
UART-based LIN-bus Support for Linux with SocketCAN Interface

Pavel Ṕı̌sa1

pisa@cmp.felk.cvut.cz

Rostislav Lisový1

lisovy@gmail.com

Oliver Hartkopp2

oliver.hartkopp@volkswagen.de

Michal Sojka1

sojkam1@fel.cvut.cz

1 Czech Technical University in Prague, Department of Control Engineering

Karlovo náměst́ı 13, 121 35 Praha 2, Czech Republic

2 Volkswagen Group Research

Brieffach 1777, 38436 Wolfsburg, Germany

Abstract

The LIN-bus (Local Interconnect Network) is a vehicle bus standard or computer networking bus-
system used within current automotive network architectures to control slave peripherals for which CAN
bus is too expensive or complex. Concept of LIN frames and identifiers has its roots in CAN-bus however
data bytes are serialized in asynchronous serial communication format usual for UARTs.

The article focuses on LIN-bus support implementation and integration into Linux based systems with
attempt to offer portable solution with minimal hardware dependencies. This is possible thanks to the
compatibility of common UART hardware with LIN-bus serial format.

The developed slLIN protocol driver is implemented as a Linux TTY line discipline and uses only
common Linux UART serial line discipline API. The solution does not require to implement specialized
driver for each architecture or serial interface hardware and is highly portable.

The interface from application to slLIN is based on CAN protocol family network API (same as
SocketCAN uses). This approach was chosen because LIN-bus is usually found together with CAN-bus
infrastructure in applications.

The portability of the implementation has been tested on common PC serial port and MPC5200
hardware against third party fully-functional LIN device. A utility for frame sequences configuration is
also part of the implementation.

1 Introduction

Main focus of the work is to provide portable imple-
mentation of the LIN-bus (Local Interconnect Net-
work) support for Linux based systems.

The article starts with short overview of the
LIN-bus origin, concept and relation to Controller

Area Network (CAN) communication infrastructure.
Thereafter technical terms used by standard are de-
fined.

As shown later, it is possible to use serial port
(UART) combined with a simple logic level converter
to interface with the LIN bus.

1

Next section describes a Linux LIN-bus driver
(slLIN) implemented as serial line discipline which
can be attached to most of low level UART drivers
already available for all Linux kernel supported ar-
chitectures.

Interoperability tests of the designed solution are
presented and analyzed. Full interoperability has
been achieved when master task is controlled by
slLIN.

The obstacles to implement standalone slave
node by slLIN without Linux UART drivers API
extension is analyzed and goals for future work in
this area are described.

2 LIN-bus (Local Interconnect
Network)

The LIN-bus (Local Interconnect Network) is a low
cost vehicle bus standard which has been designed
to provide simple and low cost bidirectional com-
munication infrastructure for simple peripherals con-
nected to ECUs (Electronic/Engine Control Units).
It has been standardized to complement CAN-bus
based interconnection of more complex ECUs.

Controller Area Network (CAN) is networking
standard originally developed for in vehicle ECUs in-
terconnection. It is dominating communication bus
solution in current vehicles designs and most of the
contemporary microcontrollers targetting industrial
or automotive area integrate a CAN controller. The
number of inputs and outputs from each ECU grows
significantly as number of peripherals (end-point ac-
tuators and sensors) connected to them increases.
I.e. connection of knobs on a steering wheel, lights.
The use of bus technology is logical solution to tame
the wires pile up. However using of CAN equipped
microcontroller in these peripherals would be too ex-
pensive.

The LIN-bus is response to the demand for low
cost peripherals bus. Its introduction and the first
standart preparation goes back to late 1990s. Ac-
tual standard revision is freely available from LIN
Consortium[1].

The bytes are serialized on the wire same as com-
mon asynchronous serial communication does (i.e.
RS-232). Such serial communication is supported
even by the cheapest microcontrollers. LIN data
transfers are organized to frames which content is
differentiated by 6-bit identifier. Identifier is part of
the frame header which is followed by up to 8 data
bytes and check sum byte. Only one node sched-

ules and broadcasts frame headers in a given LIN-
bus network. But responses containing data bytes
and check sum can be generated by any node in-
cluding node sending header. Thus network data in-
terchange is similar to CAN-bus except a limitation
that all communications order and frames sequence
is controlled/(time) triggered by single node. But it
is usually desired setup for couple of simple periph-
erals connected to a single superordinate ECU unit.
Mechnisms to allow wake master node by peripheral
node is defined in actual standard as well but these
topics are out of the scope of this paper and slLIN

driver implementation.

The frame header starts with break character.
Break character consists of logic 0 transmission for
time longer than 11 bit transfer intervals which is
longer than logic 0 steady state for all other regu-
lar start bit (0) and stop bit (1) delimited serial line
8-bit characters. Break character is recognized by
all units regardless of their notion of actual transfer
phase and that way the synchronization of all units
and reset of the incorrect state caused by lost bit or
byte is ensured.

The header then follows by synchronization char-
acter 0x55 and already mentioned 6-bit identifier
protected by two parity bits.

2.1 Glossary

This section introduces the terms which are essen-
tial to understand this document. More complete
glossary can be found in LIN specification[1].

Cluster
A cluster is defined as the LIN bus wire and all
the nodes connected to it.

Frame
All transmitted information is packed into
frames; a frame consist of a header and a re-
sponse.

Header
A header is the first part of a frame and con-
tains a protected identifier. It is always sent by
the master task.

Master node
The master node is a node that contains a mas-
ter task. Besides that, master node also con-
tains zero or more slave tasks.

Master task
The master task is responsible for sending all
headers on the bus, i.e. it controls the timing

2

on the bus. Its implementation is usually based
on a schedule table.

Note: The current slLIN’s task model does not
correspond to the task model of LIN specifica-
tion. In slLIN, it is possible to have multiple
Linux tasks (or processes) that serve as master
tasks.

Node
Loosely speaking, a node is a LIN device.

Protected identifier
An eight-bit value containing the frame identi-
fier together with its two parity bits.

Response
Response is the second part of the frame. It is
transmitted after the header.

Slave node
A node that contains slave task(s) only, i.e. it
does not contain a master task.

Slave task
The slave task listens to all headers on the
bus. Depending on the identifier of the received
header it either publishes a frame response, or
it receives the responses published by another
slave task, or it ignores the header.

���

���

���

���

��

��

���

���

���

	
��	������	�����������

���

���

���

��

�
�

�	�

� �

���

��

��

���

��

�
�

���

��

�
�

������

��

�
�

���

���

�
�

�
�

�
�

 �����

��

�
�

�

���

�!�

��

�
�

�!�

��

��

 ����

��

�
�

�

���
�"���#$

���

�

�

�

�

�

�

�

�

	

�%&�"����!��

�����#'��

FIGURE 1: RS232 to LIN logic level con-
verter

2.2 LIN Physical Layer and Interfac-
ing to the UART

The physical LIN layer is as simple as possible. It
uses only single wire. Logic 0 level of serialized bits
is mapped to low voltage on wire which is achieved
by connection of the link to the ground by the trans-
mitter. Voltage level corresponding to logic 1 level is

held on link by pull-up resistor connected to an ECU
power supply.

The trasmitter can be implemented as single
transistor. Logic level receive requires single com-
parator with treshold around half of the supply
voltage for minimal setup. More sophisticated
trensceivers (i.e. TJA1021T) are usually used due to
faults detection and wakeup function requirements.

The aim of the presented work is to provide sim-
ple solution – that is why a simple logic level con-
verter for interfacing LIN-bus to RS232 port has been
designed. A schematic of the converter is shown in
Figure 1.

3 SocketCAN and TTY Line
Discipline Based LIN Driver

As described in the previous section, LIN-bus com-
bines UART style byte transfers with CAN style data
framing and identification. Because of these similar-
ities it is quite logical to think about LIN support
integration into existing subsystems (i.e. CAN or
UART) of the Linux kernel.

The standard Linux API for CAN based com-
munication is SocketCAN CAN protocol family
(PF CAN) subsystem and associated CAN controller
drivers. The SocketCAN description can be found in
actual Linux kernel mainline as well as in articles [2]
and [3].

LIN-bus driver can be implemented as Socket-
CAN compatible controller driver for specific UART
hardware. That would allow to achieve optimal im-
plementation for given UART hardware and utilize
special LIN extended functionality if provided by
hardware. However this solution has disadvantage
that the driver has to be ported to each individual
serial interface/UART type. Other problem is that
there is registered driver for most of the serial in-
terface types and driver unbind would be required
before LIN specific driver can be used.

slLIN approach is not to implement alternative
UART driver but to reuse already existing UART
drivers. The low level driver API is available to
modules which implement (own/new/alternative) se-
rial/TTY line discipline. Discipline can be selected
runtime accordind to intended use of the UART in-
stance.

3

3.1 TTY Line Discipline

TTY line discipline is a code that implements a spe-
cific protocol on an UART interface. The TTY line
discipline interacts with the Linux TTY (terminal)
subsystem.

To use the protocol, the line discipline needs
to be attached to a TTY by passing its identifier
(defined in include/linux/tty.h) to ioctl(fd,

TIOCSETD, &tty disc nr) system call.

4 slLIN Setup and Application
Interface

From high-level view slLIN operates as follows. Af-
ter loading the kernel module and attaching the TTY
line discipline to an existing UART interface, a new
network interface, e.g. sllin0, is created (note that
the number of the created slLIN interface may be dif-
ferent). From the application’s point of view, this in-
terface presents the traffic received from LIN bus (i.e.
UART RX) as CAN traffic and transforms the CAN
frames sent to it by applications into LIN frames on
the bus.

4.1 Master Mode

In Master mode, slLIN operates according to the fol-
lowing rules. Each rule is illustrated with a simple
sequence diagram.

1. LIN header is sent to the LIN-bus after receiv-
ing SFF RTR CAN frame from an application.
(LIN id = can id).

App/Socketcan slLIN LIN bus

SFF RTR frame
Header

2. LIN header immediatelly followed by LIN re-
sponse is sent to the LIN bus after receiving
SFF non-RTR CAN frame from an applica-
tion.
(LIN id = can id; LIN response =
can frame.data).

App/Socketcan slLIN LIN bus

SFF non−RTR frame
Header

Response

3. LIN response is sent to the LIN-bus (LIN-
header is sent due to reception of SFF RTR
CAN frame) after receiving SFF non-RTR
CAN frame.
(can id of both frames must be the same; LIN
response = can frame.data).

App/Socketcan slLIN LIN bus

SFF RTR frame
Header

SFF non−RTR frame
Response

same can_id

4. A frame is stored in a frame cache (see Sec-
tion 4.4) after receiving EFF non-RTR CAN
frame. This operation is controlled by the flags
in can id of the frame.

App/Socketcan slLIN LIN bus

EFF non−RTR frame

sllin frame
cache confi−
guration entry

5. LIN response from correctly configured frame
cache is sent to the LIN-bus upon sending the
LIN header due to the reception of SFF RTR
CAN frame.

App/Socketcan slLIN LIN bus

SFF RTR frame
Header

Response

(sllin frame cache)

4.2 Slave Mode

Slave mode enables monitoring of the LIN-bus which
means that intercepted LIN frames are sent to
sllin0 interface in the form of CAN frames. Cur-
rently, slave mode is not finished and more function-
ality needs to be added to use it for implementation
of real LIN slave tasks.

App/Socketcan slLIN LIN bus

SFF RTR frame
Header

SFF non−RTR frame
Response

4.3 Error Reporting

Errors from slLIN are reported to applications by
sending CAN frames with flags which are part of
can id. List of the individual error flags follows
(they are also defined in linux/lin bus.h).

4

LIN ERR RX TIMEOUT Reception of the LIN response
timed out

LIN ERR CHECKSUM Calculated checksum does not
match the received data

LIN ERR FRAMING Framing error

4.4 Frame Cache

slLIN integrates a so called frame cache. For each
LIN ID, it is possbile to store up to 8 bytes of data.
Frame cache is currently used in Master mode only,
but it is planned to be used in slave mode as well.

slLIN can send LIN response based on the data
stored in the frame cache immediately after trans-
mission of the LIN header. This can be configured
for each LIN ID separately by sending EFF CAN
frames where CAN ID consists out of LIN ID and
cobination of following flags:

LIN CACHE RESPONSE Sets that slave response will
be sent from frame cache

LIN CHECKSUM EXTENDED Sets extended checksum
for LIN frame with particular ID

Example To store 0xab data byte to be used as
LIN response for LIN ID 0x5, it is necessary to send
EFF (i.e. LIN configuration) non-RTR CAN frame
with CAN ID set to 0x5 | LIN CACHE RESPONSE and
data 0xab.

4.5 Communication Examples

SocketCAN project provided cangen utility slLIN

SFF RTR CAN frame, LIN response
from PCAN-LIN slave

$ cangen sllin0 -r -I 1 -n 1 -L 0

$ candump sllin0

sllin0 1 [0] remote request

sllin0 1 [2] 00 00

SFF non-RTR CAN frame

$ cangen sllin0 -I 7 -n 1 -L 2 -D f00f

$ candump sllin0

sllin0 7 [2] F0 0F

sllin0 7 [2] F0 0F

SFF RTR CAN frame without
response (ERR RX TIMEOUT)

$ cangen sllin0 -r -I 8 -n 1 -L 0

$ candum sllin0

sllin0 8 [0] remote request

sllin0 2000 [0]

$ ip -s link show dev sllin0

14: sllin0: <NOARP,UP,LOWER_UP> mtu 16 ... link/can

RX: bytes packets errors ...

2 4 1 ...

TX: bytes packets errors ...

0 4 0 ...

EFF non-RTR CAN frame to configure
frame cache

(LIN_CACHE_RESPONSE | 0x8) == 0x108

$ cangen sllin0 -e -I 0x108 -n 1 -L 2 -D beef

$ candump sllin0

sllin0 108 [2] BE EF

Try RTR CAN frame with ID = 8 again

(there is no active slave task)

$ cangen sllin0 -r -I 8 -n 1 -L 0

$ candump sllin0

sllin0 8 [0] remote request

sllin0 8 [2] BE EF

Slave mode

$ insmod ./sllin.ko master=0

$...

$ candump -t d sllin0

(000.000000) sllin0 2 [0] remote request

(001.003734) sllin0 1 [0] remote request

(000.000017) sllin0 1 [2] 08 80

(000.996027) sllin0 2 [0] remote request

(001.003958) sllin0 1 [0] remote request

(000.000017) sllin0 1 [2] 08 80

(000.996049) sllin0 2 [0] remote request

(001.003930) sllin0 1 [0] remote request

(000.000016) sllin0 1 [2] 08 80

There is no response (only RTR CAN frame) to
the fist LIN header with ID 2 in the sequence. The
second LIN header (RTR frame with ID 1) is followed
by a response (non-RTR CAN frame with the same
ID). The schedule repeats again with ID 2 from this
point.

5

4.6 Configuration

A dedicated utility (lin config) was developed to
simplify slLIN configuration. It is able to:

1. Attach slLIN line discipline to particular
UART device

2. Configure BCM (SocketCAN Broadcast Man-
ager) to periodically send LIN headers (accord-
ing to LIN schedule table)

3. Configure slLIN frame cache

The configuration is obtained from an XML file.
The format of this XML file is the same as the one
generated by the official PCAN-LIN configuration
tool.

The described utility is also able to configure the
PEAK PCAN-LIN device (from the same XML con-
figuration file).

The usage is as follows:

./lin config [OPTIONS] SERIAL INTERFACE

SERIAL INTERFACE is only mandatory argu-
ment. It selects a target serial/LIN interface to con-
figure. The format of the argument is CLASS:PATH
where

CLASS
defines the device class – it is either sllin or
pcanlin (when not set, default is ’sllin’)

PATH
is path to the serial interface, e.g /dev/ttyS0

The next general options are recognized:

-c FILE
Path to XML configuration file in PCLIN for-
mat If this parameter is not set, file ’con-
fig.pclin’ is used

PCAN-LIN specific options:

-f
Store the active configuration into internal
flash memory

-r
Execute only reset of a device

slLIN specific options:

-a
Attach sllin TTY line discipline to particular
SERIAL INTERFACE

Examples

Configure the device with the configuration from
config.pclin

./lin_config sllin:/dev/ttyS0

Reset the device

./lin_config -r pcanlin:/dev/ttyS0

After invoking lin config and successful config-
uration of slLIN, the configuration utility switches
to background and runs as a daemon. This behaviour
is necessary because of the preservation of the BCM
and TTY line discpline configuration. To detach the
slLIN line discipline, it is necessary to kill the run-
ning daemon.

5 Tests

slLIN was developed and tested on IBM PC compat-
ible computer, however its proper functionality was
also tested on MPC5200-based (PowerPC) embed-
ded board. Results of our tests are reported in the
following sections.

5.1 Communication with of-the-shelf
LIN Devices

Proper behavior in a real-world environment was
tested in conjunction with PCAN-LIN device.
PCAN-LIN was configured by using the tools de-
livered with the device. Two different setups were
used:

• PCAN-LIN as Slave node, slLIN in Master
mode – in this setup PCAN-LIN correctly re-
sponded to LIN headers sent by slLIN.

• PCAN-LIN as Master node, slLIN in Slave
mode – PCAN-LIN device in master mode was
sending LIN headers and LIN headers with cor-
responding LIN responses. slLIN was reading
this traffic and converting to CAN frames.

6

5.2 Proper Timing Verification

Timing properties of slLIN were observed on an os-
cilloscope. Waveforms captured on the LIN-bus are
shown in Figures 2 and 3. It can be seen that there
are no extensive delays caused by problems in slLIN

implementation. Note, however, that these exper-
iments were conducted on otherwise unloaded sys-
tem. Huge amount of test has been run even on
i686 PC where data interchange has been run with
Peak’s PCAN-LIN device as slave which can monitor
and detect incorrect timing inside frame transfers.

Header Response

Break Sync ID

FIGURE 2: Master: MPC5200 with
slLIN; Slave: PCAN-LIN

Header Response

Break Sync ID

FIGURE 3: Master: MPC5200 with
slLIN; Slave: MPC5200 with slLIN

6 Implementation and Difficul-
ties

This section describes the difficulties that were en-
countered during the development. Then selected

approach to generate break character is described.
The problem to control Rx FIFO trigger level for re-
sponse only/slave transfer is left for future work and
communication with serial drivers maintainers.

6.1 Experienced Problems

First prototype of slLIN was programmed for user-
space. At first this seemed to be much easier than to
implement a TTY discipline, however we were expe-
riencing some problems. Those are briefly mentioned
in the following paragraphs.

• It is possible to generate UART-break by call-
ing tcsendbreak() system call. The result
was a break signal lasting hundreds of millisec-
onds, whereas about 700µs long break signal is
needed for LIN when operating at 19200 bauds.

A possible way for generating break sig-
nal of the appropriate length would be to
lower UART baud rate and send a normal
character of value 0x00 using the changed
speed. The baud rate can be changed by
cfsetospeed(struct termios *termios p,

speed t speed) (and tcsetattr()) system
call but it does not allow to use arbitrary value
for speed t, only a predefined values can be
used. This means that it is not possible to
decrease the baud rate to 2/3 of the current
baud rate.

When tried to use half baud rate for sending
break, the break signal was still to long.

• Slave implementation faces another fundamen-
tal problem. Common UART chips signal a
receive event when either RX FIFO is filled up
to the certain level or after a timeout (typically
one to three characters long) elapses. FIFO
RX trigger level can be configured for some
UART chips but there is no standard API (nei-
ther in the kernel nor in the user space) to set
the level. Linux serial drivers set the level to
a fixed value. Even worse, the most common
16C550 based chips cannot be told to set the
RX FIFO trigger level to one character. The
only solution is to disable RX and TX FIFOs
completely. But again, there is no API to ask
for that in Linux serial drivers.

6.2 Break Signal Generation

There are two possible ways how to generate correct
LIN break signal in a user-space program:

7

• Baud rate can be decreased by set-
ting custom divisor field in struct

serial struct structure, which is obtained
by calling ioctl(tty fd, TIOCGSERIAL,

&sattr) (see the file tty lin master/main.c

at line 60). This approach works with PC
UARTs, however it is deprecated and may not
work with every UART controller.

• Alternatively, baud rate can also be
decreased by setting struct termios2

structure, which is obtained by calling
ioctl(tty fd, TCGETS2, &tattr) (see file
tty lin master/main.c at line 95).

slLIN is implemented in kernel-space. It gener-
ates the correct break character by direct switching
of TX line state for the necessary amount of time.
The time interval is measured by usleep range()

function.

Alternate implemented solution is similar to the
user-space approach. Break signal can be generated
by changing the baud rate. This can be achieved by
setting struct ktermios belonging to the particular
TTY (struct tty struct).

7 Conclusion

Portable Linux LIN-bus driver (slLIN) has been im-
plemented. Implantation is based on SocketCAN
introduced and based network API/protocol family
(PF CAN). Hardware is controlled through architec-
ture/UART type independent low level Linux UART
API through slLIN serial line discipline.

slLIN is currently capable of operating as a LIN-
bus master node. The full support for sending LIN
headers and or LIN headers and associated LIN re-
sponses is implemented and tested. All traffic is fully
monitored and all respones are delivered to applica-
tions according to PF CAN filters under application
control. Local slave tasks responses can be sent di-
rectly by applications in response to RTR SFF CAN
frames or can be supplied by the frame cache.

Transfers schedule table is not implemented di-
rectly by the slLIN driver. Timing can be controlled
by master controlling user-space application by send-
ing RTR SFF CAN frames to slLIN at appropri-
ate time instants or SocketCAN Broadcast Manager
(BCM) can be configured to control transfers tim-
ing from kernel-space. The utility lin config has
been implemented to simplifies transfer schedule and
frame cache configuration.

Slave mode enables monitoring of the LIN-bus
but sending slave task responses by slave node is not
solved. To fully implement slave mode in a way that
is independent on the underlaying driver requires ex-
tension of a low lever kernel UART API to allow con-
trol the RX FIFO of serial controllers. This will have
to be discussed with Linux TTY layer maintainers.
On the other hand, slave implementation has been
tested on MPC5200 UART which can be managed
to behave as required for slLIN slave configuration.

The portability of the slLIN to different ar-
chitectures has been demonstrated by running the
driver on i686 PC 16C550 UART and on PowerPC
MPC5200 board. Interoperability with Peak LIN
professional offers has been successfully verified.

The actual information about slLIN develop-
ment can be found at the DCE FEE CTU page[4].
Source code of the driver and lin config utility is
available from Rtime GIT repository[5].

8 Acknowledgment

This work was financially supported by Volkswagen
AG and Ministry of Education of the Czech Republic
under the Project ME 10039.

References

[1] LIN consortium: LIN Specification Package, Re-
vision 2.2 [online], December 2010, Available:
http://www.lin-subbus.de/.

[2] Hartkopp, O: The CAN networking subsystem of
the Linux kernel, in Proceedings of the 13th In-
ternational CAN Conference (iCC’12), Hambach
Castle, Germany: CiA, March 2012, pp. 05-10 –
05-16.

[3] Kleine-Budde, M: SocketCAN – The official CAN
API of the Linux kernel, in Proceedings of the
13th International CAN Conference (iCC’12),
Hambach Castle, Germany CiA, March 2012, pp.
05-17 – 05-22.

[4] CAN and LIN pages – Rtime server at DCE
FEE CTU [online], 2012, Available:
http://rtime.felk.cvut.cz/can/lin-bus/.

[5] Linux LIN and slLIN Driver GIT repository
[online], 2012, Available:
http://rtime.felk.cvut.cz/gitweb/linux-lin.git.

8

