]> rtime.felk.cvut.cz Git - can-eth-gw-linux.git/blob - drivers/net/ethernet/intel/ixgbevf/ixgbevf_main.c
581c65976bb49ae21cb9433416bb46d07096599d
[can-eth-gw-linux.git] / drivers / net / ethernet / intel / ixgbevf / ixgbevf_main.c
1 /*******************************************************************************
2
3   Intel 82599 Virtual Function driver
4   Copyright(c) 1999 - 2012 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28
29 /******************************************************************************
30  Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code
31 ******************************************************************************/
32
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34
35 #include <linux/types.h>
36 #include <linux/bitops.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/netdevice.h>
40 #include <linux/vmalloc.h>
41 #include <linux/string.h>
42 #include <linux/in.h>
43 #include <linux/ip.h>
44 #include <linux/tcp.h>
45 #include <linux/ipv6.h>
46 #include <linux/slab.h>
47 #include <net/checksum.h>
48 #include <net/ip6_checksum.h>
49 #include <linux/ethtool.h>
50 #include <linux/if.h>
51 #include <linux/if_vlan.h>
52 #include <linux/prefetch.h>
53
54 #include "ixgbevf.h"
55
56 const char ixgbevf_driver_name[] = "ixgbevf";
57 static const char ixgbevf_driver_string[] =
58         "Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver";
59
60 #define DRV_VERSION "2.2.0-k"
61 const char ixgbevf_driver_version[] = DRV_VERSION;
62 static char ixgbevf_copyright[] =
63         "Copyright (c) 2009 - 2012 Intel Corporation.";
64
65 static const struct ixgbevf_info *ixgbevf_info_tbl[] = {
66         [board_82599_vf] = &ixgbevf_82599_vf_info,
67         [board_X540_vf]  = &ixgbevf_X540_vf_info,
68 };
69
70 /* ixgbevf_pci_tbl - PCI Device ID Table
71  *
72  * Wildcard entries (PCI_ANY_ID) should come last
73  * Last entry must be all 0s
74  *
75  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
76  *   Class, Class Mask, private data (not used) }
77  */
78 static struct pci_device_id ixgbevf_pci_tbl[] = {
79         {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF),
80         board_82599_vf},
81         {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF),
82         board_X540_vf},
83
84         /* required last entry */
85         {0, }
86 };
87 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl);
88
89 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
90 MODULE_DESCRIPTION("Intel(R) 82599 Virtual Function Driver");
91 MODULE_LICENSE("GPL");
92 MODULE_VERSION(DRV_VERSION);
93
94 #define DEFAULT_DEBUG_LEVEL_SHIFT 3
95
96 /* forward decls */
97 static void ixgbevf_set_itr_msix(struct ixgbevf_q_vector *q_vector);
98 static void ixgbevf_write_eitr(struct ixgbevf_adapter *adapter, int v_idx,
99                                u32 itr_reg);
100
101 static inline void ixgbevf_release_rx_desc(struct ixgbe_hw *hw,
102                                            struct ixgbevf_ring *rx_ring,
103                                            u32 val)
104 {
105         /*
106          * Force memory writes to complete before letting h/w
107          * know there are new descriptors to fetch.  (Only
108          * applicable for weak-ordered memory model archs,
109          * such as IA-64).
110          */
111         wmb();
112         IXGBE_WRITE_REG(hw, IXGBE_VFRDT(rx_ring->reg_idx), val);
113 }
114
115 /*
116  * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors
117  * @adapter: pointer to adapter struct
118  * @direction: 0 for Rx, 1 for Tx, -1 for other causes
119  * @queue: queue to map the corresponding interrupt to
120  * @msix_vector: the vector to map to the corresponding queue
121  *
122  */
123 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction,
124                              u8 queue, u8 msix_vector)
125 {
126         u32 ivar, index;
127         struct ixgbe_hw *hw = &adapter->hw;
128         if (direction == -1) {
129                 /* other causes */
130                 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
131                 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC);
132                 ivar &= ~0xFF;
133                 ivar |= msix_vector;
134                 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar);
135         } else {
136                 /* tx or rx causes */
137                 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
138                 index = ((16 * (queue & 1)) + (8 * direction));
139                 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1));
140                 ivar &= ~(0xFF << index);
141                 ivar |= (msix_vector << index);
142                 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar);
143         }
144 }
145
146 static void ixgbevf_unmap_and_free_tx_resource(struct ixgbevf_adapter *adapter,
147                                                struct ixgbevf_tx_buffer
148                                                *tx_buffer_info)
149 {
150         if (tx_buffer_info->dma) {
151                 if (tx_buffer_info->mapped_as_page)
152                         dma_unmap_page(&adapter->pdev->dev,
153                                        tx_buffer_info->dma,
154                                        tx_buffer_info->length,
155                                        DMA_TO_DEVICE);
156                 else
157                         dma_unmap_single(&adapter->pdev->dev,
158                                          tx_buffer_info->dma,
159                                          tx_buffer_info->length,
160                                          DMA_TO_DEVICE);
161                 tx_buffer_info->dma = 0;
162         }
163         if (tx_buffer_info->skb) {
164                 dev_kfree_skb_any(tx_buffer_info->skb);
165                 tx_buffer_info->skb = NULL;
166         }
167         tx_buffer_info->time_stamp = 0;
168         /* tx_buffer_info must be completely set up in the transmit path */
169 }
170
171 #define IXGBE_MAX_TXD_PWR       14
172 #define IXGBE_MAX_DATA_PER_TXD  (1 << IXGBE_MAX_TXD_PWR)
173
174 /* Tx Descriptors needed, worst case */
175 #define TXD_USE_COUNT(S) (((S) >> IXGBE_MAX_TXD_PWR) + \
176                          (((S) & (IXGBE_MAX_DATA_PER_TXD - 1)) ? 1 : 0))
177 #ifdef MAX_SKB_FRAGS
178 #define DESC_NEEDED (TXD_USE_COUNT(IXGBE_MAX_DATA_PER_TXD) /* skb->data */ + \
179         MAX_SKB_FRAGS * TXD_USE_COUNT(PAGE_SIZE) + 1)      /* for context */
180 #else
181 #define DESC_NEEDED TXD_USE_COUNT(IXGBE_MAX_DATA_PER_TXD)
182 #endif
183
184 static void ixgbevf_tx_timeout(struct net_device *netdev);
185
186 /**
187  * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes
188  * @adapter: board private structure
189  * @tx_ring: tx ring to clean
190  **/
191 static bool ixgbevf_clean_tx_irq(struct ixgbevf_adapter *adapter,
192                                  struct ixgbevf_ring *tx_ring)
193 {
194         struct net_device *netdev = adapter->netdev;
195         struct ixgbe_hw *hw = &adapter->hw;
196         union ixgbe_adv_tx_desc *tx_desc, *eop_desc;
197         struct ixgbevf_tx_buffer *tx_buffer_info;
198         unsigned int i, eop, count = 0;
199         unsigned int total_bytes = 0, total_packets = 0;
200
201         i = tx_ring->next_to_clean;
202         eop = tx_ring->tx_buffer_info[i].next_to_watch;
203         eop_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
204
205         while ((eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)) &&
206                (count < tx_ring->work_limit)) {
207                 bool cleaned = false;
208                 rmb(); /* read buffer_info after eop_desc */
209                 /* eop could change between read and DD-check */
210                 if (unlikely(eop != tx_ring->tx_buffer_info[i].next_to_watch))
211                         goto cont_loop;
212                 for ( ; !cleaned; count++) {
213                         struct sk_buff *skb;
214                         tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, i);
215                         tx_buffer_info = &tx_ring->tx_buffer_info[i];
216                         cleaned = (i == eop);
217                         skb = tx_buffer_info->skb;
218
219                         if (cleaned && skb) {
220                                 unsigned int segs, bytecount;
221
222                                 /* gso_segs is currently only valid for tcp */
223                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
224                                 /* multiply data chunks by size of headers */
225                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
226                                             skb->len;
227                                 total_packets += segs;
228                                 total_bytes += bytecount;
229                         }
230
231                         ixgbevf_unmap_and_free_tx_resource(adapter,
232                                                            tx_buffer_info);
233
234                         tx_desc->wb.status = 0;
235
236                         i++;
237                         if (i == tx_ring->count)
238                                 i = 0;
239                 }
240
241 cont_loop:
242                 eop = tx_ring->tx_buffer_info[i].next_to_watch;
243                 eop_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
244         }
245
246         tx_ring->next_to_clean = i;
247
248 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
249         if (unlikely(count && netif_carrier_ok(netdev) &&
250                      (IXGBE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
251                 /* Make sure that anybody stopping the queue after this
252                  * sees the new next_to_clean.
253                  */
254                 smp_mb();
255 #ifdef HAVE_TX_MQ
256                 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
257                     !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
258                         netif_wake_subqueue(netdev, tx_ring->queue_index);
259                         ++adapter->restart_queue;
260                 }
261 #else
262                 if (netif_queue_stopped(netdev) &&
263                     !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
264                         netif_wake_queue(netdev);
265                         ++adapter->restart_queue;
266                 }
267 #endif
268         }
269
270         /* re-arm the interrupt */
271         if ((count >= tx_ring->work_limit) &&
272             (!test_bit(__IXGBEVF_DOWN, &adapter->state))) {
273                 IXGBE_WRITE_REG(hw, IXGBE_VTEICS, tx_ring->v_idx);
274         }
275
276         u64_stats_update_begin(&tx_ring->syncp);
277         tx_ring->total_bytes += total_bytes;
278         tx_ring->total_packets += total_packets;
279         u64_stats_update_end(&tx_ring->syncp);
280
281         return count < tx_ring->work_limit;
282 }
283
284 /**
285  * ixgbevf_receive_skb - Send a completed packet up the stack
286  * @q_vector: structure containing interrupt and ring information
287  * @skb: packet to send up
288  * @status: hardware indication of status of receive
289  * @rx_ring: rx descriptor ring (for a specific queue) to setup
290  * @rx_desc: rx descriptor
291  **/
292 static void ixgbevf_receive_skb(struct ixgbevf_q_vector *q_vector,
293                                 struct sk_buff *skb, u8 status,
294                                 struct ixgbevf_ring *ring,
295                                 union ixgbe_adv_rx_desc *rx_desc)
296 {
297         struct ixgbevf_adapter *adapter = q_vector->adapter;
298         bool is_vlan = (status & IXGBE_RXD_STAT_VP);
299         u16 tag = le16_to_cpu(rx_desc->wb.upper.vlan);
300
301         if (is_vlan && test_bit(tag, adapter->active_vlans))
302                 __vlan_hwaccel_put_tag(skb, tag);
303
304         if (!(adapter->flags & IXGBE_FLAG_IN_NETPOLL))
305                         napi_gro_receive(&q_vector->napi, skb);
306         else
307                         netif_rx(skb);
308 }
309
310 /**
311  * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum
312  * @adapter: address of board private structure
313  * @status_err: hardware indication of status of receive
314  * @skb: skb currently being received and modified
315  **/
316 static inline void ixgbevf_rx_checksum(struct ixgbevf_adapter *adapter,
317                                        u32 status_err, struct sk_buff *skb)
318 {
319         skb_checksum_none_assert(skb);
320
321         /* Rx csum disabled */
322         if (!(adapter->flags & IXGBE_FLAG_RX_CSUM_ENABLED))
323                 return;
324
325         /* if IP and error */
326         if ((status_err & IXGBE_RXD_STAT_IPCS) &&
327             (status_err & IXGBE_RXDADV_ERR_IPE)) {
328                 adapter->hw_csum_rx_error++;
329                 return;
330         }
331
332         if (!(status_err & IXGBE_RXD_STAT_L4CS))
333                 return;
334
335         if (status_err & IXGBE_RXDADV_ERR_TCPE) {
336                 adapter->hw_csum_rx_error++;
337                 return;
338         }
339
340         /* It must be a TCP or UDP packet with a valid checksum */
341         skb->ip_summed = CHECKSUM_UNNECESSARY;
342         adapter->hw_csum_rx_good++;
343 }
344
345 /**
346  * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split
347  * @adapter: address of board private structure
348  **/
349 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_adapter *adapter,
350                                      struct ixgbevf_ring *rx_ring,
351                                      int cleaned_count)
352 {
353         struct pci_dev *pdev = adapter->pdev;
354         union ixgbe_adv_rx_desc *rx_desc;
355         struct ixgbevf_rx_buffer *bi;
356         struct sk_buff *skb;
357         unsigned int i;
358         unsigned int bufsz = rx_ring->rx_buf_len + NET_IP_ALIGN;
359
360         i = rx_ring->next_to_use;
361         bi = &rx_ring->rx_buffer_info[i];
362
363         while (cleaned_count--) {
364                 rx_desc = IXGBE_RX_DESC_ADV(*rx_ring, i);
365
366                 if (!bi->page_dma &&
367                     (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED)) {
368                         if (!bi->page) {
369                                 bi->page = alloc_page(GFP_ATOMIC | __GFP_COLD);
370                                 if (!bi->page) {
371                                         adapter->alloc_rx_page_failed++;
372                                         goto no_buffers;
373                                 }
374                                 bi->page_offset = 0;
375                         } else {
376                                 /* use a half page if we're re-using */
377                                 bi->page_offset ^= (PAGE_SIZE / 2);
378                         }
379
380                         bi->page_dma = dma_map_page(&pdev->dev, bi->page,
381                                                     bi->page_offset,
382                                                     (PAGE_SIZE / 2),
383                                                     DMA_FROM_DEVICE);
384                 }
385
386                 skb = bi->skb;
387                 if (!skb) {
388                         skb = netdev_alloc_skb(adapter->netdev,
389                                                                bufsz);
390
391                         if (!skb) {
392                                 adapter->alloc_rx_buff_failed++;
393                                 goto no_buffers;
394                         }
395
396                         /*
397                          * Make buffer alignment 2 beyond a 16 byte boundary
398                          * this will result in a 16 byte aligned IP header after
399                          * the 14 byte MAC header is removed
400                          */
401                         skb_reserve(skb, NET_IP_ALIGN);
402
403                         bi->skb = skb;
404                 }
405                 if (!bi->dma) {
406                         bi->dma = dma_map_single(&pdev->dev, skb->data,
407                                                  rx_ring->rx_buf_len,
408                                                  DMA_FROM_DEVICE);
409                 }
410                 /* Refresh the desc even if buffer_addrs didn't change because
411                  * each write-back erases this info. */
412                 if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
413                         rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
414                         rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
415                 } else {
416                         rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
417                 }
418
419                 i++;
420                 if (i == rx_ring->count)
421                         i = 0;
422                 bi = &rx_ring->rx_buffer_info[i];
423         }
424
425 no_buffers:
426         if (rx_ring->next_to_use != i) {
427                 rx_ring->next_to_use = i;
428                 if (i-- == 0)
429                         i = (rx_ring->count - 1);
430
431                 ixgbevf_release_rx_desc(&adapter->hw, rx_ring, i);
432         }
433 }
434
435 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter,
436                                              u64 qmask)
437 {
438         u32 mask;
439         struct ixgbe_hw *hw = &adapter->hw;
440
441         mask = (qmask & 0xFFFFFFFF);
442         IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, mask);
443 }
444
445 static inline u16 ixgbevf_get_hdr_info(union ixgbe_adv_rx_desc *rx_desc)
446 {
447         return rx_desc->wb.lower.lo_dword.hs_rss.hdr_info;
448 }
449
450 static inline u16 ixgbevf_get_pkt_info(union ixgbe_adv_rx_desc *rx_desc)
451 {
452         return rx_desc->wb.lower.lo_dword.hs_rss.pkt_info;
453 }
454
455 static bool ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector,
456                                  struct ixgbevf_ring *rx_ring,
457                                  int *work_done, int work_to_do)
458 {
459         struct ixgbevf_adapter *adapter = q_vector->adapter;
460         struct pci_dev *pdev = adapter->pdev;
461         union ixgbe_adv_rx_desc *rx_desc, *next_rxd;
462         struct ixgbevf_rx_buffer *rx_buffer_info, *next_buffer;
463         struct sk_buff *skb;
464         unsigned int i;
465         u32 len, staterr;
466         u16 hdr_info;
467         bool cleaned = false;
468         int cleaned_count = 0;
469         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
470
471         i = rx_ring->next_to_clean;
472         rx_desc = IXGBE_RX_DESC_ADV(*rx_ring, i);
473         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
474         rx_buffer_info = &rx_ring->rx_buffer_info[i];
475
476         while (staterr & IXGBE_RXD_STAT_DD) {
477                 u32 upper_len = 0;
478                 if (*work_done >= work_to_do)
479                         break;
480                 (*work_done)++;
481
482                 rmb(); /* read descriptor and rx_buffer_info after status DD */
483                 if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
484                         hdr_info = le16_to_cpu(ixgbevf_get_hdr_info(rx_desc));
485                         len = (hdr_info & IXGBE_RXDADV_HDRBUFLEN_MASK) >>
486                                IXGBE_RXDADV_HDRBUFLEN_SHIFT;
487                         if (hdr_info & IXGBE_RXDADV_SPH)
488                                 adapter->rx_hdr_split++;
489                         if (len > IXGBEVF_RX_HDR_SIZE)
490                                 len = IXGBEVF_RX_HDR_SIZE;
491                         upper_len = le16_to_cpu(rx_desc->wb.upper.length);
492                 } else {
493                         len = le16_to_cpu(rx_desc->wb.upper.length);
494                 }
495                 cleaned = true;
496                 skb = rx_buffer_info->skb;
497                 prefetch(skb->data - NET_IP_ALIGN);
498                 rx_buffer_info->skb = NULL;
499
500                 if (rx_buffer_info->dma) {
501                         dma_unmap_single(&pdev->dev, rx_buffer_info->dma,
502                                          rx_ring->rx_buf_len,
503                                          DMA_FROM_DEVICE);
504                         rx_buffer_info->dma = 0;
505                         skb_put(skb, len);
506                 }
507
508                 if (upper_len) {
509                         dma_unmap_page(&pdev->dev, rx_buffer_info->page_dma,
510                                        PAGE_SIZE / 2, DMA_FROM_DEVICE);
511                         rx_buffer_info->page_dma = 0;
512                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
513                                            rx_buffer_info->page,
514                                            rx_buffer_info->page_offset,
515                                            upper_len);
516
517                         if ((rx_ring->rx_buf_len > (PAGE_SIZE / 2)) ||
518                             (page_count(rx_buffer_info->page) != 1))
519                                 rx_buffer_info->page = NULL;
520                         else
521                                 get_page(rx_buffer_info->page);
522
523                         skb->len += upper_len;
524                         skb->data_len += upper_len;
525                         skb->truesize += upper_len;
526                 }
527
528                 i++;
529                 if (i == rx_ring->count)
530                         i = 0;
531
532                 next_rxd = IXGBE_RX_DESC_ADV(*rx_ring, i);
533                 prefetch(next_rxd);
534                 cleaned_count++;
535
536                 next_buffer = &rx_ring->rx_buffer_info[i];
537
538                 if (!(staterr & IXGBE_RXD_STAT_EOP)) {
539                         if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
540                                 rx_buffer_info->skb = next_buffer->skb;
541                                 rx_buffer_info->dma = next_buffer->dma;
542                                 next_buffer->skb = skb;
543                                 next_buffer->dma = 0;
544                         } else {
545                                 skb->next = next_buffer->skb;
546                                 skb->next->prev = skb;
547                         }
548                         adapter->non_eop_descs++;
549                         goto next_desc;
550                 }
551
552                 /* ERR_MASK will only have valid bits if EOP set */
553                 if (unlikely(staterr & IXGBE_RXDADV_ERR_FRAME_ERR_MASK)) {
554                         dev_kfree_skb_irq(skb);
555                         goto next_desc;
556                 }
557
558                 ixgbevf_rx_checksum(adapter, staterr, skb);
559
560                 /* probably a little skewed due to removing CRC */
561                 total_rx_bytes += skb->len;
562                 total_rx_packets++;
563
564                 /*
565                  * Work around issue of some types of VM to VM loop back
566                  * packets not getting split correctly
567                  */
568                 if (staterr & IXGBE_RXD_STAT_LB) {
569                         u32 header_fixup_len = skb_headlen(skb);
570                         if (header_fixup_len < 14)
571                                 skb_push(skb, header_fixup_len);
572                 }
573                 skb->protocol = eth_type_trans(skb, adapter->netdev);
574
575                 ixgbevf_receive_skb(q_vector, skb, staterr, rx_ring, rx_desc);
576
577 next_desc:
578                 rx_desc->wb.upper.status_error = 0;
579
580                 /* return some buffers to hardware, one at a time is too slow */
581                 if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) {
582                         ixgbevf_alloc_rx_buffers(adapter, rx_ring,
583                                                  cleaned_count);
584                         cleaned_count = 0;
585                 }
586
587                 /* use prefetched values */
588                 rx_desc = next_rxd;
589                 rx_buffer_info = &rx_ring->rx_buffer_info[i];
590
591                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
592         }
593
594         rx_ring->next_to_clean = i;
595         cleaned_count = IXGBE_DESC_UNUSED(rx_ring);
596
597         if (cleaned_count)
598                 ixgbevf_alloc_rx_buffers(adapter, rx_ring, cleaned_count);
599
600         u64_stats_update_begin(&rx_ring->syncp);
601         rx_ring->total_packets += total_rx_packets;
602         rx_ring->total_bytes += total_rx_bytes;
603         u64_stats_update_end(&rx_ring->syncp);
604
605         return cleaned;
606 }
607
608 /**
609  * ixgbevf_clean_rxonly - msix (aka one shot) rx clean routine
610  * @napi: napi struct with our devices info in it
611  * @budget: amount of work driver is allowed to do this pass, in packets
612  *
613  * This function is optimized for cleaning one queue only on a single
614  * q_vector!!!
615  **/
616 static int ixgbevf_clean_rxonly(struct napi_struct *napi, int budget)
617 {
618         struct ixgbevf_q_vector *q_vector =
619                 container_of(napi, struct ixgbevf_q_vector, napi);
620         struct ixgbevf_adapter *adapter = q_vector->adapter;
621         struct ixgbevf_ring *rx_ring = NULL;
622         int work_done = 0;
623         long r_idx;
624
625         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
626         rx_ring = &(adapter->rx_ring[r_idx]);
627
628         ixgbevf_clean_rx_irq(q_vector, rx_ring, &work_done, budget);
629
630         /* If all Rx work done, exit the polling mode */
631         if (work_done < budget) {
632                 napi_complete(napi);
633                 if (adapter->itr_setting & 1)
634                         ixgbevf_set_itr_msix(q_vector);
635                 if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
636                         ixgbevf_irq_enable_queues(adapter, rx_ring->v_idx);
637         }
638
639         return work_done;
640 }
641
642 /**
643  * ixgbevf_clean_rxonly_many - msix (aka one shot) rx clean routine
644  * @napi: napi struct with our devices info in it
645  * @budget: amount of work driver is allowed to do this pass, in packets
646  *
647  * This function will clean more than one rx queue associated with a
648  * q_vector.
649  **/
650 static int ixgbevf_clean_rxonly_many(struct napi_struct *napi, int budget)
651 {
652         struct ixgbevf_q_vector *q_vector =
653                 container_of(napi, struct ixgbevf_q_vector, napi);
654         struct ixgbevf_adapter *adapter = q_vector->adapter;
655         struct ixgbevf_ring *rx_ring = NULL;
656         int work_done = 0, i;
657         long r_idx;
658         u64 enable_mask = 0;
659
660         /* attempt to distribute budget to each queue fairly, but don't allow
661          * the budget to go below 1 because we'll exit polling */
662         budget /= (q_vector->rxr_count ?: 1);
663         budget = max(budget, 1);
664         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
665         for (i = 0; i < q_vector->rxr_count; i++) {
666                 rx_ring = &(adapter->rx_ring[r_idx]);
667                 ixgbevf_clean_rx_irq(q_vector, rx_ring, &work_done, budget);
668                 enable_mask |= rx_ring->v_idx;
669                 r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
670                                       r_idx + 1);
671         }
672
673 #ifndef HAVE_NETDEV_NAPI_LIST
674         if (!netif_running(adapter->netdev))
675                 work_done = 0;
676
677 #endif
678         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
679         rx_ring = &(adapter->rx_ring[r_idx]);
680
681         /* If all Rx work done, exit the polling mode */
682         if (work_done < budget) {
683                 napi_complete(napi);
684                 if (adapter->itr_setting & 1)
685                         ixgbevf_set_itr_msix(q_vector);
686                 if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
687                         ixgbevf_irq_enable_queues(adapter, enable_mask);
688         }
689
690         return work_done;
691 }
692
693
694 /**
695  * ixgbevf_configure_msix - Configure MSI-X hardware
696  * @adapter: board private structure
697  *
698  * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X
699  * interrupts.
700  **/
701 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter)
702 {
703         struct ixgbevf_q_vector *q_vector;
704         struct ixgbe_hw *hw = &adapter->hw;
705         int i, j, q_vectors, v_idx, r_idx;
706         u32 mask;
707
708         q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
709
710         /*
711          * Populate the IVAR table and set the ITR values to the
712          * corresponding register.
713          */
714         for (v_idx = 0; v_idx < q_vectors; v_idx++) {
715                 q_vector = adapter->q_vector[v_idx];
716                 /* XXX for_each_set_bit(...) */
717                 r_idx = find_first_bit(q_vector->rxr_idx,
718                                        adapter->num_rx_queues);
719
720                 for (i = 0; i < q_vector->rxr_count; i++) {
721                         j = adapter->rx_ring[r_idx].reg_idx;
722                         ixgbevf_set_ivar(adapter, 0, j, v_idx);
723                         r_idx = find_next_bit(q_vector->rxr_idx,
724                                               adapter->num_rx_queues,
725                                               r_idx + 1);
726                 }
727                 r_idx = find_first_bit(q_vector->txr_idx,
728                                        adapter->num_tx_queues);
729
730                 for (i = 0; i < q_vector->txr_count; i++) {
731                         j = adapter->tx_ring[r_idx].reg_idx;
732                         ixgbevf_set_ivar(adapter, 1, j, v_idx);
733                         r_idx = find_next_bit(q_vector->txr_idx,
734                                               adapter->num_tx_queues,
735                                               r_idx + 1);
736                 }
737
738                 /* if this is a tx only vector halve the interrupt rate */
739                 if (q_vector->txr_count && !q_vector->rxr_count)
740                         q_vector->eitr = (adapter->eitr_param >> 1);
741                 else if (q_vector->rxr_count)
742                         /* rx only */
743                         q_vector->eitr = adapter->eitr_param;
744
745                 ixgbevf_write_eitr(adapter, v_idx, q_vector->eitr);
746         }
747
748         ixgbevf_set_ivar(adapter, -1, 1, v_idx);
749
750         /* set up to autoclear timer, and the vectors */
751         mask = IXGBE_EIMS_ENABLE_MASK;
752         mask &= ~IXGBE_EIMS_OTHER;
753         IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, mask);
754 }
755
756 enum latency_range {
757         lowest_latency = 0,
758         low_latency = 1,
759         bulk_latency = 2,
760         latency_invalid = 255
761 };
762
763 /**
764  * ixgbevf_update_itr - update the dynamic ITR value based on statistics
765  * @adapter: pointer to adapter
766  * @eitr: eitr setting (ints per sec) to give last timeslice
767  * @itr_setting: current throttle rate in ints/second
768  * @packets: the number of packets during this measurement interval
769  * @bytes: the number of bytes during this measurement interval
770  *
771  *      Stores a new ITR value based on packets and byte
772  *      counts during the last interrupt.  The advantage of per interrupt
773  *      computation is faster updates and more accurate ITR for the current
774  *      traffic pattern.  Constants in this function were computed
775  *      based on theoretical maximum wire speed and thresholds were set based
776  *      on testing data as well as attempting to minimize response time
777  *      while increasing bulk throughput.
778  **/
779 static u8 ixgbevf_update_itr(struct ixgbevf_adapter *adapter,
780                              u32 eitr, u8 itr_setting,
781                              int packets, int bytes)
782 {
783         unsigned int retval = itr_setting;
784         u32 timepassed_us;
785         u64 bytes_perint;
786
787         if (packets == 0)
788                 goto update_itr_done;
789
790
791         /* simple throttlerate management
792          *    0-20MB/s lowest (100000 ints/s)
793          *   20-100MB/s low   (20000 ints/s)
794          *  100-1249MB/s bulk (8000 ints/s)
795          */
796         /* what was last interrupt timeslice? */
797         timepassed_us = 1000000/eitr;
798         bytes_perint = bytes / timepassed_us; /* bytes/usec */
799
800         switch (itr_setting) {
801         case lowest_latency:
802                 if (bytes_perint > adapter->eitr_low)
803                         retval = low_latency;
804                 break;
805         case low_latency:
806                 if (bytes_perint > adapter->eitr_high)
807                         retval = bulk_latency;
808                 else if (bytes_perint <= adapter->eitr_low)
809                         retval = lowest_latency;
810                 break;
811         case bulk_latency:
812                 if (bytes_perint <= adapter->eitr_high)
813                         retval = low_latency;
814                 break;
815         }
816
817 update_itr_done:
818         return retval;
819 }
820
821 /**
822  * ixgbevf_write_eitr - write VTEITR register in hardware specific way
823  * @adapter: pointer to adapter struct
824  * @v_idx: vector index into q_vector array
825  * @itr_reg: new value to be written in *register* format, not ints/s
826  *
827  * This function is made to be called by ethtool and by the driver
828  * when it needs to update VTEITR registers at runtime.  Hardware
829  * specific quirks/differences are taken care of here.
830  */
831 static void ixgbevf_write_eitr(struct ixgbevf_adapter *adapter, int v_idx,
832                                u32 itr_reg)
833 {
834         struct ixgbe_hw *hw = &adapter->hw;
835
836         itr_reg = EITR_INTS_PER_SEC_TO_REG(itr_reg);
837
838         /*
839          * set the WDIS bit to not clear the timer bits and cause an
840          * immediate assertion of the interrupt
841          */
842         itr_reg |= IXGBE_EITR_CNT_WDIS;
843
844         IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg);
845 }
846
847 static void ixgbevf_set_itr_msix(struct ixgbevf_q_vector *q_vector)
848 {
849         struct ixgbevf_adapter *adapter = q_vector->adapter;
850         u32 new_itr;
851         u8 current_itr, ret_itr;
852         int i, r_idx, v_idx = q_vector->v_idx;
853         struct ixgbevf_ring *rx_ring, *tx_ring;
854
855         r_idx = find_first_bit(q_vector->txr_idx, adapter->num_tx_queues);
856         for (i = 0; i < q_vector->txr_count; i++) {
857                 tx_ring = &(adapter->tx_ring[r_idx]);
858                 ret_itr = ixgbevf_update_itr(adapter, q_vector->eitr,
859                                              q_vector->tx_itr,
860                                              tx_ring->total_packets,
861                                              tx_ring->total_bytes);
862                 /* if the result for this queue would decrease interrupt
863                  * rate for this vector then use that result */
864                 q_vector->tx_itr = ((q_vector->tx_itr > ret_itr) ?
865                                     q_vector->tx_itr - 1 : ret_itr);
866                 r_idx = find_next_bit(q_vector->txr_idx, adapter->num_tx_queues,
867                                       r_idx + 1);
868         }
869
870         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
871         for (i = 0; i < q_vector->rxr_count; i++) {
872                 rx_ring = &(adapter->rx_ring[r_idx]);
873                 ret_itr = ixgbevf_update_itr(adapter, q_vector->eitr,
874                                              q_vector->rx_itr,
875                                              rx_ring->total_packets,
876                                              rx_ring->total_bytes);
877                 /* if the result for this queue would decrease interrupt
878                  * rate for this vector then use that result */
879                 q_vector->rx_itr = ((q_vector->rx_itr > ret_itr) ?
880                                     q_vector->rx_itr - 1 : ret_itr);
881                 r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
882                                       r_idx + 1);
883         }
884
885         current_itr = max(q_vector->rx_itr, q_vector->tx_itr);
886
887         switch (current_itr) {
888         /* counts and packets in update_itr are dependent on these numbers */
889         case lowest_latency:
890                 new_itr = 100000;
891                 break;
892         case low_latency:
893                 new_itr = 20000; /* aka hwitr = ~200 */
894                 break;
895         case bulk_latency:
896         default:
897                 new_itr = 8000;
898                 break;
899         }
900
901         if (new_itr != q_vector->eitr) {
902                 u32 itr_reg;
903
904                 /* save the algorithm value here, not the smoothed one */
905                 q_vector->eitr = new_itr;
906                 /* do an exponential smoothing */
907                 new_itr = ((q_vector->eitr * 90)/100) + ((new_itr * 10)/100);
908                 itr_reg = EITR_INTS_PER_SEC_TO_REG(new_itr);
909                 ixgbevf_write_eitr(adapter, v_idx, itr_reg);
910         }
911 }
912
913 static irqreturn_t ixgbevf_msix_mbx(int irq, void *data)
914 {
915         struct net_device *netdev = data;
916         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
917         struct ixgbe_hw *hw = &adapter->hw;
918         u32 eicr;
919         u32 msg;
920         bool got_ack = false;
921
922         eicr = IXGBE_READ_REG(hw, IXGBE_VTEICS);
923         IXGBE_WRITE_REG(hw, IXGBE_VTEICR, eicr);
924
925         if (!hw->mbx.ops.check_for_ack(hw))
926                 got_ack = true;
927
928         if (!hw->mbx.ops.check_for_msg(hw)) {
929                 hw->mbx.ops.read(hw, &msg, 1);
930
931                 if ((msg & IXGBE_MBVFICR_VFREQ_MASK) == IXGBE_PF_CONTROL_MSG)
932                         mod_timer(&adapter->watchdog_timer,
933                                   round_jiffies(jiffies + 1));
934
935                 if (msg & IXGBE_VT_MSGTYPE_NACK)
936                         pr_warn("Last Request of type %2.2x to PF Nacked\n",
937                                 msg & 0xFF);
938                 /*
939                  * Restore the PFSTS bit in case someone is polling for a
940                  * return message from the PF
941                  */
942                 hw->mbx.v2p_mailbox |= IXGBE_VFMAILBOX_PFSTS;
943         }
944
945         /*
946          * checking for the ack clears the PFACK bit.  Place
947          * it back in the v2p_mailbox cache so that anyone
948          * polling for an ack will not miss it
949          */
950         if (got_ack)
951                 hw->mbx.v2p_mailbox |= IXGBE_VFMAILBOX_PFACK;
952
953         return IRQ_HANDLED;
954 }
955
956 static irqreturn_t ixgbevf_msix_clean_tx(int irq, void *data)
957 {
958         struct ixgbevf_q_vector *q_vector = data;
959         struct ixgbevf_adapter  *adapter = q_vector->adapter;
960         struct ixgbevf_ring     *tx_ring;
961         int i, r_idx;
962
963         if (!q_vector->txr_count)
964                 return IRQ_HANDLED;
965
966         r_idx = find_first_bit(q_vector->txr_idx, adapter->num_tx_queues);
967         for (i = 0; i < q_vector->txr_count; i++) {
968                 tx_ring = &(adapter->tx_ring[r_idx]);
969                 tx_ring->total_bytes = 0;
970                 tx_ring->total_packets = 0;
971                 ixgbevf_clean_tx_irq(adapter, tx_ring);
972                 r_idx = find_next_bit(q_vector->txr_idx, adapter->num_tx_queues,
973                                       r_idx + 1);
974         }
975
976         if (adapter->itr_setting & 1)
977                 ixgbevf_set_itr_msix(q_vector);
978
979         return IRQ_HANDLED;
980 }
981
982 /**
983  * ixgbevf_msix_clean_rx - single unshared vector rx clean (all queues)
984  * @irq: unused
985  * @data: pointer to our q_vector struct for this interrupt vector
986  **/
987 static irqreturn_t ixgbevf_msix_clean_rx(int irq, void *data)
988 {
989         struct ixgbevf_q_vector *q_vector = data;
990         struct ixgbevf_adapter  *adapter = q_vector->adapter;
991         struct ixgbe_hw *hw = &adapter->hw;
992         struct ixgbevf_ring  *rx_ring;
993         int r_idx;
994         int i;
995
996         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
997         for (i = 0; i < q_vector->rxr_count; i++) {
998                 rx_ring = &(adapter->rx_ring[r_idx]);
999                 rx_ring->total_bytes = 0;
1000                 rx_ring->total_packets = 0;
1001                 r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
1002                                       r_idx + 1);
1003         }
1004
1005         if (!q_vector->rxr_count)
1006                 return IRQ_HANDLED;
1007
1008         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
1009         rx_ring = &(adapter->rx_ring[r_idx]);
1010         /* disable interrupts on this vector only */
1011         IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, rx_ring->v_idx);
1012         napi_schedule(&q_vector->napi);
1013
1014
1015         return IRQ_HANDLED;
1016 }
1017
1018 static irqreturn_t ixgbevf_msix_clean_many(int irq, void *data)
1019 {
1020         ixgbevf_msix_clean_rx(irq, data);
1021         ixgbevf_msix_clean_tx(irq, data);
1022
1023         return IRQ_HANDLED;
1024 }
1025
1026 static inline void map_vector_to_rxq(struct ixgbevf_adapter *a, int v_idx,
1027                                      int r_idx)
1028 {
1029         struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1030
1031         set_bit(r_idx, q_vector->rxr_idx);
1032         q_vector->rxr_count++;
1033         a->rx_ring[r_idx].v_idx = 1 << v_idx;
1034 }
1035
1036 static inline void map_vector_to_txq(struct ixgbevf_adapter *a, int v_idx,
1037                                      int t_idx)
1038 {
1039         struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1040
1041         set_bit(t_idx, q_vector->txr_idx);
1042         q_vector->txr_count++;
1043         a->tx_ring[t_idx].v_idx = 1 << v_idx;
1044 }
1045
1046 /**
1047  * ixgbevf_map_rings_to_vectors - Maps descriptor rings to vectors
1048  * @adapter: board private structure to initialize
1049  *
1050  * This function maps descriptor rings to the queue-specific vectors
1051  * we were allotted through the MSI-X enabling code.  Ideally, we'd have
1052  * one vector per ring/queue, but on a constrained vector budget, we
1053  * group the rings as "efficiently" as possible.  You would add new
1054  * mapping configurations in here.
1055  **/
1056 static int ixgbevf_map_rings_to_vectors(struct ixgbevf_adapter *adapter)
1057 {
1058         int q_vectors;
1059         int v_start = 0;
1060         int rxr_idx = 0, txr_idx = 0;
1061         int rxr_remaining = adapter->num_rx_queues;
1062         int txr_remaining = adapter->num_tx_queues;
1063         int i, j;
1064         int rqpv, tqpv;
1065         int err = 0;
1066
1067         q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1068
1069         /*
1070          * The ideal configuration...
1071          * We have enough vectors to map one per queue.
1072          */
1073         if (q_vectors == adapter->num_rx_queues + adapter->num_tx_queues) {
1074                 for (; rxr_idx < rxr_remaining; v_start++, rxr_idx++)
1075                         map_vector_to_rxq(adapter, v_start, rxr_idx);
1076
1077                 for (; txr_idx < txr_remaining; v_start++, txr_idx++)
1078                         map_vector_to_txq(adapter, v_start, txr_idx);
1079                 goto out;
1080         }
1081
1082         /*
1083          * If we don't have enough vectors for a 1-to-1
1084          * mapping, we'll have to group them so there are
1085          * multiple queues per vector.
1086          */
1087         /* Re-adjusting *qpv takes care of the remainder. */
1088         for (i = v_start; i < q_vectors; i++) {
1089                 rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - i);
1090                 for (j = 0; j < rqpv; j++) {
1091                         map_vector_to_rxq(adapter, i, rxr_idx);
1092                         rxr_idx++;
1093                         rxr_remaining--;
1094                 }
1095         }
1096         for (i = v_start; i < q_vectors; i++) {
1097                 tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - i);
1098                 for (j = 0; j < tqpv; j++) {
1099                         map_vector_to_txq(adapter, i, txr_idx);
1100                         txr_idx++;
1101                         txr_remaining--;
1102                 }
1103         }
1104
1105 out:
1106         return err;
1107 }
1108
1109 /**
1110  * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts
1111  * @adapter: board private structure
1112  *
1113  * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests
1114  * interrupts from the kernel.
1115  **/
1116 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter)
1117 {
1118         struct net_device *netdev = adapter->netdev;
1119         irqreturn_t (*handler)(int, void *);
1120         int i, vector, q_vectors, err;
1121         int ri = 0, ti = 0;
1122
1123         /* Decrement for Other and TCP Timer vectors */
1124         q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1125
1126 #define SET_HANDLER(_v) (((_v)->rxr_count && (_v)->txr_count)          \
1127                                           ? &ixgbevf_msix_clean_many : \
1128                           (_v)->rxr_count ? &ixgbevf_msix_clean_rx   : \
1129                           (_v)->txr_count ? &ixgbevf_msix_clean_tx   : \
1130                           NULL)
1131         for (vector = 0; vector < q_vectors; vector++) {
1132                 handler = SET_HANDLER(adapter->q_vector[vector]);
1133
1134                 if (handler == &ixgbevf_msix_clean_rx) {
1135                         sprintf(adapter->name[vector], "%s-%s-%d",
1136                                 netdev->name, "rx", ri++);
1137                 } else if (handler == &ixgbevf_msix_clean_tx) {
1138                         sprintf(adapter->name[vector], "%s-%s-%d",
1139                                 netdev->name, "tx", ti++);
1140                 } else if (handler == &ixgbevf_msix_clean_many) {
1141                         sprintf(adapter->name[vector], "%s-%s-%d",
1142                                 netdev->name, "TxRx", vector);
1143                 } else {
1144                         /* skip this unused q_vector */
1145                         continue;
1146                 }
1147                 err = request_irq(adapter->msix_entries[vector].vector,
1148                                   handler, 0, adapter->name[vector],
1149                                   adapter->q_vector[vector]);
1150                 if (err) {
1151                         hw_dbg(&adapter->hw,
1152                                "request_irq failed for MSIX interrupt "
1153                                "Error: %d\n", err);
1154                         goto free_queue_irqs;
1155                 }
1156         }
1157
1158         sprintf(adapter->name[vector], "%s:mbx", netdev->name);
1159         err = request_irq(adapter->msix_entries[vector].vector,
1160                           &ixgbevf_msix_mbx, 0, adapter->name[vector], netdev);
1161         if (err) {
1162                 hw_dbg(&adapter->hw,
1163                        "request_irq for msix_mbx failed: %d\n", err);
1164                 goto free_queue_irqs;
1165         }
1166
1167         return 0;
1168
1169 free_queue_irqs:
1170         for (i = vector - 1; i >= 0; i--)
1171                 free_irq(adapter->msix_entries[--vector].vector,
1172                          &(adapter->q_vector[i]));
1173         pci_disable_msix(adapter->pdev);
1174         kfree(adapter->msix_entries);
1175         adapter->msix_entries = NULL;
1176         return err;
1177 }
1178
1179 static inline void ixgbevf_reset_q_vectors(struct ixgbevf_adapter *adapter)
1180 {
1181         int i, q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1182
1183         for (i = 0; i < q_vectors; i++) {
1184                 struct ixgbevf_q_vector *q_vector = adapter->q_vector[i];
1185                 bitmap_zero(q_vector->rxr_idx, MAX_RX_QUEUES);
1186                 bitmap_zero(q_vector->txr_idx, MAX_TX_QUEUES);
1187                 q_vector->rxr_count = 0;
1188                 q_vector->txr_count = 0;
1189                 q_vector->eitr = adapter->eitr_param;
1190         }
1191 }
1192
1193 /**
1194  * ixgbevf_request_irq - initialize interrupts
1195  * @adapter: board private structure
1196  *
1197  * Attempts to configure interrupts using the best available
1198  * capabilities of the hardware and kernel.
1199  **/
1200 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter)
1201 {
1202         int err = 0;
1203
1204         err = ixgbevf_request_msix_irqs(adapter);
1205
1206         if (err)
1207                 hw_dbg(&adapter->hw,
1208                        "request_irq failed, Error %d\n", err);
1209
1210         return err;
1211 }
1212
1213 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter)
1214 {
1215         struct net_device *netdev = adapter->netdev;
1216         int i, q_vectors;
1217
1218         q_vectors = adapter->num_msix_vectors;
1219
1220         i = q_vectors - 1;
1221
1222         free_irq(adapter->msix_entries[i].vector, netdev);
1223         i--;
1224
1225         for (; i >= 0; i--) {
1226                 free_irq(adapter->msix_entries[i].vector,
1227                          adapter->q_vector[i]);
1228         }
1229
1230         ixgbevf_reset_q_vectors(adapter);
1231 }
1232
1233 /**
1234  * ixgbevf_irq_disable - Mask off interrupt generation on the NIC
1235  * @adapter: board private structure
1236  **/
1237 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter)
1238 {
1239         int i;
1240         struct ixgbe_hw *hw = &adapter->hw;
1241
1242         IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0);
1243
1244         IXGBE_WRITE_FLUSH(hw);
1245
1246         for (i = 0; i < adapter->num_msix_vectors; i++)
1247                 synchronize_irq(adapter->msix_entries[i].vector);
1248 }
1249
1250 /**
1251  * ixgbevf_irq_enable - Enable default interrupt generation settings
1252  * @adapter: board private structure
1253  **/
1254 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter,
1255                                       bool queues, bool flush)
1256 {
1257         struct ixgbe_hw *hw = &adapter->hw;
1258         u32 mask;
1259         u64 qmask;
1260
1261         mask = (IXGBE_EIMS_ENABLE_MASK & ~IXGBE_EIMS_RTX_QUEUE);
1262         qmask = ~0;
1263
1264         IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, mask);
1265
1266         if (queues)
1267                 ixgbevf_irq_enable_queues(adapter, qmask);
1268
1269         if (flush)
1270                 IXGBE_WRITE_FLUSH(hw);
1271 }
1272
1273 /**
1274  * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset
1275  * @adapter: board private structure
1276  *
1277  * Configure the Tx unit of the MAC after a reset.
1278  **/
1279 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter)
1280 {
1281         u64 tdba;
1282         struct ixgbe_hw *hw = &adapter->hw;
1283         u32 i, j, tdlen, txctrl;
1284
1285         /* Setup the HW Tx Head and Tail descriptor pointers */
1286         for (i = 0; i < adapter->num_tx_queues; i++) {
1287                 struct ixgbevf_ring *ring = &adapter->tx_ring[i];
1288                 j = ring->reg_idx;
1289                 tdba = ring->dma;
1290                 tdlen = ring->count * sizeof(union ixgbe_adv_tx_desc);
1291                 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(j),
1292                                 (tdba & DMA_BIT_MASK(32)));
1293                 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(j), (tdba >> 32));
1294                 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(j), tdlen);
1295                 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(j), 0);
1296                 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(j), 0);
1297                 adapter->tx_ring[i].head = IXGBE_VFTDH(j);
1298                 adapter->tx_ring[i].tail = IXGBE_VFTDT(j);
1299                 /* Disable Tx Head Writeback RO bit, since this hoses
1300                  * bookkeeping if things aren't delivered in order.
1301                  */
1302                 txctrl = IXGBE_READ_REG(hw, IXGBE_VFDCA_TXCTRL(j));
1303                 txctrl &= ~IXGBE_DCA_TXCTRL_TX_WB_RO_EN;
1304                 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(j), txctrl);
1305         }
1306 }
1307
1308 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2
1309
1310 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, int index)
1311 {
1312         struct ixgbevf_ring *rx_ring;
1313         struct ixgbe_hw *hw = &adapter->hw;
1314         u32 srrctl;
1315
1316         rx_ring = &adapter->rx_ring[index];
1317
1318         srrctl = IXGBE_SRRCTL_DROP_EN;
1319
1320         if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
1321                 u16 bufsz = IXGBEVF_RXBUFFER_2048;
1322                 /* grow the amount we can receive on large page machines */
1323                 if (bufsz < (PAGE_SIZE / 2))
1324                         bufsz = (PAGE_SIZE / 2);
1325                 /* cap the bufsz at our largest descriptor size */
1326                 bufsz = min((u16)IXGBEVF_MAX_RXBUFFER, bufsz);
1327
1328                 srrctl |= bufsz >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1329                 srrctl |= IXGBE_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1330                 srrctl |= ((IXGBEVF_RX_HDR_SIZE <<
1331                            IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT) &
1332                            IXGBE_SRRCTL_BSIZEHDR_MASK);
1333         } else {
1334                 srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
1335
1336                 if (rx_ring->rx_buf_len == MAXIMUM_ETHERNET_VLAN_SIZE)
1337                         srrctl |= IXGBEVF_RXBUFFER_2048 >>
1338                                 IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1339                 else
1340                         srrctl |= rx_ring->rx_buf_len >>
1341                                 IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1342         }
1343         IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl);
1344 }
1345
1346 /**
1347  * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset
1348  * @adapter: board private structure
1349  *
1350  * Configure the Rx unit of the MAC after a reset.
1351  **/
1352 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter)
1353 {
1354         u64 rdba;
1355         struct ixgbe_hw *hw = &adapter->hw;
1356         struct net_device *netdev = adapter->netdev;
1357         int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1358         int i, j;
1359         u32 rdlen;
1360         int rx_buf_len;
1361
1362         /* Decide whether to use packet split mode or not */
1363         if (netdev->mtu > ETH_DATA_LEN) {
1364                 if (adapter->flags & IXGBE_FLAG_RX_PS_CAPABLE)
1365                         adapter->flags |= IXGBE_FLAG_RX_PS_ENABLED;
1366                 else
1367                         adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
1368         } else {
1369                 if (adapter->flags & IXGBE_FLAG_RX_1BUF_CAPABLE)
1370                         adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
1371                 else
1372                         adapter->flags |= IXGBE_FLAG_RX_PS_ENABLED;
1373         }
1374
1375         /* Set the RX buffer length according to the mode */
1376         if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
1377                 /* PSRTYPE must be initialized in 82599 */
1378                 u32 psrtype = IXGBE_PSRTYPE_TCPHDR |
1379                         IXGBE_PSRTYPE_UDPHDR |
1380                         IXGBE_PSRTYPE_IPV4HDR |
1381                         IXGBE_PSRTYPE_IPV6HDR |
1382                         IXGBE_PSRTYPE_L2HDR;
1383                 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
1384                 rx_buf_len = IXGBEVF_RX_HDR_SIZE;
1385         } else {
1386                 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, 0);
1387                 if (netdev->mtu <= ETH_DATA_LEN)
1388                         rx_buf_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1389                 else
1390                         rx_buf_len = ALIGN(max_frame, 1024);
1391         }
1392
1393         rdlen = adapter->rx_ring[0].count * sizeof(union ixgbe_adv_rx_desc);
1394         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1395          * the Base and Length of the Rx Descriptor Ring */
1396         for (i = 0; i < adapter->num_rx_queues; i++) {
1397                 rdba = adapter->rx_ring[i].dma;
1398                 j = adapter->rx_ring[i].reg_idx;
1399                 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(j),
1400                                 (rdba & DMA_BIT_MASK(32)));
1401                 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(j), (rdba >> 32));
1402                 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(j), rdlen);
1403                 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(j), 0);
1404                 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(j), 0);
1405                 adapter->rx_ring[i].head = IXGBE_VFRDH(j);
1406                 adapter->rx_ring[i].tail = IXGBE_VFRDT(j);
1407                 adapter->rx_ring[i].rx_buf_len = rx_buf_len;
1408
1409                 ixgbevf_configure_srrctl(adapter, j);
1410         }
1411 }
1412
1413 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1414 {
1415         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1416         struct ixgbe_hw *hw = &adapter->hw;
1417
1418         /* add VID to filter table */
1419         if (hw->mac.ops.set_vfta)
1420                 hw->mac.ops.set_vfta(hw, vid, 0, true);
1421         set_bit(vid, adapter->active_vlans);
1422
1423         return 0;
1424 }
1425
1426 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1427 {
1428         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1429         struct ixgbe_hw *hw = &adapter->hw;
1430
1431         /* remove VID from filter table */
1432         if (hw->mac.ops.set_vfta)
1433                 hw->mac.ops.set_vfta(hw, vid, 0, false);
1434         clear_bit(vid, adapter->active_vlans);
1435
1436         return 0;
1437 }
1438
1439 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter)
1440 {
1441         u16 vid;
1442
1443         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1444                 ixgbevf_vlan_rx_add_vid(adapter->netdev, vid);
1445 }
1446
1447 static int ixgbevf_write_uc_addr_list(struct net_device *netdev)
1448 {
1449         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1450         struct ixgbe_hw *hw = &adapter->hw;
1451         int count = 0;
1452
1453         if ((netdev_uc_count(netdev)) > 10) {
1454                 pr_err("Too many unicast filters - No Space\n");
1455                 return -ENOSPC;
1456         }
1457
1458         if (!netdev_uc_empty(netdev)) {
1459                 struct netdev_hw_addr *ha;
1460                 netdev_for_each_uc_addr(ha, netdev) {
1461                         hw->mac.ops.set_uc_addr(hw, ++count, ha->addr);
1462                         udelay(200);
1463                 }
1464         } else {
1465                 /*
1466                  * If the list is empty then send message to PF driver to
1467                  * clear all macvlans on this VF.
1468                  */
1469                 hw->mac.ops.set_uc_addr(hw, 0, NULL);
1470         }
1471
1472         return count;
1473 }
1474
1475 /**
1476  * ixgbevf_set_rx_mode - Multicast set
1477  * @netdev: network interface device structure
1478  *
1479  * The set_rx_method entry point is called whenever the multicast address
1480  * list or the network interface flags are updated.  This routine is
1481  * responsible for configuring the hardware for proper multicast mode.
1482  **/
1483 static void ixgbevf_set_rx_mode(struct net_device *netdev)
1484 {
1485         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1486         struct ixgbe_hw *hw = &adapter->hw;
1487
1488         /* reprogram multicast list */
1489         if (hw->mac.ops.update_mc_addr_list)
1490                 hw->mac.ops.update_mc_addr_list(hw, netdev);
1491
1492         ixgbevf_write_uc_addr_list(netdev);
1493 }
1494
1495 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter)
1496 {
1497         int q_idx;
1498         struct ixgbevf_q_vector *q_vector;
1499         int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1500
1501         for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1502                 struct napi_struct *napi;
1503                 q_vector = adapter->q_vector[q_idx];
1504                 if (!q_vector->rxr_count)
1505                         continue;
1506                 napi = &q_vector->napi;
1507                 if (q_vector->rxr_count > 1)
1508                         napi->poll = &ixgbevf_clean_rxonly_many;
1509
1510                 napi_enable(napi);
1511         }
1512 }
1513
1514 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter)
1515 {
1516         int q_idx;
1517         struct ixgbevf_q_vector *q_vector;
1518         int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1519
1520         for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1521                 q_vector = adapter->q_vector[q_idx];
1522                 if (!q_vector->rxr_count)
1523                         continue;
1524                 napi_disable(&q_vector->napi);
1525         }
1526 }
1527
1528 static void ixgbevf_configure(struct ixgbevf_adapter *adapter)
1529 {
1530         struct net_device *netdev = adapter->netdev;
1531         int i;
1532
1533         ixgbevf_set_rx_mode(netdev);
1534
1535         ixgbevf_restore_vlan(adapter);
1536
1537         ixgbevf_configure_tx(adapter);
1538         ixgbevf_configure_rx(adapter);
1539         for (i = 0; i < adapter->num_rx_queues; i++) {
1540                 struct ixgbevf_ring *ring = &adapter->rx_ring[i];
1541                 ixgbevf_alloc_rx_buffers(adapter, ring, ring->count);
1542                 ring->next_to_use = ring->count - 1;
1543                 writel(ring->next_to_use, adapter->hw.hw_addr + ring->tail);
1544         }
1545 }
1546
1547 #define IXGBE_MAX_RX_DESC_POLL 10
1548 static inline void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter,
1549                                                 int rxr)
1550 {
1551         struct ixgbe_hw *hw = &adapter->hw;
1552         int j = adapter->rx_ring[rxr].reg_idx;
1553         int k;
1554
1555         for (k = 0; k < IXGBE_MAX_RX_DESC_POLL; k++) {
1556                 if (IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j)) & IXGBE_RXDCTL_ENABLE)
1557                         break;
1558                 else
1559                         msleep(1);
1560         }
1561         if (k >= IXGBE_MAX_RX_DESC_POLL) {
1562                 hw_dbg(hw, "RXDCTL.ENABLE on Rx queue %d "
1563                        "not set within the polling period\n", rxr);
1564         }
1565
1566         ixgbevf_release_rx_desc(&adapter->hw, &adapter->rx_ring[rxr],
1567                                 (adapter->rx_ring[rxr].count - 1));
1568 }
1569
1570 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter)
1571 {
1572         /* Only save pre-reset stats if there are some */
1573         if (adapter->stats.vfgprc || adapter->stats.vfgptc) {
1574                 adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc -
1575                         adapter->stats.base_vfgprc;
1576                 adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc -
1577                         adapter->stats.base_vfgptc;
1578                 adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc -
1579                         adapter->stats.base_vfgorc;
1580                 adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc -
1581                         adapter->stats.base_vfgotc;
1582                 adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc -
1583                         adapter->stats.base_vfmprc;
1584         }
1585 }
1586
1587 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter)
1588 {
1589         struct ixgbe_hw *hw = &adapter->hw;
1590
1591         adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC);
1592         adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB);
1593         adapter->stats.last_vfgorc |=
1594                 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32);
1595         adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC);
1596         adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB);
1597         adapter->stats.last_vfgotc |=
1598                 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32);
1599         adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC);
1600
1601         adapter->stats.base_vfgprc = adapter->stats.last_vfgprc;
1602         adapter->stats.base_vfgorc = adapter->stats.last_vfgorc;
1603         adapter->stats.base_vfgptc = adapter->stats.last_vfgptc;
1604         adapter->stats.base_vfgotc = adapter->stats.last_vfgotc;
1605         adapter->stats.base_vfmprc = adapter->stats.last_vfmprc;
1606 }
1607
1608 static int ixgbevf_up_complete(struct ixgbevf_adapter *adapter)
1609 {
1610         struct net_device *netdev = adapter->netdev;
1611         struct ixgbe_hw *hw = &adapter->hw;
1612         int i, j = 0;
1613         int num_rx_rings = adapter->num_rx_queues;
1614         u32 txdctl, rxdctl;
1615
1616         for (i = 0; i < adapter->num_tx_queues; i++) {
1617                 j = adapter->tx_ring[i].reg_idx;
1618                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1619                 /* enable WTHRESH=8 descriptors, to encourage burst writeback */
1620                 txdctl |= (8 << 16);
1621                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j), txdctl);
1622         }
1623
1624         for (i = 0; i < adapter->num_tx_queues; i++) {
1625                 j = adapter->tx_ring[i].reg_idx;
1626                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1627                 txdctl |= IXGBE_TXDCTL_ENABLE;
1628                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j), txdctl);
1629         }
1630
1631         for (i = 0; i < num_rx_rings; i++) {
1632                 j = adapter->rx_ring[i].reg_idx;
1633                 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j));
1634                 rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME;
1635                 if (hw->mac.type == ixgbe_mac_X540_vf) {
1636                         rxdctl &= ~IXGBE_RXDCTL_RLPMLMASK;
1637                         rxdctl |= ((netdev->mtu + ETH_HLEN + ETH_FCS_LEN) |
1638                                    IXGBE_RXDCTL_RLPML_EN);
1639                 }
1640                 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(j), rxdctl);
1641                 ixgbevf_rx_desc_queue_enable(adapter, i);
1642         }
1643
1644         ixgbevf_configure_msix(adapter);
1645
1646         if (hw->mac.ops.set_rar) {
1647                 if (is_valid_ether_addr(hw->mac.addr))
1648                         hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
1649                 else
1650                         hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0);
1651         }
1652
1653         clear_bit(__IXGBEVF_DOWN, &adapter->state);
1654         ixgbevf_napi_enable_all(adapter);
1655
1656         /* enable transmits */
1657         netif_tx_start_all_queues(netdev);
1658
1659         ixgbevf_save_reset_stats(adapter);
1660         ixgbevf_init_last_counter_stats(adapter);
1661
1662         /* bring the link up in the watchdog, this could race with our first
1663          * link up interrupt but shouldn't be a problem */
1664         adapter->flags |= IXGBE_FLAG_NEED_LINK_UPDATE;
1665         adapter->link_check_timeout = jiffies;
1666         mod_timer(&adapter->watchdog_timer, jiffies);
1667         return 0;
1668 }
1669
1670 int ixgbevf_up(struct ixgbevf_adapter *adapter)
1671 {
1672         int err;
1673         struct ixgbe_hw *hw = &adapter->hw;
1674
1675         ixgbevf_configure(adapter);
1676
1677         err = ixgbevf_up_complete(adapter);
1678
1679         /* clear any pending interrupts, may auto mask */
1680         IXGBE_READ_REG(hw, IXGBE_VTEICR);
1681
1682         ixgbevf_irq_enable(adapter, true, true);
1683
1684         return err;
1685 }
1686
1687 /**
1688  * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue
1689  * @adapter: board private structure
1690  * @rx_ring: ring to free buffers from
1691  **/
1692 static void ixgbevf_clean_rx_ring(struct ixgbevf_adapter *adapter,
1693                                   struct ixgbevf_ring *rx_ring)
1694 {
1695         struct pci_dev *pdev = adapter->pdev;
1696         unsigned long size;
1697         unsigned int i;
1698
1699         if (!rx_ring->rx_buffer_info)
1700                 return;
1701
1702         /* Free all the Rx ring sk_buffs */
1703         for (i = 0; i < rx_ring->count; i++) {
1704                 struct ixgbevf_rx_buffer *rx_buffer_info;
1705
1706                 rx_buffer_info = &rx_ring->rx_buffer_info[i];
1707                 if (rx_buffer_info->dma) {
1708                         dma_unmap_single(&pdev->dev, rx_buffer_info->dma,
1709                                          rx_ring->rx_buf_len,
1710                                          DMA_FROM_DEVICE);
1711                         rx_buffer_info->dma = 0;
1712                 }
1713                 if (rx_buffer_info->skb) {
1714                         struct sk_buff *skb = rx_buffer_info->skb;
1715                         rx_buffer_info->skb = NULL;
1716                         do {
1717                                 struct sk_buff *this = skb;
1718                                 skb = skb->prev;
1719                                 dev_kfree_skb(this);
1720                         } while (skb);
1721                 }
1722                 if (!rx_buffer_info->page)
1723                         continue;
1724                 dma_unmap_page(&pdev->dev, rx_buffer_info->page_dma,
1725                                PAGE_SIZE / 2, DMA_FROM_DEVICE);
1726                 rx_buffer_info->page_dma = 0;
1727                 put_page(rx_buffer_info->page);
1728                 rx_buffer_info->page = NULL;
1729                 rx_buffer_info->page_offset = 0;
1730         }
1731
1732         size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
1733         memset(rx_ring->rx_buffer_info, 0, size);
1734
1735         /* Zero out the descriptor ring */
1736         memset(rx_ring->desc, 0, rx_ring->size);
1737
1738         rx_ring->next_to_clean = 0;
1739         rx_ring->next_to_use = 0;
1740
1741         if (rx_ring->head)
1742                 writel(0, adapter->hw.hw_addr + rx_ring->head);
1743         if (rx_ring->tail)
1744                 writel(0, adapter->hw.hw_addr + rx_ring->tail);
1745 }
1746
1747 /**
1748  * ixgbevf_clean_tx_ring - Free Tx Buffers
1749  * @adapter: board private structure
1750  * @tx_ring: ring to be cleaned
1751  **/
1752 static void ixgbevf_clean_tx_ring(struct ixgbevf_adapter *adapter,
1753                                   struct ixgbevf_ring *tx_ring)
1754 {
1755         struct ixgbevf_tx_buffer *tx_buffer_info;
1756         unsigned long size;
1757         unsigned int i;
1758
1759         if (!tx_ring->tx_buffer_info)
1760                 return;
1761
1762         /* Free all the Tx ring sk_buffs */
1763
1764         for (i = 0; i < tx_ring->count; i++) {
1765                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
1766                 ixgbevf_unmap_and_free_tx_resource(adapter, tx_buffer_info);
1767         }
1768
1769         size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
1770         memset(tx_ring->tx_buffer_info, 0, size);
1771
1772         memset(tx_ring->desc, 0, tx_ring->size);
1773
1774         tx_ring->next_to_use = 0;
1775         tx_ring->next_to_clean = 0;
1776
1777         if (tx_ring->head)
1778                 writel(0, adapter->hw.hw_addr + tx_ring->head);
1779         if (tx_ring->tail)
1780                 writel(0, adapter->hw.hw_addr + tx_ring->tail);
1781 }
1782
1783 /**
1784  * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues
1785  * @adapter: board private structure
1786  **/
1787 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter)
1788 {
1789         int i;
1790
1791         for (i = 0; i < adapter->num_rx_queues; i++)
1792                 ixgbevf_clean_rx_ring(adapter, &adapter->rx_ring[i]);
1793 }
1794
1795 /**
1796  * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues
1797  * @adapter: board private structure
1798  **/
1799 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter)
1800 {
1801         int i;
1802
1803         for (i = 0; i < adapter->num_tx_queues; i++)
1804                 ixgbevf_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1805 }
1806
1807 void ixgbevf_down(struct ixgbevf_adapter *adapter)
1808 {
1809         struct net_device *netdev = adapter->netdev;
1810         struct ixgbe_hw *hw = &adapter->hw;
1811         u32 txdctl;
1812         int i, j;
1813
1814         /* signal that we are down to the interrupt handler */
1815         set_bit(__IXGBEVF_DOWN, &adapter->state);
1816         /* disable receives */
1817
1818         netif_tx_disable(netdev);
1819
1820         msleep(10);
1821
1822         netif_tx_stop_all_queues(netdev);
1823
1824         ixgbevf_irq_disable(adapter);
1825
1826         ixgbevf_napi_disable_all(adapter);
1827
1828         del_timer_sync(&adapter->watchdog_timer);
1829         /* can't call flush scheduled work here because it can deadlock
1830          * if linkwatch_event tries to acquire the rtnl_lock which we are
1831          * holding */
1832         while (adapter->flags & IXGBE_FLAG_IN_WATCHDOG_TASK)
1833                 msleep(1);
1834
1835         /* disable transmits in the hardware now that interrupts are off */
1836         for (i = 0; i < adapter->num_tx_queues; i++) {
1837                 j = adapter->tx_ring[i].reg_idx;
1838                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1839                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j),
1840                                 (txdctl & ~IXGBE_TXDCTL_ENABLE));
1841         }
1842
1843         netif_carrier_off(netdev);
1844
1845         if (!pci_channel_offline(adapter->pdev))
1846                 ixgbevf_reset(adapter);
1847
1848         ixgbevf_clean_all_tx_rings(adapter);
1849         ixgbevf_clean_all_rx_rings(adapter);
1850 }
1851
1852 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter)
1853 {
1854         struct ixgbe_hw *hw = &adapter->hw;
1855
1856         WARN_ON(in_interrupt());
1857
1858         while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state))
1859                 msleep(1);
1860
1861         /*
1862          * Check if PF is up before re-init.  If not then skip until
1863          * later when the PF is up and ready to service requests from
1864          * the VF via mailbox.  If the VF is up and running then the
1865          * watchdog task will continue to schedule reset tasks until
1866          * the PF is up and running.
1867          */
1868         if (!hw->mac.ops.reset_hw(hw)) {
1869                 ixgbevf_down(adapter);
1870                 ixgbevf_up(adapter);
1871         }
1872
1873         clear_bit(__IXGBEVF_RESETTING, &adapter->state);
1874 }
1875
1876 void ixgbevf_reset(struct ixgbevf_adapter *adapter)
1877 {
1878         struct ixgbe_hw *hw = &adapter->hw;
1879         struct net_device *netdev = adapter->netdev;
1880
1881         if (hw->mac.ops.reset_hw(hw))
1882                 hw_dbg(hw, "PF still resetting\n");
1883         else
1884                 hw->mac.ops.init_hw(hw);
1885
1886         if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1887                 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1888                        netdev->addr_len);
1889                 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1890                        netdev->addr_len);
1891         }
1892 }
1893
1894 static void ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter,
1895                                          int vectors)
1896 {
1897         int err, vector_threshold;
1898
1899         /* We'll want at least 3 (vector_threshold):
1900          * 1) TxQ[0] Cleanup
1901          * 2) RxQ[0] Cleanup
1902          * 3) Other (Link Status Change, etc.)
1903          */
1904         vector_threshold = MIN_MSIX_COUNT;
1905
1906         /* The more we get, the more we will assign to Tx/Rx Cleanup
1907          * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1908          * Right now, we simply care about how many we'll get; we'll
1909          * set them up later while requesting irq's.
1910          */
1911         while (vectors >= vector_threshold) {
1912                 err = pci_enable_msix(adapter->pdev, adapter->msix_entries,
1913                                       vectors);
1914                 if (!err) /* Success in acquiring all requested vectors. */
1915                         break;
1916                 else if (err < 0)
1917                         vectors = 0; /* Nasty failure, quit now */
1918                 else /* err == number of vectors we should try again with */
1919                         vectors = err;
1920         }
1921
1922         if (vectors < vector_threshold) {
1923                 /* Can't allocate enough MSI-X interrupts?  Oh well.
1924                  * This just means we'll go with either a single MSI
1925                  * vector or fall back to legacy interrupts.
1926                  */
1927                 hw_dbg(&adapter->hw,
1928                        "Unable to allocate MSI-X interrupts\n");
1929                 kfree(adapter->msix_entries);
1930                 adapter->msix_entries = NULL;
1931         } else {
1932                 /*
1933                  * Adjust for only the vectors we'll use, which is minimum
1934                  * of max_msix_q_vectors + NON_Q_VECTORS, or the number of
1935                  * vectors we were allocated.
1936                  */
1937                 adapter->num_msix_vectors = vectors;
1938         }
1939 }
1940
1941 /*
1942  * ixgbevf_set_num_queues: Allocate queues for device, feature dependent
1943  * @adapter: board private structure to initialize
1944  *
1945  * This is the top level queue allocation routine.  The order here is very
1946  * important, starting with the "most" number of features turned on at once,
1947  * and ending with the smallest set of features.  This way large combinations
1948  * can be allocated if they're turned on, and smaller combinations are the
1949  * fallthrough conditions.
1950  *
1951  **/
1952 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter)
1953 {
1954         /* Start with base case */
1955         adapter->num_rx_queues = 1;
1956         adapter->num_tx_queues = 1;
1957         adapter->num_rx_pools = adapter->num_rx_queues;
1958         adapter->num_rx_queues_per_pool = 1;
1959 }
1960
1961 /**
1962  * ixgbevf_alloc_queues - Allocate memory for all rings
1963  * @adapter: board private structure to initialize
1964  *
1965  * We allocate one ring per queue at run-time since we don't know the
1966  * number of queues at compile-time.  The polling_netdev array is
1967  * intended for Multiqueue, but should work fine with a single queue.
1968  **/
1969 static int ixgbevf_alloc_queues(struct ixgbevf_adapter *adapter)
1970 {
1971         int i;
1972
1973         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1974                                    sizeof(struct ixgbevf_ring), GFP_KERNEL);
1975         if (!adapter->tx_ring)
1976                 goto err_tx_ring_allocation;
1977
1978         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1979                                    sizeof(struct ixgbevf_ring), GFP_KERNEL);
1980         if (!adapter->rx_ring)
1981                 goto err_rx_ring_allocation;
1982
1983         for (i = 0; i < adapter->num_tx_queues; i++) {
1984                 adapter->tx_ring[i].count = adapter->tx_ring_count;
1985                 adapter->tx_ring[i].queue_index = i;
1986                 adapter->tx_ring[i].reg_idx = i;
1987         }
1988
1989         for (i = 0; i < adapter->num_rx_queues; i++) {
1990                 adapter->rx_ring[i].count = adapter->rx_ring_count;
1991                 adapter->rx_ring[i].queue_index = i;
1992                 adapter->rx_ring[i].reg_idx = i;
1993         }
1994
1995         return 0;
1996
1997 err_rx_ring_allocation:
1998         kfree(adapter->tx_ring);
1999 err_tx_ring_allocation:
2000         return -ENOMEM;
2001 }
2002
2003 /**
2004  * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported
2005  * @adapter: board private structure to initialize
2006  *
2007  * Attempt to configure the interrupts using the best available
2008  * capabilities of the hardware and the kernel.
2009  **/
2010 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter)
2011 {
2012         int err = 0;
2013         int vector, v_budget;
2014
2015         /*
2016          * It's easy to be greedy for MSI-X vectors, but it really
2017          * doesn't do us much good if we have a lot more vectors
2018          * than CPU's.  So let's be conservative and only ask for
2019          * (roughly) twice the number of vectors as there are CPU's.
2020          */
2021         v_budget = min(adapter->num_rx_queues + adapter->num_tx_queues,
2022                        (int)(num_online_cpus() * 2)) + NON_Q_VECTORS;
2023
2024         /* A failure in MSI-X entry allocation isn't fatal, but it does
2025          * mean we disable MSI-X capabilities of the adapter. */
2026         adapter->msix_entries = kcalloc(v_budget,
2027                                         sizeof(struct msix_entry), GFP_KERNEL);
2028         if (!adapter->msix_entries) {
2029                 err = -ENOMEM;
2030                 goto out;
2031         }
2032
2033         for (vector = 0; vector < v_budget; vector++)
2034                 adapter->msix_entries[vector].entry = vector;
2035
2036         ixgbevf_acquire_msix_vectors(adapter, v_budget);
2037
2038 out:
2039         return err;
2040 }
2041
2042 /**
2043  * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors
2044  * @adapter: board private structure to initialize
2045  *
2046  * We allocate one q_vector per queue interrupt.  If allocation fails we
2047  * return -ENOMEM.
2048  **/
2049 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter)
2050 {
2051         int q_idx, num_q_vectors;
2052         struct ixgbevf_q_vector *q_vector;
2053         int napi_vectors;
2054         int (*poll)(struct napi_struct *, int);
2055
2056         num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2057         napi_vectors = adapter->num_rx_queues;
2058         poll = &ixgbevf_clean_rxonly;
2059
2060         for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2061                 q_vector = kzalloc(sizeof(struct ixgbevf_q_vector), GFP_KERNEL);
2062                 if (!q_vector)
2063                         goto err_out;
2064                 q_vector->adapter = adapter;
2065                 q_vector->v_idx = q_idx;
2066                 q_vector->eitr = adapter->eitr_param;
2067                 if (q_idx < napi_vectors)
2068                         netif_napi_add(adapter->netdev, &q_vector->napi,
2069                                        (*poll), 64);
2070                 adapter->q_vector[q_idx] = q_vector;
2071         }
2072
2073         return 0;
2074
2075 err_out:
2076         while (q_idx) {
2077                 q_idx--;
2078                 q_vector = adapter->q_vector[q_idx];
2079                 netif_napi_del(&q_vector->napi);
2080                 kfree(q_vector);
2081                 adapter->q_vector[q_idx] = NULL;
2082         }
2083         return -ENOMEM;
2084 }
2085
2086 /**
2087  * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors
2088  * @adapter: board private structure to initialize
2089  *
2090  * This function frees the memory allocated to the q_vectors.  In addition if
2091  * NAPI is enabled it will delete any references to the NAPI struct prior
2092  * to freeing the q_vector.
2093  **/
2094 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter)
2095 {
2096         int q_idx, num_q_vectors;
2097         int napi_vectors;
2098
2099         num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2100         napi_vectors = adapter->num_rx_queues;
2101
2102         for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2103                 struct ixgbevf_q_vector *q_vector = adapter->q_vector[q_idx];
2104
2105                 adapter->q_vector[q_idx] = NULL;
2106                 if (q_idx < napi_vectors)
2107                         netif_napi_del(&q_vector->napi);
2108                 kfree(q_vector);
2109         }
2110 }
2111
2112 /**
2113  * ixgbevf_reset_interrupt_capability - Reset MSIX setup
2114  * @adapter: board private structure
2115  *
2116  **/
2117 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter)
2118 {
2119         pci_disable_msix(adapter->pdev);
2120         kfree(adapter->msix_entries);
2121         adapter->msix_entries = NULL;
2122 }
2123
2124 /**
2125  * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init
2126  * @adapter: board private structure to initialize
2127  *
2128  **/
2129 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter)
2130 {
2131         int err;
2132
2133         /* Number of supported queues */
2134         ixgbevf_set_num_queues(adapter);
2135
2136         err = ixgbevf_set_interrupt_capability(adapter);
2137         if (err) {
2138                 hw_dbg(&adapter->hw,
2139                        "Unable to setup interrupt capabilities\n");
2140                 goto err_set_interrupt;
2141         }
2142
2143         err = ixgbevf_alloc_q_vectors(adapter);
2144         if (err) {
2145                 hw_dbg(&adapter->hw, "Unable to allocate memory for queue "
2146                        "vectors\n");
2147                 goto err_alloc_q_vectors;
2148         }
2149
2150         err = ixgbevf_alloc_queues(adapter);
2151         if (err) {
2152                 pr_err("Unable to allocate memory for queues\n");
2153                 goto err_alloc_queues;
2154         }
2155
2156         hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, "
2157                "Tx Queue count = %u\n",
2158                (adapter->num_rx_queues > 1) ? "Enabled" :
2159                "Disabled", adapter->num_rx_queues, adapter->num_tx_queues);
2160
2161         set_bit(__IXGBEVF_DOWN, &adapter->state);
2162
2163         return 0;
2164 err_alloc_queues:
2165         ixgbevf_free_q_vectors(adapter);
2166 err_alloc_q_vectors:
2167         ixgbevf_reset_interrupt_capability(adapter);
2168 err_set_interrupt:
2169         return err;
2170 }
2171
2172 /**
2173  * ixgbevf_sw_init - Initialize general software structures
2174  * (struct ixgbevf_adapter)
2175  * @adapter: board private structure to initialize
2176  *
2177  * ixgbevf_sw_init initializes the Adapter private data structure.
2178  * Fields are initialized based on PCI device information and
2179  * OS network device settings (MTU size).
2180  **/
2181 static int __devinit ixgbevf_sw_init(struct ixgbevf_adapter *adapter)
2182 {
2183         struct ixgbe_hw *hw = &adapter->hw;
2184         struct pci_dev *pdev = adapter->pdev;
2185         int err;
2186
2187         /* PCI config space info */
2188
2189         hw->vendor_id = pdev->vendor;
2190         hw->device_id = pdev->device;
2191         hw->revision_id = pdev->revision;
2192         hw->subsystem_vendor_id = pdev->subsystem_vendor;
2193         hw->subsystem_device_id = pdev->subsystem_device;
2194
2195         hw->mbx.ops.init_params(hw);
2196         hw->mac.max_tx_queues = MAX_TX_QUEUES;
2197         hw->mac.max_rx_queues = MAX_RX_QUEUES;
2198         err = hw->mac.ops.reset_hw(hw);
2199         if (err) {
2200                 dev_info(&pdev->dev,
2201                          "PF still in reset state, assigning new address\n");
2202                 eth_hw_addr_random(adapter->netdev);
2203                 memcpy(adapter->hw.mac.addr, adapter->netdev->dev_addr,
2204                         adapter->netdev->addr_len);
2205         } else {
2206                 err = hw->mac.ops.init_hw(hw);
2207                 if (err) {
2208                         pr_err("init_shared_code failed: %d\n", err);
2209                         goto out;
2210                 }
2211                 memcpy(adapter->netdev->dev_addr, adapter->hw.mac.addr,
2212                         adapter->netdev->addr_len);
2213         }
2214
2215         /* Enable dynamic interrupt throttling rates */
2216         adapter->eitr_param = 20000;
2217         adapter->itr_setting = 1;
2218
2219         /* set defaults for eitr in MegaBytes */
2220         adapter->eitr_low = 10;
2221         adapter->eitr_high = 20;
2222
2223         /* set default ring sizes */
2224         adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD;
2225         adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD;
2226
2227         /* enable rx csum by default */
2228         adapter->flags |= IXGBE_FLAG_RX_CSUM_ENABLED;
2229
2230         set_bit(__IXGBEVF_DOWN, &adapter->state);
2231         return 0;
2232
2233 out:
2234         return err;
2235 }
2236
2237 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter)     \
2238         {                                                       \
2239                 u32 current_counter = IXGBE_READ_REG(hw, reg);  \
2240                 if (current_counter < last_counter)             \
2241                         counter += 0x100000000LL;               \
2242                 last_counter = current_counter;                 \
2243                 counter &= 0xFFFFFFFF00000000LL;                \
2244                 counter |= current_counter;                     \
2245         }
2246
2247 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \
2248         {                                                                \
2249                 u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb);   \
2250                 u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb);   \
2251                 u64 current_counter = (current_counter_msb << 32) |      \
2252                         current_counter_lsb;                             \
2253                 if (current_counter < last_counter)                      \
2254                         counter += 0x1000000000LL;                       \
2255                 last_counter = current_counter;                          \
2256                 counter &= 0xFFFFFFF000000000LL;                         \
2257                 counter |= current_counter;                              \
2258         }
2259 /**
2260  * ixgbevf_update_stats - Update the board statistics counters.
2261  * @adapter: board private structure
2262  **/
2263 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter)
2264 {
2265         struct ixgbe_hw *hw = &adapter->hw;
2266
2267         UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc,
2268                                 adapter->stats.vfgprc);
2269         UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc,
2270                                 adapter->stats.vfgptc);
2271         UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB,
2272                                 adapter->stats.last_vfgorc,
2273                                 adapter->stats.vfgorc);
2274         UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB,
2275                                 adapter->stats.last_vfgotc,
2276                                 adapter->stats.vfgotc);
2277         UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc,
2278                                 adapter->stats.vfmprc);
2279 }
2280
2281 /**
2282  * ixgbevf_watchdog - Timer Call-back
2283  * @data: pointer to adapter cast into an unsigned long
2284  **/
2285 static void ixgbevf_watchdog(unsigned long data)
2286 {
2287         struct ixgbevf_adapter *adapter = (struct ixgbevf_adapter *)data;
2288         struct ixgbe_hw *hw = &adapter->hw;
2289         u64 eics = 0;
2290         int i;
2291
2292         /*
2293          * Do the watchdog outside of interrupt context due to the lovely
2294          * delays that some of the newer hardware requires
2295          */
2296
2297         if (test_bit(__IXGBEVF_DOWN, &adapter->state))
2298                 goto watchdog_short_circuit;
2299
2300         /* get one bit for every active tx/rx interrupt vector */
2301         for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) {
2302                 struct ixgbevf_q_vector *qv = adapter->q_vector[i];
2303                 if (qv->rxr_count || qv->txr_count)
2304                         eics |= (1 << i);
2305         }
2306
2307         IXGBE_WRITE_REG(hw, IXGBE_VTEICS, (u32)eics);
2308
2309 watchdog_short_circuit:
2310         schedule_work(&adapter->watchdog_task);
2311 }
2312
2313 /**
2314  * ixgbevf_tx_timeout - Respond to a Tx Hang
2315  * @netdev: network interface device structure
2316  **/
2317 static void ixgbevf_tx_timeout(struct net_device *netdev)
2318 {
2319         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2320
2321         /* Do the reset outside of interrupt context */
2322         schedule_work(&adapter->reset_task);
2323 }
2324
2325 static void ixgbevf_reset_task(struct work_struct *work)
2326 {
2327         struct ixgbevf_adapter *adapter;
2328         adapter = container_of(work, struct ixgbevf_adapter, reset_task);
2329
2330         /* If we're already down or resetting, just bail */
2331         if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2332             test_bit(__IXGBEVF_RESETTING, &adapter->state))
2333                 return;
2334
2335         adapter->tx_timeout_count++;
2336
2337         ixgbevf_reinit_locked(adapter);
2338 }
2339
2340 /**
2341  * ixgbevf_watchdog_task - worker thread to bring link up
2342  * @work: pointer to work_struct containing our data
2343  **/
2344 static void ixgbevf_watchdog_task(struct work_struct *work)
2345 {
2346         struct ixgbevf_adapter *adapter = container_of(work,
2347                                                        struct ixgbevf_adapter,
2348                                                        watchdog_task);
2349         struct net_device *netdev = adapter->netdev;
2350         struct ixgbe_hw *hw = &adapter->hw;
2351         u32 link_speed = adapter->link_speed;
2352         bool link_up = adapter->link_up;
2353
2354         adapter->flags |= IXGBE_FLAG_IN_WATCHDOG_TASK;
2355
2356         /*
2357          * Always check the link on the watchdog because we have
2358          * no LSC interrupt
2359          */
2360         if (hw->mac.ops.check_link) {
2361                 if ((hw->mac.ops.check_link(hw, &link_speed,
2362                                             &link_up, false)) != 0) {
2363                         adapter->link_up = link_up;
2364                         adapter->link_speed = link_speed;
2365                         netif_carrier_off(netdev);
2366                         netif_tx_stop_all_queues(netdev);
2367                         schedule_work(&adapter->reset_task);
2368                         goto pf_has_reset;
2369                 }
2370         } else {
2371                 /* always assume link is up, if no check link
2372                  * function */
2373                 link_speed = IXGBE_LINK_SPEED_10GB_FULL;
2374                 link_up = true;
2375         }
2376         adapter->link_up = link_up;
2377         adapter->link_speed = link_speed;
2378
2379         if (link_up) {
2380                 if (!netif_carrier_ok(netdev)) {
2381                         hw_dbg(&adapter->hw, "NIC Link is Up, %u Gbps\n",
2382                                (link_speed == IXGBE_LINK_SPEED_10GB_FULL) ?
2383                                10 : 1);
2384                         netif_carrier_on(netdev);
2385                         netif_tx_wake_all_queues(netdev);
2386                 }
2387         } else {
2388                 adapter->link_up = false;
2389                 adapter->link_speed = 0;
2390                 if (netif_carrier_ok(netdev)) {
2391                         hw_dbg(&adapter->hw, "NIC Link is Down\n");
2392                         netif_carrier_off(netdev);
2393                         netif_tx_stop_all_queues(netdev);
2394                 }
2395         }
2396
2397         ixgbevf_update_stats(adapter);
2398
2399 pf_has_reset:
2400         /* Reset the timer */
2401         if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
2402                 mod_timer(&adapter->watchdog_timer,
2403                           round_jiffies(jiffies + (2 * HZ)));
2404
2405         adapter->flags &= ~IXGBE_FLAG_IN_WATCHDOG_TASK;
2406 }
2407
2408 /**
2409  * ixgbevf_free_tx_resources - Free Tx Resources per Queue
2410  * @adapter: board private structure
2411  * @tx_ring: Tx descriptor ring for a specific queue
2412  *
2413  * Free all transmit software resources
2414  **/
2415 void ixgbevf_free_tx_resources(struct ixgbevf_adapter *adapter,
2416                                struct ixgbevf_ring *tx_ring)
2417 {
2418         struct pci_dev *pdev = adapter->pdev;
2419
2420         ixgbevf_clean_tx_ring(adapter, tx_ring);
2421
2422         vfree(tx_ring->tx_buffer_info);
2423         tx_ring->tx_buffer_info = NULL;
2424
2425         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2426                           tx_ring->dma);
2427
2428         tx_ring->desc = NULL;
2429 }
2430
2431 /**
2432  * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues
2433  * @adapter: board private structure
2434  *
2435  * Free all transmit software resources
2436  **/
2437 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter)
2438 {
2439         int i;
2440
2441         for (i = 0; i < adapter->num_tx_queues; i++)
2442                 if (adapter->tx_ring[i].desc)
2443                         ixgbevf_free_tx_resources(adapter,
2444                                                   &adapter->tx_ring[i]);
2445
2446 }
2447
2448 /**
2449  * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors)
2450  * @adapter: board private structure
2451  * @tx_ring:    tx descriptor ring (for a specific queue) to setup
2452  *
2453  * Return 0 on success, negative on failure
2454  **/
2455 int ixgbevf_setup_tx_resources(struct ixgbevf_adapter *adapter,
2456                                struct ixgbevf_ring *tx_ring)
2457 {
2458         struct pci_dev *pdev = adapter->pdev;
2459         int size;
2460
2461         size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
2462         tx_ring->tx_buffer_info = vzalloc(size);
2463         if (!tx_ring->tx_buffer_info)
2464                 goto err;
2465
2466         /* round up to nearest 4K */
2467         tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc);
2468         tx_ring->size = ALIGN(tx_ring->size, 4096);
2469
2470         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
2471                                            &tx_ring->dma, GFP_KERNEL);
2472         if (!tx_ring->desc)
2473                 goto err;
2474
2475         tx_ring->next_to_use = 0;
2476         tx_ring->next_to_clean = 0;
2477         tx_ring->work_limit = tx_ring->count;
2478         return 0;
2479
2480 err:
2481         vfree(tx_ring->tx_buffer_info);
2482         tx_ring->tx_buffer_info = NULL;
2483         hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit "
2484                "descriptor ring\n");
2485         return -ENOMEM;
2486 }
2487
2488 /**
2489  * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources
2490  * @adapter: board private structure
2491  *
2492  * If this function returns with an error, then it's possible one or
2493  * more of the rings is populated (while the rest are not).  It is the
2494  * callers duty to clean those orphaned rings.
2495  *
2496  * Return 0 on success, negative on failure
2497  **/
2498 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter)
2499 {
2500         int i, err = 0;
2501
2502         for (i = 0; i < adapter->num_tx_queues; i++) {
2503                 err = ixgbevf_setup_tx_resources(adapter, &adapter->tx_ring[i]);
2504                 if (!err)
2505                         continue;
2506                 hw_dbg(&adapter->hw,
2507                        "Allocation for Tx Queue %u failed\n", i);
2508                 break;
2509         }
2510
2511         return err;
2512 }
2513
2514 /**
2515  * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors)
2516  * @adapter: board private structure
2517  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
2518  *
2519  * Returns 0 on success, negative on failure
2520  **/
2521 int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter,
2522                                struct ixgbevf_ring *rx_ring)
2523 {
2524         struct pci_dev *pdev = adapter->pdev;
2525         int size;
2526
2527         size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
2528         rx_ring->rx_buffer_info = vzalloc(size);
2529         if (!rx_ring->rx_buffer_info)
2530                 goto alloc_failed;
2531
2532         /* Round up to nearest 4K */
2533         rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc);
2534         rx_ring->size = ALIGN(rx_ring->size, 4096);
2535
2536         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
2537                                            &rx_ring->dma, GFP_KERNEL);
2538
2539         if (!rx_ring->desc) {
2540                 hw_dbg(&adapter->hw,
2541                        "Unable to allocate memory for "
2542                        "the receive descriptor ring\n");
2543                 vfree(rx_ring->rx_buffer_info);
2544                 rx_ring->rx_buffer_info = NULL;
2545                 goto alloc_failed;
2546         }
2547
2548         rx_ring->next_to_clean = 0;
2549         rx_ring->next_to_use = 0;
2550
2551         return 0;
2552 alloc_failed:
2553         return -ENOMEM;
2554 }
2555
2556 /**
2557  * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources
2558  * @adapter: board private structure
2559  *
2560  * If this function returns with an error, then it's possible one or
2561  * more of the rings is populated (while the rest are not).  It is the
2562  * callers duty to clean those orphaned rings.
2563  *
2564  * Return 0 on success, negative on failure
2565  **/
2566 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter)
2567 {
2568         int i, err = 0;
2569
2570         for (i = 0; i < adapter->num_rx_queues; i++) {
2571                 err = ixgbevf_setup_rx_resources(adapter, &adapter->rx_ring[i]);
2572                 if (!err)
2573                         continue;
2574                 hw_dbg(&adapter->hw,
2575                        "Allocation for Rx Queue %u failed\n", i);
2576                 break;
2577         }
2578         return err;
2579 }
2580
2581 /**
2582  * ixgbevf_free_rx_resources - Free Rx Resources
2583  * @adapter: board private structure
2584  * @rx_ring: ring to clean the resources from
2585  *
2586  * Free all receive software resources
2587  **/
2588 void ixgbevf_free_rx_resources(struct ixgbevf_adapter *adapter,
2589                                struct ixgbevf_ring *rx_ring)
2590 {
2591         struct pci_dev *pdev = adapter->pdev;
2592
2593         ixgbevf_clean_rx_ring(adapter, rx_ring);
2594
2595         vfree(rx_ring->rx_buffer_info);
2596         rx_ring->rx_buffer_info = NULL;
2597
2598         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2599                           rx_ring->dma);
2600
2601         rx_ring->desc = NULL;
2602 }
2603
2604 /**
2605  * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues
2606  * @adapter: board private structure
2607  *
2608  * Free all receive software resources
2609  **/
2610 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter)
2611 {
2612         int i;
2613
2614         for (i = 0; i < adapter->num_rx_queues; i++)
2615                 if (adapter->rx_ring[i].desc)
2616                         ixgbevf_free_rx_resources(adapter,
2617                                                   &adapter->rx_ring[i]);
2618 }
2619
2620 /**
2621  * ixgbevf_open - Called when a network interface is made active
2622  * @netdev: network interface device structure
2623  *
2624  * Returns 0 on success, negative value on failure
2625  *
2626  * The open entry point is called when a network interface is made
2627  * active by the system (IFF_UP).  At this point all resources needed
2628  * for transmit and receive operations are allocated, the interrupt
2629  * handler is registered with the OS, the watchdog timer is started,
2630  * and the stack is notified that the interface is ready.
2631  **/
2632 static int ixgbevf_open(struct net_device *netdev)
2633 {
2634         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2635         struct ixgbe_hw *hw = &adapter->hw;
2636         int err;
2637
2638         /* disallow open during test */
2639         if (test_bit(__IXGBEVF_TESTING, &adapter->state))
2640                 return -EBUSY;
2641
2642         if (hw->adapter_stopped) {
2643                 ixgbevf_reset(adapter);
2644                 /* if adapter is still stopped then PF isn't up and
2645                  * the vf can't start. */
2646                 if (hw->adapter_stopped) {
2647                         err = IXGBE_ERR_MBX;
2648                         pr_err("Unable to start - perhaps the PF Driver isn't "
2649                                "up yet\n");
2650                         goto err_setup_reset;
2651                 }
2652         }
2653
2654         /* allocate transmit descriptors */
2655         err = ixgbevf_setup_all_tx_resources(adapter);
2656         if (err)
2657                 goto err_setup_tx;
2658
2659         /* allocate receive descriptors */
2660         err = ixgbevf_setup_all_rx_resources(adapter);
2661         if (err)
2662                 goto err_setup_rx;
2663
2664         ixgbevf_configure(adapter);
2665
2666         /*
2667          * Map the Tx/Rx rings to the vectors we were allotted.
2668          * if request_irq will be called in this function map_rings
2669          * must be called *before* up_complete
2670          */
2671         ixgbevf_map_rings_to_vectors(adapter);
2672
2673         err = ixgbevf_up_complete(adapter);
2674         if (err)
2675                 goto err_up;
2676
2677         /* clear any pending interrupts, may auto mask */
2678         IXGBE_READ_REG(hw, IXGBE_VTEICR);
2679         err = ixgbevf_request_irq(adapter);
2680         if (err)
2681                 goto err_req_irq;
2682
2683         ixgbevf_irq_enable(adapter, true, true);
2684
2685         return 0;
2686
2687 err_req_irq:
2688         ixgbevf_down(adapter);
2689 err_up:
2690         ixgbevf_free_irq(adapter);
2691 err_setup_rx:
2692         ixgbevf_free_all_rx_resources(adapter);
2693 err_setup_tx:
2694         ixgbevf_free_all_tx_resources(adapter);
2695         ixgbevf_reset(adapter);
2696
2697 err_setup_reset:
2698
2699         return err;
2700 }
2701
2702 /**
2703  * ixgbevf_close - Disables a network interface
2704  * @netdev: network interface device structure
2705  *
2706  * Returns 0, this is not allowed to fail
2707  *
2708  * The close entry point is called when an interface is de-activated
2709  * by the OS.  The hardware is still under the drivers control, but
2710  * needs to be disabled.  A global MAC reset is issued to stop the
2711  * hardware, and all transmit and receive resources are freed.
2712  **/
2713 static int ixgbevf_close(struct net_device *netdev)
2714 {
2715         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2716
2717         ixgbevf_down(adapter);
2718         ixgbevf_free_irq(adapter);
2719
2720         ixgbevf_free_all_tx_resources(adapter);
2721         ixgbevf_free_all_rx_resources(adapter);
2722
2723         return 0;
2724 }
2725
2726 static int ixgbevf_tso(struct ixgbevf_adapter *adapter,
2727                        struct ixgbevf_ring *tx_ring,
2728                        struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2729 {
2730         struct ixgbe_adv_tx_context_desc *context_desc;
2731         unsigned int i;
2732         int err;
2733         struct ixgbevf_tx_buffer *tx_buffer_info;
2734         u32 vlan_macip_lens = 0, type_tucmd_mlhl;
2735         u32 mss_l4len_idx, l4len;
2736
2737         if (skb_is_gso(skb)) {
2738                 if (skb_header_cloned(skb)) {
2739                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2740                         if (err)
2741                                 return err;
2742                 }
2743                 l4len = tcp_hdrlen(skb);
2744                 *hdr_len += l4len;
2745
2746                 if (skb->protocol == htons(ETH_P_IP)) {
2747                         struct iphdr *iph = ip_hdr(skb);
2748                         iph->tot_len = 0;
2749                         iph->check = 0;
2750                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2751                                                                  iph->daddr, 0,
2752                                                                  IPPROTO_TCP,
2753                                                                  0);
2754                         adapter->hw_tso_ctxt++;
2755                 } else if (skb_is_gso_v6(skb)) {
2756                         ipv6_hdr(skb)->payload_len = 0;
2757                         tcp_hdr(skb)->check =
2758                             ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2759                                              &ipv6_hdr(skb)->daddr,
2760                                              0, IPPROTO_TCP, 0);
2761                         adapter->hw_tso6_ctxt++;
2762                 }
2763
2764                 i = tx_ring->next_to_use;
2765
2766                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2767                 context_desc = IXGBE_TX_CTXTDESC_ADV(*tx_ring, i);
2768
2769                 /* VLAN MACLEN IPLEN */
2770                 if (tx_flags & IXGBE_TX_FLAGS_VLAN)
2771                         vlan_macip_lens |=
2772                                 (tx_flags & IXGBE_TX_FLAGS_VLAN_MASK);
2773                 vlan_macip_lens |= ((skb_network_offset(skb)) <<
2774                                     IXGBE_ADVTXD_MACLEN_SHIFT);
2775                 *hdr_len += skb_network_offset(skb);
2776                 vlan_macip_lens |=
2777                         (skb_transport_header(skb) - skb_network_header(skb));
2778                 *hdr_len +=
2779                         (skb_transport_header(skb) - skb_network_header(skb));
2780                 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
2781                 context_desc->seqnum_seed = 0;
2782
2783                 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2784                 type_tucmd_mlhl = (IXGBE_TXD_CMD_DEXT |
2785                                     IXGBE_ADVTXD_DTYP_CTXT);
2786
2787                 if (skb->protocol == htons(ETH_P_IP))
2788                         type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_IPV4;
2789                 type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_TCP;
2790                 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd_mlhl);
2791
2792                 /* MSS L4LEN IDX */
2793                 mss_l4len_idx =
2794                         (skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT);
2795                 mss_l4len_idx |= (l4len << IXGBE_ADVTXD_L4LEN_SHIFT);
2796                 /* use index 1 for TSO */
2797                 mss_l4len_idx |= (1 << IXGBE_ADVTXD_IDX_SHIFT);
2798                 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2799
2800                 tx_buffer_info->time_stamp = jiffies;
2801                 tx_buffer_info->next_to_watch = i;
2802
2803                 i++;
2804                 if (i == tx_ring->count)
2805                         i = 0;
2806                 tx_ring->next_to_use = i;
2807
2808                 return true;
2809         }
2810
2811         return false;
2812 }
2813
2814 static bool ixgbevf_tx_csum(struct ixgbevf_adapter *adapter,
2815                             struct ixgbevf_ring *tx_ring,
2816                             struct sk_buff *skb, u32 tx_flags)
2817 {
2818         struct ixgbe_adv_tx_context_desc *context_desc;
2819         unsigned int i;
2820         struct ixgbevf_tx_buffer *tx_buffer_info;
2821         u32 vlan_macip_lens = 0, type_tucmd_mlhl = 0;
2822
2823         if (skb->ip_summed == CHECKSUM_PARTIAL ||
2824             (tx_flags & IXGBE_TX_FLAGS_VLAN)) {
2825                 i = tx_ring->next_to_use;
2826                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2827                 context_desc = IXGBE_TX_CTXTDESC_ADV(*tx_ring, i);
2828
2829                 if (tx_flags & IXGBE_TX_FLAGS_VLAN)
2830                         vlan_macip_lens |= (tx_flags &
2831                                             IXGBE_TX_FLAGS_VLAN_MASK);
2832                 vlan_macip_lens |= (skb_network_offset(skb) <<
2833                                     IXGBE_ADVTXD_MACLEN_SHIFT);
2834                 if (skb->ip_summed == CHECKSUM_PARTIAL)
2835                         vlan_macip_lens |= (skb_transport_header(skb) -
2836                                             skb_network_header(skb));
2837
2838                 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
2839                 context_desc->seqnum_seed = 0;
2840
2841                 type_tucmd_mlhl |= (IXGBE_TXD_CMD_DEXT |
2842                                     IXGBE_ADVTXD_DTYP_CTXT);
2843
2844                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2845                         switch (skb->protocol) {
2846                         case __constant_htons(ETH_P_IP):
2847                                 type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_IPV4;
2848                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2849                                         type_tucmd_mlhl |=
2850                                             IXGBE_ADVTXD_TUCMD_L4T_TCP;
2851                                 break;
2852                         case __constant_htons(ETH_P_IPV6):
2853                                 /* XXX what about other V6 headers?? */
2854                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2855                                         type_tucmd_mlhl |=
2856                                                 IXGBE_ADVTXD_TUCMD_L4T_TCP;
2857                                 break;
2858                         default:
2859                                 if (unlikely(net_ratelimit())) {
2860                                         pr_warn("partial checksum but "
2861                                                 "proto=%x!\n", skb->protocol);
2862                                 }
2863                                 break;
2864                         }
2865                 }
2866
2867                 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd_mlhl);
2868                 /* use index zero for tx checksum offload */
2869                 context_desc->mss_l4len_idx = 0;
2870
2871                 tx_buffer_info->time_stamp = jiffies;
2872                 tx_buffer_info->next_to_watch = i;
2873
2874                 adapter->hw_csum_tx_good++;
2875                 i++;
2876                 if (i == tx_ring->count)
2877                         i = 0;
2878                 tx_ring->next_to_use = i;
2879
2880                 return true;
2881         }
2882
2883         return false;
2884 }
2885
2886 static int ixgbevf_tx_map(struct ixgbevf_adapter *adapter,
2887                           struct ixgbevf_ring *tx_ring,
2888                           struct sk_buff *skb, u32 tx_flags,
2889                           unsigned int first)
2890 {
2891         struct pci_dev *pdev = adapter->pdev;
2892         struct ixgbevf_tx_buffer *tx_buffer_info;
2893         unsigned int len;
2894         unsigned int total = skb->len;
2895         unsigned int offset = 0, size;
2896         int count = 0;
2897         unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
2898         unsigned int f;
2899         int i;
2900
2901         i = tx_ring->next_to_use;
2902
2903         len = min(skb_headlen(skb), total);
2904         while (len) {
2905                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2906                 size = min(len, (unsigned int)IXGBE_MAX_DATA_PER_TXD);
2907
2908                 tx_buffer_info->length = size;
2909                 tx_buffer_info->mapped_as_page = false;
2910                 tx_buffer_info->dma = dma_map_single(&adapter->pdev->dev,
2911                                                      skb->data + offset,
2912                                                      size, DMA_TO_DEVICE);
2913                 if (dma_mapping_error(&pdev->dev, tx_buffer_info->dma))
2914                         goto dma_error;
2915                 tx_buffer_info->time_stamp = jiffies;
2916                 tx_buffer_info->next_to_watch = i;
2917
2918                 len -= size;
2919                 total -= size;
2920                 offset += size;
2921                 count++;
2922                 i++;
2923                 if (i == tx_ring->count)
2924                         i = 0;
2925         }
2926
2927         for (f = 0; f < nr_frags; f++) {
2928                 const struct skb_frag_struct *frag;
2929
2930                 frag = &skb_shinfo(skb)->frags[f];
2931                 len = min((unsigned int)skb_frag_size(frag), total);
2932                 offset = 0;
2933
2934                 while (len) {
2935                         tx_buffer_info = &tx_ring->tx_buffer_info[i];
2936                         size = min(len, (unsigned int)IXGBE_MAX_DATA_PER_TXD);
2937
2938                         tx_buffer_info->length = size;
2939                         tx_buffer_info->dma =
2940                                 skb_frag_dma_map(&adapter->pdev->dev, frag,
2941                                                  offset, size, DMA_TO_DEVICE);
2942                         tx_buffer_info->mapped_as_page = true;
2943                         if (dma_mapping_error(&pdev->dev, tx_buffer_info->dma))
2944                                 goto dma_error;
2945                         tx_buffer_info->time_stamp = jiffies;
2946                         tx_buffer_info->next_to_watch = i;
2947
2948                         len -= size;
2949                         total -= size;
2950                         offset += size;
2951                         count++;
2952                         i++;
2953                         if (i == tx_ring->count)
2954                                 i = 0;
2955                 }
2956                 if (total == 0)
2957                         break;
2958         }
2959
2960         if (i == 0)
2961                 i = tx_ring->count - 1;
2962         else
2963                 i = i - 1;
2964         tx_ring->tx_buffer_info[i].skb = skb;
2965         tx_ring->tx_buffer_info[first].next_to_watch = i;
2966
2967         return count;
2968
2969 dma_error:
2970         dev_err(&pdev->dev, "TX DMA map failed\n");
2971
2972         /* clear timestamp and dma mappings for failed tx_buffer_info map */
2973         tx_buffer_info->dma = 0;
2974         tx_buffer_info->time_stamp = 0;
2975         tx_buffer_info->next_to_watch = 0;
2976         count--;
2977
2978         /* clear timestamp and dma mappings for remaining portion of packet */
2979         while (count >= 0) {
2980                 count--;
2981                 i--;
2982                 if (i < 0)
2983                         i += tx_ring->count;
2984                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2985                 ixgbevf_unmap_and_free_tx_resource(adapter, tx_buffer_info);
2986         }
2987
2988         return count;
2989 }
2990
2991 static void ixgbevf_tx_queue(struct ixgbevf_adapter *adapter,
2992                              struct ixgbevf_ring *tx_ring, int tx_flags,
2993                              int count, u32 paylen, u8 hdr_len)
2994 {
2995         union ixgbe_adv_tx_desc *tx_desc = NULL;
2996         struct ixgbevf_tx_buffer *tx_buffer_info;
2997         u32 olinfo_status = 0, cmd_type_len = 0;
2998         unsigned int i;
2999
3000         u32 txd_cmd = IXGBE_TXD_CMD_EOP | IXGBE_TXD_CMD_RS | IXGBE_TXD_CMD_IFCS;
3001
3002         cmd_type_len |= IXGBE_ADVTXD_DTYP_DATA;
3003
3004         cmd_type_len |= IXGBE_ADVTXD_DCMD_IFCS | IXGBE_ADVTXD_DCMD_DEXT;
3005
3006         if (tx_flags & IXGBE_TX_FLAGS_VLAN)
3007                 cmd_type_len |= IXGBE_ADVTXD_DCMD_VLE;
3008
3009         if (tx_flags & IXGBE_TX_FLAGS_TSO) {
3010                 cmd_type_len |= IXGBE_ADVTXD_DCMD_TSE;
3011
3012                 olinfo_status |= IXGBE_TXD_POPTS_TXSM <<
3013                         IXGBE_ADVTXD_POPTS_SHIFT;
3014
3015                 /* use index 1 context for tso */
3016                 olinfo_status |= (1 << IXGBE_ADVTXD_IDX_SHIFT);
3017                 if (tx_flags & IXGBE_TX_FLAGS_IPV4)
3018                         olinfo_status |= IXGBE_TXD_POPTS_IXSM <<
3019                                 IXGBE_ADVTXD_POPTS_SHIFT;
3020
3021         } else if (tx_flags & IXGBE_TX_FLAGS_CSUM)
3022                 olinfo_status |= IXGBE_TXD_POPTS_TXSM <<
3023                         IXGBE_ADVTXD_POPTS_SHIFT;
3024
3025         olinfo_status |= ((paylen - hdr_len) << IXGBE_ADVTXD_PAYLEN_SHIFT);
3026
3027         i = tx_ring->next_to_use;
3028         while (count--) {
3029                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
3030                 tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, i);
3031                 tx_desc->read.buffer_addr = cpu_to_le64(tx_buffer_info->dma);
3032                 tx_desc->read.cmd_type_len =
3033                         cpu_to_le32(cmd_type_len | tx_buffer_info->length);
3034                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3035                 i++;
3036                 if (i == tx_ring->count)
3037                         i = 0;
3038         }
3039
3040         tx_desc->read.cmd_type_len |= cpu_to_le32(txd_cmd);
3041
3042         /*
3043          * Force memory writes to complete before letting h/w
3044          * know there are new descriptors to fetch.  (Only
3045          * applicable for weak-ordered memory model archs,
3046          * such as IA-64).
3047          */
3048         wmb();
3049
3050         tx_ring->next_to_use = i;
3051         writel(i, adapter->hw.hw_addr + tx_ring->tail);
3052 }
3053
3054 static int __ixgbevf_maybe_stop_tx(struct net_device *netdev,
3055                                    struct ixgbevf_ring *tx_ring, int size)
3056 {
3057         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3058
3059         netif_stop_subqueue(netdev, tx_ring->queue_index);
3060         /* Herbert's original patch had:
3061          *  smp_mb__after_netif_stop_queue();
3062          * but since that doesn't exist yet, just open code it. */
3063         smp_mb();
3064
3065         /* We need to check again in a case another CPU has just
3066          * made room available. */
3067         if (likely(IXGBE_DESC_UNUSED(tx_ring) < size))
3068                 return -EBUSY;
3069
3070         /* A reprieve! - use start_queue because it doesn't call schedule */
3071         netif_start_subqueue(netdev, tx_ring->queue_index);
3072         ++adapter->restart_queue;
3073         return 0;
3074 }
3075
3076 static int ixgbevf_maybe_stop_tx(struct net_device *netdev,
3077                                  struct ixgbevf_ring *tx_ring, int size)
3078 {
3079         if (likely(IXGBE_DESC_UNUSED(tx_ring) >= size))
3080                 return 0;
3081         return __ixgbevf_maybe_stop_tx(netdev, tx_ring, size);
3082 }
3083
3084 static int ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3085 {
3086         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3087         struct ixgbevf_ring *tx_ring;
3088         unsigned int first;
3089         unsigned int tx_flags = 0;
3090         u8 hdr_len = 0;
3091         int r_idx = 0, tso;
3092         int count = 0;
3093
3094         unsigned int f;
3095
3096         tx_ring = &adapter->tx_ring[r_idx];
3097
3098         if (vlan_tx_tag_present(skb)) {
3099                 tx_flags |= vlan_tx_tag_get(skb);
3100                 tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT;
3101                 tx_flags |= IXGBE_TX_FLAGS_VLAN;
3102         }
3103
3104         /* four things can cause us to need a context descriptor */
3105         if (skb_is_gso(skb) ||
3106             (skb->ip_summed == CHECKSUM_PARTIAL) ||
3107             (tx_flags & IXGBE_TX_FLAGS_VLAN))
3108                 count++;
3109
3110         count += TXD_USE_COUNT(skb_headlen(skb));
3111         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
3112                 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]));
3113
3114         if (ixgbevf_maybe_stop_tx(netdev, tx_ring, count)) {
3115                 adapter->tx_busy++;
3116                 return NETDEV_TX_BUSY;
3117         }
3118
3119         first = tx_ring->next_to_use;
3120
3121         if (skb->protocol == htons(ETH_P_IP))
3122                 tx_flags |= IXGBE_TX_FLAGS_IPV4;
3123         tso = ixgbevf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len);
3124         if (tso < 0) {
3125                 dev_kfree_skb_any(skb);
3126                 return NETDEV_TX_OK;
3127         }
3128
3129         if (tso)
3130                 tx_flags |= IXGBE_TX_FLAGS_TSO;
3131         else if (ixgbevf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
3132                  (skb->ip_summed == CHECKSUM_PARTIAL))
3133                 tx_flags |= IXGBE_TX_FLAGS_CSUM;
3134
3135         ixgbevf_tx_queue(adapter, tx_ring, tx_flags,
3136                          ixgbevf_tx_map(adapter, tx_ring, skb, tx_flags, first),
3137                          skb->len, hdr_len);
3138
3139         ixgbevf_maybe_stop_tx(netdev, tx_ring, DESC_NEEDED);
3140
3141         return NETDEV_TX_OK;
3142 }
3143
3144 /**
3145  * ixgbevf_set_mac - Change the Ethernet Address of the NIC
3146  * @netdev: network interface device structure
3147  * @p: pointer to an address structure
3148  *
3149  * Returns 0 on success, negative on failure
3150  **/
3151 static int ixgbevf_set_mac(struct net_device *netdev, void *p)
3152 {
3153         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3154         struct ixgbe_hw *hw = &adapter->hw;
3155         struct sockaddr *addr = p;
3156
3157         if (!is_valid_ether_addr(addr->sa_data))
3158                 return -EADDRNOTAVAIL;
3159
3160         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3161         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3162
3163         if (hw->mac.ops.set_rar)
3164                 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
3165
3166         return 0;
3167 }
3168
3169 /**
3170  * ixgbevf_change_mtu - Change the Maximum Transfer Unit
3171  * @netdev: network interface device structure
3172  * @new_mtu: new value for maximum frame size
3173  *
3174  * Returns 0 on success, negative on failure
3175  **/
3176 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu)
3177 {
3178         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3179         struct ixgbe_hw *hw = &adapter->hw;
3180         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3181         int max_possible_frame = MAXIMUM_ETHERNET_VLAN_SIZE;
3182         u32 msg[2];
3183
3184         if (adapter->hw.mac.type == ixgbe_mac_X540_vf)
3185                 max_possible_frame = IXGBE_MAX_JUMBO_FRAME_SIZE;
3186
3187         /* MTU < 68 is an error and causes problems on some kernels */
3188         if ((new_mtu < 68) || (max_frame > max_possible_frame))
3189                 return -EINVAL;
3190
3191         hw_dbg(&adapter->hw, "changing MTU from %d to %d\n",
3192                netdev->mtu, new_mtu);
3193         /* must set new MTU before calling down or up */
3194         netdev->mtu = new_mtu;
3195
3196         msg[0] = IXGBE_VF_SET_LPE;
3197         msg[1] = max_frame;
3198         hw->mbx.ops.write_posted(hw, msg, 2);
3199
3200         if (netif_running(netdev))
3201                 ixgbevf_reinit_locked(adapter);
3202
3203         return 0;
3204 }
3205
3206 static void ixgbevf_shutdown(struct pci_dev *pdev)
3207 {
3208         struct net_device *netdev = pci_get_drvdata(pdev);
3209         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3210
3211         netif_device_detach(netdev);
3212
3213         if (netif_running(netdev)) {
3214                 ixgbevf_down(adapter);
3215                 ixgbevf_free_irq(adapter);
3216                 ixgbevf_free_all_tx_resources(adapter);
3217                 ixgbevf_free_all_rx_resources(adapter);
3218         }
3219
3220 #ifdef CONFIG_PM
3221         pci_save_state(pdev);
3222 #endif
3223
3224         pci_disable_device(pdev);
3225 }
3226
3227 static struct rtnl_link_stats64 *ixgbevf_get_stats(struct net_device *netdev,
3228                                                 struct rtnl_link_stats64 *stats)
3229 {
3230         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3231         unsigned int start;
3232         u64 bytes, packets;
3233         const struct ixgbevf_ring *ring;
3234         int i;
3235
3236         ixgbevf_update_stats(adapter);
3237
3238         stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc;
3239
3240         for (i = 0; i < adapter->num_rx_queues; i++) {
3241                 ring = &adapter->rx_ring[i];
3242                 do {
3243                         start = u64_stats_fetch_begin_bh(&ring->syncp);
3244                         bytes = ring->total_bytes;
3245                         packets = ring->total_packets;
3246                 } while (u64_stats_fetch_retry_bh(&ring->syncp, start));
3247                 stats->rx_bytes += bytes;
3248                 stats->rx_packets += packets;
3249         }
3250
3251         for (i = 0; i < adapter->num_tx_queues; i++) {
3252                 ring = &adapter->tx_ring[i];
3253                 do {
3254                         start = u64_stats_fetch_begin_bh(&ring->syncp);
3255                         bytes = ring->total_bytes;
3256                         packets = ring->total_packets;
3257                 } while (u64_stats_fetch_retry_bh(&ring->syncp, start));
3258                 stats->tx_bytes += bytes;
3259                 stats->tx_packets += packets;
3260         }
3261
3262         return stats;
3263 }
3264
3265 static int ixgbevf_set_features(struct net_device *netdev,
3266         netdev_features_t features)
3267 {
3268         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3269
3270         if (features & NETIF_F_RXCSUM)
3271                 adapter->flags |= IXGBE_FLAG_RX_CSUM_ENABLED;
3272         else
3273                 adapter->flags &= ~IXGBE_FLAG_RX_CSUM_ENABLED;
3274
3275         return 0;
3276 }
3277
3278 static const struct net_device_ops ixgbe_netdev_ops = {
3279         .ndo_open               = ixgbevf_open,
3280         .ndo_stop               = ixgbevf_close,
3281         .ndo_start_xmit         = ixgbevf_xmit_frame,
3282         .ndo_set_rx_mode        = ixgbevf_set_rx_mode,
3283         .ndo_get_stats64        = ixgbevf_get_stats,
3284         .ndo_validate_addr      = eth_validate_addr,
3285         .ndo_set_mac_address    = ixgbevf_set_mac,
3286         .ndo_change_mtu         = ixgbevf_change_mtu,
3287         .ndo_tx_timeout         = ixgbevf_tx_timeout,
3288         .ndo_vlan_rx_add_vid    = ixgbevf_vlan_rx_add_vid,
3289         .ndo_vlan_rx_kill_vid   = ixgbevf_vlan_rx_kill_vid,
3290         .ndo_set_features       = ixgbevf_set_features,
3291 };
3292
3293 static void ixgbevf_assign_netdev_ops(struct net_device *dev)
3294 {
3295         dev->netdev_ops = &ixgbe_netdev_ops;
3296         ixgbevf_set_ethtool_ops(dev);
3297         dev->watchdog_timeo = 5 * HZ;
3298 }
3299
3300 /**
3301  * ixgbevf_probe - Device Initialization Routine
3302  * @pdev: PCI device information struct
3303  * @ent: entry in ixgbevf_pci_tbl
3304  *
3305  * Returns 0 on success, negative on failure
3306  *
3307  * ixgbevf_probe initializes an adapter identified by a pci_dev structure.
3308  * The OS initialization, configuring of the adapter private structure,
3309  * and a hardware reset occur.
3310  **/
3311 static int __devinit ixgbevf_probe(struct pci_dev *pdev,
3312                                    const struct pci_device_id *ent)
3313 {
3314         struct net_device *netdev;
3315         struct ixgbevf_adapter *adapter = NULL;
3316         struct ixgbe_hw *hw = NULL;
3317         const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data];
3318         static int cards_found;
3319         int err, pci_using_dac;
3320
3321         err = pci_enable_device(pdev);
3322         if (err)
3323                 return err;
3324
3325         if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)) &&
3326             !dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64))) {
3327                 pci_using_dac = 1;
3328         } else {
3329                 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
3330                 if (err) {
3331                         err = dma_set_coherent_mask(&pdev->dev,
3332                                                     DMA_BIT_MASK(32));
3333                         if (err) {
3334                                 dev_err(&pdev->dev, "No usable DMA "
3335                                         "configuration, aborting\n");
3336                                 goto err_dma;
3337                         }
3338                 }
3339                 pci_using_dac = 0;
3340         }
3341
3342         err = pci_request_regions(pdev, ixgbevf_driver_name);
3343         if (err) {
3344                 dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err);
3345                 goto err_pci_reg;
3346         }
3347
3348         pci_set_master(pdev);
3349
3350 #ifdef HAVE_TX_MQ
3351         netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter),
3352                                    MAX_TX_QUEUES);
3353 #else
3354         netdev = alloc_etherdev(sizeof(struct ixgbevf_adapter));
3355 #endif
3356         if (!netdev) {
3357                 err = -ENOMEM;
3358                 goto err_alloc_etherdev;
3359         }
3360
3361         SET_NETDEV_DEV(netdev, &pdev->dev);
3362
3363         pci_set_drvdata(pdev, netdev);
3364         adapter = netdev_priv(netdev);
3365
3366         adapter->netdev = netdev;
3367         adapter->pdev = pdev;
3368         hw = &adapter->hw;
3369         hw->back = adapter;
3370         adapter->msg_enable = (1 << DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
3371
3372         /*
3373          * call save state here in standalone driver because it relies on
3374          * adapter struct to exist, and needs to call netdev_priv
3375          */
3376         pci_save_state(pdev);
3377
3378         hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3379                               pci_resource_len(pdev, 0));
3380         if (!hw->hw_addr) {
3381                 err = -EIO;
3382                 goto err_ioremap;
3383         }
3384
3385         ixgbevf_assign_netdev_ops(netdev);
3386
3387         adapter->bd_number = cards_found;
3388
3389         /* Setup hw api */
3390         memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops));
3391         hw->mac.type  = ii->mac;
3392
3393         memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops,
3394                sizeof(struct ixgbe_mbx_operations));
3395
3396         adapter->flags &= ~IXGBE_FLAG_RX_PS_CAPABLE;
3397         adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
3398         adapter->flags |= IXGBE_FLAG_RX_1BUF_CAPABLE;
3399
3400         /* setup the private structure */
3401         err = ixgbevf_sw_init(adapter);
3402         if (err)
3403                 goto err_sw_init;
3404
3405         /* The HW MAC address was set and/or determined in sw_init */
3406         memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
3407
3408         if (!is_valid_ether_addr(netdev->dev_addr)) {
3409                 pr_err("invalid MAC address\n");
3410                 err = -EIO;
3411                 goto err_sw_init;
3412         }
3413
3414         netdev->hw_features = NETIF_F_SG |
3415                            NETIF_F_IP_CSUM |
3416                            NETIF_F_IPV6_CSUM |
3417                            NETIF_F_TSO |
3418                            NETIF_F_TSO6 |
3419                            NETIF_F_RXCSUM;
3420
3421         netdev->features = netdev->hw_features |
3422                            NETIF_F_HW_VLAN_TX |
3423                            NETIF_F_HW_VLAN_RX |
3424                            NETIF_F_HW_VLAN_FILTER;
3425
3426         netdev->vlan_features |= NETIF_F_TSO;
3427         netdev->vlan_features |= NETIF_F_TSO6;
3428         netdev->vlan_features |= NETIF_F_IP_CSUM;
3429         netdev->vlan_features |= NETIF_F_IPV6_CSUM;
3430         netdev->vlan_features |= NETIF_F_SG;
3431
3432         if (pci_using_dac)
3433                 netdev->features |= NETIF_F_HIGHDMA;
3434
3435         netdev->priv_flags |= IFF_UNICAST_FLT;
3436
3437         init_timer(&adapter->watchdog_timer);
3438         adapter->watchdog_timer.function = ixgbevf_watchdog;
3439         adapter->watchdog_timer.data = (unsigned long)adapter;
3440
3441         INIT_WORK(&adapter->reset_task, ixgbevf_reset_task);
3442         INIT_WORK(&adapter->watchdog_task, ixgbevf_watchdog_task);
3443
3444         err = ixgbevf_init_interrupt_scheme(adapter);
3445         if (err)
3446                 goto err_sw_init;
3447
3448         /* pick up the PCI bus settings for reporting later */
3449         if (hw->mac.ops.get_bus_info)
3450                 hw->mac.ops.get_bus_info(hw);
3451
3452         strcpy(netdev->name, "eth%d");
3453
3454         err = register_netdev(netdev);
3455         if (err)
3456                 goto err_register;
3457
3458         adapter->netdev_registered = true;
3459
3460         netif_carrier_off(netdev);
3461
3462         ixgbevf_init_last_counter_stats(adapter);
3463
3464         /* print the MAC address */
3465         hw_dbg(hw, "%pM\n", netdev->dev_addr);
3466
3467         hw_dbg(hw, "MAC: %d\n", hw->mac.type);
3468
3469         hw_dbg(hw, "LRO is disabled\n");
3470
3471         hw_dbg(hw, "Intel(R) 82599 Virtual Function\n");
3472         cards_found++;
3473         return 0;
3474
3475 err_register:
3476 err_sw_init:
3477         ixgbevf_reset_interrupt_capability(adapter);
3478         iounmap(hw->hw_addr);
3479 err_ioremap:
3480         free_netdev(netdev);
3481 err_alloc_etherdev:
3482         pci_release_regions(pdev);
3483 err_pci_reg:
3484 err_dma:
3485         pci_disable_device(pdev);
3486         return err;
3487 }
3488
3489 /**
3490  * ixgbevf_remove - Device Removal Routine
3491  * @pdev: PCI device information struct
3492  *
3493  * ixgbevf_remove is called by the PCI subsystem to alert the driver
3494  * that it should release a PCI device.  The could be caused by a
3495  * Hot-Plug event, or because the driver is going to be removed from
3496  * memory.
3497  **/
3498 static void __devexit ixgbevf_remove(struct pci_dev *pdev)
3499 {
3500         struct net_device *netdev = pci_get_drvdata(pdev);
3501         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3502
3503         set_bit(__IXGBEVF_DOWN, &adapter->state);
3504
3505         del_timer_sync(&adapter->watchdog_timer);
3506
3507         cancel_work_sync(&adapter->reset_task);
3508         cancel_work_sync(&adapter->watchdog_task);
3509
3510         if (adapter->netdev_registered) {
3511                 unregister_netdev(netdev);
3512                 adapter->netdev_registered = false;
3513         }
3514
3515         ixgbevf_reset_interrupt_capability(adapter);
3516
3517         iounmap(adapter->hw.hw_addr);
3518         pci_release_regions(pdev);
3519
3520         hw_dbg(&adapter->hw, "Remove complete\n");
3521
3522         kfree(adapter->tx_ring);
3523         kfree(adapter->rx_ring);
3524
3525         free_netdev(netdev);
3526
3527         pci_disable_device(pdev);
3528 }
3529
3530 static struct pci_driver ixgbevf_driver = {
3531         .name     = ixgbevf_driver_name,
3532         .id_table = ixgbevf_pci_tbl,
3533         .probe    = ixgbevf_probe,
3534         .remove   = __devexit_p(ixgbevf_remove),
3535         .shutdown = ixgbevf_shutdown,
3536 };
3537
3538 /**
3539  * ixgbevf_init_module - Driver Registration Routine
3540  *
3541  * ixgbevf_init_module is the first routine called when the driver is
3542  * loaded. All it does is register with the PCI subsystem.
3543  **/
3544 static int __init ixgbevf_init_module(void)
3545 {
3546         int ret;
3547         pr_info("%s - version %s\n", ixgbevf_driver_string,
3548                 ixgbevf_driver_version);
3549
3550         pr_info("%s\n", ixgbevf_copyright);
3551
3552         ret = pci_register_driver(&ixgbevf_driver);
3553         return ret;
3554 }
3555
3556 module_init(ixgbevf_init_module);
3557
3558 /**
3559  * ixgbevf_exit_module - Driver Exit Cleanup Routine
3560  *
3561  * ixgbevf_exit_module is called just before the driver is removed
3562  * from memory.
3563  **/
3564 static void __exit ixgbevf_exit_module(void)
3565 {
3566         pci_unregister_driver(&ixgbevf_driver);
3567 }
3568
3569 #ifdef DEBUG
3570 /**
3571  * ixgbevf_get_hw_dev_name - return device name string
3572  * used by hardware layer to print debugging information
3573  **/
3574 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw)
3575 {
3576         struct ixgbevf_adapter *adapter = hw->back;
3577         return adapter->netdev->name;
3578 }
3579
3580 #endif
3581 module_exit(ixgbevf_exit_module);
3582
3583 /* ixgbevf_main.c */