
Autonomous robot running Linux for the Eurobot 2007 competition

Tran Duy Khanh, Zidek Martin, Benda Jan, Kubias Jiri, Sojka Michal

Czech Technical University in Prague, Faculty of Electrical Engineering
Department of Control Engineering
Karlovo namesti 13, 121 35, Praha 2

{trandk1, zidekm, sojkam1}@fel.cvut.cz
http://rtime.felk.cvut.cz/dragons/

Abstract

This paper presents technical solutions for an autonomous robot running GNU/Linux. While the

majority of article focused on the software implementation, we will slightly describe some of our mechanical

and electrical solutions as well. The paper outlines several interesting software built for embedded real-

time application. Later we will take a look at the robot localization using a laser beacon, passive reflectors

and an efficient algorithm for mobile robot localization, called Monte Carlo Localization.

1 Introduction

Eurobot is an international amateur robotics contest
opened to teams of young people, organized either in
student projects or in independent clubs. Eurobot
was formed from a competition founded in France,
now it takes place in Europe but also welcomes coun-
tries from other continents.

This year, the topic of the competition was Robot
Recycling Rally. The robots were supposed to sort
waste. There are three kinds of waste to find: bot-
tles, cans and batteries. The matches involve two
teams and last 90 seconds.

Each team is associated with a color, red or blue.
There are two bins for each team: one for bottles and
one for cans. In addition, there is one, shared, basket
for the batteries. Each robot finds some garbage on
the table, transports it to the correct bin, deposits
it, and returns to look for some more garbage. The
robot, which sorts more waste into correct bins will
be the winner.

Our team, CTU Dragons, participated this year
in the Eurobot competition for the first time. We
represent Department of Control Engineering [7] of
Czech Technical University in Prague [6]. During
construction and implementation of robot we were
using knowledge and technologies developed in our
department or those commonly used in control engi-
neering and in industry.

The rest of this paper is organized as follows.
Section 2 describes mechanics and electronics of our

robot and sections 3 through 7 describes various soft-
ware parts of our control system. We give a conclu-
sion and directions for future development in sec-
tion 8.

This work was supported by the Ministry of Ed-
ucation of the Czech Republic under project 1M0567
(CAK) and by European Social Fund under project
CZ.04.3.07/4.2.01.1/0045 (CEPOT).

FIGURE 1: 3D model of the robot

2 Hardware System Structure

2.1 Mechanical parts

Collecting mechanism consists of two rotating cylin-
ders, rubber belts and a lifting door. Robot can hold

1



four waste peaces in his built-in stack. Depositing
mechanism consists of a conveyor belt and a back
door. For the waste deposition, robot goes to the
baskets situated in the corner of the playground. Af-
terwards, it uses the conveyor belt or the back door
in order to eject waste from the stack depending on
whether it is a bottle or a can. See the 3D model of
the robot in Figure 1.

FIGURE 2: The robot

2.2 Electronic parts

The electronic system of the robot (see Figure 3)
consists of four subsystems.

The first subsystem is the main controller. As
a main controller for the robot was chosen embed-
ded board BOA 5200 from Analogue Micro. This
board is based on MPC5200, a PowerPC proces-
sor by Freescale. The board features among others
10/100TX Ethernet controller, 2 x CAN controllers,
serial interface, I2C interface and SPI interface. Es-
pecially presence of CAN controllers was very impor-
tant for choosing this board, because we decided to
go for CAN bus as a main bus for interconnecting
individual subsystems in our robot. CAN is a differ-
ential bus used especially in automotive industry.

The second subsystem represents the sensoric
system. All the sensors are connected to a board
with Hitachi/Renesas H8S2638 processor. The pro-
cessor collects data from all the sensors and sends
the values to the main controller via the CAN bus.

The third subsystem is the drive controller
board. This board is also based on the H8S2638 pro-
cessor and contains bridges for driving the motors.
Robot is powered with two brush-less DC engines by
MAXON.

The last subsystem performs collecting measure-
ments from the laser beacon, used for robot’s local-
ization. Electronic is based on a modulated laser

emitter and a detector with band-pass. Data are
captured and sent to a CAN bus using a board again
with the H8S2638 processor.

Robot is equipped with several tens of IR sensors
for waste detection, waste recognition, opponent de-
tection and obstacle detection.

FIGURE 3: Hardware structure of the robot

2.3 Main control unit

As was already mentioned above, the main control
unit is based on a MPC5200 board with a PowerPC
processor. The board runs Linux Kernel version
2.6.18. For the root file system we use the Jour-
nalling Flash File System version 2 or JFFS2. It is
a log-structured file system for use in flash memory
devices. JFFS2 supports NAND flash devices and
in comparison to JFFS, it supports hard links, com-
pression and better performance.

Since a small size of integrated flash memory
(16MB), we use an efficient software called BusyBox.
It is a software application which combines tiny ver-
sions of many common UNIX utilities into a single
small executable. It provides replacements for most
of the utilities which can be usually found in GNU
fileutils, shellutils, etc. The utilities in BusyBox
generally have fewer options than their full-featured
GNU versions. However, the options that are in-
cluded provide the expected functionality and behave
very much like their GNU counterparts.

Size of the whole root file system is less than
5MB. Redboot, a famous boot loader by eCos, is in-
stalled on the board to provide means for simple
kernel and file system replacement. Communication
with the board is realized through serial line or on-
board integrated Ethernet controller to which WiFi
access point is connected.

2



3 Main Control Application

The program development was carried out mostly in
C/C++ using free software tools and libraries. Com-
ponents are designed with respect to the versatility.
Main control program of the robot has been built on
finite state machine architecture. We have developed
a sophisticated and easy to use API to implement
the state machines. By now we are using four state
machine running simultaneously in separate threads.
The main program consists of the main state machine
for game strategy, state machine of the robot’s mo-
tion, state machine of the waste collection and the
last is used for the localization.

Robot motion is controlled by a layered architec-
ture. The lowest layer comprises of PID controllers
run in the driver board. On top of this, there are
several layers run in the main controller. The tra-
jectory planner layer prepares a smooth trajectory
from a set of way-points and trajectory controller
tries to keep the robot on that trajectory. Finally,
the path planner layer finds the optimal obstacle-free
path connecting two points.

During the development, we have used several
components which have simplified our work in many
aspects. Some of these systems will be described
further in this paper.

4 OMK Make System

OMK [2] (Ocera Make System) is a Make system
developed by our department under the OCERA
project [5]. The main objectives of the OMK sys-
tem is to simplify compilation of components on the
host machine as well as cross compilation for the tar-
get. In addition the system brings a better directory
and file structure. Make system allows to build out
of sources tree and store results of build in a separate
directory structure to simplify testing and program
install.

A key solution is to have a central Makefile
with compilation rules for most of sub-components
and components. This solution allows faster and
smoother change on the system, such as the kernel
update. Having most rules in a central file, Makefiles
in sources directories can be very simple.

The OMK system gives us a possibility to de-
velop robot’s control program and libraries on high-
capacity desktops along with cross-compiling final
program for the PowerPC board.

5 ORTE

ORTE stands for OCERA Real Time Ethernet [1]
and it is a part of OCERA project [5]. ORTE [1] is
an open source implementation of RTPS (Real-Time
Publish-Subscribe) communication protocol defined
by Real Time Innovations. RTPS is an application
layer protocol, which has two main communication
modes. One is the publish-subscribe protocol for
transferring the data from publisher to subscribers,
and the other one is Composite State Transfer (CST)
protocol, which transfers state. RTPS protocol was
designed to use an unreliable underlying network
protocol, such as IP/UDP.

FIGURE 4: Publisher-subscriber model of
ORTE communication

The publish-subscribe architecture was designed
to simplify data distribution from one source to many
recipients. The publisher does not have to have any
knowledge of the number or location of subscribers.
Also, the subscribers simply receive the data anony-
mously and thus they don’t need to know any infor-
mation about the publisher. An application can be
publisher and subscriber at the same time.

The publish-subscribe architecture is best suited
for distributed applications. It is scalable and the
data flows can be managed easily regardless of the
number of nodes (publishers and subscribers) con-
nected to the system. When subscribing to a data
flow, the application specifies only the topic of the
data it wants to receive, rather than to any specific
publisher.

The publish-subscribe services are typically
made available to applications through middle-ware,
that sits on top of the operating system network in-
terface and presents an application programming in-
terface.

In our case, we are using ORTE [1] to pub-
lish data from an application, which intercepts data
from CAN bus. Then the data are subscribed in the
main controlling application running on the main
controller board, but also in a graphical application

3



running on a standard desktop or portable computer,
which we use for visualizing all the data from the
robot. Thus we can see on-line all the sensors read-
ings, information about the position of the robot and
so on. The controlling application publishes all the
commands for controlling the motion of the robot to
ORTE [1] also, and the data are subscribed in CAN
bus communication application, which transforms
them into appropriate CAN messages and sends
them to the motor driver board. This approach
makes it possible to control the robot as from the
controlling application as from the graphical appli-
cation on a separate computer in the same manner.

6 Localization

To navigate reliably in the playing area, a robot must
know where it is. Reliable position estimation is a
key problem in mobile robotics. As mentioned above,
the robot localization is done using a laser beacon
and three passive reflectors. The laser beacon is posi-
tioned above the robot. Passive beacons are covered
with reflective tape and placed on reserved supports
around the playing area. Measured angles between
the reflections are used to calculate robot’s position.
By means of a calculated position, Monte Carlo al-
gorithm [3] will be able to update its model of the
predicted position.

Monte Carlo Localization makes use of a meth-
ods that were invented in the seventies and recently
rediscovered independently for instance in the target-
tracking, statistical or computer vision. Monte Carlo
Localization method is a particle filter, where the
probability density is represented by maintaining a
set of samples, that are randomly drawn from it. By
using a sampling-based representation we obtain a
localization method that can represent arbitrary dis-
tributions. Thus, the method is able to localize glob-
ally a robot. Otherwise Monte Carlo Localization is
able to localize a mobile robot without knowledge of
its starting position, which allow robot to re-localize
after a collision with obstacles or opponent robot on
the playground.

In robot localization, we are interested in esti-
mating the state of the robot at the current time.
The state vector consists of the position and orien-
tation of the robot. The probability density function
is taken to represent all the knowledge we possess
about the state, and from it we can estimate the
current position. To localize the robot we need to
recursively compute the density. This is done in two
phases:

Prediction phase: In the first phase we use a
motion model to predict the current position of the

robot. In our case, the predicted position is done
by the odometry. Odometry is the use of data from
the rotation of wheels or tracks to estimate change
in position over time.

Update phase: In the second phase we use a mea-
surement model to incorporate information from sen-
sors to correct the predicted position. In our case,
the measured position is calculated using reflected
angles between beacons.

The global localization capability of the Monte
Carlo Localization method is illustrated in the fol-
lowing figures. In the first iteration, the algorithm
is initialized by drawing 5000 samples representing
the probability density. As the robot moves over the
area, the samples are concentrated to the estimated
position.

FIGURE 5: Initialization of 5000 samples.

FIGURE 6: Global localization after the first
step.

FIGURE 7: Estimated position after 15
steps.

4



7 Visualization

Within the project, we have developed an application
used for visualization of the robot. The application
shows sensor values, position of the robot and allows
controlling of all subsystems of the robot.

FIGURE 8: Robot visualization

In addition it makes simulation of the robot be-
havior possible. Thus, the simulation simplifies de-
velopment of algorithms, such as path planning or
localization algorithm.

FIGURE 9: Trajectory visualization

8 Conclusion and Future Work

In this work we introduced a technical solution of
an autonomous mobile robot for the Eurobot com-
petition. After a year of work, we have developed
an amount of hardware and software components.
With the experience of this year we hope to be more
successful in the upcoming competition. Recent
development is concentrated on bug fixing of the ap-
plication interface, robot’s movement, path planning

and localization part. Analyzing existing problems
should be a no less important task to the success for
the next year competition.

FIGURE 10: CTU and CEPOT logos

References

[1] ORTE Documentation – Communica-
tion Components, 2004, Jan Krakora,
Pavel Pisa, Frantisek Vacek, Zdenek
Sebek, Petr Smolik, Zdenek Hanzalek
http://www.ocera.org/download/components/WP7/orte-
0.3.1.html

[2] OMK documentation, Pavel Pisa, Michal Sojka
http://rtime.felk.cvut.cz/hw/index.php/OMK

[3] Monte Carlo Localization: Efficient Position Es-
timation for Mobile Robots, Dieter Fox, Wolfram
Burgard, Frank Dellaert, Sebastian Thrun

[4] Building Embedded Linux Systems, 2003, Karim
Yaghmour

[5] OCERA Project: http://www.ocera.org

[6] Czech Technical University in Prague, Faculty of
Electrical Engineering: http://www.feld.cvut.cz

[7] Department of Control Engineering:
http://dce.felk.cvut.cz

[8] CEPOT Programme: http://www.cepot.cz

[9] Eurobot official homepage:
http://www.eurobot.org

5


