol to use in this field. Use a valid symbol
from the symbol table for the program. When you enter the
symbol, the block does not verify whether the symbol is a valid
one. If it is not valid you get an error when you try to compile,
link, and run your generated code.

Apply initialization value as mask
You can use the initialization value as a mask to manipulate
register contents at the bit level. Your initialization value is
treated as a string of bits for the mask.

Checking this parameter enables the Bitwise operator
parameter for you to define how to apply the mask value.

2-742

Memory Copy

To use your initialization value as a mask, the output from the
copy has to be a specific address. It cannot be an output port,
but it can be a symbol.

Bitwise operator
To use the initialization value as a mask, select one of the entries
on the following table from the Bitwise operator list to describe
how to apply the value as a mask to the memory value.

Bitwise
Operator List
Entry Description

bitwise AND Apply the mask value as a bitwise AND to
the value in the register.

bitwise OR Apply the mask value as a bitwise OR to
the value in the register.

bitwise
exclusive OR

Apply the mask value as a bitwise exclusive
OR to the value in the register.

left shift Shift the bits in the register left by
the number of bits represented by the
initialization value. For example, if your
initialization value is 3, the block shifts the
register value to the left 3 bits. In this case,
the value must be a positive integer.

right shift Shift the bits in the register to the right
by the number of bits represented by the
initialization value. For example, if your
initialization value is 6, the block shifts the
register value to the right 6 bits. In this
case, the value must be a positive integer.

Applying a mask to the copy process lets you select individual
bits in the result, for example, to read the value of the fifth bit by
applying the mask.

2-743

Memory Copy

Set memory value at termination
Along with initializing memory when the program starts to access
this memory location, this parameter directs the program to set
memory to a specific value when the program terminates.

Set memory value only at initialization/termination
This block performs operations at three periods during program
execution—initialization, real-time operations, and termination.
When you check this option, the block only does the memory
initialization and termination processes. It does not perform
copies during real-time operations.

Insert custom code before memory write
Select this parameter to add custom ANSI C code before the
program writes to the specified memory location. When you select
this option, you enable the Custom code parameter where you
enter your ANSI C code.

Custom code
Enter the custom ANSI C code to insert into the generated code
just before the memory write operation. Code you enter in this
field appears in the generated code exactly as you enter it.

Insert custom code after memory write
Select this parameter to add custom ANSI C code immediately
after the program writes to the specified memory location. When
you select this option, you enable the Custom code parameter
where you enter your ANSI C code.

Custom code
Enter the custom ANSI C code to insert into the generated code
just after the memory write operation. Code you enter in this field
appears in the generated code exactly as you enter it.

Use QDMA for copy (if available)
For processors that support quick direct memory access (QDMA),
select this parameter to enable the QDMA operation and to access
the blocking mode parameter.

2-744

Memory Copy

If you select this parameter, your source and destination data
types must be the same or the copy operation returns an error.
Also, the input and output stride values must be one.

Enable blocking mode
If you select the Use QDMA for copy parameter, select this
option to make the memory copy operations blocking processes.
With blocking enabled, other processing in the program waits
while the memory copy operation finishes.

See Also Memory Allocate

2-745

MPC5500 Interrupt

Purpose Generate Interrupt Service Routine

Library Embedded Coder Support Package for Green Hills MULTI IDE/
Freescale MPC55xx MPC74xx/ Scheduling

Description
Create interrupt service routines (ISR) in the software generated by
the build process. When you incorporate this block in your model,
code generation results in ISRs on the processor that either run the
processes that are downstream from this block or trigger an Idle Task
block connected to this block. Core interrupts trigger the ISRs. System
interrupts trigger the core interrupts.

2-746

MPC5500 Interrupt

Dialog
Box

Core interrupt numbers
Specify a vector of interrupt numbers for the interrupts to
install. The block services these interrupts. When your model
or code raises one of these interrupts, either through hardware
or software, this block reacts to the interrupt and runs the
associated downstream block or function. The valid range or
interrupts depends on the processor. For example, MPC5553
processors support 212 interrupts. MPC5554 processors support
308 interrupts. Each interrupt in the row vector must be unique.
Interrupts that you do not specify in this parameter cause system
failures if your project raises them.

The width of the block output signal corresponds to the number
of interrupt numbers specified in this field. The values in this

2-747

MPC5500 Interrupt

field and the preemption flag entries in Preemption flags:
preemptible-1, non-preemptible-0 define how the code and
processor handle interrupts during asynchronous scheduler
operations.

System interrupt priorities (0–15, 15 being the highest priority)
Each output of the HW/SW Interrupt block drives a downstream
block (for example, a function call subsystem). Simulink task
priority specifies the Simulink priority of the downstream blocks.
Specify an array of priorities corresponding to the interrupt
numbers entered in Core interrupt numbers. In the default
settings shown in the figure, interrupts 3 and 5 have the same
priority value—7.

Code generation requires rate transition code (see Rate
Transitions and Asynchronous Blocks). The task priority
values make certain there is absolute time integrity when the
asynchronous task must obtain real time from its base rate or its
caller. Typically, assign priorities for these asynchronous tasks
that are higher than the priorities assigned to periodic tasks.

If multiple interrupts share the same priority and are asserted
simultaneously, the block selects the lowest numbered interrupt
first.

Preemption flags: preemptible – 1, non-preemptible – 0
Higher-priority interrupts can preempt interrupts that have lower
priority. To allow you to control preemption, use the preemption
flags to specify whether an interrupt can be preempted.

• Entering 1 indicates that the interrupt can be preempted.

• Entering 0 indicates the interrupt cannot be preempted.

You cannot set a task that has priority higher than the base rate
to be preemptable.

When Interrupt numbers contains more than one interrupt
value, you can assign different preemption flags to each interrupt

2-748

MPC5500 Interrupt

by entering a vector of flag values to correspond to the order of
the interrupts in Interrupt numbers. If Interrupt numbers
contains more than one interrupt, and you enter only one flag
value in this field, that status applies to the interrupts.

In the default settings [0 1], the interrupt with priority 5
in Interrupt numbers is not preemptible and the priority 8
interrupt can be preempted.

Software vector mode
Select this option to put the block and processor in software vector
mode. Enabling this option creates a common interrupt handler.
Clearing this option puts the processor in hardware vector mode.
Refer to the MULTI documentation for more information about
the modes.

Enable simulation input
When you select this option, Simulink adds an input port to
the HW/SW Interrupt block. This port is used in simulation
only. Connect one or more simulated interrupt sources to the
simulation input.

2-749

MPC7400 Hardware Interrupt

Purpose Generate Interrupt Service Routine

Library Embedded Coder Support Package for Green Hills MULTI IDE/
Freescale MPC55xx MPC74xx/ Scheduling

Description
The block creates ISRs for three processor interrupts—External,
Machine check and System reset. When you incorporate this block in
your model, code generation results in ISRs on the processor that run
the blocks downstream from this block. For more information about
these interrupts, refer to your MPC7400 documentation.

When you enable more than one interrupt on the block dialog box,
the block multiplexes the ISR outputs onto the output port on the
block. To resolve the different ISRs, connect the output port IRQ to
a Demux block. Connect the demultiplexed outputs to downstream
blocks or subsystems. Refer to Examples to see the multiple interrupt
configuration in a model.

2-750

MPC7400 Hardware Interrupt

Dialog
Box

External interrupt
Interrupt generated by an external system that asserts the intr
pin of the 7400 microprocessor.

Machine check interrupt
Enable the asynchronous, nonmaskable machine check exception
provided by the processor. The exception responds to the
conditions described in the MPC7400 documentation.

System reset interrupt
Enable the asynchronous, nonmaskable System interrupt
exception provided by the processor. The exception responds to
the conditions described in the MPC7400 documentation.

Enable simulation input
Select this option to have Simulink add an input port to the HW
Interrupt block. This port receives input only during simulation.
Connect one or more simulated interrupt sources to the input to
drive the model interrupt processing.

2-751

MPC7400 Hardware Interrupt

Example The following model shows the HW Interrupt block triggering a
subsystem. The interrupt block is configured to respond to external
interrupts.

Interrupt Driven
Subsystem

function ()Interrupt

IRQ

MPC 7400

Hw Interrupt

Here is the block mask.

When your peripherals assert the external interrupt pin on the
processor, the code generated by the HW Interrupt block during the

2-752

MPC7400 Hardware Interrupt

project build process accepts the interrupt and triggers the attached
subsystem through an ISR.

When you select more than one interrupt, connect the output of the
block to a Demux block to separate the ISRs, as shown in the following
model:

Demux

Machine Check Interrupt
Driven Subsystem

function ()
Interrupt

IRQ

MPC 7400

Hw Interrupt

External Interrupt
Driven Subsystem

function ()

Here is the block mask showing the external and Machine check
interrupts selected.

2-753

MPC7400 Hardware Interrupt

To test your interrupt configuration in simulation, select Enable
simulation input on the block dialog box and then input a signal to
the block to simulate the external interrupt.

See Also Idle Task, Memory Allocate, Memory Copy

2-754

Mode Switch for Invoke AUTOSAR Server Operation

Purpose Toggle AUTOSAR client-server operation subsystem blocks between
simulation and code generation mode

Library Embedded Coder/ AUTOSAR

Description
You can add this switch block to your Simulink model that contains
client-server subsystem blocks. Double-click the switch block to toggle
client-server blocks between simulation and code-generation mode.

Parameters Configure the model for
Value selected from

• code generation

• simulation

For this block, code generation is selected by default.

See Also Invoke AUTOSAR Server Operation

“Configure Client-Server Communication” in the Embedded Coder
documentation

2-755

SHARC Hardware Interrupt

Purpose Generate Interrupt Service Routine

Library
Embedded Coder/ Embedded Targets/ Processors/ Analog Devices
SHARC/ Scheduling

Description Create interrupt service routines (ISR) in the software generated by
the build process. When you incorporate this block in your model,
code generation results in ISRs on the processor that either run the
processes that are downstream from this block or trigger an Idle Task
block connected to this block.

2-756

SHARC Hardware Interrupt

Dialog
Box

Interrupt numbers
Specify an array of interrupt numbers for the interrupts to install.
The valid ranges are 8-36 and 38-40.

The width of the block output signal corresponds to the number
of interrupt numbers specified in this field. The values in this
field and the preemption flag entries in Preemption flags:
preemptible-1, non-preemptible-0 define how the code and
processor handle interrupts during asynchronous scheduler
operations.

Simulink task priorities
Each output of the Hardware Interrupt block drives a downstream
block (for example, a function call subsystem). Simulink model

2-757

SHARC Hardware Interrupt

task priority specifies the priority of the downstream blocks.
Specify an array of priorities corresponding to the interrupt
numbers entered in Interrupt numbers.

Code generation requires rate transition code (refer to Rate
Transitions and Asynchronous Blocks in the Simulink Coder
documentation). The task priority values facilitate absolute time
integrity when the asynchronous task must obtain real time from
its base rate or its caller. Typically, assign priorities for these
asynchronous tasks that are higher than the priorities assigned
to periodic tasks.

Preemption flags preemptible – 1, non-preemptible – 0
Higher-priority interrupts can preempt interrupts that have lower
priority. To allow you to control preemption, use the preemption
flags to specify whether an interrupt can be preempted.

• Entering 1 indicates that the interrupt can be preempted.

• Entering 0 indicates the interrupt cannot be preempted.

When Interrupt numbers contains more than one interrupt
value, you can assign different preemption flags to each interrupt
by entering a vector of flag values to correspond to the order of
the interrupts in Interrupt numbers. If Interrupt numbers
contains more than one interrupt, and you enter only one flag
value in this field, that status applies to all interrupts.

In the default settings [0 1], the interrupt with priority 18 in
Interrupt numbers is not preemptible and the priority 39
interrupt can be preempted.

Enable simulation input
When you select this option, Simulink software adds an input port
to the Hardware Interrupt block. This port is used in simulation
only. Connect one or more simulated interrupt sources to the
simulation input.

2-758

Target Preferences (Removed)

Purpose Configure model for specific IDE, tool chain, board, and processor

Library Simulink Coder/ Desktop Targets

Embedded Coder/ Embedded Targets

Description
The Target Preferences block has been removed from the Simulink
block libraries. The contents of the Target Preferences block have
been moved to the Target Hardware Resources tab, located in the
Configuration Parameters dialog. For more information, see:

• “Hardware configuration relocation from Target Preferences block to
Configuration Parameters dialog box”

• “Configure Target Hardware Resources”

• “Code Generation: Coder Target Pane” on page 3-115

2-759

TigerSHARC Hardware Interrupt

Purpose Generate Interrupt Service Routine

Library Embedded Coder/ Embedded Targets/ Processors/ Analog Devices
TigerSHARC/ Scheduling

Description
Create interrupt service routines (ISR) in the software generated by the
build process. When you incorporate this block in your model, code
generation results in ISRs on the processor that run the processes that
are downstream from the this block or an Idle Task block connected to
this block.

2-760

TigerSHARC Hardware Interrupt

Dialog
Box

Interrupt numbers
Specify an array of interrupt numbers for the interrupts to install.
The valid interrupts are 2, 3, 6-9, 14-17, 22-25, 29-32, 37, 38,
41-44, 52.

The width of the block output signal corresponds to the number
of interrupt numbers specified in this field. Combined with the
Simulink task priorities that you enter and the preemption
flag you enter for each interrupt, these three values define how
the code and processor handle interrupts during asynchronous
scheduler operations.

Simulink task priorities
Each output of the Hardware Interrupt block drives a downstream
block (for example, a function call subsystem). Simulink model
task priority specifies the priority of the downstream blocks.

2-761

TigerSHARC Hardware Interrupt

Specify an array of priorities corresponding to the interrupt
numbers entered in Interrupt numbers.

Simulink model task priority values are required to generate
rate transition code (refer to Rate Transitions and Asynchronous
Blocks in the Simulink Coder documentation). The task priority
values are also required for absolute time integrity when the
asynchronous task needs to obtain real time from its base rate or
its caller. Typically, you assign priorities for these asynchronous
tasks that are higher than the priorities assigned to periodic tasks.

Preemption flags preemptible – 1, non-preemptible – 0
Higher priority interrupts can preempt interrupts that have lower
priority. To allow you to control preemption, use the preemption
flags to specify whether an interrupt can be preempted.

Entering 1 indicates that the interrupt can be preempted.
Entering 0 indicates the interrupt cannot be preempted. When
Interrupt numbers contains more than one interrupt priority,
you can assign different preemption flags to each interrupt by
entering a vector of flag values, corresponding to the order of
the interrupts in Interrupt numbers. If Interrupt numbers
contains more than one interrupt, and you enter only one flag
value in this field, that status applies to all interrupts.

In the default settings [0 1], the interrupt with priority 15 in
Interrupt numbers is not preemptible and the priority 42
interrupt can be preempted.

Enable simulation input
When you select this option, Simulink software adds an input port
to the Hardware Interrupt block. This port is used in simulation
only. Connect one or more simulated interrupt sources to the
simulation input.

2-762

UDP Receive

Purpose Receive UDP packet

Library Embedded Coder/ Embedded Targets/ Host Communication

Embedded Coder/ Embedded Targets/ Operating Systems/ Embedded
Linux

Embedded Coder/ Embedded Targets/ Operating Systems/ VxWorks

Embedded Coder Support Package for Xilinx Zynq-7000 Platform

Simulink Coder/ Desktop Targets/ Host Communication

Windows (windowslib)

Note If your target system uses Linux or Windows, get the UDP block
from linuxlib or windowslib.

Description The UDP Receive block receives UDP packets from an IP network port
and saves them to its buffer. With each sample, the block output, emits
the contents of a single UDP packet as a data vector.

The generated code for this block relies on prebuilt .dll files. You can
run this code outside the MATLAB environment, or redeploy it, but be
sure to account for these extra .dll files when doing so. The packNGo
function creates a single zip file containing all of the pieces required to
run or rebuild this code. See packNGo for more information.

2-763

UDP Receive

Dialog

Local IP port
Specify the IP port number upon to receive UDP packets. This
value defaults to 25000. The value can range 1–65535.

2-764

UDP Receive

Note On Linux, to set the IP port number below 1024, run
MATLAB with root privileges. For example, at the Linux
command line, enter:

sudo matlab

Remote IP address ('0.0.0.0' to accept all)
Specify the IP address from which to accept packets. Entering a
specific IP address blocks UDP packets from other addresses. To
accept packets from any IP address, enter '0.0.0.0'. This value
defaults to '0.0.0.0'.

Receive buffer size (bytes)
Make the receive buffer large enough to avoid data loss caused by
buffer overflows. This value defaults to 8192.

Maximum length for Message
Specify the maximum length, in vector elements, of the data
output vector. Set this parameter to a value equal or greater than
the data size of a UDP packet. The system truncates data that
exceeds this length. This value defaults to 255.

If you disable Output variable-size signal, the block outputs
a fixed-length output the same length as the Maximum length
for Message.

Data type for Message
Set the data type of the vector elements in the Message output.
Match the data type with the data input used to create the UDP
packets. This option defaults to uint8.

Output variable-size signal
If your model supports signals of varying length, enable the
Output variable-size signal parameter. This checkbox defaults
to selected (enabled). In that case:

2-765

UDP Receive

• The output vector varies in length, depending on the amount of
data in the UDP packet.

• The block emits the data vector from a single unlabeled output.

If your model does not support signals of varying length, disable
the Output variable-size signal parameter. In that case:

• The block emits a fixed-length output the same length as the
Maximum length for Message.

• If the UDP packet contains less data than the fixed-length
output, the difference contains invalid data.

• The block emits the data vector from theMessage output.

• The block emits the length of the valid data from the Length
output.

• The block dialog box displays the Data type for Length
parameter.

In both cases, the block truncates data that exceeds the
Maximum length for Message.

Data type for Length
Set the data type of the Length output. This option defaults to
double.

Blocking time (seconds)
For each sample, wait this length of time for a UDP packet before
returning control to the scheduler. This value defaults to inf,
which indicates to wait indefinitely.

Note This parameter appears only in the Embedded Coder UDP
Receive block.

Sample time (seconds)
Specify how often the scheduler runs this block. Enter a value
greater than zero. In real-time operation, setting this option to a

2-766

UDP Receive

large value reduces the likelihood of dropped UDP messages. This
value defaults to a sample time of 0.01 s.

Output port width
Specify the width of packets the block accepts. When you design
the transmit end of the UDP communication channel, you decide
the packet width. Set this option to a value as large or larger than
a packet you expect to receive.

Note This parameter appears only in a deprecated version of the
UDP Receive block. Replace the deprecated UDP Receive block
with a current UDP Receive block.

UDP receive buffer size (bytes)
Specify the size of the buffer to which the system stores UDP
packets. The default size is 8192 bytes. Make the buffer large
enough to store UDP packets that come in while your process
reads a packet from the buffer or performs other tasks. Specifying
the buffer size prevents the receive buffer from overflowing.

Note This parameter appears only in a deprecated version of the
UDP Receive block. Replace the deprecated UDP Receive block
with a current UDP Receive block.

See Also Byte Pack, Byte Reversal, Byte Unpack, UDP Send

2-767

UDP Send

Purpose Send UDP message

Library Embedded Coder/ Embedded Targets/ Host Communication

Embedded Coder/ Embedded Targets/ Operating Systems/ Embedded
Linux

Embedded Coder/ Embedded Targets/ Operating Systems/ VxWorks

Simulink Coder/ Desktop Targets/ Host Communication

Windows (windowslib)

Note If your target system uses Linux or Windows, get the UDP block
from linuxlib or windowslib.

Description
The UDP Send block transmits an input vector as a UDP message over
an IP network port.

The generated code for this block relies on prebuilt .dll files. You can
run this code outside the MATLAB environment, or redeploy it, but be
sure to account for these extra .dll files when doing so. The packNGo
function creates a single zip file containing all of the pieces required to
run or rebuild this code. See packNGo for more information.

2-768

UDP Send

Dialog
Box

IP address ('255.255.255.255' for broadcast)
Specify the IP address or hostname to which the block sends
the message. To broadcast the UDP message, retain the default
value, '255.255.255.255'.

Remote IP port
Specify the port to which the block sends the message. The value
defaults to 25000, but the values range from 1–65535.

Note On Linux, to set the IP port number below 1024, run
MATLAB with root privileges. For example, at the Linux
command line, enter:

sudo matlab

2-769

UDP Send

Local IP port source
To let the system automatically assign the port number, select
Assign automatically. To specify the IP port number using the
Local IP port parameter, select Specify.

Local IP port
Specify the IP port number from which the block sends the
message.

If the receiving address expects messages from a particular port
number, enter that number here.

Sample time
Sample time tells the block how long to wait before polling for
new messages.

Note This parameter only appears in a deprecated version of the
UDP Send block. Replace the deprecated UDP Send block with a
current UDP Send block.

See Also Byte Pack, Byte Reversal, Byte Unpack, UDP Receive

2-770

VxWorks Task

Purpose Spawn task function as separate VxWorks thread

Library Embedded Coder/ Embedded Targets/ Operating Systems/ VxWorks

Description
Use this block to create a task function that spawns as a separate
VxWorks thread. The task function runs the code of the downstream
function-call subsystem.For example:

In order to use this block, set the System target file parameter to
idelink_ert.tlc or idelink_ert.tlc. The System target file
parameter is located on the Code Generation pane of the Model
Configuration Parameters dialog, which you can view by selecting your
model and pressing Ctrl+E.

The VxWorks Task block uses a First In, First Out (FIFO) scheduling
algorithm, which executes real-time processes without time slicing.
With FIFO scheduling, a higher-priority process preempts a
lower-priority process. While the higher-priority process runs, the
lower-priority process remains at the top of the list for its priority. When

2-771

VxWorks Task

the scheduler blocks the higher-priority processes, the lower-priority
process resumes.

For example, in the following image, task2 preempts task1. Then, task3
preempts task2. When task3 completes, task2 resumes. When task2
completes, task1 resumes.

2-772

VxWorks Task

Dialog

Task name
Assign a name to this task. You can enter up to 32 letters and
numbers. Do not use standard C reserved characters, such as the
/ and : characters.

Thread priority (0 to 255)
Set the priority for the thread, from 0 to 255 (low-to-high).
Higher-priority tasks can preempt lower-priority tasks.

2-773

VxWorks Task

2-774

3

Configuration Parameters

• “Code Generation Pane: Verification” on page 3-2

• “Code Generation Pane: Code Style” on page 3-20

• “Code Generation Pane: Templates” on page 3-33

• “Code Generation Pane: Code Placement” on page 3-44

• “Code Generation Pane: Data Type Replacement” on page 3-61

• “Code Generation Pane: Memory Sections” on page 3-90

• “Code Generation Pane: AUTOSAR Code Generation Options” on page
3-108

• “Code Generation: Coder Target Pane” on page 3-115

• “Code Generation: Target Hardware Resources Pane” on page 3-152

• “Parameter Reference” on page 3-237

3 Configuration Parameters

Code Generation Pane: Verification

In this section...

“Code Generation: Verification Tab Overview” on page 3-4

“Measure task execution time” on page 3-5

“Measure function execution times” on page 3-7

“Workspace variable” on page 3-9

“Save options” on page 3-11

“Code coverage tool” on page 3-13

“Create block” on page 3-15

3-2

Code Generation Pane: Verification

In this section...

“Enable portable word sizes” on page 3-17

“Enable source-level debugging for SIL” on page 3-19

3-3

3 Configuration Parameters

Code Generation: Verification Tab Overview
Create SIL block and configure word size portability, code coverage for SIL
testing, and code execution profiling

Configuration
This tab appears only if you specify an ERT–based system target file.

See Also
“About SIL and PIL Simulations”

3-4

Code Generation Pane: Verification

Measure task execution time
Specify whether to collect execution time profiles for tasks in generated code

Settings
Default: off

On
Collect measurements of execution times. Data obtained from
instrumentation probes added to SIL or PIL test harness.

Off
Do not collect measurements of execution times

Dependencies
When you use this parameter, you must also specify a workspace variable.
The software uses this variable to collect execution time measurements.

Command-Line Information

Parameter: CodeExecutionProfiling
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging On

Traceability On

Efficiency Off

Safety precaution Off

3-5

3 Configuration Parameters

See Also

• “Configure Code Execution Profiling”

• “View and Compare Code Execution Times”

• “Analyze Code Execution Data”

3-6

Code Generation Pane: Verification

Measure function execution times
Specify whether to collect execution times for functions inside generated code

Settings
Default: off

On
Collect execution times for functions. Data obtained from
instrumentation probes placed inside code generated from atomic
subsystems and model reference hierarchies.

Off
Do not collect execution times for functions inside generated code

Dependencies
To use this parameter, you must also select the Measure task execution
time check box and specify a workspace variable.

Command-Line Information

Parameter: CodeProfilingInstrumentation
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging On

Traceability On

Efficiency Off

Safety precaution Off

3-7

3 Configuration Parameters

See Also

• “Configure Code Execution Profiling”

• “View and Compare Code Execution Times”

• “Analyze Code Execution Data”

3-8

Code Generation Pane: Verification

Workspace variable
Specify workspace variable that collects measurements and allows viewing
and analysis of execution profiles

Settings
Default: executionProfile

When you run simulation, software generates specified workspace variable
as an coder.profile.ExecutionTime object. To view and analyze execution
profiles, use methods from the coder.profile.ExecutionTime and
coder.profile.ExecutionTimeSection classes.

Dependency
You can only specify this parameter if you select the Measure task
execution time check box. Otherwise the field appears dimmed.

Command-Line Information

Parameter: CodeExecutionProfileVariable
Type: string
Value: valid MATLAB variable name
Default: none

Recommended Settings

Application Setting

Debugging No impact

Traceability Valid MATLAB variable name

Efficiency No impact

Safety precaution No impact

See Also

• “Configure Code Execution Profiling”

3-9

3 Configuration Parameters

• “View and Compare Code Execution Times”

• “Analyze Code Execution Data”

3-10

Code Generation Pane: Verification

Save options
Specify whether to save code profiling measurement and analysis data to
base workspace

Settings
Default: Summary data only

Summary data only
Save only code profiling summary data to a
coder.profile.ExecutionTime in the base workspace. Use this option
to limit the amount of data that the software saves to base workspace.
For example, if you are concerned that your computer may not have
enough memory to store the time measurements for a long simulation.
The software calculates metrics for the code execution report as the
simulation proceeds, without saving raw data to memory. To view these
metrics, use the coder.profile.ExecutionTime report method.

All measurement and analysis data
Save the code profiling measurement and analysis data to a
coder.profile.ExecutionTime object in the base workspace. In
addition to viewing the code execution report, this option allows
you to analyze data using coder.profile.ExecutionTime and
coder.profile.ExecutionTimeSection methods.

Dependency
You can only specify this parameter if you select the Measure task
execution time check box. Otherwise the field appears dimmed.

Command-Line Information

Parameter: CodeProfilingSaveOptions
Type: string
Value: 'SummaryOnly' | 'AllData'
Default: 'SummaryOnly'

3-11

3 Configuration Parameters

Recommended Settings

Application Setting

Debugging All measurement and analysis data

Traceability All measurement and analysis data

Efficiency Summary data only

Safety precaution No impact

See Also

• “Configure Code Execution Profiling”

• “View and Compare Code Execution Times”

• “Analyze Code Execution Data”

3-12

Code Generation Pane: Verification

Code coverage tool
Specify a code coverage tool

Settings
Default: None

None
No code coverage tool specified

BullseyeCoverage
Specifies the BullseyeCoverage™ tool from Bullseye Testing
Technology™

LDRA Testbed
Specifies the LDRA Testbed® tool from LDRA Software Technology

Dependencies
You cannot specify this parameter if Create block is either SIL or PIL.

If you do not specify a tool, Configure Coverage appears dimmed. If you
specify a tool, click Configure Coverage to open the Code Coverage Settings
dialog box.

Command-Line Information

Parameter: CoverageTool
Type: string
Value: 'None' | 'BullseyeCoverage' | 'LDRA Testbed'
Default: 'None'

Tip To access the CoverageTool parameter, type:

covSettings = get_param(gcs, 'CodeCoverageSettings');
covSettings.CoverageTool

3-13

3 Configuration Parameters

Recommended Settings

Application Setting

Debugging BullseyeCoverage or LDRA Testbed

Traceability BullseyeCoverage or LDRA Testbed

Efficiency None (code coverage off)

Safety precaution None (code coverage off)

See Also

• “Code Coverage in SIL and PIL Simulations”

• “Configure Code Coverage Programmatically”

3-14

Code Generation Pane: Verification

Create block
Generate a SIL or PIL block

Settings
Default: None

None
SIL or PIL block not generated.

SIL
Create a SIL block with an S-function to represent the model or
subsystem. The coder generates an inlined C or C++ MEX S-function
wrapper that calls existing handwritten code or code previously
generated by the code generation software from within the Simulink
product. S-function wrappers provide a standard interface between the
Simulink product and externally written code, allowing you to integrate
your code into a model with minimal modification.

When you select this option, the software:

1 Generates the S-function wrapper file model_sf.c (or .cpp) and
places it in the build directory.

2 Builds the MEX-file model_sf.mexext and places it in your working
directory.

3 Creates and opens an untitled model with a SIL block containing
the S-function.

PIL
Create a PIL block that contains cross-compiled object code for a target
processor or equivalent instruction set simulator. When you select
this option, the software creates and opens an untitled model with a
PIL block. With this block, you can verify the behavior of object code
generated from subsystem or top-model components.

Use Target Connectivity API to control the way code compiles and
executes in the target environment.

3-15

3 Configuration Parameters

Command-Line Information

Parameter: CreateSILPILBlock
Type: string
Value: 'None' | 'SIL' | 'PIL'
Default: 'None'

Recommended Settings

Application Setting

Debugging On

Traceability No impact

Efficiency No impact

Safety precaution No impact

See Also

• Automatic S-Function Wrapper Generation

• Techniques for Exporting Function-Call Subsystems

• Validating ERT Production Code on the MATLAB Host Computer Using
Portable Word Sizes

• “About SIL and PIL Simulations”

3-16

Code Generation Pane: Verification

Enable portable word sizes
Specify whether to allow portability across host and target processors that
support different word sizes.

You can enable portable word sizes to support SIL testing of your generated
code. For a SIL simulation, select SIL in the Create block field, or use
top-model or Model block SIL simulation mode.

Settings
Default: off

On
Generates conditional processing macros that support compilation of
generated code on a processor that supports a different word size than
the target processor on which production code is intended to run (for
example, a 32-bit host and a 16-bit target. This allows you to use the
same generated code for both software-in-the-loop (SIL) testing on the
host platform and production deployment on the target platform.

Off
Does not generate portable code.

Dependencies
When you use this parameter, you should set Emulation hardware on the
Hardware Implementation pane to None.

Command-Line Information

Parameter: PortableWordSizes
Type: string
Value: 'on' | 'off'
Default: 'off'

3-17

3 Configuration Parameters

Recommended Settings

Application Setting

Debugging On

Traceability On

Efficiency Off

Safety precaution No impact

See Also

• Validating ERT Production Code on the MATLAB Host Computer Using
Portable Word Sizes

• Tips for Optimizing the Generated Code

• “Configure Hardware Implementation Settings for SIL”

3-18

Code Generation Pane: Verification

Enable source-level debugging for SIL
Allow debugging of generated code during a SIL simulation

Settings
Default: off

On
Source-level debugging is enabled.

Off
Source-level debugging is disabled.

Command-Line Information

Parameter: SILDebugging
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging On

Traceability On

Efficiency Off

Safety precaution No impact

See Also
“Debugging During SIL Simulations”

3-19

3 Configuration Parameters

Code Generation Pane: Code Style

In this section...

“Code Generation: Code Style Tab Overview” on page 3-21

“Parentheses level” on page 3-22

“Preserve operand order in expression” on page 3-24

“Preserve condition expression in if statement” on page 3-25

“Convert if-elseif-else patterns to switch-case statements” on page 3-27

“Preserve extern keyword in function declarations” on page 3-29

“Suppress generation of default cases for Stateflow switch statements if
unreachable” on page 3-31

3-20

Code Generation Pane: Code Style

Code Generation: Code Style Tab Overview
Control optimizations for readability in generated code.

Configuration
This tab appears only if you specify an ERT based system target file.

See Also

• “Control Code Style”

• “Code Generation Pane: Code Style” on page 3-20

3-21

3 Configuration Parameters

Parentheses level
Specify parenthesization style for generated code.

Settings
Default: Nominal (Optimize for readability)

Minimum (Rely on C/C++ operators for precedence)
Inserts parentheses only where required by ANSI4 C or C++, or to
override default precedence. For example:

Out = In2 - In1 > 1.0 && In2 > 2.0;

Nominal (Optimize for readability)
Inserts parentheses in a way that compromises between readability and
visual complexity. For example:

Out = ((In2 - In1 > 1.0) && (In2 > 2.0));

Maximum (Specify precedence with parentheses)
Includes parentheses to specify meaning without relying on operator
precedence. Code generated with this setting conforms to MISRA®5

requirements. For example:

Out = (((In2 - In1) > 1.0) && (In2 > 2.0));

Command-Line Information

Parameter: ParenthesesLevel
Type: string
Value: 'Minimum' | 'Nominal' | 'Maximum'
Default: 'Nominal'

4. ANSI® is a registered trademark of the American National Standards Institute, Inc.

5. MISRA® is a registered trademarks of MIRA Ltd, held on behalf of the MISRA®
Consortium.

3-22

Code Generation Pane: Code Style

Recommended Settings

Application Setting

Debugging Nominal (Optimized for readability)

Traceability Nominal (Optimized for readability)

Efficiency Minimum (Rely on C/C++ operators
for precedence)

Safety precaution Maximum (Specify precedence with
parentheses)

See Also
Controlling Parenthesization

3-23

3 Configuration Parameters

Preserve operand order in expression
Specify whether to preserve order of operands in expressions.

Settings
Default: off

On
Preserves the expression order specified in the model. Select this option
to increase readability of the code or for code traceability purposes.

A*(B+C)

Off
Optimizes efficiency of code for nonoptimized compilers by reordering
commutable operands to make expressions left-recursive. For example:

(B+C)*A

Command-Line Information

Parameter: PreserveExpressionOrder
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging On

Traceability On

Efficiency Off

Safety precaution On

3-24

Code Generation Pane: Code Style

Preserve condition expression in if statement
Specify whether to preserve empty primary condition expressions in if
statements.

Settings
Default: off

On
Preserves empty primary condition expressions in if statements, such
as the following, to increase the readability of the code or for code
traceability purposes.

if expression1
else

statements2;
end

Off
Optimizes empty primary condition expressions in if statements by
negating them. For example, consider the following if statement:

if expression1
else

statements2;
end

By default, the code generator negates this statement as follows:

if ~expression1
statements2;

end

Command-Line Information

Parameter: PreserveIfCondition
Type: string
Value: 'on' | 'off'
Default: 'off'

3-25

3 Configuration Parameters

Recommended Settings

Application Setting

Debugging On

Traceability On

Efficiency Off

Safety precaution On

3-26

Code Generation Pane: Code Style

Convert if-elseif-else patterns to switch-case
statements
Specify whether to generate code for if-elseif-else decision logic as
switch-case statements.

This readability optimization works on a per-model basis and applies only to:

• Flow charts in Stateflow charts

• MATLAB functions in Stateflow charts

• MATLAB Function blocks in that model

Settings
Default: off

On
Generate code for if-elseif-else decision logic as switch-case
statements.

For example, assume that you have the following logic pattern:

if (x == 1) {
y = 1;

} else if (x == 2) {
y = 2;

} else if (x == 3) {
y = 3;

} else {
y = 4;

}

Selecting this check box converts the if-elseif-else pattern to the
following switch-case statements:

switch (x) {
case 1:

y = 1; break;
case 2:

y = 2; break;

3-27

3 Configuration Parameters

case 3:
y = 3; break;

default:
y = 4; break;

}

Off
Preserve if-elseif-else decision logic in generated code.

Command-Line Information

Parameter: ConvertIfToSwitch
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging No impact

Traceability Off

Efficiency On (execution, ROM), No impact (RAM)

Safety precaution No impact

See Also

• “Enhance Readability of Code for Flow Charts”

• “Enhance Code Readability for MATLAB Function Blocks”

• “Control Code Style”

3-28

Code Generation Pane: Code Style

Preserve extern keyword in function declarations
Specify whether to include the extern keyword in function declarations in the
generated code.

Note The extern keyword is optional for functions with external linkage. It
is considered good programming practice to include the extern keyword in
function declarations for code readability.

Settings
Default: on

On
Include the extern keyword in function declarations in the
generated code. For example, the generated code for themodel
rtwdemo_hyperlinks contains the following function declarations in
rtwdemo_hyperlinks.h:

/* Model entry point functions */
extern void rtwdemo_hyperlinks_initialize(void);
extern void rtwdemo_hyperlinks_step(void);

The extern keyword explicitly indicates that the function has external
linkage. The function definitions in this example are in the generated
file rtwdemo_hyperlinks.c.

Off
Remove the extern keyword from function declarations in the generated
code.

Command-Line Information

Parameter: PreserveExternInFcnDecls
Type: string
Value: 'on' | 'off'
Default: 'on'

3-29

3 Configuration Parameters

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

See Also
For more information on code style options, see “Code Generation Pane: Code
Style” on page 3-20.

3-30

Code Generation Pane: Code Style

Suppress generation of default cases for Stateflow
switch statements if unreachable
Specify whether or not to generate default cases for switch-case statements in
the code for Stateflow charts. This optimization works on a per-model basis
and applies to the code generated for a state that has multiple substates. For
a list of the state functions in the generated code, see “Inline State Functions
in Generated Code” in the Stateflow documentation.

Settings
Default: off

On
Do not generate the default case when it is unreachable. This setting
enables better code coverage because every branch in the generated
code is falsifiable.

Off
Generate a default case whether or not it is reachable. This setting
supports MISRA C® compliance and provides a fallback in case of RAM
corruption.

For example, when the state has a nontrivial entry function, the
following default case appears in the generated code for the during
function:

default:

entry_internal();

break;

In this case, the code marks the corresponding substate as active.

Command-Line Information

Parameter: SuppressUnreachableDefaultCases
Type: string
Value: 'on' | 'off'
Default: 'off'

3-31

3 Configuration Parameters

Recommended Settings

Application Setting

Debugging No impact

Traceability On

Efficiency On (execution, ROM), No impact (RAM)

Safety precaution Off

See Also
For more information on code style options, see “Code Generation Pane: Code
Style” on page 3-20.

3-32

Code Generation Pane: Templates

Code Generation Pane: Templates

In this section...

“Code Generation: Templates Tab Overview” on page 3-34

“Code templates: Source file (*.c) template” on page 3-35

“Code templates: Header file (*.h) template” on page 3-36

“Data templates: Source file (*.c) template” on page 3-37

“Data templates: Header file (*.h) template” on page 3-38

“File customization template” on page 3-39

“Generate an example main program” on page 3-40

“Target operating system” on page 3-42

3-33

3 Configuration Parameters

Code Generation: Templates Tab Overview
Customize the organization of your generated code.

Configuration
This tab appears only if you specify an ERT based system target file.

See Also
“Code Generation Pane: Templates” on page 3-33

3-34

Code Generation Pane: Templates

Code templates: Source file (*.c) template
Specify the code generation template (CGT) file to use when generating a
source code file.

Settings
Default: ert_code_template.cgt

You can use a CGT file to define the top-level organization and formatting of
generated source code files (.c or .cpp).

Note The CGT file must be located on the MATLAB path.

Command-Line Information

Parameter: ERTSrcFileBannerTemplate
Type: string
Value: valid CGT file
Default: 'ert_code_template.cgt'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

See Also

• Selecting and Defining Templates

• Custom File Processing

3-35

3 Configuration Parameters

Code templates: Header file (*.h) template
Specify the code generation template (CGT) file to use when generating a
code header file.

Settings
Default: ert_code_template.cgt

You can use a CGT file to define the top-level organization and formatting of
generated header files (.h).

Note The CGT file must be located on the MATLAB path.

Command-Line Information

Parameter: ERTHdrFileBannerTemplate
Type: string
Value: valid CGT file
Default: 'ert_code_template.cgt'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

See Also

• Selecting and Defining Templates

• Custom File Processing

3-36

Code Generation Pane: Templates

Data templates: Source file (*.c) template
Specify the code generation template (CGT) file to use when generating a
data source file.

Settings
Default: ert_code_template.cgt

You can use a CGT file to define the top-level organization and formatting of
generated data source files (.c or .cpp) that contain definitions of variables of
global scope.

Note The CGT file must be located on the MATLAB path.

Command-Line Information

Parameter: ERTDataSrcFileTemplate
Type: string
Value: valid CGT file
Default: 'ert_code_template.cgt'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

See Also

• Selecting and Defining Templates

• Custom File Processing

3-37

3 Configuration Parameters

Data templates: Header file (*.h) template
Specify the code generation template (CGT) file to use when generating a
data header file.

Settings
Default: ert_code_template.cgt

You can use a CGT file to define the top-level organization and formatting
of generated data header files (.h) that contain declarations of variables of
global scope.

Note The CGT file must be located on the MATLAB path.

Command-Line Information

Parameter: ERTDataHdrFileTemplate
Type: string
Value: valid CGT file
Default: 'ert_code_template.cgt'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

See Also

• Selecting and Defining Templates

• Custom File Processing

3-38

Code Generation Pane: Templates

File customization template
Specify the custom file processing (CFP) template file to use when generating
code.

Settings
Default: 'example_file_process.tlc'

You can use a CFP template file to customize generated code. A CFP template
file is a TLC file that organizes types of code (for example, includes, typedefs,
and functions) into sections. The primary purpose of a CFP template is to
assemble code to be generated into buffers, and to call a code template API to
emit the buffered code into specified sections of generated source and header
files. The CFP template file must be located on the MATLAB path.

Command-Line Information

Parameter: ERTCustomFileTemplate
Type: string
Value: valid TLC file
Default: 'example_file_process.tlc'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

See Also

• Selecting and Defining Templates

• Custom File Processing

3-39

3 Configuration Parameters

Generate an example main program
Control whether to generate an example main program for a model.

Settings
Default: on

On
Generates an example main program, ert_main.c (or .cpp). The file
includes:

• The main() function for the generated program

• Task scheduling code that determines how and when block
computations execute on each time step of the model

The operation of the main program and the scheduling algorithm
employed depend primarily on whether your model is single-rate or
multirate, and also on your model’s solver mode (SingleTasking or
MultiTasking).

Off
Does not generate an example main program.

Note The software provides a static version of the main file,
matlabroot/rtw/c/src/common/rt_main.c, as a basis for custom
modifications. You can use this file as a template for developing
embedded applications.

Tips

• After you generate and customize the main program, disable this option to
prevent regenerating the main module and overwriting your customized
version.

• You can use a custom file processing (CFP) template file to override
normal main program generation, and generate a main program module
customized for your target environment.

3-40

Code Generation Pane: Templates

• If you disable this option, the coder generates slightly different rate
grouping code to maintain compatibility with an older static main module.

Dependencies

• This parameter enables Target operating system.

• You must enable this parameter and select VxWorksExample for Target
operating system if you use VxWorks®6 library blocks.

Command-Line Information

Parameter: GenerateSampleERTMain
Type: string
Value: 'on' | 'off'
Default: 'on'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

See Also

• “Generate a Standalone Program”

• Static Main Program Module

• Custom File Processing

6. VxWorks® is a registered trademark of Wind River® Systems, Inc.

3-41

3 Configuration Parameters

Target operating system
Specify a target operating system to use when generating model-specific
example main program module.

Settings
Default: BareBoardExample

BareBoardExample
Generates a bareboard main program designed to run under control of a
real-time clock, without a real-time operating system.

VxWorksExample
Generates a fully commented example showing how to deploy the code
under the VxWorks real-time operating system.

NativeThreadsExample
Generates a fully commented example showing how to deploy the
threaded code under the host operating system. This option requires
you to configure your model for concurrent execution.

Dependencies

• This parameter is enabled by Generate an example main program.

• This parameter must be the same for top-level and referenced models.

Command-Line Information

Parameter: TargetOS
Type: string
Value: 'BareBoardExample' | 'VxWorksExample'|
'NativeThreadsExample'
Default: 'BareBoardExample'

3-42

Code Generation Pane: Templates

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

See Also

• “Generate a Standalone Program”

• Static Main Program Module

• Custom File Processing

3-43

3 Configuration Parameters

Code Generation Pane: Code Placement

In this section...

“Code Generation: Code Placement Tab Overview” on page 3-45

“Data definition” on page 3-46

“Data definition filename” on page 3-48

“Data declaration” on page 3-50

“Data declaration filename” on page 3-52

“Use owner from data object for data definition placement” on page 3-54

“#include file delimiter” on page 3-54

“Signal display level” on page 3-55

“Parameter tune level” on page 3-57

“File packaging format” on page 3-59

3-44

Code Generation Pane: Code Placement

Code Generation: Code Placement Tab Overview
Specify the data placement in the generated code.

Configuration
This tab appears only if you specify an ERT based system target file.

See Also
“Code Generation Pane: Code Placement” on page 3-44

3-45

3 Configuration Parameters

Data definition
Specify where to place definitions of global variables.

Settings
Default: Auto

Auto
Lets the code generator determine where the definitions should be
located.

Data defined in source file
Places definitions in .c source files where functions are located.
The code generator places the definitions in one or more function .c
files, depending on the number of function source files and the file
partitioning previously selected in the Simulink model.

Data defined in a single separate source file
Places definitions in the source file specified in the Data definition
filename field. The code generator organizes and formats the
definitions based on the data source template specified by the Source
file (*.c) template parameter in the data section of the Templates
pane.

Dependencies

• This parameter applies to data with custom storage classes only.

• This parameter enables Data definition filename.

Command-Line Information

Parameter: GlobalDataDefinition
Type: string
Value: 'Auto' | 'InSourceFile' | 'InSeparateSourceFile'
Default: 'Auto'

3-46

Code Generation Pane: Code Placement

Recommended Settings

Application Setting

Debugging No impact

Traceability A valid value

Efficiency No impact

Safety precaution No impact

See Also
“Data Definition and Declaration Management”

3-47

3 Configuration Parameters

Data definition filename
Specify the name of the file that is to contain data definitions.

Settings
Default: global.c or global.cpp

The code generator organizes and formats the data definitions in the specified
file based on the data source template specified by the Source file (*.c)
template parameter in the data section of the Code Generation pane:
Templates tab.

If you specify C++ as the target language, omit the .cpp extension. The code
generator generates a file that has the extension .cpp.

Limitation

The code generator does not check for unique filenames. Specify filenames
that do not collide with default filenames from code generation.

Dependency
This parameter is enabled by Data definition.

Command-Line Information

Parameter: DataDefinitionFile
Type: string
Value: a valid file
Default: 'global.c'

Recommended Settings

Application Setting

Debugging No impact

Traceability A valid file

3-48

Code Generation Pane: Code Placement

Application Setting

Efficiency No impact

Safety precaution No impact

See Also

• Selecting and Defining Templates

• Custom File Processing

3-49

3 Configuration Parameters

Data declaration
Specify where extern, typedef, and #define statements are to be declared.

Settings
Default: Auto

Auto
Lets the code generator determine where the declarations should be
located.

Data declared in source file
Places declarations in .c source files where functions are located. The
data header template file is not used. The code generator places the
declarations in one or more function .c files, depending on the number
of function source files and the file partitioning previously selected in
the Simulink model.

Data defined in a single separate source file
Places declarations in the data header file specified in the Data
declaration filename field. The code generator organizes and formats
the declarations based on the data header template specified by the
header file (*.h) template parameter in the data section of the Code
Generation pane: Templates tab.

Dependencies

• This parameter applies to data with custom storage classes only.

• This parameter enables Data declaration filename.

Command-Line Information

Parameter: GlobalDataReference
Type: string
Value: 'Auto' | 'InSourceFile' | 'InSeparateHeaderFile'
Default: 'Auto'

3-50

Code Generation Pane: Code Placement

Recommended Settings

Application Setting

Debugging No impact

Traceability A valid value

Efficiency No impact

Safety precaution No impact

See Also
“Data Definition and Declaration Management”

3-51

3 Configuration Parameters

Data declaration filename
Specify the name of the file that is to contain data declarations.

Settings
Default: global.h

The code generator organizes and formats the data declarations in the
specified file based on the data header template specified by the Header
file (*.h) template parameter in the data section of the Code Generation
pane: Templates tab.

Limitation

The code generator does not check for unique filenames. Specify filenames
that do not collide with default filenames from code generation.

Dependency
This parameter is enabled by Data declaration.

Command-Line Information

Parameter: DataReferenceFile
Type: string
Value: a valid file
Default: 'global.h'

Recommended Settings

Application Setting

Debugging No impact

Traceability A valid file

Efficiency No impact

Safety precaution No impact

3-52

Code Generation Pane: Code Placement

See Also

• Selecting and Defining Templates

• Custom File Processing

3-53

3 Configuration Parameters

Use owner from data object for data definition
placement
Specify whether the model uses or ignores the ownership setting of a data
object for data definition in code generation.

Settings
Default: on

On
Uses the ownership setting of the data object for data definition. This
value corresponds to the SameAsModel value of the ModuleNamingRule
parameter.

Off
Ignores the ownership setting of the data object for data definition. This
value corresponds to the Unspecified value of the ModuleNamingRule
parameter.

Command-Line Information

Parameter: EnableDataOwnership
Type: string
Value: 'on' | 'off'
Default: 'on'

Recommended Settings

Application Setting

Debugging No impact

Traceability A valid value

Efficiency No impact

Safety precaution No impact

#include file delimiter
Specify the type of #include file delimiter to use in generated code.

3-54

Code Generation Pane: Code Placement

Settings
Default: Auto

Auto
Lets the code generator choose the #include file delimiter

#include header.h
Uses double quote (" ") characters to delimit file names in #include
statements.

#include <header.h>
Uses angle brackets (< >) to delimit file names in #include statements.

Dependency
The delimiter format that you use when specifying parameter and signal
object property values overrides what you set for this parameter.

Command-Line Information

Parameter: IncludeFileDelimiter
Type: string
Value: 'Auto' | 'UseQuote' | 'UseBracket'
Default: 'Auto'

Recommended Settings

Application Setting

Debugging No impact

Traceability A valid value

Efficiency No impact

Safety precaution No impact

Signal display level
Specify the persistence level for MPT signal data objects.

3-55

3 Configuration Parameters

Settings
Default: 10

Specify an integer value indicating the persistence level for MPT signal data
objects. This value indicates the level at which to declare signal data objects
as global data in the generated code. The persistence level allows you to make
intermediate variables global during initial development so you can remove
them during later stages of development to gain efficiency.

This parameter is related to the Persistence level value that you can specify
for a specific MPT signal data object in the Model Explorer signal properties
dialog.

Dependency
This parameter must be the same for top-level and referenced models.

Command-Line Information

Parameter: SignalDisplayLevel
Type: integer
Value: a valid integer
Default: 10

Recommended Settings

Application Setting

Debugging No impact

Traceability A valid integer

Efficiency No impact

Safety precaution No impact

See Also
Selecting Persistence Level for Signals and Parameters

3-56

Code Generation Pane: Code Placement

Parameter tune level
Specify the persistence level for MPT parameter data objects.

Settings
Default: 10

Specify an integer value indicating the persistence level for MPT parameter
data objects. This value indicates the level at which to declare parameter data
objects as tunable global data in the generated code. The persistence level
allows you to make intermediate variables global and tunable during initial
development so you can remove them during later stages of development
to gain efficiency.

This parameter is related to the Persistence level value you that can specify
for a specific MPT parameter data object in the Model Explorer parameter
properties dialog.

Dependency
This parameter must be the same for top-level and referenced models.

Command-Line Information

Parameter: ParamTuneLevel
Type: integer
Value: a valid integer
Default: 10

Recommended Settings

Application Setting

Debugging No impact

Traceability A valid integer

Efficiency No impact

Safety precaution No impact

3-57

3 Configuration Parameters

See Also
Selecting Persistence Level for Signals and Parameters

3-58

Code Generation Pane: Code Placement

File packaging format
Specify whether code generation modularizes the code components into
many files or compacts the generated code into a few files. You can specify a
different file packaging format for each referenced model.

Settings
Default: Modular

Modular

• Outputs model_data.c, model_private.h, and model_types.h, in
addition to generating model.c and model.h. For the contents of
these files, see the table in “Generated Code Modules”.

• Supports generating separate source files for subsystems. For more
information on generating code for subsystems, see “Code Generation
of Subsystems”.

• If you specify Shared code placement as Auto on the Code
Generation > Interface pane of the Configuration Parameter
dialog box, some utility files are in the build directory. If you specify
Shared code placement as Shared location, separate files are
generated for utility code in a shared location. For more information,
see “Controlling Shared Utility Code Placement”.

Compact (with separate data file)

• Conditionally outputs model_data.c, in addition to generating
model.c and model.h.

• If you specify Shared code placement as Auto on the Code
Generation > Interface pane of the Configuration Parameter
dialog box, utility algorithms are defined in model.c. If you specify
Shared code placement as Shared location, separate files are
generated for utility code in a shared location. For more information,
see “Controlling Shared Utility Code Placement”.

• Does not support separate source files for subsystems.

• Does not support models with noninlined S-functions.

Compact

• The contents of model_data.c are in model.c.

3-59

3 Configuration Parameters

• The contents of model_private.h and model_types.h are in model.h
or model.c.

• If you specify Shared code placement as Auto on the Code
Generation > Interface pane of the Configuration Parameter
dialog box, utility algorithms are defined in model.c. If you specify
Shared code placement as Shared location, separate files are
generated for utility code in a shared location. For more information,
see “Controlling Shared Utility Code Placement”.

• Does not support separate source files for subsystems.

• Does not support models with noninlined S-functions.

Command-Line Information

Parameter: ERTFilePackagingFormat
Type: string
Value: 'Modular' | 'CompactWithDataFile' | 'Compact'
Default: 'Modular'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

See Also

• “Customize Generated Code Modules”

• “Generate Code Modules”

• “Customize Post-Code-Generation Build Processing”

3-60

Code Generation Pane: Data Type Replacement

Code Generation Pane: Data Type Replacement

In this section...

“Code Generation: Data Type Replacement Tab Overview” on page 3-62

“Replace data type names in the generated code” on page 3-63

“Replacement Name: double” on page 3-66

“Replacement Name: single” on page 3-68

“Replacement Name: int32” on page 3-70

“Replacement Name: int16” on page 3-72

“Replacement Name: int8” on page 3-74

“Replacement Name: uint32” on page 3-76

“Replacement Name: uint16” on page 3-78

“Replacement Name: uint8” on page 3-80

“Replacement Name: boolean” on page 3-82

“Replacement Name: int” on page 3-84

“Replacement Name: uint” on page 3-86

“Replacement Name: char” on page 3-88

3-61

3 Configuration Parameters

Code Generation: Data Type Replacement Tab
Overview
Replace built-in data type names with user-defined replacement data type
names in the generated code for your model.

Configuration
This tab appears only if you specify an ERT based System target file.

If your application requires you to replace built-in data type names with
user-defined replacement data type names in the generated code:

1 Select Replace data type names in the generated code.

2 Selectively specify replacement data type names to use for built-in
Simulink data types in the Replacement Name fields.

See Also
“Data Type Replacement”

3-62

Code Generation Pane: Data Type Replacement

Replace data type names in the generated code
Specify whether to replace built-in data type names with user-defined data
type names in generated code.

Settings
Default: off

On
Displays the Data type names table. The table provides a way for you
to replace the names of built-in data types used in generated code. This
mechanism can be particularly useful for generating code that adheres
to application or site data type naming standards.

You can choose to specify new data type names for some or all Simulink
built-in data types listed in the table. For each replacement data type
name that you specify:

• The name must match the name of a Simulink.AliasType object
that exists in the base workspace.

• The BaseType property of the associated Simulink.AliasType object
must be consistent with the built-in data type it replaces.

• For double, single, int32, int16, int8, uint32, uint16, and uint8,
the BaseType of the replacement data type must match the built-in
data type.

• For boolean, the BaseType of the replacement data type must
be either an 8-bit integer or an integer of the size displayed for
Number of bits: int on the Hardware Implementation pane of
the Configuration Parameters dialog box.

• For int, uint, and char, the size of the replacement data type must
match the size displayed for Number of bits: int or Number
of bits: char on the Hardware Implementation pane of the
Configuration Parameters dialog box.

An error occurs, if

• A replacement data type specification is inconsistent.

3-63

3 Configuration Parameters

• The Simulink.AliasType object has the Data scope parameter set
to Exported.

Off
Uses Simulink Coder names for built-in Simulink data types in
generated code.

Dependencies
This parameter enables:

double Replacement Name
single Replacement Name
int32 Replacement Name
int16 Replacement Name
int8 Replacement Name
uint32 Replacement Name
uint16 Replacement Name
uint8 Replacement Name
boolean Replacement Name
int Replacement Name
uint Replacement Name
char Replacement Name

Command-Line Information

Parameter: EnableUserReplacementTypes
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging No impact

Traceability On

3-64

Code Generation Pane: Data Type Replacement

Application Setting

Efficiency No impact

Safety precaution No impact

See Also
“Data Type Replacement”

3-65

3 Configuration Parameters

Replacement Name: double
Specify names to use for built-in Simulink data types in generated code.

Settings
Default: ''

Specify strings that the code generator is to use as names for built-in Simulink
data types.

• The name must match the name of a Simulink.AliasType object that
exists in the base workspace.

• The BaseType property of the associated Simulink.AliasType object must
be consistent with the built-in data type it replaces.

• The BaseType of the replacement data type must match the built-in data
type.

An error occurs, if

• A replacement data type specification is inconsistent.

• The Simulink.AliasType object has the Data scope parameter set to
Exported.

Dependency
This parameter is enabled by Replace data type names in the generated
code.

Command-Line Information

Parameter: ReplacementTypes, replacementName.double
Type: string
Value: name of a Simulink.AliasType object that exists in the base
workspace; BaseType property of object must be consistent with the
built-in data type it replaces and BaseType of the replacement data type
must match the built-in data type
Default: ''

3-66

Code Generation Pane: Data Type Replacement

Recommended Settings

Application Setting

Debugging No impact

Traceability A valid string

Efficiency No impact

Safety precaution ''

See Also
“Data Type Replacement”

3-67

3 Configuration Parameters

Replacement Name: single
Specify names to use for built-in Simulink data types in generated code.

Settings
Default: ''

Specify strings that the code generator is to use as names for built-in Simulink
data types.

• The name must match the name of a Simulink.AliasType object that
exists in the base workspace.

• The BaseType property of the associated Simulink.AliasType object must
be consistent with the built-in data type it replaces.

• The BaseType of the replacement data type must match the built-in data
type.

An error occurs, if

• A replacement data type specification is inconsistent.

• The Simulink.AliasType object has the Data scope parameter set to
Exported.

Dependency
This parameter is enabled by Replace data type names in the generated
code.

Command-Line Information

Parameter: ReplacementTypes, replacementName.single
Type: string
Value: name of a Simulink.AliasType object that exists in the base
workspace; BaseType property of object must be consistent with the
built-in data type it replaces and BaseType of the replacement data type
must match the built-in data type
Default: ''

3-68

Code Generation Pane: Data Type Replacement

Recommended Settings

Application Setting

Debugging No impact

Traceability A valid string

Efficiency No impact

Safety precaution ''

See Also
“Data Type Replacement”

3-69

3 Configuration Parameters

Replacement Name: int32
Specify names to use for built-in Simulink data types in generated code.

Settings
Default: ''

Specify strings that the code generator is to use as names for built-in Simulink
data types.

• The name must match the name of a Simulink.AliasType object that
exists in the base workspace.

• The BaseType property of the associated Simulink.AliasType object must
be consistent with the built-in data type it replaces.

• The BaseType of the replacement data type must match the built-in data
type.

An error occurs, if

• A replacement data type specification is inconsistent.

• The Simulink.AliasType object has the Data scope parameter set to
Exported.

Dependency
This parameter is enabled by Replace data type names in the generated
code.

Command-Line Information

Parameter: ReplacementTypes, replacementName.int32
Type: string
Value: name of a Simulink.AliasType object that exists in the base
workspace; BaseType property of object must be consistent with the
built-in data type it replaces and BaseType of the replacement data type
must match the built-in data type
Default: ''

3-70

Code Generation Pane: Data Type Replacement

Recommended Settings

Application Setting

Debugging No impact

Traceability A valid string

Efficiency No impact

Safety precaution ''

See Also
“Data Type Replacement”

3-71

3 Configuration Parameters

Replacement Name: int16
Specify names to use for built-in Simulink data types in generated code.

Settings
Default: ''

Specify strings that the code generator is to use as names for built-in Simulink
data types .

• The name must match the name of a Simulink.AliasType object that
exists in the base workspace.

• The BaseType property of the associated Simulink.AliasType object must
be consistent with the built-in data type it replaces.

• The BaseType of the replacement data type must match the built-in data
type.

An error occurs, if

• A replacement data type specification is inconsistent.

• The Simulink.AliasType object has the Data scope parameter set to
Exported.

Dependency
This parameter is enabled by Replace data type names in the generated
code.

Command-Line Information

Parameter: ReplacementTypes, replacementName.int16
Type: string
Value: name of a Simulink.AliasType object that exists in the base
workspace; BaseType property of object must be consistent with the
built-in data type it replaces and BaseType of the replacement data type
must match the built-in data type
Default: ''

3-72

Code Generation Pane: Data Type Replacement

Recommended Settings

Application Setting

Debugging No impact

Traceability A valid string

Efficiency No impact

Safety precaution ''

See Also
“Data Type Replacement”

3-73

3 Configuration Parameters

Replacement Name: int8
Specify names to use for built-in Simulink data types in generated code.

Settings
Default: ''

Specify strings that the code generator is to use as names for built-in Simulink
data types.

• The name must match the name of a Simulink.AliasType object that
exists in the base workspace.

• The BaseType property of the associated Simulink.AliasType object must
be consistent with the built-in data type it replaces.

• The BaseType of the replacement data type must match the built-in data
type.

An error occurs, if

• A replacement data type specification is inconsistent.

• The Simulink.AliasType object has the Data scope parameter set to
Exported.

Dependency
This parameter is enabled by Replace data type names in the generated
code.

Command-Line Information

Parameter: ReplacementTypes, replacementName.int8
Type: string
Value: name of a Simulink.AliasType object that exists in the base
workspace; BaseType property of object must be consistent with the
built-in data type it replaces and BaseType of the replacement data type
must match the built-in data type
Default: ''

3-74

Code Generation Pane: Data Type Replacement

Recommended Settings

Application Setting

Debugging No impact

Traceability A valid string

Efficiency No impact

Safety precaution ''

See Also
“Data Type Replacement”

3-75

3 Configuration Parameters

Replacement Name: uint32
Specify names to use for built-in Simulink data types in generated code.

Settings
Default: ''

Specify strings that the code generator is to use as names for built-in Simulink
data types.

• The name must match the name of a Simulink.AliasType object that
exists in the base workspace.

• The BaseType property of the associated Simulink.AliasType object must
be consistent with the built-in data type it replaces.

• The BaseType of the replacement data type must match the built-in data
type.

An error occurs, if

• A replacement data type specification is inconsistent.

• The Simulink.AliasType object has the Data scope parameter set to
Exported.

Dependency
This parameter is enabled by Replace data type names in the generated
code.

Command-Line Information

Parameter: ReplacementTypes, replacementName.uint32
Type: string
Value: name of a Simulink.AliasType object that exists in the base
workspace; BaseType property of object must be consistent with the
built-in data type it replaces and BaseType of the replacement data type
must match the built-in data type
Default: ''

3-76

Code Generation Pane: Data Type Replacement

Recommended Settings

Application Setting

Debugging No impact

Traceability A valid string

Efficiency No impact

Safety precaution ''

See Also
“Data Type Replacement”

3-77

3 Configuration Parameters

Replacement Name: uint16
Specify names to use for built-in Simulink data types in generated code.

Settings
Default: ''

Specify strings that the code generator is to use as names for built-in Simulink
data types.

• The name must match the name of a Simulink.AliasType object that
exists in the base workspace.

• The BaseType property of the associated Simulink.AliasType object must
be consistent with the built-in data type it replaces.

• The BaseType of the replacement data type must match the built-in data
type.

An error occurs, if

• A replacement data type specification is inconsistent.

• The Simulink.AliasType object has the Data scope parameter set to
Exported.

Dependency
This parameter is enabled by Replace data type names in the generated
code.

Command-Line Information

Parameter: ReplacementTypes, replacementName.uint16
Type: string
Value: name of a Simulink.AliasType object that exists in the base
workspace; BaseType property of object must be consistent with the
built-in data type it replaces and BaseType of the replacement data type
must match the built-in data type
Default: ''

3-78

Code Generation Pane: Data Type Replacement

Recommended Settings

Application Setting

Debugging No impact

Traceability A valid string

Efficiency No impact

Safety precaution ''

See Also
“Data Type Replacement”

3-79

3 Configuration Parameters

Replacement Name: uint8
Specify names to use for built-in Simulink data types in generated code.

Settings
Default: ''

Specify strings that the code generator is to use as names for built-in Simulink
data types.

• The name must match the name of a Simulink.AliasType object that
exists in the base workspace.

• The BaseType property of the associated Simulink.AliasType object must
be consistent with the built-in data type it replaces.

• The BaseType of the replacement data type must match the built-in data
type.

An error occurs, if

• A replacement data type specification is inconsistent.

• The Simulink.AliasType object has the Data scope parameter set to
Exported.

Dependency
This parameter is enabled by Replace data type names in the generated
code.

Command-Line Information

Parameter: ReplacementTypes, replacementName.uint8
Type: string
Value: name of a Simulink.AliasType object that exists in the base
workspace; BaseType property of object must be consistent with the
built-in data type it replaces and BaseType of the replacement data type
must match the built-in data type
Default: ''

3-80

Code Generation Pane: Data Type Replacement

Recommended Settings

Application Setting

Debugging No impact

Traceability A valid string

Efficiency No impact

Safety precaution ''

See Also
“Data Type Replacement”

3-81

3 Configuration Parameters

Replacement Name: boolean
Specify names to use for built-in Simulink data types in generated code.

Settings
Default: ''

Specify strings that the code generator is to use as names for built-in Simulink
data types.

• The name must match the name of a Simulink.AliasType object that
exists in the base workspace.

• The BaseType property of the associated Simulink.AliasType object must
be either an 8-bit integer or an integer of the size displayed for Number of
bits: int on the Hardware Implementation pane of the Configuration
Parameters dialog box.

Note For ERT S-functions, the replacement data type can only be an 8–bit
integer, int8 or uint8.

An error occurs, if

• A replacement data type specification is inconsistent.

• The Simulink.AliasType object has the Data scope parameter set to
Exported.

Dependency
This parameter is enabled by Replace data type names in the generated
code.

Command-Line Information

Parameter: ReplacementTypes, replacementName.boolean
Type: string
Value: name of a Simulink.AliasType object that exists in the base
workspace; BaseType property of object must be either an 8-bit integer or

3-82

Code Generation Pane: Data Type Replacement

an integer of the size displayed for Number of bits: int on the Hardware
Implementation pane of the Configuration Parameters dialog box
Default: ''

Recommended Settings

Application Setting

Debugging No impact

Traceability A valid string

Efficiency No impact

Safety precaution ''

See Also

• “Replace boolean with an Integer Data Type”

• “Data Type Replacement”

3-83

3 Configuration Parameters

Replacement Name: int
Specify names to use for built-in Simulink data types in generated code.

Settings
Default: ''

Specify strings that the code generator is to use as names for built-in Simulink
data types.

• The name must match the name of a Simulink.AliasType object that
exists in the base workspace.

• The BaseType property of the associated Simulink.AliasType object must
be consistent with the built-in data type it replaces.

• The size of the replacement data type must match the size displayed on
the Hardware Implementation pane of the Configuration Parameters
dialog box.

An error occurs, if

• A replacement data type specification is inconsistent.

• The Simulink.AliasType object has the Data scope parameter set to
Exported.

Dependency
This parameter is enabled by Replace data type names in the generated
code.

Command-Line Information

Parameter: ReplacementTypes, replacementName.int
Type: string
Value: name of a Simulink.AliasType object that exists in the base
workspace; BaseType property of object must be consistent with the
built-in data type it replaces and the size of the replacement data type
must match the size displayed on the Hardware Implementation pane
of the Configuration Parameters dialog box

3-84

Code Generation Pane: Data Type Replacement

Default: ''

Recommended Settings

Application Setting

Debugging No impact

Traceability A valid value

Efficiency No impact

Safety precaution ''

See Also
“Data Type Replacement”

3-85

3 Configuration Parameters

Replacement Name: uint
Specify names to use for built-in Simulink data types in generated code.

Settings
Default: ''

Specify strings that the code generator is to use as names for built-in Simulink
data types.

• The name must match the name of a Simulink.AliasType object that
exists in the base workspace.

• The BaseType property of the associated Simulink.AliasType object must
be consistent with the built-in data type it replaces.

• The size of the replacement data type must match the size displayed on
the Hardware Implementation pane of the Configuration Parameters
dialog box.

An error occurs, if

• A replacement data type specification is inconsistent.

• The Simulink.AliasType object has the Data scope parameter set to
Exported.

Dependency
This parameter is enabled by Replace data type names in the generated
code.

Command-Line Information

Parameter: ReplacementTypes, replacementName.uint
Type: string
Value: name of a Simulink.AliasType object that exists in the base
workspace; BaseType property of object must be consistent with the
built-in data type it replaces and the size of the replacement data type
must match the size displayed on the Hardware Implementation pane
of the Configuration Parameters dialog box

3-86

Code Generation Pane: Data Type Replacement

Default: ''

Recommended Settings

Application Setting

Debugging No impact

Traceability A valid string

Efficiency No impact

Safety precaution ''

See Also
“Data Type Replacement”

3-87

3 Configuration Parameters

Replacement Name: char
Specify names to use for built-in Simulink data types in generated code.

Settings
Default: ''

Specify strings that the code generator is to use as names for built-in Simulink
data types.

• The name must match the name of a Simulink.AliasType object that
exists in the base workspace.

• The BaseType property of the associated Simulink.AliasType object must
be consistent with the built-in data type it replaces.

• The size of the replacement data type must match the size displayed for on
the Hardware Implementation pane of the Configuration Parameters
dialog box.

An error occurs, if

• A replacement data type specification is inconsistent.

• The Simulink.AliasType object has the Data scope parameter set to
Exported.

Dependency
This parameter is enabled by Replace data type names in the generated
code.

Command-Line Information

Parameter: ReplacementTypes, replacementName.char
Type: string
Value: name of a Simulink.AliasType object that exists in the base
workspace; BaseType property of object must be consistent with the
built-in data type it replaces and the size of the replacement data type
must match the size displayed on the Hardware Implementation pane
of the Configuration Parameters dialog box

3-88

Code Generation Pane: Data Type Replacement

Default: ''

Recommended Settings

Application Setting

Debugging No impact

Traceability A valid string

Efficiency No impact

Safety precaution ''

See Also
“Data Type Replacement”

3-89

3 Configuration Parameters

Code Generation Pane: Memory Sections

In this section...

“Code Generation: Memory Sections Tab Overview” on page 3-92

“Package” on page 3-93

“Refresh package list” on page 3-95

3-90

Code Generation Pane: Memory Sections

In this section...

“Initialize/Terminate” on page 3-96

“Execution” on page 3-97

“Shared utility” on page 3-98

“Constants” on page 3-99

“Inputs/Outputs” on page 3-101

“Internal data” on page 3-103

“Parameters” on page 3-105

“Validation results” on page 3-107

3-91

3 Configuration Parameters

Code Generation: Memory Sections Tab Overview
Insert comments and pragmas into the generated code for data and functions.

Configuration
This tab appears only if you specify an ERT based system target file.

See Also

• “Memory Sections”

• “Code Generation Pane: Memory Sections” on page 3-90

3-92

Code Generation Pane: Memory Sections

Package
Specify a package that contains memory sections you want to apply to
model-level functions and internal data.

Settings
Memory section specifications for model-level functions and internal
data apply to the top level of the model and to subsystems except atomic
subsystems that contain overriding memory section specifications.

Default: ---None---

---None---
Suppresses memory sections.

Simulink
Applies the built-in Simulink package.

mpt
Applies the built-in mpt package.

Tip
If you have defined packages of your own, click Refresh package list. This
action adds user-defined packages on your search path to the package list.

Command-Line Information

Parameter: MemSecPackage
Type: string
Value: '--- None ---' | 'Simulink' | 'mpt'
Default: '--- None ---'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

3-93

3 Configuration Parameters

Application Setting

Efficiency No impact

Safety precaution No impact

See Also
“Memory Sections”

3-94

Code Generation Pane: Memory Sections

Refresh package list
Add user-defined packages that are on the search path to list of packages
displayed by Packages.

Tip
If you have defined packages of your own, click Refresh package list. This
action adds user-defined packages on your search path to the package list.

See Also
“Memory Sections”

3-95

3 Configuration Parameters

Initialize/Terminate
Specify whether to apply a memory section to Initialize/Start and Terminate
functions.

Settings
Memory section specifications for model-level functions and internal
data apply to the top level of the model and to subsystems except atomic
subsystems that contain overriding memory section specifications.

Default: Default

Default
Suppresses the use of a memory section for Initialize, Start, and
Terminate functions.

memory-section-name
Applies a memory section to Initialize, Start, and Terminate functions.

Command-Line Information

Parameter: MemSecFuncInitTerm
Type: string
Value: 'Default' | 'MemConst' | 'MemVolatile' | 'MemConstVolatile'
Default: 'Default'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

See Also
“Memory Sections”

3-96

Code Generation Pane: Memory Sections

Execution
Specify whether to apply a memory section to execution functions.

Settings
Memory section specifications for model-level functions and internal
data apply to the top level of the model and to subsystems except atomic
subsystems that contain overriding memory section specifications.

Default: Default

Default
Suppresses the use of a memory section for Step, Run-time initialization,
Derivative, Enable, and Disable functions.

memory-section-name
Applies a memory section to Step, Run-time initialization, Derivative,
Enable, and Disable functions.

Command-Line Information

Parameter: MemSecFuncExecute
Type: string
Value: 'Default' | 'MemConst' | 'MemVolatile' | 'MemConstVolatile'
Default: 'Default'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

See Also
“Memory Sections”

3-97

3 Configuration Parameters

Shared utility
Specify whether to apply memory sections to shared utility functions.

Settings
Memory section specifications for model-level functions and internal
data apply to the top level of the model and to subsystems except atomic
subsystems that contain overriding memory section specifications.

Default: Default

Default
Suppresses the use of memory sections for shared utility functions.

memory-section-name
Applies a memory section to shared utility functions, such as fixed-point
functions, lookup table functions, and binary search functions.

Command-Line Information

Parameter: MemSecFuncSharedUtil
Type: string
Value: 'Default' | 'MemConst' | 'MemVolatile' | 'MemConstVolatile'
Default: 'Default'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

See Also
“Memory Sections”

3-98

Code Generation Pane: Memory Sections

Constants
Specify whether to apply a memory section to constants.

Settings
Memory section specifications for model-level functions and internal
data apply to the top level of the model and to subsystems except atomic
subsystems that contain overriding memory section specifications.

Default: Default

Default
Suppresses the use of a memory section for constants.

memory-section-name
Applies a memory section to constants.

This parameter applies to:

Data Definition Data Purpose

model_cP Constant parameters

model_cB Constant block I/O

model_Z Zero representation

Command-Line Information

Parameter: MemSecDataConstants
Type: string
Value: 'Default' | 'MemConst' | 'MemVolatile' | 'MemConstVolatile'
Default: 'Default'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

3-99

3 Configuration Parameters

Application Setting

Efficiency No impact

Safety precaution No impact

See Also
“Memory Sections”

3-100

Code Generation Pane: Memory Sections

Inputs/Outputs
Specify whether to apply a memory section to root input and output.

Settings
Memory section specifications for model-level functions and internal
data apply to the top level of the model and to subsystems except atomic
subsystems that contain overriding memory section specifications.

Default: Default

Default
Suppresses the use of a memory section for root-level input and output.

memory-section-name
Applies a memory section for root-level input and output.

This parameter applies to:

Data Definition Data Purpose

model_U Root-level input

model_Y Root-level output

Command-Line Information

Parameter: MemSecDataIO
Type: string
Value: 'Default' | 'MemConst' | 'MemVolatile' | 'MemConstVolatile'
Default: 'Default'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

3-101

3 Configuration Parameters

Application Setting

Efficiency No impact

Safety precaution No impact

See Also
“Memory Sections”

3-102

Code Generation Pane: Memory Sections

Internal data
Specify whether to apply a memory section to internal data.

Settings
Memory section specifications for model-level functions and internal
data apply to the top level of the model and to subsystems except atomic
subsystems that contain overriding memory section specifications.

Default: Default

Default
Suppresses the use of a memory section for internal data.

memory-section-name
Applies a memory section for internal data.

This parameter applies to:

Data Definition Data Purpose

model_B Block I/O

model_D DWork vectors

model_M Run-time model

model_Zero Zero-crossings

Command-Line Information

Parameter: MemSecDataInternal
Type: string
Value: 'Default' | 'MemConst' | 'MemVolatile' | 'MemConstVolatile'
Default: 'Default'

3-103

3 Configuration Parameters

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

See Also
“Memory Sections”

3-104

Code Generation Pane: Memory Sections

Parameters
Specify whether to apply a memory section to parameters.

Settings
Memory section specifications for model-level functions and internal
data apply to the top level of the model and to subsystems except atomic
subsystems that contain overriding memory section specifications.

Default: Default

Default
Suppress the use of a memory section for parameters.

memory-section-name
Apply memory section for parameters.

This parameter applies to:

Data Definition Data Purpose

model_P Parameters

Command-Line Information

Parameter: MemSecDataParameters
Type: string
Value: 'Default' | 'MemConst' | 'MemVolatile' | 'MemConstVolatile'
Default: 'Default'

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

3-105

3 Configuration Parameters

See Also
Memory Sections

3-106

Code Generation Pane: Memory Sections

Validation results
Display the results of memory section validation.

Settings
The code generation software checks and reports whether the currently
chosen package is on the MATLAB path and that the selected memory
sections exist inside the package.

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

3-107

3 Configuration Parameters

Code Generation Pane: AUTOSAR Code Generation
Options

In this section...

“Code Generation: AUTOSAR Code Generation Options Tab Overview” on
page 3-109

“Generate XML file from schema version” on page 3-110

“Maximum SHORT-NAME length” on page 3-111

“Use AUTOSAR compiler abstraction macros” on page 3-112

“Support root-level matrix I/O using one-dimensional arrays” on page 3-113

“Configure AUTOSAR Interface” on page 3-114

3-108

Code Generation Pane: AUTOSAR Code Generation Options

Code Generation: AUTOSAR Code Generation
Options Tab Overview
Parameters for controlling AUTOSAR code generation options.

Configuration
This pane appears only if you specify the autosar.tlc system target file.

Tip
Click the Configure AUTOSAR Interface button to open a dialog box
where you can configure other AUTOSAR options.

See Also

• “Generating Code for AUTOSAR Software Components”

• RTW.AutosarInterface class

• arxml.importer class

• “Code Generation Pane: AUTOSAR Code Generation Options” on page
3-108

3-109

3 Configuration Parameters

Generate XML file from schema version
Select the AUTOSAR schema version to use when generating XML files.

Settings
Default: 3.1

4.0
Use schema version 4.0 (4.0.2)

3.2
Use schema version 3.2 (3.2.1)

3.1
Use schema version 3.1 (3.1.4)

3.0
Use schema version 3.0 (3.0.2)

2.1
Use schema version 2.1 (XSD rev 0017)

Tip
Click the Configure AUTOSAR Interface button to open a dialog box
where you can configure other AUTOSAR options.

Command-Line Information

Parameter: AutosarSchemaVersion
Type: string
Value: '4.0' | '3.2' | '3.1' | '3.0' | '2.1'
Default: '3.1'

See Also
“Generating Code for AUTOSAR Software Components”

3-110

Code Generation Pane: AUTOSAR Code Generation Options

Maximum SHORT-NAME length
Specify maximum length for SHORT-NAME XML elements

Settings
Default: 32

The AUTOSAR standard specifies that the length of SHORT-NAME XML
elements cannot be greater than 32 characters. This option allows you to
specify a maximum length of up to 128 characters.

Command-Line Information

Parameter: AutosarMaxShortNameLength
Type: integer
Value: an integer less or equal to 128
Default: 32

See Also
“Specify Maximum SHORT-NAME Length”

3-111

3 Configuration Parameters

Use AUTOSAR compiler abstraction macros
Specify use of AUTOSAR macros to abstract compiler directives

Settings
Default: Off

On
Software generates code with C macros that are abstracted compiler
directives (near/far memory calls)

Off
Software generates code that does not contain AUTOSAR compiler
abstraction macros.

Command-Line Information

Parameter: AutosarCompilerAbstraction
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also
“Configure AUTOSAR Compiler Abstraction Macros”

3-112

Code Generation Pane: AUTOSAR Code Generation Options

Support root-level matrix I/O using one-dimensional
arrays
Allow root-level matrix I/O

Settings
Default: Off

On
Software supports matrix I/O at the root-level by generating code that
implements matrices as one-dimensional arrays.

Off
Software does not allow matrix I/O at the root-level. If you try to build
a model that has matrix I/O at the root-level, the software produces
an error.

Command-Line Information

Parameter: AutosarMatrixIOAsArray
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also
“Root-Level Matrix I/O”

3-113

3 Configuration Parameters

Configure AUTOSAR Interface
Opens the Configure AUTOSAR Interface dialog box. In this dialog box,
you can add AUTOSAR elements to your Simulink model and map model
components and interfaces to AUTOSAR components and interfaces.

Dependencies
This button is active only if your model uses an attached configuration set. If
your model uses a referenced configuration set, the button is greyed out.

Command-Line Information
To open the Configure AUTOSAR Interface dialog box from the MATLAB
command line, first open the model you want to configure for AUTOSAR,
and then issue the command autosar_ui_launch(model). The model
argument can be a handle to an active model or subsystem, or the name of an
active model or subsystem specified as a string. For example, the following
command opens the Configure AUTOSAR Interface dialog box for use with
the currently active model.

autosar_ui_launch(gcs);

See Also

• “Configure the AUTOSAR Interface”

• “Generating Code for AUTOSAR Software Components”

3-114

Code Generation: Coder Target Pane

Code Generation: Coder Target Pane

In this section...

“Code Generation: Coder Target Pane Overview (previously “IDE Link Tab
Overview”)” on page 3-117

“Coder Target: Tool Chain Automation Tab Overview” on page 3-118

“Build format” on page 3-120

“Build action” on page 3-122

“Overrun notification” on page 3-125

“Function name” on page 3-127

“Configuration” on page 3-128

“Compiler options string” on page 3-130

“Linker options string” on page 3-132

“System stack size (MAUs)” on page 3-134

“System heap size (MAUs)” on page 3-136

3-115

3 Configuration Parameters

In this section...

“Profile real-time execution” on page 3-138

“Profile by” on page 3-140

“Number of profiling samples to collect” on page 3-142

“Maximum time allowed to build project (s)” on page 3-144

“Maximum time allowed to complete IDE operation (s)” on page 3-146

“Export IDE link handle to base workspace” on page 3-147

“IDE link handle name” on page 3-149

“Source file replacement” on page 3-150

3-116

Code Generation: Coder Target Pane

Code Generation: Coder Target Pane Overview
(previously “IDE Link Tab Overview”)
Configure the parameters for:

• Tool Chain Automation — How the coder software interacts with
third-party software build toolchains.

• Target Hardware Resources — The IDE toolchain and properties of
the physical hardware, such as board, operating system, memory, and
peripherals.

See Also

• Coder Target: Tool Chain Automation Tab Overview

• Coder Target: Target Hardware Resources Tab Overview

3-117

3 Configuration Parameters

Coder Target: Tool Chain Automation Tab Overview

The Tool Chain Automation Tab is only visible under the Coder Target pane.

The following table lists the parameters on the Tool Chain Automation Tab.

• “Build format” on page 3-120

• “Build action” on page 3-122

• “Overrun notification” on page 3-125

• “Function name” on page 3-127

• “Configuration” on page 3-128

• “Compiler options string” on page 3-130

• “Linker options string” on page 3-132

• “System stack size (MAUs)” on page 3-134

• “System heap size (MAUs)” on page 3-136

• “Profile real-time execution” on page 3-138

• “Profile by” on page 3-140

3-118

Code Generation: Coder Target Pane

• “Number of profiling samples to collect” on page 3-142

• “Maximum time allowed to build project (s)” on page 3-144

• “Maximum time allowed to complete IDE operation (s)” on page 3-146

• “Export IDE link handle to base workspace” on page 3-147

• “IDE link handle name” on page 3-149

• “Source file replacement” on page 3-150

3-119

3 Configuration Parameters

Build format
Defines how Simulink Coder software responds when you press Ctrl+B to
build your model.

Settings
Default: Project

Project
Builds your model as an IDE project.

Makefile
Creates a makefile and uses it to build your model.

Dependencies
Selecting Makefile removes the following parameters:

• Code Generation

- Profile real-time execution

- Profile by

- Number of profiling samples to collect

• Link Automation

- Maximum time allowed to build project (s)

- Maximum time allowed to complete IDE operation (s)

- Export IDE link handle to base workspace

- IDE link handle name

Command-Line Information

Parameter: buildFormat
Type: string
Value: Project | Makefile
Default: Build_and_execute

3-120

Code Generation: Coder Target Pane

Recommended Settings

Application Setting

Debugging Project

Traceability Project

Efficiency No impact

Safety precaution No impact

See Also
For more information, refer to the “Code Generation Pane: Coder Target”
topic.

3-121

3 Configuration Parameters

Build action
Defines how Simulink Coder software responds when you press Ctrl+B to
build your model.

Settings
Default: Build_and_execute

If you set Build format to Project, select one of the following options:

Build_and_execute
Builds your model, generates code from the model, and then compiles
and links the code. After the software links your compiled code, the
build process downloads and runs the executable on the processor.

Create_project
Directs Simulink Coder software to create a new project in the IDE. The
command line equivalent for this setting is Create.

Archive_library
Invokes the IDE Archiver to build and compile your project, but It does
not run the linker to create an executable project. Instead, the result
is a library project.

Build
Builds a project from your model. Compiles and links the code. Does not
download and run the executable on the processor.

Create_processor_in_the_loop_project
Directs the Simulink Coder code generation process to create PIL
algorithm object code as part of the project build.

If you set Build format to Makefile, select one of the following options:

Create_makefile
Creates a makefile. For example, “.mk”. The command line equivalent
for this setting is Create.

Archive_library
Creates a makefile and an archive library. For example, “.a” or “.lib”.

Build
Creates a makefile and an executable. For example, “.exe”.

3-122

Code Generation: Coder Target Pane

Build_and_execute
Creates a makefile and an executable. Then it evaluates the
execute instruction under the Execute tab in the current XMakefile
configuration.

Dependencies
Selecting Archive_library removes the following parameters:

• Overrun notification

• Function name

• Profile real-time execution

• Number of profiling samples to collect

• Linker options string

• Get from IDE

• Reset

• Export IDE link handle to base workspace

Selecting Create_processor_in_the_loop_project removes the following
parameters:

• Overrun notification

• Function name

• Profile real-time execution

• Number of profiling samples to collect

• Linker options string

• Get from IDE

• Reset

• Export IDE link handle to base workspace with the option set to
export the handle

3-123

3 Configuration Parameters

Command-Line Information

Parameter: buildAction
Type: string
Value: Build | Build_and_execute | Create | Archive_library |
Create_processor_in_the_loop_project
Default: Build_and_execute

Recommended Settings

Application Setting

Debugging Build_and_execute

Traceability Archive_library

Efficiency No impact

Safety precaution No impact

See Also
For more information, refer to the “Code Generation Pane: Coder Target”
topic.

For more information about PIL and its uses, refer to the “Verifying
Generated Code via Processor-in-the-Loop” topic.

3-124

Code Generation: Coder Target Pane

Overrun notification
Specifies how your program responds to overrun conditions during execution.

Settings
Default: None

None
Your program does not notify you when it encounters an overrun
condition.

Print_message
Your program prints a message to standard output when it encounters
an overrun condition.

Call_custom_function
When your program encounters an overrun condition, it executes a
function that you specify in Function name.

Tips

• The definition of the standard output depends on your configuration.

Dependencies
Selecting Call_custom_function enables the Function name parameter.

Setting this parameter to Call_custom_function enables the Function
name parameter.

Command-Line Information

Parameter: overrunNotificationMethod
Type: string
Value: None | Print_message | Call_custom_function
Default: None

3-125

3 Configuration Parameters

Recommended Settings

Application Setting

Debugging Print_message or Call_custom_function

Traceability Print_message

Efficiency None

Safety precaution No impact

See Also
For more information, refer to the “Code Generation Pane: Coder Target”
topic.

3-126

Code Generation: Coder Target Pane

Function name
Specifies the name of a custom function your code runs when it encounters an
overrun condition during execution.

Settings
No Default

Dependencies
This parameter is enabled by setting Overrun notification to
Call_custom_function.

Command-Line Information

Parameter: overrunNotificationFcn
Type: string
Value: no default
Default: no default

Recommended Settings

Application Setting

Debugging String

Traceability String

Efficiency No impact

Safety precaution No impact

See Also
For more information, refer to the “Code Generation Pane: Coder Target”
topic.

3-127

3 Configuration Parameters

Configuration
Sets the Configuration for building your project from the model.

Settings
Default: Custom

Custom
Lets the user apply a specialized combination of build and optimization
settings.

Custom applies the same settings as the Release project configuration
in IDE, except:

• The compiler options do not use optimizations.

• The memory configuration specifies a memory model that uses Far
Aggregate for data and Far for functions.

Debug
Applies the Debug Configuration defined by the IDE to the generated
project and code.

Release
Applies the Release project configuration defined by the IDE to the
generated project and code.

Dependencies
• Selecting Custom disables the reset options for Compiler options string
and Linker options string.

• Selecting Release sets the Compiler options string to the settings
defined by the IDE.

• Selecting Debug sets the Compiler options string to the settings defined
by the IDE.

.

Command-Line Information

Parameter: projectOptions

3-128

Code Generation: Coder Target Pane

Type: string
Value: Custom | Debug | Release
Default: Custom

Recommended Settings

Application Setting

Debugging Custom or Debug

Traceability Custom, Debug, Release

Efficiency Release

Safety precaution No impact

See Also
For more information, refer to the “Code Generation Pane: Coder Target”
topic.

3-129

3 Configuration Parameters

Compiler options string
To determine the degree of optimization provided by the optimizing compiler,
enter the optimization level to apply to files in your project. For details about
the compiler options, refer to your IDE documentation. When you create new
projects, the coder product does not set optimization flags.

With Texas Instruments Code Composer Studio v3.3 and Analog Devices
VisualDSP++, the user interface displays Get From IDE and Reset buttons
next to this parameter. If you have an active project open in the IDE, you
can click Get From IDE to import the compiler option setting from the
current project in the IDE. To reset the compiler option to the default value,
click Reset.

Settings
Default: No default

Tips

• Use spaces between options.

• Verify that the options are valid. The software does not validate the option
string.

• Setting Configuration to Custom applies the Custom compiler options
defined by coder software. Custom does not use optimizations.

• Setting Configuration to Debug applies the debug settings defined by
the IDE.

• Setting Configuration to Release applies the release settings defined
by the IDE.

Command-Line Information

Parameter: compilerOptionsStr
Type: string
Value: Custom | Debug | Release
Default: Custom

3-130

Code Generation: Coder Target Pane

Recommended Settings

Application Setting

Debugging Custom

Traceability Custom

Efficiency No impact

Safety precaution No impact

See Also
For more information, refer to the “Code Generation Pane: Coder Target”
topic.

3-131

3 Configuration Parameters

Linker options string
To specify the options provided by the linker during link time, you enter the
linker options as a string. For details about the linker options, refer to your
IDE documentation. When you create new projects, the coder product does
not set linker options.

With Texas Instruments Code Composer Studio v3.3 and Analog Devices
VisualDSP++, the user interface displays Get From IDE and Reset buttons
next to this parameter. If you have an active project open in the IDE, you can
click Get From IDE to import the linker options string from the current
project in the IDE. To reset the linker options to the default value of no
options, click Reset.

Settings
Default: No default

Tips

• Use spaces between options.

• Verify that the options are valid. The software does not validate the
options string.

Dependencies
Setting Build action to Archive_library removes this parameter.

Command-Line Information

Parameter: linkerOptionsStr
Type: string
Value: valid linker option
Default: none

3-132

Code Generation: Coder Target Pane

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

See Also
For more information, refer to the “Code Generation Pane: Coder Target”
topic.

3-133

3 Configuration Parameters

System stack size (MAUs)
Enter the amount of memory that is available for allocating stack data.
Block output buffers are placed on the stack until the stack memory is fully
allocated. After that, the output buffers go in global memory.

This parameter is used in targets to allocate the stack size for the generated
application. For example, with embedded processors that are not running an
operating system, this parameter determines the total stack space that can be
used for the application. For operating systems such as Linux or VxWorks,
this value specifies the stack space allocated per thread.

This parameter also affects the “Maximum stack size (bytes)” parameter,
located in the Optimization > Signals and Parameters pane.

Settings
Default: 8192

Minimum: 0

Maximum: Available memory

• Enter the stack size in minimum addressable units (MAUs). An MAU is
typically 1 byte, but its size can vary by target processor.

• The software does not verify the value you entered is valid.

Dependencies
Setting Build action to Archive_library removes this parameter.

When you set the System target file parameter on the Code Generation
pane to idelink_ert.tlc or idelink_grt.tlc, the software sets the
Maximum stack size parameter on the Optimization > Signals and
Parameters pane to Inherit from target and makes it non-editable.
In that case, the Maximum stack size parameter compares the value of
(System stack size/2) with 200,000 bytes and uses the smaller of the two
values.

3-134

Code Generation: Coder Target Pane

Command-Line Information

Parameter: systemStackSize
Type: int
Default: 8192

Recommended Settings

Application Setting

Debugging int

Traceability int

Efficiency int

Safety precaution No impact

See Also
For more information, refer to the “Code Generation Pane: Coder Target”
topic.

3-135

3 Configuration Parameters

System heap size (MAUs)
Set the default heap size that the target processor reserves for dynamic
memory allocation.

The target processor uses this heap for functions like printf() and system
services code.

The following IDEs use this parameter:

• Analog Devices VisualDSP++

• Green Hills MULTI

• IAR Embedded Workbench

• Wind River Diab/GCC (makefile generation only)

Settings
Default: 8192

Minimum: 0

Maximum: Available memory

• Enter the heap size in minimum addressable units (MAUs). An MAU is
typically 1 byte, but its size can vary by target processor.

• The software does not verify that your size is valid. Be sure that you enter
an acceptable value.

Dependencies
Setting Build action to Archive_library removes this parameter.

Command-Line Information

Parameter: systemHeapSize
Type: int
Default: 8192

3-136

Code Generation: Coder Target Pane

Recommended Settings

Application Setting

Debugging int

Traceability int

Efficiency int

Safety precaution No impact

See Also
For more information, refer to the “Code Generation Pane: Coder Target”
topic.

3-137

3 Configuration Parameters

Profile real-time execution
Enables real-time execution profiling in the generated code by adding
instrumentation for task functions or atomic subsystems.

Settings
Default: Off

On
Adds instrumentation to the generated code to support execution
profiling and generate the profiling report.

Off
Does not instrument the generated code to produce the profile report.

Dependencies
This parameter adds Number of profiling samples to collect and Profile
by.

Selecting this parameter enables Export IDE link handle to base
workspace and makes it non-editable, since the coder software must create a
handle.

Setting Build action to Archive_library or
Create_processor_in_the_loop project removes this parameter.

Command-Line Information

Parameter: ProfileGenCode
Type: string
Value: 'on' | 'off'
Default: 'off'

3-138

Code Generation: Coder Target Pane

Recommended Settings

Application Setting

Debugging On

Traceability On

Efficiency No impact

Safety precaution No impact

See Also
For more information, refer to the “Code Generation Pane: Coder Target”
topic.

For more information about using profiling, refer to the “profile” and “Profiling
Code Execution in Real-Time” topics..

3-139

3 Configuration Parameters

Profile by
Defines which execution profiling technique to use.

Settings
Default: Task

Task
Profiles model execution by the tasks in the model.

Atomic subsystem
Profiles model execution by the atomic subsystems in the model.

Dependencies
Selecting Real-time execution profiling enables this parameter.

Command-Line Information

Parameter: profileBy
Type: string
Value: Task | Atomic subsystem
Default: Task

Recommended Settings

Application Setting

Debugging Task or Atomic subsystem

Traceability Archive_library

Efficiency No impact

Safety precaution No impact

See Also
For more information, refer to the “Code Generation Pane: Coder Target”
topic.

3-140

Code Generation: Coder Target Pane

For more information about PIL and its uses, refer to the “Verifying
Generated Code via Processor-in-the-Loop” topic.

For more information about using profiling, refer to the “profile” and “Profiling
Code Execution in Real-Time” topics.

3-141

3 Configuration Parameters

Number of profiling samples to collect
Specify the size of the buffer that holds the profiling samples. Enter a value
that is 2 times the number of profiling samples.

Each task or subsystem execution instance represents one profiling sample.
Each sample requires two memory locations, one for the start time and one
for the end time. Consequently, the size of the buffer is twice the number
of samples.

Sample collection begins with the start of code execution and ends when the
buffer is full.

The profiling data is held in a statically sited buffer on the target processor.

Settings
Default: 100

Minimum: 2

Maximum: Buffer capacity

Tips

• Data collection stops when the buffer is full, but the application and
processor continue running.

• Real-time task execution profiling works with hardware only. Simulators
do not support the profiling feature.

Dependencies
This parameter is enabled by Profile real-time execution.

Command-Line Information

Parameter:ProfileNumSamples
Type: int
Value: Positive integer
Default: 100

3-142

Code Generation: Coder Target Pane

Recommended Settings

Application Setting

Debugging 100

Traceability No impact

Efficiency No impact

Safety precaution No impact

See Also
For more information, refer to the “Code Generation Pane: Coder Target”
topic.

3-143

3 Configuration Parameters

Maximum time allowed to build project (s)
Specifies how long, in seconds, the software waits for the project build process
to return a completion message.

Settings
Default: 1000

Minimum: 1

Maximum: No limit

Tips

• The build process continues even if MATLAB does not receive the
completion message in the allotted time.

• This timeout value does not depend on the global timeout value in a
IDE_Obj object or the Maximum time allowed to complete IDE
operation timeout value.

Dependency
This parameter is disabled when you set Build action to Create_project.

Command-Line Information

Parameter:ideObjBuildTimeout
Type: int
Value: Integer greater than 0
Default: 100

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

3-144

Code Generation: Coder Target Pane

Application Setting

Efficiency No impact

Safety precaution No impact

See Also
For more information, refer to the “Code Generation Pane: Coder Target”
topic.

3-145

3 Configuration Parameters

Maximum time allowed to complete IDE operation (s)
specifies how long, in seconds, the software waits for IDE functions, such as
read or write, to return completion messages.

Settings
Default: 10

Minimum: 1

Maximum: No limit

Tips

• The IDE operation continues even if MATLAB does not receive the message
in the allotted time.

• This timeout value does not depend on the global timeout value in a
IDE_Obj object or the Maximum time allowed to build project (s)
timeout value

Command-Line Information

Parameter:'ideObjTimeout'
Type: int
Value:
Default: 10

Recommended Settings

Application Setting

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact

3-146

Code Generation: Coder Target Pane

See Also
For more information, refer to the “Code Generation Pane: Coder Target”
topic.

Export IDE link handle to base workspace
Directs the software to export the IDE_Obj object to your MATLAB workspace.

Settings
Default: On

On
Directs the build process to export the IDE_Obj object created to your
MATLAB workspace. The new object appears in the workspace browser.
Selecting this option enables the IDE link handle name option.

Off
prevents the build process from exporting the IDE_Obj object to your
MATLAB software workspace.

Dependency
Selecting Profile real-time execution enables Export IDE link handle
to base workspace and makes it non-editable, since the coder software
must create a handle.

Selecting Export IDE link handle to base workspace enables IDE link
handle name.

Command-Line Information

Parameter: exportIDEObj
Type: string
Value: 'on' | 'off'
Default: 'on'

3-147

3 Configuration Parameters

Recommended Settings

Application Setting

Debugging On

Traceability On

Efficiency No impact

Safety precaution No impact

See Also
For more information, refer to the “Code Generation Pane: Coder Target”
topic.

3-148

Code Generation: Coder Target Pane

IDE link handle name
specifies the name of the IDE_Obj object that the build process creates.

Settings
Default: IDE_Obj

• Enter a valid C variable name, without spaces.

• The name you use here appears in the MATLAB workspace browser to
identify the IDE_Obj object.

• The handle name is case sensitive.

Dependency
This parameter is enabled by Export IDE link handle to base workspace.

Command-Line Information

Parameter: ideObjName
Type: string
Value:
Default: IDE_Obj

Recommended Settings

Application Setting

Debugging Enter a valid C program variable name,
without spaces

Traceability No impact

Efficiency No impact

Safety precaution No impact

See Also
For more information, refer to the “Code Generation Pane: Coder Target”
topic.

3-149

3 Configuration Parameters

Source file replacement
Selects the diagnostic action to take if the coder software detects conflicts that
you are replacing source code with custom code.

Settings
Default: warn

none
Does not generate warnings or errors when it finds conflicts.

warning
Displays a warning.

error
Terminates the build process and displays an error message that
identifies which file has the problem and suggests how to resolve it.

Tips

• The build operation continues if you select warning and the software
detects custom code replacement. You see warning messages as the build
progresses.

• Select error the first time you build your project after you specify custom
code to use. The error messages can help you diagnose problems with your
custom code replacement files.

• Select none when you do not want to see multiple messages during your
build.

• The messages apply to Simulink Coder Custom Code replacement options
as well.

Command-Line Information

Parameter: DiagnosticActions
Type: string
Value: none | warning | error
Default: warning

3-150

Code Generation: Coder Target Pane

Recommended Settings

Application Setting

Debugging error

Traceability error

Efficiency warning

Safety precaution error

See Also
For more information, refer to the “Code Generation Pane: Coder Target”
topic.

3-151

3 Configuration Parameters

Code Generation: Target Hardware Resources Pane

In this section...

“Code Generation: Coder Target Pane Overview (Target Hardware
Resources)” on page 3-154

“Coder Target: Target Hardware Resources Tab Overview” on page 3-155

“IDE/Tool Chain” on page 3-156

“Target Hardware Resources: Board Tab” on page 3-158

“Target Hardware Resources: Memory Tab” on page 3-162

“Target Hardware Resources: Section Tab” on page 3-165

“Target Hardware Resources: DSP/BIOS Tab” on page 3-169

“Target Hardware Resources: Peripherals Tab” on page 3-172

“Clocking” on page 3-175

“ADC” on page 3-178

“COMP” on page 3-182

3-152

Code Generation: Target Hardware Resources Pane

In this section...

“eCAN_A, eCAN_B” on page 3-183

“eCAP” on page 3-185

“ePWM” on page 3-186

“I2C” on page 3-188

“SCI_A, SCI_B, SCI_C” on page 3-195

“SPI_A, SPI_B, SPI_C, SPI_D” on page 3-198

“eQEP” on page 3-201

“Watchdog” on page 3-203

“GPIO” on page 3-205

“Flash_loader” on page 3-209

“DMA_ch[#]” on page 3-211

“LIN” on page 3-225

“Add Processor Dialog Box” on page 3-232

“Target Hardware Resources: Linux Tab” on page 3-234

“Target Hardware Resources: VxWorks Tab” on page 3-236

3-153

3 Configuration Parameters

Code Generation: Coder Target Pane Overview
(Target Hardware Resources)
Configure the parameters for:

• Tool Chain Automation — How the coder software interacts with
third-party software build toolchains.

• Target Hardware Resources — The IDE toolchain and properties of
the physical hardware, such as board, operating system, memory, and
peripherals.

See Also

• Coder Target: Tool Chain Automation Tab Overview

• Coder Target: Target Hardware Resources Tab Overview

3-154

Code Generation: Target Hardware Resources Pane

Coder Target: Target Hardware Resources Tab
Overview

The Target Hardware Resources tab is only visible under the Coder Target
pane.

The following table lists the parameters and tabs on the Target Hardware
Resources tab.

• “IDE/Tool Chain” on page 3-156

• “Target Hardware Resources: Board Tab” on page 3-158

• “Target Hardware Resources: Memory Tab” on page 3-162

• “Target Hardware Resources: Section Tab” on page 3-165

• “Target Hardware Resources: Peripherals Tab” on page 3-172

3-155

3 Configuration Parameters

IDE/Tool Chain
Select the IDE or software build tool chain you are using from the list of
options. This action applies parameter values for a specific IDE or tool chain.

Located on the Target Hardware Resources tab.

Settings

Analog Devices VisualDSP++
This option is available after you install the Embedded Coder Support
Package for Analog Devices DSPs. See “Add Support for Hardware
and Software”.

Sets the Target Hardware Resources parameters for Analog Devices
VisualDSP++ IDE.

Eclipse
Sets the Target Hardware Resources parameters for Eclipse IDE.

IAR Embedded Workbench
Sets the Target Hardware Resources parameters for IAR Embedded
Workbench IDE.

Texas Instruments Code Composer Studio
Sets the Target Hardware Resources parameters for Texas Instruments
Code Composer Studio v3.3 IDE.

Texas Instruments Code Composer Studio v4 (makefile generation
only)

Sets the Target Hardware Resources parameters for Texas Instruments
Code Composer Studio v4 IDE.

Texas Instruments Code Composer Studio v5 (makefile generation
only)

Sets the Target Hardware Resources parameters for Texas Instruments
Code Composer Studio v5 IDE.

Wind River Diab/GCC (makefile generation only)
Sets the Target Hardware Resources parameters for Wind River
Diab/GCC tool chain.

3-156

Code Generation: Target Hardware Resources Pane

Green Hills MULTI
This option is available after you install the Embedded Coder Support
Package for Green Hills MULTI. See “Add Support for Hardware and
Software”.

Sets the Target Hardware Resources parameters for Green Hills
MULTI IDE.

Xilinx ISE Design Suite
This option is available after you install the Embedded Coder Support
Package for Xilinx® Zynq®-7000 Platform. See “Add Support for
Hardware and Software”.

Sets the Target Hardware Resources parameters for Xilinx ISE Design
Suite.

Get more...
Launches the Support Package Installer. See “Add Support for
Hardware and Software”.

See Also
“Add Support for Hardware and Software”

3-157

3 Configuration Parameters

Target Hardware Resources: Board Tab
The following options appear on the Board pane, which has separate panels
for Board Properties, Board Support, and IDE Support labels.

Board
Select your target board from the list of options. Selecting a specific
board sets the value for the Processor parameter. If you select a
custom board, also set the Processor parameter.

Processor
The Board and Processor settings apply default values to many of the
parameters, such as those under the Memory and Section tabs.

If the coder product supports an operating system for the processor, it
enables the Operating system option.

If you are using the Eclipse IDE and set Processor to Generic/Custom,
open the model Configuration Parameters and use the Hardware
Implementation pane to define the custom hardware. With this
approach, hardware support depends on the Simulink Coder product,
not on the coder product. For more information, see “Hardware
Implementation Pane”.

Note Selecting or reselecting a processor resets the solver and some
processor-specific parameters to their default values.

Add New
Clicking Add new opens a new dialog box where you specify
configuration information for a processor that is not on the Processor
list.

For details about the New Processor dialog box, refer to “Add Processor
Dialog Box” on page 3-232.

Delete
Clicking Delete, removes a processor that you added to the Processor
list. You cannot delete the standard processors.

3-158

Code Generation: Target Hardware Resources Pane

CPU Clock
Enter the actual clock rate the board uses. This action does not change
the rate on the board. Rather, the code generation process requires
this information to produce code that runs on the hardware. Setting
this value incorrectly causes timing and profiling errors when you run
the code on the hardware.

The timer uses the value of CPU clock to calculate the time for each
interrupt. For example, a model with a sine wave generator block
running at 1 kHz uses timer interrupts to generate sine wave samples
at the specified rate. For example, using 100 MHz, the timer calculates
the sine generator interrupt period as follows:

• Sine block rate = 1 kHz, or 0.001 s/sample

• CPU clock rate = 100 MHz, or 0.000000001 s/sample

To create sine block interrupts at 0.001 s/sample requires:

100,000,000/1000 = 1 Sine block interrupt per 100,000 clock ticks

Board Support
Select the following parameters and edit their values in the text box
on the right:

• Source files— Enter the full paths to source code files.

• Include paths — Add paths to include files.

• Libraries— Identify specific libraries for the processor. Required
libraries appear on the list by default. To add more libraries, entering
the full path to the library with the library file in the text area.

• Initialize functions — If your project requires an initialize
function, enter it in this field. By default, this parameter is empty.

• Terminate functions — Enter a function to run when a program
terminates. The default setting is not to include a specific termination
function.

3-159

3 Configuration Parameters

Note Invalid or incorrect entries in these fields can cause errors during
code generation. When you enter a file path, library, or function, the
block does not verify that the path or function exists or is valid.

When entering a path to a file, library, or other custom code, use the
following string in the path to refer to the IDE installation folder.

$(Install_dir)

Enter new paths or files (custom code items) one entry per line. Include
the full path to the file for libraries and source code. Support options
do not support functions that use return arguments or values. These
parameters accept only functions of type void fname void as valid
as entries.

You can also set up environment variables to use as folder path tokens.
For example, if you set up an environment called USER_VAR, you can use
it as a token when you define a path in Coder Target > Target Hardware
Resources. For example: $(USER_VAR)\myinstal\foo.c.

Operating System
Select an operating system or RTOS for your target. If your target
platform supports an operating system, the software enables the
Operating system parameter. Otherwise, the software disables this
option.

Get from IDE
This button only appears when you are using Texas Instruments Code
Composer Studio 3.3 IDE or Analog Devices VisualDSP++ IDE:

• With Texas Instruments Code Composer Studio 3.3 IDE, the Get
from IDE button imports the current Board Name and Processor
Name from the IDE.

• With Analog Devices VisualDSP++ IDE, the Get from IDE button
imports the current Session Name and Processor Name from the
IDE.

Use the Get from IDE button to update the Coder Target > Target
Hardware Resources, the IDE, and the hardware board so they refer to

3-160

Code Generation: Target Hardware Resources Pane

the same processor. Otherwise, during code generation, the software
generates a warning similar to the following message:

Target Hardware Resources tab specifies that the board named
'<boardname1>' will be used to run generated code.

However, since only board named '<boardname2>' is found
in your system, that board will be used.

Board Name
Board Name appears after you click Get from IDE. Select the board
you are using. Match Board Name with the Board option near the top
of the Board pane.

Processor Name
Processor Name appears after you click Get from IDE. If the board
you selected in Board Name has multiple processors, select the
processor you are using. MatchProcessor Name with the Processor
option near the top of the Board pane.

Note Click Apply to update the board and processor description under IDE
Support.

3-161

3 Configuration Parameters

Target Hardware Resources: Memory Tab

After selecting a board, specify the layout of the physical memory on your
processor and board to determine how to use it for your program.

The Memory pane contains memory options for:

• Physical Memory— Specifies the processor and board memory map

• Cache Configuration — Select a cache configuration where available,
such as L2 cache, and select one of the corresponding configuration options,
such as 32 kb.

For more information about memory segments and memory allocation, consult
the reference documentation for the IDE or processor.

The Physical Memory table shows the memory segments or memory
banks available on the board and processor. By default, Target Hardware
Resources tab show the memory segments found on the selected processor.
In addition, the Memory pane on Target Hardware Resources tab shows
the memory segments available on the board, but external to the processor.
Target Hardware Resources tab set default starting addresses, lengths, and

3-162

Code Generation: Target Hardware Resources Pane

contents of the default memory segments. The default memory segments
for each processor and board differ.

Click Add to add physical memory segments to theMemory banks table.

After you add the segment, you can configure the starting address, length,
and contents for the new segment.

Name
To change the memory segment name, click the name, and then type
the new name. Names are case sensitive. NewSegment is not the same
as newsegment or newSegment.

Note You cannot rename default processor memory segments (name in
gray text).

Address
Address reports the starting address for the memory segment showing
in Name. Address entries appear in hexadecimal format and are
limited only by the board or processor memory.

Length
From the starting address, Length sets the length of the memory
allocated to the segment in Name. As in all memory entries, specify
the length in hexadecimal format, in minimum addressable data units
(MADUs).

For the C6000 processor family, the MADU requires inputs of 8 bytes,
one word.

Contents
Configure the segment to store Code, Data, or Code & Data. Changing
processors changes the options for each segment.

You can add and use as many segments of each type as you need, within
the limits of the memory on your processor. Every processor must have
a segment that holds code, and a segment that holds data.

3-163

3 Configuration Parameters

Add
Click Add to add a new memory segment to the processor memory
map. When you click Add, a new segment name appears, for example
NEWMEM1, in Name and on theMemory banks table. In Name, change
the temporary name NEWMEM1 by entering the new segment name.
Entering the new name, or clicking Apply, updates the temporary name
on the table to the name you enter.

Remove
This option lets you remove a memory segment from the memory map.
Select the segment to remove on the Memory banks table, and click
Remove to delete the segment.

Cache (Configuration)
When the Processor on the Board pane supports a cache memory
structure, the dialog box displays a table of Cache parameters. You can
use this table to configure the cache as SRAM and partial cache. Both
the data memory and the program share this second-level memory.

If your processor supports the two-level memory scheme, this option
enables the L2 cache on the processor.

Some processors support code base memory organization. For example,
you can configure part of internal memory as code.

Cache level lets you select one of the available cache levels to configure
by selecting one of its configurations. For example, you can select L2
cache level, and choose one of its configurations, such as 32 kb.

3-164

Code Generation: Target Hardware Resources Pane

Target Hardware Resources: Section Tab

Options on this pane specify where program sections appear in memory.
Program sections differ from memory segments—sections comprise portions
of the executable code stored in contiguous memory locations. Commonly
used sections include .text, .bss, .data, and .stack. Some sections relate
to the compiler, and some can be custom sections.

For more information about program sections and objects, refer to the online
help for your IDE.

Within the Section pane, you configure the allocation of sections for Compiler
and Custom needs.

This table provides brief definitions of the kinds of sections in the Compiler
sections and Custom sections lists in the pane. all sections do not appear
on all lists.

3-165

3 Configuration Parameters

String Section List Description of the Section Contents

.bss Compiler Static and global C variables in the code

.cinit Compiler Tables for initializing global and static
variables and constants

.cio Compiler Standard I/O buffer for C programs

.const Compiler Data defined with the C qualifier and string
constants

.data Compiler Program data for execution

.far Compiler Variables, both static and global, defined
as far variables

.pinit Compiler Load allocation of the table of global object
constructors section

.stack Compiler The global stack

.switch Compiler Jump tables for switch statements in the
executable code

.sysmem Compiler Dynamically allocated object in the code
containing the heap

.text Compiler Load allocation for the literal strings,
executable code, and compiler generated
constants

You can learn more about memory sections and objects in the online help
for your IDE.

Default Sections
When you highlight a section on the list, Description show a brief
description of the section. Also, Placement shows you the memory
allocation of the section.

Description
Provides a brief explanation of the contents of the selected entry on the
Compiler sections list.

3-166

Code Generation: Target Hardware Resources Pane

Placement
Shows the allocation of the selected Compiler sections entry in
memory. You change the memory allocation by selecting a different
location from the Placement list. The list contains the memory
segments as defined in the physical memory map on theMemory pane.
Select one of the listed memory segments to allocate the highlighted
compiler section to the segment.

To see a description of the placement item, hover your mouse pointer
over the item for a few moments.

Custom Sections
If your program uses code or data sections that are not in the Compiler
sections, add the new sections to Custom sections.

Sections
This window lists data sections that are not in the Compiler sections.

Placement
With your new section added to the Name list, select the memory
segment to which to add your new section. Within the restrictions
imposed by the hardware and compiler, you can select a segment that
appears on the list.

Add
Clicking Add lets you configure a new entry to the list of custom
sections. When you click Add, the block provides a new temporary
name in Name. Enter the new section name to add the section to the
Custom sections list. After typing the new name, click Apply to add
the new section to the list. You can also click OK to add the section to
the list and close the dialog box.

Name
Enter the name of the new section here. To add a new section, click Add.
Then, replace the temporary name with the name to use. Although the
temporary name includes a period at the beginning you do not need
to include the period in your new name. Names are case sensitive.
NewSection is not the same as newsection, or newSection.

Contents
Identify whether the contents of the new section are Code, Data, or Any.

3-167

3 Configuration Parameters

Remove
To remove a section from the Custom sections list, select the section
and click Remove.

3-168

Code Generation: Target Hardware Resources Pane

Target Hardware Resources: DSP/BIOS Tab
The DSP/BIOS pane is available if the two following conditions are true:

• You are using Texas Instruments CCS IDE.

• You set the Target Hardware Resources tab Processor option to a C6000
processors that support DSP/BIOS.

Selecting DSP/BIOS for Operating system on the Board pane enables this
pane.

Use the Heap, Placement, and TSK task manager properties sections of
this pane to configure various modules of DSP/BIOS.

For more information about tasks, refer to the Code Composer Studio online
help.

3-169

3 Configuration Parameters

Note To enable the Heap option, select DSP/BIOS for Operating system
on the Board pane.

Heap
The heap section contains the Create, Label, and Size options to
manage the heap.

Create
If your processor supports using a heap, selecting this option enables
creating the heap. Define the heap using the Label and Size options.
Create becomes unavailable for processors that do not provide a heap
or do not allow you to configure the heap.

The location of the heap in the memory segment is not under your
control. The only way to control the location of the heap in a segment
is to make the segment and the heap the same size. Otherwise, the
compiler determines the location of the heap in the segment.

Size
After you select Create, this option lets you specify the size of the heap
in words. Enter the number of words in decimal format. When you enter
the heap size in decimal words, the system converts the decimal value
to hexadecimal format. You can enter the value directly in hexadecimal
format as well. Processors can support different maximum heap sizes.

Label
Selecting Create enables this option. Enter your label for the heap
in the Heap option.

Note When you enter a label, the block does not verify that the label
is valid. An invalid label in this field can cause errors during code
generation.

Placement
Use the Data object and Code object options in Placement to
configure the memory allocation of the selected Heap list entry.

3-170

Code Generation: Target Hardware Resources Pane

Data object
Specify where to place new data objects in memory.

Code object
Specify where to place new code objects in memory.

TSK task manager properties
Use the Default stack size (bytes), Stack segment for static
tasks, and Stack segment for dynamic tasks options in TSK task
manager properties to configure the task manager properties.

Default stack size (bytes)
DSP/BIOS uses a stack to save and restore variables and CPU context
during thread preemption for task threads. This option sets the size of
the DSP/BIOS stack in bytes allocated for each task. The software sets
the default value to 4096 bytes. The maximum value is determined by
the processor. Set the stack size so that tasks do not use more memory
than you allocate. Exceeding the stack memory size can cause the
task to write into other memory or data areas, causing unpredictable
behavior.

Stack segment for static tasks
Use this option to specify where to allocate the stack for static tasks.
Tasks that your program uses often are good candidates for static tasks.
Infrequently used tasks usually work best as dynamic tasks.

The list offers IDRAM for locating the stack in memory. The Memory
pane provides more options for the physical memory on the processor.

Stack segment for dynamic tasks
Like static tasks, dynamic tasks use a stack as well. Setting this option
specifies where to locate the stack for dynamic tasks. In this case,
MEM_NULL is the only valid stack location in memory. Allocate system
heap storage to use this option. Specify the system heap configuration
on the “Target Hardware Resources: Memory Tab” on page 3-162.

3-171

3 Configuration Parameters

Target Hardware Resources: Peripherals Tab

The Peripherals pane is only visible under the Target Hardware Resources
tab, when Board and Processor parameters are configured for a C2000
processors.

To set the attributes for a peripheral, select the peripheral from the
Peripherals list and then set the attribute options on the right side.

The following table describes all the peripherals provided on the Peripherals
list. Some peripherals are not available on some C2000 processors.

3-172

Code Generation: Target Hardware Resources Pane

Peripheral
Name

Description

“Clocking” on
page 3-175

Clocking parameters to adjust clock settings and match
custom oscillator frequencies

“ADC” on
page 3-178

Analog-to-Digital Converter (ADC) parameters

“COMP” on
page 3-182

Parameters to assign COMP pins to GPIO pins.

“eCAN_A,
eCAN_B” on
page 3-183

Enhanced Controller Area Network (eCAN) parameters for
modules A or B

“eCAP” on
page 3-185

Enhanced Capture (eCAP) parameters for pin mapping to
GPIO

“ePWM” on
page 3-186

Enhanced Pulse Width Modulation (ePWM) parameters for
pin mapping to GPIO

“I2C” on page
3-188

Inter-Integrated Circuit (I2C) parameters for
communications

“SCI_A,
SCI_B,
SCI_C” on
page 3-195

Serial Communications Interface (SCI) parameters for
communications with modules A, B, or C

“SPI_A,
SPI_B,
SPI_C,
SPI_D” on
page 3-198

Serial Peripheral Interface (SPI) parameters for
communications with module A, B, C, or D

“eQEP” on
page 3-201

Enhanced Quadrature Encoder Pulse (eQEP) parameters
for pin mapping to GPIO

“Watchdog”
on page 3-203

Watchdog enable/disable and timing

“GPIO” on
page 3-205

General Purpose Input Output (GPIO) parameters for input
qualification types

3-173

3 Configuration Parameters

Peripheral
Name

Description

“Flash_loader”
on page 3-209

Flash memory loader/programmer

“DMA_ch[#]”
on page 3-211

Direct Memory Access (DMA) parameters for channels 1
to N

“LIN” on page
3-225

Local Interconnect Network (LIN) parameters for
communications

3-174

Code Generation: Target Hardware Resources Pane

Clocking

Use the clocking options to help you achieve the CPU Clock rate specified on
the board. The default clocking values run the CPU clock (CLKIN) at its
maximum frequency. The parameters use the external oscillator frequency on
the board (OSCCLK) that is recommended by the processor vendor.

You can get feedback on the closest achievable SYSCLKOUT value with the
specified Oscillator clock frequency by selecting the Auto set PLL based
on OSCCLK and CPU clock check box. Alternatively, you can manually
specify the PLL value for the SYSCLKOUT value calculation.

Change the clocking values if:

• You want to change the CPU frequency.

• The external oscillator frequency differs from the value recommended by
the manufacturer.

3-175

3 Configuration Parameters

To determine the CPU frequency (CLKIN), use the following equation:

CLKIN = (OSCCLK * PLLCR) / (DIVSEL or CLKINDIV)

• CLKIN is the frequency at which the CPU operates, also known as the
CPU clock.

• OSCCLK is the frequency of the oscillator.

• PLLCR is the PLL Control Register value.

• CLKINDIV is the Clock in Divider.

• DIVSEL is the Divider Select.

The availability of the DIVSEL or CLKINDIV parameters changes depending
on the processor that you select. If neither parameter is available, use the
following equation:

CLKIN = (OSCCLK * PLLCR) / 2

In the CPU clock parameter of the Coder Target > Target Hardware
Resources tab, enter the resulting CPU clock frequency (CLKIN).

For more information, see the “PLL-Based Clock Module” section in the Texas
Instruments Reference Guide for your processor.

Use internal oscillator
Use the internal zero pin oscillator on the CPU. This parameter is
enabled by default.

Oscillator clock (OSCCLK) frequency in MHz
The oscillator frequency that is used in the processor.

Auto set PLL based on OSCCLK and CPU clock
The option that helps you set the PLL control register value
automatically. When you select this check box, the values in the PLLCR,
DIVSEL , and the Closest achievable SYSCLKOUT in MHz parameters
are automatically calculated based on the CPU Clock value entered on
the Board.

3-176

Code Generation: Target Hardware Resources Pane

PLL control register (PLLCR)
If you select the Auto set PLL based on OSCCLK and CPU clock
check box, the auto calculated control register value achieves the
specified CPU Clock value, based on the Oscillator clock frequency.
Otherwise, you can select a value for PLL control register.

Clock divider (DIVSEL)
If you select the Auto set PLL based on OSCCLK and CPU clock
check box, the auto calculated clock divider value achieves the specified
CPU Clock value based on the Oscillator clock frequency. Otherwise,
you can select a value for Clock divider (DIVSEL).

Closest achievable SYSCLKOUT in MHz =
(OSCCLK*PLLCR)/DIVSELClosest achievable SYSCLKOUT in MHz =
(OSCCLK*PLLCR)/CLKINDIV

The auto calculated feedback value that matches most closely to the
desired CPU Clock value on the board, based on the values of OSCCLK,
PLLCR, and the DIVSEL.

Low-Speed Peripheral Clock Prescaler (LSPCLK)
The value by which to scale the LSPCLK. This value is based on the
SYSCLKOUT.

Low-Speed Peripheral Clock (LSPCLK) in MHz
This value is calculated based on LSPCLK Prescaler. Example: SPI
uses a LSPCLK.

High-Speed Peripheral Clock Prescaler (HSPCLK)
The value by which to scale the HSPCLK. This value is based on the
SYSCLKOUT.

High-Speed Peripheral Clock (HSPCLK) in MHZ
This value is calculated based on HSPCLK Prescaler. Example: ADC
uses a HSPCLK.

3-177

3 Configuration Parameters

ADC

The high-speed peripheral clock (HSPCLK) controls the internal timing of the
ADC module. The ADC derives the operating clock speed from the HSPCLK
speed in several prescaler stages. For more information about configuring
these scalers, refer to “Configuring ADC Parameters for Acquisition Window
Width”.

You can set the following parameters for the ADC clock prescaler:

ADC clock prescaler (ADCCLK)
The option to select the ADCCLK divider for processors c2802x, c2803x,
c2806x.

3-178

Code Generation: Target Hardware Resources Pane

ADC clock frequency in MHz
The clock frequency for ADC. This is a read-only field and the value in
this field is based on the value you select in ADC clock prescaler
(ADCCLK).

ADC overlap of sample and conversion (ADCNONOVERLAP)
The option to enable or disable overlap of sample and conversion.

ADC clock prescaler (ADCLKPS)
The HSPCLK speed is divided by this 4-bit value as the first step in
deriving the core clock speed of the ADC. The default value is 3.

ADC Core clock prescaler (CPS)
After dividing the HSPCLK speed by the ADC clock prescaler
(ADCLKPS) value, setting the ADC clock prescaler (ADCLKPS)
parameter to 1, the default value, divides the result by 2.

ADC Module clock (ADCCLK = HSPCLK/ADCLKPS*2)/(CPS+1)) in
MHz

The clock to the ADC module and indicates the ADC operating clock
speed.

Acquisition window prescaler (ACQ_PS)
This value does not directly alter the core clock speed of the ADC. It
serves to determine the width of the sampling or acquisition period. The
higher the value, the wider is the sampling period. The default value
is 4.

Acquisition window size ((ACQ_PS+1)/ADCCLK) in micro
seconds/channel

Acquisition window size determines for what time duration the
sampling switch is closed. The width of SOC pulse is ADCTRL1[11:8] +
1 times the ADCLK period.

Use external reference 2.048VExternal reference
By default, an internally generated band gap voltage reference supplies
the ADC logic. However, depending on application requirements, you
can enable the external reference so the ADC logic uses an external
voltage reference instead. Select the checkbox to use a 2.048V external
voltage reference.

3-179

3 Configuration Parameters

Continuous mode
When the ADC generates an end of conversion (EOC) signal, generate
an ADCINT# interrupt whether the previous interrupt flag has been
acknowledged or not.

ADC offset correction (OFFSET_TRIM: -256 to 255)
The 280x ADC supports offset correction via a 9-bit value that it adds or
subtracts before the results are available in the ADC result registers.
Timing for results is not affected. The default value is 0.

VREFHI
VREFLO

(For Piccolo processors) When you disable the Use external reference
2.048V or External reference option, the ADC logic uses a fixed
0-volt to 3.3-volt input range and the software disables VREFHI
and VREFLO. To interpret the ADC input as a ratiometric signal,
select the External reference option. Then set values for the high
voltage reference (VREFHI) and the low voltage reference (VREFLO).
VREFHI uses the external ADCINA0 pin, and VREFLO uses the
internal GND.

INT pulse control
(For Piccolo processors) Use this option to configure when the ADC sets
ADCINTFLG .ADCINTx relative to the SOC and EOC Pulses. Select
Late interrupt pulse or Early interrupt pulse.

SOC high priority
(For Piccolo processors) Use this option to enable and configure SOC
high priority mode . In all in round robin mode, the default
selection, the ADC services each SOC interrupt in a numerical sequence.

Choose one of the high priority selections to assign high priority to
one or more of the SOCs. In this mode, the ADC operates in round robin
mode until it receives a high priority SOC interrupt. The ADC finishes
servicing the current SOC, services the high priority SOCs, and then
returns to the next SOC in the round robin sequence.

For example, the ADC is servicing SOC8 when it receives a high priority
interrupt on SOC1. The ADC completes servicing SOC8, services SOC1,
and then services SOC9.

3-180

Code Generation: Target Hardware Resources Pane

XINT2SOC external pin
(For Piccolo processors) Select the pin to which the ADC sends the
XINT2SOC pulse.

3-181

3 Configuration Parameters

COMP

Assigns COMP pins to GPIO pins.

Comparator 1 (COMP1) pin assignment
Select an option from the list — None,GPIO1, GPIO20, GPIO42.

Comparator 2 (COMP2) pin assignment
Select an option from the list — None,GPIO3, GPIO21, GPIO34GPIO43.

Comparator 3(COMP3) pin assignment
Select an option from the list — None,GPIO34.

3-182

Code Generation: Target Hardware Resources Pane

eCAN_A, eCAN_B

For more help on setting the timing parameters for the eCAN modules, refer
to Configuring Timing Parameters for CAN Blocks. You can set the following
parameters for the eCAN module:

CAN module clock frequency (= SYSCLKOUT) in MHz:
The clock to the enhanced CAN module. The CAN module clock
frequency is equal SYSCLKOUT for processors such as c280x, c281x,
c28044, and is equal to SYSCLKOUT/2 for processors such as piccolo,
c2834x, c28x3x.

Baud rate prescaler (BRP: 2 to 256):
Value by which to scale the bit rate. Valid values are from 2 to 256.

Time segment 1 (TSEG1):
Sets the value of time segment 1, which, with TSEG2 and Baud rate
prescaler, determines the length of a bit on the eCAN bus. Valid
values for TSEG1 are from 1 through 16.

3-183

3 Configuration Parameters

Time segment 2 (TSEG2):
Sets the value of time segment 2, which, with TSEG1 and Baud rate
prescaler, determines the length of a bit on the eCAN bus. Valid
values for TSEG2 are from 1 through 8.

Baud rate (CAN Module Clock/BRP/(TSEG1 + TSEG2 +1)) in bits/sec:
CAN module communication speed represented in bits/sec.

SBG
Sets the message resynchronization triggering. Options are
Only_falling_edges and Both_falling_and_rising_edges.

SJW
Sets the synchronization jump width, which determines how many units
of TQ a bit can be shortened or lengthened when resynchronizing.

SAM
Number of samples used by the CAN module to determine the CAN bus
level. Selecting Sample_one_time samples once at the sampling point.
Selecting Sample_three_times samples once at the sampling point and
twice before at a distance of TQ/2. The CAN module makes a majority
decision from the three points.

Enhanced CAN Mode
To enable time-stamping and to useMailbox Numbers 16 through 31
in the C2000 eCAN blocks, enable this parameter. Texas Instruments
documentation refers to this “HECC mode”.

Self test mode
If you set this parameter to True, the eCAN module goes to loopback
mode. Loopback mode sends a “dummy” acknowledge message back
without needing an acknowledge bit. The default is False.

Pin assignment (Tx)
Assigns the CAN transmit pin to use with the eCAN_B module. Possible
values are GPIO8, GPIO12, GPIO16, and GPIO20.

Pin assignment (Rx)
Assigns the CAN receive pin to use with the eCAN_B module. Possible
values are GPIO10, GPIO13, GPIO17, and GPIO21.

3-184

Code Generation: Target Hardware Resources Pane

eCAP

Assigns eCAP pins to GPIO pins.

ECAP1 pin assignment
Select an option from the list—None, GPIO5, or GPIO24.

ECAP2 pin assignment
Select an option from the list—None, GPIO7, or GPIO25.

ECAP3 pin assignment
Select an option from the list—None, GPIO9, or GPIO26.

ECAP4 pin assignment
Select an option from the list—None, GPIO11, or GPIO27.

ECAP5 pin assignment
Select an option from the list—None, GPIO3, or GPIO48.

ECAP6 pin assignment
Select an option from the list—None, GPIO1, or GPIO49.

3-185

3 Configuration Parameters

ePWM

Assigns ePWM signals to GPIO pins.

TZ1 pin assignment
Assigns the trip-zone input 1 (TZ1) to a GPIO pin. Choices are None
(the default), GPIO12, and GPIO15.

TZ2 pin assignment
Assigns the trip-zone input 2 (TZ2) to a GPIO pin. Choices are None
(the default), GPIO16, and GPIO28.

TZ3 pin assignment
Assigns the trip-zone input 3 (TZ3) to a GPIO pin. Choices are None
(the default), GPIO17, and GPIO29.

3-186

Code Generation: Target Hardware Resources Pane

TZ4 pin assignment
Assigns the trip-zone input 4 (TZ4) to a GPIO pin. Choices are None
(the default), GPIO17, and GPIO28.

TZ5 pin assignment
Assigns the trip-zone input 5 (TZ5) to a GPIO pin. Choices are None
(the default), GPIO16, and GPIO28.

TZ6 pin assignment
Assigns the trip-zone input 6 (TZ6) to a GPIO pin. Choices are None
(the default), GPIO17, and GPIO29.

SYNCI pin assignment
Assigns the ePWM external sync pulse input (SYNCI) to a GPIO pin.
Choices are None (the default), GPIO6, and GPIO32.

SYNCO pin assignment
Assigns the ePWM external sync pulse output (SYNCO) to a GPIO pin.
Choices are None (the default), GPIO6, and GPIO33.

3-187

3 Configuration Parameters

I2C

Report or set Inter-Integrated Circuit parameters. For more information,
consult the TMS320x280x Inter-Integrated Circuit Module Reference Guide,
Literature Number: SPRU721A, available on the Texas Instruments Web site.

Mode
Configure the I2C module as Master or Slave.

If a module is an I2C master, it:

Initiates communication with slave nodes by sending the slave address
and requesting data transfer to or from the slave.

Outputs the Master clock frequency on the serial clock line (SCL)
line.

3-188

Code Generation: Target Hardware Resources Pane

If a module is an I2C slave, it:

• Synchronizes itself with the serial clock line (SCL) line.

• Responds to communication requests from the master.
When Mode is Slave, you can configure the Addressing format,
Address register, and Bit count parameters.

The Mode parameter corresponds to bit 10 (MST) of the I2C Mode
Register (I2CMDR).

Addressing format
If Mode is Slave, determine the addressing format of the I2C master,
and set the I2C module to the same mode:

• 7-Bit Addressing, the normal address mode.

• 10-Bit Addressing, the expanded address mode.

• Free Data Format, a mode that does not use addresses. (If you
Enable loopback, the Free data format is not supported.)

The Addressing format parameter corresponds to bit 3 (FDF) and bit
8 (XA) of the I2C Mode Register (I2CMDR).

Own address register
IfMode is Slave, enter the 7-bit (0–127) or 10-bit (0–1023) address this
I2C module uses while it is a slave.

This parameter corresponds to bits 9–0 (OAR) of the I2C Own Address
Register (I2COAR).

Bit count
If Mode is Slave, set the number of bits in each data byte the I2C
module transmits and receives. This value must match that of the I2C
master.

This parameter corresponds to bits 2–0 (BC) of the I2C Mode Register
(I2CMDR).

Module clock prescaler (IPSC: 0 to 255):
If Mode is Master, configure the module clock frequency by entering
a value 0–255.

3-189

3 Configuration Parameters

Module clock frequency = I2C input clock frequency / (Module clock
prescaler + 1)

The I2C specifications require a module clock frequency between 7
MHz and 12 MHz.

The I2C input clock frequency depends on the DSP input clock frequency
and the value of the PLL Control Register divider (PLLCR). For more
information on setting the PLLCR, consult the documentation for your
specific Digital Signal Controller.

This Module clock prescaler (IPSC: 0 to 255): corresponds to bits
7–0 (IPSC) of the I2C Prescaler Register (I2CPSC).

I2C Module clock frequency (SYSCLKOUT / (IPSC+1)) in Hz:
This field displays the frequency the I2C module uses internally.
To set this value, change the Module clock prescaler. For more
information about this value, consult the “Formula for the Master Clock
Period” section in the TMS320x280x Inter-Integrated Circuit Module
Reference Guide, Literature Number: SPRU721, available on the Texas
Instruments Web site.

I2C Master clock frequency (Module Clock Freq/(ICCL+ICCH+10)) in
Hz:

This field displays the master clock frequency. For more information
about this value, consult the “Clock Generation” section in the
TMS320x280x Inter-Integrated Circuit Module Reference Guide,
Literature Number: SPRU721, available on the Texas Instruments
Web site.

Master clock Low-time divider (ICCL: 1 to 65535):
When Mode is Master, this divider determines the duration of the low
state of the SCL line on the I2C-bus.

The low-time duration of the master clock = Tmod x (ICCL + d).

For more information about this value, consult the “Formula for the
Master Clock Period” section in the TMS320x280x Inter-Integrated
Circuit Module Reference Guide, Literature Number: SPRU721A,
available on the Texas Instruments Web site.

3-190

Code Generation: Target Hardware Resources Pane

This parameter corresponds to bits 15–0 (ICCL) of the Clock Low-Time
Divider Register (I2CCLKL).

Master clock High-time divider (ICCH: 1 to 65535):
WhenMode is Master, this divider determines the duration of the high
state on the serial clock pin (SCL) of the I2C-bus.

The high-time duration of the master clock = Tmod x (ICCL + d).

For more information about this value, consult the “Formula for the
Master Clock Period” section in the TMS320x280x Inter-Integrated
Circuit Module Reference Guide, Literature Number: SPRU721A,
available on the Texas Instruments Web site.

This parameter corresponds to bits 15–0 (ICCH) of the Clock High-Time
Divider Register (I2CCLKH).

Enable loopback
When Mode is Master, enable or disable digital loopback mode. In
digital loopback mode, I2CDXR transmits data over an internal path to
I2CDRR, which receives the data after a configurable delay. The delay,
measured in DSP cycles, equals (I2C input clock frequency/module clock
frequency) x 8.

While Enable loopback is enabled, free data format addressing is
not supported.

This parameter corresponds to bit 6 (DLB) of the I2C Mode Register
(I2CMDR).

Enable Tx interrupt
This parameter corresponds to bit 5 (TXFFIENA) of the I2C Transmit
FIFO Register (I2CFFTX).

Tx FIFO interrupt level
This parameter corresponds to bits 4–0 (TXFFIL4-0) of the I2C
Transmit FIFO Register (I2CFFTX).

Enable Rx interrupt
This parameter corresponds to bit 5 (RXFFIENA) of the I2C Receive
FIFO Register (I2CFFRX).

3-191

3 Configuration Parameters

Rx FIFO interrupt level
This parameter corresponds to bit 4–0 (RXFFIL4-0) of the I2C Receive
FIFO Register (I2CFFRX).

Enable system interrupt
Select this parameter to display and individually configure the following
five Basic I2C Interrupt Request parameters in the Interrupt Enable
Register (I2CIER):

• Enable AAS interrupt

• Enable SCD interrupt

• Enable ARDY interrupt

• Enable NACK interrupt

• Enable AL interrupt

Enable AAS interrupt
Enable the addressed-as-slave interrupt.

When enabled, the I2C module generates an interrupt (AAS bit = 1)
upon receiving one of the following:

• Its Own address register

• A general call (all zeros)

• A data byte is in free data format

When enabled, the I2C module clears the interrupt (AAS = 0) upon
receiving one of the following:

• Multiple START conditions (7-bit addressing mode only)

• A slave address that is different from Own address register (10-bit
addressing mode only)

• A NACK or a STOP condition

This parameter corresponds to bit 6 (AAS) of the Interrupt Enable
Register (I2CIER).

Enable SCD interrupt
Enable stop condition detected interrupt.

3-192

Code Generation: Target Hardware Resources Pane

When enabled, the I2C module generates an interrupt (SCD bit = 1)
when the CPU detects a stop condition on the I2C bus.

When enabled, the I2C module clears the interrupt (SCD = 0) upon
one of the following events:

• The CPU reads the I2CISRC while it indicates a stop condition

• A reset of the I2C module

• Someone manually clears the interrupt

This parameter corresponds to bit 5 (SCD) of the Interrupt Enable
Register (I2CIER).

Enable ARDY interrupt
Enable register-access-ready interrupt enable bit.

When enabled, the I2C module generates an interrupt (ARDY bit =
1) when the previous address, data, and command values in the I2C
module registers have been used and new values can be written to the
I2C module registers.

This parameter corresponds to bit 2 (ARDY) of the Interrupt Enable
Register (I2CIER).

Enable NACK interrupt
Enable no acknowledgment interrupt enable bit.

When enabled, the I2C module generates an interrupt (NACK bit =
1) when the module is a transmitter in master or slave mode and it
receives a NACK condition.

This parameter corresponds to bit 1 (NACK) of the Interrupt Enable
Register (I2CIER).

Enable AL interrupt
Enable arbitration-lost interrupt.

When enabled, the I2C module generates an interrupt (AL bit = 1) when
the I2C module is operating as a master transmitter and looses an
arbitration contest with another master transmitter.

3-193

3 Configuration Parameters

This parameter corresponds to bit 0 (AL) of the Interrupt Enable
Register (I2CIER).

3-194

Code Generation: Target Hardware Resources Pane

SCI_A, SCI_B, SCI_C

The serial communications interface parameters you can set for module A.
These parameters are:

Enable loopback
Select this parameter to enable the loopback function for self-test and
diagnostic purposes only. When this function is enabled, a C28x DSP Tx
pin is internally connected to its Rx pin and can transmit data from its
output port to its input port to check the integrity of the transmission.

Baud rate
Baud rate for transmitting and receiving data. Select from 115200 (the
default), 57600, 38400, 19200, 9600, 4800, 2400, 1200, 300, and 110.

3-195

3 Configuration Parameters

Suspension mode
Type of suspension to use when debugging your program with Code
Composer Studio. When your program encounters a breakpoint,
the suspension mode determines whether to perform the program
instruction. Available options are Hard_abort, Soft_abort, and
Free_run. Hard_abort stops the program immediately. Soft_abort
stops when the current receive/transmit sequence is complete. Free_run
continues running regardless of the breakpoint.

Number of stop bits
Select whether to use 1 or 2 stop bits.

Parity mode
Type of parity to use. Available selections are None, Odd parity, or Even
parity. None disables parity. Odd sets the parity bit to one if you have
an odd number of ones in your bytes, such as 00110010. Even sets the
parity bit to one if you have an even number of ones in your bytes, such
as 00110011.

Character length bits
Length in bits of each transmitted or received character, set to 8 bits.

Desired baud rate in bits/sec
The desired baud rate specified by the user.

Baud rate prescaler (BRR = (SCIHBAUD << 8) | SCILBAUD))
The baud rate prescaler.

Closest achievable baud rate (LSPCLK/(BRR+1)/8) in bits/sec
The closest achievable baud rate calculated based on LSPCLK and BRR.

Communication mode
Select Raw_data or Protocol mode. Raw data is unformatted and sent
whenever the transmitting side is ready to send, whether the receiving
side is ready or not. Without a wait state, deadlock conditions do not
occur. Data transmission is asynchronous. With this mode, it is possible
the receiving side could miss data, but if the data is noncritical, using
raw data mode can avoid blocking processes.

When you select protocol mode, some handshaking between host and
processor occurs. The transmitting side sends $SND to indicate it is
ready to transmit. The receiving side sends back $RDY to indicate it is

3-196

Code Generation: Target Hardware Resources Pane

ready to receive. The transmitting side then sends data and, when the
transmission is completed, it sends a checksum.

Advantages to using protocol mode include:

• Avoids deadlock

• Determines whether data is received without errors (checksum)

• Determines whether data is received by processor

• Determines time consistency; each side waits for its turn to send or
receive

Note Deadlocks can occur if one SCI Transmit block tries to
communicate with more than one SCI Receive block on different COM
ports when both are blocking (using protocol mode). Deadlocks cannot
occur on the same COM port.

Blocking mode
If this option is set to True, system waits until data is available to read
(when data length is reached). If this option is set to False, system
checks FIFO periodically (in polling mode) for data to read. If data is
present, the block reads and outputs the contents. When data is not
present, the block outputs the last value and continues.

Data byte order
Select Little Endian or Big Endian, to match the endianness of the
data being moved.

Data swap width
Select 8_bits or 16_bits, to match the width of the data being moved
by the data swap operation. When you set Data byte order to Big
Endian, the only available option for Data swap width is 8_bits.

Pin assignment (Tx)
Assigns the SCI transmit pin to use with the SCI module.

Pin assignment (Rx)
Assigns the SCI receive pin to use with the SCI module.

3-197

3 Configuration Parameters

SPI_A, SPI_B, SPI_C, SPI_D

The serial peripheral interface parameters you can set for the A module.
These parameters are:

Mode
Set to Master or Slave.

Desired baud rate in bits/sec
The desired baud rate specified by the user.

Baud rate factor (SPIBRR: between 3 and 127)
To set the Baud rate factor, search for “Baud Rate Determination” and
“SPI Baud Rate Register (SPIBRR) Bit Descriptions” in TMS320x28xx,
28xxx DSP Serial Peripheral Interface (SPI) Reference Guide, Literature
Number: SPRU059, available on the Texas Instruments Web Site.

3-198

Code Generation: Target Hardware Resources Pane

Closest achievable baud rate (LSPCLK/(SPIBRR+1)) in bits/sec
The closest achievable baud rate calculated based on LSPCLK and
SPIBRR.

Data bits
Length in bits from 1 to 16 of each transmitted or received character.
For example, if you select 8, the maximum data that can be transmitted
using SPI is 28-1. If you send data greater than this value, the buffer
overflows.

Clock polarity
Select Rising_edge or Falling_edge.

Clock phase
Select No_delay or Delay_half_cycle.

Suspension mode
Type of suspension to use when debugging your program with Code
Composer Studio. When your program encounters a breakpoint, the
selected suspension mode determines whether to perform the program
instruction. Available options are Hard_abort, Soft_abort, and
Free_run. Hard_abort stops the program immediately. Soft_abort
stops when the current receive or transmit sequence is complete.
Free_run continues running regardless of the breakpoint.

Enable loopback
Select this option to enable the loopback function for self-test and
diagnostic purposes only. When this function is enabled, the Tx pin
on a C28x DSP is internally connected to its Rx pin and can transmit
data from its output port to its input port to check the integrity of the
transmission.

Enable 3-wire mode
Enable SPI communication over three pins instead of the normal four
pins.

Enable FIFO
Set true or false.

FIFO interrupt level (Rx)
Set level for receive FIFO interrupt. Select 0 through 16.

FIFO interrupt level (Tx)
Set level for transmit FIFO interrupt. Select 0 through 16.

3-199

3 Configuration Parameters

FIFO transmit delay
Enter FIFO transmit delay (in processor clock cycles) to pause between
data transmissions. Enter an integer.

CLK pin assignment
Assigns the SPI something (CLK) to a GPIO pin. Choices are None
(default), GPI014, or GPI026.

SOMI pin assignment
Assigns the SPI something (SOMI) to a GPIO pin. Choices are None
(default), GPI013, or GPI025.

STE pin assignment
Assigns the SPI something (STE) to a GPIO pin. Choices are None
(default), GPI015, or GPI027.

SIMO pin assignment
Assigns the SPI something (SIMO) to a GPIO pin. Choices are None
(default), GPI012, or GPI024.

3-200

Code Generation: Target Hardware Resources Pane

eQEP

Assigns eQEP pins to GPIO pins.

EQEP1A pin assignment
Select an option from the list—GPIO20 or GPIO50.

EQEP1B pin assignment
Select an option from the list—GPIO21 or GPIO51.

EQEP1S pin assignment
Select an option from the list—GPIO22 or GPIO52.

EQEP1I pin assignment
Select an option from the list—GPIO23 or GPIO53.

EQEP2A pin assignment
Select an option from the list—GPIO24 or GPIO54.

3-201

3 Configuration Parameters

EQEP2B pin assignment
Select an option from the list—GPIO25 or GPIO55.

EQEP2S pin assignment
Select an option from the list—GPIO27 or GPIO31. or GPIO57

EQEP2I pin assignment
Select an option from the list—GPIO26 or GPIO30. or GPIO56

3-202

Code Generation: Target Hardware Resources Pane

Watchdog

When enabled, if the software fails to reset the watchdog counter within a
specified interval, the watchdog resets the processor or generates an interrupt.
This feature enables the processor to recover from some fault conditions.

For more information, locate the Data Manual or System Control and
Interrupts Reference Guide for your processor on the Texas Instruments Web
site.

Enable watchdog
Enable the watchdog timer module.

This parameter corresponds to bit 6 (WDDIS) of the Watchdog Control
Register (WDCR) and bit 0 (WDOVERRIDE) of the System Control
and Status Register (SCSR).

3-203

3 Configuration Parameters

Counter clock
Set the watchdog timer period relative to OSCCLK/512.

This parameter corresponds to bits 2–0 (WDPS) of the Watchdog
Control Register (WDCR).

Timer period (Counter clock*256) in seconds
This field displays the timer period in seconds. This value automatically
updates when you change the Counter clock parameter.

Time out event
Configure the watchdog to reset the processor or generate an interrupt
when the software fails to reset the watchdog counter:

• Select Chip reset to generate a signal that resets the processor
(WDRST signal) and disable the watchdog interrupt signal (WDINT
signal).

• Select Raise WD Interrupt to generate a watchdog interrupt signal
(WDINT signal) and disable the reset processor signal (WDRST
signal). This signal can be used to wake the device from an IDLE
or STANDBY low-power mode.

This parameter corresponds to bit 1 (WDENINT) of the System Control
and Status Register (SCSR).

3-204

Code Generation: Target Hardware Resources Pane

GPIO

Each pin selected for input offers four signal qualification types:

• Sync to SYSCLKOUT only— This setting is the default for all pins at reset.
Using this qualification type, the input signal is synchronized to the system
clock SYSCLKOUT. The following figure shows the input signal measured
on each tick of the system clock, and the resulting output from the qualifier.

3-205

3 Configuration Parameters

• Qualification using 3 samples — This setting requires three
consecutive cycles of the same value for the output value to change. The
following figure shows that, in the third cycle, the GPIO value changes to
0, but the qualifier output is still 1 because it waits for three consecutive
cycles of the same GPIO value. The next three cycles all have a value of
0, and the output from the qualifier changes to 0 immediately after the
third consecutive value is received.

• Qualification using 6 samples— This setting requires six consecutive
cycles of the same GPIO input value for the output from the qualifier to
change. In the following figure, the glitch A does not alter the output signal.
When the glitch occurs, the counting begins, but the next measurement is
low again, so the count is ignored. The output signal does not change until
six consecutive samples of the high signal are measured.

3-206

Code Generation: Target Hardware Resources Pane

Qualification sampling period prescaler

Visible only when a setting for Qualification type for GPIO [pin#] is
selected. The qualification sampling period prescaler, with possible values
of 0 to 255, calculates the frequency of the qualification samples or the
number of system clock ticks per sample. The formula for calculating the
qualification sampling frequency is SYSCLKOUT/(2 * Prescaler), except for
zero. When Qualification sampling period prescaler=0, a sample is
taken every SYSCLKOUT clock tick. For example, a prescale setting of 0
means that a sample is taken on each SYSCLKOUT tick.

The following figure shows the SYSCLKOUT ticks, a sample taken every
clock tick, and the Qualification type set to Qualification using 3
samples. In this case, the Qualification sampling period prescaler=0:

In the next figure Qualification sampling period prescaler=1. A
sample is taken every two clock ticks, and the Qualification type is set to
Qualification using 3 samples. The output signal changes much later
than if Qualification sampling period prescaler=0.

3-207

3 Configuration Parameters

In the following figure, Qualification sampling period prescaler=2.
Thus , a sample is taken every four clock ticks, and the Qualification
type is set to Qualification using 3 samples.

• Asynchronous

Using this qualification type, the signal is synchronized to an asynchronous
event initiated by software (CPU) via control register bits.

Qualification sampling period

Enter the qualification sampling period.

3-208

Code Generation: Target Hardware Resources Pane

Flash_loader

You can use Flash_loader to:

• Automatically program generated code to flash memory on the target when
you build the code.

• Manually erase, program, or verify specific flash memory sectors.

To use this feature, download and install the TI Flash API plugin from the
TI Web site.

For more information, consult the “Programming Flash Memory” topic or the
*_API_Readme.pdf file included in the TI Flash API downloadable zip file.

3-209

3 Configuration Parameters

Enable Flash Programmer
Enable the flash programmer by selecting a task for it to perform when
you click Execute or build the software. To program the flash memory
when you build the software, select Erase, Program, Verify.

Detect Flash sectors to erase from COFF file
When enabled, the flash programmer erases all of the flash sectors
defined by the COFF file.

Sector A, Sector B, Sector C...
When Detect Flash sectors to erase from COFF file is disabled, you
can select the specific sector to erase.

Specify API location
Specify the folder path of the TI flash API executable you downloaded
and installed on your computer. Use Browse to locate the file or enter
the path in the text box.

For example:
C:\TI\controlSUITE\libs\utilities\flash_api\2806x\v100\lib\2806x_BootR

Execute
Click this button to initiate the task selected in Enable Flash
Programmer.

3-210

Code Generation: Target Hardware Resources Pane

DMA_ch[#]

The Direct Memory Access module transfers data directly between peripherals
and memory using a dedicated bus, increasing overall system results.

You can individually enable and configure each DMA channel.

The DMA module services are event driven. Using the Interrupt source
and External pin (GPIO) parameters, you can configure a wide range of
peripheral interrupt event triggers.

To use DMA with the C280x/C28x3x ADC block, open the ADC block, enable
Use DMA (with C28x3x), and select a DMA channel number. To avoid error
messages, open the Coder Target > Target Hardware Resources, select the
Peripherals tab, and disable the same DMA channel number.

3-211

3 Configuration Parameters

For more information, consult the TMS320x2833x, 2823x Direct Memory
Access (DMA) Module Reference Guide, Literature Number: SPRUFB8A,
and the Increasing Data Throughput using the TMS320F2833x DSC DMA
training presentation (requires login), both available from the TI Web site.

Enable DMA channel
Enable this parameter to edit the configuration of a specific DMA
channel.

If your model includes an ADC block with the Use DMA (with C28x3x)
parameter enabled, disable the same DMA channel here in Coder
Target > Target Hardware Resources.

This parameter has does not have a corresponding bit or register.

Data size
Select the size of the data bit transfer: 16 bit or 32 bit.

The DMA read/write data buses are 32 bits wide. 32-bit transfers have
twice the data throughput of a 16-bit transfer.

When providing DMA service to McBSP, set Data size to 16 bit.

The following parameters are based on a 16-bit word size. If you set
Data size to 32 bit, double the value of the following parameters:

• Size: Burst

• Source: Burst step

• Source: Transfer step

• Source: Wrap step

• Destination: Burst step

• Destination: Transfer step

• Destination: Wrap step

Data size corresponds to bit 14 (DATASIZE) in the Mode Register
(MODE).

3-212

Code Generation: Target Hardware Resources Pane

Note When you select Use DMA (with C28x3x) in the ADC block,
this parameter is 16 bit.

Interrupt source
Select the peripheral interrupt that triggers a DMA burst for the
specified channel.

Selecting SEQ1INT or SEQ2INT generates a message: “Use ADC block
to implement the DMA function.” To do so, open the ADC block, select
the Use DMA (with C28x3x) parameter, select a DMA channel, and
disable the same DMA channel in Coder Target > Target Hardware
Resources. Currently, when you use the ADC block to implement DMA,
the corresponding DMA channel settings are not configurable in Coder
Target > Target Hardware Resources.

Select XINT1, XINT2, or XINT13 to configure GPIO pin 0 to 31 as an
external interrupt source. Select XINT3 to XINT7 to configure GPIO pin
32 to 63 as an external interrupt source. For more information about
configuring XINT, consult the following references:

• TMS320x2833x, 2823x External Interface (XINTF) User’s Guide,
Literature Number: SPRU949, available on the TI Web site.

• TMS320x2833x System Control and Interrupts, Literature Number:
SPRUFB0, available on the TI Web site.

• The C280x/C2802x/C2803x/C2806x/C28x3x/c2834x GPIO Digital
Input and C280x/C2802x/C2803x/C2806x/C28x3x/c2834x GPIO
Digital Output block reference sections.

Currently, Interrupt source does not support items TINT0 through
MREVTB in the drop-down menu.

The Interrupt source parameter corresponds to bit 4-0 (PERINTSEL)
in the Mode Register (MODE).

3-213

3 Configuration Parameters

Note When you select Use DMA (with C28x3x) in the C280x/C28x3x
ADC block:

• If the ADC block Module is A or A and B, Interrupt source is
SEQ1INT.

• If the ADC blockModule is B, Interrupt source is SEQ2INT.

External pin(GPIO)
When you set Interrupt source is set to an external interface
(XINT[#]), specify the GPIO pin number from which the interrupt
originates.

This parameter corresponds to the GPIO XINTn, XNMI Interrupt Select
(GPIOXINTnSEL, GPIOXNMISEL) Registers. For more information,
consult the TMS320x2833x System Control and Interrupts Reference
Guide, Literature Number SPRUFB0, available from the TI Web site.

SRC wrap
Specify the number of bursts before returning the current source address
pointer to the Source Begin Address value. To disable wrapping,
enter a value for SRC wrap that is greater than the Transfer value.

This parameter corresponds to bits 15-0 (SRC_WRAP_SIZE) in the
Source Wrap Size Register (SRC_WRAP_SIZE).

Note When you select Use DMA (with C28x3x) in the C280x/C28x3x
ADC block, the value of this parameter is 65536.

DST wrap
Specify the number of bursts before returning the current destination
address pointer to the Destination Begin Address value. To disable
wrapping, enter a value for DST wrap that is greater than the
Transfer value.

This parameter corresponds to bits 15-0 (DST_WRAP_SIZE) in the
Destination Wrap Size Register (DST_WRAP_SIZE).

3-214

Code Generation: Target Hardware Resources Pane

Note When you select Use DMA (with C28x3x) in the C280x/C28x3x
ADC block, the value of this parameter is 65536.

SRC Begin address
Set the starting address for the current source address pointer. The
DMA module points to this address at the beginning of a transfer and
returns to it as specified by the SRC wrap parameter.

This parameter corresponds to bits 21-0 (BEGADDR) in the Active
Source Begin Register (SRC_BEG_ADDR).

Note When you select Use DMA (with C28x3x) in the C280x/C28x3x
ADC block, the value of the source Begin address is:

• 0xB00 if the ADC block Module is A or A and B (Interrupt source
is SEQ1INT).

• 0xB08 If the ADC blockModule is B (Interrupt source is SEQ2INT).

DST Begin address
Set the starting address for the current destination address pointer.
The DMA module points to this address at the beginning of a transfer
and returns to it as specified by the DST wrap parameter.

This parameter corresponds to bits 21-0 (BEGADDR) in the Active
Destination Begin Register (DST_BEG_ADDR).

3-215

3 Configuration Parameters

Note When you select Use DMA (with C28x3x) in the C280x/C28x3x
ADC block, the value of the destination Begin address (dstAdd) is the
ADC buffer address (ADCbufadr) minus the Number of conversions
(NoC) in the ADC block. In other words, dstAdd = ADCbufadr – NoC.

• If the target is F28232 or F28332, ADCbufadr = 57340 (0xDFFC)

• Otherwise, ADCbufadr = 65532 (0xFFFC)

For example, when you enable Use DMA (with C28x3x) for a F28232
target, the DMA module sets the destination Begin address to 0xDFF9
(57337) because the ADCbufadr 57340 (0xDFFC) minus 3 conversions
equals 57337 (0xDFF9).

Burst
Specify the number of 16-bit words in a burst, from 1 to 32. The DMA
module must complete a burst before it can service the next channel.

Set the Burst value for the peripheral the DMA module is servicing.
For the ADC, the value equals the number of ADC registers used, up to
16. For multichannel buffered serial ports (McBSP), which lack FIFOs,
the value is 1. For RAM, the value can range from 1 to 32.

This parameter corresponds to bits 4-0 (BURSTSIZE) in the Burst Size
Register (BURST_SIZE).

Note This parameter is based on a 16-bit word size. If you set Data
size to 32 bit, double the value of this parameter.

3-216

Code Generation: Target Hardware Resources Pane

Note When you select Use DMA (with C28x3x) in the C280x/C28x3x
ADC block, the value assigned to Burst equals the ADC block Number
of conversions (NOC) multiplied by a value for the ADC block
Conversion mode (CVM). Burst = NOC * CVM

If Conversion mode is Sequential, CVM = 1. If Conversion mode is
Simultaneous, CVM = 2.

For example, Burst = 6 if NOC = 3 and CVM = 2 (6 = 3 * 2).

Transfer
Specify the number of bursts in a transfer, from 1 to 65536.

This parameter corresponds to bits 15-0 (TRANSFERSIZE) in the
Transfer Size Register (TRANSFER_SIZE).

Note When you select Use DMA (with C28x3x) in the C280x/C28x3x
ADC block, the value of this parameter is 1.

SRC Burst step
Set the number of 16-bit words by which to increment or decrement the
current address pointer before the next burst. Enter a value from –4096
(decrement) to 4095 (increment).

To disable incrementing or decrementing the address pointer, set Burst
step to 0. For example, because McBSP does not use FIFO, configure
DMA to maintain the sequence of the McBSP data by moving each word
of the data individually. Accordingly, when you use DMA to transmit or
receive McBSP data, set Burst size to 1 word and Burst step to 0.

This parameter corresponds to bits 15-0 (SRCBURSTSTEP) in the
Source Burst Step Size Register (SRC_BURST_STEP).

3-217

3 Configuration Parameters

Note This parameter is based on a 16-bit word size. If you set Data
size to 32 bit, double the value of this parameter.

Note When you select Use DMA (with C28x3x) in the C280x/C28x3x
ADC block, this parameter is 1.

DST Burst step
Set the number of 16-bit words by which to increment or decrement the
current address pointer before the next burst. Enter a value from –4096
(decrement) to 4095 (increment).

To disable incrementing or decrementing the address pointer, set Burst
step to 0. For example, because McBSP does not use FIFO, configure
DMA to maintain the sequence of the McBSP data by moving each word
of the data individually. Accordingly, when you use DMA to transmit or
receive McBSP data, set Burst size to 1 word and Burst step to 0.

This parameter corresponds to bits 15-0 (DSTBURSTSTEP) in the
Destination Burst Step Size Register (DST_BURST_STEP).

Note This parameter is based on a 16-bit word size. If you set Data
size to 32 bit, double the value of this parameter.

Note When you select Use DMA (with C28x3x) in the C280x/C28x3x
ADC block, this parameter is 1.

SRC Transfer step
Set the number of 16-bit words by which to increment or decrement the
current address pointer before the next transfer. Enter a value from
–4096 (decrement) to 4095 (increment).

3-218

Code Generation: Target Hardware Resources Pane

To disable incrementing or decrementing the address pointer, set
Transfer step to 0.

This parameter corresponds to bits 15-0 (SRCTRANSFERSTEP) Source
Transfer Step Size Register (SRC_TRANSFER_STEP).

If DMA is configured to perform memory wrapping (if SRC wrap is
enabled) the corresponding source Transfer step does not alter the
results.

Note This parameter is based on a 16-bit word size. If you set Data
size to 32 bit, double the value of this parameter.

Note When you select Use DMA (with C28x3x) in the C280x/C28x3x
ADC block, the value of this parameter is 0.

DST Transfer step
Set the number of 16-bit words by which to increment or decrement the
current address pointer before the next transfer. Enter a value from
–4096 (decrement) to 4095 (increment).

To disable incrementing or decrementing the address pointer, set
Transfer step to 0.

This parameter corresponds to bits 15-0 (DSTTRANSFERSTEP)
Destination Transfer Step Size Register (DST_TRANSFER_STEP).

If DMA is configured to perform memory wrapping (if DST wrap is
enabled) the corresponding destination Transfer step does not alter
the results.

Note This parameter is based on a 16-bit word size. If you set Data
size to 32 bit, double the value of this parameter.

3-219

3 Configuration Parameters

Note When you select Use DMA (with C28x3x) in the C280x/C28x3x
ADC block, the value of this destination parameter is 1.

SRC Wrap step
Set the number of 16-bit words by which to increment or decrement the
SRC_BEG_ADDR address pointer when a wrap event occurs. Enter a
value from –4096 (decrement) to 4095 (increment).

This parameter corresponds to bits 15-0 (WRAPSTEP) in the Source
Wrap Step Size Registers (SRC_WRAP_STEP).

Note This parameter is based on a 16-bit word size. If you set Data
size to 32 bit, double the value of this parameter.

Note When you select Use DMA (with C28x3x) in the C280x/C28x3x
ADC block, the value of this parameter is 0.

DST Wrap step
Set the number of 16-bit words by which to increment or decrement the
DST_BEG_ADDR address pointer when a wrap event occurs. Enter a
value from –4096 (decrement) to 4095 (increment).

This parameter corresponds to bits 15-0 (WRAPSTEP) in the
Destination Wrap Step Size Registers (DST_WRAP_STEP).

Note This parameter is based on a 16-bit word size. If you set Data
size to 32 bit, double the value of this parameter.

Note When you select Use DMA (with C28x3x) in the C280x/C28x3x
ADC block, the value of this parameter is 0.

3-220

Code Generation: Target Hardware Resources Pane

Generate interrupt
Enable this parameter to have the DMA channel send an interrupt to
the CPU via the PIE at the beginning or end of a data transfer.

This parameter corresponds to bit 15 (CHINTE) and bit 9
(CHINTMODE) in the Mode Register (MODE).

Note When you select Use DMA (with C28x3x) in the C280x/C28x3x
ADC block, the DMA channel generates an interrupt at the end of the
data transfer.

Enable one shot mode
Enable this parameter to have the DMA channel complete an entire
transfer in response to an interrupt event trigger. This option allows
a single DMA channel and peripheral to dominate resources, and may
streamline processing, but it also creates the potential for resource
conflicts and delays.

Disable this parameter to have DMA complete one burst per channel
per interrupt.

Note When you select Use DMA (with C28x3x) in the C280x/C28x3x
ADC block, this parameter is disabled.

Sync enable
When Interrupt source is set to SEQ1INT, enable this parameter to
reset the DMA wrap counter when it receives the ADCSYNC signal
from SEQ1INT. This way, the wrap counter and the ADC channels
remain synchronized with each other.

If Interrupt source is not set to SEQ1INT, Sync enable does not
alter the results.

This parameter corresponds to bit 12 (SYNCE) of the Mode Register
(MODE).

3-221

3 Configuration Parameters

Note When you select Use DMA (with C28x3x) in the C280x/C28x3x
ADC block, this parameter is disabled.

Enable continuous mode
Select this parameter to leave the DMA channel enabled upon
completing a transfer. The channel will wait for the next interrupt
event trigger.

Clear this parameter to disable the DMA channel upon completing a
transfer. The DMA module disables the DMA channel by clearing the
RUNSTS bit in the CONTROL register when it completes the transfer.
To use the channel again, first reset the RUN bit in the CONTROL
register.

Note When you select Use DMA (with C28x3x) in the C280x/C28x3x
ADC block, this parameter is enabled.

Enable DST sync mode
When Sync enable is enabled, enabling this parameter resets the
destination wrap counter (DST_WRAP_COUNT) when the DMA module
receives the SEQ1INT interrupt/ADCSYNC signal. Disabling this
parameter resets the source wrap counter (SCR_WRAP_COUNT) when
the DMA module receives the SEQ1INT interrupt/ADCSYNC signal.

This parameter is associated with bit 13 (SYNCSEL) in the Mode
Register (MODE).

Note When you select Use DMA (with C28x3x) in the C280x/C28x3x
ADC block, this parameter is disabled.

Set channel 1 to highest priority
This parameter is only available for DMA_ch1.

3-222

Code Generation: Target Hardware Resources Pane

Enable this setting when DMA channel 1 is configured to handle
high-bandwidth data, such as ADC data, and the other DMA channels
are configured to handle lower-priority data.

When enabled, the DMA module services each enabled channel
sequentially until it receives a trigger from channel 1. Upon receiving
the trigger, DMA interrupts its service to the current channel at the
end of the current word, services the channel 1 burst that generated
the trigger, and then continues servicing the current channel at the
beginning of the next word.

Disable this channel to give each DMA channel equal priority, or if
DMA channel 1 is the only enabled channel.

When disabled, the DMA module services each enabled channel
sequentially.

This parameter corresponds to bit 0 (CH1PRIORITY) in the Priority
Control Register 1 (PRIORITYCTRL1).

Note When you select Use DMA (with C28x3x) in the C280x/C28x3x
ADC block, this parameter is disabled.

Enable overflow interrupt
Enable this parameter to have the DMA channel send an interrupt to
the CPU via PIE if the DMA module receives a peripheral interrupt
while a previous interrupt from the same peripheral is waiting to be
serviced.

This parameter is typically used for debugging during the development
phase of a project.

The Enable overflow interrupt parameter corresponds to bit 7
(OVRINTE) of the Mode Register (MODE), and involves the Overflow
Flag Bit (OVRFLG) and Peripheral Interrupt Trigger Flag Bit
(PERINTFLG).

3-223

3 Configuration Parameters

Note When you select Use DMA (with C28x3x) in the C280x/C28x3x
ADC block, this parameter is disabled.

3-224

Code Generation: Target Hardware Resources Pane

LIN

For detailed information on the LIN module, see TMS320F2803x Piccolo
Local Interconnect Network (LIN) Module, Literature Number SPRUGE2,
available at the Texas Instruments Web site.

The following options configure all LIN Transmit and LIN Receive blocks
within a model.

LIN Module clock frequency (LM_CLK = SYSCLKOUT/2) in MHz
Displays the frequency of the LIN module clock in MHz.

Enable loopback
To enable LIN loopback testing, select this option. While this option is
enabled, the LIN module does the following:

• Internally redirects the LINTX output to the LINRX input.

3-225

3 Configuration Parameters

• Puts the external LINTX pin into high state.

• Puts the external LINRX pin into a high impedance state.

The default is disabled (unchecked).

Suspension mode
Use this option to configure how the LIN state machine behaves while
you debug the program on an emulator. If you select Hard_abort,
entering LIN debug mode halts the transmissions and counters. The
transmissions and counters resume when you exit LIN debug mode.
If you select Free_run, entering LIN debug mode allows the current
transmit and receive functions to complete.

The default is Free_run.

Parity mode
Use this option to configure parity checking:

• To disable parity checking, select None.

• To enable odd parity checking, select Odd.

• To enable even parity checking, select Even.

The default is None.

In order for ID parity error interrupt in the LIN Receive block to
generate interrupts, also enable Parity mode.

Frame length bytes
Set the number of data bytes in the response field, from 1 to 8 bytes.

The default is 8 bytes.

Baud rate prescaler (P: 0-16777215)
To set the LIN baud rate manually, enter a prescaler value, from 0 to
16777215. Click Apply to update the Baud rate display.

The default is 15.

For more information, consult the “Baud Rate” topic in the TI document,
TMS320F2803x Piccolo Local Interconnect Network (LIN) Module,
Literature Number SPRUGE2.

3-226

Code Generation: Target Hardware Resources Pane

Baud rate fractional divider (M: 0–15)
To set the LIN baud rate manually, enter a fractional divider value,
from 0 to 15. Click Apply to update the Baud rate display.

The default is 4.

For more information, consult the “Baud Rate” topic in the TI document,
TMS320F2803x Piccolo Local Interconnect Network (LIN) Module,
Literature Number SPRUGE2.

Baud rate (FLINCLK = LM_CLK/(16*(P+1+M/16)) in bits/sec
This field displays the baud rate. For more information, see “Setting
the LIN baud rate”.

Communication mode
Enable or disable the LIN module from using the ID-field bits ID4 and
ID5 for length control.

The default is ID4 and ID5 not used for length control

Data byte order
Set the “endianness” of the LIN message data bytes to Little_Endian
or Big_Endian.

The default is Little_Endian.

Data swap width
Select 8_bits or 16_bits. If you set Data byte order to Big_Endian,
the only available option for Data swap width is 8_bits.

Pin assignment (Tx)
Map the LINTX output to a specific GPIO pin.

The default is GPIO9.

Pin assignment (Rx)
Map the LINRX input to a specific GPIO pin.

The default is GPIO11.

LIN mode
Put the LIN module in Master or Slave mode. The default is Slave.

3-227

3 Configuration Parameters

In master mode, the LIN node can transmit queries and commands to
slaves. In slave mode, the LIN module responds to queries or commands
from a master node.

This option corresponds to the CLK_MASTER field in the SCI Global
Control Register (SCIGCR1).

ID filtering
Select which type of mask filtering comparison the LIN module
performs, ID byte or ID slave task byte.

If you select ID byte, the module uses the RECID and ID-BYTE fields
in the LINID register to detect a match. If you select this option and
enter 0xFF for LINMASK, the LIN module does not report matches.

I you select ID slave task. the module uses the RECID an
ID-SlaveTask byte to detect a match. If you select this option and enter
0xFF for LINMASK, the LIN module reports matches.

The default is ID slave task byte.

ID byte
If you set ID filtering to ID byte, use this option to set the ID BYTE,
also known as the “LIN mode message ID”. In master mode, the CPU
writes this value to initiate a header transmission. In slave mode, the
LIN module uses this value to perform message filtering.

The default is 0x3A.

ID slave task byte
If you set ID filtering to ID slave task byte, use this option to set
the ID-SlaveTask BYTE. The LIN node compares this byte with the
Received ID and determines whether to send a transmit or receive
response.

The default is 0x30.

Checksum type
Use this option to select the type of checksum. If you select Classic,
the LIN node generates the checksum field from the data fields in the
response. If you select Enhance, the LIN node generates the checksum
field from both the ID field in the header and data fields in the response.

3-228

Code Generation: Target Hardware Resources Pane

LIN 1.3 supports classic checksums only. LIN 2.0 supports both classic
and enhanced checksums.

The default is Classic.

Enable multibuffer mode
When you enable (select) this checkbox, the LIN node uses transmit and
receive buffers instead of just one register. This setting affects various
other LIN registers, such as: checksums, framing errors, transmitter
empty flags, receiver ready flags, transmitter ready flags.

The default is enabled (checked).

Enable baud rate adapt mode
The dialog box displays this option when you set LIN mode to Slave.

If you enable this option, the slave node automatically adjusts its baud
rate to match that of the master node. For this feature to work, first set
the Baud rate prescaler and Baud rate fractional divider.

If you disable this option, the LIN module sets a static baud rate based
on the Baud rate prescaler and Baud rate fractional divider.

The default is disabled (unchecked).

Inconsistent synch field error interrupt
The dialog box displays this option when you set LIN mode to Slave.

If you enable this option, the slave node generates interrupts when it
detects irregularities in the synch field. This option is only relevant if
you enable Enable adapt mode.

The default is Disabled.

No response error interrupt
The dialog box displays this option when you set LIN mode to Slave.

If you enable this option, the LIN module generates an interrupt if it
does not receive a complete response from the master node within a
timeout period.

The default is Disabled.

3-229

3 Configuration Parameters

Timeout after 3 wakeup signals interrupt
The dialog box displays this option when you set LIN mode to Slave.

When enabled, the slave node generates an interrupt when it sends
three wakeup signals to the master node and does not receive a header
in response. (The slave waits 1.5 seconds before sending another series
of wakeup signals.) This interrupt typically indicates the master node is
having a problem recovering from low-power or sleep mode.

The default is Disabled.

Timeout after wakeup signal interrupt
The dialog box displays this option when you set LIN mode to Slave.

When enabled, the slave node generates an interrupt when it sends
a wakeup signal to the master node and does not receive a header in
response. (The slave waits 150 milliseconds before sending another
series of wakeup signals.) This interrupt typically indicates the master
node is delayed recovering from low-power or sleep mode.

The default is Disabled.

Timeout interrupt
The dialog box displays this option when you set LIN mode to Slave.

When enabled, the slave node generates an interrupt after 4 seconds of
inactivity on the LIN bus.

The default is Disabled.

Wakeup interrupt
The dialog box displays this option when you set LIN mode to Slave.

When you enable this option:

• In low-power mode, a LIN slave node generates a wakeup interrupt
when it detects the falling edge of a wake-up pulse or a low level
on the LINRX pin.

• A LIN slave node that is “awake” generates a wakeup interrupt if it
receives a request to enter low-power mode while it is receiving.

3-230

Code Generation: Target Hardware Resources Pane

• A LIN slave node that is “awake” does not generate a wakeup
interrupt if it receives a wakeup pulse.

The default is Disabled.

3-231

3 Configuration Parameters

Add Processor Dialog Box

To add a new processor to the drop down list for the Processors option,
click the Add new button on the Board pane. The software opens the Add
Processor dialog box.

Note You can use this feature to create duplicates of existing processors with
minor changes to the compiler and linker options. Avoid using this feature to
create profiles for processors that are not already supported.

New Name
Provide a name to identify your new processor. Use a valid C string.
The name you enter in this field appears on the list of processors after
you add the new processor.

If you do not provide an entry for each parameter, the coder product
returns an error message without creating a processor entry.

Based On
When you add a processor, the dialog box uses the settings from
the currently selected processor as the basis for the new one. This
parameter displays the currently selected processor.

Compiler options
Identifies the processor family of the new processor to the compiler. The
string depends on the processor family or class.

3-232

Code Generation: Target Hardware Resources Pane

For example, to set the compiler switch for a new C5509 processor, enter
-ml. The following table shows the compiler switch string for supported
processor families.

Processor Family Compiler Switch String

C62xx

C64xx

C67xx

DM64x and DM64xx

C55xx -ml

C28xx, F28xx, R28xx, F28xxx -ml

Linker options
You can use this parameter to specify linker command options. The IDE
uses these options to modify how it links project files when you build a
project. To get information about specific linker options you can enter
here, consult the documentation for your IDE.

3-233

3 Configuration Parameters

Target Hardware Resources: Linux Tab
The Linux tab appears when you set IDE/Tool Chain to Eclipse and set
Operating System on the Board tab to Linux.

The Linux tab displays two options:

Scheduling Mode
When you select free-running, the model generates multi-threaded
free-running code. Each rate in the model maps to a separate thread
in the generated code. Multi-threaded code can potentially run faster
than single threaded code.

When you select real-time, the model generates multi-threaded
real-time code: Each rate in the Simulink model runs at the rate
specified in the model. For example, a 1-second rate runs at exactly
1-second intervals. The timing is provided by using a Linux real-time
clock.

Base rate task priority
The base rate in the model maps to a thread and runs as fast as possible.
You can use the value of the base rate priority to set a static priority for
the base rate task. By default, this rate is 40.

Allow tasks to execute concurrently

Note This parameter will be removed in a future release.

Enable multicore deployment. Selecting this option enables generated
multi-threading code to run concurrently on multicore processors. By
default, this option is disabled.

This parameter has been superseded. Configuring the model as
described in the following procedures hides the Allow tasks to execute
concurrently parameter from view.

To run target applications on multicore processors, follow the procedures
in “Running Target Applications on Multicore Processors”.

3-234

3 Configuration Parameters

3-235

3 Configuration Parameters

Target Hardware Resources: VxWorks Tab
The VxWorks tab appears when you set IDE/Tool Chain to Wind River
Diab/GCC (makefile generation only) and set Operating System on the
Board tab to VxWorks.

The Linux tab displays two options:

Scheduling Mode
When you select free-running, the model generates multi-threaded
free-running code. Each rate in the model maps to a separate thread
in the generated code. Multi-threaded code can potentially run faster
than single threaded code.

When you select real-time, the model generates multi-threaded
real-time code: Each rate in the Simulink model runs at the rate
specified in the model. For example, a 1-second rate runs at exactly
1-second intervals. The timing is provided by using a Linux real-time
clock.

Base rate task priority
The base rate in the model maps to a thread and runs as fast as possible.
You can use the value of the base rate priority to set a static priority for
the base rate task. By default, this rate is 40.

Allow tasks to execute concurrently

Note This parameter will be removed in a future release.

Enable multicore deployment. Selecting this option enables generated
multi-threading code to run concurrently on multicore processors. By
default, this option is disabled.

This parameter has been superseded. Configuring the model as
described in the following procedures hides the Allow tasks to execute
concurrently parameter from view.

To run target applications on multicore processors, follow the procedures
in “Running Target Applications on Multicore Processors”.

3-236

Parameter Reference

Parameter Reference

In this section...

“Recommended Settings Summary” on page 3-237

“Parameter Command-Line Information Summary” on page 3-251

Recommended Settings Summary
The following table summarizes the impact of each Embedded Coder
configuration parameter on debugging, traceability, efficiency, and safety
considerations, and indicates the factory default configuration settings for the
ERT target. The Simulink Coder configuration parameters are documented in
“Recommended Settings Summary”. For additional details, click the links in
the Configuration Parameter column.

Mapping of Application Requirements to the Optimization Pane : General tab

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution

Factory
Default

Application
lifespan
(days)

No impact No impact Optimal finite
value

inf 1(ERT
targets)

Optimize
using the
specified
minimum
and
maximum
values

Off Off On Off Off

Remove
root level
I/O zero
initialization

No impact No impact On (GUI) off
(command
line)
(execution,
ROM), No
impact (RAM)

Off Off

3-237

3 Configuration Parameters

Mapping of Application Requirements to the Optimization Pane : General tab
(Continued)

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution

Factory
Default

Remove
internal
data zero
initialization

No impact No impact On (GUI) off
(command
line)
(execution,
ROM), No
impact (RAM)

Off Off

Optimize
initialization
code for
model
reference

No impact No impact On (execution,
ROM), No
impact (RAM)

No impact On

Remove
code that
protects
against
division
arithmetic
exceptions

No impact No impact On Off Off

3-238

Parameter Reference

Mapping of Application Requirements to the Optimization Pane: Signals and
Parameters tab

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution

Factory
Default

Simplify array
indexing

No impact No impact No impact No impact Off

Pack Boolean data
into bitfields

No impact No Impact Off
(execution,
ROM), On
(RAM)

No impact Off

Bitfield declarator
type specifier

No impact No impact Target
dependent

No impact uint_T

Pass reusable
subsystem outputs
as

No impact No impact No impact
(execution),
Structure
reference
(ROM),
Individual
arguments
(RAM)

No impact Structure
reference

Parameter
structure

No impact HierarchicalNon-
Hierarchical

No impact Hierarchical

Mapping of Application Requirements to the Code Generation Pane

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution

Factory
Default

Ignore custom
storage
classes

No impact No impact No impact No impact Off

Ignore test
point signals

Off No impact On No impact Off

3-239

3 Configuration Parameters

Mapping of Application Requirements to the Code Generation Pane: Report Tab

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution

Factory
Default

Code-to-model On On No impact On Off

Model-to-code On On No impact On Off

Generate
model Web
view

On On No impact No impact Off

Eliminated /
virtual blocks

On On No impact On Off

Traceable
Simulink
blocks

On On No impact On Off

Traceable
Stateflow
objects

On On No impact On Off

Traceable
MATLAB
functions

On On No impact On Off

Static code
metrics

No impact No impact No impact No impact Off

Summarize
which blocks
triggered
code
replacements

No impact No impact No impact No impact Off

3-240

Parameter Reference

Mapping of Application Requirements to the Code Generation Pane: Comments Tab

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution

Factory
Default

Simulink
block
descriptions

On On No impact No impact Off

Simulink
data object
descriptions

On On No impact No impact Off

Custom
comments
(MPT objects
only)

On On No impact No impact Off

Custom
comments
function

Valid file
name

Valid file
name

No impact No impact ''

Stateflow
object
descriptions

On On No impact No impact Off

Requirements
in block
comments

On On No impact On Off

Mapping of Application Requirements to the Code Generation Pane: Symbols Tab

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution

Factory
Default

Global
variables

No impact Valid
combination
of tokens

No impact RN$M RN$M

Global types No impact Valid
combination
of tokens

No impact NR$M_T &N$R$M_T

3-241

3 Configuration Parameters

Mapping of Application Requirements to the Code Generation Pane: Symbols Tab
(Continued)

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution

Factory
Default

Field name of
global types

No impact Valid
combination
of tokens

No impact NM NM

Subsystem
methods

No impact Valid
combination
of tokens

No impact RNMF RNMF

Subsystem
method
arguments

No impact Valid
combination
of tokens

No impact rtu_NM or
rty_NM

rtu_NM or
rty_NM

Local
temporary
variables

No impact Valid
combination
of tokens

No impact NM NM

Local block
output
variables

No impact Valid
combination
of tokens

No impact rtb_NM rtb_NM

Constant
macros

No impact Valid
combination
of tokens

No impact RN$M RN$M

Minimum
mangle length

No impact 1 No impact No impact 1

System-generated
identifiers

No impact No impact No impact No impact Shortened

Generate
scalar inlined
parameters as

No impact Macros Literals No impact Literals

#define
naming

No impact Force
uppercase

No impact No impact None

Parameter
naming

No impact Force
uppercase

No impact No impact None

3-242

Parameter Reference

Mapping of Application Requirements to the Code Generation Pane: Symbols Tab
(Continued)

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution

Factory
Default

Signal
naming

No impact Force
uppercase

No impact No impact None

MATLAB
function

No impact No impact No impact No impact ''

Mapping of Application Requirements to the Code Generation Pane: Interface Tab

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution

Factory
Default

Support:
floating-point
numbers

No impact No impact Off (GUI),
'on'
(command-line)
for integer
only

No impact On (GUI),
'off'
(command-line)

Support
complex
numbers

No impact No impact Off for real
only

No impact On

Support
absolute time

No impact No impact Off Off On

Support
continuous
time

No impact No impact Off
(execution,
ROM), No
impact
(RAM)

Off Off

Support
non-inlined
S-functions

No impact No impact Off Off Off

Support
variable-size
signals

No impact No impact Off Off Off

3-243

3 Configuration Parameters

Mapping of Application Requirements to the Code Generation Pane: Interface Tab
(Continued)

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution

Factory
Default

Multiword
type
definitions

No impact No impact Specifying
User
defined
and a low
value for
Maximum
word
length
reduces the
size of the
generated
file
rtwtypes.h

Use default System
defined

Maximum
word length

No impact No impact Smaller
values
reduce the
size of the
generated
file
rtwtypes.h

Use default 256

Single
output/update
function

On On On On On

Terminate
function
required

No impact No impact Off
(execution,
ROM), No
impact
(RAM)

Off On

Reusable
code error
diagnostic

Warning or
Error

No impact None No impact Error

3-244

Parameter Reference

Mapping of Application Requirements to the Code Generation Pane: Interface Tab
(Continued)

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution

Factory
Default

Pass root-level
I/O as

No impact No impact No impact No impact Individual
arguments

Block
parameter
visibility

No impact No impact No impact protected private

Internal data
visibility

No impact No impact No impact protected private

Block
parameter
access

Inlined
method

Inlined
method

Inlined
method

None None

Internal data
access

Inlined
method

Inlined
method

Inlined
method

None None

External I/O
access

Inlined
method

Inlined
method

Inlined
method

None None

Generate
destructor

No impact No impact No impact Off On

Use operator
new for
referenced
model object
registration

No impact No impact On Off Off

Generate
preprocessor
conditionals

No impact No impact No impact No impact Use local
settings

3-245

3 Configuration Parameters

Mapping of Application Requirements to the Code Generation Pane: Interface Tab
(Continued)

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution

Factory
Default

Suppress
error status
in real-time
model data
structure

Off No impact On On Off

Combine
signal/state
structures

Off No impact No impact On No impact

Mapping of Application Requirements to the Code Generation Pane: Verification Tab

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution

Factory
Default

“Code
coverage tool”
on page 3-13

BullseyeCoverage
or LDRA
Testbed

BullseyeCoverage
or LDRA
Testbed

None (code
coverage off)

None (code
coverage off)

None (code
coverage off)

“Create
block” on
page 3-15

On No impact No impact No impact Off

“Enable
portable word
sizes” on page
3-17

On On Off No impact Off

“Enable
source-level
debugging for
SIL” on page
3-19

On On Off No impact Off

3-246

Parameter Reference

Mapping of Application Requirements to the Code Generation Pane: Verification Tab
(Continued)

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution

Factory
Default

“Measure task
execution
time” on page
3-5

On On Off No impact Off

“Measure
function
execution
times” on
page 3-7

On On Off No impact Off

“Save
options” on
page 3-11

All
measurement
and
analysis
data

All
measurement
and
analysis
data

Summary
data only

No impact Summary data
only

“Workspace
variable” on
page 3-9

No impact Valid
MATLAB
variable
name

No impact No impact Off

Mapping of Application Requirements to the Code Generation Pane: Code Style Tab

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution

Factory
Default

Parentheses
level

Nominal
(Optimize
for
readability)

Nominal
(Optimize
for
readability)

Minimum
(Rely on
C/C++
operators
for
precedence)

Maximum
(Specify
precedence
with
parentheses)

Nominal
(Optimize for
readability)

Preserve
operand

On On Off On Off

3-247

3 Configuration Parameters

Mapping of Application Requirements to the Code Generation Pane: Code Style Tab
(Continued)

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution

Factory
Default

order in
expression

Preserve
condition
expression in
if statement

On On Off On Off

Convert
if-elseif-else
patterns to
switch-case
statements

No impact Off On
(execution,
ROM), No
impact
(RAM)

No impact Off

Preserve
extern
keyword
in function
declarations

No impact No impact No impact No impact On

Suppress
generation of
default cases
for Stateflow
switch
statements if
unreachable

No impact On On
(execution,
ROM), No
impact
(RAM)

Off Off

3-248

Parameter Reference

Mapping of Application Requirements to the Code Generation Pane: Templates Tab

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution

Factory
Default

Code
templates:
Source file
(*.c) template

No impact No impact No impact No impact ert_code_-
template.cgt

Code
templates:
Header file
(*.h) template

No impact No impact No impact No impact ert_code_-
template.cgt

Data
templates:
Source file
(*.c) template

No impact No impact No impact No impact ert_code_-
template.cgt

Data
templates:
Header file
(*.h) template

No impact No impact No impact No impact ert_code_-
template.cgt

File
customization
template

No impact No impact No impact No impact example_file_-
process.tlc

Generate an
example main
program

No impact No impact No impact No impact On

Target
operating
system

No impact No impact No impact No impact BareBoard-
Example

3-249

3 Configuration Parameters

Mapping of Application Requirements to the Code Generation Pane: Code Placement
Tab

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution

Factory
Default

Data
definition

No impact Valid value No impact No impact Auto

Data
definition
filename

No impact Valid value No impact No impact global.c

Data
declaration

No impact Valid value No impact No impact Auto

Data
declaration
filename

No impact Valid value No impact No impact global.h

#include file
delimiter

No impact Valid value No impact No impact off

#include file
delimiter

No impact Valid value No impact No impact Auto

Signal display
level

No impact Valid integer No impact No impact 10

Parameter
tune level

No impact Valid integer No impact No impact 10

File
packaging
format

No impact No impact No impact No impact Modular

3-250

Parameter Reference

Mapping of Application Requirements to the Code Generation Pane: Data Type
Replacement Tab

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution

Factory
Default

Replace data
type names in
the generated
code

No impact On No impact No impact Off

Replacement
Name

No impact Valid string No impact '' ''

Mapping of Application Requirements to the Code Generation Pane: Memory Sections
Tab

Configuration
Parameter Debugging Traceability Efficiency

Safety
Precaution

Factory
Default

Package No impact No impact No impact No impact ---None---

Initialize/-
Terminate

No impact No impact No impact No impact Default

Execution No impact No impact No impact No impact Default

Shared utility No impact No impact No impact No impact Default

Constants No impact No impact No impact No impact Default

Inputs/Outputs No impact No impact No impact No impact Default

Internal data No impact No impact No impact No impact Default

Parameters No impact No impact No impact No impact Default

Validation
results

No impact No impact No impact No impact Package
and memory
sections found.

Parameter Command-Line Information Summary
The following tables list Embedded Coder parameters that you can use to
tune model and target configurations. The table provides brief descriptions,

3-251

3 Configuration Parameters

valid values (bold type highlights defaults), and a mapping to Configuration
Parameter dialog box equivalents.

Use the get_param and set_param commands to retrieve and set the values
of the parameters on the MATLAB command line or programmatically in
scripts. The Configuration Wizard also provides buttons and scripts for
customizing code generation.

Note Parameters that are specific to the ERT target or targets based on the
ERT target, Stateflow, or the Fixed-Point Designer product are marked with
(ERT), (Stateflow), and (Fixed-Point Designer), respectively. To set the values
of parameters marked with (ERT), you must specify an ERT or ERT-based
target for your configuration set. Also, note that the default setting for a
parameter might vary for different targets. Parameters marked with (ERT)
are listed with ERT target defaults.

3-252

Parameter Reference

Command-Line Information: Optimization Pane: General tab

Parameter and Values
Configuration Parameters
Dialog Box Equivalent Description

NoFixptDivByZeroProtection
(ERT) (Fixed-Point Designer)
off, on

Remove code that protects
against division arithmetic
exceptions

Suppress generation of
code that guards against
division by zero for
fixed-point data.

OptimizeModelRefInitCode
(ERT)
off, on

Optimize initialization code
for model reference

Suppresses generation
of initialization code for
blocks that have states
unless the blocks are in a
system that can reset its
states, such as an enabled
subsystem. This results in
more efficient code.

The following restrictions
apply to using the
Optimize initialization
code for model
reference parameter.
However, these
restrictions do not apply
to a Model block that
references a function-call
model.

• In a subsystem that
resets states, do
not include a Model
block that references
a model that has this
parameter set to on. For
example, in an enabled
subsystem with the
States when enabling
block parameter set to
reset, do not include

3-253

3 Configuration Parameters

Command-Line Information: Optimization Pane: General tab (Continued)

Parameter and Values
Configuration Parameters
Dialog Box Equivalent Description

a Model block that
references a model
that has the Optimize
initialization code
for model reference
parameter set to on.

• If you set the Optimize
initialization code
for model reference
parameter to off in
a model that includes
a Model block that
directly references
a submodel, do not
set the Optimize
initialization code
for model reference
parameter for the
submodel to on.

UseSpecifiedMinMax (ERT)
string - off, on

Optimize using the specified
minimum and maximum
values

Use the specified
minimum and maximum
values, such as block
Output minimum and
Output maximum, to
optimize generated code

ZeroExternalMemoryAtStartup
(ERT)
off, on

Remove root level I/O zero
initialization

Suppress code that
initializes root-level I/O
data structures to zero.

ZeroInternalMemoryAtStartup
(ERT)
off, on

Remove internal data zero
initialization

Suppress code that
initializes global data
structures (for example,
block I/O data structures)
to zero.

3-254

Parameter Reference

Command-Line Information: Optimization Pane: Signals and Parameters tab

Parameter and Values
Configuration Parameters
Dialog Box Equivalent Description

InlinedParameterPlacement
(ERT)
Hierarchical,
NonHierarchical

Parameter structure Specify how generated
code stores global
(tunable) parameters.
Specify NonHierarchical
to trade off modularity for
efficiency.

BooleansAsBitfields
(ERT)
off, on

Pack Boolean data into
bitfields

Specify how generated
code stores Boolean
signals. If selected,
Boolean signals are stored
into one-bit bitfields in
global block I/O structures
or DWork vectors.

BitfieldContainerType
(ERT)
uint_T, uchar_T

Bitfield declarator type
specifier

Specify the bitfield
type when using the
optimization to pack
boolean data into bitfields.

StrengthReduction
(ERT)
off, on

Simplify array indexing Suppress generation
of code that replaces
multiply operations when
accessing arrays in a loop.

PassReuseOutputArgsAs (ERT)
Structure reference,
Individual arguments

Pass reusable subsystem
output as

Specify how a reusable
subsystem passes outputs.
Specify Individual
arguments for efficiency.

3-255

3 Configuration Parameters

Command-Line Information: Optimization Pane: Stateflow tab

Parameter and Values
Configuration Parameters
Dialog Box Equivalent Description

DataBitsets (Stateflow)
off, on

Use bitsets for storing
Boolean data

Use bit sets for storing
Boolean data.

StateBitsets (Stateflow)
off, on

Use bitsets for storing state
configuration

Use bit sets for storing
state configuration.

Command-Line Information: Code Generation Pane: General Tab

Parameter and Values
Configuration Parameters
Dialog Box Equivalent Description

IgnoreCustomStorageClasses
(ERT)
string - off, on

Code
Generation > General > Ignore
custom storage classes

Treat custom storage
classes as 'Auto'.

IgnoreTestpoints (ERT)
string - off, on

Code
Generation > General > Ignore
test point signals

Specify allocation of
memory buffers for test
points.

Command-Line Information: Code Generation Pane: Report Tab

Parameter and Values
Configuration Parameters
Dialog Box Equivalent Description

GenerateTraceInfo (ERT)
string - off, on

Code Generation > Report >
Model-to-code

Includes model-to-code
traceability support in the
generated HTML report.

IncludeHyperlinkInReport
(ERT)
string - off, on

Code Generation > Report >
Code-to-model

Link code segments to
the corresponding object
in the model. This option
increases code generation
time for large models.

GenerateWebview (ERT)
string - off, on

Code Generation > Report >
Generate model Web view

Include the model
Web view in the code
generation report.

3-256

Parameter Reference

Command-Line Information: Code Generation Pane: Report Tab (Continued)

Parameter and Values
Configuration Parameters
Dialog Box Equivalent Description

GenerateTraceReport (ERT)
string - off, on

Code Generation > Report >
Eliminated / virtual blocks

Include summary of
eliminated and virtual
blocks in Code Generation
report.

GenerateTraceReportSl (ERT)
string - off, on

Code Generation > Report >
Traceable Simulink blocks

Include summary of
Simulink blocks in Code
Generation report.

GenerateTraceReportSf (ERT)
string - off, on

Code Generation > Report >
Traceable Stateflow objects

Include summary of
Stateflow objects in Code
Generation report.

GenerateTraceReportEml
(ERT)
string - off, on

Code Generation > Report >
Traceable MATLAB functions

Include summary of
MATLAB functions in
Code Generation report.

GenerateCodeMetricsReport
(ERT)
string - off, on

Code Generation > Report >
Static code metrics

Include static code
metrics report in the
code generation report.

GenerateCodeReplacementReport
(ERT)
string - off, on

Code Generation > Report >
Summarize which blocks
triggered code replacements

Include code replacement
report summarizing
replacement functions
used and their associated
blocks in the code
generation report.

3-257

3 Configuration Parameters

Command-Line Information: Code Generation Pane: Comments Tab

Parameter and Values
Configuration Parameters
Dialog Box Equivalent Description

CustomCommentsFcn (ERT)
string - ''

Code
Generation > Comments >
Custom comments function

Specify the filename of the
MATLAB or TLC function
that adds the custom
comment.

EnableCustomComments (ERT)
string - off, on

Code
Generation > Comments >
Custom comments (MPT
objects only)

Add a comment above a
signal’s or parameter’s
identifier in the generated
file.

InsertBlockDesc (ERT)
string - off, on

Code
Generation > Comments >
Simulink block descriptions

Insert the contents of the
Description field from
the Block Parameters
dialog box into the
generated code as a
comment.

ReqsInCode (ERT)
string - off, on

Code
Generation > Comments >
Requirements in block
comments

Include specified
requirements in the
generated code as a
comment.

SFDataObjDesc (ERT)
string - off, on

Code
Generation > Comments >
Stateflow object descriptions

Insert Stateflow object
descriptions into the
generated code as a
comment.

SimulinkDataObjDesc (ERT)
string - off, on

Code
Generation > Comments >
Simulink data object
descriptions

Insert Simulink data
object descriptions into
the generated code as
comments.

3-258

Parameter Reference

Command-Line Information: Code Generation Pane: Symbols Tab

Parameter and Values
Configuration Parameters
Dialog Box Equivalent Description

CustomSymbolStrBlkIO (ERT)
string - rtb_NM

Code
Generation > Symbols > Local
block output variables

Specify a symbol format
rule for local block output
variables. The rule
can contain valid C
identifier characters and
the following macros:
$M - Mangle
$N - Name of object
$A - Data type acronym

CustomSymbolStrFcn (ERT)
string - RNMF

Code Generation > Symbols >
Subsystem methods

Specify a symbol format
rule for subsystem
methods. The rule
can contain valid C
identifier characters and
the following macros:
$M - Mangle
$R - Root model name
$N - Name of object
$H - System hierarchy
number
$F - Subsystem method
name

CustomSymbolStrFcnArg(ERT)
string - rtu_NM or rty_NM

Code Generation > Symbols >
Subsystem method arguments

Specify a symbol format
rule for subsystem method
arguments. The rule
can contain valid C
identifier characters and
the following macros:
$I — u if the argument
is an input or y if the
argument is an output
$M - Mangle
$N - Name of object

3-259

3 Configuration Parameters

Command-Line Information: Code Generation Pane: Symbols Tab (Continued)

Parameter and Values
Configuration Parameters
Dialog Box Equivalent Description

CustomSymbolStrField (ERT)
string - NM

Code
Generation > Symbols > Field
name of global types

Specify a symbol format
rule for field name of
global types. The rule
can contain valid C
identifier characters and
the following macros:
$M - Mangle
$N - Name of object
$H - System hierarchy
number
$A - Data type acronym

CustomSymbolStrGlobalVar
(ERT)
string - RN$M

Code
Generation > Symbols > Global
variables

Specify a symbol format
rule for global variables.
The rule can contain valid
C identifier characters
and the following macros:
$M - Mangle
$R - Root model name
$N - Name of object

CustomSymbolStrMacro (ERT)
string - RN$M

Code Generation > Symbols >
Constant macros

Specify a symbol format
rule for constant macros.
The rule can contain valid
C identifier characters
and the following macros:
$M - Mangle
$R - Root model name
$N - Name of object

3-260

Parameter Reference

Command-Line Information: Code Generation Pane: Symbols Tab (Continued)

Parameter and Values
Configuration Parameters
Dialog Box Equivalent Description

CustomSymbolStrTmpVar (ERT)
string - NM

Code
Generation > Symbols > Local
temporary variables

Specify a symbol format
rule for local temporary
variables. The rule
can contain valid C
identifier characters and
the following macros:
$M - Mangle
$R - Root model name
$N - Name of object

CustomSymbolStrType (ERT)
string - NR$M

Code
Generation > Symbols > Global
types

Specify a symbol format
rule for global types. The
rule can contain valid C
identifier characters and
the following macros:
$M - Mangle
$R - Root model name
$N - Name of object

DefineNamingFcn (ERT)
string -''

Code
Generation > Symbols > #define
naming > Custom M-function

Specify a customMATLAB
function to control the
naming of symbols with
#define statements. You
can set this parameter
only if DefineNamingRule
is set to Custom.

DefineNamingRule (ERT)
string - None, UpperCase,
LowerCase, Custom

Code
Generation > Symbols > #define
naming

Specify the rule that
changes the spelling of
#define names.

3-261

3 Configuration Parameters

Command-Line Information: Code Generation Pane: Symbols Tab (Continued)

Parameter and Values
Configuration Parameters
Dialog Box Equivalent Description

IncDataTypeInIds (ERT)
off, on

Code
Generation > Symbol > Include
data type acronym in
identifiers

Include acronyms that
express data types in
signal and work vector
identifiers. For example,
'rtB.i32_signame'
identifies a 32-bit integer
block output signal named
'signame'.

IncHierarchyInIds (ERT)
off, on

Code
Generation > Symbols > Include
system hierarchy number in
identifiers

Include the system
hierarchy number in
variable identifiers. For
example, 's3_' is the
system hierarchy number
in rtB.s3_signame for a
block output signal named
'signame'. Including the
system hierarchy number
in identifiers improves the
traceability of generated
code. To locate the
subsystem in which the
identifier resides, type
hilite_system('<S3>')
at the MATLAB prompt.
The argument specified
with hilite_system
requires an uppercase S.

InlinedPrmAccess (ERT)
string - Literals, Macros

Code Generation > Symbols >
Generate scalar inlined
parameters as

Specify whether inlined
parameters are coded
as numeric constants or
macros. Specify Macros
for more efficient code.

3-262

Parameter Reference

Command-Line Information: Code Generation Pane: Symbols Tab (Continued)

Parameter and Values
Configuration Parameters
Dialog Box Equivalent Description

MangleLength (ERT)
int - 1

Code Generation > Symbols >
Minimum mangle length

Specify the minimum
number of characters to be
used for name mangling
strings generated and
applied to symbols to
avoid name collisions.
A larger value reduces
the chance of identifier
disturbance when you
modify the model.

InternalIdentifier (ERT)
string - Shortened, Classic

Code Generation > Symbols >
System-generated identifiers

Specify whether the code
generator uses shorter,
more consistent names
for system-generated
identifiers.

ParamNamingRule (ERT)
string - None, UpperCase,
LowerCase, Custom

Code Generation > Symbols >
Parameter naming

Select a rule that changes
spelling of parameter
names.

PrefixModelToSubsysFcnNames
(ERT)
off, on

Code
Generation > Symbols > Prefix
model name to global
identifiers

Add the model name as
a prefix to subsystem
function names for
code formats. Also
consider adding the
model name as a prefix
to top-level functions and
data structures. This
prevents compiler errors
due to name clashes

3-263

3 Configuration Parameters

Command-Line Information: Code Generation Pane: Symbols Tab (Continued)

Parameter and Values
Configuration Parameters
Dialog Box Equivalent Description

when combining multiple
models.

SignalNamingRule (ERT)
string - None, UpperCase,
LowerCase, Custom

Code
Generation > Symbols > Signal
naming

Specify a rule the code
generator is to use that
changes spelling of signal
names.

Command-Line Information: Code Generation Pane: Interface Tab

Parameter and Values
Configuration Parameters
Dialog Box Equivalent Description

CombineOutputUpdateFcns
(ERT)
string - off, on

Code
Generation > Interface > Single
output/update function

Generate a model’s output
and update routines into a
single-step function.

ERTMultiwordLength (ERT)
int - 256

Code Generation
> Interface > Maximum
word length

Specify a maximum
word length, in bits,
for which the code
generation process will
generate system-defined
multiword types into
the file rtwtypes.h.
Specifying 0 provides you
complete control over type
definitions for multiword
data types in generated
code.

ERTMultiwordTypeDef (ERT)
string - System defined, User
defined

Code Generation
> Interface > Multiword type
definitions

Specify whether to
use system-defined
or user-defined type
definitions for multiword
data types in generated
code.

3-264

Parameter Reference

Command-Line Information: Code Generation Pane: Interface Tab (Continued)

Parameter and Values
Configuration Parameters
Dialog Box Equivalent Description

GenerateDestructor (ERT)
string - off, on

Code Generation
> Interface > Generate
destructor

Generate a destructor for
the model class in C++
(Encapsulated) model
code.

GenerateExternalIOAccess-
Methods (ERT)
string - None, Method, Inlined
method, Structure-based
method, Inlined
structure-based method

Code Generation
> Interface > External I/O
access

Specify whether to
generate access methods
for root-level I/O
signals for the C++
(Encapsulated) model
class.

GenerateInternalMember-
AccessMethods (ERT)
string - None, Method, Inlined
method

Code Generation
> Interface > Internal data
access

Specify whether
to generate access
methods for internal
data structures such
as Block I/O, DWork
vectors, Run-time model,
Zero-crossings, and
continuous states for
the C++ (Encapsulated)
model class.

GenerateParameterAccess-
Methods (ERT)
string - None, Method, Inlined
method

Code Generation
> Interface > Block
parameter access

Specify whether to
generate access methods
for block parameters for
the C++ (Encapsulated)
model class.

GeneratePreprocessor-
Conditionals (ERT)
string - Use local settings,
Enable all, Disable all

Code Generation
> Interface > Generate
preprocessor conditionals

Specify whether to
generate preprocessor
conditionals locally
for each Model block
containing variants or
globally for all Model
blocks in a model.

3-265

3 Configuration Parameters

Command-Line Information: Code Generation Pane: Interface Tab (Continued)

Parameter and Values
Configuration Parameters
Dialog Box Equivalent Description

IncludeMdlTerminateFcn
(ERT)
string - off, on

Code
Generation > Interface >
Terminate function required

Generate a terminate
function for the model.

InternalMemberVisibility
(ERT)
string - public, private,
protected

Code Generation
> Interface > Internal data
visibility

Specify whether to
generate internal data
structures such as
Block I/O, DWork
vectors, Run-time
model, Zero-crossings,
and continuous states
as public, private,
or protected data
members of the C++
(Encapsulated) model
class.

MultiInstanceErrorCode
(ERT)
string - None, Warning, Error

Code
Generation > Interface >
Reusable code error
diagnostic

Specify the error
diagnostic behavior for
cases when data defined
in the model violates
the requirements for
generation of reusable
code.

ParameterMemberVisibility
(ERT)
string - public, private,
protected

Code Generation
> Interface > Block
parameter visibility

Specify whether to
generate the block
parameter structure
as a public, private,
or protected data
member of the C++
(Encapsulated) model
class.

3-266

Parameter Reference

Command-Line Information: Code Generation Pane: Interface Tab (Continued)

Parameter and Values
Configuration Parameters
Dialog Box Equivalent Description

PurelyIntegerCode (ERT)
string - off, on

Code
Generation > Interface >
floating-point numbers

Support floating-point
data types in the
generated code. This
option is forced on when
SupportNonInlinedSFcns
is on.

RootIOFormat (ERT)
string - Individual
arguments, Structure
reference

Code
Generation > Interface > Pass
root-level I/O as

Specify how the generated
code passes root-level
I/O data into a reusable
function.

SupportAbsoluteTime (ERT)
string - off, on

Code
Generation > Interface >
absolute time

Support absolute time in
the generated code. Blocks
such as the Discrete
Integrator might require
absolute time.

SupportComplex (ERT)
string - off, on

Code
Generation > Interface >
complex numbers

Support complex data
types in the generated
code.

SupportContinuousTime
(ERT)
string - off, on

Code
Generation > Interface >
continuous time

Support continuous
time in the generated
code. This allows blocks
to be configured with
a continuous sample
time. Not available if
SuppressErrorStatus is
on.

SupportVariableSizeSignals
(ERT)
string - off, on

Code Generation >Interface
> variable-size signals

Specify whether to
generate code for models
that use variable-size
signals.

3-267

3 Configuration Parameters

Command-Line Information: Code Generation Pane: Interface Tab (Continued)

Parameter and Values
Configuration Parameters
Dialog Box Equivalent Description

SuppressErrorStatus (ERT)
string - off, on

Code
Generation > Interface >
Suppress error status
in real-time model data
structure

Remove the error status
field of the real-timemodel
data structure to preserve
memory. When selected,
SupportContinuousTime
is cleared.

CombineSignalStateStructs
(ERT)
string - off, on

Code
Generation > Interface >
Combine signal/state
structures

Specify whether to
combine a model block’s
signals (global block I/O
structure) and discrete
states (DWork vector) into
a single data structure in
the generated code.

UseOperatorNewForModelRef-
Registration (ERT)
string - off, on

Code Generation
> Interface > Use operator
new for referenced model
object registration

For a model containing
Model blocks, specify
whether generated code
should use the operator
new, during model object
registration, to instantiate
objects for referenced
models configured with
a C++ encapsulation
interface.

3-268

Parameter Reference

Command-Line Information: Code Generation Pane: Verification Tab

Parameter and Values
Configuration Parameters
Dialog Box Equivalent Description

CoverageTool (ERT)
string - None,
BullseyeCoverage, LDRA
Testbed

Tip To access the
CoverageTool parameter,
type:

covSettings = get_param(gcs, 'CodeCoverageSettings');
covSettings.CoverageTool

Code
Generation > Verification > Code
coverage tool

Specify a code coverage
tool

CodeExecutionProfileVariable
(ERT)
string - executionProfile

Code
Generation > Verification > Workspace
variable

Specify workspace
variable that collects
measurements and allows
viewing and analysis of
execution profiles.

CodeExecutionProfiling
(ERT)
string - off, on

Code
Generation > Verification > Measure
task execution time

Specify whether to collect
execution time profiles for
tasks in generated code.

CodeProfilingInstrumentation
(ERT)
string - off, on

Code
Generation > Verification > Measure
function execution times

Specify whether to collect
execution time profiles
for functions in code
generated from the model.

CodeProfilingSaveOptions
(ERT)
string - SummaryOnly, AllData

Code
Generation > Verification > Save
options

Specify whether to
save code profiling
measurement and
analysis data to base
workspace.

3-269

3 Configuration Parameters

Command-Line Information: Code Generation Pane: Verification Tab (Continued)

Parameter and Values
Configuration Parameters
Dialog Box Equivalent Description

CreateSILPILBlock (ERT)
string - None, SIL, PIL

Code
Generation > Verification > Create
block

Create SIL or PIL block
to allow verification of
source or object code
generated from subsystem
or top-model components.

PortableWordSizes (ERT)
string - off, on

Code
Generation > Verification > Enable
portable word sizes

Specify that model code
should be generated with
conditional processing
macros that allow the
same generated source
code files to be used both
for software-in-the-loop
(SIL) testing on the
host platform and for
production deployment on
the target platform.

SILDebugging (ERT)
string - off, on

Code
Generation > Verification > Enable
source-level debugging for
SIL simulations

Enable use of Microsoft
Visual Studio® debugger
during SIL simulation.

Command-Line Information: Code Generation Pane: Code Style Tab

Parameter and Values
Configuration Parameters
Dialog Box Equivalent Description

ConvertIfToSwitch (ERT)
string - off, on

Code Generation > Code
Style > Convert if-elseif-else
patterns to switch-case
statements

Control whether
if-elseif-else decision
logic appears in generated
code as switch-case
statements.

ParenthesesLevel (ERT)
string - Minimum, Nominal,
Maximum

Code Generation > Code
Style > Parentheses Level

Control existence of
optional parentheses in
generated code.

3-270

Parameter Reference

Command-Line Information: Code Generation Pane: Code Style Tab (Continued)

Parameter and Values
Configuration Parameters
Dialog Box Equivalent Description

PreserveExpressionOrder
(ERT)
string - off, on

Code Generation > Code
Style > Preserve operand
order in expression

Control reordering of
commutable expressions.

PreserveExternInFcnDecls
(ERT)
string - off, on

Code Generation > Code
Style > Preserve extern
keyword in function
declarations

Control whether extern
keyword appears in
function declarations with
external linkage in the
generated code.

PreserveIfCondition (ERT)
string - off, on

Code Generation > Code
Style > Preserve condition
expression in if statement

Control preservation of if
statement conditions.

SuppressUnreachableDefault-
Cases (ERT)
string - off, on

Code Generation > Code
Style > Suppress generation
of default cases for Stateflow
switch statements if
unreachable

Control whether to
generate default cases
for switch-case statements
in the code for Stateflow
charts.

Command-Line Information: Code Generation Pane: Templates Tab

Parameter and Values
Configuration Parameters
Dialog Box Equivalent Description

ERTCustomFileTemplate (ERT)
string -
example_file_process.tlc

Code
Generation > Templates > File
customization template

Specify a TLC callback
script for customizing the
generated code.

ERTDataHdrFileTemplate
(ERT)
string -
ert_code_template.cgt

Code
Generation > Templates >
Header file (*.h) template

Specify a template that
organizes the generated
data .h header files.

ERTDataSrcFileTemplate
(ERT)
string -
ert_code_template.cgt

Code
Generation > Templates >
Source file (*.c or *.cpp)
template

Specify a template that
organizes the generated
data .c source files.

3-271

3 Configuration Parameters

Command-Line Information: Code Generation Pane: Templates Tab (Continued)

Parameter and Values
Configuration Parameters
Dialog Box Equivalent Description

ERTHdrFileBannerTemplate
(ERT)
string -
ert_code_template.cgt

Code
Generation > Templates >
Header file (*.h) template

Specify a template that
organizes the generated
code .h header files.

ERTSrcFileBannerTemplate
(ERT)
string -
ert_code_template.cgt

Code
Generation > Templates >
Source file (*.c or *.cpp)
template

Specify a template that
organizes the generated
code .c or .cpp source
files.

GenerateSampleERTMain (ERT)
string - off, on

Code
Generation > Templates >
Generate an example main
program

Generate an example
main program that
demonstrates how to
deploy the generated code.
The program is written
to the file ert_main.c or
ert_main.cpp.

TargetOS (ERT)
string - BareBoardExample,
VxWorksExample,
NativeThreadsExample

Code
Generation > Templates >
Target operating system

Specify the target
operating system for the
example main ert_main.c
or ert_main.cpp.
BareBoardExample is a
generic example that does
not assumes an operating
system. VxWorksExample
is tailored to the
VxWorks7 real-time
operating system.
NativeThreadsExample
works with threaded code
under the native host
operating system.

7. VxWorks® is a registered trademark of Wind River® Systems, Inc.

3-272

Parameter Reference

Command-Line Information: Code Generation Pane: Code Placement Tab

Parameter and Values
Configuration Parameters
Dialog Box Equivalent Description

DataDefinitionFile (ERT)
string - global.c

Code Generation > Code
Placement > Data definition
filename

Specify the name of a
single separate .c or .cpp
file that contains global
data definitions.

DataReferenceFile (ERT)
string - global.h

Code Generation > Code
Placement > Data declaration
filename

Specify the name of a
single separate .c or .cpp
file that contains global
data references.

GlobalDataDefinition (ERT)
string - Auto, InSourceFile,
InSeparateSourceFile

Code Generation > Code
Placement > Data definition

Select the .c or .cpp file
where variables of global
scope are defined.

GlobalDataReference (ERT)
string - Auto, InSourceFile,
InSeparateHeaderFile

Code Generation > Data
Placement > Data declaration

Select the .h file where
variables of global
scope are declared (for
example, extern real_T
globalvar;).

IncludeFileDelimiter (ERT)
string - Auto, UseQuote,
UseBracket

Code Generation > Code
Placement > #include file
delimiter

Specify the delimiter
to be used for data
objects that do not have a
delimiter specified in the
IncludeFile property.

EnableDataOwnership
string - off, on

Code Generation > Code
Placement > Use owner from
data object for data definition
placement

Specify whether the
model uses the ownership
setting of a data object
for data definition in code
generation.

ModuleNamingRule (ERT)
string - Unspecified,
SameAsModel

Code Generation > Code
Placement > Use owner from
data object for data definition
placement

Specify whether the
model uses the ownership
setting of a data object
for data definition in code
generation.

3-273

3 Configuration Parameters

Command-Line Information: Code Generation Pane: Code Placement Tab (Continued)

Parameter and Values
Configuration Parameters
Dialog Box Equivalent Description

ParamTuneLevel (ERT)
int - 10

Code Generation > Code
Placement > Parameter tune
level

Specify whether the code
generator is to declare a
parameter data object as
tunable global data in the
generated code.

SignalDisplayLevel (ERT)
int - 10

Code Generation > Code
Placement > Signal display
level

Specify whether the code
generator is to declare a
signal data object as global
data in the generated code.

ERTFilePackagingFormat
(ERT)
string - Modular, Compact
with separate data files,
Compact

Code Generation > Code
Placement > File Packaging
Format

Specify how the code
generator organizes the
code into files.

Command-Line Information: Code Generation Pane: Data Type Replacement Tab

Parameter and Values
Configuration Parameters
Dialog Box Equivalent Description

EnableUserReplacementTypes
(ERT)
string - off, on

Code Generation > Data Type
Replacement

Specify whether to replace
built-in data type names
with user-defined data
type names in generated
code.

ReplacementTypes (ERT)
string - ''

Code Generation > Data Type
Replacement > Data type
names

Specify names to use for
built-in data types in
generated code.

3-274

Parameter Reference

Command-Line Information: Code Generation Pane: Memory Sections Tab

Parameter and Values
Configuration Parameters
Dialog Box Equivalent Description

MemSecPackage (ERT)
string - --- None ---,
Simulink, mpt

Code Generation > Memory
Sections > Package

Specify the package that
contains the memory
sections that you want to
apply.

MemSecFuncInitTerm (ERT)
string - Default,
MemConst, MemVolatile,
MemConstVolatile

Code Generation > Memory
Sections > Initialize/Terminate

Apply memory sections to:

• Initialize/Start
functions

• Terminate functions

MemSecFuncExecute (ERT)
string - Default,
MemConst, MemVolatile,
MemConstVolatile

Code Generation > Memory
Sections > Execution

Apply memory sections to:

• Step functions

• Run-time initialization
functions

• Derivative functions

• Enable functions

• Disable functions

MemSecFuncSharedUtil (ERT)
string - Default,
MemConst, MemVolatile,
MemConstVolatile

Code Generation > Memory
Sections > Shared utility

Apply memory sections to
shared utility functions.

MemSecDataConstants (ERT)
string - Default,
MemConst, MemVolatile,
MemConstVolatile

Code Generation > Memory
Sections > Constants

Apply memory sections to:

• Constant parameters

• Constant block I/O

• Zero representation

3-275

3 Configuration Parameters

Command-Line Information: Code Generation Pane: Memory Sections Tab (Continued)

Parameter and Values
Configuration Parameters
Dialog Box Equivalent Description

MemSecDataIO (ERT)
string - Default,
MemConst, MemVolatile,
MemConstVolatile

Code Generation > Memory
Sections > Inputs/Outputs

Apply memory sections to:

• Root inputs

• Root outputs

MemSecDataInternal (ERT)
string - Default,
MemConst, MemVolatile,
MemConstVolatile

Code Generation > Memory
Sections > Internal data

Apply memory sections to:

• Block I/O

• DWork vectors

• Run-time model

• Zero-crossings

MemSecDataParameters (ERT)
string - Default,
MemConst, MemVolatile,
MemConstVolatile

Code Generation > Memory
Sections > Parameters

Apply memory sections to:

• Parameters

Command-Line Information: Not in GUI

Parameter and Values

Configuration
Parameters Dialog
Box Equivalent Description

CPPClassGenCompliant (ERT)
string - off, on

Not available Set in SelectCallback for a
target to indicate whether the
target supports the ability to
generate and configure C++
encapsulation interfaces to model
code. Default is off for custom
and non-ERT targets and on
for ERT (ert.tlc) targets. (For
more information, see “Support

3-276

Parameter Reference

Command-Line Information: Not in GUI (Continued)

Parameter and Values

Configuration
Parameters Dialog
Box Equivalent Description

C++ Encapsulation Interface
Control”.)

ModelStepFunctionPrototype-
ControlCompliant (ERT)
string - off, on

Not available Set in SelectCallback for a
target to indicate whether the
target supports the ability to
control the function prototypes
of initialize and step functions
that are generated for a Simulink
model. Default is off for non-ERT
targets and on for ERT targets.
(For more information, see
“Support C Function Prototype
Control”.)

3-277

3 Configuration Parameters

3-278

Index

IndexA
Absolute IQN block 2-29
activate 1-2
ADC block 2-33
ADC blocks

C281x 2-201
add 1-5
addAdditionalHeaderFile function 1-18
addAdditionalIncludePath function 1-20
addAdditionalLinkObj function 1-22
addAdditionalLinkObjPath function 1-23
addAdditionalSourceFile function 1-24
addAdditionalSourcePath function 1-26
addArgConf method 1-28
addConceptualArg function 1-31
addDWorkArg function 1-33
addEntry function 1-36
addIOConf AutosarInterface method 1-41
address 1-46
animate 1-53
Arctangent IQN block 2-31
arxml.importer class 1-54
arxml.importer constructor 1-56
asymmetric vs. symmetric waveforms 2-225
attachToModel AutosarInterface method 1-58
attachToModel method 1-59 to 1-60
AUTOSAR 1-58 1-166 1-176 to 1-177 1-180 to

1-189 1-195 to 1-196 1-206 to 1-209 1-456
1-468 to 1-471
addIOConf 1-41
AutosarInterface 1-363
createCalibrationComponentObjects 1-118
createComponentAsModel 1-119
createComponentAsSubsystem 1-121
createOperationAsConfigurableSubsystems 1-124
getCalibrationComponentNames 1-159
getComponentName 1-162
getComponentNames 1-163
getDependencies 1-170
getFile 1-173

getImplementationName 1-175
getInterfacePackageName 1-178
getInternalBehaviorName 1-179
importer 1-54 1-56
runValidation 1-406
setComponentName 1-435
setDependencies 1-438
setFile 1-441
setInitEventName 1-444
setInitRunnableName 1-445
setIOAutosarPortName 1-448
setIODataAccessMode 1-449
setIODataElement 1-450
setIOInterfaceName 1-452
setPeriodicEventName 1-463
setPeriodicRunnableName 1-464
syncWithModel 1-496

AUTOSAR Code Generation Options pane 3-108
AUTOSAR Configuration

RTW.AutosarInterface 1-359
Avnet Spartan 3-A Video Capture 2-617

B
Blackfin537 bf537_adc 2-2
Blackfin537 bf537_dac 2-5
Blackfin537 bf537_uart_config 2-7
Blackfin537 bf537_uart_rx 2-10
Blackfin537 bf537_uart_tx 2-13
Block Processing block 2-325
blocks

CAN Calibration Protocol 2-41
CAN Pack 2-652
CAN Unpack 2-663
Custom MATLAB file 2-675
Data Object Wizard 2-677
ERT (optimized for fixed-point) 2-680
ERT (optimized for floating-point) 2-682
GRT (debug for fixed/floating-point) 2-684

Index-1

Index

GRT (optimized for
fixed/floating-point) 2-686

Invoke AUTOSAR Server Operation 2-703
Mode Switch for Invoke AUTOSAR Server

Operation 2-755
Byte Pack block 2-19
Byte Reversal block 2-23
Byte Unpack block 2-26

C
C++ encapsulation interface control

attachToModel 1-59
getArgCategory 1-145
getArgName 1-148
getArgPosition 1-151
getArgQualifier 1-154
getClassName 1-160
getDefaultConf 1-167
getNumArgs 1-191
getStepMethodName 1-212
RTW.configSubsystemBuild 1-368
RTW.getEncapsulationInterfaceSpecification 1-385
RTW.ModelCPPArgsClass 1-387
RTW.ModelCPPClass 1-391
RTW.ModelCPPVoidClass 1-393
runValidation 1-414 1-416
setArgCategory 1-419
setArgName 1-423
setArgPosition 1-426
setArgQualifier 1-429
setClassName 1-433
setStepMethodName 1-472

C2000 Library
SCI Setup

Host-side 2-693
SCI Transmit

Host-side 2-696
C2802x ADC 2-181
C2802x COMP 2-178

C2802x/C2803x AnalogIO Input 2-188
C2802x/C2803x AnalogIO Output 2-190
C2803x ADC 2-181
C2803x COMP 2-178
C2803x LIN Receive block 2-192
C2803x LIN Transmit block 2-198
C280x/C2802x/C2803x/C2806x/C28x3x/c2834x

GPIO Digital Input 2-135
C280x/C2802x/C2803x/C2806x/C28x3x/c2834x

GPIO Digital Output 2-138
C280x/C2802x/C2803x/C28x3x eCAP block 2-61
C280x/C2802x/C2803x/C28x3x Software

Interrupt Trigger 2-165
C280x/C2802x/C2803x/C28x3x/c2834x SPI

Receive block 2-169
C280x/C2803x/C28x3x eCAN Receive block 2-48
C280x/C2803x/C28x3x eCAN Transmit

block 2-56
C280x/C2803x/C28x3x ePWM block 2-77
C280x/C2803x/C28x3x eQEP block 2-116
C281x ADC block 2-201
C281x CAP block 2-206
C281x GPIO Digital Input block 2-215
C281x GPIO Digital Output block 2-219
C281x PWM block 2-223
C281x QEP block 2-235
C281x Timer block 2-239
C28x Hardware Interrupt block 2-141
C28x I2C Receive block 2-148
C28x I2C Transmit block 2-152
C28x SCI Receive block 2-155
C28x SCI Transmit block 2-161
C28x SPI Transmit block 2-174
C28x3x GPIO Digital Input 2-135
C28x3x GPIO Digital Output 2-138
C5510 DSK ADC 2-316
C5510 DSK DAC 2-319
C6000 Deinterleave 2-334
C6000 EDMA block 2-336
C6000 Interleave 2-345

Index-2

Index

C6000 IP Config block 2-348
C6000 Library

DM643x UART Config
Host side 2-609

C6000 TCP/IP Receive block 2-354
C6000 TCP/IP Send block 2-360
C6000 UDP Receive block 2-363
C6000 UDP Send block 2-367
C62x Autocorrelation block 2-370
C62x Bit Reverse block 2-372
C62x Block Exponent block 2-374
C62x Complex FIR block 2-376
C62x Convert Floating-Point to Q.15 block 2-380
C62x Convert Q.15 to Floating-Point block 2-381
C62x FFT block 2-382
C62x General Real FIR block 2-384
C62x LMS Adaptive Filter block 2-388
C62x Matrix Multiplication block 2-393
C62x Matrix Transpose block 2-397
C62x Radix-2 FFT block 2-398
C62x Radix-2 IFFT block 2-401
C62x Radix-4 Real FIR block 2-403
C62x Radix-8 Real FIR block 2-406
C62x Real Forward Lattice all-Pole IIR

block 2-409
C62x Real IIR block 2-413
C62x Reciprocal block 2-417
C62x Symmetric Real FIR block 2-418
C62x Vector Dot Product block 2-423
C62x Vector Maximum Index block 2-424
C62x Vector Maximum Value block 2-425
C62x Vector Minimum Value block 2-426
C62x Vector Multiply block 2-427
C62x Vector Negate block 2-428
C62x Vector Sum of Squares block 2-429
C62x Weighted Vector Sum block 2-430
C6416 DSK ADC block 2-432
C6416 DSK DAC block 2-436
C6416 DSK DIP Switch block 2-439
C6416 DSK LED block 2-444

C6416 DSK Reset block 2-446
C6455 DSK/EVM ADC block 2-447
C6455 DSK/EVM DAC block 2-450
C6455 DSK/EVM DIP block 2-451
C6455 DSK/EVM LED block 2-453
C6455 SRIO Config block 2-454
C6455 SRIO Receive block 2-457
C6455 SRIO Transmit block 2-464
C64x Autocorrelation block 2-468
C64x Bit Reverse block 2-470
C64x Block Exponent block 2-472
C64x Complex FIR block 2-474
C64x Convert Floating-Point to Q.15 block 2-477
C64x Convert Q.15 to Floating-Point block 2-478
C64x FFT block 2-479
C64x General Real FIR block 2-481
C64x LMS Adaptive Filter block 2-484
C64x Matrix Multiplication block 2-489
C64x Matrix Transpose block 2-493
C64x Radix-2 FFT block 2-495
C64x Radix-2 IFFT block 2-498
C64x Radix-4 Real FIR block 2-500
C64x Radix-8 Real FIR block 2-503
C64x Real Forward Lattice all-Pole IIR

block 2-506
C64x Real IIR block 2-510
C64x Reciprocal block 2-513
C64x Symmetric Real FIR block 2-514
C64x Vector Dot Product block 2-519
C64x Vector Maximum Index block 2-520
C64x Vector Maximum Value block 2-521
C64x Vector Minimum Value block 2-522
C64x Vector Multiply block 2-523
C64x Vector Negate block 2-524
C64x Vector Sum of Squares block 2-525
C64x Weighted Vector Sum block 2-526
C6713 DSK ADC block 2-528
C6713 DSK DAC block 2-533
C6713 DSK DIP Switch block 2-535
C6713 DSK LED block 2-540

Index-3

Index

C6713 DSK Reset block 2-542
C6747EVM DIP Switch 2-639
C6747EVM LED 2-641
C6747EVM/C6748EVM ADC 2-634
C6747EVM/C6748EVM DAC 2-637
CAN Calibration Protocol block 2-41
CAN Pack block 2-652
CAN Unpack block 2-663
CAN/eCAN

C280x/C2803x/C2833x Receive block 2-48
C280x/C2803x/C28x3x Transmit block 2-56

capture block
C281x 2-206

ccsboardinfo 1-62
Clarke Transformation block 2-246
Code Placement pane 3-44
Code Style pane 3-20
configuration parameters

code generation 3-251
Code Generation pane: Code Placement 3-45
Code Generation pane: Code Style 3-21
Code Generation pane: Data Type

Replacement 3-62
Code Generation pane: Memory

Sections 3-92
Code Generation pane: Templates 3-34
coder targets 3-156
impacts of settings 3-237
pane 3-117 3-154

buildAction 3-122
buildFormat 3-120
Compiler options string: 3-130
DiagnosticActions 3-150
Export IDE link handle to base

workspace: 3-147
Function name: 3-127
gui item name 3-142
IDE link handle name: 3-149
ideObjBuildTimeout 3-144
ideObjTimeout 3-146

Linker options string: 3-132
overrunNotificationMethod 3-125
Preserve extern keyword in function

declarations 3-29
Profile real-time execution 3-138
profileBy 3-140
projectOptions 3-128
Shared Utility: 3-98
System heap size (MAUs): 3-136
System stack size (MAUs): 3-134

Configuration Parameters dialog box
Code Generation (AUTOSAR Code

Generation Options) 3-109
AUTOSAR Compiler Abstraction

Macros 3-112
AUTOSAR Schema Version 3-110
Configure AUTOSAR Interface 3-114
Maximum SHORT-NAME length 3-111
Support root-level matrix I/O using

one-dimensional arrays 3-113
Code Generation (Verification)

Code coverage tool 3-13
Create block 3-15
Enable portable word sizes 3-17
Enable source-level debugging for SIL

simulations 3-19
Measure function execution times 3-7
Measure task execution time 3-5
Save options 3-11
Verification tab overview 3-4
Workspace variable 3-9

Code Placement pane
Data declaration 3-50
Data declaration filename 3-52
Data definition 3-46
Data definition filename 3-48
#include file identifier 3-54
Parameter tune level 3-57 3-59
Signal display level 3-55

Index-4

Index

use owner from data object for data
definition placement 3-54

Code Style pane
Convert if-elseif-else patterns to

switch-case statements 3-27
Parentheses level 3-22
Preserve condition expression in if

statement 3-25
Preserve operand order in

expression 3-24
Suppress generation of default cases

for Stateflow switch statements if
unreachable 3-31

Data Type Replacement pane
boolean Replacement Name 3-82
char Replacement Name 3-88
double Replacement Name 3-66
int Replacement Name 3-84
int16 Replacement Name 3-72
int32 Replacement Name 3-70
int8 replacement name 3-74
Replace data type names in the generated

code 3-63
single Replacement Name 3-68
uint Replacement Name 3-86
uint16 Replacement Name 3-78
uint32 Replacement Name 3-76
uint8 Replacement Name 3-80

Memory Sections pane
Constants 3-99
Execution 3-97
Initialize/Terminate 3-96
Inputs/Outputs 3-101
Internal data 3-103
Package 3-93
Parameters 3-105
Refresh package list 3-95
Validation results 3-107

Templates pane

code templates: Header file (*.h)
template 3-36

code templates: Source file (*.c)
template 3-35

data templates: Header file (*.h)
template 3-38

data templates: Source file (*.c)
template 3-37

File customization template 3-39
Generate an example main program 3-40
Target operating system 3-42

configure 1-95
connect to simulator 1-227
conversion

float to IQ number 2-251
IQ number to different IQ number 2-275
IQ number to float 2-269

copyConceptualArgsToImplementation
function 1-99

CPU Timer block 2-543
createAndAddConceptualArg function 1-101
createAndAddImplementationArg

function 1-108
createAndSetCImplementationReturn

function 1-113
createComponentAsSubsystem arxml.importer

method 1-121
createOperationAsConfigurableSubsystems

arxml.importer method 1-124
CRL table creation

addAdditionalHeaderFile 1-18
addAdditionalIncludePath 1-20
addAdditionalLinkObj 1-22
addAdditionalLinkObjPath 1-23
addAdditionalSourceFile 1-24
addAdditionalSourcePath 1-26
addConceptualArg 1-31
addDWorkArg 1-33
addEntry 1-36
copyConceptualArgsToImplementation 1-99

Index-5

Index

createAndAddConceptualArg 1-101
createAndAddImplementationArg 1-108
createAndSetCImplementationReturn 1-113
enableCPP 1-139
getTflArgFromString 1-213
getTflDWorkFromString 1-215
registerCFunctionEntry 1-311
registerCPPFunctionEntry 1-315
registerCPromotableMacroEntry 1-319
setNameSpace 1-458
setReservedIdentifiers 1-465
setTflCFunctionEntryParameters 1-474
setTflCOperationEntryParameters 1-480
setTflCSemaphoreEntryParameters 1-491

Custom MATLAB file block 2-675

D
Data Object Wizard block 2-677
Data Type Replacement pane 3-61
deadband

C281x PWM 2-231
debug operation

new 1-287
device driver blocks

CAN Calibration Protocol 2-41
digital motor control. See DMC library
disable 1-129
Division IQN block 2-249
DM642 EVM Audio ADC block 2-545
DM642 EVM Audio DAC block 2-549
DM642 EVM FPGA GPIO Read block 2-551
DM642 EVM FPGA GPIO Write block 2-553
DM642 EVM LED block 2-569
DM642 EVM Reset block 2-575
DM642 EVM Video ADC block 2-555
DM642 EVM Video DAC block 2-564
DM642 EVM Video Port block 2-570
DM6437 EVM ADC 2-576
DM6437 EVM DAC 2-579

DM6437 EVM DIP 2-580
DM6437 EVM LED 2-582
DM6437 EVM Video Capture 2-583
DM643x CAN Receive 2-585
DM643x CAN Setup 2-589
DM643x CAN Transmit 2-592
DM643x Draw Rectangles 2-594
DM643x OSD 2-597
DM643x PWM 2-603
DM643x UART Config

Host side 2-609
DM643x UART Receive block 2-612
DM643x UART Transmit block 2-615
DM643x Video Display 2-624
DM648 EVM Video Capture 2-629
DM648 EVM Video Display 2-632
DMC library

Clarke Transformation 2-246
Inverse Park Transformation 2-266
Park Transformation 2-281
PID controller 2-284 2-286
ramp control 2-291
ramp generator 2-294
Space Vector Generator 2-301
Speed Measurement 2-303

DSP/BIOS Hardware Interrupt block 2-642
DSP/BIOS Task block 2-646
DSP/BIOS Triggered Task block 2-649
duty ratios 2-301

E
enable 1-137
enableCPP function 1-139
enhanced capture channel 2-61
enhanced quadrature encoder pulse module

C280x/C2803x/C2833x 2-116
ePWM blocks

C280x/C2833x 2-77
ERT (optimized for fixed-point) block 2-680

Index-6

Index

ERT (optimized for floating-point) block 2-682

F
file and project operation

new 1-287
Float to IQN block 2-251
floating-point numbers

convert to IQ number 2-251
flush 1-142
four-quadrant arctangent 2-31
Fractional part IQN block 2-253
Fractional part IQN x int32 block 2-255
From RTDX block 2-257
function prototype control

addArgConf 1-28
attachToModel 1-60
getArgCategory 1-147
getArgName 1-150
getArgPosition 1-153
getArgQualifier 1-156
getDefaultConf 1-169
getFunctionName 1-174
getNumArgs 1-192
getPreview 1-197
RTW.configSubsystemBuild 1-368
RTW.getFunctionSpecification 1-386
RTW.ModelSpecificCPrototype 1-396
runValidation 1-418
setArgCategory 1-421
setArgName 1-425
setArgPosition 1-428
setArgQualifier 1-431
setFunctionName 1-442

G
get symbol table 1-503
getArgCategory method 1-145 1-147
getArgName method 1-148 1-150

getArgPosition method 1-151 1-153
getArgQualifier method 1-154 1-156
getCalibrationComponentNames

arxml.importer method 1-159
getClassName method 1-160
getComponentName AutosarInterface

method 1-162
getComponentNames arxml.importer

method 1-163
getDefaultConf AutosarInterface method 1-166
getDefaultConf method 1-167 1-169
getDependencies arxml.importer method 1-170
getFile arxml.importer method 1-173
getFunctionName method 1-174
getImplementationName AutosarInterface

method 1-175
getInitEventName AutosarInterface

method 1-176
getInitRunnableName AutosarInterface

method 1-177
getInterfacePackageName AutosarInterface

method 1-178
getInternalBehaviorName AutosarInterface

method 1-179
getIOAutosarPortName AutosarInterface

method 1-180
getIODataAccessMode AutosarInterface

method 1-181
getIODataElement AutosarInterface

method 1-182
getIOErrorStatusReceiver AutosarInterface

method 1-183
getIOInterfaceName AutosarInterface

method 1-184
getIOPortNumber AutosarInterface

method 1-185
getIOServiceInterface AutosarInterface

method 1-186
getIOServiceName AutosarInterface

method 1-187

Index-7

Index

getIOServiceOperation AutosarInterface
method 1-188

getIsServerOperation AutosarInterface
method 1-189

getNumArgs method 1-191 to 1-192
getPeriodicEventName AutosarInterface

method 1-195
getPeriodicRunnableName AutosarInterface

method 1-196
getPreview method 1-197
getServerInterfaceName AutosarInterface

method 1-206
getServerOperationPrototype

AutosarInterface method 1-207
getServerPortName AutosarInterface

method 1-208
getServerType AutosarInterface method 1-209
getStepMethodName method 1-212
getTflArgFromString function 1-213
getTflDWorkFromString function 1-215
GPIO Digital Input

C280x 2-135
C28x3x 2-135

GPIO Digital Output
C280x 2-138
C28x3x 2-138

GPIO input
C281x 2-215

GPIO output
C281x 2-219

GRT (debug for fixed/floating-point) block 2-684
GRT (optimized for fixed/floating-point)

block 2-686

H
Hardware Interrupt block 2-322

I
I/O

C281x input 2-215
C281x output 2-219

I2C
Receive 2-148
Transmit 2-152

IDE status 1-250
Idle Task block 2-699
info 1-231
Integer part IQN block 2-262
Integer part IQN x int32 block 2-264
interrupt

software triggered for C280x/C28x3x 2-165
Inverse Park Transformation block 2-266
Invoke AUTOSAR Server Operation block 2-703
IQ Math library

Absolute IQN block 2-29
Arctangent IQN block 2-31
Division IQN block 2-249
Float to IQN block 2-251
Fractional part IQN block 2-253
Fractional part IQN x int32 block 2-255
Integer part IQN block 2-262
Integer part IQN x int32 block 2-264
IQN to Float block 2-269
IQN x int32 block 2-271
IQN x IQN block 2-273
IQN1 to IQN2 block 2-275
IQN1 x IQN2 block 2-277
Magnitude IQN block 2-279
Saturate IQN block 2-299
Square Root IQN block 2-308
Trig Fcn IQN block 2-314

IQ numbers
convert from float 2-251
convert to different IQ 2-275
convert to float 2-269
fractional part 2-253
integer part 2-262

Index-8

Index

magnitude 2-279
multiply 2-273
multiply by int32 2-271
multiply by int32 fractional result 2-255
multiply by int32 integer part 2-264
square root 2-308
trigonometric functions 2-314

IQN to Float block 2-269
IQN x int32 block 2-271
IQN x IQN block 2-273
IQN1 to IQN2 block 2-275
IQN1 x IQN2 block 2-277
isenabled 1-241
isreadable 1-243
isrtdxcapable 1-248
isvisible 1-250
iswritable 1-252

L
list 1-257
list object 1-257
list variable 1-257
local interconnect network 2-192
Local Interconnect Network (LIN) 2-198

M
Magnitude IQN block 2-279
matrix, read from RTDX 1-303
Memory Allocate block 2-719
Memory Copy block 2-726
Memory Sections pane 3-90
messages

DM643x 2-586
Mode Switch for Invoke AUTOSAR Server

Operation block 2-755
models

parameters for configuring 3-251
msgcount 1-286

multiplication
IQN x int32 2-271
IQN x int32 fractional part 2-255
IQN x int32 integer part 2-264
IQN x IQN 2-273
IQN1 x IQN2 2-277

P
parameters

for configuring model code generation and
targets 3-251

Park Transformation block 2-281
phase conversion 2-246
PID controller 2-284 2-286
processor information, get 1-231
program file, reload 1-331
PWM blocks

C281x 2-223

Q
quadrature encoder pulse circuit

C28x 2-235

R
ramp control block 2-291
ramp generator block 2-294
read register 1-322
readmat 1-303
readmsg 1-306
reference frame conversion

C2000 Inverse Park Transformation 2-266
Park transformation 2-281

registerCFunctionEntry function 1-311
registerCPPFunctionEntry function 1-315
registerCPromotableMacroEntry

function 1-319
regread 1-322
regwrite 1-327

Index-9

Index

reload 1-331
RTDX

from 2-257
isenabled 1-241
isrtdxcapable 1-248
message count 1-286
read message 1-306
readmat 1-303
to 2-310
writemsg 1-520

RTDX channel, flush 1-142
RTDX message count 1-286
RTDX, disable 1-129
RTDX, enable 1-137
RTW.AutosarInterface class 1-359
RTW.AutosarInterface constructor 1-363
RTW.configSubsystemBuild function 1-368
rtw.connectivity.ComponentArgs 1-369
rtw.connectivity.Config 1-371
rtw.connectivity.ConfigRegistry 1-374
rtw.connectivity.Launcher 1-378
rtw.connectivity.MakefileBuilder 1-380
rtw.connectivity.RtIOStreamHostCommunicator 1-382
RTW.getEncapsulationInterfaceSpecification

function 1-385
RTW.getFunctionSpecification function 1-386
RTW.ModelCPPArgsClass class 1-387
RTW.ModelCPPArgsClass constructor 1-390
RTW.ModelCPPClass class 1-391
RTW.ModelCPPVoidClass class 1-393
RTW.ModelCPPVoidClass constructor 1-395
RTW.ModelSpecificCPrototype class 1-396
RTW.ModelSpecificCPrototype

constructor 1-399
rtw.pil.RtIOStreamApplicationFramework 1-401
runValidation AutosarInterface method 1-406
runValidation method 1-414 1-416 1-418

S
sample time

DM643x 2-587
F2812 eZdsp 2-51

Saturate IQN block 2-299
Scheduling

watchdog 2-244
SCI Receive

Host-side 2-688
SCI Setup

Host-side 2-693
SCI Transmit

Host-side 2-696
SCI Transmit and Receive blocks

Host-side
Setup 2-693

serial communications interface
receive 2-155
transmit 2-161

serial peripheral interface
receive 2-169
transmit 2-174

set visibility 1-513
setArgCategory method 1-419 1-421
setArgName method 1-423 1-425
setArgPosition method 1-426 1-428
setArgQualifier method 1-429 1-431
setClassName method 1-433
setComponentName AutosarInterface

method 1-435
setDependencies arxml.importer method 1-438
setFile arxml.importer method 1-441
setFunctionName method 1-442
setInitEventName AutosarInterface

method 1-444
setInitRunnableName AutosarInterface

method 1-445
setIOAutosarPortName AutosarInterface

method 1-448

Index-10

Index

setIODataAccessMode AutosarInterface
method 1-449

setIODataElement AutosarInterface
method 1-450

setIOInterfaceName AutosarInterface
method 1-452

setIsServerOperation AutosarInterface
method 1-456

setNameSpace function 1-458
setPeriodicEventName AutosarInterface

method 1-463
setPeriodicRunnableName AutosarInterface

method 1-464
setReservedIdentifiers function 1-465
setServerInterfaceName AutosarInterface

method 1-468
setServerOperationPrototype

AutosarInterface method 1-469
setServerPortName AutosarInterface

method 1-470
setServerType AutosarInterface method 1-471
setStepMethodName method 1-472
setTflCFunctionEntryParameters

function 1-474
setTflCOperationEntryParameters

function 1-480
setTflCSemaphoreEntryParameters

function 1-491
simulator

connect to 1-227
Space Vector Generator block 2-301

Speed Measurement block 2-303
Square Root IQN block 2-308
symbol 1-503
symbol table, getting symbols 1-503
syncWithModel AutosarInterface method 1-496

T
Target Preferences block 2-759
targets

parameters for configuring 3-251
Templates pane 3-33
ticcs 1-505
To RTDX block 2-310
Trig Fcn IQN block 2-314

U
UDP Receive block 2-763
UDP Send block 2-768

V
view IDE 1-250
visibility, setting 1-513
visible 1-513

W
waveforms 2-225
write register 1-327
writemsg 1-520

Index-11

	toc
	Check Bug Reports for Issues and Fixes
	Alphabetical List
	Support Coemulation and OMAP

	Blocks — Alphabetical List
	Data is input as

	Configuration Parameters
	Code Generation Pane: Verification
	Code Generation: Verification Tab Overview
	Configuration
	See Also

	Measure task execution time
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Measure function execution times
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Workspace variable
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Save options
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Code coverage tool
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Create block
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Enable portable word sizes
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Enable source-level debugging for SIL
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Code Generation Pane: Code Style
	Code Generation: Code Style Tab Overview
	Configuration
	See Also

	Parentheses level
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Preserve operand order in expression
	Settings
	Command-Line Information
	Recommended Settings

	Preserve condition expression in if statement
	Settings
	Command-Line Information
	Recommended Settings

	Convert if-elseif-else patterns to switch-case statements
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Preserve extern keyword in function declarations
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Suppress generation of default cases for Stateflow switch statem
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Code Generation Pane: Templates
	Code Generation: Templates Tab Overview
	Configuration
	See Also

	Code templates: Source file (*.c) template
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Code templates: Header file (*.h) template
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Data templates: Source file (*.c) template
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Data templates: Header file (*.h) template
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	File customization template
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Generate an example main program
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Target operating system
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Code Generation Pane: Code Placement
	Code Generation: Code Placement Tab Overview
	Configuration
	See Also

	Data definition
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Data definition filename
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Data declaration
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Data declaration filename
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Use owner from data object for data definition placement
	Settings
	Command-Line Information
	Recommended Settings

	#include file delimiter
	Settings
	Dependency
	Command-Line Information
	Recommended Settings

	Signal display level
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Parameter tune level
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	File packaging format
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Code Generation Pane: Data Type Replacement
	Code Generation: Data Type Replacement Tab Overview
	Configuration
	See Also

	Replace data type names in the generated code
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Replacement Name: double
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Replacement Name: single
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Replacement Name: int32
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Replacement Name: int16
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Replacement Name: int8
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Replacement Name: uint32
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Replacement Name: uint16
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Replacement Name: uint8
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Replacement Name: boolean
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Replacement Name: int
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Replacement Name: uint
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Replacement Name: char
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Code Generation Pane: Memory Sections
	Code Generation: Memory Sections Tab Overview
	Configuration
	See Also

	Package
	Settings
	Tip
	Command-Line Information
	Recommended Settings
	See Also

	Refresh package list
	Tip
	See Also

	Initialize/Terminate
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Execution
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Shared utility
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Constants
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Inputs/Outputs
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Internal data
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Parameters
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Validation results
	Settings
	Recommended Settings

	Code Generation Pane: AUTOSAR Code Generation Options
	Code Generation: AUTOSAR Code Generation Options Tab Overview
	Configuration
	Tip
	See Also

	Generate XML file from schema version
	Settings
	Tip
	Command-Line Information
	See Also

	Maximum SHORT-NAME length
	Settings
	Command-Line Information
	See Also

	Use AUTOSAR compiler abstraction macros
	Settings
	Command-Line Information
	See Also

	Support root-level matrix I/O using one-dimensional arrays
	Settings
	Command-Line Information
	See Also

	Configure AUTOSAR Interface
	Dependencies
	Command-Line Information
	See Also

	Code Generation: Coder Target Pane
	Code Generation: Coder Target Pane Overview (previously “IDE Lin
	See Also

	Coder Target: Tool Chain Automation Tab Overview
	Build format
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Build action
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Overrun notification
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Function name
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Configuration
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Compiler options string
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Linker options string
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	System stack size (MAUs)
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	System heap size (MAUs)
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Profile real-time execution
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Profile by
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Number of profiling samples to collect
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Maximum time allowed to build project (s)
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Maximum time allowed to complete IDE operation (s)
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Export IDE link handle to base workspace
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	IDE link handle name
	Settings
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Source file replacement
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Code Generation: Target Hardware Resources Pane
	Code Generation: Coder Target Pane Overview (Target Hardware Res
	See Also

	Coder Target: Target Hardware Resources Tab Overview
	IDE/Tool Chain
	Settings
	See Also

	Target Hardware Resources: Board Tab
	Target Hardware Resources: Memory Tab
	Target Hardware Resources: Section Tab
	Target Hardware Resources: DSP/BIOS Tab
	Target Hardware Resources: Peripherals Tab
	Clocking
	ADC
	COMP
	eCAN_A, eCAN_B
	eCAP
	ePWM
	I2C
	SCI_A, SCI_B, SCI_C
	SPI_A, SPI_B, SPI_C, SPI_D
	eQEP
	Watchdog
	GPIO
	Flash_loader
	DMA_ch[#]
	LIN
	Add Processor Dialog Box
	Target Hardware Resources: Linux Tab
	Target Hardware Resources: VxWorks Tab

	Parameter Reference
	Recommended Settings Summary
	Parameter Command-Line Information Summary

	Index

	tables
	IDE support for type
	Supported File Types and Extensions
	Examples of Address Property Values
	Examples of Address Property Values
	Properties of rtw.connectivity.ConfigRegistry
	Validation Checks
	Multiple Runnable Validation Checks
	GPIO A MUX
	GPIO B MUX
	GPIO A MUX
	GPIO B MUX
	Option Settings to Simulate the User DIP Switches on the C6416DS
	Output Values From The User DIP Switches on the C6416DSK
	Option Settings to Simulate the User DIP Switches on the C6713DS
	Output Values From The User DIP Switches on the C6713DSK
	Mapping of Application Requirements to the Optimization Pane : G
	Mapping of Application Requirements to the Optimization Pane: Si
	Mapping of Application Requirements to the Code Generation Pane
	Mapping of Application Requirements to the Code Generation Pane:
	Mapping of Application Requirements to the Code Generation Pane:
	Mapping of Application Requirements to the Code Generation Pane:
	Mapping of Application Requirements to the Code Generation Pane:
	Mapping of Application Requirements to the Code Generation Pane:
	Mapping of Application Requirements to the Code Generation Pane:
	Mapping of Application Requirements to the Code Generation Pane:
	Mapping of Application Requirements to the Code Generation Pane:
	Mapping of Application Requirements to the Code Generation Pane:
	Mapping of Application Requirements to the Code Generation Pane:
	Command-Line Information: Optimization Pane: General tab
	Command-Line Information: Optimization Pane: Signals and Paramet
	Command-Line Information: Optimization Pane: Stateflow tab
	Command-Line Information: Code Generation Pane: General Tab
	Command-Line Information: Code Generation Pane: Report Tab
	Command-Line Information: Code Generation Pane: Comments Tab
	Command-Line Information: Code Generation Pane: Symbols Tab
	Command-Line Information: Code Generation Pane: Interface Tab
	Command-Line Information: Code Generation Pane: Verification Tab
	Command-Line Information: Code Generation Pane: Code Style Tab
	Command-Line Information: Code Generation Pane: Templates Tab
	Command-Line Information: Code Generation Pane: Code Placement T
	Command-Line Information: Code Generation Pane: Data Type Replac
	Command-Line Information: Code Generation Pane: Memory Sections
	Command-Line Information: Not in GUI

