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Abstract

In this paper we will discuss the properties of the special plane curve known as the Clothoid.

1 Introduction

The Clothoid, also known as Euler’s Spiral or Spiral of Cornu, is a plane curve defined by the parametric
equations

f(t) =
∫ t

0

sin

(
x2

2

)
dx

g(t) =
∫ t

0

cos

(
x2

2

)
dx

These equations are known as the Fresnel integrals, so-called because of their association with the phe-
nomenon known as Fresnel diffraction, a branch of the study of optics. As early as 1743, Euler considered
these integrals in connection with a problem set by Jacob Bernoulli in the late 1600s: ”To find the curvature
a lamina should have in order to be straightened out horizontally by a weight suspended at one end.[1]”

In the early nineteenth century, Augustin-Jean Fresnel studied these integrals in relation to his work on
the diffraction of light, and later that century, Marie Alfred Cornu was the first to accurately plot the spiral.
(Euler had only given half the spiral.)[1]

2 Properties of the Clothoid

The Clothoid has a number of interesting relationships involved in its physical properties. First, let’s
take a look at the arc length.

2.1 Arc Length

According to a theorem in Stewart’s Early Transcendentals[2], the length s of a curve C, described by
parametric equations x = f(t) and y = g(t), on the interval α ≤ t ≤ β, where f ′(t) and g′(t) are continuous
on [α, β] , is given by

s =
∫ β

α

√(
dx

dt

)2

+
(
dy

dt

)2

dt

Using this theorem, and applying the Fundamental Theorem of Calculus, we compute the length of an arc
of the Clothoid on the interval [0, t]:

s =
∫ t

0

√(
dx

du

)2

+
(
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du

)2

du

=
∫ t

0

√
sin2u+ cos2u du

=
∫ t

0

du

= t
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Thus, we find that the length of an arc of the Clothoid is equal to its parameter, t. We can now show
that, beginning with ~r(t), the Clothoid can be parameterized as a function of its curvature, by showing that
curvature is equal to arc length.

2.2 Curvature

Because s(t) = t, the reparametrization of ~r in terms of s is given by:

~r(s) =
〈∫ s

0

sin

(
u2

2

)
du,

∫ s

0
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2

)
du

〉
~r ′(s) =

〈
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)
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)〉
T̂(s) =

~r ′(s)
‖~r ′(s)‖

= ~r ′(s)

T̂
′
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=
〈
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2

)
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(
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)〉

κ(s) =

∥∥∥T̂′
(s)
∥∥∥

‖~r ′(s)‖

=

∥∥∥〈(s)cos
(
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)〉∥∥∥∥∥〈sin ( s22 ) , cos ( s22 )〉∥∥
κ(s) = s

This shows us that the Clothoid is a curve whose curvature at any point is equal to its arc length (measured
from the origin). This explains the spiral’s rapid degeneration as s approaches ∞.

Now, suppose we’re given a curvature function κ in terms of arc length s, and we wish to obtain the
parametric equations f(t) and g(t) for the curve which the function describes. Again, we will take a vector
approach to show that such a curve can be defined by

~r(s) =
〈∫ s

0

sin θ(u) du,
∫ s

0

cos θ(u) du
〉
,

where θ(u) =
∫ u
0
κ(t)dt.

First, it should be noted, κ(s) =
∥∥∥dT̂ds ∥∥∥ and θ = θ(s).

Proof.

~r(s) =
〈∫ s

0

sin θ(u) du,
∫ s

0

cos θ(u) du
〉

T̂(s) =
d~r
ds

= 〈sin θ(s), cos θ(s)〉∥∥∥∥∥dT̂ds
∥∥∥∥∥ =

∥∥∥∥〈cos θ(s)dθds ,−sin θ(s)dθds
〉∥∥∥∥

=
∣∣∣∣dθds

∣∣∣∣ ‖〈cos θ(s),−sin θ(s)〉‖
=
∣∣∣∣dθds

∣∣∣∣
= κ(s)
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The above proof shows that, knowing only the curvature as a function of arc length, we can obtain the
parametrization of a curve (in terms of arc length). Let’s demonstrate this by parametrizing the unit circle.

3 Examples

3.1 Unit Circle

The curvature function of the unit circle is constant, specifically:

κ(s) = 1

Now, since κ(s) = θ′(s), we can integrate κ(s) to obtain:

θ(s) = s

Substituting this into our parametrization ~r then integrating yields the following:

~r(s) =
〈∫ s

0

sin θ(u) du,
∫ s

0

cos θ(u) du
〉

=
〈∫ s

0

sin u du,

∫ s

0

cos u du

〉
= 〈−cos s, sin s〉

We can observe that ~r(s) now describes a circle of radius 1.

3.2 Clothoid

Next, let’s take a look at some parametrizations using different curvature functions.
First, we know the curvature function of the Clothoid to be κ(s) = s. Integrating the curvature function

gives us θ(s) = s2

2 . We now observe that substituting this into our general parametrization gives us the
equations for the Clothoid.

4 Curvature Revisited

The above proof shows us that a curve can be expressed parametrically in terms of arc length s using
the general formula
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